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Abstract
The safety-liveness dichotomy is a fundamental concept in formal languages which plays a key role in
verification. Recently, this dichotomy has been lifted to quantitative properties, which are arbitrary
functions from infinite words to partially-ordered domains. We look into harnessing the dichotomy for
the specific classes of quantitative properties expressed by quantitative automata. These automata
contain finitely many states and rational-valued transition weights, and their common value functions
Inf, Sup, LimInf, LimSup, LimInfAvg, LimSupAvg, and DSum map infinite words into the totally-
ordered domain of real numbers. In this automata-theoretic setting, we establish a connection
between quantitative safety and topological continuity and provide an alternative characterization
of quantitative safety and liveness in terms of their boolean counterparts. For all common value
functions, we show how the safety closure of a quantitative automaton can be constructed in PTime,
and we provide PSpace-complete checks of whether a given quantitative automaton is safe or live,
with the exception of LimInfAvg and LimSupAvg automata, for which the safety check is in ExpSpace.
Moreover, for deterministic Sup, LimInf, and LimSup automata, we give PTime decompositions into
safe and live automata. These decompositions enable the separation of techniques for safety and
liveness verification for quantitative specifications.
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1 Introduction

Safety and liveness [2] are fundamental concepts in the specification of system behaviors
and their verification. While safety characterizes whether a system property can always be
falsified by a finite prefix of its violating executions, liveness characterizes whether this is
never possible. A celebrated result shows that every property is the intersection of a safety
property and a liveness property [2]. This decomposition significantly impacts verification
efforts: every verification task can be split into verifying a safety property, which can be
solved by lighter methods, such as computational induction, and a liveness property, which
requires heavier methods, such as ranking functions.

The notions of safety and liveness consider system properties in full generality: every set
of system executions—even the uncomputable ones—can be seen through the lens of the
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Figure 1 (a) A LimSup-automaton A modeling the long-term maximal power consumption of a
device. (b) An Inf-automaton (or a LimSup-automaton) expressing the safety closure of A. (c) A
LimSup-automaton expressing the liveness component of the decomposition of A.

safety-liveness dichotomy. To bring these notions more in line with practical requirements,
their projections onto formalisms with desirable closure and decidability properties, such as
ω-regular languages, have been studied thoroughly. For example, [3] gives a construction for
the safety closure of a Büchi automaton and shows that Büchi automata are closed under the
safety-liveness decomposition. In turn, [29] describes an efficient model-checking algorithm
for Büchi automata that define safety properties.

Boolean properties define sets of system executions or, equivalently, characteristic functions
mapping each infinite execution to a binary truth value. Quantitative properties [10] generalize
their boolean counterparts; they are functions from infinite executions to richer value domains,
such as the real numbers, allowing the specification and verification of system properties not
only for correctness but also for performance and robustness.

As in the boolean case, quantitative extensions of safety and liveness [25] have been
defined through the falsifiability, from finite execution prefixes, of quantitative membership
hypotheses, which are claims that a given value is a lower or upper bound on the values of
certain executions. In particular, quantitative safety (resp. co-safety) characterizes whether
every wrong lower (resp. upper) bound hypothesis can always be rejected by a finite execution
prefix, and quantitative liveness (resp. co-liveness) characterizes whether some wrong lower
(resp. upper) bound hypothesis can never be rejected by a finite execution prefix. In this
setting, the safety closure of a quantitative property maps each execution to the greatest
lower bound over the best values that all execution prefixes can have via some continuations;
in other words, it is the least safety property that bounds the given property from above [25].

Let us give some examples. Suppose we have three observations on, eco, and off,
corresponding to the operational modes of a device, with the power consumption values 2, 1,
and 0, respectively. The quantitative property MinPow maps every execution to the minimum
among the power consumption values of the modes that occur in the execution, and MaxPow
maps them to the corresponding maximum. The property MinPow is safe because, for every
execution and power consumption value v, if the MinPow value of the execution is less than
v, then there is a finite prefix of the execution in which an operational mode with a power
value less than v occurs, and after this prefix, no matter what infinite execution follows,
MinPow value cannot be greater. The property MaxPow is live because, for every execution
(whose MaxPow value is not the maximal possible value of 2), there is a power value v such
that the MaxPow value of the execution is less than v, but for all of its finite prefixes there is
an infinite continuation that achieves a MaxPow value of at least v.

Similarly to how boolean automata (e.g., regular and ω-regular automata) define classes
of boolean properties amenable to boolean verification, quantitative automata (e.g., limit-
average and discounted-sum automata) define classes of quantitative properties amenable to
quantitative verification. Quantitative automata generalize standard boolean automata with
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weighted transitions and a value function that accumulates an infinite sequence of weights
into a single value, a generalization of acceptance conditions of ω-regular automata. Let
us extend the set of possible observations in the above example with err, which denotes
an error in the device. In Figure 1a, we describe a quantitative automaton using the value
function LimSup to express the long-term maximal power consumption of the device.

In this work, we study the projection of the quantitative safety-liveness dichotomy onto
the properties definable by common quantitative automata. First, we show how certain
attributes of quantitative automata simplify the notions of safety and liveness. Then, we use
these simplifications to the study safety and liveness of the classes of quantitative automata
with the value functions Inf, Sup, LimInf, LimSup, LimInfAvg, LimSupAvg, and DSum [10].

In contrast to general quantitative properties, these quantitative automata use functions
on the totally-ordered domain of the real numbers (as opposed to a more general partially-
ordered domain). In addition, quantitative automata have the restriction that only finitely
many weights (those on the automaton transitions) can contribute to the value of an execution.
These constraints allow us to provide alternative, simpler characterizations of safety for
properties defined by quantitative automata. In particular, we show that, for totally-ordered
value domains, a quantitative property is safe iff, for every value v, the set of executions
whose value is at least v is safe in the boolean sense. The total-order restriction also allows
us to study quantitative safety through the lens of topological continuity. In particular, we
characterize safety properties as continuous functions with respect to the left-order topology
of their totally-ordered value domain. Moreover, we define the safety of value functions
and show that a value function is safe iff every quantitative automaton equipped with
this value function expresses a safety property. For example, Inf is a safe value function.
Pushing further, we characterize discounting properties and value functions as those that are
uniformly continuous and show that it characterizes the conjunction of safety and co-safety.
For example, DSum is a discounting value function, therefore both safe and co-safe.

We prove that the considered classes of quantitative automata have the ability to express
the least upper bound over their values, namely, they are supremum-closed. Similarly as for
safety and the total-order constraint, this ability helps us simplify quantitative liveness. For
supremum-closed quantitative properties, we show that a property is live iff for every value
v, the set of executions whose value is at least v is live in the boolean sense.

These simplifying characterizations of safety and liveness for quantitative automata
prove useful for checking the safety and liveness of these automata, for constructing the
safety closure of an automaton, and for decomposing an automaton into safety and liveness
components. Let us recall the quantitative automaton in Figure 1a. Since it is supremum-
closed, we can construct its safety closure in PTime by computing the maximal value it can
achieve from each state. The safety closure of this automaton is shown in Figure 1b. For the
value functions Inf, Sup, LimInf, LimSup, LimInfAvg, and LimSupAvg, the safety closure of a
given automaton is an Inf-automaton, while for DSum, it is a DSum-automaton.

Evidently, one can check if a quantitative automaton A is safe by checking if it is equivalent
to its safety closure, i.e., if A(w) = SafetyCl(A)(w) for every execution w. This allows for a
PSpace procedure for checking the safety of Sup-, LimInf-, and LimSup-automata [10], but not
for LimInfAvg- and LimSupAvg-automata, whose equivalence check is undecidable [15]. For
these cases, we use the special structure of the safety-closure automaton for reducing safety
checking to the problem of whether some other automaton expresses a constant function. We
show that the latter problem is PSpace-complete for LimInfAvg- and LimSupAvg-automata,
by a somewhat involved reduction to the limitedness problem of distance automata, and
obtain an ExpSpace decision procedure for their safety check.
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Thanks to our alternative characterization of liveness, one can check if a quantitative
automaton A is live by checking if its safety closure is universal with respect to its maximal
value, i.e., if SafetyCl(A)(w) ≥ ⊤ for every execution w, where ⊤ is the supremum over
the values of A. For all value functions we consider except DSum, the safety closure is
an Inf-automaton, which allows for a PSpace solution to liveness checking [10], which we
show to be optimal. Yet, it is not applicable for DSum automata, as the decidability of
their universality check is an open problem. Nonetheless, as we consider only universality
with respect to the maximal value of the automaton, we can reduce the problem again
to checking whether an automaton defines a constant function, which we show to be in
PSpace for DSum-automata. This yields a PSpace-complete solution to the liveness check
of DSum-automata.

Finally, we investigate the safety-liveness decomposition for quantitative automata. Recall
the automaton from Figure 1a and its safety closure from Figure 1b. The liveness component
of the corresponding decomposition is shown in Figure 1c. Intuitively, it ignores err and
provides information on the power consumption as if the device never fails. Then, for every
execution w, the value of the original automaton on w is the minimum of the values of its
safety closure and the liveness component on w. Since we identified the value functions
Inf and DSum as safe, their safety-liveness decomposition is trivial. For deterministic Sup-,
LimInf-, and LimSup-automata, we provide PTime decompositions, where for Sup and LimInf
it extends to nondeterministic automata at the cost of exponential determinization.

We note that our alternative, simpler characterizations of safety and liveness of quanti-
tative properties extend to co-safety and co-liveness. Our results for the specific automata
classes are summarized in Table 1. While we focus on automata that resolve nondeterminism
by sup, their duals hold for quantitative co-safety and co-liveness of automata that resolve
nondeterminism by inf, as well as for deterministic automata. We leave the questions of
co-safety and co-liveness for automata that resolve nondeterminism by sup open.

Related Work. The notions of safety and liveness for boolean properties were first presented
in [30] and were later formally defined in [2]. The projections of safety and liveness onto
properties definable by Büchi automata were studied in [3]. For linear temporal logic,
safety and liveness were studied in [37], where checking whether a given formula is safe was
shown to be PSpace-complete. The safety-liveness dichotomy also shaped various efforts on
verification, such as an efficient model-checking algorithm for safe Büchi automata [29]. A
framework for monitorability through the lens of safety and liveness was given in [34], and a
monitor model for safety properties beyond ω-regular ones was defined and studied in [18].

Quantitative properties (a.k.a. quantitative languages [10]) generalize their boolean
counterparts by moving from a binary domain of truth values to richer value domains such
as the real numbers. In the past decades, quantitative properties and automata have been
studied extensively in games with quantitative objectives [6, 9], specification and analysis of
system robustness [33], measuring the distance between two systems or specifications [13, 23],
best-effort synthesis and repair [5, 12], approximate monitoring [26, 24], and more [11, 8, 17].

Safety and liveness of general quantitative properties were defined and studied in [25].
In particular, quantitative safety properties were characterized as upper semicontinuous
functions, and every quantitative property was shown to be the pointwise minimum of a
safety property and a liveness property. Yet, these definitions have not been studied from
the perspective of quantitative finite-state automata.

Other definitions of safety and liveness for nonboolean formalisms were presented in [32, 20].
While [32] focuses on multi-valued formalisms with the aim of providing model-checking
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Inf Sup, LimInf, LimSup LimInfAvg, LimSupAvg DSum
Constructing
SafetyCl(A) O(1) PTime

Theorem 4.18 O(1)

Constant-function
check

PSpace-complete
Proposition 3.2 and Theorems 3.3 and 3.7

Safety check O(1) PSpace-complete
Theorem 4.22

ExpSpace; PSpace-hard
Theorem 4.23 and Lemma 4.21 O(1)

Liveness check PSpace-complete
Theorem 5.9

Safety-liveness
decomposition O(1) PTime if deterministic

Theorems 5.10 and 5.11 Open O(1)

Table 1 The complexity of performing the operations on the left column with respect to
nondeterministic automata with the value function specified on the top row.

algorithms, [20] focuses on the monitorability view of safety and liveness in richer value
domains. The relations between these definitions were investigated in [25]. Notably, a notion
of safety was studied for the rational-valued min-plus weighted automata on finite words
in [38]. They take a weighted property as v-safe for a given rational v when for every
execution w, if the hypothesis that the value of w is strictly less than v is wrong (i.e., its
value is at least v), then there is a finite prefix of w to witness it. Then, a weighted property
is safe when it is v-safe for some value v. Given a nondeterministic weighted automaton
A and an integer v, they show that it is undecidable to check whether A is v-safe. In
contrast, the definition in [25], which we follow, quantifies over all values and non-strict
lower-bound hypotheses. Moreover, for this definition, we show that checking safety of all
common classes of quantitative automata is decidable, even in the presence of nondeterminism.
Finally, [4] studies the safety and co-safety of discounted-sum comparator automata. While
these automata internally use discounted summation, they are boolean automata recognizing
languages, and therefore they only consider boolean safety and co-safety.

Our study shows that determining whether a given quantitative automaton expresses a
constant function is a key for deciding safety and liveness, in particular for automata classes
in which equivalence or universality checks are undecidable. To the best of our knowledge,
this problem has not been studied before.

2 Quantitative Properties and Automata

Let Σ = {a, b, . . .} be a finite alphabet of letters (observations). An infinite (resp. finite) word
is an infinite (resp. finite) sequence of letters w ∈ Σω (resp. u ∈ Σ∗). For a natural number
n ∈ N, we denote by Σn the set of finite words of length n. Given u ∈ Σ∗ and w ∈ Σ∗ ∪ Σω,
we write u ≺ w (resp. u ⪯ w) when u is a strict (resp. nonstrict) prefix of w. We denote by
|w| the length of w ∈ Σ∗ ∪ Σω and, given a ∈ Σ, by |w|a the number of occurrences of a in
w. For w ∈ Σ∗ ∪ Σω and 0 ≤ i < |w|, we denote by w[i] the ith letter of w.

A value domain D is a poset. Unless otherwise stated, we assume that D is a nontrivial
(i.e., ⊥ ≠ ⊤) complete lattice. Whenever appropriate, we write 0 or −∞ instead of ⊥ for the
least element, and 1 or ∞ instead of ⊤ for the greatest element. We respectively use the
terms minimum and maximum for the greatest lower bound and the least upper bound of
finitely many elements.

A quantitative property is a total function Φ : Σω → D from the set of infinite words to a
value domain. A boolean property P ⊆ Σω is a set of infinite words. We use the boolean
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domain B = {0, 1} with 0 < 1 and, in place of P , its characteristic property ΦP : Σω → B,
which is defined by ΦP (w) = 1 if w ∈ P , and ΦP (w) = 0 if w /∈ P . When we say just property,
we mean a quantitative one.

Given a property Φ : Σω → D and a value v ∈ D, we define Φ∼v = {w ∈ Σω | Φ(w) ∼ v}
for ∼ ∈ {≤, ≥, ̸≤, ̸≥}. The top value of a property Φ is supw∈Σω Φ(w), which we denote by
⊤Φ, or simply ⊤ when Φ is clear from the context.

A nondeterministic quantitative1 automaton (or just automaton from here on) on words
is a tuple A = (Σ, Q, ι, δ), where Σ is an alphabet; Q is a finite nonempty set of states; ι ∈ Q

is an initial state; and δ : Q × Σ → 2(Q×Q) is a finite transition function over weight-state
pairs. A transition is a tuple (q, σ, x, q′) ∈ Q×Σ×Q × Q, such that (x, q′) ∈ δ(q, σ), also
written q

σ:x−−→ q′. (There might be finitely many transitions with different weights over the
same letter between the same states.2) We write γ(t) = x for the weight of a transition
t = (q, σ, x, q′). A is deterministic if for all q ∈ Q and a ∈ Σ, the set δ(q, a) is a singleton.
We require the automaton A to be total, namely that for every state q ∈ Q and letter σ ∈ Σ,
there is at least one state q′ and a transition q

σ:x−−→ q′. For a state q ∈ Q, we denote by Aq

the automaton that is derived from A by setting its initial state ι to q.
A run of A on a word w is a sequence ρ = q0

w[0]:x0−−−−→ q1
w[1]:x1−−−−→ q2 . . . of transitions where

q0 = ι and (xi, qi+1) ∈ δ(qi, w[i]). For 0 ≤ i < |w|, we denote the ith transition in ρ by ρ[i],
and the finite prefix of ρ up to and including the ith transition by ρ[..i]. As each transition
ti carries a weight γ(ti) ∈ Q, the sequence ρ provides a weight sequence γ(ρ) = γ(t0)γ(t1) . . .

A Val (e.g., DSum) automaton is one equipped with a value function Val : Qω → R, which
assigns real values to runs of A. We assume that Val is bounded for every finite set of
rationals, i.e., for every finite V ⊂ Q there exist m, M ∈ R such that m ≤ Val(x) ≤ M for
every x ∈ V ω. Note that the finite set V corresponds to transition weights of a quantitative
automaton, and the concrete value functions we consider satisfy this assumption.

The value of a run ρ is Val(γ(ρ)). The value of a Val-automaton A on a word w, denoted
A(w), is the supremum of Val(ρ) over all runs ρ of A on w. The top value of a Val-automaton
A is the top value of the property it expresses, which we denote by ⊤A, or simply ⊤ when
A is clear from the context. Note that when we speak of the top value of a property or an
automaton, we always match its value domain to have the same top value.

Two automata A and A′ are equivalent, if they express the same function from words to
reals. The size of an automaton consists of the maximum among the size of its alphabet,
state-space, and transition-space, where weights are represented in binary.

We list below the value functions for quantitative automata that we will use, defined over
infinite sequences v0v1 . . . of rational weights.

Inf(v) = inf{vn | n ≥ 0} Sup(v) = sup{vn | n ≥ 0}

LimInf(v) = lim
n→∞

inf{vi | i ≥ n}

LimInfAvg(v) = LimInf
(

1
n

n−1∑
i=0

vi

) LimSup(v) = lim
n→∞

sup{vi | i ≥ n}

LimSupAvg(v) = LimSup
(

1
n

n−1∑
i=0

vi

)

For a discount factor λ ∈ Q ∩ (0, 1), DSumλ(v) =
∑
i≥0

λivi

1 We speak of “quantitative” rather than “weighted” automata, following the distinction made in [7]
between the two.

2 The flexibility of allowing “parallel” transitions with different weights is often omitted, as it is redundant
for some value functions, including the ones we focus on in the sequel, while important for others.
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Note that (i) when the discount factor λ ∈ Q ∩ (0, 1) is unspecified, we write DSum, and
(ii) LimInfAvg and LimSupAvg are also called MeanPayoff and MeanPayoff in the literature.

The following statement allows us to consider Inf- and Sup-automata as only having runs
with nonincreasing and nondecreasing, respectively, sequences of weights and to also consider
them as LimInf- and LimSup-automata.

▶ Proposition 2.1. Let Val ∈ {Inf, Sup}. Given a Val-automaton, we can construct in
PTime an equivalent Val-, LimInf- or LimSup-automaton whose runs yield monotonic weight
sequences.

Given a property Φ and a finite word u ∈ Σ∗, let PΦ,u = {Φ(uw) | w ∈ Σω}. A
property Φ is sup-closed (resp. inf-closed) when for every finite word u ∈ Σ∗ we have that
sup PΦ,u ∈ PΦ,u (resp. inf PΦ,u ∈ PΦ,u) [25].

We show that the common classes of quantitative automata always express sup-closed
properties, which will simplify the study of their safety and liveness.

▶ Proposition 2.2. Let Val ∈ {Inf, Sup, LimInf, LimSup, LimInfAvg, LimSupAvg, DSum}. Ev-
ery Val-automaton expresses a property that is sup-closed. Furthermore its top value is
rational, attainable by a run, and can be computed in PTime.

3 Subroutine: Constant-Function Check

We will show that the problems of whether a given automaton is safe or live are closely
related to the problem of whether an automaton expresses a constant function, motivating its
study in this section. We first prove the problem hardness by reduction from the universality
of nondeterministic finite-state automata (NFAs) and reachability automata.

▶ Lemma 3.1. Let Val ∈ {Sup, Inf, LimInf, LimSup, LimInfAvg, LimSupAvg, DSum}. It is
PSpace-hard to decide whether a Val-automaton A expresses a constant function.

A simple solution to the problem is to check whether the given automaton A is equivalent
to an automaton B expressing the constant top value of A, which is computable in PTime by
Proposition 2.2. For some automata classes, it is good enough for a matching upper bound.

▶ Proposition 3.2. Deciding whether an Inf-, Sup-, LimInf-, or LimSup-automaton expresses
a constant function is PSpace-complete.

Yet, this simple approach does not work for DSum-automata, whose equivalence is an
open problem, and for limit-average automata, whose equivalence is undecidable [15].

For DSum-automata, our alternative solution removes “non-optimal” transitions from the
automaton and then reduces the problem to the universality problem of NFAs.

▶ Theorem 3.3. Deciding whether a DSum-automaton expresses a constant function is
PSpace-complete.

The solution for limit-average automata is more involved. It is based on a reduction to the
limitedness problem of distance automata, which is known to be in PSpace [21, 36, 22, 31].
We start with presenting Johnson’s algorithm, which we will use for manipulating the
transition weights of the given automaton, and proving some properties of distance automata,
which we will need for the reduction.

A weighted graph is a directed graph G = ⟨V, E⟩ equipped with a weight function
γ : E → Z. The cost of a path p = v0, v1, . . . , vk is γ(p) =

∑k−1
i=0 γ(vi, vi+1).
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▶ Proposition 3.4 (Johnson’s Algorithm [28, Lem. 2 and Thms. 4 and 5]). Consider a
weighted graph G = ⟨V, E⟩ with weight function γ : E → Z, such that G has no negative
cycles according to γ. We can compute in PTime functions h : V → Z and γ′ : E → N such
that for every path p = v0, v1, . . . , vk in G it holds that γ′(p) = γ(p) + h(v0) − h(vk).

▶ Remark. Proposition 3.4 is stated for graphs, while we will apply it for graphs underlying
automata, which are multi-graphs, namely having several transitions between the same pairs
of states. Nevertheless, to see that Johnson’s algorithm holds also in our case, one can
change every automaton to an equivalent one whose underlying graph is a standard graph,
by splitting every state into several states, each having a single incoming transition.

A distance automaton is a weighted automaton over the tropical semiring (a.k.a., min-plus
semiring) with weights in {0, 1}. It can be viewed as a quantitative automaton over finite
words with transition weights in {0, 1} and the value function of summation, extended with
accepting states. A distance automaton is of limited distance if there exists a bound on the
automaton’s values on all accepted words.

Lifting limitedness to infinite words, we have by König’s lemma that a total distance
automaton of limited distance b, in which all states are accepting, is also guaranteed to have
a run whose weight summation is bounded by b on every infinite word.

▶ Proposition 3.5. Consider a total distance automaton D of limited distance b, in which
all states are accepting. Then for every infinite word w, there exists an infinite run of D
on w whose summation of weights (considering only the transition weights and ignoring the
final weights of states), is bounded by b.

Lifting nonlimitedness to infinite words, it may not suffice for our purposes to have an
infinite word on which all runs of the distance automaton are unbounded, as their limit-
average value might still be 0. Yet, thanks to the following lemma, we are able to construct
an infinite word on which the limit-average value is strictly positive.

▶ Lemma 3.6. Consider a total distance automaton D of unlimited distance, in which all
states are accepting. Then there exists a finite nonempty word u, such that D(u) = 1 and the
possible runs of D on u lead to a set of states U , such that the distance automaton that is
the same as D but with U as the set of its initial states is also of unlimited distance.

Using Propositions 3.4 and 3.5 and Lemma 3.6 we are in position to solve our problem
by reduction to the limitedness problem of distance automata.

▶ Theorem 3.7. Deciding whether a LimInfAvg- or LimSupAvg-automaton expresses a con-
stant function, for a given constant or any constant, is PSpace-complete.

4 Quantitative Safety

The membership problem for quantitative properties asks, given a property Φ : Σω → D,
a word w ∈ Σω, and a value v ∈ D, whether Φ(w) ≥ v holds [10]. Safety of quantitative
properties is defined from the perspective of membership queries [25]. Intuitively, a property
is safe when each wrong membership hypothesis has a finite prefix to witness the violation.
The safety closure of a given property maps each word to the greatest lower bound over its
prefixes of the least upper bound of possible values.

▶ Definition 4.1 (Safety [25]). A property Φ : Σω → D is safe when for every w ∈ Σω and
value v ∈ D with Φ(w) ̸≥ v, there is a prefix u ≺ w such that supw′∈Σω Φ(uw′) ̸≥ v. The safety
closure of a property Φ is the property defined by SafetyCl(Φ)(w) = infu≺w supw′∈Σω Φ(uw′)
for all w ∈ Σω.
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We remark that (i) a property is safe iff it defines the same function as its safety closure [25,
Thm. 9], and (ii) the safety closure of a property is the least safety property that bounds
the given property from above [25, Prop. 6]. Co-safety of quantitative properties and the
co-safety closure is defined symmetrically.

▶ Definition 4.2 (Co-safety [25]). A property Φ : Σω → D is co-safe when for every w ∈ Σω

and value v ∈ D with Φ(w) ̸≤ v, there exists a prefix u ≺ w such that infw′∈Σω Φ(uw′) ̸≤
v. The co-safety closure of a property Φ is the property defined by CoSafetyCl(Φ)(w) =
supu≺w infw′∈Σω Φ(uw′) for all w ∈ Σω.

Consider the case of a server that processes incoming requests and approves them
accordingly. The quantitative property for the minimal response time of such a server is safe,
while its maximal response time is co-safe [25, Examples 3 and 26]. Although these are sup-
and inf-closed properties, safety and co-safety are independent of sup- and inf-closedness.
To witness, consider the alphabet Σ = {a, b} and the value domain D = {x, y, ⊥, ⊤} where x

and y are incomparable, and define Φ(w) = x if a ≺ w and Φ(w) = y if b ≺ w.

▶ Proposition 4.3. There is a property Φ that is safe and co-safe but neither sup- nor
inf-closed.

The Cantor space of infinite words is the set Σω with the metric µ : Σω × Σω → [0, 1]
such that µ(w, w) = 0 and µ(w, w′) = 2−|u| where u ∈ Σ∗ is the longest common prefix
of w, w′ ∈ Σω with w ̸= w′. Given a boolean property P ⊆ Σω, the topological closure
TopolCl(P ) of P is the smallest closed set (i.e., boolean safety property) that contains P ,
and the topological interior TopolInt(P ) of P is the greatest open set (i.e., boolean co-safety
property) that is contained in P .

We show the connection between the quantitative safety (resp. co-safety) closure and the
topological closure (resp. interior) through sup-closedness (resp. inf-closedness). Note that
the sup-closedness assumption makes the quantitative safety closure values realizable. This
guarantees that for every value v, every word whose safety closure value is at least v belongs
to the topological closure of the set of words whose property values are at least v.

▶ Theorem 4.4. Consider a property Φ : Σω → D and a threshold v ∈ D. If Φ is sup-
closed, then (SafetyCl(Φ))≥v = TopolCl(Φ≥v). If Φ is inf-closed, then (CoSafetyCl(Φ))≤v =
TopolInt(Φ≤v).

For studying the safety of automata, we first provide alternative characterizations of
quantitative safety through threshold safety, which bridges the gap between the boolean
and the quantitative settings, and continuity of functions. These hold for all properties
on totally-ordered value domains, and in particular for those expressed by quantitative
automata. Then, we extend the safety notions from properties to value functions, allowing
us to characterize families of safe quantitative automata. Finally, we provide algorithms to
construct the safety closure of a given automaton A and to decide whether A is safe.

4.1 Threshold Safety and Continuity

In this section, we define threshold safety to connect the boolean and the quantitative settings.
It turns out that quantitative safety and threshold safety coincide on totally-ordered value
domains. Furthermore, these value domains enable a purely topological characterization of
quantitative safety properties in terms of their continuity.
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▶ Definition 4.5 (Threshold safety). A property Φ : Σω → D is threshold safe when for every
v ∈ D the boolean property Φ≥v = {w ∈ Σω | Φ(w) ≥ v} is safe (and thus Φ̸≥v is co-safe).
Equivalently, for every w ∈ Σω and v ∈ D if Φ(w) ̸≥ v then there exists u ≺ w such that for
all w′ ∈ Σω we have Φ(uw′) ̸≥ v.

▶ Definition 4.6 (Threshold co-safety). A property Φ : Σω → D is threshold co-safe when for
every v ∈ D the boolean property Φ̸≤v = {w ∈ Σω | Φ(w) ̸≤ v} is co-safe (and thus Φ≤v is
safe). Equivalently, for every w ∈ Σω and v ∈ D if Φ(w) ̸≤ v then there exists u ≺ w such
that for all w′ ∈ Σω we have Φ(uw′) ̸≤ v.

In general, quantitative safety implies threshold safety, but the converse need not hold
with respect to partially-ordered value domains. To witness, consider the value domain
D = [0, 1] ∪ {x} where x is such that 0 < x and x < 1, but it is incomparable with all
v ∈ (0, 1), while within [0, 1] there is the standard order. Let Φ be a property defined over
Σ = {a, b} as follows: Φ(w) = x if w = aω, Φ(w) = 2−|w|a if w ∈ Σ∗bω, and Φ(w) = 0
otherwise. We show that Φ is threshold safe but not safe.

▶ Proposition 4.7. Every safety property is threshold safe, but there is a threshold-safety
property that is not safe.

While for a fixed threshold, safety and threshold safety do not necessarily overlap even
on totally-ordered domains, once quantifying over all thresholds, they do.

▶ Theorem 4.8. Let D be a totally-ordered value domain. A property Φ : Σω → D is safe iff
it is threshold safe.

We move next to the relation between safety and continuity. We recall some standard
definitions; more about it can be found in textbooks, e.g., [19, 27]. A topology of a set X can
be defined to be its collection τ of open subsets, and the pair (X, τ) stands for a topological
space. It is metrizable when there exists a distance function (metric) d on X such that the
topology induced by d on X is τ .

Recall that we take Σω as a Cantor space with the metric µ defined as in Section 4.
Consider a totally-ordered value domain D. For each element v ∈ D, let Lv = {v′ ∈
D | v′ < v} and Rv = {v′ ∈ D | v < v′}. The order topology on D is generated by the set
{Lv | v ∈ D} ∪ {Rv | v ∈ D}. Moreover, the left order topology (resp. right order topology) is
generated by the set {Lv | v ∈ D} (resp. {Rv | v ∈ D}). For a given property Φ : Σω → D and
a set V ⊆ D of values, the preimage of V on Φ is defined as Φ−1(V ) = {w ∈ Σω | Φ(w) ∈ V }.

A property Φ : Σω → D on a topological space D is continuous when for every open subset
V ⊆ D the preimage Φ−1(V ) ⊆ Σω is open. In [25, 26], a property Φ is defined as upper
semicontinuous when Φ(w) = limu≺w supw′∈Σω Φ(uw′), extending the standard definition
for functions on extended reals to functions from infinite words to complete lattices. This
characterizes safety properties since it is an equivalent condition to a property defining the
same function as its safety closure [25, Thm. 9]. We complete the picture by providing
a purely topological characterization of safety properties in terms of their continuity in
totally-ordered value domains.

▶ Theorem 4.9. Let D be a totally-ordered value domain. A property Φ : Σω → D is safe
(resp. co-safe) iff it is continuous with respect to the left (resp. right) order topology on D.

Observe that a property is continuous with respect to the order topology on D iff it is
continuous with respect to both left and right order topologies on D. Then, we immediately
obtain the following.
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▶ Corollary 4.10. Let D be a totally-ordered value domain. A property Φ : Σω → D is safe
and co-safe iff it is continuous with respect to the order topology on D.

Now, we shift our focus to totally-ordered value domains whose order topology is metriz-
able. We provide a general definition of discounting properties on such domains.

▶ Definition 4.11 (Discounting). Let D be a totally-ordered value domain for which the
order topology is metrizable with a metric d. A property Φ : Σω → D is discounting when
for every ε > 0 there exists n ∈ N such that for every u ∈ Σn and w, w′ ∈ Σω we have
d(Φ(uw), Φ(uw′)) < ε.

Intuitively, a property is discounting when the range of potential values for every word
converges to a singleton. As an example, consider the following discounted safety property:
Given a boolean safety property P , let Φ be a quantitative property such that Φ(w) = 1 if
w ∈ P , and Φ(w) = 2−|u| if w /∈ P , where u ≺ w is the shortest bad prefix of w for P . We
remark that our definition captures the previous definitions of discounting given in [14, 1].
▶ Remark. Notice that the definition of discounting coincides with uniform continuity. Since
Σω equipped with Cantor distance is a compact space [16], every continuous property is also
uniformly continuous by Heine-Cantor theorem, and thus discounting.

As an immediate consequence, we obtain the following.

▶ Corollary 4.12. Let D be a totally-ordered value domain for which the order topology is
metrizable. A property Φ : Σω → D is safe and co-safe iff it is discounting.

4.2 Safety of Value Functions
In this section, we focus on the value functions of quantitative automata, which operate on the
value domain of real numbers. In particular, we carry the definitions of safety, co-safety, and
discounting to value functions. This allows us to characterize safe (resp. co-safe, discounting)
value functions as those for which all automata with this value function are safe (resp. co-safe,
discounting). Moreover, we characterize discounting value functions as those that are safe
and co-safe.

Recall that we consider the value functions of quantitative automata to be bounded from
below and above for every finite input domain V ⊂ Q. As the set V ω can be taken as a
Cantor space, just like Σω, we can carry the notions of safety, co-safety, and discounting
from properties to value functions.

▶ Definition 4.13 (Safety and co-safety of value functions). A value function Val : Qω → R
is safe when for every finite subset V ⊂ Q, infinite sequence x ∈ V ω, and value v ∈ R, if
Val(x) < v then there exists a finite prefix z ≺ x such that supy∈V ω Val(zy) < v. Similarly, a
value function Val : Qω → R is co-safe when for every finite subset V ⊂ Q, infinite sequence
x ∈ V ω, and value v ∈ R, if Val(x) > v then there exists a finite prefix z ≺ x such that
infy∈V ω Val(zy) > v.

▶ Definition 4.14 (Discounting value function). A value function Val : Qω → R is discounting
when for every finite subset V ⊂ Q and every ε > 0 there exists n ∈ N such that for every
x ∈ V n and y, y′ ∈ V ω we have |Val(xy) − Val(xy′)| < ε.

We remark that by [25, Thms. 20 and 27], the value function Inf is safe and Sup is
co-safe; moreover, the value function DSum is discounting by definition. Now, we characterize
the safety (resp. co-safety) of a given value function by the safety (resp. co-safety) of the
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Figure 2 A Sup-automaton whose safety closure cannot be expressed by a Sup-automaton.

automata family it defines. We emphasize that the proofs of the two statement are not dual.
In particular, exhibiting a finite set of weights that falsifies the safety of a value function
from a nonsafe automaton requires a compactness argument.

▶ Theorem 4.15. Consider a value function Val. All Val-automata are safe (resp. co-safe)
iff Val is safe (resp. co-safe).

Thanks to the remark following Definition 4.11, for any finite set of weights V ⊂ Q,
a value function is discounting iff it is continuous on the Cantor space V ω. We leverage
this observation to characterize discounting value functions as those that are both safe and
co-safe.

▶ Theorem 4.16. A value function is discounting iff it is safe and co-safe.

As a consequence of Corollary 4.12 and Theorems 4.15–4.16, we obtain the following.

▶ Corollary 4.17. All Val-automata are discounting iff Val is discounting.

4.3 Safety of Quantitative Automata
We now switch our focus from generic value functions to families of quantitative automata
defined by the common value functions Inf, Sup, LimInf, LimSup, LimInfAvg, LimSupAvg, and
DSum. As remarked in Section 4.2, the value functions Inf and DSum are safe, thus all
Inf-automata and DSum-automata express a safety property by Theorem 4.15. Below, we
focus on the remaining value functions of interest.

Given a Val-automaton A where Val is one of the nonsafe value functions above, we
describe (i) a construction of an automaton that expresses the safety closure of A, and (ii)
an algorithm to decide whether A is safe.

For these value functions, we can construct the safety closure as an Inf-automaton.

▶ Theorem 4.18. Let Val ∈ {Sup, LimInf, LimSup, LimInfAvg, LimSupAvg}. Given a Val-
automaton A, we can construct in PTime an Inf-automaton that expresses its safety closure.

For the prefix-independent value functions we study, the safety-closure automaton we
construct in Theorem 4.18 can be taken as a deterministic automaton with the same value
function.

▶ Theorem 4.19. Let Val ∈ {LimInf, LimSup, LimInfAvg, LimSupAvg}. Given a Val-automaton
A, we can construct in PTime a Val-automaton that expresses its safety closure and can be
determinized in ExpTime.

In contrast, this is not possible in general for Sup-automata, as Figure 2 witnesses.

▶ Proposition 4.20. Some Sup-automaton admits no Sup-automata that expresses its safety
closure.
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We first prove the problem hardness by reduction from constant-function checks.

▶ Lemma 4.21. Let Val ∈ {Sup, LimInf, LimSup, LimInfAvg, LimSupAvg}. It is PSpace-hard
to decide whether a Val-automaton is safe.

For automata classes with PSpace equivalence check, a matching upper bound is straight-
forward by comparing the given automaton and its safety-closure automaton.

▶ Theorem 4.22. Deciding whether a Sup-, LimInf-, or LimSup-automaton expresses a safety
property is PSpace-complete.

On the other hand, even though equivalence of limit-average automata is undecidable [15],
we are able to provide a decision procedure using as a subroutine our algorithm to check
whether a given limit-average automaton expresses a constant function (see Theorem 3.7).
The key idea is to construct a limit-average automaton that expresses the constant function
0 iff the original automaton is safe. Our approach involves the determinization of the
safety-closure automaton, resulting in an ExpSpace complexity.

▶ Theorem 4.23. Deciding whether a LimInfAvg- or LimSupAvg-automaton expresses a safety
property is in ExpSpace.

5 Quantitative Liveness

The definition of quantitative liveness, similarly to that of quantitative safety, comes from the
perspective of the quantitative membership problem [25]. Intuitively, a property is live when
for every word whose value is less than the top, there is a wrong membership hypothesis
without a finite prefix to witness the violation.

▶ Definition 5.1 (Liveness and co-liveness [25]). A property Φ : Σω → D is live when for all
w ∈ Σω, if Φ(w) < ⊤, then there exists a value v ∈ D such that Φ(w) ̸≥ v and for all prefixes
u ≺ w, we have supw′∈Σω Φ(uw′) ≥ v. Similarly, a property Φ : Σω → D is co-live when for
all w ∈ Σω, if Φ(w) > ⊥, then there exists a value v ∈ D such that Φ(w) ̸≤ v and for all
prefixes u ≺ w, we have infw′∈Σω Φ(uw′) ≤ v.

As an example, consider a server that receives requests and issues grants. The server’s
maximum response time is live, while its minimum response time is co-live, and its average
response time is both live and co-live [25, Examples 41 and 42].

First, we provide alternative characterizations of quantitative liveness for sup-closed prop-
erties by threshold liveness, which bridges the gap between the boolean and the quantitative
settings, and top liveness. Then, we provide algorithms to check liveness of quantitative
automata, and to decompose them into a safety automaton and a liveness automaton.

5.1 Threshold Liveness and Top Liveness
Threshold liveness connects a quantitative property and the boolean liveness of the sets of
words whose values exceed a threshold value.

▶ Definition 5.2 (Threshold liveness and co-liveness). A property Φ : Σω → D is threshold
live when for every v ∈ D the boolean property Φ≥v = {w ∈ Σω | Φ(w) ≥ v} is live (and thus
Φ̸≥v is co-live). Equivalently, Φ is threshold live when for every u ∈ Σ∗ and v ∈ D there
exists w ∈ Σω such that Φ(uw) ≥ v. Similarly, a property Φ : Σω → D is threshold co-live
when for every v ∈ D the boolean property Φ̸≤v = {w ∈ Σω | Φ(w) ̸≤ v} is co-live (and thus
Φ≤v is live). Equivalently, Φ is threshold co-live when for every u ∈ Σ∗ and v ∈ D there
exists w ∈ Σω such that Φ(uw) ≤ v.
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A set P ⊆ Σω is dense in Σω when its topological closure equals Σω, i.e., TopolCl(P ) = Σω.
We relate threshold liveness with the topological denseness of a single set of words.

▶ Proposition 5.3. A property Φ is threshold live iff the set {w ∈ Σω | Φ(w) = ⊤} is dense
in Σω.

Liveness is characterized by the safety closure being strictly greater than the property
whenever possible [25, Thm. 37]. Top liveness puts an additional requirement on liveness:
the safety closure of the property should not only be greater than the original property but
also equal to the top value.

▶ Definition 5.4 (Top liveness and bottom co-liveness). A property Φ is top live when
SafetyCl(Φ)(w) = ⊤ for every w ∈ Σω. Similarly, a property Φ is bottom co-live when
CoSafetyCl(Φ)(w) = ⊥ for every w ∈ Σω.

We provide a strict hierarchy of threshold-liveness, top-liveness, and liveness.

▶ Proposition 5.5. Every threshold-live property is top live, but not vice versa; and every
top-live property is live, but not vice versa.

Top liveness does not imply threshold liveness, but it does imply a weaker form of it.

▶ Proposition 5.6. For every top-live property Φ and value v < ⊤, the set Φ≥v is live in the
boolean sense.

While the three liveness notions differ in general, they do coincide for sup-closed properties.

▶ Theorem 5.7. A sup-closed property is live iff it is top live iff it is threshold live.

5.2 Liveness of Quantitative Automata
We start with the problem of checking whether a quantitative automaton is live, and continue
with quantitative safety-liveness decomposition.

We first provide a hardness result by reduction from constant-function checks.

▶ Lemma 5.8. Let Val ∈ {Inf, Sup, LimInf, LimSup, LimInfAvg, LimSupAvg, DSum}. It is
PSpace-hard to decide whether a Val-automaton A is live.

For automata classes whose safety closure can be expressed as Inf-automata, we provide a
matching upper bound by simply checking the universality of the safety closure with respect
to its top value. For DSum-automata, whose universality problem is open, our solution is
based on our constant-function-check algorithm (see Theorem 3.3).

▶ Theorem 5.9. Deciding whether an Inf-, Sup-, LimInf-, LimSup-, LimInfAvg-, LimSupAvg-
or DSum-automaton expresses a liveness property is PSpace-complete.

We turn to safety-liveness decomposition, and start with the simple case of Inf- and
DSum-automata, which are guaranteed to be safe. Their decomposition thus consists of only
generating a liveness component, which can simply express a constant function that is at
least as high as the maximal possible value of the original automaton A. Assuming that the
maximal transition weight of A is fixed, it can be done in constant time.

Considering Sup-automata, recall that their safety closure might not be expressible by Sup-
automata (Proposition 4.20). Therefore, our decomposition of deterministic Sup-automata
takes the safety component as an Inf-automaton. The key idea is to copy the state space
of the original automaton and manipulate the transition weights depending on how they
compare with the safety-closure automaton.
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▶ Theorem 5.10. Given a deterministic Sup-automaton A, we can construct in PTime a
deterministic safety Inf-automaton B and a deterministic liveness Sup-automaton C, such
that A(w) = min(B(w), C(w)) for every infinite word w.

Using the same idea, but with a slightly more involved reasoning, we show a safety-liveness
decomposition for deterministic LimInf- and LimSup-automata.

▶ Theorem 5.11. Let Val ∈ {LimInf, LimSup}. Given a deterministic Val-automaton A, we
can construct in PTime a deterministic safety Val-automaton B and a deterministic liveness
Val-automaton C, such that A(w) = min(B(w), C(w)) for every infinite word w.

Considering nondeterministic Sup- and LimInf-automata, they can be decomposed by
first determinizing them at an exponential cost [10, Thm. 14]. For nondeterministic LimSup-
automata, which cannot always be determinized, we leave the problem open. We also
leave open the question of whether LimInfAvg- and LimSupAvg-automata are closed under
safety-liveness decomposition.

6 Conclusions

We studied, for the first time, the quantitative safety-liveness dichotomy for properties
expressed by Inf, Sup, LimInf, LimSup, LimInfAvg, LimSupAvg, and DSum automata. To this
end, we characterized the quantitative safety and liveness of automata by their boolean
counterparts, connected them to topological continuity and denseness, and solved the
constant-function problem for these classes of automata. We presented automata-theoretic
constructions for the safety closure of these automata and decision procedures for checking
their safety and liveness. We proved that the value function Inf yields a class of safe automata
and DSum both safe and co-safe. For some automata classes, we provided a decomposition
of an automaton into a safe and a live component. We emphasize that the safety component
of our decomposition algorithm is the safety closure, and thus the best safe approximation of
a given automaton.

We focused on quantitative automata [10] because their totally-ordered value domain
and their sup-closedness make quantitative safety and liveness behave in particularly natural
ways; a corresponding investigation of weighted automata [35] remains to be done. We
left open the problems of the safety-liveness decomposition of limit-average automata, the
complexity gap in the safety check of limit-average automata, and the study of co-safety and
co-liveness for nondeterministic quantitative automata, which is not symmetric to safety and
liveness due to the nonsymmetry in resolving nondeterminism by the supremum value of all
possible runs.
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