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ABSTRACT

Brains are thought to engage in predictive learning - learning to predict upcoming stimuli - to con-
struct an internal model of their environment. This is especially notable for spatial navigation, as first
described by Tolman’s latent learning tasks. However, predictive learning has also been observed in
sensory cortex, in settings unrelated to spatial navigation. Apart from normative frameworks such
as active inference or efficient coding, what could be the utility of learning to predict the patterns
of occurrence of correlated stimuli? Here we show that prediction, and thereby the construction of
an internal model of sequential stimuli, can bootstrap the learning process of a working memory
task in a recurrent neural network. We implemented predictive learning alongside working memory
match-tasks, and networks emerged to solve the prediction task first by encoding information across
time to predict upcoming stimuli, and then eavesdropped on this solution to solve the matching task.
Eavesdropping was most beneficial when neural resources were limited. Hence, predictive learning
acts as a general neural mechanism to learn to store sensory information that can later be essential
for working memory tasks.

1 INTRODUCTION

Animals learn to create internal representations of their environment, even if these are not directly associated with
attaining rewards (Tolman, 1948). How might an organism develop an internal model of their environment in the
absence of reward? A candidate mechanism is predictive learning (Bar, 2009; Friston et al., 2016; Alexander & Brown,
2018; Nagai, 2019; Whittington et al., 2020; Recanatesi et al., 2021) which may arise even through passive exposure
(Nagai, 2019). In predictive learning, animals continuously attempt to predict their future state, given their current
state and actions. The utility of such models that predict future states has been extensively studied in reinforcement
learning. In contrast to ‘model-free’ agents (that only reinforce actions that have previously led to rewards), ‘model-
based’ agents can rapidly adapt to changes in the environment or reward structure, instead of starting from scratch
(Daw et al., 2011; Russek et al., 2017; Wayne et al., 2018). Further, predictive learning in recurrent neural networks
(RNNs) can extract the latent structure of the environment during a period of unrewarded exploration, actualizing the
proposal that predictive learning acts as a helper function in the brain by encoding the environment (Whittington et al.,
2020; Recanatesi et al., 2021).

Neuroscience experiments have revealed that passive learning of the environment may indeed encode spatial structure
in the brain, as observed in the hippocampus (O’Keefe & Dostrovsky, 1971), but also nonspatial sequences of percep-
tual states, which can be detected even in primary sensory cortex (Libby & Buschman, 2021). However, in a purely
passive learning paradigm, it remains unclear what benefit an organism would gain from actively maintaining predic-
tions of upcoming sensory inputs. To address this question, we focus on a working memory task, which specifically
requires maintaining information across time, and ask whether actively maintaining sensory predictions across a time
delay can improve learning.

∗ Co-senior author
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Figure 1: RNNs use eavesdropping to bootstrap learning. A) RNNs projected to two sets of output neurons,
corresponding to the prediction task and matching task. B) Each trial consisted of two stimuli S1 and S2 followed by
a GO response window, interleaved by delay periods. The stimuli take the possible values S1 = Aα ∈ {A1, A2} and
S2 = Bβ ∈ {B1, B2}, where P (α = 1) = P (α = 2) = 0.5 and P (α = β) = 0.75 (hence S1 is predictive of S2). C)
Networks were trained with one of three possible loss functions: prediction single task learning (red), matching single
task learning (orange) or dual task learning (blue). The dual task loss function was defined as the sum of the prediction
task and matching task loss functions. D) Both prediction single task networks and dual task networks learned the
prediction task equivalently well, converging to the optimal solution equally quickly. E) Only dual task networks
could learn the matching task, after they solved the prediction task (see panel D). This sequence of task learning was
not specified, as the loss function was set to be the sum of the loss functions of both tasks (panel C). Panels D and E
show the mean ± std of 20 simulated networks per network type.

We use artificial neural networks to show that predictive learning can give rise to an internal stimulus representation
that enables networks to learn a more difficult working memory task. Specifically, in our experiments, small, sparse
RNNs could not learn a delayed-match-to-category (DMC) task without simultaneously engaging in predictive learn-
ing. When RNNs were faced with these two tasks, they would first solve the prediction task, which created an internal
stimulus representation that kick-started learning of the DMC task. This phenomenon - where two tasks depend on a
latent feature that can only be learned from one of the tasks, thereby initiating learning of the other - has been termed
‘eavesdropping’ (Caruana, 1997), and constitutes a form of multitask learning that is known to boost learning perfor-
mance in artificial networks (Bell & Renals, 2015; Yu & Jiang, 2016; Liu et al., 2020). Our results suggest that neural
systems could engage in eavesdropping by using predictive learning as helper task.

We also show that predictability does not need to persist constantly, in order to produce long-term benefits. It was
sufficient to introduce stimulus predictability only transiently, making simulated annealing an effective mechanism
to kick-start the learning of complex concepts. This finding aligns with the dynamic nature of natural environments,
where stimulus correlations come and go. Finally, we leverage our results to formulate testable predictions for experi-
mental neuroscience.
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Figure 2: Quantification of the eavesdropping effect A) Speed of convergence of the prediction task as a function of
network size and sparsity. B) The eavesdropping effect shown in Fig. 1E was quantified by measuring the difference
in final loss (averaged over 5 final epochs), confirming that only dual task networks could learn the matching task. C)
The magnitude of the eavesdropping effect depended on the number of nonzero connections (defined by |W | > 0.01,
result is robust to different thresholds). The number of nonzero connections was varied by parametrically changing
the sparsity regularization parameter λ of Eq. 3 from 0 to 0.1 and measuring the fraction of nonzero connections. D)
The prediction task was solved equally well when S2 was delivered later, during the GO window. E) Eavesdropping
only occurred when the stimuli were predictable (P (α = β) = 0.75), as in prior panels). Panels B, D and E used
a two-sided Wilcoxon signed-rank test to assess significance (P values shown). All panels show the mean ± 95%
confidence interval of 10 simulated networks per data point for panel A and 20 simulated networks per data point of
all other panels (error bars or shaded area).

2 RESULTS

2.1 RECURRENT NEURAL NETWORKS USE EAVESDROPPING TO BOOTSTRAP LEARNING

We trained standard recurrent neural networks (RNNs) to solve two working-memory tasks, either individually or
simultaneously (Fig. 1A). Trials consisted of a sequence of two stimuli and a GO cue, interleaved by delay periods.
The prediction task asked networks to continuously predict the next upcoming input stimuli. The matching task
prompted during the GO period whether the two previously presented stimuli matched (Fig. 1B). Importantly, the
stimuli were predictable, or biased, because a match occurred on 75% of trials. This means that the first stimulus S1

was predictive of the second stimulus S2 on most trials. Notably, networks could only learn the matching task when
it was presented jointly with the prediction task (Fig. 1C, D, E). Here, networks first solved the prediction task, after
which learning of the matching task ensued. As we will detail in the next sections, this happened because the prediction
task unveiled a latent feature - the memory of the first stimulus S1 - which was required to solve the matching task.
This phenomenon, in which two tasks share a feature that can (easily) be learned from one, thus catalyzing learning in
the second, is a multitask learning mechanism called ‘eavesdropping’ (Caruana, 1997).

2.2 QUANTIFICATION OF THE EAVESDROPPING EFFECT

To quantify the eavesdropping effect (Fig. 1E) and explore what conditions facilitated this learning strategy, we first
optimized the number of RNN hidden units based on their performance on the prediction task alone (Fig. 2A). We
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found that networks with 20 neurons converged on the prediction task with near-maximal speed of convergence. We
then assessed the eavesdropping effect by calculating the difference in performance (i.e., their final loss value after
training) between matching single task networks (Fig. 1C, E, in orange) and dual task networks (Fig. 1C, E, in blue),
averaged over 20 simulations of each (Fig. 2B).

Next, we quantified how the eavesdropping effect depended on the difficulty of the tasks, by varying the strength
of sparsity regularization (Fig. 2C). We found that eavesdropping was most effective at a range of medium sparsity
values from 30% to 80% non-zero connections. When sparsity regularization was too strong (i.e., less than 25% of
all possible connections were allowed), both learning paradigms failed to learn. When sparsity regularization was
very weak (i.e., more than 80% of all connections were allowed) both paradigms partially converged. Hence, the
effectiveness of eavesdropping depended on the difficulty of the tasks, and eavesdropping allowed sparse networks
to learn the matching task which is typically beneficial to prevent overfitting. Correspondingly, the best absolute
performance on the matching task was only achieved with sparse networks that used eavesdropping (Fig. 2C). We
performed this analysis across a range of network sizes N , which resulted in an equivalent range of sparsity values
where networks could only learn the matching task with eavesdropping (Fig. S1). For the remainder of this study, we
used the optimal fraction of nonzero connections (77%) from Fig. 2C.

Networks had to create an internal representation, i.e., a memory, of S1 to predict the upcoming stimulus S2. For
the matching task, networks also had to memorize S1 (to compare the two stimuli), but for a longer period of time
(to compare with S2). Therefore, the difference in performance (Fig. 2B) could in theory be explained by vanishing
gradients. However, we found that this is not the case, as the prediction task was equally well solved when the delay
period between S1 and S2 was increased to mirror the matching task (Fig. 2D).

Finally, as expected, we found that stimulus predictability P (α = β) > 0.5 was crucial for eavesdropping (on the
prediction task) to occur: dual task networks failed to learn the matching task when they were trained with uncorrelated
stimuli (Fig. 2E).

We have shown that RNNs solved the matching task by eavesdropping on the solution of the prediction task. We have
purposefully used a small and simple network, and have optimized the parameters that give rise to eavesdropping (Fig.
2). This now enables us to pinpoint why learning the prediction task catalyzed learning of the matching task.

2.3 MATCHING TASK EAVESDROPS ON THE STIMULUS MEMORY OF THE PREDICTION TASK

Dual task networks gradually enhanced their neural representation of the S1 stimulus over the course of training
(Fig. 3A). First, the prediction task induced a memory of S1 until the S2 presentation (epoch 8, Fig. 3A), which is
subsequently strengthened to facilitate the matching computation (Fig. 3B). We define the memory of stimulus S1 at
time t as the decoding accuracy of S1 of the differentiated neural activity at that time (see Fig. 3A), evaluated across
trials using logistic regression (see Methods). Fig. 3C shows how the memory of S1 dynamically evolved for all
three network types after training. Matching single task networks (orange) failed to converge, as they did not create
a memory of S1 beyond the time when S1 was presented to the networks. However, prediction-only networks (red)
created a memory representation of S1 and maintained this at perfect accuracy until the S2 presentation, as expected
(because the optimal solution would use S1 information to predict S2). Dual task networks (blue) also maintained a
perfect memory of S1 after convergence that slightly extends the duration of prediction-only networks, so that S1 and
S2 could be compared to perform the matching task.

The prediction task and matching task thus share the same latent feature: S1 memory. The prediction task was solved
by creating a memory of S1, on which dual-task networks could subsequently eavesdrop to solve the matching task
(Fig. 3D). Conversely, prediction single task networks that are trained on uncorrelated data (P (α = β) = 0.5) do not
require a memory of S1 to achieve optimal performance, because S1 is no longer predictive of S2. Indeed we found
that no S1 memory was created in this case (Fig. 3F, red), which subsequently failed to bootstrap the matching task for
the dual task learning networks (Fig. 3G, H). Hence, only networks trained on predictable stimuli created a memory
of S1 when solving the prediction task, and this facilitated learning of the matching task.

We next investigated how the neural representation of S1 (as shown in Fig. 3A) dynamically evolved during a trial,
which is known to be variable network property (Orhan & Ma, 2019). Intriguingly, we found that dual task networks
could embed several different solutions to achieve optimal performance, depending on the stability of the neural
representation of S1. When the subpopulation of neurons that encoded S1 changed over the course of a trial, this gave
rise to a cross-temporal anti-correlation, while an unchanged representation induced a cross-temporally correlated
code (Fig. 3I). Finally, a mix of these neuron types decorrelated the memory code. In other words, the cross-temporal
correlation of the S1 representation depended on how variable the identity of its neurons was over time. We quantified
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Figure 3: Matching task eavesdrops on the stimulus memory of the prediction task A) The neural representation
of S1 is shown for an example network for 4 different epochs during training. Each raster plots shows the differentiated
activity between α = 1 and α = 2 trials of all neurons (clipped between -1 and 1 for clarity). B) Similarly, the neural
representation of the Match/Non-Match (M/NM) trial type is shown at the same 4 epochs. C) The memory of S1 was
determined per time point by decoding the stimulus identity from the network activity. Panels C-H show the average
± std across 20 simulations. D) Dual task networks gradually learned to enhance the memory of S1 (different epochs
are shown from light to dark blue). The 4 epochs of panels A and B are indicated in the figure. E) Dual task networks
memorize S1 until the S2 stimulus is presented, after which they represent the Match/Non-Match identity of the trial.
F, G, H) Equivalent figures for networks that were trained with uncorrelated stimuli. The prediction task no longer
induces a S1 memory (red), because it is not predictive of S2 anymore. It subsequently fails to bootstrap the matching
task in the dual task networks (blue), because the S1 memory is lacking. I) The cross-correlation of the differentiated
activity (as in panel A) is shown for 3 example networks that show anti-correlated, decorrelated and correlated coding
respectively (quantified by the S1-S2 cross-correlation). J) The distribution of S1-S2 cross-correlation values of the
20 network simulations (as determined by the average of the 4 cross-temporal data points with S1 vs S2 from panel I).
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following 3 conditions: Input domain: stimuli S1 and S2 either used the same input domain (Aα and Aβ , i.e.,
delayed-match-to-sample (DMS) task) or different domains (Aα andBβ , i.e., delayed-match-to-category (DMC) task).
Number of samples: each stimulus could either be chosen from 2 samples (A,B ∈ {(1, 0), (0, 1)}) or 4 samples
(A,B ∈ {(cos θ, sin θ); θ ∈ {0, π2 , π,

3π
2 }}). Because these stimuli can also take negative values, a different output

non-linearity (tanh instead of softmax) and loss function (mean least squares instead of cross-entropy) was used for
the prediction task. (We verified that the 2-sample prediction task also converged when optimized with this output
nonlinearity and loss function.) Type of matching task: For the 4-sample condition, we considered a regular matching
task (Aα = Bβ in the case of different input domains), and a rotated matching task (Aα = Bβ+π

2
). B) The effect

of eavesdropping was quantified for the 6 different matching tasks, by summing the sparsity-dependent loss of the
matching task of Fig. S2 (i.e., the orange and blue lines, experiment was repeated for all tasks, with 20 networks per
sparsity value). As the matching task complexity grew, eavesdropping became less effective because the dual-task
networks became worse at solving the task.

this variability across different network simulations, which differed only in initial conditions, illustrating the multitude
of solutions that networks could use (Fig. 3J). This highlights that eavesdropping was not specific to a particular neural
representation of the S1 stimulus, as each of these solutions maintained the S1 memory equally well.

2.4 INCREASING MATCHING TASK COMPLEXITY REDUCES EAVESDROPPING EFFECT

Eavesdropping allowed RNNs to learn the matching task by utilizing memories from solving the prediction task.
Consequently, eavesdropping failed when stimuli were not predictable (Fig. 3F-H), i.e., when S1 was not predictive
of S2 such that the prediction task was no longer sufficiently informative of the matching task. Next we asked if we
could similarly identify the limits of when eavesdropping is an efficient learning strategy by increasing the difficulty
of the matching task instead.

We changed the matching task by considering 6 different combinations of three possible conditions: input domain,
number of samples and matching task type (Fig. 4A). We then quantified the eavesdropping effect across sparsity
values (as in Fig. 2C and Fig. S2) and summed over data points to obtain a single metric. In short, we found that as the
matching task complexity increased, eavesdropping gradually became less effective because the dual-task networks
could no longer solve the matching tasks. This decrease in eavesdropping efficiency was not caused by a failure of the
networks to solve the prediction task, as networks still solved the prediction task at all task complexities and sparsity
values (except for the two strongest sparsity values that lead to∼ 0% nonzero weights), see Fig. S3. Task performance
was similar for both input domains (match-to-sample or match-to-category tasks), but decreased when more stimuli or
a rotated-match task were introduced (Fig. 4B). Hence, as the difficulty of the matching task increases, eavesdropping
on the solution of the prediction task becomes less useful for learning the matching task.

2.5 SIMULATED ANNEALING ENABLES RNNS TO LEARN THE MATCHING TASK WITH UNCORRELATED
STIMULI

In the previous sections we have shown that eavesdropping only worked with predictable stimuli, because only then
a memory of S1 was created. To prove that the stimulus S2 predictability - and the thereby induced S1 memory -
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Figure 5: Simulated annealing enables RNNs to learn the matching task with uncorrelated stimuli A) Dual
task networks are able to learn the matching task with uncorrelated stimuli, by temporarily increasing and decreasing
the stimulus S2 predictability P (α = β) from 0.5 to 0.75 and back to 0.5. This simulated annealing of the stimulus
predictability causes the prediction task to learn the memory of S1, which then bootstraps learning of the matching
task. Networks are able to maintain their stable solution of the matching task - which does not depend on stimulus S2

predictability - when the stimuli are uncorrelated again. The end result is a network that has learned the matching task
with uncorrelated stimuli. B) In contrast, dual task networks are not able to learn the matching task with uncorrelated
stimuli without simulated annealing (also see Fig. 2E). Both panels show the mean± std of 10 simulated networks per
network type.

only helped to initiate the learning process of the matching task, but was not necessary for performing the task after
learning converges, we consider the following: we dynamically varied the stimulus S2 predictability P (α = β) from
a plateau of 0.5 to a plateau of 0.75 and back again to 0.5. We name this procedure simulated annealing, after the
commonly-used technique in Monte Carlo sampling (MacKay, 2003, Ch. 30).

We found that dual task networks that engaged in this setting first learned to solve the prediction task using uncorrelated
stimuli, and then gradually learned to memorize S1 for predicting S2 as stimulus predictability increased. This S1

memory could then bootstrap learning of the matching task, and networks maintained a stable solution after the stimuli
decorrelated again (Fig. 5A). Hence, the matching task could be performed with uncorrelated stimuli, but only by
simulated annealing of the stimulus S2 predictability, as networks with constant P (α = β) = 0.5 did not converge
(Fig. 5B). In summary, a transient period where stimuli are predictable provides the bootstrapping required to learn
the demanding matching task, by inducing stimulus memories in the network activity.

3 DISCUSSION

3.1 SUMMARY AND LIMITATIONS

We have shown that predictive learning acted as a helper task for sparse RNNs to achieve optimal performance in
a delayed-match-to-category (DMC) task. This was facilitated by eavesdropping, a multitask learning mechanism
whereby the easier prediction task created a persistent neural representation of the stimulus that catalyzed learning
of the matching task. Crucially, it was this stimulus representation (or memory) that was necessary for the matching
task to initiate learning. Our results show that predictive learning can induce this representation, and was therefore
sufficient to initiate learning of the matching task (Fig. 3).

Eavesdropping benefits were specific to certain parameters and task variants. The sparsity optimization showed that
eavesdropping is effective for a range of parameter settings that ensure the matching task is neither too difficult (strong
sparsity regularization) nor too easy (no sparsity regularization) (Fig. 2). Further, as the matching task complexity
increased, networks failed to converge, even with eavesdropping (Fig. 4). Lastly, previous studies have optimized very
similar matching tasks (including a variant of the rotated match task) without eavesdropping, using similar RNNs of
100-500 hidden units (Yang et al., 2019; Masse et al., 2019; Orhan & Ma, 2019). Our results show that although
smaller networks naturally fail to learn these memory tasks, eavesdropping is able to facilitate success.

Small, interpretable neural networks are crucial for understanding learning mechanisms (Rudin, 2019), and can provide
a good approximation of larger biological networks (Barak, 2017). Previous studies have shown that larger networks
with more complex architectures can use predictive learning to boost performance in more difficult tasks, such as 3D
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navigation (Wayne et al., 2018), but their underlying mechanisms are difficult to dissect. After we confirmed that task
performance was equivalent across a range of network sizes (Fig. S1), we adhered to a minimal working example of
predictive learning, which enabled us to uncover eavesdropping as its facilitating mechanism (Fig. 3). Notably, the
stimulus-prediction and DMC tasks that we considered are typical of controlled experiments performed in animals
and humans (Freedman & Assad, 2006; Wan et al., 2020; Mohan et al., 2021; Libby & Buschman, 2021; Zhou et al.,
2021), which allows us to use this theoretical study to make experimental predictions that can readily be tested in vivo.
We will do so at the end of the Discussion section. Hence, crucially, the aim of this paper was not to develop a new
Machine Learning heuristic, but rather to use artificial networks to further develop our understanding of biological
learning.

3.2 PREDICTIVE LEARNING AND EAVESDROPPING IN NATURAL LEARNING

Eavesdropping is a form of multitask learning where two (or more) tasks that are optimized simultaneously share a
latent feature that can only (easily) be learned in one of the tasks, hence catalyzing learning in the other task (Caru-
ana, 1997). Eavesdropping, and multitask learning more generally, is conceptually related to both transfer learning
and curriculum learning, which both use ‘helper’ tasks to improve learning. All these learning strategies have been
proposed to occur naturally in animals (Elman, 1993; Ben-David & Schuller, 2003; Bengio et al., 2009; Weiss et al.,
2016; Hassabis et al., 2017). However, it remains unclear what the helper task of eavesdropping could be in neural
systems.

Simultaneously, predictive learning has been shown to benefit reinforcement learning (RL) agents (Russek et al., 2017;
Wayne et al., 2018). In particular, the successor representation - a form of predictive learning (Dayan, 1993; Gershman
et al., 2012) - has been able to provide a link between model-free and model-based RL (Russek et al., 2017), which
are both known to occur in the brain (Daw et al., 2011).

In neuroscience, brains are thought to continuously engage in predictive learning, often motivated by normative frame-
works (Rao & Ballard, 1999; Friston et al., 2016). Our study builds on this, by proposing an additional function of
predicting sensory inputs. We have linked eavesdropping and predictive learning, by showing that predictive learning
was sufficient to induce eavesdropping in environments where stimuli are correlated in time. Other learning processes
that create stimulus representations, such as solving a delayed-response task (Yang et al., 2019; Duncker et al., 2020),
could potentially also facilitate eavesdropping. However, in this work we have focused on predictive learning, given
its prevalence in neuroscience.

Prediction may be useful as sensory correlations are ubiquitous. Our study suggests that prediction functions as a
natural prerequisite for the ability to remember and process sensory experiences over time. Importantly, this does not
entail that ongoing predictability is necessary to maintain a memory: In Fig. 5 we show that transient predictability is
already enough to bring the system into a new minimum, which remains stable after stimulus predictability disappears.
Thus, brief moments during which a complex task can be deconstructed into smaller parts can reveal a path to the
solution, after which these components can be disregarded again (also see Knoblich et al. (1999)).

3.3 EXPERIMENTAL PREDICTIONS

Libby & Buschman (2021) found that mice actively encoded stimulus predictions during a passive learning paradigm
(i.e., with no reward structure). Our study suggests that this learning is functionally important: representing stimulus
correlations that are not directly relevant for behavior might still be a rewarding long-term strategy. Specifically,
predictive learning can act as a module that facilitates learning of complex future task structures.

Taking these experimental findings together with our results, we propose the following hypothesis. Animals that have
to solve a complex working memory task, such as DMC, should benefit from prior passive exposure to correlated
sequences of the stimuli (that are later used in the DMC task). With no requirement for reward, they should internally
attempt to predict these stimuli, thereby creating neural representations of the stimuli that can later accelerate learning.
Prior exposure to uncorrelated sequences, in contrast, should not benefit learning, as random sequences cannot be
predicted.

4 METHODS

Software & code availability All data was analyzed and visualized with Python 3.7, using PyTorch as automatic
differentiation package, and various other standard libraries for analysis and visualization (Numpy, Scipy, Scikit-
Learn, Pandas, Matplotlib, Seaborn, IPython). All experiments and analysis were done on a 16-thread CPU of a
desktop computer. All code and trained network simulations are available at: github.com/vdplasthijs/eavesdropping
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Terminology Vectors are denoted by bold notation (x) and matrices by capital notation (X). Time is denoted by
subscript t, trials are denoted by subscript k.

Tasks We considered two tasks in Figs. 1, 2, 3, 5: first, the prediction task required networks to continuously predict
the next upcoming input stimulus, second, the matching task required networks to report whether two stimuli matched
at the end of each trial (Fig. 1A).

In Fig. 4 we considered the task described above, and 5 additional variants, by changing 1) the input domain, 2) the
number of possible stimulus samples and 3) a direct match or rotated match. These are further described in the caption
of Fig. 4.

Synthetic data Each trial consists of a sequence of 2 stimuli S1 and S2 and a GO cue, interleaved by delay periods
(Fig. 1B). Stimuli are one-hot vectors, with S1 = Aα ∈ {A1, A2} and S2 = Bβ ∈ {B1, B2} (see Fig. 1B). Hence,
the total trial sequence is:

trial sequence = (0, 0, Aα, Aα, 0, 0, Bβ , Bβ , 0, 0,GO,GO, 0, 0) (1)

where each element of Eq. 1 is a one-hot vector. Networks are either trained on predictable sequences (P (α = β) =
0.75), or unpredictable (uncorrelated) sequences (P (α = β) = 0.5). The duration of all stimuli, GO and the delay
periods is 2 time points. This ensures that networks that are trained on predictable sequences will encode both stimuli
for optimal performance: Aα information is used to predict the first Bβ with 75% accuracy, and then the first Bβ is
used to predict the second Bβ with 100% accuracy.

The network input x is defined by the one-hot vectors of Eq. 1 (Fig. 1B) with added white noise (to prevent networks
from overfitting) with standard deviation σx = 0.15 (we found numerically that the results were robust to variations
in σx). For each network, we randomly generated 1000 trials, which are stratified-split into an 80/20 train/test ratio of
trials. All results presented were evaluated on test data only.

Recurrent neural network training We used standard recurrent neural networks (RNNs), consisting of 1 hidden
layer of N = 20 neurons that all receive input from 6 input neurons and project to 8 output neurons (Fig. 1A). The
(rate) activity of neurons rt is defined by :

rt = tanh (U · xt +W · rt−1 + bW ) (2)

where xt is the input at time t, b is the learned bias, U is the input weight matrix and W the recurrent weight matrix.
At the start of each trial, r is initialized with r−1 ∼ N(0, 0.1 · I).

The 6-element prediction task output vector ŷpred
t that estimates the next stimulus is given by a softmax function:

ŷpred
t = softmax(V · rt + bV ) where V is the prediction output weight matrix. Hence,

∑
i ŷ

pred
t,i = 1, and the network

predicts the probability of each possible outcome, rather than one deterministic value. Similarly, the 2 output neurons
of the matching task ŷmatch

t must estimate ymatch
t = (1, 0)T on Match (M, α = β) trials and (0, 1)T on Non-Match

(NM, α 6= β) trials, and are defined by ŷmatch
t = softmax(ReLU(T · rt + bT )) where T is the task output weight

matrix. (Two output units instead of one were used to ensure networks actively had to report both possible outcomes,
and an additional ReLU non-linearity was introduced to prevent the trivial solution TM = −TNM.) The loss function
Lk of trial k, used to train the model parameters θ = {U,W, V, T,b}, is the sum of the cross-entropy loss of either
one or both tasks - depending on the network type - and a sparsity L1 regularization term:

Lk = Lpred
k · 1pred + Lmatch

k · 1match + λ · LL1
k (3)

where λ is the sparsity regularization parameter (optimized in Fig. 2). During the training phase, the loss Lk is accu-
mulated during each trial k. At the end of each trial, Lk is backpropagated through time to update θ = {U,W, V, T,b}
using stochastic gradient descent (SGD) with a learning rate set to 0.002.

Quantifying stimulus representation strength The strength of stimulus representations was quantified in Fig. 3C-
H using the stimulus decoding accuracy of logistic regression. We trained decoders to decode the stimulus identity (e.g.
S1) at each time point t: P (α = 1|rt) = 1−P (α = 2|rt). Decoders were trained across trials using logistic regression
with L1 regularization (scikit-learn implementation with a SAGA solver, max iter = 250 and C = 0.1, (Pedregosa
et al., 2011)). To ensure that the stimulus predictability does not bias the decoders, we trained decoders with a new set
of 800/200 train/test trials with uncorrelated stimuli P (α = β) = 0.5. Decoding accuracy is subsequently defined as
the mean probability of correctly decoding the stimulus identity.
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APPENDIX
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Figure S1: Eavesdropping effect dependency on network size. The eavesdropping effect as in Fig. 2C was quanti-
fied for a range of network sizes N (i.e., number of hidden units) from 5 to 100. The single task and dual task match
losses are shown in panel A, and their differences in panel B. Network size is indicated by transparency (see legend
on the right). Very small networks (N = 5) cannot solve the task, while larger networks generally require eavesdrop-
ping for optimal performance, especially when sparsity is constrained. The average ± 95% confidence interval of 50
simulations per data point is shown.
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Figure S2: Detailed breakdown of Fig. 4B. Each panel is as in Fig. 2C, conducted for each of the 6 tasks as defined
in Fig. 4. NB: For each task the same range of sparsity regularization parameter λ values were evaluated, which could
result in slight variations in number of nonzero connections (hence the variation of the x-axis positions of the data
points across panels). The optimal loss is 0 for all tasks.
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Figure S3: The prediction task is solved for all tasks. Each panel shows the prediction task loss of both the dual
task networks and single (prediction) task networks, for each of the 6 tasks as defined in Fig. 4. Only networks with
severe sparsity regularization, such that almost all connections were 0, failed to learn the task.
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