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Abstract

To interpret the sensory environment, the brain combines ambiguous sensory measure-

ments with knowledge that reflects context-specific prior experience. But environmental

contexts can change abruptly and unpredictably, resulting in uncertainty about the current

context. Here we address two questions: how should context-specific prior knowledge opti-

mally guide the interpretation of sensory stimuli in changing environments, and do human

decision-making strategies resemble this optimum? We probe these questions with a task in

which subjects report the orientation of ambiguous visual stimuli that were drawn from three

dynamically switching distributions, representing different environmental contexts. We

derive predictions for an ideal Bayesian observer that leverages knowledge about the statis-

tical structure of the task to maximize decision accuracy, including knowledge about the

dynamics of the environment. We show that its decisions are biased by the dynamically

changing task context. The magnitude of this decision bias depends on the observer’s con-

tinually evolving belief about the current context. The model therefore not only predicts that

decision bias will grow as the context is indicated more reliably, but also as the stability of

the environment increases, and as the number of trials since the last context switch grows.

Analysis of human choice data validates all three predictions, suggesting that the brain

leverages knowledge of the statistical structure of environmental change when interpreting

ambiguous sensory signals.

Author summary

The brain relies on prior knowledge to make perceptual inferences when sensory informa-

tion is ambiguous. However, when the environmental context changes, the appropriate

prior knowledge often changes with it. Here, we develop a Bayesian observer model to

investigate how to make optimal perceptual inferences when sensory information and

environmental context are both uncertain. The behavioral signature of this strategy is a
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context-appropriate decision bias whose strength grows with the reliability of the context

cue, the stability of the environment, and with the number of decisions since the most

recent change in context. We identified exactly this pattern in the behavior of human sub-

jects performing a dynamic orientation discrimination task. Together, our results suggest

that in dynamic environments, our perceptual interpretations of ambiguous sensory mea-

surements depend on our underlying belief about the likelihood of change.

Introduction

To accomplish goals, humans and other animals must infer properties of the environment in

the face of uncertainty and change [1,2]. Prior knowledge is often leveraged to guide percep-

tual decisions based upon ambiguous sensory measurements [3–6]. However, knowledge that

is relevant in one context may lead to worse outcomes if applied in another [7–9]. A complex

challenge arises when perceptual uncertainty is compounded by additional uncertainty about

whether a change in context has occurred [10,11]. As an example, imagine you are moving

through a field, foraging for ripe bananas. Some bananas are clearly green or yellow and easy

to judge, but many are ambiguous (Fig 1A). Prior knowledge about the probability of encoun-

tering a ripe banana helps to make more accurate decisions. Bananas grown in sunny groves

are more likely to be ripe, whereas those grown in shady groves are less likely to be ripe. As

you move through the field with the sun overhead, it will be easy to identify the sunny and

shady groves and use the appropriate prior knowledge. But clouds form, and the difference

between sunny and shady groves becomes less clear. How can context-specific knowledge

remain useful in the face of uncertainty over both perceptual interpretation and environmental

context?

Fig 1. Example of Bayesian decision-making in a dynamic environment. (a) Yellower bananas are more likely to be ripe than greener bananas. (b)

The likelihood distribution associated with a given color percept. (c) The conditional color distributions for bananas grown in shady vs sunny groves.

(d) Illustration of a Bayesian foraging strategy. When the environmental context is certain (left, inset), the associated color distribution specifies the

prior. The product of the prior and the likelihood gives the posterior. The impact of the prior on the posterior depends on the relative strength of

likelihood and prior. (e) The forager decides that the banana is ripe when the probability that it is more yellow than some fixed criterion exceeds 50

percent (left, inset). The resulting choice behavior is plotted against the fruit’s color. The dotted green line illustrates this relation in the absence of prior

knowledge, the full orange line illustrates this relation for the Bayesian forager. The prior biases the decision. (f) As the forager moves from one grove to

another, she encounters changes in environmental context that are difficult to detect. When the context is uncertain, a Bayesian decision-maker

constructs a prior by linearly mixing both color distributions, with weights determined by the continually-evolving context belief. (g) If the context-

belief incorporates knowledge about environmental dynamics, the influence of context-specific knowledge on choice behavior is minimal following a

context switch, and grows over series of decisions uninterrupted by a context switch.

https://doi.org/10.1371/journal.pcbi.1011104.g001
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Bayesian inference offers a normative framework that specifies how different forms of

knowledge can be optimally leveraged when making decisions under uncertainty [12]. In the

above example, knowledge about the ambiguity of perception and knowledge about probable

banana colors in shady and sunny groves can both be leveraged. Specifically, knowledge about

the ambiguity of perception is used to compute the likelihood of the perceived color given a

banana’s true color (Fig 1B), while knowledge about probable banana colors in shady and

sunny groves is summarized as a context-specific prior belief (Fig 1C). The normalized prod-

uct of the prior and likelihood yields a posterior belief (Fig 1D, left), which is used by a Bayes-

ian decision-maker to decide whether or not to pick the banana (Fig 1E, left). The impact of

the prior on the decision depends on the relative strengths of the prior and the likelihood.

When a sensory measurement is highly ambiguous (e.g., when assessing colors at dusk), the

likelihood function is broad, and the same prior will have a larger impact on the posterior (Fig

1D and 1E, middle panel). On the other hand, when the environmental context only weakly

specifies the distribution of colors (e.g., in groves with mottled light), the prior is broad and

will have a comparatively small impact (Fig 1D and 1E, right panel).

Here, we develop a Bayesian ideal observer model to extend these normative predictions to

a dynamic environment. Key to this ‘dynamic’ model is that it additionally leverages knowl-

edge about the statistical structure of environmental dynamics to interpret ambiguous sensory

measurements. It does so by constructing a continually evolving posterior belief about the cur-

rent context that informs the prior over stimuli (Fig 1F). Like the ‘static’ model described

above, this model predicts that when the context is more reliably indicated, the observer is

more certain about the identity of the current context, and will exhibit greater overall context-

appropriate bias (hereafter, positive "aligned bias"). However, the dynamic strategy addition-

ally has two distinct signatures: First, when the environment is more stable (i.e., context

switches happen less frequently), the observer will be overall more certain about the context,

resulting in greater levels of aligned bias. Second, as an observer makes more decisions within

the same context, they become more certain about the identity of the current context, and

their aligned bias will grow (Fig 1G).

We then asked whether human observers similarly leverage multiple forms of knowledge

when making decisions in a dynamic environment. Subjects were shown a brief presentation

of a drifting grating and asked to judge its orientation. Stimuli were drawn from one of three

dynamically switching distributions, each representing a specific environmental context. At

the beginning of each trial, an ambiguous cue (the color of the fixation mark) indicated the

current context. Subjects were not told what this cue signified but had experienced the associ-

ated stimulus distributions in a prior training session. Analysis of the human choice behavior

revealed a dynamically evolving influence of context that resembled the predictions of our

dynamic Bayesian ideal observer. These results suggest that the brain leverages knowledge

about the statistical structure of environmental change to combat the challenges posed by

uncertain and unstable environments.

Results

Twelve human subjects performed a two-alternative forced choice (2AFC) orientation dis-

crimination task in which they judged on every trial whether a visual stimulus presented in the

near periphery was rotated clockwise or counterclockwise relative to vertical (Methods). Sti-

muli consisted of drifting gratings with variable orientation and contrast (Fig 2A, top). Observ-

ers performed the task under three contexts characterized by different distributions of

stimulus orientation (Fig 2A, bottom). Context switches occurred pseudo-randomly. During

the initial training phase, context switches were relatively rare, but they occurred frequently in
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the subsequent test phase (Methods). To quantify this aspect of the task, we computed for each

trial the number of trials since the most recent context switch. This metric was approximately

exponentially distributed across trials and had a mean value of 15.9 trials during the training

phase and 2.35 trials during the test phase (Fig 2B).

This task is difficult for several different reasons. First, stimulus strength (i.e., rotation mag-

nitude) is weak in light of perceptual acuity for orientation [13,14]. Second, at low contrast,

perceptual sensitivity is further reduced, and uncertainty about stimulus orientation is elevated

[15,16]. And third, while there are context-specific regularities that can be leveraged to

improve performance (i.e., two out of three contexts are associated with a skewed distribution

of orientations), the environment is constantly in flux, leaving observers potentially uncertain

about the underlying context on any given trial. As outlined above, a Bayesian decision-maker

faced with these challenges maximizes performance by exploiting its knowledge of the statisti-

cal structure of the task.

To investigate the usefulness of different forms of knowledge, we evaluated the task perfor-

mance of a Bayesian ideal observer who has knowledge about an increasing number of task

components (Methods). Like our human subjects, the ideal observer was presented with a

sequence of oriented stimuli and tasked to decide on every trial whether a given stimulus was

rotated clockwise or counter-clockwise. It does so on the basis of both a noisy measurement of

the stimulus orientation and an ambiguous context cue. The least-informed of our ideal

observers only has general knowledge about the ambiguity of perception, allowing it to com-

pute the likelihood of the sensory measurement given the stimulus’ true orientation, which it

uses to inform the decision. This observer correctly judged the stimulus in 61.5% of trials (Fig

2C, leftmost bar). Additionally providing knowledge about cue reliability and context-specific

stimulus distributions enables an ideal observer to combine this likelihood function with a

trial-specific prior belief about stimulus orientation and to base its decision on the resulting

posterior belief about stimulus orientation. This increased performance by approximately one

percentage point (Fig 2C, second bar). Further providing knowledge about the effects of con-

trast on orientation sensitivity enables an ideal observer to build a contrast-specific likelihood

function, yielding an extra performance benefit (Fig 2C, third bar). Finally, providing knowl-

edge about the statistical probability of a context change enables an ideal observer to further

Fig 2. Bayesian ideal observer models for dynamic 2AFC orientation discrimination. (a) Context-specific distribution of stimulus orientation used

in the model simulations. Stimulus contrast was varied over two levels. (b) The cross-trial distribution of the number of trials from the most recent

context switch for the training and test phase of the experiment. (c) Performance of various Bayesian ideal observers, equipped with general knowledge

about the ambiguity of sensory measurements (model 1), plus knowledge about the reliability of the context cue (model 2), plus knowledge about the

contrast-specific ambiguity of sensory measurements (model 3), plus knowledge about the likelihood of a context switch (model 4).

https://doi.org/10.1371/journal.pcbi.1011104.g002
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reduce its uncertainty about the current context, again yielding an extra improvement in task

performance (Fig 2C, rightmost bar). Thus, knowledge about environmental dynamics can be

as useful as other forms of knowledge typically associated with Bayesian inference in percep-

tual decision-making tasks.

Bayesian ideal observer model for dynamic orientation discrimination

To identify signatures of the optimal decision-making strategy for this task, we investigated

the choice behavior of the dynamic Bayesian ideal observer model. This observer leverages

multiple forms of knowledge. It knows that the environment switches between three discrete

contexts at a fixed rate, and it knows the underlying distribution of stimuli in each context.

Because it additionally assumes that the context cue itself is ambiguous, it uses the incoming

context cue in conjunction with knowledge about environmental dynamics to continually

update its posterior belief about the current context, which in turn determines its prior belief

about stimulus orientation for the current trial (Methods, Fig 3A).

The dynamic inference strategy manifests in patterns of decisions that cannot be deduced

from any individual choice, but rather become evident in the relationship between choice and

task variables. To expose this relationship, we simulated and analyzed decisions across a large

number of trials in our task. We first verified that dynamic inference yields similar decision

biases as well-informed static inference (i.e., model 3 in Fig 2C). Plotting average choice behav-

ior as a function of stimulus orientation, split out by underlying task-context, shows that the

dynamic ideal observer’s decisions depend both on sensory stimulus measurements and con-

text-specific prior knowledge (Fig 3B). The influence of context on the decision depends on

the relative strength of the prior and likelihood. For example, in low contrast settings, the sen-

sory orientation measurement is more uncertain (i.e., the likelihood is broader), and the asso-

ciation between stimulus orientation and behavioral choice is weaker, as evidenced by the

shallower slope of the lines. The ideal observer naturally compensates for this loss of informa-

tion by relying more heavily on context-specific knowledge. This results in a stronger aligned

bias, as evidenced by the increased horizontal separation between the lines (Fig 3B). We quan-

tify the influence of context on the decision by computing the average change in the point of

subjective equality (defined as the orientation that elicits 50% clockwise choices) from the uni-

form context.

How does dynamic inference uniquely impact decision bias beyond the effects described

above? When the context changes, the prior over stimuli will naturally weaken and strengthen

over time as a function of the ideal observer’s evolving belief about context. Following a con-

text switch, incoming stimuli and context cues are in conflict with the ideal observer’s belief

about context, which leads to an increase in uncertainty about context and a weakening of the

context posterior. This, in turn, leads to a weakening of the stimulus prior, which will evolve

from a single context-specific distribution to a mixture distribution (see example in Fig 3A,

middle). Strengthening of the prior due to increasing certainty about context is evident in the

evolution of the ideal observer’s aligned bias as it completes more trials within a context. Fig

3C shows the temporal evolution of aligned bias in low contrast settings for different assump-

tions adopted by the ideal observer about the exact statistical structure of the task (grey curves).

Consider the overall trend. Just after a context switch, the ideal observer has high uncertainty

about the current context, and the context-induced bias is minimal. As the ideal observer per-

forms more trials within a context, it continually updates its belief and reduces its uncertainty

about the current context, and the aligned bias grows.

The particular pattern of aligned bias depends on the ideal observer’s underlying assump-

tions about the stability of the environment and the reliability of the context cue. Aligned bias
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Fig 3. Bayesian ideal observer model for dynamic 2AFC orientation discrimination. (a) Schematic of the Bayesian ideal observer’s decision-making

process. (b) Summary of the model’s choice behavior. Proportion of clockwise choices is plotted against stimulus orientation, split out by task context

(different lines) and stimulus contrast (top vs bottom). (c) Evolution of low contrast aligned bias as a function of the number of trials since a context

switch split out by assumed hazard rate (top) and assumed reliability of the context cue (bottom). Grey curves illustrate the dynamic ideal observer

model (model 4 in Fig 2C), brown curves illustrate a static analogue (model 3 in Fig 2C).

https://doi.org/10.1371/journal.pcbi.1011104.g003
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evolves dynamically whenever the ideal observer assumes the environment to be somewhat

stable (i.e., the assumed probability of a context switch is less than 0.5; Fig 3C, top) and the

context cue to be ambiguous (Fig 3C, bottom). The higher the assumed stability of the envi-

ronment and the lower the assumed reliability of the context cue, the longer it takes for the

aligned bias to fully saturate (Fig 3C). The level at which the aligned bias saturates is higher

when context changes are assumed to be less probable and the cue more reliable (Fig 3C). The

temporal evolution of the aligned bias also depends on the number of trials since the previous
context switch. The more stable the environment is, the stronger the ideal observer’s belief is

about the previous context, and thus the more evidence (time) that is required to update that

belief and the longer it takes for the context to maximally exert its influence on choice (Fig Aa

in S1 Text). However, as can be appreciated from the subtle horizontal shift in color across the

rows of the bias-matrices in Fig Ab in S1 Text, this effect is generally weak compared to the

overall influence of context stability. Finally, note that even in the most extreme cases, the

aligned bias does not go negative. In principle, this could happen. However, under the specific

conditions we studied, it does not.

In summary, a dynamic Bayesian ideal observer uses a hierarchical inference strategy to

perform our task. This yields orientation judgments that are biased by task context. The mag-

nitude of this effect not only depends on stimulus contrast, but also on the observer’s belief

about the reliability of the context cue, the stability of the environment, and on the number of

trials since the most recent context switch. These last two effects are uniquely associated with

leveraging knowledge about environmental dynamics to improve uncertain perceptual deci-

sions (Fig 3C, brown vs grey curves).

Effect of cue reliability, context volatility, and sensory uncertainty on

human choice behavior

What knowledge do humans leverage when making perceptual decisions in dynamic environ-

ments? Leveraging knowledge about context-specific priors and perceptual ambiguity biases

uncertain perceptual decisions [3–9]. As such, decision bias can have many origins. But if it

results from leveraging these forms of knowledge, it will be modulated by the reliability of the

context cue and the level of sensory uncertainty. Finally, as we have shown, additionally

leveraging knowledge about the hierarchical structure of our task and the stability of the envi-

ronment will weaken this bias in more volatile environments and right after a context switch.

To test these predictions, we manipulated critical task statistics and conducted several targeted

analyses of the human choice behavior. To study the effect of the reliability of the context cue,

we assigned each subject to one of two conditions. In the veridical cue condition, the context

cue correctly indicated the underlying context on every single trial. In the ambiguous cue con-

dition, the cue was valid on 80% of the trials. Subjects were not told what the cue signified, but

experienced the associated stimulus distributions during the initial training phase (Fig 4A). To

study the effect of the stability of the environment, context switches were relatively rare during

the training phase, but occurred frequently in the subsequent test phase (Fig 4A, top).

We first asked whether choices were biased by task context in a manner that depends on

the reliability of the context cue. Consider an example human observer who judges the same

stimuli differently under different contexts during the test phase (Fig 4B, bottom panel). To

quantify this effect, we described the data with a Signal Detection Theory (SDT) based pro-

cess-model of decision-making that specifies how the probability of a "clockwise" choice

depends on the task variables (orientation, contrast, and context; lines in Fig 4B, bottom

panel). We then used this model to measure the observers’ uncertainty about stimulus orienta-

tion (defined as the cross-trial variability in the orientation estimate, Fig 4B, top panel) and the
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magnitude of their aligned bias. Dividing this latter statistic by the former provides a normal-

ized estimate of aligned bias. For each subject, we independently estimated their aligned bias at

the end of the training phase and during the test phase. We only included trials of the same

contrast level in this analysis (see Methods). Recall that the context cue was less reliable in the

ambiguous cue condition than in the veridical cue condition. As predicted, this resulted in

lower levels of aligned bias (Fig 4C). This was true both at the end of the training phase

(median bias = 1.084 for the veridical cue condition and 0.259 for the ambiguous cue condi-

tion, P = 0.015, one-sided Wilcoxon rank-sum test), and during the test phase (median

bias = 0.31 for the veridical cue condition and –0.035 for the ambiguous cue condition,

P = 0.015). This pattern suggests that the observed decision bias in part resulted from leverag-

ing knowledge about context-specific priors. Did subjects also leverage knowledge about the

rate of context changes? As can be seen in Fig 4C, the sudden increase in environmental vola-

tility in the test phase decreased aligned bias for every single subject (median decrease in nor-

malized bias = 0.435, P < 0.001, one-sided Wilcoxon signed-rank test, n = 11). This effect was

significant within each condition (veridical cue condition: median decrease = 1.01, P = 0.031,

n = 5; ambiguous cue condition: median decrease = 0.283, P = 0.016, n = 6). We conclude that

aligned bias increases as the context cue becomes more reliable, but decreases as the environ-

ment becomes less stable.

A Bayesian observer with precise knowledge about the ambiguity of perception will rely

more strongly on context-specific knowledge when sensory measurements are more uncertain.

To test whether human choices exhibit a similar pattern, we next asked whether choices were

biased by task context in a contrast-dependent manner. During the test phase, high and low

contrast stimuli were pseudo-randomly intermixed (see Methods). For each subject, we inde-

pendently estimated their uncertainty about stimulus orientation and the magnitude of their

aligned bias for high and low contrast stimuli. As can be seen in Fig 5A, lowering stimulus con-

trast increased orientation uncertainty for all subjects but one (median increase in uncer-

tainty = 0.303 deg, P < 0.001, one-sided Wilcoxon signed-rank test, n = 12). This effect was

significant within each condition (veridical cue condition: median increase = 0.403 deg,

P = 0.016, n = 6; ambiguous cue condition: median increase = 0.147 deg, P = 0.031, n = 6). In

the veridical cue condition, lowering stimulus contrast also resulted in a larger aligned bias,

though note that one subject (JI) did not exhibit context-dependent choice behavior at either

Fig 4. Human orientation judgments are biased by task-context in a manner that depends on the reliability of the context cue and on the stability of

the environment. (a) Number of completed trials during the training and test phase of the experiment for each subject. (b) Bottom: Proportion of clockwise

choices of an example observer plotted as a function of stimulus orientation under three dynamically-switching task contexts (indicated by color). Symbols

summarize observed choice behavior, lines show the fit of a Signal Detection Theory model of decision-making. Top: In the model, a stimulus gives rise to a

noisy orientation estimate. Comparison with a fixed criterion yields a decision. (c) Comparison of normalized bias during the training and test phase. In the

veridical cue condition, cue reliability was 100%; in the ambiguous cue condition, cue reliability was 80%. * P< 0.05.

https://doi.org/10.1371/journal.pcbi.1011104.g004
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high or low contrast (median increase = 0.248 deg, P = 0.031, n = 6; Fig 5B, left panel). In the

ambiguous cue condition, there was no consistent aligned bias during the test phase of the

experiment (high contrast: median bias = –0.032 deg, P = 0.989, n = 6; low contrast: median

bias = –0.019 deg, P = 0.784, n = 6), nor a consistent change in the magnitude of the bias

(median increase = 0.018 deg, P = 0.156, n = 6; Fig 4B, right panel). Thus, when present,

aligned bias increases with stimulus uncertainty.

So far, we have shown that orientation judgments are biased by task context. The magni-

tude of this effect depends on both the reliability of the sensory measurement and the reliabil-

ity of the context cue. This suggests that subjects in our task typically incorporate knowledge

about perceptual ambiguity and context-specific priors into their decision-making process.

Fig 5. Human orientation judgments are biased by task-context in a contrast-dependent manner. (a) Orientation uncertainty for low (ordinate)

and high (abscissa) stimulus contrasts for the veridical cue condition (left) and the ambiguous cue condition (right) subjects. (b) Aligned bias for low

(ordinate) and high (abscissa) stimulus contrasts for the veridical cue condition (left) and the ambiguous cue condition (right) subjects. Error bars

reflect the 68 percent confidence interval, derived from a 1,000-fold bootstrap analysis (Methods).

https://doi.org/10.1371/journal.pcbi.1011104.g005
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The magnitude of the aligned bias also depends on the stability of the environment. This sug-

gests that observers additionally exploit knowledge about the hierarchical structure of the task

and the stability of the environment to interpret ambiguous sensory stimuli. To further test

this hypothesis, we now turn to the question of whether aligned bias changes with the number

of trials since the most recent context switch (i.e., time spent in the current context).

Effect of trials since a context switch on human choice behavior

Does the influence of context on the decision change over time following a context switch?

This is a difficult question to address for two reasons. First, we have a limited amount of choice

data (mean = 4,120 completed trials during the test phase per observer), distributed unevenly

across the number of trials since the last context switch. The frequency of context switches in

our experiment creates an abundance of trials that occur right after a context switch and many

fewer trials that are, for example, the tenth trial within a single context (Fig 2B, bottom right).

Estimating aligned bias separately for each "level" of trial count post-context switch, as we did

for the ideal observer, would yield unreliable estimates for our human observers. Second, in

perceptual decision-making tasks, observers commonly exhibit sequential choice dependen-

cies that here could be mistaken for Bayesian-like dynamic inference. Specifically, observers’

responses are often correlated with their previous response [17] and, sometimes, with the pre-

vious stimulus [18]. These correlations are usually positive, but can be negative as well.

Although such dependencies may improve overall decision accuracy in temporally continuous

environments, they are distinct from dynamic Bayesian inference, which relies on the contin-

ual updating of one’s belief about context.

To overcome these challenges, we developed a descriptive modeling approach to character-

ize the evolution of context-specific aligned biases following a context switch. Our methodol-

ogy is related to approaches developed by Roy et al. (2021) [19] to characterize the temporal

evolution of decision-making strategies in static environments. Specifically, we use a dynamic

Bernoulli generalized linear model (GLM) defined by a set of weights that specify the trial-by-

trial influence of different task variables on the observer’s decision. These variables capture

stimulus and context manipulations, as well as recent response and stimulus history (Fig 6A).

Our approach is novel in its use of a dynamic "bias function", f(S), that describes the tempo-

rally-evolving influence of context on choice and is given by:

f Sð Þ ¼
1

1þ egSC
ð1Þ

where S is the number of trials since the last context switch (for the current trial), γ controls

the shape of the bias function, and C is a categorical variable that takes a value of –1, 0, or 1 for

the negatively skewed, uniform, or positively skewed context. We chose this functional form

because it can capture a variety of monotonically evolving relationships. For each observer, we

jointly estimate the weights and the shape parameter γ by maximizing the likelihood of the

data under the model. Because f(S) varies nonlinearly with S, we use a two-step grid-search

procedure to find this maximum (Methods).

To validate our method, we used the dynamic GLM to generate synthetic data sets for three

model observers. These model observers had identical weights for the task variables, but dif-

fered in their reliance on past history and in the evolution of their aligned bias with the num-

ber of trials following a context switch. Each model observer was presented with the exact

sequence of trials presented to one of our human observers. We then applied our analysis pro-

cedure to these synthetic data, and we found that it provided a robust and unbiased estimate of

the influence of response and stimulus history (Fig 6B, left panel), as well as of the dynamic
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influence of the number of trials since the last context switch. This latter point can be best

appreciated by considering recovery of the evolution of the bias function (Fig 6B, right panel).

We obtain this relation by setting the model’s history terms to zero, such that:

bias Sð Þ ¼
� wC þ wSð0:5 � 1=ð1þ egSÞÞ

wy þ weDe
ð2Þ

where wC is the weight on context, wS the weight on the bias function, wθ the weight specifying the

effect of stimulus orientation at low contrast, we the weight specifying the additional effect of orien-

tation at high contrast, and De a dummy variable that takes a value of 0 for low contrast stimuli and

1 for high contrast stimuli. As can be seen in Fig 6B, the fitted GLM closely approximates the

Fig 6. GLM-based analysis of cross-trial dynamics in human orientation judgment strategies. (a) Dynamic GLM. The probability of a clockwise choice is

predicted by the logistic transformation of six linearly combined regressors. (b) Recovery analysis. Left: Estimated history terms plotted as a function of their

ground truth value for three simulated model observers. Symbols indicate the mean value; error bars, where visible, illustrate the 68 percent confidence

interval. Right: Evolution of aligned bias for high contrast stimuli as a function of the number of trials since the most recent context switch for the same model

observers. The colored line indicates the ground truth relationship with history terms set to zero, the dotted black line shows the mean estimate, and the

shaded region illustrates the 68 percent confidence interval. (c) Estimated history terms for veridical cue condition (left) and ambiguous cue condition (right)

subjects. (d) Model-predicted bias after ten same-context trials plotted against bias immediately following a context switch for the veridical cue condition (left)

and the ambiguous cue condition (right) subjects. Error bars illustrate the 68 percent confidence interval. (e) Evolution of aligned bias for low and high

contrast stimuli as a function of trials since a context switch for all subjects (model prediction with history terms set to zero). The shaded region illustrates the

68 percent confidence interval. *Dynamic GLM outperforms static GLM in cross-validation analysis (see Table D in S1 Text). All confidence intervals were

computed from 1,000 simulated data sets.

https://doi.org/10.1371/journal.pcbi.1011104.g006
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ground truth effects of dynamic bias. This is true for a simulated aligned bias that rapidly rises, is

independent of, or slowly decreases with the number of trials since the last context switch.

Having validated our method, we described each human observer’s choice behavior with

the dynamic GLM and used a bootstrap-based procedure to obtain confidence intervals for the

model predictions (Methods). The dynamic GLM has only one more free parameter than the

static SDT-model, but described the data much better (Fig B and Table A in S1 Text for AIC

comparison). This improvement was in part due to the inclusion of history terms. In particu-

lar, we found that observers’ responses were systematically correlated with their previous

response (Fig 6C, top), but not with the previous stimulus (Fig 6C, bottom). In addition, the

use of a dynamic bias function helped to capture the changing influence of context on the per-

ceptual decision following a context switch. A cross-validation analysis revealed that this

model component was necessary for some, but not all, subjects (see Table D in S1 Text). In

spite of this heterogeneity, we robustly observe that the influence of context on the perceptual

decision grows with time spent in the current context beyond the influence of the previous

response. To quantify this effect, we set the model’s history terms to zero and calculated the

model-predicted bias for trials that occurred ten trials after a context switch (Eq 2) and com-

pared this value to the model’s prediction for trials that immediately followed a context switch.

As can be seen in Fig 6D, spending ten consecutive trials in the same context increased aligned

bias for most subjects (median increase in aligned bias at high contrast = 0.107 deg, P = 0.005,

one-sided Wilcoxon signed-rank test, n = 12; low contrast = 0.155 deg, P = 0.017, n = 12). This

effect reached statistical significance within the veridical cue condition (high contrast = 0.147

deg, P = 0.016, n = 6; low contrast = 0.188 deg, P = 0.016, n = 6), but not within the ambiguous

cue condition (high contrast = 0.094 deg, P = 0.281, n = 6; low contrast = 0.154 deg, P = 0.078,

n = 6), perhaps due to the substantially weaker aligned bias within this condition. The model-

predicted cross-trial evolution of the aligned bias with history terms set to zero is plotted for

each subject in Fig 6E. Inspection of these curves reveals that for some subjects, aligned bias

increased gradually over the course of multiple trials (CZ, SS, BC) while for others, the bias

abruptly saturated (AC, CW, DQ), or barely changed at all (JI, FL, LC). Within the veridical

cue condition, this inter-observer variability resembles variants of the dynamic Bayesian ideal

observer with different assumptions about the stability of the environment or the reliability of

the context cue (Fig 3C). Note that in the ambiguous cue condition, several observers exhibit

negative aligned bias either immediately after a context switch, or after multiple trials within a

context. While this effect is not predicted by the Bayesian ideal observer, we suspect it was

induced by the low environmental stability of the test phase as all ambiguous cue condition

observers had positive aligned bias during the highly stable training phase (Fig 4C). Together,

these results therefore suggest that our subjects’ decisions were not only guided by knowledge

about perceptual ambiguity and context-specific priors, but also by knowledge about the hier-

archical nature of the task and the stability of the environment.

Discussion

Perception is inherently uncertain, and natural environments are constantly in flux. Both fac-

tors are considered major forces that shape computation and representation in sensory sys-

tems [16, 20–24]. This raises the question of how uncertainty and instability jointly impact

sensory-guided decisions [11, 25, 26]. Our analysis reveals that in a simple perceptual deci-

sion-making task, human subjects rely more strongly on context-specific knowledge when

their belief about the current context is more certain. For decision-makers who leverage

knowledge about the dynamics of the environment, this occurs in more stable environments

and after spending more time in the same context. The resulting decision bias can be
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understood as a rational adaptation to the challenges presented by a dynamic world. Moments

of transition often yield uncertainty about the underlying context. Does the first clap of thun-

der really announce the arrival of rain? Does the first flower truly signify that spring has

begun? The answer to these questions will impact subsequent decisions, but because the avail-

able cues are ambiguous, it is not possible to answer them correctly all of the time. The most

accurate strategy is to build and continually update probabilistic hierarchical representations

of the environment to guide the interpretation of incoming stimuli. Under this strategy, uncer-

tainty about the current context weakens strong context-specific priors over stimuli. When

newly incoming evidence (the sound of rain drops or the sight of melting snow) further clari-

fies the context, these priors–and their impact on perceptual decisions–grow stronger again.

Our study complements recent work on uncertain perceptual decisions in dynamic envi-

ronments. One set of studies asked how negative feedback influences decision-making strate-

gies when stimulus-response contingency rules undergo covert and unpredictable changes,

and found that both humans and monkeys take expected choice accuracy into account to dis-

ambiguate the source of failure [27, 28]. Another set of studies investigated temporal integra-

tion of dynamic stimuli in environments that change on different timescales. Human

observers adapt their decision-making strategies to fluctuations that occur suddenly within a

single trial [29], between trials in a sequence [30], or gradually across long blocks of trials [31].

They do so in various manners, which include adjusting the rate at which they discount previ-

ous beliefs [29], biasing initial beliefs [27], and adopting time-varying decision criteria [32].

These various modifications can all be understood as attempts to improve task performance,

as revealed by the optimal Bayesian decision-making policy [25].

We found that uncertain perceptual decisions in changing environments are biased by con-

text-specific knowledge in a manner that qualitatively resembles the dynamic ideal Bayesian

strategy, but quantitatively deviates from this optimum. Specifically, we reported that decision

bias is larger when context cues are more reliable (Fig 4C, veridical vs. ambiguous cue condi-

tion), when the environment is more stable (Fig 4C, late vs test), when the sensory measure-

ment is less certain (Fig 5B), and after more time has been spent in the current context (Fig

6D). These effects are all predicted under a hierarchical Bayesian inference strategy (Fig 3B

and 3C). However, our analysis also reveals several quantitative deviations from the optimal

strategy. Most notably, when the context cue is 100% reliable, there is no uncertainty about the

current context under a well-calibrated generative model of the task, and hence decision bias

should neither depend on the stability of the environment nor on the number of trials since

the most recent context switch. This is not what we observed in the veridical cue condition.

Moreover, when the context cue is 80% reliable, a well-calibrated model would result in some
decision bias, even in highly unstable environments. This is not what we observed during the

test phase of the ambiguous cue condition. To a first approximation, the behavior of subjects

in both conditions resembled a dynamic Bayesian inference strategy that relied on a miscali-

brated generative model of the task in which the reliability of the context cue was systemati-

cally underestimated, resulting in weak stimulus priors. One possible explanation for this

discrepancy is that subjects may have occasionally lapsed in associating the context cue with

the appropriate stimulus distribution, thereby introducing memory-noise that effectively

reduced the reliability of the context cue. It is also possible that subjects continuously learn the

context-specific stimulus distributions by averaging the most recent trials [26]. Especially in

highly unstable environments, this would result in weak stimulus priors. Future work may be

able to distinguish miscalibrated generative models from alternative strategies by using prior-

cost metamers, as proposed by Sohn and Jazayeri (2021) [33].

Which computations do humans use to infer statistical properties of dynamic environ-

ments? While we did not address this question in this work, it is an active area of research
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[26,34–38]. A common finding of several recent studies is that a Bayesian belief updating strat-

egy offers a reasonable account for the learning process [26,36,38]. However, subjects often

appear to rely on a miscalibrated model of the task, and alternative strategies such as reinforce-

ment learning can rarely be ruled out. Notwithstanding, these studies offer strong evidence

that perceptual decisions in dynamic environments involve statistical inference over multiple

temporal scales: one fast (for each individual decision), and others slow (for the statistical regu-

larities of the environment). The key contribution of the present study is to show that, as a con-

sequence, knowledge of environmental dynamics can shape the magnitude and temporal

evolution of perceptual decision bias.

The perceptual inference problems faced by humans and other animals are complex, and so

are the strategies they use to make behavioral choices. Normative models are a critical tool to

uncover the principles that shape these strategies. Here, Bayesian inference serves as a frame-

work for generating hypotheses about which forms of knowledge might be leveraged to

improve uncertain perceptual decisions in our task. The Bayesian ideal observer model pre-

dicts that an agent that makes use of the temporal structure in the environment will use a

dynamically evolving prior over stimuli. This prediction is difficult to test: the normative

model is too complex to directly fit to choice data, but a pure data-based trial-averaging

approach is not efficient enough to reliably characterize the temporal evolution of aligned bias

from realistic amounts of data. Instead, we opted to test the normative prediction by looking at

our data through the lens of different modeling approaches. Note that the prediction we sought

to test was not whether humans are Bayesian–rather, we were inspired by normative principles

to descriptively characterize the trial-by-trial evolution of decision bias across contexts in a

dynamic task. We used a tried-and-tested process model of decision-making to verify the pres-

ence of volatility- and uncertainty-dependent biases and a flexible descriptive model to charac-

terize the dynamic evolution of these biases over the course of a few trials. The interpretation

of our data critically relies on the combined insights offered by each of these approaches. As

such, our study provides an example of how different computational tools can be used in con-

junction to gain insight into the mechanisms underlying complex choice behavior at the single

trial level.

Materials and Methods

Ethics statement

The experimental protocol was approved by the local ethics committee (Institutional Review

Board of The University of Texas at Austin) and all participants gave written informed consent.

Behavioral task

Twelve human subjects (5 male, 7 female; ages 18–30) with normal or corrected-to-normal

vision participated in the experiment. Subjects were not aware of the purpose of the study.

Owing to sample size, no gender-specific analyses were performed. Subjects were seated in a

dimly lit room in front of a gamma-corrected CRT monitor (Hewlett Packard, A7217A). A

head and chin rest ensured that the distance between the participants’ eyes and the monitor’s

screen was 57 cm. Eye position was recorded with a high-speed, high-precision eye tracking

system (EyeLink 1000). We presented visual stimuli at a spatial resolution of 1280 X 1024 pix-

els and a refresh rate of 75 Hz. Stimuli were presented using PLDAPS software (https://github.

com/huklab/PLDAPS) on an Apple Macintosh computer.

Subjects performed an orientation discrimination task in blocks of 48 trials. Each trial

began when participants fixated a small square (0.5˚diameter) at the center of the screen. After

500 ms, two choice targets appeared, one on each side of the fixation point (on the horizontal
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meridian, at 4.5 degrees eccentricity). The choice targets were white lines (2˚ long, 0.3˚ wide),

rotated –22.5˚ (choice target on the left) and 22.5˚ (choice target on the right) from vertical.

After 500 ms, a circularly vignetted drifting grating appeared. The stimulus was positioned in

the lower left visual quadrant (centered at an eccentricity of 3.2˚), measured 1.25˚ in diameter,

had a spatial frequency of 2.5 cycles/deg, and a temporal frequency of 3 cycles/s. Subjects

judged the orientation of the stimulus relative to vertical. The stimulus remained on for 500

ms. The stimulus then disappeared along with the fixation mark and subjects reported their

decision with a saccadic eye movement to the choice target whose orientation was closest to

the estimated stimulus orientation. Auditory feedback about the accuracy of the response was

given at the end of each trial. We varied stimulus orientation over a small range (a few degrees)

that was centered on vertical and tailored to each observer’s orientation sensitivity. Vertically

oriented stimuli received random feedback. Stimuli were presented at either high or low con-

trast (Michelson contrast of 100% and 10%). For nine out of twelve observers, high and low

contrast stimuli were randomly interleaved. For the three remaining observers, high and low

contrast stimuli were grouped in blocks of eight trials.

Subjects performed the task under three contexts, characterized by a uniform, negatively

skewed, and positively skewed distribution of stimulus orientation (shown in Fig 2A). The cor-

responding baseline probability of a "clockwise" choice being correct was 50%, 70%, and 30%.

Context switches occurred pseudo-randomly, with a hazard rate of 6.3% during the training

phase, and of 42.5% during the test phase. The color of the fixation mark (red, green, or blue)

also varied across trials. In the veridical cue condition, this color indicated the underlying con-

text on 100% of trials, in the ambiguous cue condition, this was the case on 80% of the trials.

Subjects were not told what the color of the fixation mark signified. Trials in which the subject

did not maintain fixation within 1.5˚ of the fixation mark were aborted. Participants per-

formed the task across three to eight sessions and successfully completed between 2,420 and

5,388 trials during the test phase of the experiment.

Before performing the main task, subjects participated in one or more training sessions.

Compared to the main task, the range of orientations was larger and context switches occurred

much less frequently in these training sessions. We considered subjects ready for the main task

once their stimulus judgements were consistent (stable, lawfully shaped psychometric func-

tions), reliable (few lapses on easy catch trials), and appropriately biased by context in the most

difficult conditions. This typically required more than 2,000 training trials (see Fig 3A).

Dynamic Bayesian ideal observer model

We derived predictions for a Bayesian ideal observer who leverages its knowledge of the statis-

tical structure of the task to maximize decision accuracy. The dynamic ideal observer assumes

that on each trial t, the stimulus orientation θt and the context cue xt depend on the true

underlying context Ct, and that each context is associated with a specific stimulus distribution

p(θt|Ct) that is matched to one of the distributions used in the behavioral task (Fig 2A). It fur-

ther assumes that context switches occur with a probability h (i.e., the hazard rate), inducing

the following transition probability over the context variable Ct:

p CtjCt� 1ð Þ ¼
1 � h

h=ðN � 1Þ

Ct ¼ Ct� 1

Ct 6¼ Ct� 1

ð3Þ

(

where N = 3 is the number of possible contexts.

On each trial, the ideal observer obtains a noisy orientation measurement yt via the encod-

ing distribution p(yt|θt,σ2) = N(θt,σ2), where σ2 is the variance of sensory noise. It also obtains a
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noisy context cue measurement xt. In particular, the ideal observer assumes that the context

cue is perturbed by external noise via the cue-generating distribution p(xt|CtV, κ) = von Mises

(Ct, κ), where CtV is the angular label of the context Ct, and κ is the concentration parameter

that controls the assumed reliability of the context cue. This formulation captures the situation

whereby the first context could be mistaken for the third one and vice-versa and thus repre-

sents memory noise. The ideal observer then uses these measurements to update its beliefs

about task context and stimulus orientation and make a decision.

To make a decision, the ideal observer estimates the probability p(θt> 0|yt, xt) that the stim-

ulus is oriented clockwise. This estimate is based on the following sequence of steps (note that

for notational simplicity, we denote only the most recent stimulus θt and cue xt, instead of

their respective histories θτ�t and xτ�t):

1. Update the posterior over contexts with the measured context cue; i.e., compute

pðCtjxtÞ / pðxtjCtÞpðCtjxt� 1Þ

2. Compute the prior over stimuli by marginalizing over the posterior over contexts; i.e., com-

pute pðCtjxtÞ /
P

Ct
pðxtjCtÞpðCtjxt� 1Þ

3. Use the resulting prior to compute the posterior over stimulus orientations θt given the

noisy representation yt; i.e., compute pðytjyt; xtÞ

4. Use the resulting posterior to compute the probability that the stimulus is oriented clock-

wise; i.e., compute pðyt > 0jyt; xtÞ ¼
P

yt>0
pðytjyt; xtÞ

5. If pðyt > 0jyt; xtÞ > 0:5, respond that the orientation is clockwise; if p< 0.5, respond

counter-clockwise; if p = 0.5, respond randomly.

6. Compute the prior over contexts for the next time step; i.e., compute

pðCtþ1jxtÞ ¼
P

Ct
pðCtjxtÞpðCtþ1jCtÞ

To illustrate the usefulness of the different forms of knowledge leveraged by this ideal

observer, we also simulated task performance for three model variants that could not access

knowledge about specific task components (Fig 2C). All model variants were presented with

the same set of stimulus and cue measurements, which mimicked the temporal dynamics of

the training phase of the experiment. In our implementation, all model variants followed the

same sequence of steps to make a decision, but differed in their assumptions about the genera-

tive process. For example, model 1 had general knowledge about the ambiguity of perception,

but not about the effects of contrast. We implemented this as assuming a single level of stimu-

lus-independent sensory noise that summarized the overall variability of the orientation mea-

surements in the experiment (step 3). Model 1 did not know the context-specific stimulus

distributions. We implemented this as associating each context cue with the same uniform dis-

tribution that summarized the overall stimulus distribution in the task (step 2). Finally, model

1 had no knowledge about the probability of environmental change. We implemented this as

assuming a flat prior over context for each trial (step 6). We used this approach to specify each

model variant. For the generative process, we used the following parameter values in this simu-

lation: orientation = [-7.5, -5, -2.5, 0, 2.5, 5, 7.5], σ2 = 10 for high contrast stimuli and 20 for

low contrast stimuli, h = 20%, and κ = 1.5.

To identify signatures of the optimal decision-making strategy, we simulated choice behav-

ior of the dynamic Bayesian ideal observer model mimicking the temporal dynamics of the test

phase of the experiment. We consider two ways in which the ideal observer’s generative model

of the task can be miscalibrated: either the assumed hazard rate or the assumed reliability of

the context cue (or both) may differ from the actual values used in the behavioral experiment
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(Fig 3C). We used the following parameter values in the simulations: orientation = [-7.5, -5,

-2.5, 0, 2.5, 5, 7.5], σ2 = 2 for high contrast stimuli and 5 for low contrast stimuli, h = 10, 20,

and 50%, κ = 0.4, 0.2, and 0.025 for Fig 2E, and 0.45, 0.4, and 0.35 for Fig A in S1 Text. Every

simulated experiment consisted of 57,600,000 trials.

Signal Detection Theory model

We measured observers’ uncertainty about stimulus orientation and their estimation bias by

fitting the relation between the task variables (orientation, contrast, and context) and probabil-

ity of a "clockwise" choice with a Signal Detection Theory based process-model of decision-

making [39]. Under this model, each trial gives rise to an orientation estimate which is com-

pared with a fixed criterion to obtain a decision (Fig 4B). We assume that these estimates fol-

low a Gaussian distribution, the mean of which is determined by the true stimulus orientation

plus a context-specific constant (yielding two free parameters: one for the uniform context,

and one for the non-uniform contexts). The spread of the Gaussian is determined by the con-

trast of the stimulus (resulting in two free parameters). Finally, we assumed that on some trials,

observers "lapse" and simply guess without considering the task variables [40] (two free param-

eters, one per contrast). We chose this model based on a model comparison analysis in which

we evaluated four versions of the model on the data collected during the test phase of the

experiment (a 10,000-fold leave-one-out cross-validation analysis performed separately on

high and low contrast choice data). Model versions differed in the number of free parameters

used to describe the context-specific shift and spread of the orientation estimates (see Tables B

and C in S1 Text). Model parameters were optimized by maximizing the likelihood over the

observed data, assuming responses arise from a Bernoulli process. We obtained confidence

intervals on the uncertainty and bias estimates by performing a 1000-fold non-parametric

bootstrap.

Dynamic Bernoulli generalized linear model

We characterized the temporal evolution of our subjects’ decision-making strategy by fitting a

descriptive model that specifies the trial-by-trial influence of a set of independently manipu-

lated task variables (orientation, contrast, and context) as well as two history terms (previous

response, previous orientation) and the nonlinearly transformed trials since context switch on

the choice behavior. These predictors were linearly combined and then passed through a logit

link function. The logit link function is given by

logit Fið Þ ¼ ln
Fi

1 � Fi

� �

ð4Þ

where ϕi is the probability of a clockwise choice. It follows that the point of subjective equality,

PSE, can be obtained by setting the linear combination of the predictors to zero and solving

for S, the number of trials since the last context switch. When the history terms are set to zero,

this yields the following expression for the high contrast condition:

PSE S;Cið Þ ¼
� ðwcCi þ wsf ðSÞ þ waÞ

wy þ we
ð5Þ

where wC is the weight on context, Ci indicates the context (–1, 0, or 1), wS is the weight on the

bias function f(S), wα an additive constant, wθ the weight specifying the effect of stimulus ori-

entation at low contrast, and we the weight specifying the additional effect of orientation at

high contrast. Calculating the difference of Eq 5 for the clockwise and uniform condition yields

Eq 2.
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Model parameters were optimized by maximizing the likelihood over the observed data,

assuming responses arise from a Bernoulli process. We used a two-step "grid-search" proce-

dure to find this maximum, whereby we first optimize all model parameters for a given value

of γ, repeat this search-process for a manually specified range of γ values, and then select the

solution with the best goodness-of-fit value. For each subject, the dynamic GLM better cap-

tured the data than the Signal Detection Theory model (Akaike Information Criterion com-

parison, see Table A and Fig A in S1 Text). To assess the necessity of the dynamic bias

function, we conducted a cross-validation analysis in which trials that occurred between 1 and

4 trials after a context switch comprised the training set and trials that were the 5th or later

after a context switch made up the test set. The full dynamic GLM outperformed a reduced

"static" version that lacked the dynamic bias function in four of six veridical cue condition

observers and three of six ambiguous cue condition observers (see Table D in S1 Text).

Supporting information

S1 Text. Fig A. Determinants of the Bayesian ideal observer’s aligned bias. (a) Low-contrast

aligned bias (color) as a function of trials since the most recent context switch (columns) and

the number of same context trials prior to the most recent context-switch (rows) for an

assumed hazard rate of 10% and a low level of context cue reliability. (b) The pattern of aligned

bias across a range of assumed levels of hazard rate and context cue reliability. Fig B. Compari-

son of goodness-of-fit of Dynamic GLM and Signal Detection Theory model. Low contrast

data are shown as open symbols and high contrast data as filled symbols. Table A. AIC esti-

mates for choice data collected during the test phase of the experiment under the Signal Detec-

tion Theory model and the Dynamic GLM. Table B. Average log likelihood for hold-out data

predicted under four different variants of the Signal Detection Theory model (only high con-

trast trials included). Table C. Average log likelihood for hold-out data predicted under four

different variants of the Signal Detection Theory model (only low contrast trials included).

Table D. Each cell of the table reports the total log-likelihood of the held-out data for each sub-

ject. The rightmost column indicates the proportion of each subject’s total data the held-out

fraction made up.
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