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Abstract
We consider the ground state and the low-energy excited states of a system of N
identical bosons with interactions in the mean-field scaling regime. For the ground
state, we derive a weak Edgeworth expansion for the fluctuations of bounded one-body
operators,which yields corrections to a central limit theorem to any order in 1/

√
N . For

suitable excited states, we show that the limiting distribution is a polynomial times a
normal distribution, and that higher-order corrections are given by an Edgeworth-type
expansion.

Keywords Bose-Einstein condensation · Central limit theorem · Edgeworth
expansion · Quantum many-body system

Mathematics Subject Classification 81V73 · 60F05

1 Introduction

A quantum mechanical system of N identical bosons is described by a wave function
� that is square integrable and symmetric under the exchange of any two particles,
i.e.,

�(x1, ..., xi , ..., x j , ..., xN ) = �(x1, ..., x j , ..., xi , ..., xN ), i, j ∈ {1, ..., N }.
(1.1)
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Hence, � is an element of the symmetric subspace HN
sym of the N -body Hilbert space

HN , where

HN := H⊗N , HN
sym := H⊗symN , H := L2(Rd), (1.2)

for d ≥ 1 the spatial dimension of the system and where ⊗sym denotes the symmetric
tensor product. We study the statistics of measurements described by self-adjoint
operators on HN . In particular, we consider one-body operators on HN , i.e., operators
of the form

Bj = 1 ⊗ ··· ⊗ 1
︸ ︷︷ ︸

j−1

⊗B ⊗ 1 ⊗ ··· ⊗ 1
︸ ︷︷ ︸

N− j

(1.3)

for bounded self-adjoint operators B onH. Sincewe consider indistinguishable bosons,
we study symmetrized operators, i.e., operators of the form

∑N
j=1 Bj . An example is

the number of particles in a bounded volume V ⊂ R
d , described by the operator

N
∑

j=1

χV (x j ), (1.4)

where χV denotes the characteristic function on V . The goal of this article is to better
understand the statistics of such operators.

Due to the permutation symmetry (1.1), the family of one-body operators {Bj }Nj=1
defines a family of identically distributed random variables, whose distribution is
determined by the wave function � via the spectral theorem. The probability that the
corresponding random variable Bj takes values in a set A ⊂ R is given by:

P�(Bj ∈ A) = 〈

�,χA(Bj )�
〉

, (1.5)

where χA denotes the characteristic function of the set A and where 〈·, ·〉 denotes the
inner product ofHN . Functions of self-adjoint operators are defined via the functional
calculus. Note that the operators

∑

j B j are formally the analogue of sample averages,
which, in probability theory, are often interpreted as repeated measurements. This
interpretation does not apply in our setting: the operator

∑

j B j does not describe N
single-particle measurements on N copies of the system. (These measurements would
always be independent of each other.)

If the N -body wave function is a product state, i.e., if � = ϕ⊗N for some ϕ ∈ H,
the random variables Bj are independent and identically distributed (i.i.d.). Conse-
quently, N−1∑

j B j satisfies the law of large numbers (LLN), and the fluctuations
around the expectation value are, in the limit N → ∞, described by the central limit
theorem (CLT). Moreover, for large but finite N , the fluctuations can be expanded
in an asymptotic Edgeworth series, providing higher-order corrections to the central
limit theorem to any order in 1/

√
N (see Sect. 3.5 for a more detailed discussion).
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A factorized wave function � = ϕ⊗N describes the ground state of an ideal Bose
gas, i.e., a systemwithout interactions between the particles. In this work, we are inter-
ested in the situation where the bosons interact weakly with each other. We consider
a system of N bosons in Rd described by the many-body Hamiltonian

HN =
N
∑

j=1

(−� j + V (x j )) + 1

N − 1

∑

1≤i< j≤N

v(xi − x j ) (1.6)

acting on HN
sym, under suitable assumptions on the interaction v and the external

trapping potential V (see Sect. 1.1). This describes a Bose gas in the so-called mean-
field (orHartree) regime,where the interactions areweak and long-ranged.Weconsider
the ground state �

gs
N and suitable low-energy excited states �ex

N of the Hamiltonian
HN , i.e.,

HN�
gs
N = Egs

N �
gs
N , �

gs
N ∈ HN

sym (1.7)

and

HN�ex
N = Eex

N �ex
N , �ex

N ∈ HN
sym, (1.8)

where Egs
N := inf spec(HN ) is the ground state energy and Eex

N denotes a suitable
excited eigenvalue of HN (see Definition 2.1). Due to the interactions between the
particles, these states are no product states but correlated. Consequently, the family
{Bj } j of one-body operators defines a family of (weakly) dependent random variables.
In fact, one can deduce from [4] that their covariance is

Cov�N [Bi , Bj ] := E�N [Bi B j ] − E�N [Bi ]E�N [Bj ] = O(N−1) (i �= j), (1.9)

where E�N [·] := 〈�N , ·�N 〉. Despite this dependence, the family {Bj } j satisfies a
LLN, which is comparable to the situation of i.i.d. random variables (see Sect. 3.2).
Moreover, one can prove a CLT (see, e.g., [1, 6, 28, 29]), which is a result of the formal
analogy of quasi-free states and Gaussian random variables. Due to the dependence
of the random variables {Bj }, the variance of the limiting Gaussian in the CLT is not
given by Varϕ[B] but differs by O(1) (see Sect. 3.3).1

In this work, we prove that the statistics of bounded one-body operators with respect
to the N -body ground state �

gs
N admit a weak Edgeworth expansion, which differs

from the expansion for the i.i.d. case due to the interactions. Moreover, we prove an
Edgeworth-type expansion for a class of low-energy excited states �ex

N .

1 Strictly speaking, this implies that the result is no (standard) CLT in the classical sense of probability
theory. However, this notion has been used in all previous works in the context of the Bose gas ( [1, 6, 28,
29]), and we use it here as well.
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1.1 Assumptions

It is well known that the ground state �
gs
N as well as the low-energy excited states �ex

N
of HN exhibit Bose–Einstein condensation (BEC), i.e.,

lim
N→∞TrHk

∣

∣

∣γ
(k)
N − |ϕ〉〈ϕ|⊗k

∣

∣

∣ = 0 (1.10)

for any k ≥ 0. Here, |ϕ〉〈ϕ| denotes the projector onto ϕ ∈ H, i.e., the operator with
integral kernel ϕ(x)ϕ(y), and γ

(k)
N denotes the k-particle reduced density matrix of

�N ∈ {�gs
N , �ex

N }, whose integral kernel is defined as

γ
(k)
N (x1, ..., xk; y1, ..., yk)
:=

∫

R(N−k)d
�N (x1, ..., xN )�N (y1, ..., yk, xk+1, ..., xN ) dxk+1···dxN . (1.11)

The condensate wave function ϕ is given by the minimizer of the Hartree energy
functional,

EH[φ] :=
∫

Rd

(

|∇φ(x)|2 + V (x)|φ(x)|2
)

dx + 1
2

∫

R2d

v(x − y)|φ(x)|2|φ(y)|2 dx dy,

(1.12)

for φ ∈ Q(−� + V ) under the mass constraint ‖φ‖H = 1. The minimizer ϕ solves
the stationary Hartree equation hϕ = 0 in the sense of distributions, where h is the
operator on D(h) = D(−� + V ) ⊂ H defined by

h := −� + V + v ∗ ϕ2 − μH, μH :=
〈

ϕ,
(

−� + V + v ∗ ϕ2
)

ϕ
〉

. (1.13)

The corresponding Hartree energy is denoted by:

eH := EH[ϕ]. (1.14)

We make the following assumptions on the interaction potential v and the trap V ,
which, in particular, ensure that ϕ is unique and can be chosen real-valued:

Assumption 1 Let V : Rd → R be measurable, locally bounded and nonnegative and
let V (x) tend to infinity as |x | → ∞, i.e.,

inf|x |>R
V (x) → ∞ as R → ∞. (1.15)

Assumption 2 Let v : Rd → R be measurable with v(−x) = v(x) and v �≡ 0, and
assume that there exists a constant C > 0 such that, in the sense of operators on
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Q(−�) = H1(Rd),

|v|2 ≤ C (1 − �) . (1.16)

Besides, assume that v is of positive type, i.e., that it has a nonnegative Fourier trans-
form.

Assumption 3 Assume that there exist constants C1 ≥ 0 and 0 < C2 ≤ 1, as well as
a function ε : N → R

+
0 with

lim
N→∞ N− 1

3 ε(N ) ≤ C1, (1.17)

such that

HN − NeH ≥ C2

N
∑

j=1

h j − ε(N ) (1.18)

in the sense of operators on D(HN ).

Assumption 1 ensures that V is a confining potential; an example is the harmonic
oscillator potential, V (x) = x2. Assumption 3 ensures that low-energy eigenstates of
HN exhibit complete BEC in the Hartree minimizer, with a sufficiently strong rate.
Assumptions 2 and 3 are, for example, satisfied by any bounded and positive-definite
interaction potential v, and by the repulsive three-dimensional Coulomb potential,
v(x) = 1/|x |.

Assumptions 1 to 3 are precisely the assumptions made in [4]. They ensure that we
can expand the low-energy eigenstates of HN and the corresponding energies in an
asymptotic series in 1/

√
N (see Sect. 2.3), which is crucial for deriving the Edgeworth

expansions.
Ourmain result holds for the ground state�

gs
N of HN and for a class of excited eigen-

states �ex
N ∈ C(η)

N . The set C(η)
N ⊂ HN

sym consists of all eigenstates �ex
N of HN where

HN�ex
N = Eex

N �ex
N such that Eex

N − NeH converges to a non-degenerate eigenvalue of
the Bogoliubov Hamiltonian, and where the corresponding Bogoliubov eigenstate is
a state with η quasi-particles (see Definition 2.1). In particular, the ground state �

gs
N

is contained in C(η)
N for η = 0.

1.2 Main result

We are interested in the statistics of the symmetrized operators
∑

j B j . After centering

around the expectation value, we rescale by dividing by
√
N . This scaling is chosen as

it is the size of the standard deviation of
∑

j B j , which follows from (1.9) and (1.10)
because

Var�N

⎡

⎣

N
∑

j=1

Bj

⎤

⎦ =
∑

1≤ j �=k≤N

Cov�N [Bj Bk] +
N
∑

j=1

Var�N [Bj ] = O(N ). (1.19)
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This leads to the random variable

BN := 1√
N

N
∑

j=1

(Bj − E�N [B]) (1.20)

for self-adjoint B ∈ L(H), where E�N denotes the expectation value of a random
variable with respect to the probability distribution determined by �N . Moreover, we
consider operators B such that the Hartree minimizer ϕ is not an eigenstate of B. This
is equivalent to the statement that the standard deviation σ of the limiting Gaussian
in the CLT (see our theorem below) is nonzero, see (3.12). Our main result is the
following:

Theorem 1 Let Assumptions 1 to 3 hold and let �N ∈ C(η)
N for some η ∈ N0, with

C(η)
N as in Definition 2.1. Let a ∈ N0 and g ∈ L1(R) such that its Fourier transform

ĝ ∈ L1(R, (1+|s|3a+4). Then, for any self-adjoint bounded operator B ∈ L(H) such
that the Hartree minimizer ϕ is not an eigenstate of B,

∣

∣

∣

∣

∣

∣

E�N [g(BN )] −
a
∑

j=0

N− j
2

∫

dx g(x)p j (x)
1√
2πσ 2

e− x2

2σ2

∣

∣

∣

∣

∣

∣

≤ CB(a, g)N− a+1
2

(1.21)

for σ as in (3.12). Here, the functions p j (x) are polynomials of finite degree with real
coefficients depending on B, V and v. The error can be estimated as

CB(a, g) ≤ C(a)
(

1 + ‖B‖3a+4
op

)

∫

R

ds |̂g(s)|
(

1 + |s|3a+3 + N− 1
2 |s|3a+4

)

(1.22)

for some C(a) > 0, where ‖·‖op denotes the operator norm on L(H).

(a) If �N = �
gs
N ∈ C(0)

N , then p
gs
j is a polynomial of degree 3 j which is even/odd for

j even/odd. In particular,

p
gs
0 (x) = 1, (1.23a)

p
gs
1 (x) = α3

6σ 3 H3

( x

σ

)

, (1.23b)

with α3 as in (4.25) and where H3 is the third Hermite polynomial (see (3.26)).
(b) If �N = �ex

N ∈ C(η)
N for some η > 0, then pexj is a polynomial of degree 3 j + 2η

which is even/odd for j even/odd. The leading order pex0 is computed in Proposi-
tion 4.7.

Remark 1.1 Theorem 1 implies a quantitative version of the CLT for the ground state
with improved rate. Following the proof of [6, Corollary 1.2], we approximate the
characteristic function χ[α,β] for some α, β ∈ R from below and above by some
smooth and compactly supported functions gε− and gε+. For ε > 0, we define these
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functions as gε± := χ[α∓ε,β±ε] ∗ζε for ζε(x) = ε−1ζ(x/ε), where ζ ∈ C∞
c (R) is some

nonnegative function such that ζ(x) = 0 for |x | > 1 and
∫

R
ζ = 1. Consequently,

E�
gs
N
[gε−(BN )] ≤ P�

gs
N
(BN ∈ [α, β]) ≤ E�

gs
N
[gε+(BN )]. (1.24)

Analogously to [6], one obtains the estimate |̂gε±(s)| ≤ C |̂ζ (εs)|min{|s|−1, |β − α|}
for some constant C > 0, hence Theorem 1 leads (for any a ∈ N0) to

∣

∣

∣

∣
E�

gs
N

[

gε±(BN )
] −

∫

gε±(x)ba(x) dx

∣

∣

∣

∣
≤ C(a

(

N− a+1
2 ε−(3a+3) + N− a+2

2 ε−(3a+4)
)

,

(1.25)

where the constant C depends on B, α and β and where we abbreviated

ba(x) :=
a
∑

j=0

N− j
2 p

gs
j (x)

1√
2πσ 2

e− x2

2σ2 . (1.26)

Since | ∫
R
gε±ba − ∫ β

α
ba(x)| ≤ Cε, this yields

∣

∣

∣

∣
P�

gs
N
(BN ∈ [α, β]) −

∫ β

α

ba(x) dx

∣

∣

∣

∣
≤ C(a)

(

ε + N− a+1
2 ε−(3a+3) + N− a+2

2 ε−(3a+4)
)

.

(1.27)

The right-hand side of (1.27) is minimal for ε = N− a+1
6a+8 , which, in particular, implies

that it is always larger than N− 1
6 . Consequently, choosing a sufficiently large yields

∣

∣

∣

∣
P�

gs
N
(BN ∈ [α, β]) − 1√

2πσ 2

∫ β

α

e− x2

2σ2 dx

∣

∣

∣

∣
≤ Cγ N

−γ for any γ <
1

6
. (1.28)

This improves the previous estimate N−1/8, which follows analogously to [29] by
taking into account only the leading order a = 0.

Remark 1.2 Theorem 1 constitutes a weak Edgeworth expansion as introduced in [5,
11, 14]. In particular, our result does not imply an asymptotic expansion of the prob-
ability P�N (BN ∈ [α, β]). The reason why we can only state our result in this weak
form is that our error estimate when truncating the expansion of the characteristic
function E�N [eisBN ] grows polynomially in s (Proposition 4.4). Hence, we cannot
simply apply the Fourier transform to obtain an expansion of the probability density.
It is an open question whether a strong Edgeworth expansion exists, i.e., whether there
exist constants Ca such that

∣

∣

∣

∣

∣

∣

P�
gs
N

(BN ∈ [α, β]) −
β
∫

α

a
∑

j=0

N− j
2
p j (x)√
2πσ

e− x2

2σ2 dx

∣

∣

∣

∣

∣

∣

(?)≤ CaN
− a+1

2 . (1.29)
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If the N -body system is in its ground state �
gs
N , Theorem 1 implies that BN admits

a weak Edgeworth expansion although the random variables are not independent.
However, the interactions affect the precise form of the Edgeworth series: the standard
deviation σ of the Gaussian as well as the polynomials pgsj differ from the expansion
for the non-interacting Bose gas (see Sects. 3.5 and 3.6 for a detailed discussion). To
prove Theorem 1, we expand the characteristic function

φ
gs
N (s) :=

〈

�
gs
N , eisBN �

gs
N

〉

in powers of N−1/2. To leading order, φ
gs
N (s) is given by the expectation value of a

Weyl operator with respect to a quasi-free state. Quasi-free states satisfy a Wick rule
comparable to Wick’s probability theorem for Gaussian random variables, and this
formal analogy is the reason why we obtain a CLT for the ground state. Technically,
we use an equivalent formulation of Wick’s rule, namely the fact that a quasi-free
state is a Bogoliubov transformation of the vacuum. This allows us to reduce the
computation of φ

gs
N (s) to the computation of vacuum expectation values, which are

nonzero only if they contain equal numbers of creation and annihilation operators.
For low-energy excited states, the leading order of the corresponding characteristic

function φex
N (s) is no longer given by an expectation value with respect to a quasi-

free state, but rather a state with a finite number of creation/annihilation operators
acting on a quasi-free state. Consequently, the limiting distribution is not a Gaussian
but a Gaussian multiplied with a polynomial. One still obtains an Edgeworth-type
expansion, but each order of the distribution is now the Gaussian times a (different)
polynomial.

Theorem 1 is, to the best of our knowledge, the first derivation of an Edgeworth
expansion for an interacting quantum many-body system. Asymptotic expansions for
(weakly) dependent randomvariables have been derived in [18, 23, 24] forMarkovpro-
cesses, in [14] for stochastic processes, which are approximated by a suitable Markov
process, and in [7] in the context of dynamical systems. In [11], the authors prove
the existence of Edgeworth expansions for weakly dependent random variables under
fairly generic conditions, which includes random variables arising from dynamical
systems and Markov chains but excludes our model2.

As discussed in Sect. 3.5 for the i.i.d. situation, Theorem 1 yields a very precise
description in the center of the distribution. In contrast, it does not generally provide
a good approximation of the tails of the distribution. For the dynamics generated by
HN , large deviation estimates have been proven in [20, 30].

We expect that Theorem 1 can be generalized to all situations where the N -body
wave function admits an (explicitly known) asymptotic expansion in the spirit of
Lemma 2.2. For example, it seems obvious that a dynamical Edgeworth expansion

2 In [11], the authors consider a Banach space B and assume that the characteristic function is of the
form φN (s) = �(LN

s v), where Ls : B → B is a family of bounded linear operators and where v ∈ B,
� ∈ B′. Applied to our setting, we would identify v with the ground state �N , and � with the projection on
the ground state. However, eisBN is not of the form LN

s for some N -independent Ls . Even if we would

introduce Ls = eis
1
N BN , this operator would not satisfy the assumptions made in [11], which include that

the spectrum of Ls is contained in the open disc of radius 1 for all s �= 0, and that ‖LN
s ‖ ≤ 1

Nr2 for some
r2 > 0.
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should exist, which provides corrections to [1]; moreover, generalizations to k-body
operators as in [28] and to k one-body operators as in [6] seem feasible.

The remainder of the article is structured as follows: In Sect. 2, we summarize the
quantum many-body framework and collect known results for the mean-field Bose
gas, which we require for the proof. Section3 is a review of the probabilistic picture,
including existing results on the CLT for the interacting Bose gas. In particular, we
analyze the effect of the interactions on the Edgeworth series (Sects. 3.5 and 3.6).
Finally, Sect. 4 contains the proof of Theorem 1.

2 Many-body framework

2.1 Excitations from the condensate

We consider N -body states � which exhibit complete BEC in the Hartree minimizer
ϕ in the sense of (1.10). However, this does in general not imply that � = ϕ⊗N ;
in fact, an O(1) fraction of the particles forms excitations from the condensate. To
describe them mathematically, one recalls, e.g. from [22], that any � ∈ HN

sym can be
decomposed as

� =
N
∑

k=0

ϕ⊗(N−k) ⊗sym χ(k), χ(k) ∈
k

⊗

sym

{ϕ}⊥ , (2.1)

with the usual notation {ϕ}⊥ := {φ ∈ H : 〈φ, ϕ〉 = 0}. The sequence

χ := (

χ(k))N
k=0 (2.2)

of k-particle excitations forms a vector in the (truncated) excitation Fock space over
{ϕ}⊥,

F≤N
⊥ =

N
⊕

k=0

k
⊗

sym

{ϕ}⊥ ⊂ F⊥ =
∞
⊕

k=0

k
⊗

sym

{ϕ}⊥ , (2.3)

and vectors in F⊥ (resp. F≤N
⊥ ) are denoted as φ (resp. φ≤N ). The creation and anni-

hilation operators on F⊥, a†( f ) and a( f ) for f ∈ {ϕ}⊥, are defined in the usual way
as

(a†( f )φ)(k)(x1, ..., xk) = 1√
k

k
∑

j=1

f (x j )φ
(k−1)(x1, ..., x j−1, x j+1, ..., xk) , (2.4a)

(a( f )φ)(k)(x1, ..., xk) = √
k + 1

∫

dx f (x)φ(k+1)(x1, ..., xk, x) (2.4b)
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for k ≥ 1 and k ≥ 0, respectively, and φ ∈ F⊥. They can be expressed in terms of the
operator-valued distributions a†x and ax ,

a†( f ) =
∫

dx f (x) a†x , a( f ) =
∫

dx f (x) ax , (2.5)

which satisfy the canonical commutation relations

[ax , a†y] = δ(x − y), [ax , ay] = [a†x , a†y] = 0. (2.6)

We denote the second quantization inF⊥ (resp.F) of an operator A by d�⊥(A) (resp.
d�(A)). The vacuum is denoted by |�〉 and the number operator on F⊥ is given by

N⊥ := d�⊥(1), (N⊥φ)(k) = kφ(k) for φ ∈ F⊥. (2.7)

An N -body state� ismapped onto its corresponding excitation vectorχ by the unitary
excitation map UN ,ϕ

UN ,ϕ : HN → F≤N
⊥ , � �→ UN ,ϕ� = χ , (2.8)

introduced in [22]. For f , g ∈ {ϕ}⊥, it acts as

UN ,ϕ a
†(ϕ)a(ϕ)U∗

N ,ϕ = N − N⊥, (2.9a)

UN ,ϕ a
†( f )a(ϕ)U∗

N ,ϕ = a†( f )
√

N − N⊥, (2.9b)

UN ,ϕ a
†(ϕ)a(g)U∗

N ,ϕ = √

N − N⊥a(g), (2.9c)

UN ,ϕ a
†( f )a(g)U∗

N ,ϕ = a†( f )a(g) (2.9d)

as identities on F≤N
⊥ . We extend UN ,ϕ trivially to a map to the full space F⊥. Analo-

gously, elements of F≤N
⊥ are naturally understood as elements of F⊥.

2.2 Bogoliubov theory

It was shown in [4] that the low-energy eigenstates of HN can be retrieved by pertur-
bation theory around the eigenstates of the Bogoliubov Hamiltonian, which is given
by

H0 := K0 + K1 + K2 + K
∗
2. (2.10)

Here,

K0 :=
∫

dx a†xhxax , (2.11a)

K1 :=
∫

dx1 dx2 (qKq)(x1; x2)a†x1ax2 , (2.11b)
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K2 := 1
2

∫

dx1 dx2 (q1q2K )(x1, x2)a
†
x1a

†
x2 , (2.11c)

for h from (1.13), where K is the operator with kernel

K (x; y) = v(x − y)ϕ(x)ϕ(y) (2.12)

and where we used the orthogonal projectors

p := |ϕ〉〈ϕ|, q := 1 − p (2.13)

onto the condensate and its complement.

2.2.1 Bogoliubov transformations

The Bogoliubov HamiltonianH0 can be diagonalized by Bogoliubov transformations
(see, e.g., [32]), which are defined as follows: For F = f ⊕ g ∈ {ϕ}⊥ ⊕ {ϕ}⊥, one
defines the generalized creation and annihilation operators A(F) and A†(F) as

A(F) = a( f ) + a†(g), A†(F) = A(J F) = a†( f ) + a(g), (2.14)

where J = (

0 J
J 0

)

with (J f )(x) = f (x). An operator V on {ϕ}⊥ ⊕ {ϕ}⊥ such that

A†(VF) = A(VJ F), [A(VF1), A
†(VF2)] = [A(F1), A

†(F2)], (2.15)

is called a (bosonic) Bogoliubov map. It can be written in the block form

V :=
(

U V
V U

)

, U , V : {ϕ}⊥ → {ϕ}⊥, (2.16)

whereU and V denote the operatorswith integral kernelsU (x, y) and V (x, y), respec-
tively. If V is Hilbert–Schmidt, V is unitarily implementable on F⊥, i.e., there exists
a unitary transformation UV : F⊥ → F⊥, called a Bogoliubov transformation, such
that

UV A(F)U∗
V = A(VF). (2.17)

The identity (2.14) leads to a transformation rule of creation/annihilation operators
under a Bogoliubov transformation,

UV a( f )U∗
V = a(U f ) + a†(V f ),

UV a†( f )U∗
V = a(V f ) + a†(U f )

(2.18)

for f ∈ {ϕ}⊥. In particular, powers of N⊥ conjugated with UV can be bound as

UV (N⊥ + 1)bU∗
V ≤ Cb

V bb(N⊥ + 1)b (b ∈ N) (2.19)
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in the sense of operators on F⊥, where CV := 2‖V ‖2HS + ‖U‖2op + 1 [3, Lemma 4.4].

2.2.2 Quasi-free states

Finally, we recall that a normalized state φ ∈ F⊥ is called quasi-free if there exists a
Bogoliubov transformation UV such that

φ = UV |�〉. (2.20)

Quasi-free states satisfyWick’s rule (e.g., [25, Theorem 1.6]: for� quasi-free, it holds
that

〈

φ, a�( f1)···a�( f2n−1)φ
〉

F⊥ = 0 , (2.21a)

〈

φ, a�( f1)···a�( f2n)φ
〉

F⊥ =
∑

σ∈P2n

n
∏

j=1

〈

φ, a�( fσ(2 j−1))a
�( fσ(2 j))φ

〉

F⊥ (2.21b)

for a� ∈ {a†, a}, n ∈ N and f1, ..., f2n ∈ {ϕ}⊥. Here, P2n denotes the set of pairings

P2n := {σ ∈ S2n : σ(2a − 1) < min{σ(2a), σ (2a + 1)} ∀a ∈ {1, 2, ..., 2n}},
(2.22)

where S2n denotes the symmetric group on the set {1, 2, ..., 2n}.

2.2.3 Eigenstates ofH0

We denote by UV0 : F⊥ → F⊥ the Bogoliubov transformation that diagonalizes H0,
i.e.,

UV0H0U
∗
V0

= d�⊥(D) + inf σ(H0), (2.23)

where D > 0 is a self-adjoint operator on {ϕ}⊥. It admits a complete set of normalized
eigenfunctions, denoted as {ξ j } j≥0. The ground state χ

gs
0 of H0 is unique and given

by

χ
gs
0 = U

∗
V0

|�〉. (2.24)

Any non-degenerate excited eigenstate χex
0 of H0 can be expressed as

χex
0 = U

∗
V0

(

a†(ξ0)
)η0

√
η0!

(

a†(ξ1)
)η1

√
η1! ···

(

a†(ξk)
)ηk

√
ηk ! |�〉 (2.25)

123



Weak Edgeworth expansion for the… Page 13 of 38 77

for some k ∈ N0 and some tuple (η0, ..., ηk) ∈ N
k+1
0 . Finally, the Bogoliubov map

corresponding to UV0 is denoted by

V0 =
(

U0 V 0

V0 U 0

)

. (2.26)

2.3 Low-energy eigenstates of HN

Assumptions 1 to 3 ensure that HN has a unique ground state and a discrete low-energy
spectrum. We will consider the following class of eigenstates of HN :

Definition 2.1 Let η ∈ N0. Then �N ∈ HN
sym is an element of the set C(η)

N iff all of the
following are satisfied:

(a) �N is an eigenstate of HN , i.e., HN�N = EN�N .
(b) There exists a non-degenerate Bogoliubov eigenstate, H0χ0 = E0χ0, such that

lim
N→∞ (EN − NeH) = E0.

(c) χ0 is a statewithη quasi-particles, i.e., it is given by (2.25)withη0+η1+· · ·+ηk =
η.

In particular,

�
gs
N ∈ C(0)

N , (2.27)

i.e., the ground state is contained in the set C(η)
N with zero quasi-particles.

To keep the notation simple, wewill indicate the quasi-particle number η only when
it is inevitable to avoid ambiguities. If �N ∈ C(η)

N for some η ∈ N0, it was shown in
[4, Theorem 3] that χ = UN ,ϕ� admits an asymptotic expansion in the parameter
(N − 1)−1/2, namely

∥

∥

∥

∥

∥

χ −
a
∑

�=0

(N − 1)−
�
2 χ̃�

∥

∥

∥

∥

∥

≤ C(a)(N − 1)−
a+1
2 (2.28)

for some constant C(a) > 0 and for coefficients χ̃� ∈ F⊥ given in [4, Theorem 3,
Eqn. (3.26)].

For the proof of Theorem 1, it is more convenient to have a full expansion of these
states in powers of N−1/2 instead of (N − 1)−1/2, which can be deduced from the
results in [4] in a straightforward way.

Lemma 2.2 Let Assumptions 1 to 3 hold, let �N ∈ C(η)
N for some η ∈ N0 and denote

the corresponding excitation vector by χ = UN ,ϕ�.
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(a) For any a ∈ N0, there exists a constant C(a) > 0 such that

∥

∥

∥

∥

∥

χ −
a
∑

�=0

N− �
2 χ�

∥

∥

∥

∥

∥

≤ C(a)N− a+1
2 , (2.29)

where

χ� = U
∗
V0

3�+η
∑

j=0
�+η+ j even

∫

dx ( j)�
(η)
�, j (x

( j))a†x1···a†x j |�〉 (2.30)

for some functions �
(η)
�, j ∈ L2

sym(Rd j ).
(b) For any �, b ∈ N, there exists a constant C(�, b) such that

‖(N⊥ + 1)bχ�‖ ≤ C(�, b). (2.31)

(c) Let B ∈ L(H). For any a ∈ N0, there exists some constant C(a) > 0 such that

∣

∣

∣

∣

∣

〈�N , B1�N 〉 −
a
∑

�=0

N−�B(�)

∣

∣

∣

∣

∣

≤ C(a)‖B‖opN−(a+1), (2.32)

where the coefficients

B(�) :=
�
∑

k=1

(
�−1
�−k

)

Trγ1,k B ∈ R (2.33)

can be bounded as

|B(�)| ≤ C(�)‖B‖op (2.34)

for some constants C(�) > 0. In particular, B(0) = 〈ϕ, Bϕ〉, and

B(1) =
〈

χ0,
(

a†(qBϕ) + a(qBϕ)
)

χ1

〉

+
〈

χ1,
(

a†(qBϕ) + a(qBϕ)
)

χ0

〉

+ 〈

χ0, d�(q˜Bq)χ0
〉

. (2.35)

The functions �
(η)
�, j can be computed using perturbation theory, and we refer to [4]

for the explicit expressions. In a similar way, one obtains explicit expressions for B(�);
see [2].
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3 Probabilistic picture

To illustrate the effect of the interactions, we compare in this section the random
variables with probability distribution determined by �N ∈ C(η)

N (for some η ∈ N0)
with the random variables distributed according to the product state

� iid
N := ϕ⊗N . (3.1)

To underline differences between the ground state �
gs
N ∈ C(0)

N and excited states

�ex
N ∈ C(η)

N for η > 0, we will indicate this in the notation by using the superscripts gs

and ex when appropriate.

3.1 Random variables

A self-adjoint one-body operator B ∈ L(H) defines a family {Bj }Nj=1 of random vari-
ables with common probability distribution determined by the N -body wave function
�N . For � iid

N , the random variables are i.i.d., and the expectation value Eϕ[B], the
variance Varϕ[B] and the standard deviation σiid are given by

Eϕ[B] = 〈ϕ, Bϕ〉 , Varϕ[B] = σ 2
iid =

〈

ϕ, B2ϕ
〉

− 〈ϕ, Bϕ〉2 . (3.2)

For an eigenstate �N ∈ C(η)
N of HN , the random variables are no longer independent,

and the corresponding quantities E�N [B], Var�N [B] and σN can be computed as

E�N [B] = 1

N

N
∑

j=1

〈

�N , Bj�N
〉 = 〈�N , B1�N 〉 , (3.3)

Var�N [B] = σ 2
N =

〈

�N , B2
1�N

〉

− 〈�N , B1�N 〉2 (3.4)

due to the bosonic symmetry (1.1) of �N . Note that by (1.10),

lim
N→∞E�N [B] = Eϕ[B], lim

N→∞Var�N [B] = Varϕ[B]. (3.5)

3.2 Law of large numbers

For the product state � iid
N , the weak LLN states that the empiric mean converges to its

expectation value, i.e.,

lim
N→∞P� iid

N

⎛

⎝

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

Bj − 〈ϕ, Bϕ〉
∣

∣

∣

∣

∣

∣

≥ ε

⎞

⎠ = 0 (3.6)
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for any ε > 0. Abbreviating ˜B := B − 〈ϕ, Bϕ〉, Markov’s inequality yields for the
interacting gas (see, e.g., [1, Sec. 1])

P�N

⎛

⎝

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

˜Bj

∣

∣

∣

∣

∣

∣

≥ ε

⎞

⎠ ≤ 1

N 2ε2

〈

�N ,
(

N
∑

j=1

˜Bj

)2
�N

〉

≤ ε−2 〈�N , ˜B1˜B2�N
〉 + N−1ε−2

〈

�N , ˜B2
1�N

〉

, (3.7)

hence (1.10) yields

lim
N→∞P�N

⎛

⎝

∣

∣

∣

∣

∣

∣

1

N

N
∑

j=1

Bj − 〈ϕ, Bϕ〉
∣

∣

∣

∣

∣

∣

≥ ε

⎞

⎠ = 0. (3.8)

The LLN for �N looks formally like the LLN for independent random variables. Let
us stress that � iid

N is not the ground state of the ideal gas because ϕ is the minimizer
of the Hartree energy functional, which depends on the interactions. In this sense, the
interactions have an effect already on the level of the LLN.

3.3 Central limit theorem for the ground state

Let us first compare the ground state �
gs
N of the interacting gas with the product state

� iid
N . The fluctuations around the respective expectation values are described by the

rescaled and centered random variables

Biid
N := 1√

N

N
∑

j=1

(

Bj − Eϕ[B]) , BN = 1√
N

N
∑

j=1

(

Bj − E�N [B]) . (3.9)

For the i.i.d. situation, the CLT states that the distribution of Biid
N converges to the

centered Gaussian distribution with variance σ 2
iid, i.e.,

lim
N→∞

∣

∣

∣

∣

∣

∣

P� iid
N

(Biid
N ∈ A) − 1

√

2πσ 2
iid

∫

A
e
− x2

2σ2iid dx

∣

∣

∣

∣

∣

∣

= 0. (3.10)

By the Berry–Esséen theorem, the error in (3.10) is of the order O(1/
√
N ).

Obtaining a comparable statement for the interacting Bose gas has been the content
of several works. For our model, one can show along the lines of [29] that

lim
N→∞

∣

∣

∣

∣
P�

gs
N
(BN ∈ A) − 1√

2πσ 2

∫

A
e− x2

2σ2 dx

∣

∣

∣

∣
= 0 (3.11)
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for

σ := ‖ν‖, ν := U0qBϕ + V0qBϕ, (3.12)

for U0 and V0 from (2.26) and q as in (2.13). In general, σ and σN differ by an error
of order O(1). Hence, the interactions have a visible effect on the level of the CLT:
they change the variance of the limiting Gaussian random variable.

The simplest way to understand this effect is via the characteristic functions of the
random variables Biid

N and BN , which are given by:

φiid
N (s) :=

〈

ϕ⊗N , eisBiid
N ϕ⊗N

〉

=
〈

ϕ, e
is√
N

(B−〈ϕ,Bϕ〉)
ϕ

〉N

(3.13)

for the ideal gas, and by

φ
gs
N (s) :=

〈

�
gs
N , eiBN s�

gs
N

〉

(3.14)

for the interacting gas. To compute the inner products in (3.13) and (3.14), one applies
themapUN ,ϕ from (2.8) to the N -body states ϕ⊗N and�N . Since ϕ⊗N is the pure con-
densate, UN ,ϕ maps ϕ⊗N onto the vacuum |�〉 of the excitation Fock space, whereas
UN ,ϕ�

gs
N = U

∗
V0

|�〉 + O(N−1/2) (see Lemma 2.2). Conjugating BN with UN ,ϕ and,
for the interacting gas case, with UV0 , leads to the identities

φiid
N (s) =

〈

�, ea
†(isqBϕ)−a(isqBϕ)�

〉

+ O(N− 1
2 ) = e− 1

2 ‖qBϕ‖2s2 + O(N− 1
2 ),

(3.15)

φ
gs
N (s) =

〈

�,UV0e
a†(isqBϕ)−a(isqBϕ)

U
∗
V0

�
〉

+ O(N− 1
2 ) = e− 1

2 σ 2s2 + O(N− 1
2 )

(3.16)

(see Sect. 4.2 for the details). Since

‖qBϕ‖2 = 〈ϕ, B(1 − |ϕ〉〈ϕ|)Bϕ〉 = σ 2
iid, (3.17)

the inverse Fourier transform leads to the Gaussian probability densities as in (3.10)
and (3.11).

The mathematical derivation of quantum central limit theorems has first been stud-
ied in the 1970s in [9, 17] and was followed by many works in different settings, e.g.,
[8, 13, 16, 19, 21, 33]. For the ground state of an interacting N -body system, (3.11)
was proven in [29] for interactions in the Gross–Pitaevskii regime. For the mean-field
Bose gas, the corresponding dynamical problem was first studied in [1], where the
authors consider the time evolution generated by HN of an initial product state. This
was generalized in [6] to k one-body operators (corresponding to a multivariate set-
ting), in [27] to singular interactions, and in [28] to k-body operators (corresponding
to m-dependent random variables).
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3.4 No Gaussian central limit theorem for low-energy eigenstates

So far, we have considered the situation where the interacting Bose gas is in its ground
state. If, instead, it is in a low-energy eigenstate �ex

N ∈ C(η)
N for η > 0, the limiting

distribution of the fluctuations is not Gaussian. For example, if the first excited state
�

(1)
N is contained in C(1)

N , it satisfiesUN ,ϕ�
(1)
N = U

∗
V0
a†(ξ)|�〉+O(N−1/2) for some

normalized ξ ∈ H (see Lemma 2.2a). In this case, we find that

lim
N→∞

∣

∣

∣

∣
P

�
(1)
N

(BN ∈ A) −
∫

A
b(1)∞ (x) dx

∣

∣

∣

∣
= 0, (3.18)

where

b(1)∞ (x) :=
(

1 + | 〈ξ, ν〉 |2
σ 2

(

x2

σ 2 − 1

))

1√
2πσ 2

e− x2

2σ2 (3.19)

(see also [29, Appendix A]). The general case with n excitations is treated in Propo-
sition 4.7.

3.5 Edgeworth expansion for the product state

For the case of i.i.d. random variables, one can go beyond the order N−1/2 of the
CLT and approximate the probability distribution of Biid

N in an Edgeworth series, i.e.,
in a power series in powers of N−1/2, which is determined by the cumulants of the
distribution. We follow the discussion from [12, Chapter 2]. The �’th cumulant of the
distribution of Biid

N is defined as:

κ�[Biid
N ] := (−i)�

( d
ds

)�
ln φiid

N (s)
∣

∣

∣

s=0
(3.20)

for � ∈ N, and one easily verifies that

κ�[Biid
N ] = N 1− �

2 κ�[˜B], (3.21)

where we abbreviated

˜B := B − 〈ϕ, Bϕ〉 . (3.22)

The first three cumulants coincide with the first three central moments; in particular,

κ1[˜B] = Eϕ[˜B] = 0, κ2[˜B] = Varϕ[˜B] = σ 2
iid. (3.23)

The basic idea of the Edgeworth series is to expand φiid
N around the characteristic

function exp(−s2σ 2
iid/2) of the corresponding Gaussian random variable. Since the

123



Weak Edgeworth expansion for the… Page 19 of 38 77

�’th cumulant is the �’th coefficient in the Taylor expansion of ln φiid
N (s) around zero,

one (formally) computes with (3.23)

φiid
N (s) = eln φiid

N (s)+ 1
2 s

2σ 2
iid e− 1

2 s
2σ 2

iid

= exp

⎧

⎨

⎩

∑

�≥3

N− �
2+1 κ�[˜B](is)�

�!

⎫

⎬

⎭

e− 1
2 s

2σ 2
iid

=
(

1 + N− 1
2
κ3(is)3

3! + N−1

(

κ4(is)4

4! + κ2
3 (is)6

2 · (3!)2
)

+ . . .

)

e− 1
2 s

2σ 2
iid , (3.24)

where we abbreviated κ� := κ�[˜B]. Applying the inverse Fourier transform leads to a
series expansion for the probability density biidN of the random variable Biid

N ,

biidN (x) =
(

1 + N− 1
2

κ3

6 σ 3
iid

H3

(

x
σiid

)

+N−1

(

κ4

24 σ 4
iid

H4

(

x
σiid

)

+ κ2
3

72 σ 6
iid

H6

(

x
σiid

)

)

+ . . .

)

1√
2πσiid

e
− x2

2σ2iid ,

(3.25)

where

H�(x) := e
x2
2
(− d

dx

)�
e− x2

2 (3.26)

are the (Chebyshev-)Hermite polynomials, for example

H2(x) = x2 − 1, (3.27a)

H3(x) = x3 − 3x, (3.27b)

H4(x) = x4 − 6x2 + 3, (3.27c)

H6(x) = x6 − 15x4 + 45x2 − 15. (3.27d)

The functions Hj are polynomials of degree j which are even/odd for j even/odd.
The complete (formal) Edgeworth expansion is given by the formula:

biidN (x) =
⎛

⎝1 +
∑

�≥1

N− �
2 piid� (x)

⎞

⎠

1√
2πσiid

e
− x2

2σ2iid (3.28)

with

piid� (x) =
�
∑

m=1

H�+2m

(

x
σ iid

)

σ�+2m
iid m!

∑

j∈Nm

| j |=�

m
∏

n=1

κ jn+2

( jn + 2)! . (3.29)
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The �’th Edgeworth polynomial piid� is a polynomial of degree 3�, which is even/odd for
� even/odd andwhose coefficients depend on the cumulants of ˜B of order up to �+2. If
the expansion is truncated after finitely many terms, the right-hand side of (3.28) is in
general no probability density since it may become negative for large values of |x | and
is not necessarily normalized. The Edgeworth expansion is thus a local approximation,
which is good in the center of the distribution but can be inaccurate in the tails.

The expansion (3.28)was first formally derived byChebyshev and Edgeworth in the
end of the twentieth century, and the first proof is due to Cramér. Under the assumption
that all relevant moments of the distribution exist, the rigorous statement is usually
formulated as an asymptotic expansion of the cumulative distribution function or the
probability density, with an error that is uniform in x , i.e.,

biidN (x) −
(

1 +
a
∑

�=1

N− �
2 piid� (x)

)

1√
2πσiid

e
− x2

2σ2iid = O
(

N− a
2

)

(3.30)

(see, e.g., [10, 12, 15, 26, 34] and the references therein). In general, one cannot
take the limit a → ∞ since the series does usually not converge. Generalizations of
Edgeworth expansions for i.i.d. random variables, for example to different statistics,
the multivariate case or the situation when the leading order is not Gaussian, can be
found in the literature mentioned above.

3.6 Edgeworth expansion for the interacting gas

Let us consider the ground state �
gs
N of the interacting gas. Due to the dependence of

the random variables, this situation is much more intricate than for the product state.
In Theorem 1, we prove that the probability density bN of the random variable BN

with probability distribution determined by �N is given by:

bN (x) =
⎛

⎝1 +
a
∑

j=1

N− j
2 p j (x)

⎞

⎠

1√
2πσ 2

e− x2

2σ2 + O(N− a+1
2 ) (3.31)

in the weak sense of (1.21). Let us provide a formal derivation of this result. As a
consequence of the interactions, the cumulants

κ
gs
� [BN ] := (−i dds )

� ln φ
gs
N (s)

∣

∣

s=0 = (−i dds )
� ln

〈

�
gs
N , eiBN s�

gs
N

〉
∣

∣

s=0 (3.32)

do not have the cumulative property that would lead to the exact scaling behavior
(3.21). Instead, each cumulant κgs

� [BN ] has a series expansion in powers of 1/N , for
example

κ
gs
2 [BN ] = κ2;0 + N−1κ2;1 + N−2κ2;2 + . . . , (3.33a)

κ
gs
3 [BN ] = N− 1

2 κ3;0 + N− 3
2 κ3;1 + N− 5

2 κ3;2 + . . . , (3.33b)

κ
gs
4 [BN ] = N−1κ4;0 + N−2κ4;1 + N−3κ4;2 + . . . (3.33c)
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with

κ2;0 = σ 2, κ3;0 = α3 (3.34)

for σ as in (3.12) and α3 as in (4.25). Note that the leading order of κ
gs
� [BN ] for

� = 2, 3, 4 is N−�/2+1, which is the scaling behavior of the corresponding cumulant
in the i.i.d. case. Moreover, only even/odd powers of N−1/2 contribute for � even/odd.

Proving (3.33) in full generality for each � ≥ 2 would be extremely tedious, which
is why we refrain from following that route for a proof of Theorem 1. Assuming one
could prove the (formal) identity

κ
gs
� [BN ] =

∑

ν≥0

N− �
2−ν+1κ�;ν (3.35)

for each � ≥ 2, a computation along the lines of (3.24) (formally) yields

bN (x) =
(

1 + N− 1
2

α3

6 σ 3 H3
( x

σ

)

+ N−1

(

1

2σ
H2(

x
σ
) + κ4;0

24 σ 4 H4
( x

σ

)+ κ2
3;0

72 σ 6 H6
( x

σ

)

)

+. . .

)

1√
2πσ

e− x2

2σ2 ,

(3.36)

which is consistent with the rigorous result obtained in Theorem 1.

4 Proofs

4.1 Preliminaries

4.1.1 Weyl operators

As a preparation, we recall in this section the concept ofWeyl operators (see, e.g., [31])
and collect some of their well-known properties. For any f ∈ H, the Weyl operator is
defined as

W ( f ) := ea
†( f )−a( f ). (4.1)

It is unitary with W ∗( f ) = W (− f ) and satisfies the shift property

W ∗( f )a(g)W ( f ) = a(g) + 〈g, f 〉 , W ∗( f )a†(g)W ( f ) = a†(g) + 〈 f , g〉 (4.2)

for all f , g ∈ H. Conjugation with a Bogoliubov transformation UV , V =
(

U V
V U

)

,

transforms a Weyl operator into another Weyl operator as

UVW ( f )U∗
V = W (g), g := U f − V f . (4.3)
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The Baker–Campbell–Haussdorff formula yields

W ( f ) = ea
†( f )e−a( f )e− 1

2 ‖ f ‖2 , (4.4)

which leads to the identity

〈�,W ( f )�〉 = e− 1
2 ‖ f ‖2 . (4.5)

The number operator transforms under a Weyl operator as

N⊥W ( f ) = W ( f )
(

N⊥ + a†( f ) + a( f ) + ‖ f ‖2
)

, (4.6)

which leads to the following result:

Lemma 4.1 Let b ∈ 1
2N0 and f ∈ H. Then, there exists a constant C(b) such that

‖(N⊥ + 1)bW ( f )ξ‖ ≤ C(b)
(

‖(N⊥ + 1)bξ‖ + ‖ f ‖2b‖ξ‖
)

(4.7)

for any ξ ∈ F .

Proof By unitarity of the Weyl operator,

‖(N⊥ + 1)bW ( f )ξ‖ = ‖(N⊥ + 1 + a†( f ) + a( f ) + ‖ f ‖2)bξ‖
≤ C(b)

(

‖(N⊥ + 1)bξ‖ + ‖ f ‖2b‖ξ‖
)

(4.8)

where we used the estimate ‖a�( f )ξ‖ ≤ ‖ f ‖‖(N⊥ + 1)
1
2 ξ‖ for a� ∈ {a†, a}. ��

4.2 Strategy of proof

In this section, we give an overview of the proof of our main result, Theorem 1. We
will in the following always assume that Assumptions 1 to 3 are satisfied and that
�N ∈ C(η)

N for some η ∈ N0 (see Definition 2.1). Moreover, we will use the notation
χ = UN ,ϕ� and denote by χn the coefficients of the asymptotic expansion (2.29). As
above, we will only indicate the dependence on η in the notation where it is inevitable.
Our goal is to compute the quantity

E�N [g(BN )] = 〈�N , g(BN )�N 〉 =
∫

R

ds ĝ(s)φN (s) (4.9)

with

φN (s) =
〈

�N , eisBN �N

〉

(4.10)
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for BN as in (3.9) and g : R → C some integrable and sufficiently regular function.
As a first step, we use the excitation mapUN ,ϕ from (2.8) to re-write the characteristic
function as:

φN (s) =
〈

χ , eisBχ
〉

, (4.11)

where B denotes the operator on F defined by

B := UN ,ϕBNU
∗
N ,ϕ. (4.12)

Applying the substitution rules (2.9) and expanding the square roots
√
1 − N⊥/N in

N−1 leads to the following asymptotic expansion (see Sect. 4.3.1 for the proof):

Lemma 4.2 We have

B =
a
∑

�=0

N− �
2B� + N− a+1

2 Ra, (4.13)

where

B1 = d�(q˜Bq) − B(1), (4.14a)

B2� = c�

(

a†(qBϕ)N �⊥ + N �⊥a(qBϕ)
)

(� ≥ 0), (4.14b)

B2�+1 = −B(�+1) (� ≥ 1) (4.14c)

for B(�) as in (2.33), with c0 = 1, c1 = −1/2, c� = −(2� − 3)!!/(2��!) (� ≥ 2) and
with

‖Raξ‖ ≤ ‖B‖opC(a)
(

‖(N⊥ + 1)a+1ξ‖ + δa,0N
−1/2‖(N⊥ + 1)3/2ξ‖

)

(4.15)

for some constant C(a) > 0 and any ξ ∈ F .

Note that the estimate (4.15) is by far not optimal in the powers of N⊥ except for
a = 0, which determines the largest power of s in Proposition 4.4. In combination
with Duhamel’s formula,

eisB = eisB0 + i

s
∫

0

dτeiτB (B − B0) e
i(s−τ)B0 , (4.16)

Lemma 4.2 leads to an expansion of eisB. Together with the asymptotic series (2.29)
for χ , this yields the following expansion of (4.11), which is proven in Sect. 4.3.2:
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Proposition 4.3 For φN as defined in (4.10), it holds that

∣

∣

∣

∣

∣

∣

φN (s) −
a
∑

j=0

N− j
2

j
∑

m=0

m
∑

n=0

〈

χn,T j−m(s)χm−n
〉

∣

∣

∣

∣

∣

∣

≤ N− a+1
2 (C(a) + |Sa(s)|) ,

(4.17)

where

T0(s) := eisB0 , (4.18a)

T j (s) :=
j

∑

k=1

∑

�∈Nk

|�|= j

I
(k)
� ( j ≥ 1), (4.18b)

Sa(s) :=
a
∑

m=0

a−m
∑

n=0

m+1
∑

k=1

∑

�∈Nk−1

|�|≤m

〈

χa−m−n, J
(k)
m;�(s)χn

〉

(4.18c)

with

I
(k)
� (s) :=

∫ s

�k

dτeiτkB0B�k e
i(τk−1−τk )B0B�k−1e

i(τk−2−τk−1)···B�1e
i(s−τ1)B0 , (4.19a)

J
(k+1)
a;� (s) :=

∫ s

�k+1

dτeiτk+1BRa−|�|ei(τk−τk+1)B0B�k e
i(τk−1−τk )B0B�k−1···B�1e

i(s−τ1)B0

(4.19b)

for � = (�1, ..., �k) ∈ N
k ,B� andR� as in Lemma 4.2, and where we used the notation

∫ s

� j

dτ := i j
s

∫

0

dτ1

τ1∫

0

dτ2 · · ·
τ j−1
∫

0

dτ j . (4.20)

To control the remainders of the expansion, it is crucial that B0 = a†(qBϕ) +
a(qBϕ), and hence,

eiτB0 = W (iτqBϕ) (4.21)

is a Weyl operator. Moreover, the operators R� and B� can be bounded by powers of
the number operator. Hence, applying Lemma 4.1 repeatedly and making use of the
fact that moments of the number operator with respect to χ� are bounded uniformly
in N (Lemma 2.2b) yields an estimate of the error Sa(s) (see Sect. 4.3.3 for a proof):

Proposition 4.4 The term Sa(s) from (4.18c) satisfies

|Sa(s)| ≤ CB(a)
(

1 + |s|3a+3 + N− 1
2 |s|3a+4

)

(4.22)

123



Weak Edgeworth expansion for the… Page 25 of 38 77

where CB(a) ≤ C(a)(1 + ‖B‖3a+4
op ) for some constant C(a).

The next step is to compute the coefficients in the expansion (4.17), which is done
in Sect. 4.3.4. Since an explicit evaluation to any order is too complex to obtain in full
generality, we focus on the dependence of the coefficients on s:

Proposition 4.5 For T j as in Proposition 4.3, we have

j
∑

m=0

m
∑

n=0

〈

χn,T j−m(s)χm−n
〉 = p(η)

j (s)e− 1
2 s

2σ 2
(4.23)

for σ as in (3.12) and where p(η)
j is a polynomial of degree 3 j + 2η with complex

coefficients depending onϕ, B,V0 and�
(η)
�, j .Moreover, p(η)

j is even/odd for j even/odd.

For the ground state �
gs
N ∈ C(0)

N , an explicit computation of the leading and next-
to-leading order of the approximation is still feasible and yields the following result
(see Sect. 4.3.5 for the details of the computation):

Proposition 4.6 Let η = 0. For j = 0, 1, the polynomials in (4.23) are given by

p(0)
0 (s) = 1, p(0)

1 (s) = − i

6
α3s

3, (4.24)

where

α3 = 12�
〈

ν⊗3,�
(0)
1,3

〉

+
〈

ν,
(

U0q˜BqU
∗
0 + V0q˜BqV ∗

0

)

ν
〉

+ 4� 〈

ν,U0q˜BqV
∗
0 ν

〉

,

(4.25)

and where �
(0)
1,3 is given in [3, Appendix B].

Theorem 1 follows from Propositions 4.3 to 4.6 by Fourier inversion (see Sect. 4.4 for
the proof). For excited states �ex

N ∈ C(η)
N with η > 0, we explicitly compute only the

leading order polynomial. The proof of the following proposition is given in Sect. 4.5.

Proposition 4.7 Let η > 0 and denote the quasi-particle states by ξ1, ..., ξη ∈ L2(Rd),
i.e.,

χ0 = U
∗
V0
a†(ξ1)···a†(ξη)|�〉. (4.26)

Then, pex0 in Theorem 1a is given by

pex0 (x) =
η
∑

�=0

cη,�

(−i

σ

)2�

H2�

( x

σ

)

, (4.27)
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with Hk the k-th Hermite polynomial (as defined in (3.26)) and where

cη,� := (−1)�

(η − �)!((�)!)2
∑

π,π ′∈Sη

η−�
∏

j=1

〈

ξπ ′( j), ξπ( j)
〉

η
∏

j ′=η−�+1

〈

ξπ ′( j ′), ν
〉 〈

ν, ξπ( j ′)
〉

.

(4.28)

Note that ξi = ξ j for i �= j is admitted and that the formula for cn,� simplifies if
the functions ξ j are orthonormal. For η = 1, we recover (3.19).

4.3 Proofs of the propositions

4.3.1 Proof of Lemma 4.2

We decompose BN as

BN = 1√
N

d�(˜B) = 1√
N

(

d�(pBq) + d�(qBp) + d�(q˜Bq)
)

(4.29)

with

˜B := B − 〈ϕ, Bϕ〉 . (4.30)

Note that

√

1 − N⊥
N

=
b
∑

�=0

c�N
−�N �⊥ + N−(b+1)

˜R2b, ‖˜R2bξ‖ ≤ C(b)‖N b+1
⊥ ξ‖ (4.31)

for any ξ ∈ F and b ∈ N0 and where [˜R2b,N⊥] = 0. Besides, by Lemma 2.2c, there
exists some rB(a) ∈ R with |rB(a)| ≤ C(a)‖B‖op such that

〈�N , B1�N 〉 − 〈ϕ, Bϕ〉 =
a
∑

�=1

N−�B(�) + N−(a+1)rB(a). (4.32)

Consequently,

B = N− 1
2UN ,ϕ

(

d�(qBp) + d�(pBq) + d�(q˜Bq) − N (〈�N , B1�N 〉 − 〈ϕ, Bϕ〉))U∗
N ,ϕ

= a†(qBϕ)

√

1 − N⊥
N

+
√

1 − N⊥
N

a(qBϕ) + N− 1
2 d�(q˜Bq)

−
(

a
∑

�=1

N−(�− 1
2 )B(�) + N−(a+ 1

2 )rB(a)

)

=
a
∑

�=0

N− �
2B� + N− a+1

2 Ra (4.33)

123



Weak Edgeworth expansion for the… Page 27 of 38 77

for B� as in (4.13) and where Ra satisfies (4.15). ��

4.3.2 Proof of Proposition 4.3

From (4.13), it follows that B − B0 = N−1/2
R0 with

R0 =
b
∑

�=1

N− �−1
2 B� + N− b

2Rb. (4.34)

Hence, (4.16) implies that

eisB = eisB0 + N− 1
2

s
∫

�1

dτeiτ1B

⎛

⎝

a
∑

�1=1

N− �1−1
2 B�1 + N− a

2 Ra

⎞

⎠ ei(s−τ1)B0

= eisB0 +
a
∑

�1=1

N− �1
2

∫ s

�1

dτeiτ1B0B�1e
i(s−τ1)B0

+N− a+1
2

[ ∫ s

�1

dτeiτ1BRae
i(s−τ1)B0 +

a
∑

�1=1

∫ s

�2

dτeiτ2BRa−�1e
i(τ1−τ2)B0B�1e

i(s−τ1)B0

]

+
a
∑

�1=1

a−�1
∑

�2=1

N− �1+�2
2

∫ s

�2

dτeiτ2BB�2 e
i(τ1−τ2)B0B�1e

i(s−τ1)B0

= . . . , (4.35)

which eventually leads to the expansion

eisB =
a
∑

j=0

N− j
2T j (s) + N− a+1

2

a+1
∑

k=1

∑

�∈Nk−1

|�|≤a

J
(k)
a;�(s) (4.36)

with T j (s) and J
(k)
a;�(s) as in (4.18) and (4.19). This implies (4.17) by (2.29) because

φN (s) =
〈

χ −
a
∑

n=0

N− n
2 χn, e

isBχ

〉

+
a
∑

n=0

N− n
2

〈

χn, e
isB

(

χ −
a−n
∑

m=0

N−m
2 χm

)〉

+
a
∑

n=0

a−n
∑

m=0

N− n+m
2

〈

χn, e
isBχm

〉

. (4.37)

��
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4.3.3 Proof of Proposition 4.4

Recall from (4.18) that

Sa(s) =
a
∑

m=0

a−m
∑

n=0

m
∑

μ=0

μ+1
∑

k=1

∑

�∈Nk−1

|�|=μ

〈

χa−m−n, J
(k)
m;�(s)χn

〉

with

J
(k)
m;�(s) =

∫ s

�k

dτeiτkBRm−|�|ei(τk−1−τk )B0B�k−1e
i(τk−2−τk−1)B0B�k−2···B�1e

i(s−τ1)B0 .

By (4.15), we find for any ξ , ξ ′ ∈ F that

∣

∣

∣

〈

ξ ′, J(k)
m;�(s)ξ

〉∣

∣

∣

≤
∣

∣

∣

∣

∫ s

�k

dτ‖Rm−|�|ei(τk−1−τk )B0B�k−1···B�1e
i(s−τ1)B0ξ‖‖ξ ′‖

∣

∣

∣

∣

≤ C(m)‖B‖op‖ξ ′‖
∫

[0,s]k
dτ

[

‖(N⊥ + 1)m−|�|+1W (iδk−1 f )B�k−1···B�1W (iδ0 f )ξ‖
(4.38a)

+ δm,|�|N−1/2‖(N⊥ + 1)3/2W (iδk−1 f )B�k−1···B�1W (iδ0 f )ξ‖
]

(4.38b)

where we used the notation f = qBϕ and abbreviated

δk−1 := τk−1 − τk δ0 := s − τ1. (4.39)

By definition (4.14) of the operators B� and using Lemma 2.2c, we find that

‖(N⊥ + 1)bB�ξ‖ ≤ C(�, b)‖B‖op‖(N⊥ + 1)b+γ�ξ‖, γ� =

⎧

⎪
⎨

⎪
⎩

0 if � ≥ 3 odd

1 if � = 1
�+1
2 if � even

(4.40)

for any b ∈ 1
2N0. With |δ j | ≤ |s| for all j ∈ {0, ..., k − 1} for τ ∈ [0, s]k , Lemma 4.1

and (4.40) imply

‖(N⊥ + 1)bW (iδk−1 f )B�k−1ξ‖
≤ C(�, b)

(

‖(N⊥ + 1)bB�k−1ξ‖ + (s‖B‖op)2b‖B�k−1ξ‖
)

≤ C(�, b)‖B‖op
(

‖(N⊥ + 1)b+γ�k−1 ξ‖ + (s‖B‖op)2(b+γ�k−1 )‖ξ‖
)

. (4.41)
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Using this estimate repeatedly yields

‖(N⊥ + 1)bW (iδk−1 f )B�k−1···B�1W (iδ0 f )ξ‖
≤ C(�, b)(1 + ‖B‖k−1+2(b+��)

op )
(

1 + |s|2(b+��)
)

‖(N⊥ + 1)b+��ξ‖, (4.42)

where

�� := γ�1 + · · · + γ�k−1, 0 ≤ �� ≤ |�| (4.43)

by definition (4.40) of γ�. Moreover, k ≤ |�| + 1, hence

(4.38a) ≤ C(m)(1 + ‖B‖|�|+2m+3
op )‖(N⊥ + 1)m+1ξ‖‖ξ ′‖

(

1 + |s|2m+|�|+3
)

,

(4.44a)

(4.38b) ≤ δm,|�|C(m)N− 1
2 (1 + ‖B‖3m+4

op )‖(N⊥ + 1)3/2+mξ‖‖ξ ′‖
(

1 + |s|3m+4
)

.

(4.44b)

By (2.31), we conclude that

|Sa(s)| ≤ C(a)(1 + ‖B‖3a+4
op )

(

1 + |s|3a+3 + N− 1
2 |s|3a+4

)

. (4.45)

��

4.3.4 Proof of Proposition 4.5

Let us introduce the abbreviation

φ(g) := a†(g) + a(g) (4.46)

for any g ∈ H, and denote as above f = qBϕ and ν = U0 f + V0 f , for U0 and V0 as
in (2.26). Recall that σ = ‖ν‖. For an operator A ∈ L(H), the relations (4.2) for the
Weyl operator yield

W (g) d�(A)W (g)∗ = d�(A) − φ(Ag) + 〈g, Ag〉 , (4.47)

hence the operators B� from (4.14) transform as

eiτB0B2�+1e
−iτB0 = B2�+1 (� ≥ 1), (4.48a)

eiτB0B1e
−iτB0 =

(

B1 − τφ(iq˜BqBϕ) + τ 2
〈

ϕ, Bq˜BqBϕ
〉
)

, (4.48b)

eiτB0B2�e
−iτB0 = c�

[
(

a†( f ) + iτ‖ f ‖2
) (

N⊥ − τφ(i f ) + τ 2‖ f ‖2
)�

+
(

N⊥ − τφ(i f ) + τ 2‖ f ‖2
)� (

a( f ) − iτ‖ f ‖2
)
]

. (4.48c)
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We summarize these expressions in the following way, keeping only track on the
τ -dependence and on the total number of creation/annihilation operators a�:

Definition 4.8 (Equivalence classes) Consider a self-adjoint polynomial of degree j
in N⊥ and a�, i.e., an expression of the form

∑

n,m≥0
2n+m= j

n
∑

ν=0

m
∑

μ=0

∑

k∈{−1,1}μ
N ν⊥

∫

dx (μ)ξμ(x (μ))a
�k1
x1 ···a�kμ

xμ
+ h.c. (4.49)

for some ξμ ∈ L2(Rdμ). Here, we used the notation a�−1 := a and a�1 := a†.

(a) Two polynomials (4.49) are equivalent with respect to the relation ∼ iff they
have the same degree j and the number of operator-valued distributions a�

x in
each summand is even/odd for j even/odd. We denote the representatives of the
equivalence classes with respect to the relation ∼ by F j , i.e.,

F j ∼
∑

n,m≥0
2n+m= j

n
∑

ν=0

∑

0≤μ≤m
j+μ even

∑

k∈{−1,1}μ
N ν⊥

∫

dx (μ)ξμ(x (μ))a
�k1
x1 ···a�kμ

xμ
+ h.c. .

(4.50)

(b) Twopolynomials (4.49) are equivalentwith respect to the relation∼ j iff they have a

degree≤ j and the number of operator-valued distributions a�
x in each summand is

even/odd for j even/odd. We denote the representatives of the equivalence classes
with respect to the relation ∼ j by F≤ j , i.e.,

F≤ j ∼ j F˜j (4.51)

for any ˜j ≤ j . When using the notation F≤ j , we will drop the index j from ∼ j .

With respect to these equivalence classes, I(k)� (s) ∼ I
(k)
˜�

(s) if � and˜� differ only by

a permutation of indices. Moreover, I(k)� (s) is equivalent to the operator where
∫ s
� j

dτ

is replaced by
∫

[0,s] j dτ . The identities (4.48) yield

˜B2�+1 :=
∫ s

0
eiτB0B2�+1e

−iτB0 dτ ∼ s F0, (4.52a)

˜B1 :=
∫ s

0
eiτB0B1e

−iτB0 dτ ∼
3
∑

q=1

sq F3−q , (4.52b)

˜B2� :=
∫ s

0
eiτB0B2�e

−iτB0 dτ ∼
2�+2
∑

q=1

sq F2�+2−q . (4.52c)
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Consequently, for |�| = j ,

I
(k)
� (s) ∼ ˜B�1

˜B�2···˜B�k e
isB0 ∼ ˜B

k1
1
˜B
k2
2 ···˜Bk j

j e
isB0 , (4.53)

where (k1, ..., k j ) ∈ {0, ..., j} j , k1 + · · · + k j = k and
∑ j

n=1 nkn = j . From (4.52),
one infers that

˜B
k
� ∼

⎧

⎪
⎪
⎨

⎪
⎪
⎩

sk F0 if � ≥ 3 odd,
∑3k

n=k s
n
F3k−n if � = 1,

∑k(�+2)
n=k sn Fk(�+2)−n if � even.

(4.54)

Using the notation

kodd :=
∑

3≤q≤ j
q odd

kq , jodd :=
∑

3≤q≤ j
q odd

qkq ,

one computes

˜B
k1
1
˜B
k2
2 ···˜Bk j

j ∼

⎛

⎜

⎜

⎝

∏

3≤q≤ j
q odd

˜B
kq
q

⎞

⎟

⎟

⎠

˜B
k1
1

⎛

⎜

⎜

⎝

∏

2≤q≤ j
q even

˜B
kq
q

⎞

⎟

⎟

⎠

∼ skodd
3k1
∑

n1=k1

sn1F3k1−n1

∏

2≤q≤ j
q even

kq (q+2)
∑

nq=kq

snqFkq (q+2)−nq

∼ skodd
2k+ j−(2kodd+ jodd)

∑

n=k−kodd

snF2k+ j−(2kodd+ jodd)−n

=
2k+ j−(kodd+ jodd)

∑

n=k

snF2k+ j−(kodd+ jodd)−n (4.55)

and consequently

T j (s) ∼
j

∑

k=1

2k+ j−(kodd+ jodd)
∑

n=k

snF2k+ j−(kodd+ jodd)−n e
isB0 . (4.56)

Note that kodd + jodd = ∑

3≤q≤ j odd(q + 1)kq is even, and hence, the power of s and
the degree of F sum up to an even/odd number if j is even/odd. Moreover, the highest
power of s is attained for k = j (where kodd = jodd = 0), which corresponds to the
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term I
( j)
(1,1,...,1)(s). Hence, we conclude that

T j (s) ∼
⎛

⎝

j−1
∑

n=1

sn F≤3 j−n +
3 j
∑

n= j

sn F3 j−n

⎞

⎠ eisB0 ∼
3 j
∑

n=1

sn F≤3 j−n e
isB0 . (4.57)

Moreover,

UV0T j (s)U
∗
V0

∼
3 j
∑

�=1

s�
F≤3 j−� W (isν) (4.58)

where we have used that UV0B0U
∗
V0

= φ(ν) and eisφ(ν) = W (isν). By (2.30), we
obtain 〈

χn,T j−m(s)χm−n
〉

∼
∑

0≤p≤3n+η
p+n+η even

∑

0≤q≤3(m−n)+η
q+m−n+η even

3( j−m)
∑

�=1

s�

∫

dx (q+p)�
(η)
n,p(xq+1, ..., xq+p)

×�
(η)
m−n,q (x

(q))
〈

�, axq+1···axq+pF≤3( j−m)−� W (isν)a†x1···a†xq�
〉

. (4.59)

Using that

W (isν)a†x1···a†xq |�〉 = e− 1
2 s

2σ 2
(a†x1 + isν(x1))···(a†xq + isν(xq))e

isa†(ν)|�〉, (4.60)

we find by permutation symmetry of �
(η)
m−n,q that

∫

dx (q)�
(η)
m−n,q(x

(q))W (isν)a†x1···a†xq |�〉

= e− 1
2 s

2σ 2
q
∑

r=0

(is)q−r (q
r

)

∫

dx (r)
˜�

(η)
m−n,q,r (x

(r))a†x1···a†xr eisa
†(ν)|�〉 (4.61)

for ˜�(η)
m−n,q,r (x

(r)) = ∫

dxr+1···dxqν(xr+1)···ν(xq)�
(η)
m−n,q(x

(q)). The inner product
in (4.59) is nonzero only if it contains equal numbers of creation and annihilation
operators. Since the operators F≤3( j−m)−� have been conjugated by a Bogoliubov
transformation (see (4.58)), they contain at each degree of the polynomial all possible
combinations of creation and annihilation operators. Hence, expanding eisa

†(ν) yields

∫

dx (r) dxq+1···dxq+p˜�
(η)
m−n,q,r (x

(r))�
(η)
n,p(xq+1, ..., xp+q)

×
〈

�, axq+1···axq+pF≤3( j−m)−� a
†
x1···a†xr eisa

†(ν)�
〉

=
3( j−m)−�
∑

ν=0

c(η)
ν, j,m,n,�,q,r s

p+3( j−m)−�−r−2ν (4.62)
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for some coefficients c(η)
ν, j,m,n,�,q,r ∈ C. In particular, there is a nonzero contribution

from ν = 0 by (4.57). In summary,

〈

χn,T j−m(s)χm−n
〉

∼
∑

0≤p≤3n+η
p+n+η even

∑

0≤q≤3(m−n)+η
q+m−n+η even

3( j−m)
∑

�=1

s�e− 1
2 σ 2s2

q
∑

r=0

(is)q−r
∫

dx (r) dxq+1···dxq+p˜�
(η)
m−n,q,r (x

(r))

×�
(η)
n,p(xq+1, ..., xp+q )

〈

�, axq+1 ···axq+pF≤3( j−m)−� a
†
x1 ···a†xr eisa

†(ν)�
〉

∼ e− 1
2 σ 2s2

∑

0≤p≤3n+η
p+n+η even

∑

0≤q≤3(m−n)+η
q+m−n+η even

3( j−m)
∑

�=1

q
∑

r=0

3( j−m)−�
∑

ν=0

c(η)
ν, j,m,n,�,q,r s

p+q+3( j−m)−2(r+ν).

(4.63)

Note that the highest power of s is 3 j + 2η and that p + q + 3( j − m) − 2(r + ν) is
even/odd when 3 j is even/odd. This yields (4.23) with

p(η)
j (s) =

∑

0≤k≤3 j+2η
k+ j even

c( j,η)
k sk (4.64)

for c( j,η)
k ∈ C with c( j,η)

3 j+2η �= 0. ��

4.3.5 Proof of Proposition 4.6

From Propositions 4.3 and 4.4, we know that

φN (s) = e− 1
2 s

2σ 2

+ iN− 1
2

s
∫

0

dτ
〈

W (−is f )χ0,W (−iτ f ) d�(q˜Bq)W (iτ f )χ0
〉

(4.65a)

+ N− 1
2

(
〈

W (−is f )χ0,χ1
〉 + 〈

χ1,W (is f )χ0
〉
)

(4.65b)

− iN− 1
2 B(1)

s
∫

0

dτ
〈

χ0,W (is f )χ0
〉

(4.65c)

+ O(N−1) (4.65d)

with f = qBϕ as above.
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Computation of (4.65a). As above, we abbreviate ν = U0qOϕ+V0 qOϕ. With (4.3)
and (4.4), we find

(4.65a) = iN− 1
2

s
∫

0

dτ
〈

W (−isν)�,W (−iτν)UV0 d�(q˜Bq)U∗
V0
W (iτν)�

〉

= iN− 1
2 e− 1

2 s
2σ 2

s
∫

0

dτ
〈

e−isa†(ν)�,W ∗(iτν)UV0 d�(q˜Bq)U∗
V0
W (iτν)�

〉

.

(4.66)

For any one-body operator A, any ONB (ϕi ) of H⊥, and g ∈ H⊥, we have

W ∗(g)UV0 d�(A)U∗
V0
W (g) =

∑

i, j

Ai j

(

a(V0ϕi ) + 〈

V0ϕi , g
〉 + a†(U0ϕi ) + 〈g,U0ϕi 〉

)

×
(

a(U0ϕ j ) + 〈

U0ϕ j , g
〉 + a†(V0ϕ j ) + 〈

g, V0ϕ j
〉
)

,

(4.67)

where we denoted Ai j := 〈

ϕi , Aϕ j
〉

. Consequently, expanding the exponential yields

(4.65a) = iN− 1
2 e− 1

2 s
2σ 2 ∑

i, j

(q˜Bq)i j

s
∫

0

dτ
〈

e−isa†(ν)�,

[

a†(U0ϕi )a
†(V0ϕ j )

+
(
〈

V0ϕi , iτν
〉 + 〈iτν,U0ϕi 〉

)

a†(V0ϕ j ) + a†(U0ϕi )
(
〈

U0ϕ j , iτν
〉 + 〈

iτν, V0ϕ j
〉
)

+ 〈

V0ϕi , V0ϕ j
〉 +

(
〈

V0ϕi , iτν
〉 + 〈iτν,U0ϕi 〉

)(
〈

U0ϕ j , iτν
〉 + 〈

iτν, V0ϕ j
〉
)
]

�
〉

= iN− 1
2 e− 1

2 s
2σ 2(

c̃1s + c̃3s
3) , (4.68)

where c̃1, c̃3 ∈ R are given by

c̃1 = Tr(V0q˜BqV
∗
0 ), (4.69a)

c̃3 = − 1
6

(
〈

ν,U0q˜BqU
∗
0 ν

〉 + 〈

ν, V0q˜BqV
∗
0 ν

〉
)

− 2
3�

〈

ν,U0q˜BqV
∗
0 ν

〉

. (4.69b)

Computation of (4.65b). Using that

χ1 = U
∗
V0

(∫

dx�(0)
1,1(x)a

†
x |�〉 +

∫

dx (3)�
(0)
1,3(x

(3))a†x1a
†
x2a

†
x3 |�〉

)

(4.70)

by Lemma 2.2a, one computes

(4.65b) = iN− 1
2 e− 1

2 s
2σ 2

(

2�
〈

ν,�
(0)
1,1

〉

s − 2�
〈

ν⊗3,�
(0)
1,3

〉

s3
)

. (4.71)
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Computation of (4.65c). We find, using first (4.5) and then Lemma 2.2c, that

(4.65c) = −iN−1/2e− 1
2 s

2σ 2
sB(1)

= −iN− 1
2 e− 1

2 s
2σ 2

s
(〈

χ0, φ(qBϕ)χ1
〉 + 〈

χ1, φ(qBϕ)χ0
〉 + 〈

χ0, d�(q˜Bq)χ0
〉)

= −e− 1
2 s

2σ 2
s
d

ds

(

(4.65a) + (4.65b)
)∣

∣

∣

s=0

= −iN− 1
2 e− 1

2 s
2σ 2

s
(

c̃1 + 2�
〈

�
(0)
1,1, ν

〉)

. (4.72)

This concludes the proof of Proposition 4.6. ��

4.4 Proof of Theorem 1

Combining Propositions 4.3, 4.5 and 4.4, we find that

∣

∣

∣

∣
φN (s) −

a
∑

j=0

N− j
2 p(η)

j (s)e− 1
2 s

2σ 2
∣

∣

∣

∣
≤ CB(a)

(

N− a+1
2 (1 + |s|3a+3) + N− a+2

2 |s|3a+4
)

.

(4.73)

Consequently, by (4.9),

∣

∣

∣

∣
E[g(BN )] −

a
∑

j=0

N− j
2

∫

R

ds ĝ(s)p(η)
j (s)e− 1

2 s
2σ 2

∣

∣

∣

∣
≤ CB(g, a)N− a+1

2 (4.74)

because ĝ ∈ L1(R, (1 + |s|3a+4). Finally, Plancherel’s theorem implies that

∫

dsĝ(s)ske− 1
2 s

2σ 2 = 1√
2πσ 2

∫

dxg(x)

(

i
d

dx

)k

e− x2

2σ2

= 1√
2πσ 2

(−i

σ

)k ∫

g(x)Hk

( x

σ

)

e− x2

2σ2 , (4.75)

where Hk(x) is the k-th Hermite polynomial as defined in (3.26). This yields (1.21)
with polynomials p j (x) of degree 3 j+2η in x ∈ Rwhich are even/odd for j even/odd.
Note that the coefficients of the p j must be real-valued because E[g(BN )] ∈ R for
real-valued g. ��

4.5 Proof of Proposition 4.7

We consider χ0 ∈ C(η)
N for some η > 0. The leading order of φ

(η)
N (s) is given by

〈

χ0, e
isB0χ0

〉

and can be computed similarly to Propositions 4.5 and 4.6. Using (4.26)
and abbreviating

σ j := 〈

ν, ξ j
〉

, (4.76)
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we find that

〈

χ0, e
isB0χ0

〉

=
〈

�, a(ξ1)···a(ξη)W (isν)a†(ξ1)···a†(ξη)�
〉

= e− 1
2 s

2σ 2
η
∑

�=0

s2(η−�) (−1)η−�

�!((η − �)!)2
∑

π∈Sη

σπ(�+1)···σπ(η)

×
〈

�, a(ξ1)···a(ξη)a
†(ξπ(1))···a†(ξπ(�))a

†(ν)η−��
〉

=: e− 1
2 s

2σ 2
η
∑

�=0

cη,η−�s
2(η−�), (4.77)

where S� denotes the set of permutations of � elements. To compute the coefficients
cη,�, let us introduce the notation

ζ j :=
{

ξπ( j) j = 1, ..., �

ν j = � + 1, ..., η
(4.78)

and Iη := {1, ..., η}. Since
〈

�, a(ξ1)···a(ξη)a
†(ζ1)···a†(ζη)�

〉

=
η
∑

j=1

〈

ξη, ζ j
〉

〈

�, a(ξ1)···a(ξη−1)

⎛

⎝

∏

μ∈Iη\{ j}
a†(ζ j )

⎞

⎠�

〉

=
∑

π ′∈Sη

〈

ξπ ′(1), ζ1
〉 ··· 〈ξπ ′(η), ζη

〉

=
∑

π ′∈Sη

〈

ξπ ′(1), ξπ(1)
〉 ··· 〈ξπ ′(�), ξπ(�)

〉

σπ ′(�+1)···σπ ′(η), (4.79)

the coefficients cη,� are given by

cη,� = (−1)�

(η − �)!((�)!)2
∑

π,π ′∈Sη

〈

ξπ ′(1), ξπ(1)
〉 ··· 〈ξπ ′(η−�), ξπ(η−�)

〉

σπ(η−�+1)···σπ(η)

×σπ ′(η−�+1)···σπ ′(η). (4.80)

This concludes the proof by (4.75). ��
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