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Fig. 1. Photographs of Physical Prototypes. Our computational design algorithm takes as input a curve in R3 and computes the geometry of a straight
elastic rod that will deform to match the input curve once installed in a support structure. Left: Six silicone rods that match six input curves subject to elastic
forces and gravity. Right: Free-form light sculpture made from three straight silicone rods and electroluminescent wire, attached to a 3d-printed fixture.

The Kirchhoff rod model describes the bending and twisting of slender

elastic rods in three dimensions, and has been widely studied to enable

the prediction of how a rod will deform, given its geometry and boundary

conditions. In this work, we study a number of inverse problems with the

goal of computing the geometry of a straight rod that will automatically

deform to match a curved target shape after attaching its endpoints to a

support structure. Our solution lets us finely control the static equilibrium

state of a rod by varying the cross-sectional profiles along its length.

We also show that the set of physically realizable equilibrium states admits

a concise geometric description in terms of linear line complexes, which

leads to very efficient computational design algorithms. Implemented in an

interactive software tool, they allow us to convert three-dimensional hand-

drawn spline curves to elastic rods, and give feedback about the feasibility

and practicality of a design in real time. We demonstrate the efficacy of our

method by designing and manufacturing several physical prototypes with

applications to interior design and soft robotics.
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1 INTRODUCTION
Rod-like elements are ubiquitous in natural and human-made en-

vironments, and form the building blocks of the world around us:

from beams used in the construction of buildings, machines, and

tools, to electrical cables, clothing fibers, tree branches, human hair,

muscle tissue, and DNA strands. This omnipresence has led to a

long and rich scientific history concerned with developing the tools

to predict how an elastic rod of a given length and shape will bend

and twist under different loads and constraints.

The history of investigating the inverse problem—to determine

the initial shape of a rod whose equilibrium state is known—is

considerably younger but no less ambitious: It lays the theoretical

foundation for designing rods with a programmable deformed shape

that is hard-coded into its geometry.

Motivation. Most rods, beams, and ribbons used in construction and

design are straight in their undeformed state and acquire curvature

only through the process of bending and twisting. Straight rods are

preferred because they can be manufactured more cheaply and with

less material waste, and packed more easily for transport. To enable

the inverse design of straight rods with a programmable curved

equilibrium shape, it is useful to know exactly which equilibrium

shapes are physically realizable in the first place.

This problemwas recently solved byHafner and Bickel [2021] for the

special case of planar deformations, leading to a concise description

of all plane curves that appear as static equilibria of straight elastic

rods with spatially-varying thickness. This result also gives rise to

a computational design algorithm, which solves for the thickness

distribution necessary to achieve a given curved shape, and has

applications in architecture and design.

A limitation of the aforementioned work is the restriction to planar

shapes, and the inability to reproduce shapes that are curved in three
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Fig. 2. Algorithm Overview. Left: The input to our computational design algorithm is a curve in R3, which we want to convert to a deformed elastic rod.
Center-left: We show that this problem has a solution if and only if there exists a helical motion (green) that is nowhere orthogonal to the binormal lines
(yellow) of the curve. Center-right: Based on the parameters of the helical motion, we compute a moving frame along the curve and the geometry of a rod that
solve the Kirchhoff rod equilibrium equation. Right: Photograph of a silicone rod that deforms according to the computed solution in the real world.

dimensions. In this work, we show that a geometric characterization

can also be attained for the case of fully three-dimensional bending

and twisting of straight elastic rods with spatially-varying cross

sections. This allows the computational design of structures such

as the ones shown in Fig. 1, in which the curvature of the rods is

induced purely by the elastic response of the material and the cross

sections computed by our algorithm.

Problem Statement. We study the design problem associated with

rods of vanishing natural curvature from a geometric and from

an algorithmic perspective. To formalize this problem, we use the

large-displacement small-strain model developed by Kirchhoff and

Clebsch, called the Kirchhoff rod model for short.

The deformed state of a Kirchhoff rod can be described as a framed

curve in R3
, so a natural question to ask is which framed curves

occur as deformed equilibrium states of rods—supposing we can

freely choose the cross-sectional profile at every point. We study

three flavors of this question, which differ by how much of the

deformed state is prescribed, i.e., whether the twist of the rod is

constrained to vanish, constrained to be a prescribed function, or

not constrained at all.

Design Algorithm. Our main theoretical contribution is to show that

there is a close connection between these sets of equilibrium curves
and classical projective line geometry. This connection leads to a

characterization of these curves that is both concise and compu-

tationally convenient. Furthermore, it directly translates into an

algorithm that checks whether a given curve has the equilibrium

property, and lets us construct the geometry of a rod that will realize

this curve as one of its equilibrium states.

This algorithm takes as input a design, consisting of a number of

curves in three-dimensional space, which we would like to turn

into a physical model where elastic rods take the place of these

curves. For each curve, the algorithm outputs the geometry of a

straight rod with a spatially-varying cross-sectional profile. This

rod will adopt the shape of the input curve at static equilibrium

once its endpoints are mounted in a support structure at the correct

locations, orientations, and twist, as illustrated in Fig. 2.

The basic version of our algorithm, which applies when the gravi-

tational effect on the deformed shape is negligible, comes with the

rigorous guarantee that it terminates successfully if and only if the

input is feasible. This is in contrast to existing iterative form-finding

algorithms, which cannot guarantee that existing solutions will al-

ways be found, as they may encounter local minima in the complex

energy landspace of Kirchhoff rods or terminate early due to an

excessively shallow gradient close to a minimum. Our feasibility

test, form-finding, and geometry generation take 10 ms all together,

so they are fast enough to be part of an interactive design pipeline.

Extensions. In preparation of our main results, we formulate and

show two interesting properties of the design space of Kirchhoff

rods. First, we prove convexity of the set of stiffness matrices that

describe the resistance to bending and twisting at a point of the

rod. This indicates that many design problems involving Kirchhoff

rods can be posed as convex optimization problems. Second, we

investigate how using cross sections with different shapes affects

the equilibrium curves that can be achieved. We prove that elliptical

cross sections suffice to reach every possible deformed state, and

other cross sections do not add any more design freedom.

Finally, we show how external forces and the dead load of a rod

can be modeled as part of the inverse problem, thereby opening up

applications in design on a larger scale. To take these forces into

account, we present an iterative algorithm that post-processes the

result obtained with the basic, load-free algorithm. Convergence of

this algorithm is at least linear on all of our examples, as we show

by empirical means.

We apply our design algorithm to several fields of application, such

as fixture design, interior design, and soft robotics. In this context,

we discuss our fabrication pipeline for producing physical copies

of rods using 3d-printed molds and silicone casting. The efficacy of

our approach is validated by comparing photographs of our manu-

factured examples to renderings of the target designs.

2 RELATED WORK
Our work fits into a body of research on fabrication-aware design,

a field that aims to provide computational tools for the design of
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physical artifacts which are subject to special constraints derived

from its material, function, or fabrication pipeline. Elastic rods are

popular building blocks in computational fabrication, and they have

been studied for their ability to take on complex shapes through

bending, and to approximate surfaces through the formation of

networks. We give an overview of these lines of research, followed

by an account of works that study mathematical properties and

physical limits of the design space of rods, which is the primary

concern of this text.

Fabrication-Aware Design. The inverse design of free-form objects

from elastic materials has received wide attention in the past ten

years and covers a range of applications, such as inverse shape

design under gravity [Chen et al. 2014], design of objects with pre-

scribed natural frequencies [Bharaj et al. 2015], and design of curved

surfaces with elastic membranes [Guseinov et al. 2017; Pérez et al.

2017]. Other strategies for surface fabrication include modeling the

deformation of wire mesh with Chebyshev nets [Sageman-Furnas

et al. 2019], approximation with Origami [Dudte et al. 2016], and

inflation of air channel networks [Panetta et al. 2021]. A comprehen-

sive overview of fabrication-aware design can be found in recent

surveys [Bermano et al. 2017; Bickel et al. 2018].

Design of Rod Networks. Grids of elastic rods have been used in

an architectural context for the economical construction of curved

façades and pavilions. One successful concept is that of a gridshell,

an elastic lattice that is assembled in a planar configuration and

curved during deployment [Lienhard et al. 2013]. Gridshells have

been built based on asymptotic nets [Schling et al. 2018], special

geodesic nets and sliding joints [Pillwein et al. 2020; Pillwein and

Musialski 2021], and using deployment simulation with inverse

design optimization [Panetta et al. 2019]. Another approach for

constructing curved surfaces from flat elements at scale is the use

of spiraling microstructures [Malomo et al. 2018].

Outside of architecture, rod networks have also been used to ap-

proximate deformable surfaces with multiple target poses at a low

fabrication cost [Pérez et al. 2015] and to cover a surface in a struc-

turally sound, decorative network of user-defined patterns [Zehnder

et al. 2016]. A recent application of ribbon networks concerns the de-

sign of tri-axially woven free-form surfaces, based on near-geodesic

families of curves [Vekhter et al. 2019] or using naturally curved

ribbons [Ren et al. 2021].

Design of (and with) Rods. Solutions to design problems are often

based on forward simulation methods, which have been studied

extensively. The earliest rod simulation method in graphics litera-

ture treats the static clamped-free case [Pai 2002], while the first

dynamic rod simulation method is based on a piecewise-helical dis-

cretization [Bertails et al. 2006]. The popular discrete elastic rod

model supports arbitrary boundary conditions, constraints, and

anisotropic cross sections [Bergou et al. 2010, 2008].

Rod simulation is frequently used to compute the dynamics of hair

in computer animation. Modeling hair styles that look lifelike under

gravity is among the earliest inverse design problems studied in

computer graphics [Hadap 2006], with later works taking into ac-

count collisions and frictional contact [Derouet-Jourdan et al. 2013].

In computational fabrication, rod models have been employed to pre-

dict the elastic response of wires for instance. Applications include

the design of structurally stable wire sculptures [Miguel et al. 2016]

and cable-actuated wire characters with multiple target poses [Xu

et al. 2019b], as well as optimizing the motor trajectories of robotic

wire characters to minimize mechanical oscillations [Hoshyari et al.

2019]. Recently, Duenser et al. [2020] used a rod model to robotically

control a hot-wire foam cutter with a flexible elastic cutting wire.

That the manifold of all equilibrium configurations attained by such

a wire can be parametrized by a single coordinate chart was shown

by Bretl and McCarthy [2014].

Rods and ribbons also play a significant role in self-formation pro-

cesses, in which mechanical properties are controlled and exploited

to realize a design. Examples are spatially-varying thermal prop-

erties to induce controlled curvature in rods with a straight initial

state [Wang et al. 2019], ribbons with spatially-varying width to

approximate a target shape given double-clamped boundary con-

ditions [Liu et al. 2020], and ribbons whose natural curvature is

modified to control their buckled shape [Xu et al. 2019a].

Properties of Design Spaces. Some works go beyond solving inverse

problems numerically and also provide formal conditions for the

feasibility of design problems. Pioneering this type of contribution in

graphics literature, Derouet-Jourdan et al. [2010] study the problem

of determining the natural curvature of an isotropic clamped-free

elastic rod in the plane whose deformed shape under gravity is

known. In addition to providing a numerical inversion algorithm,

the authors give a sufficient stability condition on the stiffness

and density of the rod. Bertails-Descoubes et al. [2018] study the

same inversion problem for Kirchhoff rods in three dimensions

and show that the natural configuration is uniquely determined by

the equilibrium curve up to framing. Closest to our work, Hafner

and Bickel [2021] give a geometric characterization of all plane

curves that appear as equilibria of clamped-clamped elastic rods

with spatially-varying stiffness. We provide a direct generalization

of this result to the setting of Kirchhoff rods in three dimensions

with spatially-varying anisotropy.

Beyond the design of elastic rods, Konaković Luković et al. [2018]

study pneumatically-actuated deployment of auxetic structures and

show that this design space is described exactly by surfaces with

positive mean curvature almost everywhere. Finally, Wang and

Solomon [2021] represent skinning weights on meshes as solutions

to a parametrized family of elliptic partial differential equations,

which are shown to possess the same properties as high-quality

weights. We use a similar characterization, based on solutions to a

parametrized differential equation, to describe twist-free equilibria

of elastic rods.

3 OVERVIEW
The technical sections of this paper are organized in three parts. Our

contributions are presented in Sections 5 and 7-9, while Sections 4

and 6 serve as technical introductions.

1. Kirchhoff Rods. We summarize the classical Kirchhoff rod model,

with an emphasis on how to compute the stiffness matrix for a given
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cross section, and introduce the equilibrium equation for clamped-

clamped boundary conditions (Section 4).

These tools are used to characterize the set of all stiffness matrices

achievable within Kirchhoff rod theory and to show that this set is

convex. Furthermore, we prove that a much smaller set of stiffness

matrices, namely, that induced by elliptical cross sections, suffices

to reach every possible equilibrium state (Section 5).

2. Equilibrium Curves. We give a summary of Plücker coordinates

and linear line complexes (Section 6), our main tools to study the

design space of Kirchhoff rods. Then, we present a geometric charac-

terization of twist-free equilibrium states, which directly generalizes

a previous result in the plane setting [Hafner and Bickel 2021]. We

explore interactive design of these curves, and discuss how to heuris-

tically avoid stability issues (Section 7).

Next, we drop the twist-free constraint and present a geometric

characterization of all Frénet curves that appear as deformed center-

lines of Kirchhoff rods at equilibrium. This leads to a computational

design algorithm that decides for a given (framed) curve whether

it has the equilibrium property, and, in case it does, computes the

geometry of the corresponding Kirchhoff rod (Section 8).

3. Design under Load. We discuss a generic load model that supports

point loads and line loads, such as the dead load of a rod, and the

resulting modification to the equilibrium equation. The problem

of finding solutions to this equation is then posed as a fixed-point

problem, which can be solved via iteration (Section 9).

Finally, in Section 10, we show several physical examples that have

been designed with our approach and manufactured using silicone

casting, before we draw conclusions in Section 11.

All algorithms presented in this paper rely only on linear programs

and initial value problems, both of which can be solved numerically

within a few milliseconds. The result is a set of techniques fast

enough to produce results within a fraction of a second, so they can

be used to give immediate feedback during an interactive editing

session, or as part of more complex, iterative algorithms.

3.1 Main Result
Much of this paper builds towards an algorithm that lets us interpret

a Frénet curve𝛾 : (0, ℓ) → R3
as the static equilibrium of a Kirchhoff

rod. We show in Proposition 8 that this is possible for any given

curve if and only if there exist 𝑐, 𝑐 ∈ R3
such that

⟨𝛾 ′ × 𝛾 ′′, 𝑐 × 𝛾 + 𝑐⟩ > 0

holds along the entire curve. This inequality is linear in the un-

knowns 𝑐 and 𝑐 , so it can be checked by a linear program. Further-

more, we will see that choosing concrete values for 𝑐, 𝑐 allows us

to construct the three-dimensional geometry of an elastic rod that

is guaranteed to deform in such a way that it will match 𝛾 at static

equilibrium under suitable boundary conditions.

We can attach a geometric meaning to this inequality: The vector

𝛾 ′ × 𝛾 ′′ gives the direction of the binormal line at a point of the

curve, which is the normal line of the osculating plane. Vector fields

of the form 𝑥 ↦→ 𝑐 × 𝑥 + 𝑐 , for some fixed 𝑐 and 𝑐 , are so-called

𝑒1

𝑒2
𝑒3

𝛾
𝑛1

𝑛2

Fig. 3. KirchhoffRod. Left: Initial, undeformed state. Right: Deformed state
with bending and twist. The cross sections (gray) are anisotropic, and vary
across the length. Their centroids form the centerline 𝛾 (black), to which the
material normals 𝑛1 and 𝑛2 (black) are attached. The purple-green stripe
pattern on the surface visualizes the twist in the deformed state.

helical vector fields and arise as the velocity fields of a simultaneous

translation along and rotation around a fixed axis.

The inequality states that𝛾 can be converted to the equilibrium state

of a Kirchhoff rod if and only if one can find a helical vector field
that is not orthogonal to the binormal line in any point of the curve.1

Figure 2 illustrates an example in which the trajectories of a helical

vector field (green) and the binormal lines of the curve (yellow) are

very well aligned (center-left). This leads to a rod geometry that can

reproduce the equilibrium state with a low amount of twist, and that

has a cross-sectional distribution with a high level of uniformity,

which simplifies fabrication (center-right, right). The mechanical

arguments for this will be made precise in Section 8.

4 KIRCHHOFF RODS: TECHNICAL PRELIMINARIES
The goal of this section is to introduce the mathematical tools to

describe a popular model for the deformation of thin elastic rods,

developed by Kirchhoff and Clebsch. Readers familiar with this

subject may skip ahead to Eq. 6 and consult the supplemental cheat
sheet for an overview of our notation.

A rod is a slender three-dimensional body whose extent in one di-

rection is much greater than that in the orthogonal directions, such

as beams, cables, yarn, and hair. It can be shown that deformations

of a rod under moderate loads admit a number of kinematic simpli-

fications, such as near-inextensibility of the centerline, and cross

sections remaining nearly planar in bending. These assumptions

lead to a reduction of the full three-dimensional displacement field

to a one-dimensional description via curvatures and twist, which is

captured mathematically by the concept of framed curves.

4.1 Framed Curves
We will focus our investigation on rods with a center line that is

straight in the initial state. To keep track of bending and twisting

modes, we rigidly attach a standard orthonormal frame (𝑒1, 𝑒2, 𝑒3)
to every point of the center line, assuming that the direction of the

rod coincides with 𝑒3, as shown in Fig. 3 (left).

1
The expression ⟨𝛾 ′ × 𝛾 ′′, 𝑐 × 𝛾 + 𝑐 ⟩ is continuous in the curve parameter. Thus,

non-orthogonality is equivalent to a constant sign of this inner product. Should the

sign be negative, we can replace (𝑐, 𝑐 ) with (−𝑐, −𝑐 ) to produce an inner product that

is strictly positive everywhere.

ACM Trans. Graph., Vol. 1, No. 1, Article . Publication date: July 2023.



The Design Space of Kirchhoff Rods • 5

Once forces are applied to the rod, the center line deforms isometri-

cally into an arc-length parametrized curve 𝛾 : (0, ℓ) → R3
, with ℓ

the length of the rod. Likewise, the frames rotate such that 𝑒1 and

𝑒2 map onto the material normals 𝑛1 and 𝑛2, and 𝑒3 onto the curve
tangent 𝛾 ′. These three orthonormal vectors form the columns of

the moving frame 𝐹 = (𝑛1, 𝑛2, 𝛾
′) : (0, ℓ) → 𝑆𝑂 (3). The pair (𝛾, 𝐹 )

is called a framed curve. Fig. 3 shows an anisotropic Kirchhoff rod

in its undeformed and deformed state.

Darboux Vector and Curvature. The derivative of 𝐹 wrt the arc-
length parameter 𝑠 is described geometrically by the Darboux vector
𝜔 : (0, ℓ) → R3

, which satisfies 𝐹 ′ = [𝜔]×𝐹 . Here, [𝜔]× denotes

the skew-symmetric matrix such that [𝜔]×𝑣 = 𝜔 × 𝑣 for all 𝑣 ∈ R3
.

The coordinates of𝜔 with respect to 𝐹 are called the curvature vector
𝑘 : (0, ℓ) → R3

, so 𝜔 = 𝐹𝑘 . The components 𝑘 = (𝜅1, 𝜅2, 𝜏)𝑇 are

known as the material curvatures 𝜅𝑖 , for 𝑖 = 1, 2, and the twist 𝜏 .

The normal component of 𝜔 , denoted by 𝜔𝑛 , is the same for all

frames adapted to 𝛾 , and can be computed as

𝜔 − ⟨𝜔,𝛾 ′⟩𝛾 ′ = 𝜔𝑛 = 𝛾 ′ × 𝛾 ′′ .

Likewise, the (geometric) curvature 𝜅 =

√︃
𝜅2

1
+ 𝜅2

2
≥ 0 is determined

by 𝛾 alone, and can be computed as 𝜅 = ∥𝛾 ′′∥ = ∥𝜔𝑛 ∥. Analogous
to 𝜔𝑛 , we also introduce notation for the first two columns of 𝐹 and

the first two entries of 𝑘 :

𝐹𝑛 := (𝑛1, 𝑛2) = 𝐹𝑆, 𝑘𝑛 := (𝜅1, 𝜅2)𝑇 = 𝑆𝑇𝑘, with 𝑆 =

(
1 0

0 1

0 0

)
.

This lets us write 𝜔𝑛 = 𝐹𝑛𝑘𝑛 for any frame.

It will be useful to express 𝑘 purely in terms of 𝐹 . To do this, we

can use the following identity: for any 𝑄 ∈ SO(3) and 𝑣 ∈ R3
, it

holds that 𝑄 [𝑣]×𝑄𝑇 = [𝑄𝑣]× .2 Then, we compute 𝐹 ′𝐹𝑇 = [𝜔]× =

[𝐹𝑘]× = 𝐹 [𝑘]×𝐹𝑇 , which implies that [𝑘]× = 𝐹𝑇 𝐹 ′.

Special Frames. A frame with 𝜏 ≡ 0 is called parallel and describes a
rod deformation without twist. For any given curve, a parallel frame

𝐹 is uniquely determined by the image under 𝐹 of a single point,

for example 𝐹 (0). Two parallel frames differ only by a constant

rotation in the normal plane. The Darboux vector of a parallel frame

is contained in the normal plane, so 𝜔 = 𝜔𝑛 .

Away from inflection points, a curve has a unique Serret–Frénet
frame defined by the principal normal 𝑛1 = 𝛾 ′′/∥𝛾 ′′∥ and character-

ized by 𝜅1 ≡ 0. The curve binormal 𝑛2 = (𝛾 ′ × 𝛾 ′′)/∥𝛾 ′′∥ is parallel
to 𝜔𝑛 . A curve that has a Serret–Frénet frame everywhere is called

a Frénet curve and is characterized by 𝜅 > 0.

Relating Adapted Frames. Two frames 𝐹 and 𝐹𝛽 adapted to the same

curve 𝛾 share the same third basis vector at every point, i.e., 𝐹𝑒3 =

𝛾 ′ = 𝐹𝛽𝑒3. Thus, they are related through a rotation around the

third basis vector by an angle 𝛽 : (0, ℓ) → R that may vary as a

function of 𝑠 . Likewise, we can relate their curvature vectors:

𝐹𝛽,𝑛 = 𝐹𝑛𝑄𝛽 , with 𝑄𝛽 =

(
cos 𝛽 − sin 𝛽

sin 𝛽 cos 𝛽

)
,

𝑘𝛽,𝑛 = 𝑄𝑇
𝛽
𝑘𝑛, 𝜏𝛽 = 𝜏 + 𝛽′ .

(1)

2
Proof: Let 𝑤 ∈ R3

. Then,𝑄 [𝑣 ]×𝑄𝑇𝑤 = 𝑄 (𝑣 × (𝑄𝑇𝑤 ) ) = (𝑄𝑣) × 𝑤 = [𝑄𝑣 ]×𝑤.

Parallel Frame

Serret–Frénet Frame

Rotation 𝛽

Fig. 4. Rotation Between a Parallel and the Serret–Frénet Frame. Any
two frames adapted to the same curve are related through a rotation with
some angle 𝛽 : (0, ℓ ) → R around the curve tangent. In this example, 𝛽
relates a parallel frame (purple) and the Frénet frame (green) of the curve.

Fig. 4 shows a curve with a parallel frame and its Serret–Frénet

frame, as well the rotation between the two frames.

4.2 Elastic Energy
The elastic energy of a deformed Kirchhoff rod is defined based on

the assumption that bending and twisting modes of deformation

can be decoupled and contribute separately to the energy. The con-

tribution of each mode is derived by assuming a state of uniform

bending or twisting, and computing the respective energy from

three-dimensional elasticity. We will only discuss aspects of the

resulting formulation that are relevant to subsequent sections—for

a detailed derivation, see Audoly and Pomeau [2010, 3.3–3.5].

The elastic energy of a Kirchhoff rod is defined as

𝑊 =
1

2

∫ ℓ

0

⟨𝑘, 𝐾𝑘⟩, with 𝐾 =

(
𝐸𝐼 02×1

01×2 𝜇𝐽

)
, 𝐼 =

(
𝐼𝑥𝑥 𝐼𝑥𝑦
𝐼𝑥𝑦 𝐼𝑦𝑦

)
. (2)

The Young’s modulus 𝐸 > 0 and shear modulus 𝜇 > 0 only depend

on the basematerial of the rod, and are assumed to be constant across

the length. The stiffness matrix 𝐾 (𝑠) contains the bending stiffness

𝐸𝐼 (𝑠) and twisting stiffness 𝜇𝐽 (𝑠), with 𝐼 (𝑠) and 𝐽 (𝑠) dependent on
the cross section of the rod at 𝑠 ∈ (0, ℓ).

In particular, the bending rigidity 𝐼 is the area moment of inertia

tensor, whose coordinates are given by

𝐼 (𝑠) =
∫
D(𝑠 )

(
𝑦2 −𝑥𝑦
−𝑥𝑦 𝑥2

)
𝑑𝐴(𝑥,𝑦) . (3)

Here, D(𝑠) ⊂ R2
is the cross section of the rod at 𝑠 , with the

centerline passing through its centroid. The integrand can bewritten

as the outer product of (−𝑦, 𝑥)𝑇 with itself, so 𝐼 (𝑠) ∈ 𝑆2

++, i.e., 𝐼 (𝑠)
is symmetric positive-definite whenever D(𝑠) has positive area

measure. The bending energy is given by
1

2
𝐸⟨𝑘𝑛, 𝐼𝑘𝑛⟩ and is due to

normal stresses away from the centerline, as seen in Fig. 5 (center).

If D(𝑠) is simply connected, the torsional rigidity 𝐽 is given by the

Dirichlet energy of the solution to a Poisson equation:

𝐽 (𝑠) = 4

∫
D(𝑠 )

∥∇𝜒 ∥2, with

Δ𝜒 = −1 in D(𝑠),
𝜒 = 0 on 𝜕D(𝑠). (4)
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Fig. 5. Deformation Modes. Left: Undeformed rod. Center: Uniform bend-
ing. Right: Uniform twist, with cross sections warping out of plane.

In general, neither 𝐼 nor 𝐽 have closed-form solutions, but they do

for special cases such as circular and elliptical disks. The twisting

energy is given by
1

2
𝜇𝐽𝜏2

and is due to shear stresses away from the

centerline. Twisting causes cross sections to deform out of plane to

reach the minimum-energy state, as shown in Fig. 5 (right).

4.3 Equilibrium Equations
We assume kinematic, or double-clamped, boundary conditions: both

𝛾 and 𝐹 are fixed at 𝑠 = 0 and 𝑠 = ℓ . These boundary conditions are

often encountered in architectural and interior design applications,

and they make for the richest design space of equilibrium states.

To set up the variational problem, we choose 𝐹 as the primary vari-

able, so fixing 𝐹 at both ends imposes Dirichlet boundary conditions.

Assuming that 𝛾 (0) coincides with the origin, we can express 𝛾 as

a function of 𝐹 via 𝛾 (𝑠) =
∫ 𝑠

0
𝛾 ′ =

∫ 𝑠

0
𝐹𝑒3. Thus, the endpoint con-

straint𝛾 (ℓ) = 𝛾ℓ takes the form of an integral constraint

∫ ℓ

0
𝐹𝑒3 = 𝛾ℓ .

Constrained extremals of the Kirchhoff energy are characterized by

extremals of the Lagrangian

L =

∫ ℓ

0

(
1

2

⟨𝑘, 𝐾𝑘⟩ − ⟨𝑐, 𝐹𝑒3⟩
)
, (5)

with Lagrange multiplier 𝑐 ∈ R3
.

Section 1 of the supplemental document shows how to derive the

constrained Euler–Lagrange equation of this variational problem,

by investigating variations of 𝐹 that respect its orthogonal structure.

This results in the following statement: A framed curve (𝛾, 𝐹 ) is
a static equilibrium state of a Kirchhoff rod with stiffness 𝐾 and

kinematic boundary conditions if and only if there exist 𝑐, 𝑐 ∈ R3

such that

𝐹𝐾𝑘 = 𝑐 × 𝛾 + 𝑐, (6)

called the moment equilibrium equation.

Our main contribution is to give geometric characterizations of

(framed) curves having this property at three levels of generality,

which are captured by the following definitions:

Definition 1. Let (𝛾, 𝐹 ) be an arc-length parametrized framed curve

of length ℓ with curvature vector 𝑘 . Assume there exist 𝑐, 𝑐 ∈ R3

and domainsD(𝑠) ⊂ R2
centered at the origin for all 𝑠 ∈ (0, ℓ) such

that 𝐹𝐾𝑘 = 𝑐 × 𝛾 + 𝑐 holds, where 𝐾 denotes the stiffness matrix

induced by D. Then, (𝛾, 𝐹 ) is called a framed equilibrium curve.

Definition 2. Let 𝛾 be an arc-length parametrized curve. If there

exists a frame 𝐹 : (0, ℓ) → SO(3) adapted to 𝛾 such that (𝛾, 𝐹 ) is a
framed equilibrium curve, then 𝛾 is called an equilibrium curve. If,
additionally, 𝐹 can be chosen to be a parallel frame, then 𝛾 is called

a parallel equilibrium curve.

Our geometric characterizations of parallel equilibrium curves, equi-

librium curves, and framed equilibrium curves are given in Sec-

tions 7.1, 8.1, and 8.5, respectively.

5 KIRCHHOFF RODS: THE CONSTITUTIVE RELATION
To uniquely define the geometry of a straight elastic rod, we have

to choose a cross section D(𝑠) ⊂ R2
at every 𝑠 ∈ (0, ℓ), such that

the center line passes through the centroid of D(𝑠). This choice
determines 𝐾 (𝑠) and thus the mechanical behavior of the rod at this

point. Ultimately, we want to study the set of equilibrium states,

but to do this, we first have to characterize the set of all stiffness

matrices 𝐾 that are induced by admissible cross sections.

We carry out this characterization in Section 5.1, and then infer two

results that are relevant in the context of design. First, we show in

Section 5.2 that the set of admissible stiffness matrices is convex,

thus allowing design problems with convex objectives to be cast as

convex optimization problems. Second, we prove in Section 5.3 that

the subset of admissible stiffness matrices corresponding to elliptical

cross sections is sufficient to span the entire design space of framed

equilibrium curves. Thus, we do not lose any design freedom upon

neglecting exotic cross sections that would be hard to fabricate or

fail to satisfy the Kirchhoff assumptions.

5.1 Admissible Stiffness Matrices
We have already seen in Eqs. 2–4 that every stiffness matrix 𝐾

consists of a 2-by-2 block 𝐸𝐼 ∈ 𝑆2

++, the bending stiffness, and

𝜇𝐽 > 0, the torsional stiffness. But is every matrix that obeys these

constraints induced by an admissible cross section?

𝜑

𝑎
𝑏

𝑛1

𝑛2

Regarding the bending stiffness, it is easy to

see that every 𝐼 ∈ 𝑆2

++ can be attained, for ex-

ample using elliptical cross sections. In partic-

ular, we can choose the radii 𝑎, 𝑏 of an ellipse

to determine the eigenvalues of 𝐼 and the ori-

entation 𝜑 to determine the eigenvectors, as

shown in the inset. The resulting area moment matrix is

𝐼 =
𝜋

4

𝑄

(
𝑎𝑏3

0

0 𝑎3𝑏

)
𝑄𝑇 , with 𝑄 =

(
cos𝜑 − sin𝜑

sin𝜑 cos𝜑

)
. (7)

For the torsional stiffness, we see from Eq. 4 that any 𝐽 > 0 can be

attained in principle, for example by circular disks of different radii.

However, if we restrict our attention to cross sections with fixed 𝐼 ,

the range of attainable 𝐽 is limited by

𝐽 ≤ 4𝜓 (𝐼 ), with 𝜓 : 𝑆2

++ → R : 𝑋 ↦→ det𝑋

tr𝑋
, (8)

as shown by Diaz and Weinstein [1948, p. 5]. This upper bound on 𝐽

is tight, and the unique maximizer for any given 𝐼 is an ellipse. We

can see from Eq. 7 that in this case, 𝐽 = 𝜋𝑎3𝑏3

𝑎2+𝑏2
.
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1

0

0.05

0.1

0.15

0.2

0.25

𝐽 ≈ 1.56 𝐽 ≈ 0.67 𝐽 ≈ 0.17

Fig. 6. 𝐽 has no positive lower bound. The green gradient shows the
solution 𝜒 to Eq. 4 for circular disks with an increasing number and length of
cuts. Progressively adding cuts makes 𝐽 arbitrarily small while maintaining
𝐼 . Greatest incircles are drawn in yellow.

On the other hand, we prove in Section 2 of the supplemental docu-

ment that there is no positive lower bound:

Proposition 1. Given 𝐼 ∈ 𝑆2

++ and 𝐽 > 0, there is a bounded domain
D ⊂ R2 with bending rigidity 𝐼 and torsional rigidity 𝐽 if and only if
(𝐼 , 𝐽 ) is an element of

K = {(𝐼 , 𝐽 ) ∈ 𝑆2

++ × R : 0 < 𝐽 ≤ 4𝜓 (𝐼 )}. (9)

A heuristic argument that we can decrease 𝐽 without changing

𝐼 is illustrated in Fig. 6: We start with a cross section realizing 𝐼 ,

and progressively add cuts from the boundary to the interior of

the domain. This does not change 𝐼 , because we only remove zero-

measure sets from D. However, 𝐽 can be made arbitrarily small as

the boundary points of the domain move closer and closer together.

We assume 𝐸 and 𝜇 to be fixed, so a pair (𝐼 , 𝐽 ) ∈ K uniquely defines

a stiffness matrix 𝐾 = diag(𝐸𝐼, 𝜇𝐽 ), and vice versa. For convenience,
we will sometimes write 𝐾 = (𝐼 , 𝐽 ) and 𝐾 ∈ K by abuse of notation.

5.2 Convexity of K
Designing a Kirchhoff rod with a prescribed equilibrium state (𝛾, 𝐹 )
amounts to finding 𝑐, 𝑐 ∈ R3

and 𝐾 : (0, ℓ) → K that solve Eq. 6.

Because Eq. 6 is linear in 𝑐, 𝑐 , and 𝐾 , we need only convexity ofK to

show that this is a convex problem for arbitrary convex objectives.

Our proof is based on:

Lemma 2. The function𝜓 : 𝑋 ↦→ det𝑋
tr𝑋

is concave on 𝑆2

++.

This can be shown either with any computer-algebra system, or

by hand, as we do in Section 3 of the supplemental document. The

lemma implies:

Proposition 3. The set K is convex.

Proof. Let (𝐼0, 𝐽0), (𝐼1, 𝐽1) ∈ K , and 𝑡 ∈ (0, 1). Because 𝐼0, 𝐼1 ∈ 𝑆2

++,
and 𝑆2

++ is convex, we have (1 − 𝑡)𝐼0 + 𝑡𝐼1 ∈ 𝑆2

++. From concavity of

𝜓 , it follows that

0 < (1 − 𝑡) 𝐽0 + 𝑡 𝐽1 ≤ 4((1 − 𝑡)𝜓 (𝐼0) + 𝑡𝜓 (𝐼1)) ≤ 4𝜓 ((1 − 𝑡)𝐼0 + 𝑡𝐼1),

which shows that ((1 − 𝑡)𝐼0 + 𝑡𝐼1, (1 − 𝑡) 𝐽0 + 𝑡 𝐽1) ∈ K . □

(1)

(2)

(3)

(1)

(2)
(3)

(1)

(2)

(3)

(1) (2) (3)

Fig. 7. Elliptification. Left: Rod with cross-shaped cross sections (light
blue), and rod with elliptical cross sections (yellow) having the same equi-
librium state. Right: Comparison between cross-shaped and elliptical cross
sections at marked locations, with 𝑘𝑛 visualized as arrow.

This result guarantees that we can numerically find the global op-

timizer of optimization problems over K constrained by Eq. 6, as

long as the objective function is convex. In particular, we can solve

the constraint satisfaction problem (CSP) of determining whether a

given framed curve is a framed equilibrium curve. In Section 8, we

improve this result and show that the CSP can even be solved by a

linear program.

5.3 Elliptical Cross Sections
While K is convenient for numerical optimization, it contains stiff-

ness matrices that are only induced by cross sections like the one

in Fig. 6 (right), which are impractical to manufacture. Moreover,

cross sections like this will buckle even under moderate loads, and

thus break the assumptions of Kirchhoff rods. Therefore, it would

be best to avoid using cross sections with 𝐽 ≪ 4𝜓 (𝐼 ) in design.

This raises two questions: How is the design space of Kirchhoff rods

reduced if we restrict ourselves to a proper subset of K that has

impractical cross sections removed? And what is a good subset to

use? Surprisingly, a very restrictive choice is still optimal:

K∗
:= 𝜕K ∩K = {(𝐼 , 𝐽 ) ∈ 𝑆2

++ × R : 𝐽 = 4𝜓 (𝐼 )}, (10)

which contains exactly the stiffness matrices induced by elliptical

cross sections, is enough to realize all framed equilibrium curves,

with no reduction of the design space, as we show here:

Proposition 4. Let (𝛾, 𝐹 ) be a framed equilibrium curve such that
𝐹𝐾𝑘 = 𝑐 × 𝛾 + 𝑐 holds with 𝑐, 𝑐 ∈ R3 and 𝐾 : (0, ℓ) → K . Then, there
exists 𝐾∗

: (0, ℓ) → K∗ such that 𝐹𝐾∗𝑘 = 𝑐 × 𝛾 + 𝑐 .

Proof. We rewrite the equilibrium equation by splitting it up into

its normal and tangential components, which gives

𝐸𝐼𝑘𝑛 = 𝐹𝑇𝑛 (𝑐 × 𝛾 + 𝑐), 𝜇 𝐽𝜏 = ⟨𝛾 ′, 𝑐 × 𝛾 + 𝑐⟩. (11)

To show the statement, we compute 𝐼∗ ∈ 𝑆2

++ for each 𝑠 ∈ (0, ℓ)
such that (𝐼∗, 𝐽 ) ∈ K∗

and 𝐼∗𝑘𝑛 = 𝐼𝑘𝑛 .
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𝜆(𝑐, 𝑐)

𝑐

Fig. 8. Singular Linear Complexes. Left: A Euclidean singular linear com-
plex (𝑐 ≠ 0) contains all lines (black) incident to a fixed Euclidean line
(purple) with Plücker coordinates (𝑐, 𝑐 ) . Right: An ideal singular linear com-
plex (𝑐 = 0) contains all lines (black) orthogonal to a fixed direction 𝑐 (purple).

Let 𝑄 ∈ 𝑆𝑂 (2) such that 𝑄𝑘𝑛 = 𝜅𝑒1, and define 𝐼 = 𝑄𝐼𝑄𝑇
. Let

𝐼∗ =
(
𝐼𝑥𝑥 𝐼𝑥𝑦

𝐼𝑥𝑦 𝐼∗𝑦𝑦

)
, with 𝐼∗𝑦𝑦 =

𝐽 𝐼𝑥𝑥 + 4𝐼2𝑥𝑦

4𝐼𝑥𝑥 − 𝐽
,

which only has its bottom-right entry different from 𝐼 . Then, 𝐼∗ =
𝑄𝑇 𝐼∗𝑄 satisfies all requirements, as we will now show.

The equilibrium equation is satisfied because

𝐼∗𝑘𝑛 = 𝑄𝑇 𝐼∗𝑄𝑘𝑛 = 𝜅𝑄𝑇 𝐼∗𝑒1 = 𝜅𝑄𝑇 𝐼𝑒1 = 𝑄𝑇 𝐼𝑄𝑘𝑛 = 𝐼𝑘𝑛 .

To verify that 𝐼∗ ∈ 𝑆2

++, it suffices to show that 𝐼∗ ∈ 𝑆2

++. We

have 𝐼𝑥𝑥 > 0 because 𝐼 and thus 𝐼 is in 𝑆2

++. Furthermore, det 𝐼∗ =

𝐽 (𝐼 2

𝑥𝑥+𝐼 2

𝑥𝑦 )
4𝐼𝑥𝑥− 𝐽

> 0 if 𝐽 < 4𝐼𝑥𝑥 . But this always holds because

𝐽 ≤ 4𝜓 (𝐼 ) = 4𝜓 (𝐼 ) =
4(𝐼𝑥𝑥 𝐼𝑦𝑦 − 𝐼2𝑥𝑦)

𝐼𝑥𝑥 + 𝐼𝑦𝑦
≤ 4𝐼𝑥𝑥

𝐼𝑦𝑦

𝐼𝑥𝑥 + 𝐼𝑦𝑦
< 4𝐼𝑥𝑥 ,

where we have used that𝜓 only depends on the tensor invariants

of its argument. Finally, 𝐽 = 4𝜓 (𝐼∗) = 4𝜓 (𝐼∗), and thus (𝐼∗, 𝐽 ) ∈ K∗

is shown by direct computation, from the definition of 𝐼∗. □

This result shows that any Kirchhoff rod equilibrium state is also at-

tainable by a Kirchhoff rod consisting exclusively of elliptical cross

sections. Fig. 7 shows an example in which a rod with spatially-

varying cross-shaped cross sections is converted to a rod with el-

liptical cross sections. Even though the resulting elliptical cross

sections do not have the same bending rigidity, it is guaranteed that

the equilibrium state is maintained.

Using K in optimization and in proofs, andK∗
for design and fabri-

cation gives us the best of both worlds: The convexity of K gives

optimality guarantees in optimization and simplifies mathematical

analysis. Meanwhile, any solution obtained using K can be con-

verted to a solution in K∗
, which avoids cross-sectional buckling

issues, and is guaranteed to yield moldable geometries because

elliptical cross sections are convex.

6 EQUILIBRIUM CURVES: TECHNICAL PRELIMINARIES
Our next goal is to give a thorough analysis of the types of equi-

librium curves introduced in Definitions 1 and 2. In particular, we

provide characterizations that relate the shape of these curves to

existing concepts from projective line geometry, and that pave the

way to very efficient computational design algorithms. We will show

that some fundamental inverse design problems related to Kirchhoff

rods can be solved exactly, in the sense that we can decide compu-

tationally whether there is a solution for a given input, and find a

solution near-instantaneously if it exists.

Looking back at the previous section, we found that choosing do-

mainsD(𝑠) ⊂ R2
in Definition 1 is equivalent to choosing a stiffness

function 𝐾 : (0, ℓ) → K . Proposition 4 further guarantees that we

can restrict K to K∗
, thus using only elliptical cross sections, with-

out changing the design space of Kirchhoff rod equilibrium states.

To characterize this space, we ask: For which (framed) curves is

it possible to choose 𝑐, 𝑐 ∈ R3
and a stiffness function so Eq. 6 is

satisfied? Our answers, which we give in Sections 7 and 8, rely on

concepts from the geometry of lines in R3
, and in particular on

linear line complexes, which we introduce below. For a more exten-

sive treatment, we point the reader to Pottmann and Wallner [2001,

Ch. 2.1, 3.1].

6.1 Line Geometry

𝐿

𝑜
𝑥

𝑣

Let 𝐿 be a line in R3
, with direction 𝑣 ∈ R3

and passing through a point 𝑥 ∈ R3
. We call

(𝑙, ¯𝑙) := (𝑣, 𝑥 ×𝑣) ∈ R6
the Plücker coordinates

of 𝐿, and write 𝐿 = 𝜆(𝑙, ¯𝑙) to denote the line

defined by (𝑙, ¯𝑙) as a subset of R3
. Plücker coordinates satisfy ⟨𝑙, ¯𝑙⟩ =

0 and are homogeneous, i.e., every non-zero scalar multiple refers

to the same line. The projective extension of this set is known as

the Klein quadric

Λ
kl

:= {(𝑙, ¯𝑙) ∈ P5
: ⟨𝑙, ¯𝑙⟩ = 0}.

Plücker coordinates of the form (0, ¯𝑙) represent an ideal line, which

contains exactly the ideal points (“points at infinity”) with directions

orthogonal to
¯𝑙 . One useful application of Plücker coordinates is the

computation of intersections: two lines 𝜆(𝑙, ¯𝑙) and 𝜆(𝑐, 𝑐) intersect
if and only if ⟨𝑙, 𝑐⟩ + ⟨¯𝑙, 𝑐⟩ = 0.

The set of all lines whose Plücker coordinates satisfy a homogeneous

linear equation with (fixed) coefficients 𝑐, 𝑐 ∈ R3
,

C := {(𝑙, ¯𝑙) ∈ Λ
kl

: ⟨𝑙, 𝑐⟩ + ⟨¯𝑙, 𝑐⟩ = 0},

is known as a linear line complex. If (𝑐, 𝑐) ∈ Λ
kl
, i.e., if (𝑐, 𝑐) are

themselves Plücker coordinates of a line, the complex is said to be

singular and consists of all lines intersecting 𝜆(𝑐, 𝑐), as shown in

Fig. 8 (left). In case (𝑐, 𝑐) is ideal, so 𝑐 = 0, the complex C consists

of all lines with directions orthogonal to 𝑐 , see Fig. 8 (right).

We can also interpret a linear complex geometrically if (𝑐, 𝑐) ∉ Λ
kl
,

in which case C is called regular. To do this, consider the vector field
ℎ : 𝑥 ↦→ 𝑐 × 𝑥 + 𝑐 in R3

. A vector field of this form is called helical,
because every field line, i.e., every curve tangent to ℎ in every point,

is a helix. The family of all field lines of ℎ is called a helical motion
and consists of all helices with a fixed axis and a fixed pitch, see
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Fig. 9. Regular Linear Complexes. Left: A helical motion is a family of
helices (green) with fixed axis (purple) and fixed pitch. Right: For every helix
(green) in the helical motion and its axis (purple), take the pencil of normal
lines (black) at every point. The union of all such line pencils forms a regular
linear complex.

Fig. 9 (left). Next, we consider at every 𝑥 ∈ R3
the pencil of lines

through 𝑥 that are normal to the helix passing through this point,

see Fig. 9 (right). The union of all such line pencils gives exactly the

lines contained in C. In summary: A regular linear complex is the

set of path normals of a helical motion.

7 PARALLEL EQUILIBRIUM CURVES
Our first application of linear line complexes is a geometric char-

acterization of parallel equilibrium curves—curves that appear as

twist-free equilibria of Kirchhoff rods. This is a natural starting

point, because the result directly generalizes the characterization of

plane elastic curves, which we summarize here for convenience:

Theorem 5 (Hafner and Bickel 2021, Thm. 1). Let 𝛾 : (0, ℓ) → R2

with signed curvature 𝜅 and a finite number of inflection points, and
let 𝑎 ∈ R2, 𝑏 ∈ R not all zero. Then, there exists 𝐾 : (0, ℓ) → R with
0 < inf 𝐾 ≤ sup𝐾 < ∞ such that 𝐾𝜅 = ⟨𝑎,𝛾⟩ + 𝑏 if and only if

(1) the line 𝐿 = {𝑥 ∈ R2
: ⟨𝑎, 𝑥⟩ + 𝑏 = 0} intersects 𝛾 exactly in its

inflection points, with all intersections non-tangential;

(2) 𝜅′ (𝑠0) ≠ 0 at all inflection points 𝑠0 ∈ (0, ℓ).

In Proposition 6 below, this theorem corresponds exactly to the

special case in which the constants from the right-hand side of the

equilibrium equation 𝐹𝐾𝑘 = 𝑐×𝛾 +𝑐 define a singular complex (𝑐, 𝑐).
Then, the line 𝜆(𝑐, 𝑐) plays the role of 𝐿 in Theorem 5. In contrast,

regular complexes (𝑐, 𝑐) correspond exactly to parallel equilibrium

curves that are not plane.

Before stating the characterization theorem, we outline the remain-

der of this section: The class of parallel equilibrium curves proves

to be rigid in the sense that only one curvature can be chosen in-

dependently at every point, unlike general curves in R3
, which

have two independent curvatures. In order to facilitate the design

of curves that lie in this class by construction, we derive a second

characterization, based on a family of ordinary differential equa-

tions and parametrized directly by curvature. In this context, we

also show that all parallel equilibrium curves are essentially warped

superhelices, which gives an intuitive understanding of the shapes

𝛾

𝜆(𝛾 ′, 𝛾 × 𝛾 ′)

𝛾

𝜆(𝜔𝑛, 𝛾 × 𝜔𝑛)

Fig. 10. Tangent and Binormal Lines. Left: Curve (green) and its family
of tangent lines (black). Right: Curve (green) and its family of osculating
planes (green) and binormal lines (black).

achievable within this class. Finally, we discuss how to avoid unsta-

ble solutions by judiciously choosing cross sections.

7.1 Geometric Characterization
The central objects in the characterization are the tangent lines
and binormal lines of a curve, i.e., the lines passing through 𝛾 (𝑠) in
directions 𝛾 ′ (𝑠) and 𝜔𝑛 (𝑠) = 𝛾 ′ (𝑠) ×𝛾 ′′ (𝑠) respectively, as shown in

Fig. 10. Binormal lines are not defined at inflection points, and this

is reflected in the fact that non-plane parallel equilibrium curves are

always Frénet curves, as we will show. In this sense, planar solutions

are exceptional: They are the only parallel equilibrium curves that

may contain inflections.

Proposition 6. Let 𝛾 be an arc-length parametrized curve in R3 with
a finite number of inflection points. Then, 𝛾 is a parallel equilibrium
curve if and only if one of the following holds:

(1) The curve 𝛾 is not plane, and there is a linear complex C that
contains all tangent lines of 𝛾 , but none of its binormal lines.

(2) The curve 𝛾 is plane and satisfies the assumptions of Theorem 5.

Solutions of type (1) and (2) correspond to regular and singular values
of (𝑐, 𝑐) in Eq. 6, respectively. Solutions of type (1) are Frénet curves.

The proof of this statement is given in Appendix A, and shows

that the geometric conditions on tangent and binormal lines are

equivalent to

⟨𝛾 ′, 𝑐 × 𝛾 + 𝑐⟩ = 0, (12a)

⟨𝛾 ′ × 𝛾 ′′, 𝑐 × 𝛾 + 𝑐⟩ > 0, (12b)

for some 𝑐, 𝑐 ∈ R3
. The parallel frame 𝐹 does not appear in these

conditions, so we need not explicitly compute it to check if they are

satisfied. Furthermore, the conditions are linear in the unknowns 𝑐

and 𝑐 , so they can be checked with a linear program in principle.

However, Eq. 12a is a pointwise equality constraint on 𝛾 , which

means that the number of independent curvatures of 𝛾 is reduced

from two to one. Non-plane curves satisfying this equation generally

have no spline-based representation, because finitely many control

points do no provide enough degrees of freedom to satisfy infinitely

many constraints. This rules out most curve-drawing tools as a

viable option for interactive design. Below, we propose a different

way of exploring the design space of parallel equilibrium curves,

but we will find another use for Eq. 12a in Section 8.2 for the design

of equilibrium curves that need not be parallel.
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𝛼

Fig. 11. Constant-Curvature Parallel Equilibrium Curves. The one-
parametric family of solutions to Eqs. 13 and 14 for 𝑟 = 1

2
= 𝑝 and 𝜅 ≡

1, obtained by sweeping 𝛼 ∈ (0, 2𝜋 ]. The family interpolates smoothly
between superhelices and a special helical solution at 𝛼 = 𝜋/2.

7.2 ODE Characterization
In Section 4 of the supplemental document, we derive two more

characterizations of non-plane parallel equilibrium curves:

Proposition 7. Let 𝛾 be an arc-length parametrized curve in R3.
Then the following are equivalent:

(1) There exist 𝑐, 𝑐 ∈ R3 such that 𝛾 satisfies Eq. 12.

(2) There exist 𝑐, 𝑐 ∈ R3 such that the ordered set {𝛾 ′, 𝛾 ′′, 𝑐 × 𝛾 + 𝑐}
is a right-handed orthogonal basis at every point.

(3) There exist 𝑐, 𝑐 ∈ R3 and𝑚 : (0, ℓ) → R>0 such that

𝛾 ′′ (𝑠) =𝑚(𝑠) · (𝑐 × 𝛾 (𝑠) + 𝑐) × 𝛾 ′ (𝑠) (13)

and ⟨𝛾 ′ (0), 𝑐 × 𝛾 (0) + 𝑐⟩ = 0. It holds that 𝜅 =𝑚 · ∥𝑐 × 𝛾 + 𝑐 ∥.

Eq. 13 is well-suited for the interactive exploration of parallel equi-

librium curves because the user can directly modify 𝜅 , which results

in a predictable change of the curve shape. A useful way of think-

ing about the space of feasible designs is that parallel equilibrium

curves are warped superhelices, the shapes obtained by coiling one

helix around another helix. Constant-curvature solutions of Eq. 13

constitute a family of superhelices (with an exact discrete helical

symmetry, as discussed in Section 5 of the supplemental document)

and contain regular helices as a special case, as shown in Fig. 11.

Circles and lines are obtained in the limit as ⟨𝑐, 𝑐⟩ → 0 and 𝜅 → 0.

By modifying 𝜅 to be non-constant, the user can warp portions of

the superhelix to explore the shape space.

Apart from 𝜅, we can also choose 𝑐 , 𝑐 , and initial conditions 𝛾 (0)
and 𝛾 ′ (0) satisfying ⟨𝛾 ′ (0), 𝑐 ×𝛾 (0) + 𝑐⟩ = 0. After eliminating rigid

motions, these reduce to three scalars 𝑝, 𝑟, 𝛼 ∈ R such that

𝑐 = 𝑒3, 𝑐 = 𝑝𝑒3, 𝛾 (0) = 𝑟𝑒1, 𝛾 ′ (0) = 𝑄𝛼𝑒1, (14)

where 𝑄𝛼 ∈ 𝑆𝑂 (3) is the rotation by angle 𝛼 around the axis in di-

rection 𝑟𝑒2 +𝑝𝑒3. Modifying these scalars controls the ratio between

the outer and inner radius of the superhelix, as well as the tightness

of the windings.

𝜆2 > 𝜆1 𝜆1 > 𝜆2

Fig. 12. Cross Sections & Stability. From left to right: undeformed rod;
stable equilibrium attained by aligning the major axis of the cross section
with the bending axis; unstable equilibrium attained by aligning the minor
axis with the bending axis; and the resulting buckled solution.

7.3 Cross Sections & Stability
The last step in turning a parallel equilibrium curve into fabricable

geometry is to choose cross sections satisfying the equilibrium

equation. Because 𝜏 ≡ 0, the torsional rigidity 𝐽 drops out of the

equation, so we need only choose 𝐼 ∈ 𝑆2

++ at every point to satisfy

𝐸𝐼𝑘𝑛 = 𝐹𝑇𝑛 (𝑐 × 𝛾 + 𝑐). We can then convert 𝐼 into a cross section

D ⊂ R2
, for example an elliptical one. Naturally, we can scale

all cross sections uniformly along the rod to control the overall

thickness. This is because a rescaled cross section 𝑡D has bending

rigidity 𝑡4𝐼 , which solves the equilibrium equation with (𝑡4𝑐, 𝑡4𝑐).

To characterize all 𝐼 ∈ 𝑆2

++ that solve 𝐸𝐼𝑘𝑛 = 𝐹𝑇𝑛 (𝑐 × 𝛾 + 𝑐), note
that 𝑘𝑛 and 𝐹𝑇𝑛 (𝑐 × 𝛾 + 𝑐) are parallel: From Proposition 7(2), we

have that 𝜔𝑛 = 𝛾 ′ × 𝛾 ′′ is parallel to 𝑐 × 𝛾 + 𝑐 , and we know that

𝑘𝑛 = 𝐹𝑇𝑛 𝜔𝑛 . The factor of proportionality is given by𝑚, as seen from

∥𝑘𝑛 ∥ = 𝜅 =𝑚 · ∥𝑐 × 𝛾 + 𝑐 ∥. Thus, we can parametrize all admissible

𝐼 by the spectral decomposition

𝐼 = 𝜆1 𝑣1 ⊗ 𝑣1 + 𝜆2 𝑣2 ⊗ 𝑣2, with

𝜆1 = 1/(𝐸𝑞), 𝑣1 = 𝑘𝑛/𝜅, 𝑣2 = (−𝜅2, 𝜅1)𝑇 /𝜅,

and free parameter 𝜆2 > 0. If we consider an elliptical cross section

in the coordinate system spanned by 𝑛1 and 𝑛2, the eigenvectors

𝑣1 and 𝑣2 give the semiaxes of the ellipse. The bending axis has

direction 𝑘𝑛 and coincides with 𝑣1.

Even though all choices for 𝜆2 > 0 will give an equilibrium state,

they differ greatly in their stability properties. This is because a rod

will bend easily around its weak axis, but trying to bend it around

its strong axis will usually result in loss of stability by buckling. It is

thus essential to pick cross sections in such a way that 𝑣1 coincides

with the major semiaxis of the ellipse, as shown in Fig. 12. This is

achieved by choosing 𝑎 > 𝑏 with the notation of Eq. 7, which is

equivalent to 𝜆2 > 𝜆1. Violating this rule will almost surely result

in an unstable equilibrium state.

We expose the ratio 𝑢 = 𝑎/𝑏 to the user, and restrict its domain to

𝑢 ≥ 1. In computation, the ratio is achieved by setting 𝜆2 = 𝑢2𝜆1.

Even though this rule excludes a common source of buckling, it is

a heuristic and not a formal stability guarantee. Indeed, for curves

with many helical windings, a stable choice of 𝐼 will likely not exist.

If it is not intuitively clear whether a design is stable or not, it

may be necessary to check for stability issues numerically prior
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to fabrication, or to verify the formal stability conditions for the

solution [Manning et al. 1998].

8 GENERAL EQUILIBRIUM CURVES
To take advantage of the full design space offered by Kirchhoff

rods, we need to bring twist into the equation. This goal requires a

fundamental design decision: Does the burden to specify the twist

fall on the designer, or is it done computationally? Both choices

have a drawback: The designer may have a good idea of the curve

shape they want, but may lack the intuition to know what twist will

work to realize it. However, relying on a computational solution

makes it more difficult to ensure that the twist falls into physically

plausible bounds, as we will see.

For most of this section, we explore the latter choice, in which the

designer only prescribes the deformed center line of the rod, and

leaves the computation of twist and cross sections to the computer.

This leads to the characterization of general equilibrium curves—
curves in R3

that can be framed to yield a solution to Eq. 6, the

equilibrium equation for Kirchhoff rods. Like in the parallel case, the

characterization yields conditions that are linear in the unknowns

and can thus be checked with a linear program. However, general

equilibrium curves prove to be free of pointwise equality constraints,

so the linear program is a useful tool for computational design and

will work on manually drawn input curves, for example splines.

The challenge with this workflow is to find a solution that not only

satisfies the equilibrium equation, but is also practical for fabrication.

Two relevant criteria are that cross sections should not vary too

much in size across the length, and that the twist should stay within

reasonable bounds. We will show how these goals can be achieved

without jeopardizing linearity.

At the end of this section, we also present a theoretical result about

framed equilibrium curves, in which the curve and the moving frame

are both prescribed. While we do not use this result for design appli-

cations, it provides a general insight into the structure of equilibrium

states attainable within the theory of Kirchhoff rods.

8.1 Geometric Characterization
As a proper superset of parallel equilibrium curves, the conditions

for general equilibrium curves must be strictly weaker than those

in Proposition 6. Indeed, for Frénet curves, the characterization

emerges simply by removing the tangent line condition, so only the

binormal line condition remains.

We can view curves with continuous geometric curvature as ele-

ments of𝐶2
(
(0, 1);R3

)
by relaxing the requirement of an arc-length

parametrization. With the standard 𝐶2
-norm, Frénet curves are

dense within the set of all regular curves. This implies that inflec-

tion points of curves in R3
are non-essential features that can be

removed by a perturbation of arbitrarily small magnitude—this is in

contrast to plane curves, where inflections are not removable.

We opt to prove the characterization only for Frénet curves, because

the resulting theory suffices for the application explored in this work:

to turn user-drawn spline curves into Kirchhoff rod equilibrium

states.

Proposition 8. Let 𝛾 : (0, ℓ) → R3 be an arc-length parametrized
Frénet curve. Then, 𝛾 is an equilibrium curve if and only if there is a
linear complex that contains none of the binormal lines of 𝛾 .

Proof. “⇒”: Assume there exist 𝑐, 𝑐 ∈ R3
and 𝐾 : (0, ℓ) → K such

that 𝐹𝐾𝑘 = 𝑐 × 𝛾 + 𝑐 . We can write the normal component of this

equation as 𝐸𝐼𝑘𝑛 = 𝐹𝑇𝑛 (𝑐 × 𝛾 + 𝑐). From 𝐼 ∈ 𝑆2

++ and the Frénet

assumption 𝜅 = ∥𝑘𝑛 ∥ > 0, it follows that

0 < ⟨𝑘𝑛, 𝐹𝑇𝑛 (𝑐 × 𝛾 + 𝑐)⟩ = ⟨𝐹𝑛𝑘𝑛, 𝐹𝑛𝐹𝑇𝑛 (𝑐 × 𝛾 + 𝑐)⟩
= ⟨𝜔𝑛, 𝑐 × 𝛾 + 𝑐⟩ = ⟨𝜔𝑛, 𝑐⟩ + ⟨𝛾 × 𝜔𝑛, 𝑐⟩.

(15)

This shows that (𝑐, 𝑐) is a linear complex that does not contain any

of the binormal lines, which have Plücker coordinates (𝜔𝑛, 𝛾 × 𝜔𝑛).

“⇐”: Assume there exists a linear complex 𝑐, 𝑐 ∈ R3
that contains

no binormal line of 𝛾 . By continuity, we have 0 < ⟨𝜔𝑛, 𝑐 × 𝛾 + 𝑐⟩,
possibly after flipping the signs of 𝑐 and 𝑐 . Choosing a parallel frame

𝐹 adapted to 𝛾 yields 0 < ⟨𝑘𝑛, 𝐹𝑇𝑛 (𝑐 × 𝛾 + 𝑐)⟩, with 𝑘 the curvature

vector of 𝐹 . Thus, there exists 𝐼 ∈ 𝑆2

++ such that 𝐸𝐼𝑘𝑛 = 𝐹𝑇𝑛 (𝑐×𝛾 +𝑐).

Next, choose 𝐽 such that 0 < 𝐽 ≤ 4𝜓 (𝐼 ), and define

𝜏𝛽 =
1

𝜇𝐽
⟨𝛾 ′, 𝑐 × 𝛾 + 𝑐⟩, and 𝛽 (𝑠) =

∫ 𝑠

0

𝜏𝛽 . (16)

Then, the frame 𝐹𝛽 defined by Eq. 1 has material curvatures 𝑘𝛽,𝑛 =

𝑄𝑇
𝛽
𝑘𝑛 and twist 𝜏𝛽 . Assembling the tangential and normal parts of

𝑐 × 𝛾 + 𝑐 gives
𝐸𝐹𝛽,𝑛𝑄

𝑇
𝛽
𝐼𝑄𝛽𝑘𝛽,𝑛 + 𝜇𝐽𝜏𝛽𝛾 ′ = 𝑐 × 𝛾 + 𝑐,

so 𝐹𝛽 solves the equilibrium equation with (𝑄𝑇
𝛽
𝐼𝑄𝛽 , 𝐽 ) ∈ K . □

In summary, every choice of 𝑐, 𝑐 ∈ R3
that satisfies

⟨𝛾 ′ × 𝛾 ′′, 𝑐 × 𝛾 + 𝑐⟩ > 0 (17)

enables us to pick cross sections that solve the equilibrium equation.

Even if we limit the choice of (𝐼 , 𝐽 ) to elliptical cross sections, we
have a one-dimensional family of ellipses to choose from at every

point. This choice will influence both the twist and the ratio between

the ellipse radii 𝑎 and 𝑏. In the next section, we discuss how to

compute 𝑐 and 𝑐 in a way that favors low twist and a reasonably

small gap between 𝑎 and 𝑏.

8.2 Linear Program
To choose 𝑐 and 𝑐 , we recall a result from Section 7 about parallel

equilibrium curves: A non-plane Frénet curve has a parallel equi-

librium frame if and only if we can find 𝑐 and 𝑐 that, in addition to

Eq. 17, also satisfy ⟨𝛾 ′, 𝑐 × 𝛾 + 𝑐⟩ = 0. As discussed in Section 7.3,

this implies that 𝑘𝑛 and 𝐹𝑇𝑛 (𝑐 × 𝛾 + 𝑐) are parallel at every point,

with 𝑚 = 𝜅/∥𝑐 × 𝛾 + 𝑐 ∥ the factor of proportionality. Thus, one

solution to 𝐸𝐼𝑘𝑛 = 𝐹𝑇𝑛 (𝑐 × 𝛾 + 𝑐) is given by 𝐼 = I2/(𝐸𝑞), with I2

the 2-by-2 identity matrix. This solution corresponds to a circular

cross section, so 𝑎 = 𝑏. This shows that parallel equilibrium curves

satisfy both criteria for fabricability to perfection: they have zero

twist, and allow us to choose 𝑎/𝑏 as close to unity as we like.

Unfortunately, the pointwise constraint ⟨𝛾 ′, 𝑐 × 𝛾 + 𝑐⟩ = 0 cannot

be satisfied exactly for most curves, but we can attempt to satisfy it
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𝑡 > 𝑡∗

𝑡 = 𝑡∗

𝑡 < 𝑡∗
𝑡 > 𝑡∗

𝑡 = 𝑡∗

𝑡 < 𝑡∗

𝑡 > 𝑡∗
𝑡 = 𝑡∗

𝑡 < 𝑡∗

Fig. 13. Elliptical Families. Family of elliptical cross sections that solve
the equilibrium equation for fixed 𝑘𝑛 (black) and 𝐹𝑇𝑛 (𝑐 × 𝛾 + 𝑐 ) (gray). The
angle between the two vectors increases from left to right. The most circular
ellipse in each family (𝑡 = 𝑡∗) is marked purple.

approximately. In order to keep the problem linear, a natural choice

is to minimize sup |⟨𝛾 ′, 𝑐 × 𝛾 + 𝑐⟩|. Using Eq. 16 (left), we can also

interpret this objective mechanically as the minimization of the

twist couple 𝜇𝐽𝜏𝛽 . Next, we recall from Proposition 7 that parallel

equilibrium curves also satisfy ⟨𝛾 ′′, 𝑐 × 𝛾 + 𝑐⟩ = 0. Likewise, we can

interpret this expression mechanically by computing

⟨𝛾 ′′, 𝑐 × 𝛾 + 𝑐⟩ = ⟨𝛾 ′, 𝑐 × 𝛾 + 𝑐⟩′ = 𝜇 (𝐽𝜏𝛽 )′,

so low values of |⟨𝛾 ′′, 𝑐×𝛾+𝑐⟩| correspond to a twist couple function
with high𝐶1

-regularity. We combine both objectives by minimizing

sup |𝐵𝑇 (𝑐 × 𝛾 + 𝑐) |∗, with 𝐵 = (𝛾 ′, 𝛾 ′′/𝜅) the orthonormal matrix

having the tangent and principal normal as its columns, and

| (𝑥,𝑦)𝑇 |∗ = max{|𝑥 |,𝑤reg |𝑦 |},
where𝑤reg ≥ 0 is a user-controlled regularization weight. Finally,

our linear program for determining 𝑐 and 𝑐 reads

minimize 𝑅,

subject to 1 ≤ ⟨𝛾 ′ × 𝛾 ′′, 𝑐 × 𝛾 + 𝑐⟩,
−𝑅 ≤ ⟨𝛾 ′, 𝑐 × 𝛾 + 𝑐⟩ ≤ 𝑅, (18a)

−𝑅 ≤ 𝑤reg⟨𝛾 ′′/𝜅, 𝑐 × 𝛾 + 𝑐⟩ ≤ 𝑅, (18b)

where the constraints are enforced at a dense set of samples along

the curve. This linear program in the variables (𝑅, 𝑐, 𝑐) can be solved

near-instantaneously, so the user can interactively browse the family

of solutions generated by varying the only parameter,𝑤reg.

8.3 Geometry Generation
Given 𝑐 and 𝑐 , the next step is to choose a matrix 𝐼 ∈ 𝑆2

++ at every

point that solves 𝐸𝐼𝑘𝑛 = 𝐹𝑇𝑛 (𝑐×𝛾 +𝑐), where 𝑘𝑛 and 𝐹𝑇𝑛 (𝑐×𝛾 +𝑐) are
not necessarily parallel. The equation constrains two out of three

independent entries of 𝑆2

++, which leaves a one-parametric family

of solutions. We can compute an explicit representation of the form

𝐼 = 𝐼1 + 𝑡𝐼2, where 𝐼1 and 𝐼2 are symmetric positive semi-definite

rank-1 matrices, and 𝑡 > 0 is the free parameter.

Fig. 13 shows the family of solutions for different angles between

𝑘𝑛 and 𝐹𝑇𝑛 (𝑐 × 𝛾 + 𝑐). A canonical choice that exists in every family

and benefits fabricability is the “most circular” ellipse, for which

the ratio 𝑎/𝑏 is closest to unity. A symbolic computation shows that

this solution can be found easily by choosing 𝑡 as 𝑡∗ = tr 𝐼1/ tr 𝐼2.

For 𝑡 → 0, the ellipse elongates orthogonally to 𝐹𝑇𝑛 (𝑐 ×𝛾 + 𝑐), while
for 𝑡 → ∞, it elongates along 𝑘𝑛 . The latter property is useful for

curves that are similar to parallel equilibrium curves, so the family

𝜏

−5

0

5

𝑠

𝜏

−10

0

10

𝑠

Fig. 14. Hook Curve. Result of the geometry generation algorithm for
general equilibrium curves used on a spline curve (top center) without (left)
and with regularization (right). Top: Deformed configuration. Center: Twist
as a function of arc length. Bottom: Undeformed configuration.

of solutions looks like the one in Fig. 13 (left) at most points of

the curve. Then, choosing 𝑡 > 𝑡∗ instead of 𝑡 = 𝑡∗ avoids stability
issues for the reasons discussed in Section 7.3. After choosing 𝐼 , we

compute 𝐽 = 4𝜓 (𝐼 ), 𝜏𝛽 and 𝛽 via Eq. 16. Finally, we can compute

𝑄𝑇
𝛽
𝐼𝑄𝛽 at every point, which gives the elliptical cross section with

the correct rotation.

8.4 Interactive Design
Fig. 14 shows the resulting geometry for a horseshoe-shaped input

curve that bends out of plane. Even though it is not intuitively

obvious what geometry and forcing mechanism will result in a

curve like this, our algorithm finds a solution in which the out-of-

plane deformation is induced by torque applied to the endpoints.

The user interface provides control over 𝑤reg in order to explore

the trade-off between the objective in Eq. 18a and the regularization

term in Eq. 18b. Prioritizing the former yields the solution on the

left, with smaller overall twist, while increasing the regularization

weight reduces the total variation, shown on the right.

To validate the solution, we perform a forward simulation of the

Kirchhoff rod with the cross sections computed by the computa-

tional design algorithm. The boundary conditions are applied by

first bending the rod, and then twisting its endpoints to cause the

out-of-plane deformation. Fig. 15 shows frames from the resulting

animation, verifying that the desired equilibrium state can indeed

by reached by continuous deployment.

8.5 Framed Equilibrium Curves
We conclude this section with a characterization of the set of all

framed equilibrium curves. Here we consider the moving frame as

part of the “input” instead of deriving it from the input curve. This

results in a description of all equilibrium states that can be attained

within the theory of Kirchhoff rods with zero natural curvature.
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Fig. 15. Hook Curve Validation. Forward simulation of a Kirchhoff rod
generated by the computational design algorithm, to verify that the equilib-
rium state can be reached. The boundary conditions are applied gradually
by twisting the endpoints.

Proposition 9 (simplified). Let (𝛾, 𝐹 ) be an arc-length parametrized
framed Frénet curve. Then, the following are equivalent:

(1) The framed curve (𝛾, 𝐹 ) is a framed equilibrium curve.

(2) There exist 𝑐, 𝑐 ∈ R3 such that

0 <

〈
𝐸𝜅2

4𝜇𝜏
𝛾 ′, 𝑐 × 𝛾 + 𝑐

〉
< ⟨𝛾 ′ × 𝛾 ′′, 𝑐 × 𝛾 + 𝑐⟩.

Compared to Eq. 17, this characterization introduces a sharper lower

bound for ⟨𝛾 ′ × 𝛾 ′′, 𝑐 × 𝛾 + 𝑐⟩. This bound is a consequence of

the non-linear constraint 𝐽 ≤ 𝜓 (𝐼 ), which was not used in the

characterization of general equilibrium curves. Surprisingly, the

new condition is linear in the unknowns 𝑐 and 𝑐 despite this non-

linearity, and can thus be checked by a linear program.

To make the statement of this result rigorous, one needs to control

the singularities in the fractional term that may appear at zeroes

of 𝜏 . This is done in Appendix B, where we restate the proposition

with the level of technical detail necessary to provide a proof.

9 KIRCHHOFF RODS UNDER LOAD
The geometric characterizations in the preceding sections are sub-

ject to the limitation that we consider only the elastic energy of

Kirchhoff rods, and neglect other factors such as the dead load and

external loads. However, our computational design algorithms can

be adapted to scenarios in which external loads have a small to

moderate effect on the equilibrium state.

We will preface this section with the caveat that our proposed algo-

rithm is, in contrast to the ones presented previously, a heuristic and

comes without a formal guarantee for finding solutions to all fea-

sible inputs. However, it terminates successfully for all reasonable

inputs we have tried, including the examples shown in Section 10.

We include the algorithm here it for its practical relevance, and as a

starting point for future work on this subject.

9.1 Load Model
To model line loads (such as the dead load) and point loads (such

as a weight hanging from a specific point) together, we use a load
distribution 𝑞(𝑠) = 𝑝 (𝑠) + ∑𝑛

𝑖=1
𝛿 (𝑠 − 𝑠𝑖 ) 𝑓𝑖 . Here, 𝑝 : (0, ℓ) → R3

models line loads (force per length) applied to 𝛾 , and 𝑓𝑖 ∈ R3, 𝑖 =

1, . . . , 𝑛, are concentrated forces applied at 𝛾 (𝑠𝑖 ), which are modeled

as delta distributions. Integrating 𝑞 on an interval 𝐼 ⊂ (0, ℓ) gives
the accumulated force applied to the rod on this interval.

The effect of this load distribution is captured by adding the potential

−
∫ ℓ

0
⟨𝑞,𝛾⟩ to the Lagrangian from Eq. 5. This modification leads to

the equilibrium equation

(𝐹𝐾𝑘) (𝑠) = (𝑐 +𝑄 (𝑠)) × 𝛾 (𝑠) + (𝑐 +𝑀 (𝑠)), (19)

where 𝑄 (𝑠) :=
∫ 𝑠

0
𝑞 is the accumulated force, and 𝑀 (𝑠) :=

∫ 𝑠

0
𝛾 × 𝑞

the accumulated moment.

9.2 Design Algorithm
The feasibility condition from Eq. 17 can easily adapted to a given

load case by substituting 𝑐 and 𝑐 with the expressions appearing in

Eq. 19, which yields

⟨𝛾 ′ × 𝛾 ′′, (𝑐 +𝑄) × 𝛾 + (𝑐 +𝑀)⟩ > 0.

If the load is thought to be fixed, we can check for the existence of

𝑐, 𝑐 ∈ R3
satisfying this condition using a linear program as usual.

However, if we consider the dead load of a rod, the rod geometry

and the load are coupled, because the cross sections determine

the weight per unit arc-length. More precisely, the choice of (𝑐, 𝑐)
determines the cross sections, which in turn determine the load,

and thus𝑀 and 𝑄 , which appear in the equilibrium equation. This

dependence of𝑀 and 𝑄 on (𝑐, 𝑐) is non-linear, so we can no longer

check for feasibility with a linear program.

Geometry and Dead Load. In preparation of our computational de-

sign algorithm under dead load, we discuss the relationship between

rod geometry and dead load in more detail. The geometry is encoded

in the bending stiffness 𝐼 (𝑠) via Eq. 7, and the dead load is encoded

as a line load 𝑝 (𝑠) = 𝐴(𝑠)𝜌𝑔, where 𝐴(𝑠) is the cross-sectional

area at 𝑠 ∈ (0, ℓ), 𝜌 > 0 is the material density, and 𝑔 ∈ R3
is the

gravitational acceleration.

Next, we define two maps: one from 𝐼 onto 𝑝 , and one from 𝑝

onto 𝐼 . The first map, 𝑝 (𝐼 ), computes the dead load for a (fixed)

geometry via 𝑝 (𝑠) = 2

√
𝜋 (det 𝐼 (𝑠))1/4𝜌𝑔. This holds because𝐴(𝑠) =

2

√
𝜋 (det 𝐼 (𝑠))1/4 = 𝜋𝑎(𝑠)𝑏 (𝑠) is the area of an ellipse with radii

𝑎(𝑠), 𝑏 (𝑠). The second map, 𝐼 (𝑝), computes the geometry that equili-

brates a (fixed) load 𝑝 . This map is defined by the steps in Section 8.3,

with the difference that 𝑐 is replaced by 𝑐 +𝑄 , and 𝑐 by 𝑐 +𝑀 .

Note that the maps 𝑝 (𝐼 ) and 𝐼 (𝑝) are not generally inverses of each

other: We only have 𝑝∗ = 𝑝 (𝐼 (𝑝∗)) for some 𝑝∗ : (0, ℓ) → R3
if 𝛾

is an equilibrium curve for the geometry 𝐼 (𝑝∗) under its own dead

load. Thus, solving the inverse design problem under dead load is

equivalent to finding a fixed point of 𝑝 ◦ 𝐼 .

Algorithm. We propose to first fix (𝑐, 𝑐) heuristically (Step 1), and

then apply a fixed-point iteration procedure (Step 2):

Step 1.We compute the load-free solution to Eq. 18, which yields

constants 𝑐0 and 𝑐0 and a first guess of the rod geometry, encoded

by the bending stiffness 𝐼0 (𝑠). We compute the corresponding dead

load 𝑝0 = 𝑝 (𝐼0), and the accumulated force𝑄0 and moment𝑀0. Our

heuristic choice for the constants is 𝑐 := 𝑐0 − 1

2
(inf 𝑄0 + sup𝑄0) and

𝑐 := 𝑐0 − 1

2
(inf 𝑀0 + sup𝑀0). The rationale behind this is that the
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Fig. 16. Parallel Curve Design. Top: In-app preview of the deformed rod
geometry. Bottom: Editable geometric curvature. From left to right: Starting
from a constant-curvature rod, the user adds more samples to the curvature
graph to locally straighten or tighten the windings of the double helix. The
curves from the helical motion (gray) serve as a visual guide.

functions 𝑐 +𝑀0 (𝑠) and 𝑐 +𝑄0 (𝑠)—which replace 𝑐0 and 𝑐0—will be

as close as possible to 𝑐0 and 𝑐0, in the uniform norm.

Step 2. To find a fixed point of 𝑝 ◦ 𝐼 , we iterate 𝑝𝑖+1 = 𝑝 (𝐼 (𝑝𝑖 )), until
sup |𝑝𝑖+1 − 𝑝𝑖 | < 𝜀, where we set 𝜀 = 10

−10
in our examples. We

cannot offer a formal proof of convergence, but see experimentally

that convergence is at least linear, and our examples terminate after

less than ten iterations, which we show in Section 10.2.

10 RESULTS
We implemented the computational design algorithms for parallel

equilibrium curves (Section 7) and general equilibrium curves (Sec-

tion 8) in a software tool that allows users to interactively design

Kirchhoff rods. Edits made by the user trigger the computational

design algorithms to re-run, and display the resulting geometry

near-instantaneously to enable fast prototyping.

Once a design has been finalized, the resulting geometry can be

exported for fabrication as parametric CAD geometry. This allows

our tool to be integrated seamlessly into a CAD workflow, for ex-

ample to create molds for fabrication, or design a support structure

on which the Kirchhoff rods can be mounted.

Below we show objects designed with our algorithms and fabricated

by casting silicone in 3d-printed two-part molds. The first exam-

ple demonstrates the fabrication method and the design space of

parallel equilibrium curves; subsequent examples use the algorithm

for general equilibrium curves (with and without dead load and

external loads), and show applications in soft robotics and design

with active bending.

10.1 Parallel Equilibrium Curve & Fabrication
Rod Design. To design a Kirchhoff rod within the constrained space

of parallel equilibrium curves (Section 7), the user is given control

injection hole

air vent

Fig. 17. Parallel CurveMold. Top and bottom right: Undeformed rod geom-
etry (green) with parting surface (purple) and two-part mold (gray). Bottom
left: Rendering of deformed rod (green) with support structure (gray).

over the geometric curvature function 𝜅 and the three scalar param-

eters discussed in Section 7.2. Together, these quantities uniquely

determine a parallel equilibrium curve up to rigid motion.

Initially, 𝜅 is set to be constant, which generates a segment of a

double helix, but the user can modify 𝜅 by adding and dragging

sample points in order to bend or straighten the curve in certain

locations. Fig. 16 shows three snapshots from a design session, in

which the user progressively edits a parallel equilibrium curve. The

preview of the rod geometry that realizes this curve is updated in

real-time as the control points are being dragged.

Mold Design. Once a design is finished, it can be exported as a

FeatureScript for the CAD system Onshape to generate solid parts

of the undeformed and deformed rod geometries. The undeformed

rod serves as a starting point for designing a 3d-printable mold,

which is used for silicone casting during fabrication. To simplify

this, our app also exports a parting surface that splits the mold into

two parts, each guaranteed to be a height field.

The deformed rod is used to design a support structure, with sockets

that enforce the kinematic boundary conditions at both endpoints

of the rod. The automatically generated CAD geometry and the

manually designed mold and support structure are shown in Fig. 17.

Fabrication. We 3d-print the two-part mold from PLA on an Ulti-

maker S5, close it, and seal the seams with gaffer tape. For casting,

the mold is placed vertically, which is important to prevent the for-

mation of air bubbles. Next, we use a syringe to inject liquid silicone

(SmoothSil 945) through the injection hole located near the bottom

of the mold. The silicone rises through the cavity until it reaches

the air vent at the top, at which point we seal the injection hole

with a rubber plug.

After a 16-hour curing period, the rod is ready to be unmolded

and mounted in the 3d-printed support structure, as shown in the

photograph in Fig. 22. The helical windings, small thickness of the

rod, and material chosen for this example all contribute to a low

overall stiffness, which makes the rod sag visibly under gravity,
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(1) (2) (3) (4) (5) (6)

Fig. 18. Loop Array Deformed. Front view (top) and side view (bottom)
of rods from the loop array example. The final result, taking into account
gravity for inverse design, is shown in green; the result of neglecting gravity
during design, but forward-simulating with gravity, in purple.

compared to the target design. This illustrates the relevance of

accounting for gravity in inverse design even on this scale—which

we do in the following examples.

10.2 Loop Array
The addition of twist opens up the design space of Kirchhoff rods

and gives more creative freedom to the designer by enabling direct

control via spline editing tools or specifying curves analytically.

These curves serve as input to the general equilibrium curve al-

gorithm discussed in Section 8, and can be post-processed by the

algorithm in Section 9 to account for the dead load.

In this example, we design and fabricate an array of six curves from

a smooth family, shown in Fig. 18. The rods in purple are the result

of solving the linear program in Eq. 18, which neglects gravity, and

then forward-simulating the geometry with gravity. This makes the

rods sag noticeably under their own weight, and prevents a faithful

reproduction of the input curve.

10
0

10
−5

10
−10

0 2 4 6 8

𝑖

errDead Load. To improve reproduction

of the input curve under gravity, we

apply the dead load optimization al-

gorithm from Section 9.2. The inset

shows the fixed-point error sup |𝑝𝑖+1−
𝑝𝑖 | as a function of the iteration count

𝑖 on a log scale, which provides nu-

merical evidence that convergence is

at least linear. Every graph in green corresponds to a rod from this

example, while the ones in yellow and purple correspond to the

rods from Sections 10.3 and 10.5, respectively.

The rods shown in green in Fig. 18 are the result of our optimization

and reproduce the input curves perfectly (up to numerical error). The

undeformed rod geometries before and after dead load optimization,

as shown in Fig. 19, are visually very similar. This is because the

geometry shown in purple serves as the initial value for the fixed-

point iteration, which naturally converges to an attractive fixed

point (green) close to it. Nevertheless, this small change suffices to

counteract the effect of gravity. Renderings and photographs of the

result are shown in Figs. 1 and 22 for direct comparison.

(1)

(3)

(6)

Fig. 19. Loop Array Undeformed. Undeformed geometry of rods from
the loop array, before (purple) and after (green) applying the dead load
fixed-point iteration.

Performance. Solving the linear program from Eq. 18 for one of the

input curves (with 400 sample points) takes about 5 ms, and com-

puting the rod geometry according to Section 8.3 an additional 6 ms.

The dead load fixed-point iteration takes between 6 and 8 iterations

to converge, and each iteration takes about 6 ms. Therefore, the

total computation time per curve is about 60 ms, fast enough to

show geometry changes due to user edits in real time.

10.3 Fixture Design
A popular application of bending-active materials is the design of

structures that take their final shape only under the effect of a

weight, such as a lampshade hanging from it, or a person sitting on

it. Our system supports the design of objects like this by using the

load distribution described in Section 9, which models external line

loads and point loads in addition to the dead load.

We demonstrate this feature by designing a fixture that is in equi-

librium under its own weight plus a weight hanging from a specific

point. The input curve is designed manually by manipulating the

control points of a quartic B-spline curve. As usual, the user sees

immediately after each edit how the geometry of the rod and the

twist of the equilibrium state were affected by the change.

Load Optimization. The external weight hanging from the rod is

modeled as a point load 𝑓1 ∈ R3
at a curve point𝛾 (𝑠1) as described in

Section 9.1. During the fixed-point procedure, the load distribution

𝑞(𝑠) = 𝑝 (𝑠) + 𝛿 (𝑠 − 𝑠1) 𝑓1 takes into account both the dead load,

which is updated in every iteration, and the external weight, which

remains constant.

Fig. 20 shows the evolution of the dead load 𝑖 during the fixed-point

procedure. After a single iteration, the solution is converged enough

for the graph of 𝑝 to remain visually unchanged afterwards, and

after seven iterations, the pointwise change is below 𝜀 = 10
−10

.

As seen in the top-right part of Fig. 20, the al-

gorithm adds twist near the bottom endpoint.

This extra twist has the effect of lifting up the

hook enough to counter the force introduced

by the external weight. The inset shows the fi-

nal geometry, forward-simulated without the

external weight (purple), in which case there

is a large deviation from the target curve, and
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Fig. 20. Load Optimization. Top: Deformed geometry before (left) and
after (right) accounting for external load and dead load. Bottom: Vertical
component of the dead load before and after fixed-point iteration.

with the external weight (green), in which case the target curve is

matched precisely. Fig. 22 offers a side-by-side comparison between

photographs of the physical model and renderings of the target

shape, showing a good agreement.

10.4 Soft Robotics
Elastomers like silicone are used in soft-robotics applications for

the design of soft grippers or tools for minimally invasive surgery.

Most of the soft-robotic mechanisms currently in use are actuated

pneumatically or by cables [Runciman et al. 2019]. Both actuation

systems add considerable complexity to the compliant part of the

mechanism, through a sequence of air chambers or a network of

cables around or inside the part.

With our algorithm, we can design simple compliant mechanisms

that are actuated by twisting the endpoints of a rod. This does

not add any complexity to the compliant part itself, because one

only needs to add twisting joints to the fixture. The actuation itself

can be performed by motors in the fixture, to follow a prespecified

trajectory, or manually, if human fine-motor skills are required.

Either way, this shifts the complexity away from the compliant part

of the mechanism to an outside controller.

Lifting Tool. We show a macro-scale version of a tool that can be

used to lift objects out of an inaccessible location. The deformed

configuration of the tool is given by the geometry shown in Fig. 14

(right), where the out-of-plane deformation of the horse shoe is

caused by twist applied to the endpoints. We 3d-print a mechanical

fixture that connects the endpoints to rigid bars that a human user

can turn to change the twisting angle from a distance, and to control

the amount of out-of-plane bending.

The sequence of photographs in Fig. 23 shows a usage scenario, in

which the tool is inserted into a tunnel with a sudden drop at the

end. Using the twisting actuation, the flexible part of the tool bends

0 0.1 0.2 0.3 0.4 0 00.1 0.10.2 0.20.3 0.3
1 1

1.5 1.5

2 2

2.5 2.5

1

1.5

2

[m]

𝑠

𝑝 [N/m] 𝑝 [N/m] 𝑝 [N/m]

Iteration 0 Iteration 1 Iteration 2 Converged

Fig. 21. Light Sculpture Design. Top: Deformed configuration under grav-
ity if dead load is neglected (left) or accounted for (right) by the design
algorithm. Center: Undeformed configuration of final design. Bottom: Itera-
tions of the dead-load optimization for all three segments.

downwards in order to grab a box and slide it up along the wall of

the protrusion, so it can be pulled back through the tunnel.

10.5 Free-form Light Sculpture
We show an application to interior design, inspired by the Freeform
Light Sculpture series of New York artist John Procario

3
. Our design

mimics the organic wooden shapes of the original sculptures with

black rubber beams that are made to follow a three-dimensional

curved target shape by taking advantage of elastic and gravitational

forces.

For this example, we forgo spline curves in

favor of specifying the target design with a

mathematical expression for a closed curve,

as shown in the inset:

𝛾 (𝑡) = ©«
𝑟1 cos 𝑡 + 𝑟2 cos(𝑡/2 + 𝑝)
𝑟1 sin 𝑡 + 𝑟2 sin(𝑡/2 + 𝑝)

𝑎 cos(3𝑡/2)
ª®¬ ,

with 𝑡 ∈ (0, 4𝜋), and 𝑟1 = 1, 𝑟2 = 1/4, 𝑝 = 9/20, and 𝑎 = 2/5. We split

the curve into three segments (0, 4𝜋/3), (4𝜋/3, 8𝜋/3), (8𝜋/3, 4𝜋),
and compute separately for each the geometry of a Kirchhoff rod,

taking into account the dead load as per Section 9.

Fig. 21 illustrates that gravity takes a central role in shaping the

final deformed shape of this model. If we neglect the dead load

while computing the rod geometry (top-left), the resulting deformed

shape under gravity is saggy, and very far from the target. If the

dead load is accounted for during design, we have perfect agreement

(top-right). The figure also shows the iterations of the dead-load

optimization for each segment: After two iterations, the solutions

are converged almost completely.

3
http://www.johnprocario.com/
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We manufactured the model using SmoothSil 960 silicone, with

black pigments added for coloring. The design features a small

indentation running along the inside of the rod, in which we place

an electroluminescent wire. Figs. 1 and 22 show a rendering of the

target design, and photos of the physical model with and without

external lighting from a similar perspective, to allow for a visual

comparison.

11 DISCUSSION
In this work, we characterize the design space of Kirchhoff rods with

spatially-varying cross sections and vanishing natural curvature.

This geometric characterization gives rise to computational design

algorithms that translate a curve in three-dimensional space to a

Kirchhoff rod that attains this curve at equilibrium, given appropri-

ate boundary conditions. We also discuss an extension that takes

into account gravity, to enable applications on a larger scale.

A current limitation of our algorithm is that stability of the target

equilibrium state is only enforced heuristically, and verified after the

design stage through numerical means. However, stability cannot

be rigorously guaranteed by our computational design algorithm.

One could approach this issue by combining the adjoint method for

stability optimization [Hafner and Bickel 2021] with the constrained

Jacobi equation for Kirchhoff rods [Manning et al. 1998]. Likewise,

if the user specifies an infeasible input curve, or one which leads to

geometry that is too difficult to fabricate, there is currently no fully

automatic system in place to improve the design computationally.

Doing this with iterative optimization methods is an avenue for

future work.

Allowing arbitrary elliptical cross sections for rods has the disad-

vantage that one needs to use molding or 3-axis CNC milling for

fabrication. It would therefore be of practical relevance to study the

design of rods that can be produced with simpler means, e.g., laser

cutting or water jetting rods from a sheet material, or lathing to

produce circular cross sections. Geometries that can be manufac-

tured using these methods give rise to a variety of design subspaces
whose exploration could be of great practical relevance and may

enable computational design algorithms with a wider range of ap-

plications. In the same vein, some fabrication methods can produce

rods with non-vanishing natural curvature, for example, by cutting

a strip with a curved centerline from a sheet material. Treating this

natural curvature as an additional design variable may enlarge the

design space of equilibrium states, and lead to a greatly simplified

fabrication pipeline.

The authors consider Proposition 9, the characterization of framed

equilibrium curves, the most surprising result in this paper. This is

because it constitutes a linear representation of a design space that is

subject to non-linear constraints with no apparent special structure

except convexity. Is this a lucky coincidence specific to Kirchhoff

rods or could it hold more generally for inverse problems associated

with other mechanical systems? Answering this question for two-

or three-dimensional systems, for example in order to understand

the design space of general elasticity, may be a rewarding endeavor

with immediate applications to the design of compliant mechanisms.
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(1a) Rendering, cf. photo in Fig. 1 (left) (3) Rendering

(3) Photo

(4) Rendering (4) Photo

(2b) Rendering (2b) Photo

Fig. 22. Results. Comparison between renderings of the target designs and photos of our elastic physical models. (1) The loop array from the front (a), cf.
Fig. 1 (left), and from the side (b). (2) The fixture from the side (a) and from the top (b), conforming to the target shape when equipped with a weight of 100
grams. (3) The free-form light sculpture, cf. Fig. 1 (right). (4) The parallel equilibrium curve example, which sags due to a lack of gravity correction.

(a) (b)

(c) (d)

Fig. 23. Soft Robotics. The lifting tool is pushed into the cavity from the left (a), and bends downwards out of plane once the user applies twist to the
endpoints of the mechanism (b). This allows the tool to grab and lift the box (c), and pull it out of the cavity (d). Sequence shown in supplemental video.
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A PROOF OF PROPOSITION 6
We can rewrite Eq. 6 as 𝐸𝐹𝑛𝐼𝑘𝑛 + 𝜇𝐽𝜏𝛾 ′ = 𝑐 × 𝛾 + 𝑐 .

“⇒”: By assumption, there exist a parallel frame 𝐹 adapted to 𝛾 ,

constants 𝑐, 𝑐 ∈ R3
, and 𝐼 : (0, ℓ) → 𝑆2

++ such that 𝐸𝐹𝑛𝐼𝑘𝑛 = 𝑐×𝛾 +𝑐 ,
because 𝜏 ≡ 0. Taking the inner product with 𝛾 ′ implies

0 = ⟨𝛾 ′, 𝑐 × 𝛾 + 𝑐⟩ = ⟨𝛾 ′, 𝑐⟩ + ⟨𝛾 × 𝛾 ′, 𝑐⟩,

so the linear complex C associated with (𝑐, 𝑐) contains all tangent
lines of 𝛾 , with Plücker coordinates (𝛾 ′, 𝛾 × 𝛾 ′). The normal part of

the equilibrium equation gives 𝐸𝐼𝑘𝑛 = 𝐹𝑇𝑛 (𝑐 × 𝛾 + 𝑐), so

0 ≤ ⟨𝑘𝑛, 𝐹𝑇𝑛 (𝑐 × 𝛾 + 𝑐)⟩ = ⟨𝐹𝑛𝑘𝑛, 𝐹𝑛𝐹𝑇𝑛 (𝑐 × 𝛾 + 𝑐)⟩
= ⟨𝜔𝑛, 𝑐 × 𝛾 + 𝑐⟩ = ⟨𝜔𝑛, 𝑐⟩ + ⟨𝛾 × 𝜔𝑛, 𝑐⟩,

(20)

where the inequality follows from 𝐼 ∈ 𝑆2

++. Because 𝐼 has full rank,
we have 𝑘𝑛 = 0 exactly where 𝐹𝑇𝑛 (𝑐 ×𝛾 +𝑐) = 0, which is equivalent

to 𝑐 × 𝛾 + 𝑐 = 0 because 𝑐 × 𝛾 + 𝑐 is in the column space of 𝐹𝑛 .

(1) Assume C is regular, so ⟨𝑐, 𝑐⟩ ≠ 0. The column space of [𝑐]× is

exactly the orthogonal complement of 𝑐 , so there are no curve points

satisfying 𝑐 × 𝛾 + 𝑐 = 0, and in consequence no points with 𝑘𝑛 = 0.

Thus, 𝛾 is a Frénet curve. This also shows 0 < ⟨𝜔𝑛, 𝑐⟩ + ⟨𝛾 × 𝜔𝑛, 𝑐⟩,
so no binormal line is contained in C.

For the sake of contradiction, assume that 𝛾 was plane. Then all

tangent lines of 𝛾 are coplanar, and we can choose three that are

not concurrent in a point. However, no such set of three lines is

contained in a regular linear complex, so 𝛾 must not be plane.

(2) Assume C is singular, so ⟨𝑐, 𝑐⟩ = 0. If 𝑐 = 0, then all tangent lines

of 𝛾 are orthogonal to 𝑐 , and 𝛾 must be plane. From 𝑐 ×𝛾 + 𝑐 = 𝑐 ≠ 0,

we see that 𝑘𝑛 ≠ 0, so 𝛾 has no inflection points.

We can show that the case 𝑐 ≠ 0 reduces exactly to Theorem 5.

We know by assumption that all tangent lines of 𝛾 intersect the

Euclidean line 𝜆(𝑐, 𝑐), as shown in Fig. 8 (left). This implies that

every connected component of 𝛾 ((0, ℓ)) \ 𝜆(𝑐, 𝑐) is contained in a

plane 𝑃 with 𝜆(𝑐, 𝑐) ⊂ 𝑃 . The points 𝛾 (𝑠0) ∈ 𝜆(𝑐, 𝑐) are exactly

the inflection points of 𝛾 , so there are finitely many connected

components and planes.
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𝑃
𝑃 𝛾

𝛾 (𝑠0)

𝜆(𝑐, 𝑐)

𝑒1

𝑒2

𝑒3

𝑜

𝛾 ′
𝑛1

𝑛2

𝛾

𝜆(𝑒2, 0)

Consider an interval (𝑠0−𝜀, 𝑠0+𝜀) small enough

such that 𝛾 ((𝑠0 − 𝜀, 𝑠0)) is contained in a plane

𝑃 , and 𝛾 ((𝑠0, 𝑠0 + 𝜀)) in a plane 𝑃 . Assume for

the sake of contradiction that 𝑃 ≠ 𝑃 , so 𝑃 ∩𝑃 =

𝜆(𝑐, 𝑐). Then, the tangent line of 𝛾 at 𝑠0 must

coincide with 𝜆(𝑐, 𝑐).

Assume wlog that 𝛾 (𝑠0) coincides with the ori-

gin, (𝑐, 𝑐) = (𝑒2, 0), and 𝑃 is normal to 𝑒3. Next,

consider the parallel frame 𝐹 = (𝑛1, 𝑛2, 𝛾
′)

such that 𝑛1 ≡ −𝑒3 on the interval (𝑠0 − 𝜀, 𝑠0).
This frame is related to 𝐹 by a constant rota-

tion 𝑄 ∈ 𝑆𝑂 (2), and satisfies the equilibrium

equation with 𝐼 = 𝑄𝑇 𝐼𝑄 :

𝐸𝐹𝑛𝐼 ¯𝑘𝑛 = 𝐸 (𝐹𝑛𝑄) (𝑄𝑇 𝐼𝑄) (𝑄𝑇𝑘𝑛) = 𝐸𝐹𝑛𝐼𝑘𝑛 = 𝑐 × 𝛾 + 𝑐,
according to Eq. 1. Noting that 𝜅2 ≡ 0, ⟨𝑛2, 𝑒1⟩ = −⟨𝛾 ′, 𝑒2⟩, and
⟨𝑛2, 𝑒2⟩ = ⟨𝛾, 𝑒1⟩ on (𝑠0 − 𝜀, 𝑠0), we can write out the equilibrium

equation in coordinates, which yields

𝐼𝑥𝑦𝜅1⟨𝛾 ′, 𝑒1⟩ = 0 = 𝐼𝑥𝑦𝜅1⟨𝛾 ′, 𝑒2⟩, 𝐸𝐼𝑥𝑥𝜅1 = ⟨𝛾, 𝑒1⟩.
The two equations on the left imply 𝐼𝑥𝑦𝜅1 ≡ 0 and thus 𝐼𝑥𝑦 ≡ 0

because 𝜅1 (𝑠) = 0 only at 𝑠 = 𝑠0. The equation on the right is exactly

the equilibrium equation fromTheorem 5, with 𝜆(𝑒2, 0) equivalent to
𝐿. That 𝜆(𝑒2, 0) is tangent to 𝛾 contradicts Theorem 5(1), and shows

𝑃 = 𝑃 . By repeating the argument, we see that every connected

component of 𝛾 ((0, ℓ)) \ 𝜆(𝑐, 𝑐) is contained in the same plane.

“⇐”: Assume either (1) or (2) holds, and let 𝐹 be a parallel frame

adapted to 𝛾 . For (2), there is nothing to prove because the result

follows directly from Theorem 5. If (1) holds for some linear complex

defined by 𝑐, 𝑐 ∈ R3
, then we have 0 = ⟨𝛾 ′, 𝑐 × 𝛾 + 𝑐⟩. We also have

0 < ⟨𝜔𝑛, 𝑐 × 𝛾 + 𝑐⟩, after possibly replacing (𝑐, 𝑐) with (−𝑐,−𝑐),
because 𝜔𝑛 (𝑠) and 𝑐 × 𝛾 (𝑠) + 𝑐 are continuous. This implies 0 <

⟨𝑘𝑛, 𝐹𝑇𝑛 (𝑐 ×𝛾 + 𝑐)⟩, so we can find 𝐼 : (0, ℓ) → 𝑆2

++ such that 𝐸𝐼𝑘𝑛 =

𝐹𝑇𝑛 (𝑐 × 𝛾 + 𝑐). This implies 𝐸𝐹𝑛𝐼𝑘𝑛 = 𝑐 × 𝛾 + 𝑐 .

B FRAMED EQUILIBRIUM CURVES
Proposition 9. Let 𝛾 ∈ 𝐶2

(
(0, ℓ);R3

)
be an arc-length parametrized

Frénet curve and 𝐹 : (0, ℓ) → 𝑆𝑂 (3) a moving frame adapted to 𝛾
such that all zeros of 𝜏 are isolated. Formally define

𝑣1 =
𝛾 ′

𝜏
, 𝑣2 =

4𝜔𝑛

𝐸𝜅2
− 𝛾 ′

𝜇𝜏
.

Then, the following are equivalent:

(1) The framed curve (𝛾, 𝐹 ) is an equilibrium curve with a constitutive
relation (𝐼 , 𝐽 ) : (0, ℓ) → K that is coercive and bounded.4

(2) There exist 𝑐, 𝑐 ∈ R3 such that ⟨𝑣𝑖 , 𝑐 ×𝛾 + 𝑐⟩ > 0 for 𝑖 = 1, 2 in the
sense that the inequalities hold away from the zeros of 𝜏 , and the
upper and lower limits are finite and positive as 𝜏 → 0.

Proof. (1) ⇒ (2): By (1), we assume that there exists (𝐼 , 𝐽 ) :

(0, ℓ) → K satisfying the equilibrium equation 𝐸𝐹𝑛𝐼𝑘𝑛 + 𝜇𝐽𝜏𝛾 ′ =
𝑐 × 𝛾 + 𝑐 , such that 𝐽 and the eigenvalues of 𝐼 are bounded from

4
There exist 𝑐,𝐶 > 0 such that for all 𝑠 ∈ (0, ℓ ) , it holds that 𝑐 ≤ 𝐽 (𝑠 ) ≤ 𝐶 and

𝑐 ≤ 𝜆1 (𝑠 ), 𝜆2 (𝑠 ) ≤ 𝐶 with 𝜆1 ≤ 𝜆2 the eigenvalues of 𝐼 .

below and above by positive constants. Furthermore, 𝜅 = ∥𝑘𝑛 ∥ is
also bounded from below and above by positive constants, because

it is positive and continuous on [0, ℓ].

Taking the inner product between the equilibrium equation and 𝛾 ′

yields 𝜇𝐽𝜏 = ⟨𝛾 ′, 𝑐 × 𝛾 + 𝑐⟩, which shows that ⟨𝛾 ′/𝜏, 𝑐 × 𝛾 + 𝑐⟩ has
the required properties by the coercivity and boundedness of 𝐽 .

To show the second inequality, take the inner product between the

equilibrium equation and 𝜔𝑛/(𝐸𝜅2), which yields

𝜆1 ≤
〈
𝑘𝑛

𝜅
, 𝐼
𝑘𝑛

𝜅

〉
=

〈 𝜔𝑛
𝐸𝜅2

, 𝑐 × 𝛾 + 𝑐
〉
≤ 𝜆2,

with 𝜆1 ≤ 𝜆2 the eigenvalues of 𝐼 . Furthermore, from

𝐽 ≤ 4𝜓 (𝐼 ) ≤ 4𝜆1

𝜆2

𝜆1 + 𝜆2

and the coercivity and boundedness of 𝐼 , we find that there exists

𝜀 > 0 such that 𝐽 + 𝜀 ≤ 4𝜆1. Combining these inequalities with the

expression for 𝜇𝐽𝜏 from above, we get

𝜀 = (𝐽 + 𝜀) − 𝐽 ≤
〈

4𝜔𝑛

𝐸𝜅2
− 𝛾 ′

𝜇𝜏
, 𝑐 × 𝛾 + 𝑐

〉
≤ 4 sup 𝜆2,

which shows the required bounds.

(2) ⇒ (1): Define 𝐽 = ⟨ 𝛾
′

𝜇𝜏 , 𝑐 × 𝛾 + 𝑐⟩ to satisfy the tangential

component of the equilibrium equation. From the limit properties of

⟨𝛾 ′/𝜏, 𝑐 × 𝛾 + 𝑐⟩ at zeros of 𝜏 , we see that 𝐽 is coercive and bounded,

and we can extend it with arbitrary positive values at these zeros.

Satisfying the normal component equation 𝐸𝐼𝑘𝑛 = 𝐹𝑇𝑛 (𝑐 × 𝛾 + 𝑐)
with an appropriate choice of 𝐼 is equivalent to satisfying 𝐸𝐼𝑄𝑘𝑛 =

𝑄𝐹𝑇𝑛 (𝑐 × 𝛾 + 𝑐) for some 𝑄 ∈ 𝑆𝑂 (2) with an appropriate choice

of 𝐼 , because we can transform 𝐼 = 𝑄𝐼𝑄𝑇
. Furthermore, 𝐼 inherits

coerciveness and boundedness from 𝐼 , so it suffices to show these

properties for the latter.

We choose 𝑄 ∈ 𝑆𝑂 (2) such that 𝑄𝑘𝑛 = 𝜅𝑒1, so it suffices to find 𝐼

such that 𝐸𝜅𝐼𝑒1 = 𝑄𝐹𝑇𝑛 (𝑐 ×𝛾 +𝑐). Choosing 𝐼𝑥𝑥 = 1

𝐸𝜅2
⟨𝜔𝑛, 𝑐 ×𝛾 +𝑐⟩

satisfies the first component of this equation, and we can uniquely

determine 𝐼𝑥𝑦 from the second. Next, we pick 𝐼𝑦𝑦 =
𝐽 𝐼𝑥𝑥+4𝐼 2

𝑥𝑦

4𝐼𝑥𝑥− 𝐽
in

order to satisfy 𝐽 = 4𝜓 (𝐼 ), which is checked by direct computation.

To verify that 𝐼 is coercive and bounded, it suffices to show that

tr 𝐼 and det 𝐼 =
𝐽 (𝐼 2

𝑥𝑥+𝐼 2

𝑥𝑦 )
4𝐼𝑥𝑥− 𝐽

are bounded from below and above by

positive constants. This can be seen from the formula 2𝜆1,2 = tr 𝐼 ±√︁
tr

2 𝐼 − 4 det 𝐼 . For 𝐼𝑥𝑥 , boundedness is clear by continuity and from

4𝐼𝑥𝑥 = ⟨𝑣1/𝜇 + 𝑣2, 𝑐 × 𝛾 + 𝑐⟩ > 0. For 𝐼𝑦𝑦 and det 𝐼 , boundedness

of the numerator is clear from the boundedness of 𝐼𝑥𝑥 and 𝐽 , and

boundedness of the denominator can be seen from

4𝐼𝑥𝑥 − 𝐽 =
〈

4𝜔𝑛

𝐸𝜅2
− 𝛾 ′

𝜇𝜏
, 𝑐 × 𝛾 + 𝑐

〉
,

and the limit properties of the expression on the right-hand side,

which follow from (2). We conclude that 𝜆1 and 𝜆2 are also bounded

from below and above by positive constants, which gives the re-

quired coercivity and boundedness of 𝐼 . □
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