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Abstract
Consider a geodesic triangle on a surface of constant curvature and subdivide it recur-
sively into four triangles by joining the midpoints of its edges. We show the existence
of a uniform δ > 0 such that, at any step of the subdivision, all the triangle angles
lie in the interval (δ, π − δ). Additionally, we exhibit stabilising behaviours for both
angles and lengths as this subdivision progresses.
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1 Introduction

In this section, we motivate the study of this subdivision in a non-Euclidean setting,
introduce some notation, and state our main results.

We first define what we call the iterated medial triangle subdivision (see Fig. 1).
In our setting, all geodesics will be taken to be minimal. A geodesic triangle T in the
surface M2

κ of constant curvature κ is defined as a triple of points of M2
κ , together

with a choice of three geodesic segments joining each pair of points. If κ � 0, M2
κ is

uniquely geodesic and any triple of points defines a unique geodesic triangle. If κ > 0
however, there exists a unique geodesic between two points if and only if the distance
between them is strictly less than π/

√
κ [2]. For our subdivision to be well defined in

the positive curvature case, we then require the three vertices of our triangle to lie in
the same open hemisphere (the largest uniquely geodesic convex set in M2

κ , see [2]).
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Fig. 1 The first two medial triangle subdivisions of a triangle in H
2, E2, and S2

Equivalently, we could require the perimeter of our triangles to be strictly less than
2π/

√
κ . In the positive curvature setting, we shall then understand the meaning of

“geodesic triangle” to include these restrictions on the possible triples of points. For
all κ , we define the iterated medial triangle subdivision of a geodesic triangle T ⊂ M2

κ

inductively, as the following sequence T0, T1, T2, . . . of refining triangulations:

– T0 = T ,
– Tn+1 is obtained from Tn by adding the midpoints of the edges of Tn and, within
each triangle of Tn , pairwise connecting its three midpoints by geodesic segments
(this creates four new sub-triangles for each triangle of Tn).

Our main work is to show that this elementary subdivision behaves “nicely” with
respect to both lengths and angles, in a sensemade precise by our threemainTheorems,
A, B, and C. Before stating our theorems, we point out that it is enough to prove each
theorem in the specific case where κ = ±1. The general case can be reduced to
the previous one by rescaling the spherical/hyperbolic metric by a constant |κ|−1/2.
Indeed, doing so the curvature becomes κ , but angles are not affected.

Theorem A For any geodesic triangle T in M2
κ , there exists δ > 0 such that, for all n,

all the angles of Tn lie in the interval (δ, π − δ).

This theorem will be derived as an immediate consequence of our Theorem B. How-
ever, we point out to the reader that Theorem A does not require the full strength of
TheoremB and can be obtained through a faster route (see Remark 5.2). Before stating
our remaining theorems, we first need to introduce some notation to make clear the
statements of Theorems B and C.

To fix our notation, we will consider a sequence of nested triangles t0, t1, . . . with
ti ∈ Ti , i ∈ N, such that tn+1 is one of the four triangles of the medial triangle
subdivision of tn . We name the sides of t0 as a0, b0, and c0 and use the following
notation scheme, by analogy with the Euclidean case (cf. Fig. 2):

(a) If tn+1 is obtained as the innermost triangle in the medial decomposition of tn (as
seen on the left diagram), thenwe name each of its edges according to the only edge
of tn it does not intersect, e.g. an+1 denotes the side of tn+1 not intersecting an . In
this case, we call an+1 the parallel side of an in tn+1.

(b) If tn+1 is obtained from tn as one of the three outer triangles of the medial sub-
division (as seen on the right diagram), then two of its sides are contained in tn .
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Fig. 2 Case (a) on the left and (b) on the right. In both cases tn is the outer triangle and the nested triangle
tn+1 is highlighted in grey

Those sides inherit their letter from the associated side in tn , e.g. the side of tn+1
contained in the side labelled an of tn is named an+1. The remaining side of tn is
to be named according to the convention of case (a).

As for angles, αn (resp. βn, γn) will denote the angle opposite an (resp. bn, cn).

Theorem B For any sequence of nested triangles t0, t1, . . . and for all n ∈ N, there
exist lα, Lα > 0 such that

α0lα < αn < α0Lα.

In addition, lα (resp. Lα) approaches 1 from below (resp. above) as all the side lengths
of t0 become smaller.

This theorem itself will be obtained as a consequence of Theorem C and a similar
statement regarding the heights of triangles in our triangulations (Proposition 4.1).

Theorem C For any sequence of nested triangles t0, t1, . . . and for all n ∈ N, there
exist la, La > 0 such that

a0la � 2nan � a0, (hyperbolic geometry)

a0 � 2nan � a0La . (spherical geometry)

In addition, in the non-trivial cases where there exists at least some integer n ∈ N such
that an+1 is obtained as the parallel side of an in tn+1, the inequalities are strict and la
(resp. La) approaches 1 from below (resp. above) in the hyperbolic (resp. spherical)
setting as all the side lengths of t0 become smaller.

In addition to bringing light on a very natural and elementary object, the study of the
medial triangle subdivision in the non-Euclidean setting is motivated by our ongoing
work on acute triangulations of Riemannian triangle complexes. A Riemannian trian-
gle complex is a 2-dimensional simplicial complex in which each simplex is given its
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Fig. 3 Using Theorem A to construct acute triangulations of constant curvature triangle complexes

own individual Riemannian metric. While acute triangulations have been extensively
studied in the Euclidean planar setting [6], the only existing result in the Riemannian
setting is a highly non-constructive existence result for 2-dimensional Riemannian
manifolds [3]. Even in the constant curvature setting, it is currently unknown whether
complexes of spherical or hyperbolic polygons can be acutely triangulated or not. In
a follow-up article, we will lay out a constructive existence result for the class of
spherical and hyperbolic triangle complexes with finite isometry types. Our methods
will exploit Theorem A to explicitly transport a new particular Euclidean acute tri-
angulation scheme due to Bishop [1] onto a fine enough medial triangle subdivision
of the triangle complex to control the angle distortion occurring during the transport
(Fig. 3 illustrates this heuristic for a hyperbolic triangle complex).

Before we proceed with the proof, we provide examples to convince the reader
of the unusual behaviours exhibited by the medial triangle subdivision in the non-
Euclidean cases. Indeed, in the Euclidean case, this subdivision yields four congruent
triangles that are obtained from the original one by a similarity with scale factor one
half. Therefore each iteration preserves the angles and halves the lengths, making our
results trivial remarks. However, in the presence of non-zero curvature, the situation
is not so straightforward. In fact, as we set off to showcase, a surprising fact about this
subdivision in curved spaces is that a single step of the subdivision can be “arbitrarily
degenerate”. This shouldmake our result perhaps slightlymore surprising to the reader.

2 Examples

Example 2.1 We first show how to construct a family of triangles for which the ratio
α1/α0 is unbounded (for one of the four possible choices of α1). More strikingly, α0
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Fig. 4 Constructing a family of triangles for which the ratio α1/α0 is unbounded

can be taken arbitrarily small and α1 arbitrarily close to π . Consider the following
example of an isosceles triangle t0 in the hyperbolic plane (seen in the Poincaré disk
model in Fig. 4). We label its vertices A, B,C and its midpoints D, E, F , as indicated
on the figure. In the Euclidean case, the angle α0 and α1 would be equal. Here however,
fixing A, we can extend the geodesic segment BC to a line and have the points B andC
move further apart from each other at equal speed on this line. Doing so will drag the
midpoints F and E arbitrarily close to B and C (in the Euclidean metric), making the
angle α1 arbitrarily close to π . This construction is valid for any choice of A, and in
particular we can choose A to be arbitrarily close to the boundary, making the angle
α0 arbitrarily close to 0.

Example 2.2 The second surprising phenomenon about themedial triangle subdivision
in non-Euclidean geometries is that its behaviour with respect to the angles depends
on the initial triangle, namely: in certain triangles it will increase the corresponding
angles while it will decrease it in others. To showcase this behaviour, we will provide a
quantitative geometric criterion for isosceles triangles to exhibit either one behaviour
or the other. Consider an isosceles triangle with vertices A, B,C and sides of length 2a
and 2b (see Fig. 5). Let D, E, F be the midpoints of the sides BC , CA, and AB. Let
Q be the point of intersection of the geodesic segments FE and AD; let α, β, α′, β ′
be the angles described in Fig. 5. By symmetry, the triangle DCA has a right angle
at D. For the same reason, DEQ has a right angle at Q. Let u denote the length of
the geodesic segment DE and h that of the segment DA. Hyperbolic trigonometry
identities [5, p. 81] in the right-angled triangle DEQ give us

cot β ′ cot α′ = cosh u. (1)

Likewise, the hyperbolic sine rule in the triangles DCE and DEA give us the two
identities:
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Fig. 5 In hyperbolic isosceles triangles, depending on which of the two lengths |DE | or |DA| is the largest,
the subdivision either increases or decreases the angle α′ relative to α

sin β

sinh u
= sin(π/2 − α′)

sinh a
= cosα′

sinh a
,

sin α

sinh u
= sin α′

sinh a

which, combined, give us

tan α′ = sin α

sin β
. (2)

Finally, the dual hyperbolic cosine rule [5] applied to the triangle DBC informs us
that

cosβ = sin α sin
π

2
cosh h − cos

π

2
cosα = sin α cosh h. (3)

We are looking for a condition on the isosceles triangle ABC to ensure that either
β ′ > β or its converse is true, or equivalently that tan β ′ > tan β or otherwise.
Combining (1), (2), and (3), we obtain

tan β ′ > tan β ⇐⇒
(
sin α

sin β
cosh u

)−1

>
sin β

cosβ
⇐⇒ cosh h > cosh u.

There are thus two distinct and opposite scenarios possible, in which either:

– u > h, in which case the medial subdivision produces a smaller angle, i.e., β ′ < β

(left diagram of Fig. 6 shows an example in the Poincaré disk model).
– u < h, in which case the medial subdivision produces a larger angle, i.e., β ′ > β

(right diagram of Fig. 6).

Remark 2.3 The exact same reasoning works transposed in the spherical setting but
yields the opposite inequalities and behaviours, namely the two cases on Fig. 6 are
reversed. This is because equalities (2), (3), and (1) all remain the same with regular
sines and cosines instead of their hyperbolic counterpart. The two scenarios previously
highlighted are however to be swapped, since the cosine function is decreasing on the
interval [0, π ], while the hyperbolic cosine function is increasing on that same interval.
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Fig. 6 Informally, in “long and flat” triangles, the subdivision decreases the highlighted angle, whereas it
increases it in “tall and thin” triangles

Fig. 7 In the spherical setting, lengths can get arbitrarily distorted by the medial subdivision

To briefly address how the subdivision behaves with respect to lengths, we provide
two particularly striking examples in the spherical case (Figs. 7 and 8).

Example 2.4 We first show that, for certain spherical triangles, lengths can be arbitrar-
ily distorted by the medial subdivision. Consider a spherical isosceles triangle ABC ,
with right angle at A and equal sides |AB| = |AC |. As B andC approach the antipodal
point of A, |BC | becomes arbitrarily small, while |EF | will approach a quarter of the
equatorial circle between those two poles. In that sense, the spherical upper bound of
Theorem C should perhaps appear less natural, as we can create triangles in which
one of the sides will have its corresponding side in the next step of the medial triangle
subdivision arbitrarily larger (Fig. 7).

Example 2.5 Lastly, we provide an example to show that, for any ε > 0 and for any
given N ∈ N, we can find a triangle T ε

0 for which every edge of T ε
N lies in the ε-

neighbourhood of the union of the sides of T ε
0 . Moreover, diam(T ε

N ) > π/2. We
first remark, that, while our subdivision is not defined for a triangle on the equator
circle, one can nevertheless imagine what the subdivision would resemble in the case
where the three vertices A, B, and C are equidistributed on the equator, as there is
still a unique geodesic between all midpoints in this case. It is easy to see that taking
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Fig. 8 This figure illustrates Example 2.5, with the hatched annulus corresponding to the ε-neighbourhood
of the union of the sides of T0 and N = 3. Smaller values of ε and larger values of N are achieved by
choosing the vertices of T0 closer to those of ABC

the midpoints of this triangle gives another triple of points of the equator which are
also equidistributed. By continuity, if we consider a triangle T ε

0 whose vertices are all
equidistributed on a latitude circle close to the equator and let its vertices approach A,
B, andC respectively, we see that its midpoints will also stay close to the midpoints of
ABC . By induction, for any finite number N of subdivisions and any ε > 0, choosing
T ε
0 to lie on a latitude circle sufficiently close to the equator then guarantees that

all edges of T ε
N remain within the ε-neighbourhood of the union of the sides of T ε

0 .
Because of this, it is clear that for ε sufficiently small, diam(T ε

N ) > π/2.

3 Stabilisation of Lengths

Despite the various unusual behaviours showcased by our previous examples, we
claim that as n grows, the refining triangulations eventually “stabilise” to the limiting
Euclidean case, in the sense of Theorems B and C. In this section, we establish our
notation and focus on the behaviour of the edge-lengths of the subdivision. The core of
this section is our proof of TheoremC, which gives a precise sense to the “stabilisation
of lengths” observed in the medial triangle subdivision. Theorem C will also play a
crucial part in our proofs of Proposition 4.1 and Theorems A and B.

While the study of the behaviour of the heights in the subdivision is delayed to
Sect. 4, the constructions used towards the proof of Theorem C rely heavily on taking
orthogonal projections and measuring heights. We thus begin by making clear the
meaning of “height” in the positive curvature setting. Indeed, while there is a unique
orthogonal projection from any point to any line in the non-positive curvature setting,
the situation is slightly more subtle in the spherical case. In the spherical setting, if we
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p

p

Fig. 9 A point on the sphere has either two (left diagram) or uncountably many (right diagram) orthogonal
projections to a line

fix a point p and a great circle C, there are two possible cases, depending on whether p
is a pole of the sphere for C considered to be the equator circle. If it is not (left diagram
of Fig. 9), there is a unique geodesic arc which realises the distance of p to C. This
arc is what we refer to as the altitude drawn from p onto C and we call its length the
height of p to C. The point of intersection between this arc and C is referred to as the
orthogonal projection of p onto C. Note that, in this case, the height is always strictly
less than π/2. If p is a pole of the sphere for C considered to be the equator circle
(right diagram of Fig. 9), the height of p to C is defined to be equal to π/2, while both
the altitude from p to C and its orthogonal projection on C are undefined. Notice that
in both cases, the height is the minimal distance from p to any point on the line C.
Fortunately, all our proofs relying on altitudes and orthogonal projections will take
place in a setting where the distance between any two points is strictly less than π/2,
therefore ensuring the second case where p is a pole with respect to the equator circle
C cannot happen.

We begin by stating the following lemma:

Lemma 1 For any sequence of nested triangles t0, t1, . . ., and for all n ∈ N, the
following inequalities hold:

an+1 � an
2

, (hyperbolic geometry)

an+1 � an
2

(spherical geometry)

(and similarly for bn+1 and cn+1). The inequalities are strict when an+1 is obtained
as the parallel side of an in tn+1.

Proof The two cases where an+1 is contained in an are trivial. The only case of interest
is thus when an+1 is obtained as the parallel side of an in tn+1. In that case, it is a
consequence of the observation that the hyperbolic plane (resp. the Euclidean plane) is
a CAT(−1) space (resp. a CAT(0) space), and thus also CAT(0) space (resp. a CAT(1)
space) [2, II.1.13]. The lemma follows directly from the CAT(κ) inequality. �	
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While this observation is a well-known fact, a later construction of ours will provide
an elegant alternative proof of Lemma 1, later on in this section, see Remark 3.2 in
our proof of Theorem C.

Lemma 2 In the spherical case, there exist an integer N and a positive constant C < 2
depending only on t0, such that, for all n > N, we have an+1 � Can/2.

We now note that Lemma 2 clearly holds in the hyperbolic case because of Lemma 1,
choosing C = 1 and N = 0 in the statement. But we also wish to establish an upper
bound in the spherical case. For that purpose, we will think of a geodesic triangle T
on the sphere as a Jordan curve and define its interior as the connected component of
S
2 − T that is contained in the open hemisphere containing T .

Lemma 3 Given a geodesic c : [0, l] → S
2 joining two points u = c(0) and v = c(l)

on a geodesic triangle T , the restriction of c to the open interval (0, l) lies in the
interior of T .

Proof To fix the notation, PQR will denote a geodesic triangle and X ,Y , Z the mid-
points of its three edges QR, RP , and PQ. Note that we have that dS2(X ,Y ) < π and
likewise for the other two pairs. There is then a unique minimal arc joining joining
X and Y and this arc is the intersection of S2 with the positive cone in E

3 spanned
by X and Y , seen as unit vectors in E

3. Thus all the points of this geodesic arc are
of the form x X + yY , with x, y � 0 and x + y > 1. Since X is the midpoint of
QR, it can be expressed as λ(Q + R), with λ > 1/2. Likewise Y can be expressed
as μ(P + R), μ > 1/2. This shows that each point on the geodesic segment joining
X and Y can be written as a sum xλ(P + Q) + yμ(Q + R) = αP + βQ + γ R
with α + β + γ > 1 and α, β, γ � 0. The entire geodesic segment thus lies in the
intersection between the positive cone in E

3 spanned by P , Q, R, and S
2 and is thus

contained within the triangle PQR. For any points of the geodesic distinct from X
and Y , we have α, β, γ > 0, which shows that these points lie in the interior of the
triangle PQR. �	

We shall now need the following important lemma to prove Lemma 2:

Lemma 4 For all ε > 0, there exists N ∈ N such that all the edge-lengths of tn, for
n > N, are smaller than ε.

We point out here that this is still a weaker statement than that of Lemma 2, which
tells us that any sequence of edge lengths (an)n∈N not only converges to 0 but is also
bounded above by a geometric sequence.

Proof Given a sequence of nested triangles t0, t1, . . ., we define the sequences of points
(An)n∈N, (Bn)n∈N, and (Cn)n∈N consisting, for each n, of the vertices of tn incident
to the angles αn , βn , and γn respectively. In our setting, t0 is a closed compact subset
of the open hemisphere, thus each of the three sequences (An), (Bn), and (Cn) have
subsequences (Ank ), (Bnk ), and (Cnk ) converging to A, B, and C respectively, with
all three points lying in t0 (by Lemma 3).

Suppose now by contradiction that the sequences (Ank ), (Bnk ), and (Cnk ) do not
converge to the same point. There are two possible cases.
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Fig. 10 Case 1 of the proof of Lemma 4
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Fig. 11 Case 2 of the proof of Lemma 4

Case 1: A �= B �= C . Lemma 3 guarantees that the vertices of T = ABC and the
innermost triangle T ′ of T in the medial triangle subdivision form two disjoint closed
sets. Denote then by d the minimum of the three distances between T ′ and each of the
points A, B, andC . Then the (d/2)-neighbourhoods of A and T ′ are disjoint (likewise
for B and C). Since geodesics between any two points of the open hemisphere are
unique and continuous with respect to their endpoints, we have that there exists N
such that the (d/2)-neighbourhood of each edge in the medial triangle subdivision of
T contains the corresponding edge of AnN BnN CnN (see Fig. 10). Assuming that tnN+1
is the innermost triangle of tnN , we can then guarantee that A and tn(N+1) are disjoint.
But this is impossible as A lies in tn(N+1) . If instead tnN+1 were not the innermost
triangle but (for example) the triangle BnN+1AnNCnN+1 (the bottom-left triangle on
Fig. 10), then we could now guarantee that B (or C) and tn(N+1) are disjoint. This is
again impossible as B (and C) lies in tn(N+1) . The other two cases are dealt with in the
exact same fashion.

Case 2: A �= B and B = C . (The other two possible cases are symmetric up to a
relabelling of the vertices.) We proceed with a similar argument as in the first case,
replacing T by the geodesic segment joining A and B, T ′ by the geodesic segment
joining the midpoint M of AB to B = C and letting d = dS2(A, B)/2. In this degen-
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erate case, we consider the “medial triangle subdivision” of T where the midpoints
of AB and AC coincide with M , the midpoint of BC coincides with B, and the
tree edges joining the three midpoints of BC , CA, and AB are the point M and the
edge MB (counted twice). We then similarly obtain an integer N such that the d/2-
neighbourhood of each edge in the “medial triangle subdivision” of T contains the
corresponding edge of AnN BnN CnN . For the three possible choices of tnN+1 that do
not contain AnN , we can consider the (d/2)-neighbourhoods of T ′ and A to guarantee
that A and tn(N+1) are disjoint. But this is impossible since A lies in tn(N+1) . If instead
tnN+1 was the triangle containing AnN (see Fig. 11), then we could now consider the
(d/2)-neighbourhoods of AM and B = C to guarantee that B = C and tn(N+1) are
disjoint. This is again impossible since B = C lie in tn(N+1) . This concludes the proof
of Case 2. �	

Remark 3.1 Owing to Lemmas 3 and 4, we now know that, in the spherical setting, we
can assume our triangles to be small enough to lie inside an open ball of radius π/4, so
that the distance between any two points is strictly less than π/2. This guarantees that
the height from any point lying on such a triangle to any line (great circle) intersecting
the triangle must be strictly less than π/2. Indeed, as we noted before, the height from
a point to a line is the minimal distance from this point to any point on the line. The
second case of Fig. 9 will thus be safely averted from there on.

We now introduce some notation. For convenience, we write an (resp. bn, cn) as
BC (resp. CA, AB) and the midpoints of BC , CA, and AB by D, E , and F (see
Fig. 12). In the following proofs, we let A′, B ′,C ′, D′ be the orthogonal projections
of A, B,C, D on the geodesic line (i.e., the great circle in the spherical setting) FE .
We also consider the orthogonal projections F ′ and E ′ of F and E on the line BC .
Note that these are all well defined in light of Remark 3.1.

In the following discussion, we define a quadrilateral XYY ′X ′ as the union of
the geodesic segments XY , YY ′, Y ′X ′, and X ′X , provided that every pairwise inter-
section of the four interiors of these segments is empty. We remind the reader that a
quadrilateral XYY ′X ′ for which the oriented angles ∠Y ′Y X and ∠Y XX ′ are right
angles (for the two possible orientations of the hyperbolic plane or the sphere) and the
lengths of its sides XX ′ and YY ′ are equal is called a Saccheri quadrilateralwith base
XY and summit X ′Y ′ (sometimes called a Saccheri isosceles birectangle). Saccheri
quadrilaterals have a unique line of symmetry cutting both their base and summit

Fig. 12 The construction for an acute spherical triangle (left) and an obtuse hyperbolic triangle (right)
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ψ

Fig. 13 The annotated Lambert quadrilateral XYY ′X ′

sides perpendicularly through their midpoints (see for example [4, §21]). Likewise, a
quadrilateral XYY ′X ′ in which the angles at X ,Y and X ′ are right is called a Lambert
quadrilateral (sometimes called Lambert trirectangle) with apex at Y ′.

We first give a short proof of a trigonometric identity in Lambert quadrilaterals
which will prove to be very useful in our proof of the main theorem and which we
shall use throughout this article.

Lemma 5 In a hyperbolic Lambert quadrilateral XYY ′X ′ with apex Y ′, the following
identity holds:

sinh |X ′Y ′| = sinh |XY | cosh |YY ′|.

The identity in spherical geometry is obtained by replacing hyperbolic trigonometric
functions by spherical trigonometric functions:

sin |X ′Y ′| = sin |XY | cos |YY ′|.

Proof From the dual hyperbolic law of cosines in the right triangle XY ′Y [5, 2.4.9],
we obtain cosh |YY ′| = cosφ/sin α. Moreover, from the hyperbolic law of sines we
obtain that sin α/sinh |XY | = 1/sinh |XY ′|. Combining the two and using the fact that
cosφ = sinψ , we get: sinh |XY | cosh |YY ′| = sinψ sinh |XY ′|. Using the hyperbolic
law of sines a second time in the right triangle XX ′Y ′, we obtain sinψ/sinh |X ′Y ′| =
1/sinh |XY ′|. Substituting for sinψ using this identity, we reach the desired equality.�	

We now get back to our proof of Lemma 2 and start by establishing the following
fact:

Lemma 6 There exists N ∈ N such that, for all n > N, the quadrilateral C ′B ′BC
is a Saccheri quadrilateral with base B ′C ′ of length 2|FE |, symmetry line DD′ and
base and summit midpoints D′ and D.

Proof In the spherical setting, we refer to Remark 3.1 to select N ∈ N such that all the
edge-lengths of tn and all heights are strictly less than π/2. In the hyperbolic setting,
we select N = 0.

By construction, the triangles FB ′B and FA′A share an angle and two edge-lengths,
and are therefore congruent. Likewise for the triangles E AA′ and ECC ′. This shows
that |AA′| = |CC ′| = |BB ′|. Since B ′ and C ′ are the orthogonal projections of B and
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Fig. 14 The quadrilateral C ′B′BC is a Saccheri quadrilateral

C on the line FE , there only remains to show that C ′B ′BC is indeed a quadrilateral.
This is clear in the hyperbolic case, but requires more care in the spherical case.

In the spherical setting, we first observe that B ′C ′ and BC cannot intersect. Indeed,
|B ′C ′| � π , |B ′B|, |C ′C | < π/2 and ∠C ′B ′B = ∠B ′C ′C = π/2. We cannot have
B ′ = B or C = C ′ as it would imply that all points in fact lie on a single great
circle. Therefore, it must be that B and C are two distinct interior points of the same
right-angled spherical lune with one of its half great circles passing through B ′ and C ′
(see Fig. 14). However, the geodesic joining any two interior points of a right-angled
spherical lune does not cross either boundary edge (a right-angled spherical lune can
be completed to a hemisphere sharing either half great circle of the lune as its boundary
great circle, and open hemispheres are convex). The only possibility is then that BB ′
and CC ′ intersect. But since ∠C ′B ′B = ∠B ′C ′C = π/2, this would imply that both
|BB ′| and |CC ′| are greater than π/2, which contradicts our definition of orthogonal
projections. This argument proves that C ′B ′BC is a Saccheri quadrilateral.

We now prove that D′ is the midpoint of B ′C ′ and not its antipodal point. Denote
by D′′ the midpoint of B ′C ′. In the previous paragraph, we have shown all four points
B, C , B ′, and C ′ to all lie in the same right-angled spherical lune. Since C ′B ′BC is
Saccheri, we now also know that the line through the midpoints of its base and summit
is perpendicular to both base and summit (and is its only line of symmetry). Because
of this, we can choose the right-angled lune containing all four points to have D′′ as
the midpoint of one of its two boundary half great circles. The edge DD′′ can then
be seen as a strict sub arc of the lune’s equatorial arc (see Fig. 14), which proves that
|DD′′| < π/2 and confirms that D′′ = D′.

Lastly,we justifywhy the base B ′C ′ has length 2|FE |. By construction,wehave that
|B ′C ′| = |B ′A′|+|A′C ′| (resp. |B ′C ′| = −|B ′A′|+|A′C ′|, |B ′C ′| = |B ′A′|−|A′C ′|)
when βn and γn are acute (resp. when βn is obtuse, γn is obtuse). Note that the case
where bothβn andγn are obtuse is impossible since a spherical trianglewith all its edge-
lengths smaller than π/2 has at most one obtuse angle (this is a direct consequence
of the spherical law of cosines). Observe then that |FE | = |FA′| + |A′E | (resp.
|FE | = −|FA′| + |A′E |, |FE | = |FA′| − |A′E |) and we have |B ′A′| = 2|FA′|
and |A′C ′| = 2|A′E | in all cases, since 2|FA′|, 2|A′E | < π/2. Thus, |B ′C ′| =
2|FA′| + 2|A′E | = 2|FE | (resp. |B ′C ′| = −2|FA′| + 2|A′E | = 2|FE |, |B ′C ′| =
2|FA′| − 2|A′E | = 2|FE |). �	
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Proof of Lemma 2 Using Lemma 4, we first show that the statement of Lemma 2 is
true for the sines of the edge lengths and the added constraint that C � 1, namely:

Claim There exist an integer N and a positive constant 1 ≤ C < 2 depending only
on t0 such that, for all n > N, sin an+1 � C sin(an/2).

Proof of the claim The only cases of interest are the two non-trivial cases where an+1
is obtained as the parallel side of an in tn+1. In both of these cases, we can appeal to
Remark 3.1 and use Lemma 6 and the formulae of Lemma 5 to obtain

sin
an
2

= sin |DC | = sin |D′C ′| cos |CC ′| = sin an+1 cos |CC ′|. (�)

If we now suppose by contradiction that our claim is false, then for all N ∈ N and for
all 1 < C < 2, there exists n > N such that sin an+1 > C sin(an/2). Using (�), this
implies that

cos |CC ′| = sin(an/2)

sin an+1
< C−1,

which in turn implies that

|CC ′| > arccosC−1 > 0.

However, in positive curvature, the sides of a Lambert quadrilateral incident to the apex
are strictly smaller than than their opposite side in the quadrilateral. Therefore, |CC ′| <

|DD′| (using the Lambert quadrilateral C ′D′DC). Applying the spherical version of
Pythagoras’ theorem in the right angled triangle DD′F , we see that |DD′| � |FD|,
since |DD′|, |DF | � π/2. As Lemma 4 guarantees that |FD| → 0 when n → ∞,
we have shown that |CC ′| → 0 when n → ∞. This contradicts |CC ′| > arccosC−1

and proves the claim. �	
To get back to the proof of the lemma, we first note that, for all x > 0, we have

sin x < x . On the other hand, for any ε > 0, we have (1 − ε)x < sin x , for x small
enough. Using the particular value of C and N given by the previous claim, we can
choose an ε > 0 small enough to guarantee that C/(1 − ε) < 2. There is then an
integer N ′ > N large enough to guarantee that, for all n > N ′,

(1 − ε)an+1 < sin an+1 < C sin
an
2

<
Can
2

which gives the following desired inequality:

an+1 <
C

1 − ε
· an
2

and finishes the lemma, as C/(1 − ε) < 2. �	
We now get back to the proof of Theorem C, which we state again below.
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Theorem C For any sequence of nested triangles t0, t1, . . . and for all n ∈ N, there
exist la, La > 0 such that

a0la � 2nan � a0, (hyperbolic geometry)

a0 � 2nan � a0La . (spherical geometry)

In addition, in the non-trivial cases where there exists at least some integer n ∈ N such
that an+1 is obtained as the parallel side of an in tn+1, the inequalities are strict and la
(resp. La) approaches 1 from below (resp. above) in the hyperbolic (resp. spherical)
setting as all the side lengths of t0 become smaller.

Proof of Theorem C (hyperbolic setting) Hyperbolic Upper Bound. Note first that
Lemma 1 tells us that the sequence (2nan)n∈N is decreasing as

2n+1an+1

2nan
= 2an+1

an
≤ 1.

Since the sequence is bounded below by 0, this guarantees its convergence to a non-
negative limit. Applying Lemma 1 n times also directly gives us the a0 upper bound:
2nan = 2n−1(2an) ≤ 2n−1an−1 ≤ . . . ≤ 2a1 ≤ a0.

Hyperbolic Lower Bound. Our task is to show that the sequence (2nan)n∈N con-
verges to a strictly positive limit. Let us start by rewriting the previous limit as the
following infinite product:

lim
n→∞ 2nan = lim

n→∞
2an
an−1

· 2an−1

an−2
· . . . · 2a1

a0
· a0.

The convergence to a strictly positive value of this infinite product is equivalent to the
finiteness of the infinite sum of the logarithm of its factors. Namely:

a0

∞∏
n=1

2an
an−1

> 0 ⇐⇒ |ln a0| +
∞∑
n=1

∣∣∣∣ln 2an
an−1

∣∣∣∣ = |ln a0| +
∞∑
n=1

ln
an−1

2an
< ∞.

Note that Lemma 1 tells us the sign of the ratio inside the absolute value. In order to
prove that this sum is indeed finite, we will show that the following inequality holds:

ln
an−1

2an
<

bn
2

. (��)

The convergence of the geometric series (b02−(n+1))n∈N then ensures the convergence
of the logarithm sum, as bn/2 ≤ b02−(n+1). It then also provides us with a uniform
bound:

∞∑
n=1

ln
2an
an−1

= −
∞∑
n=1

ln
an−1

2an
> −

∞∑
n=1

bn
2

> −1

2

∞∑
n=1

b0 · 2−n = −b0
2

.
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This gives us that la = e−b0/2 is a valid choice, since after taking the exponential on
both sides in the previous inequality, we obtain

2nan > lim
n→∞ 2nan = a0

∞∏
n=1

2an
an−1

> a0e
−b/2.

Note that la indeed approaches 1 from below when all side lengths of t0 become
smaller (thus approaching the Euclidean case for small triangles). We now proceed to
prove inequality (��). Note that this inequality is trivially satisfied for the terms of the
sequences where an+1 is contained in an , since the logarithms of their corresponding
ratio are then each equal to zero and do not contribute to the sum. It is thus enough to
prove it in the case where an+1 is obtained as the parallel side of an in tn+1.

We shall use the same notation as on Fig. 12, with the added simplification that we
will write a in place of an and a′ in place of an+1, and similarly for the other sides.
We begin by extending the geodesic segment joining E and F on either side of the
triangle and introduce points G and H such that |GE | = |EF | = |FH | = a′. The
resulting figure, resembling a “jester hat”, can be seen on Fig. 15. The geodesic triangle
GEC and FE A share two equal sides and an angle and are therefore congruent. For
the same reason, the triangle FHB is also congruent to FE A and therefore also
to GEC .

Remark 3.2 We take this opportunity to give a short elegant proof of Lemma 1, stating
that 2a′ < a in hyperbolic triangles and 2a′ > a in spherical triangles. Indeed,
with this construction we know that there is a hyperbolic translation, with axis the
geodesic line going through E and F and translation distance 2a′, taking the triangle
GEC to the triangle FHB. Since the minimum translation distance of a hyperbolic
translation is realised for points on its axis, we can conclude that a > 2a′. We can of

γ

Fig. 15 The hyperbolic and spherical “jester hats”
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γ

Fig. 16 The unique equidistant curve γ at distance h from the geodesic line EF

course replicate the exact same construction in the spherical case, where the hyperbolic
translation along the line EF nowbecomes the rotation of the spherewhose axis has the
great circle passing through EF as its equator circle. Since the maximum translation
distance of a rotation of the sphere is realised along its associated equator circle (see
Fig. 15), this concludes the proof of Lemma 1.

We now turn our attention to the geodesic quadrilateral EHBC . There is a unique
equidistant curve γ staying within a fixed distance h from the geodesic line EF and
passing through B and C (Fig. 16). Since h < b/2 and the length Lγ (B,C) of γ

between B and C is more than that of the geodesic segment joining B and C , it is
enough to show that

ln
Lγ (B,C)

2a′ < h

in order to show (��). The key to the demonstration is now to notice that the figure in
invariant under translation along EH , so that we may look at the ratio of infinitesimal
displacements along EH and γ instead of that between Lγ (B,C) and 2a′. If we con-
sider the quadrilateral EHBC in the upper half-plane model (Fig. 17), the equidistant
curve γ is now a line meeting the geodesic line EH on the boundary. Denote by θ the
angle between EH and γ . Since the metric in the upper half-plane is scaled by the
inverse of the y-coordinate, the ratio between infinitesimal displacements along EH
and γ is simply given by cos−1 θ .

On the other hand, we can compute the distance h between the geodesic line EH
and the equidistant curve γ using the metric of the upper half-plane model

h =
∫ θ

0

dt

cos t

Putting both together, it then remains to prove the following inequality:

ln
Lγ (B,C)

2a′ = ln(cos−1 θ) <

∫ θ

0

dt

cos t
= h.
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γ

Fig. 17 The equidistant curve γ seen in the half-plane model

To obtain that inequality, it is enough to differentiate both sides with respect to θ and
show that the derivatives verify the inequality. After differentiating and simplifying,
we reach the following equivalent inequality:

sin θ < 1.

Note that the previous inequality need in fact only be strict at one point to guarantee
the strict inequality after integration (the point θ = 0, for example, is then enough).
Alternatively, we can also observe that the only possibility for equality is when θ =
π/2. However, the line EH and γ are at finite distance h from each other, which
implies precisely that θ < π/2. �	
Proof of Theorem C (spherical setting) Spherical Lower Bound. We start with the
opposite observation than in the hyperbolic case, namely that Lemma 1 here gives
us the lower bound instead of the upper bound: 2nan ≥ a0. Likewise, it also informs
us that the sequence (2nan)n∈N is increasing as

2n+1an+1

2nan
= 2an+1

an
� 1.

Our task is thus to show that the sequence (2nan)n∈N is bounded above.

Spherical Upper Bound. In the spherical case, we give a shorter, purely trigonometric
proof (note that this proof is also available in the hyperbolic case). It will prove easier
to exhibit an upper bound for the sequence (2n sin an)n∈N instead, which will transfer
to our original sequence via a small correction term. As in the hyperbolic setting, we
start by rewriting the n-th term of the sequence as the following product:

2n sin an = 2 sin an
sin an−1

· 2 sin an−1

sin an−2
· . . . · 2 sin a1

sin a0
· sin a0.
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Finding an upper bound for this product of n terms is again equivalent to finding an
upper bound to the sum of the logarithm of its factors. Namely,

a0

n∏
i=1

2 sin ai
sin ai−1

> δ > 0 ⇐⇒ |ln a0| +
n∑

i=1

∣∣∣∣ln 2 sin ai
sin ai−1

∣∣∣∣ < Δ < ∞,

where eΔ = δ. There again, Lemma 1 tells us the sign of the ratio inside the absolute
value. To prove an upper bound on this sumof logarithms,we take up again the notation
of Fig. 12 and focus on the non-trivial case where an+1 is obtained as the parallel side
of an in tn+1. Lemma 6 guarantees that for a large enough n, the quadrilateralC ′B ′BC
is Saccheri and the quadrilateral C ′D′DC is Lambert. For such an n, we can now use
the spherical Pythagoras theorem in the triangle D′CC ′ and Lemma 5 in C ′D′DC to
obtain the two following identities:

cos |D′C | = cos |CC ′| cos |D′C ′|, (4)

sin |DC | = sin |D′C ′| cos |CC ′|. (5)

Using (5) together with the double angle formula for the sine, we reach the following
inequality:

2 sin(an+1/2)

sin(an/2)
=

(
cos

an+1

2
cos |CC ′|

)−1

> 1. (6)

Combining (6) with (4), we obtain, for tn small enough:

2 sin(an+1/2)

sin(an/2)
= cos an+1

cos |D′C | cos(an+1/2)
<

(
cos

an+1

2

)−1

(7)

The last inequality is obtained by noticing that, for small enough spherical triangles, the
length of the hypotenuse |D′C | in the right-angled spherical triangle D′CC ′ is larger
than that of the leg |D′C ′| = an+1. This can be shown to be true of any spherical
triangle contained in a spherical octant and thus, in particular, for any triangle with
side lengths smaller than π/3. By Lemmas 4 and 2, we can pick N ∈ N such that for
all n > N , all three sides of tn are smaller than π/3 and the inequality an+1 � Can/2
holds. Since all side-lengths are strictly less than π/2, our choice of N was large
enough to guarantee that the quadrilateral C ′B ′BC is Saccheri, allowing us to make
use of the previous derivations. Writing

CN =
N∑
i=1

2 sin(ai+1/2)

sin(ai/2)
,

we can now write the following inequality:

n∑
i=1

ln
2 sin(ai+1/2)

sin(ai/2)
< −

n∑
i=N

ln cos
ai+1

2
+ CN <

n∑
i=N

ai+1

2
+ CN , (8)
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where the last inequality stems from the observation that − ln cos x < x for x ∈
(0, π/3). Indeed, the first function is strictly convex and has vanishing derivative at 0.
It is then enough to check that the inequality is true in π/3: a quick computation
gives cos(π/3) = 1/2 > 1/e > 1/eπ/3, which is the desired inequality after taking
logarithms and changing signs. Using Lemma 2 and after multiplying inequality (8) by
ln sin(a0/2) and taking the exponential, we obtain the following chain of inequalities:

2n sin
an
2

< sin
a0
2

exp

(
a0
2

n∑
i=N

(
C

2

)i
+ CN

)
< sin

a0
2

exp

(
a0

(C/2)N

2 − C
+ CN

)
.

For all n ∈ N, let us consider the quantity εn = an/sin an −1. it is easy to see that this
quantity is always strictly positive, goes to 0 as n → ∞ and (εn)n∈N is a monotone
decreasing sequence. Noting that sin an < 2 sin(an/2) and sin(a0/2) < a0/2, we
obtain

2nan = 2n(1 + εn) sin an < a0(1 + ε0) exp

(
a0

(C/2)N

2 − C
+ CN

)
.

From this, we conclude that la = (1 + ε0) exp (a0(C/2)N/(2 − C) + CN ) is a valid
choice. Indeed, by construction, both N and CN become zero for a0 small enough.
Since C is fixed, we also have that both 1 + ε0 and the exponential term approach 1
from above when a0 becomes small. �	

4 Stabilisation of Heights

In this section, we investigate the behaviour of heights in the subdivision and show that
they also “stabilise” to the Euclidean case as our triangulations refine. The exact mean-
ing of this expression is made precise by the statement of the following proposition:

Proposition 4.1 For any sequence of nested triangles t0, t1, . . ., and for all n ∈ N,
there exist lh, Lh > 0 such that

h0lh � 2nhn � h0Lh,

where hn denotes the height from the vertex incident to αn onto the line prolonging
the side of length an in tn. In addition, in the non-trivial cases where there exists at
least some integer n ∈ N such that an+1 is obtained as the parallel side of an in tn+1,
the inequalities are strict and lh (resp. Lh) approaches 1 from below (resp. above) as
all the side lengths of t0 become smaller.

The following lemmawill prove to be useful to simplify our proof of Proposition 4.1:

Lemma 7 In the hyperbolic setting (resp. in the spherical setting, for n large enough),
the height of the vertex incident to αn+1 to the line prolonging the side of length an+1
in tn+1 is minimal among all four choices of tn+1 (resp. maximal) when the innermost
triangle of tn is selected.
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Proof We stated the theorem and give the proof only for the height associated to αn+1
in the hyperbolic setting, the spherical proof is obtained by simply reversing each
conclusion/inequality and the other cases are derived in the same fashion. Recall that
|A′A| = |C ′C | and consider the Lambert quadrilateral D′C ′CD. In the hyperbolic
case, we have that |C ′C | > |DD′|, as the sides incident to the apex are larger than
their opposite sides in hyperbolic Lambert quadrilaterals (this opposite conclusion is
true for spherical Lambert quadrilaterals). The same inequality can be derived for each
of the other two heights by using the Lambert quadrilaterals FDD′F and DE ′ED′.

�	
Proof of Proposition 4.1 (hyperbolic setting) There again, we shall only give the proof
regarding the heights associated to αn , the proofs of the other cases are derived in the
same fashion. We once again take up our notation for Lemma 2. In addition, let A′′
be the orthogonal projection of A onto the line BC and denote by E ′′ the midpoint of
A′′C (see Fig. 18). For the sake of brevity, we shall disregard the similar but easier
case where A′′ = C .

Once again, we begin by writing the quantity 2nhn as the following product:

2nhn = 2hn
hn−1

· 2hn−1

hn−2
· . . . · 2h1

h0
· h0 = h0

n∏
n=1

2hi
hi−1

.

n

Fig. 18 The evolution of heights in the hyperbolic setting

γ

γ

Fig. 19 The evolution of heights in the case where tn+1 = E AF
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Hyperbolic Upper Bound. Note first that, |A′′A|/2 > |EE ′′| by Lemma 1. Using
the hyperbolic Pythagoras theorem we then have that |EE ′′| > |EE ′|. Lemma 7
then guarantees that |EE ′| > |DD′|. Putting everything together, we obtain that
hn/2 = |A′′A|/2 > |EE ′′| > |EE ′| > |DD′|, which shows that each factor (other
than h0) in the previous product is strictly less than 1. This shows the upper bound
in the two cases where tn+1 = CED (where hn+1 = |EE ′|) and tn+1 = FDE
(where hn+1 = |DD′|). The case where tn+1 = DFB is symmetrical to the case
tn+1 = CED, but a slightly more circumvoluted argument is required to derive the
upper bound when tn+1 = E AF . Let us denote by γ the angle ∠E ′CA and by γ ′
the angle ∠A′E A = ∠C ′EC (see Fig. 19). Note that γ = γn and γ ′ = ∠FE A if
γn � π/2, but otherwise we instead have γ = π −γn and γ ′ = π −∠FE A. Applying
hyperbolic trigonometric identities in the triangles EE ′C and ECC ′, we obtain

sinh |EE ′| = sin γ sinh |EC |, (9)

sinh |CC ′| = sin γ ′ sinh |EC |. (10)

Using the hyperbolic sine law in the triangles ABC and AFE and making use on their
shared angle αn , we get

sin γ ′ = sinh(cn/2)

sinh cn
· sinh an
sinh an+1

sin γ. (11)

Let us denote by ρn+1 the factor preceding sin γ in the previous equation, i.e., such
that we have sin γ ′ = ρn+1 sin γ . Combining (9), (10), and (11) now gives us

sinh |CC ′| = ρn+1 sinh |EE ′|. (12)

Using the observation that for all x > 0, we have sinh(x/2) < (sinh x)/2, we reach

ρn+1 <
sinh(an/2)

2 sinh(an+1/2)
cosh

an
2

. (13)

Using inequality (��) in the proof of Theorem C and noting that, for all x > 0, we
have sinh x > x and (sinh x)/x < exp x , we obtain that

sinh(an/2)

2 sinh(an+1/2)
<

sinh(an/2)

an+1
= an

2an+1
· sinh(an/2)

an/2

< exp
bn+1

2
· sinh(an/2)

an/2
< exp

(
bn+1

2
+ an

2

)
,

which leads us to the following upper bound on ρn (noting that for all x > 0, we have
cosh x < exp x):

ρn+1 < exp

(
bn+1

2
+ an

2

)
cosh

an
2

< exp

(
bn+1

2
+ an

)
.
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Observing that, for all n > 0, we have exp (bn+1/2 + an) > 1, we obtain the following
inequality (for any choice of tn+1):

2 sinh hn+1 < 2max {ρn+1, 1} sinh |EE ′| < exp

(
bn+1

2
+ an

)
sinh hn .

From this we conclude that

2nhn < 2n sinh hn = sinh h0

n∏
i=0

2 sinh hi+1

sinh hi
< sinh h0

n∏
i=0

exp

(
bi+1

2
+ ai

)
.

Making use of Lemma 1, we obtain

2nhn < sinh h0 exp

(
n∑

i=0

(
bi+1

2
+ ai

))
<

sinh h0
h0

eb0/2+2a0h0.

We have thus shown that

Lh = sinh h0
h0

eb0/2+2a0 > 1

is a valid choice as Lh indeed approaches 1 from above as the edge lengths of t0
become smaller.

Hyperbolic Lower Bound. We now want a lower bound for the product∏n
i=1(2hi/hi−1). Because of Lemma 7, we know that it is enough to derive the lower

bound in the case where tn+1 is obtained as the innermost triangle. Once again, it is
equivalent to derive an upper bound for the sum of the absolute values of the logarithm
of its factors, namely:

2nhn = h0

n∏
i=1

2hi
hi−1

> δ > 0 ⇐⇒ |ln h0| +
n∑

i=1

∣∣∣∣ln 2hi
hi−1

∣∣∣∣ < Δ < ∞

where eΔ = δ. However, it will prove easier to bound the ratio sinh hn/sinh hn−1
instead. We start by applying Lemma 5 in the Lambert quadrilateral DE ′ED′:

sinh hn+1 = sinh |DD′| = sinh |E ′E |
cosh |D′E | . (14)

We can also establish the following identity through the hyperbolic sine rule applied
to the triangles CAA′′ and CEE ′:

sinh hn
sinh |EE ′| = sinh |A′′A|

sinh |EE ′| = sinh |CA|
sinh |CE | = sinh 2bn

sinh bn
. (15)
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Combining both identities (14) and (15), we obtain

2 sinh hn+1

sinh hn
= 2 sinh bn sinh |EE ′|

sinh 2bn sinh |EE ′| cosh |ED′| = 1

cosh bn cosh |ED′| . (16)

This shows that 2 sinh hn+1/sinh hn < 1 and tells us that we need a lower bound on
the ratios 2 sinh hi/sinh hi−1 instead of an upper bound as |ln(2 sinh hi/sinh hi−1)| =
ln(sinh hi−1/(2 sinh hi )). Since |ED′| � bn+1, as the leg is always less than the
hypotenuse in hyperbolic geometry, we obtain:

2 sinh hn+1

sinh hn
� 1

cosh bn cosh bn+1
� (cosh bn)

−2. (17)

As ln cosh bn < bn and the sequence (bn)n∈N is bounded above by the geometric series
(b02−n)n∈N, inequality (17) gives us the desired logarithm convergence criterion for
sinh hn :

n∑
i=0

∣∣∣∣ln 2 sinh hi+1

sinh hi

∣∣∣∣ < 2
n∑

i=0

ln cosh bi < 2
n∑

i=0

bi .

Taking the exponential of both sides and multiplying by sinh h0, we now get back to
the original product:

2n sinh hn = sinh h0

n∏
i=0

2 sinh hi+1

sinh hi
> sinh h0 exp

(
−2b0

n∑
i=1

2−i

)
> e−2b0 sinh h0.

For any n ∈ N, we can choose εn = (hn − sinh hn)/sinh hn so that (1− εn) sinh hn <

hn . It is easy to see that, for all n ∈ N, εn > 0 and limn→∞ εn → 0. Moreover, one
can show the sequence (εn)n∈N to be monotone decreasing. This allows us to write,
for all n ∈ N,

2nhn > 2n(1 − εn) sinh hn > lim
n→∞ 2n(1 − ε0) sinh hn > (1 − ε0)e

−2b0 sinh h0.

As t0 becomes smaller, both exp(−2b0) and 1 − ε0 approach 1 from below. Taking
lh = (1 − ε0) exp(−2b0) and noticing that sinh h0 > h0 thus finishes the proof. �	

Proof of Proposition 4.1 (spherical setting) Some of the arguments used to derive the
hyperbolic upper bound unfortunately do not translate to the spherical lower bound,
which is why we take a slightly different approach here.

Spherical Lower Bound. In the proof of the hyperbolic lower bound, we showed
equality (16) using only hyperbolic trigonometry, this result is thus also valid in
the spherical case (switching hyperbolic functions for the spherical ones) as long
as Lemma 6 holds. Selecting the integer N given by Lemma 6, we have that, for all
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n > N for which tn+1 is obtained as the innermost triangle of tn :

2 sin hn+1

sin hn
= 1

cos bn cos |ED′| . (18)

For such values of n, we thus have 2 sin hn+1/sin hn > 1.
In the case where tn+1 = CED, we make use of the spherical equivalent of identity

(14) and the spherical Pythagoras theorem in triangle DED′ to obtain, for all n > N ,

sin hn+1 = sin |DD′| cos |D′E | >
sin hn
2

· cos |DE |
cos |DD′| >

sin hn
2

cos cn+1, (19)

which shows that for such values of n, we have 2 sin hn+1/sin hn > cos cn+1. The case
where tn+1 = DFB is symmetrical. The case where tn+1 = E AF is dealt with in the
exact same way as the hyperbolic upper bound case, substituting spherical functions
for the hyperbolic ones, reversing all the inequalities used and making use of (7)
instead of (��). In this fashion, we reach the inequality:

sin hn+1 > sin |EE ′| cos an
2

cos
an+1

2
>

sin hn
2

cos cn+1

(
cos

an
2

)2
.

Putting all the cases together and observing that, for all n > N , we have
cos cn+1 (cos(an/2))2 < cos cn+1 < 1, we obtain the following inequality (for all
choices of tn+1):

2 sinh hn+1 > min

{
cos cn+1

(
cos

an
2

)2
, cos cn+1, 1

}
sin hn

= cos cn+1

(
cos

an
2

)2
sin hn .

Noting that for all x > 0, we have x > sin x , we obtain

2nhn > 2n sin hn = sin h0

N−1∏
i=0

2 sin hi+1

sin hi

n∏
i=N

2 sin hi+1

sin hi
> CN sin h0

n∏
i=N

2 sin hi+1

sin hi

where CN = ∏N−1
i=0 2 sin hi+1/sin hi . Combining this last inequality with our lower

bound for 2 sin hi+1/sin hi , we obtain

2nhn > CN sin h0

n∏
i=N

cos ci+1

(
cos

ai
2

)2
.

Adjusting our choice of N to ensure that, for alln > N , we have cos cn+1, cos(an/2) <

π/3, we can make use of the inequality cos x > e−x , for all x ∈ (0, π/3). Using
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Theorem C, we obtain

2nhn > CN sin h0 exp

(
−

n∑
i=0

(ci+1 + ai )

)
>

sin h0
h0

CNe
−(c0Lc+2a0La)h0.

We have thus shown that

lh = sin h0
h0

CNe
−(c0Lc+2a0La) < 1

is a valid choice as lh indeed approaches 1 from below as the edge lengths of t0 become
smaller.

Spherical Upper Bound. Just like for the lower bound in the hyperbolic setting,
Lemma 7 allows us to deal only with the case where tn+1 is the innermost triangle
of tn . Since we showed that for all n > N , we have 2 sin hn+1/sin hn > 1, we now
need an upper bound as |ln(2 sin hi+1/sin hi )| = ln(2 sin hi/sin hi−1). But since the
cosine function is decreasing on [0, π ], we still desire an upper bound on |ED′| in
(18). Our previous remark that |ED′| ≤ bn+1, for all n > N , is again enough to yield
the desired upper bound:

2 sin hn+1

sin hn
≤ 1

cos bn cos bn+1
≤ 1

(cos bn+1)2
. (20)

Lemma 2 allows us to adjust our choice of N such that the series (bn)n>N is bounded
above by the geometric series (b0(C/2)n)n>N . Adjusting one last time our choice of
N to ensure that all edge lengths are smaller than π/3, we can once again guarantee
that − ln cos bn < bn , for all n > N . Writing C ′

N = ∑N
n=0 ln(2 sin hn+1/sin hn), we

can write

n∑
i=0

∣∣∣∣ln 2 sin hi+1

sin hi

∣∣∣∣ < −2
n∑

i=N

ln cos bi+1 + C ′
N < 2

n∑
i=N

bi+1 + C ′
N

which gives us

|ln h0| +
n∑

i=0

∣∣∣∣ln 2 sin hi+1

sin hi

∣∣∣∣ < |ln h0| + 2b0

n∑
i=N

(
C

2

)i
+ C ′

N .

After taking the exponential of both sides, we retrieve

2n sin hn = h0

n∏
i=0

2 sin hi+1

sin hi
< h0 exp

(
4b0

(C/2)N

2 − C
+ C ′

N

)
.

Let then εn = hn/sin hn − 1. It is straightforward to check that for all n, we have
εn > 0 and limn→∞ εn → 0. It is also easy to establish that (εn)n∈N is a monotone
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and decreasing sequence. Because of these observations, we can write

2nhn < 2n(1 + εn) sin hn < h0(1 + ε0) exp

(
4b0

(C/2)N

2 − C
+ C ′

N

)
.

Choosing

lh = (1 + ε0) exp

(
4b0

(C/2)N

2 − C
+ C ′

N

)

finishes the proof. Indeed, both N and C ′
N converges to zero for t0 small enough and

the exponential goes to 1 as b0 grows smaller and C is fixed. Both 1 + ε0 and the
exponential approach 1 (the exponent is always strictly positive). �	

5 Stabilisation of Angles

In this section, we quickly derive the proof of our main result as a corollary of Propo-
sition 4.1 and Theorem C and show that the angles in the subdivision behave “nicely”
in the limit, in a sense made precise by the following proposition:

Theorem B For any sequence of nested triangles t0, t1, . . . and for all n ∈ N, there
exist lα, Lα > 0 such that

α0lα < αn < α0Lα.

In addition, lα (resp. Lα) approaches 1 from below (resp. above) as all the side lengths
of t0 become smaller.

Proof We derive the proof in the hyperbolic case, the spherical case is obtained in the
exact same fashion by swapping hyperbolic trigonometric functions for spherical ones
and reversing the appropriate inequalities.

Let hn denote the height of the altitude drawn from the vertex incident to
αn onto the line prolonging the side of tn of length cn . Trigonometric identi-
ties [5, p. 81] give us that sin αn is simply the ratio of sinh hn by sinh bn . Let
εn = 1 − sinh(h0lh2−n)/(lh2−n sinh h0). It is easy to check that εn > 0 for all
positive integers n, and limn→∞ εn = 0. Similarly, we define ε′

n as the quantity
1 − sinh(b0lb2−n)/(lb2−n sinh b0) and make the same observations. We remark as
well, that, for all x > 0 and all 0 < ε < 1, we have sinh(εx) < ε sinh x . Putting the
previous observations together with Theorem C and Proposition 4.1 gives us the two
following two chains of inequalities:

sin αn = sinh hn
sinh bn

<
sinh(h02−n)

sinh(b0lb2−n)
<

2−n sinh h0
lb2−n(1 − ε′

n) sinh b0
= sin α0

(1 − ε′
n)lb

,

sin αn = sinh hn
sinh bn

>
sinh(h0lh2−n)

sinh(b02−n)
>

lh2−n(1 − εn) sinh h0
2−n sinh b0

= (1 − εn)lh sin α0.
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Fig. 20 In the hyperbolic setting, the subdivision cannot transform an obtuse angle into an acute one

It is easy to show that both (εn)n∈N and (ε′
n)n∈N are monotone sequences decreasing

to 0. Putting together both previous inequalities, we obtain

(1 − ε0)lh sin α0 < sin αn <
sin α0

(1 − ε′
0)lb

. (21)

Choosing l ′α = (1− ε0)lh and L ′
α = ((1− ε′

0)lb)
−1 then yields the desired inequality

on the sines of the angles. Indeed, both 1 − ε0 and lh approach 1 from below as t0
becomes smaller. Likewise, both (1− ε′

0) and lb approach 1 from above as t0 becomes
smaller.

While the sine function is monotonous and continuous, each element of the open
interval (0, 1) has two pre-images under it, one in the interval (0, π/2) and the other
in the interval (π/2, π). The following claim will allow us to differentiate between
these two pre-images and establish the equivalent of inequality (21) for the angles:

Claim In the hyperbolic setting, for any sequence of nested triangles t0, t1, . . . such
that α0 > π/2, and for all n ∈ N, we have αn > π/2. In the spherical setting, for any
sequence of nested triangles t0, t1, . . . , there exists N ∈ N such that if αN < π/2, for
all n > N, we have αn < π/2.

Proof of the claim In order to allow us to reuse some of our previous constructions
and notations, we prove our claim for βn instead of αn . It is enough to show that,
for all n ∈ N and any choice of tn+1, we have that βn > π/2 implies βn+1 > π/2.
Suppose not, and there exist an integer n and a choice of tn+1 such that βn > π/2 but
βn+1 � π/2. There are three possible cases. Let us first investigate the case where
tn+1 was chosen as the innermost triangle of tn . Following the notation of Fig. 12,
where tn+1 = DEF , we see that if βn+1 = ∠FED � π/2, D′ must be positioned
on the closed half-line starting at E and containing the edge FE (see Fig. 20). Since
|B ′D′| = |FE |, this entails that B ′ lies on the closed half-line starting at F and not
containing the open edge FE . But since βn is obtuse and the angle at the apex of a
hyperbolic Saccheri quadrilateral is acute, B ′ must in fact lie on the open half-line
starting at F and containing the open edge FE . A similar contradiction is derived
for the other two cases: if tn+1 = EDC , D′ must also be positioned on the half-line
starting at E and containing the edge FE and the same contradiction is derived; the
case where tn+1 = AFE is symmetric with the previous case, exchanging A and C . �	

123



1088 Discrete & Computational Geometry (2023) 70:1059–1089

Fig. 21 Whenever one of the angles ∠FED, ∠EFA, or ∠CDE is right, they must in fact all be simulta-
neously right

The exact same argument solves the spherical case, selecting N ∈ N according to
Lemma 6 and reversing all the inequalities. To derive the contradiction, this time, we
appeal to the fact that βn is acute and that the angle at the apex of a spherical Saccheri
quadrilateral is obtuse. �	
Remark 5.1 Interestingly, in both the hyperbolic case and the spherical case (as long
as |DD′′| �= π/2), whenever one of the angles ∠FED, ∠EFA or ∠CDE is right,
they must in fact all be simultaneously right (see Fig. 21). Indeed, if ∠EFA is right,
then B ′ = F and thus D′ = E which forces both other angles to be right. Likewise, if
∠CDE (resp. ∠FED) is a right angle, we have D′ = E which means that ∠FED
(resp. ∠EFA) is a right angle and also forces B ′ = F , which implies ∠EFA is also
right.

As an immediate consequence of Theorem B, we deduce our main theorem:

Theorem A For any geodesic triangle T in M2
κ , there exists δ > 0 such that, for all n,

all the angles of Tn lie in the interval (δ, π − δ).

Proof Let t0 = T0 and δα = min {α0lα, π − α0Lα}, δβ = min {β0lβ, π − β0Lβ}, and
δγ = min {γ0lγ , π − γ0Lγ }. By construction, δ :=min {δα, δβ, δγ } > 0 and every
angle of Tn lies in the interval (δ, π − δ). �	
Remark 5.2 Both in the hyperbolic and spherical case, there is an easier route to proving
Theorem A without the full strength of Theorem B. We briefly explain here why, in
both cases, a lower bound on the angles in fact also gives an upper bound. Indeed,
in the hyperbolic case, to establish the upper bound in Theorem A we need only
remember that the sum of the angles of a hyperbolic triangle is always less than π .
Therefore if we assume by contradiction that for all ε > 0, there exists N ∈ N such that
αN > π − ε, since for all n ∈ N, we have βn, γn > δ, we are lead to a contradiction
for ε < 2δ as we would then obtain that αn + βn + γn > 2δ + π − 2δ > π for
some choice of n. In the spherical case, the sum of the angles of a triangle is allowed
to exceed π , but the amount by which it does is exactly the area of the triangle. To
derive a contradiction we thus need to consider a second parameter to utilise the key
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property that our triangulations are getting arbitrarily small. Let An denote the area
of the triangle tn . Suppose then by contradiction that, for all ε, ε′ > 0, there exists
N ∈ N such that αN > π − ε and An < ε′. Let us pick ε′ < 2δ and ε < 2δ − ε′.
Since for all n ∈ N, we have βn, γn > δ, this leads us to the following contradiction:

αn + βn + γn > 2δ + π − ε > π + ε′.

Because of this observation, and using our approach to proving Theorem B, readers
interested solely in proving Theorem A need only refer to the proofs of the lower
bounds in the proof of Proposition 4.1) and the proofs of the upper bounds in the proof
of Theorem C.

Funding Open access funding provided by the Institute of Science and Technology (IST Austria).

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Bishop, Ch.J.: Uniformly acute triangulations of PSLGs (2021). https://www.math.stonybrook.edu/
~bishop/papers/acutepslg.pdf

2. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-positive Curvature. Grundlehren der Mathematis-
chen Wissenschaften, vol. 319. Springer, Berlin (1999)

3. Colin de Verdière, Y., Marin, A.: Triangulations presque équilatérales des surfaces. J. Differ. Geom.
32(1), 199–207 (1990)

4. Martin, G.E.: The Foundations of Geometry and the Non-Euclidean Plane. Undergraduate Texts in
Mathematics, Springer, New York (1996)

5. Thurston, W.P.: Three-Dimensional Geometry and Topology. Vol. 1. Princeton Mathematical Series,
vol. 35. Princeton University Press, Princeton (1997)

6. Zamfirescu, T.: Acute triangulations: a short survey. In: 6th Annual Conference of the Romanian Society
ofMathematical Sciences (Sibiu 2002), Vol. 1, pp. 10–18. Soc. Ştiinţe Mat. România, Bucharest (2003).
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