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Abstract. Machine-learned systems are in widespread use for making
decisions about humans, and it is important that they are fair, i.e., not
biased against individuals based on sensitive attributes. We present run-
time verification of algorithmic fairness for systems whose models are
unknown, but are assumed to have a Markov chain structure. We intro-
duce a specification language that can model many common algorithmic
fairness properties, such as demographic parity, equal opportunity, and
social burden. We build monitors that observe a long sequence of events
as generated by a given system, and output, after each observation, a
quantitative estimate of how fair or biased the system was on that run
until that point in time. The estimate is proven to be correct modulo a
variable error bound and a given confidence level, where the error bound
gets tighter as the observed sequence gets longer. Our monitors are of two
types, and use, respectively, frequentist and Bayesian statistical inference
techniques. While the frequentist monitors compute estimates that are
objectively correct with respect to the ground truth, the Bayesian mon-
itors compute estimates that are correct subject to a given prior belief
about the system’s model. Using a prototype implementation, we show
how we can monitor if a bank is fair in giving loans to applicants from
different social backgrounds, and if a college is fair in admitting stu-
dents while maintaining a reasonable financial burden on the society.
Although they exhibit different theoretical complexities in certain cases,
in our experiments, both frequentist and Bayesian monitors took less
than a millisecond to update their verdicts after each observation.

1 Introduction

Runtime verification complements traditional static verification techniques, by
offering lightweight solutions for checking properties based on a single, possibly
long execution trace of a given system [8]. We present new runtime verification
techniques for the problem of bias detection in decision-making software. The use
of software for making critical decisions about humans is a growing trend; exam-
ple areas include judiciary [13,20], policing [23,49], banking [48], etc. It is impor-
tant that these software systems are unbiased towards the protected attributes
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of humans, like gender, ethnicity, etc. However, they have often shown biases in
their decisions in the past [20,47,55,57,58]. While there are many approaches
for mitigating biases before deployment [20,47,55,57,58], recent runtime verifi-
cation approaches [3,34] offer a new complementary tool to oversee algorithmic
fairness in AI and machine-learned decision makers during deployment.

To verify algorithmic fairness at runtime, the given decision-maker is treated
as a generator of events with an unknown model. The goal is to algorithmically
design lightweight but rigorous runtime monitors against quantitative formal
specifications. The monitors observe a long stream of events and, after each
observation, output a quantitative, statistically sound estimate of how fair or
biased the generator was until that point in time. While the existing approaches
[3,34] considered only sequential decision making models and built monitors
from the frequentist viewpoint in statistics, we allow the richer class of Markov
chain models and present monitors from both the frequentist and the Bayesian
statistical viewpoints.

Monitoring algorithmic fairness involves on-the-fly statistical estimations, a
feature that has not been well-explored in the traditional runtime verification
literature. As far as the algorithmic fairness literature is concerned, the existing
works are mostly model-based, and either minimize decision biases of machine-
learned systems at design-time (i.e., pre-processing) [11,41,65,66], or verify their
absence at inspection-time (i.e., post-processing) [32]. In contrast, we verify algo-
rithmic fairness at runtime, and do not require an explicit model of the gener-
ator. On one hand, the model-independence makes the monitors trustworthy,
and on the other hand, it complements the existing model-based static analyses
and design techniques, which are often insufficient due to partially unknown or
imprecise models of systems in real-world environments.

We assume that the sequences of events generated by the generator can
be modeled as sequences of states visited by a finite unknown Markov chain.
This implies that the generator is well-behaved and the events follow each other
according to some fixed probability distributions. Not only is this assumption
satisfied by many machine-learned systems (see Sect. 1.1 for examples), it also
provides just enough structure to lay the bare-bones foundations for runtime
verification of algorithmic fairness properties. We emphasize that we do not
require knowledge of the transition probabilities of the underlying Markov chain.

We propose a new specification language, called the Probabilistic Specifica-
tion Expressions (PSEs), which can formalize a majority of the existing algo-
rithmic fairness properties in the literature, including demographic parity [21],
equal opportunity [32], disparate impact [25], etc. Let Q be the set of events.
Syntactically, a PSE is a restricted arithmetic expression over the (unknown)
transition probabilities of a Markov chain with the state space Q. Semantically,
a PSE ϕ over Q is a function that maps every Markov chain M with the state
space Q to a real number, and the value ϕ(M) represents the degree of fairness
or bias (with respect to ϕ) in the generator M . Our monitors observe a long
sequence of events from Q, and after each observation, compute a statistically
rigorous estimate of ϕ(M) with a PAC-style error bound for a given confidence
level. As the observed sequence gets longer, the error bound gets tighter.
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Algorithmic fairness properties that are expressible using PSEs are quan-
titative refinements of the traditional qualitative fairness properties studied in
formal methods. For example, a qualitative fairness property may require that
if a certain event A occurs infinitely often, then another event B should follow
infinitely often. In particular, a coin is qualitatively fair if infinitely many coin
tosses contain both infinitely many heads and infinitely many tails. In contrast,
the coin will be algorithmically fair (i.e., unbiased) if approximately half of the
tosses come up heads. Technically, while qualitative weak and strong fairness
properties are ω-regular, the algorithmic fairness properties are statistical and
require counting. Moreover, for a qualitative fairness property, the satisfaction or
violation cannot be established based on a finite prefix of the observed sequence.
In contrast, for any given finite prefix of observations, the value of an algorith-
mic fairness property can be estimated using statistical techniques, assuming the
future behaves statistically like the past (the Markov assumption).

As our main contribution, we present two different monitoring algorithms,
using tools from frequentist and Bayesian statistics, respectively. The central
idea of the frequentist monitor is that the probability of every transition of the
monitored Markov chain M can be estimated using the fraction of times the
transition is taken per visit to its source vertex. Building on this, we present a
practical implementation of the frequentist monitor that can estimate the value
of a given PSE from an observed finite sequence of states. For the coin example,
after every new toss, the frequentist monitor will update its estimate of proba-
bility of seeing heads by computing the fraction of times the coin came up heads
so far, and then by using concentration bounds to find a tight error bound for
a given confidence level. On the other hand, the central idea of the Bayesian
monitor is that we begin with a prior belief about the transition probabilities of
M , and having seen a finite sequence of observations, we can obtain an updated
posterior belief about M . For a given confidence level, the output of the monitor
is computed by applying concentration inequalities to find a tight error bound
around the mean of the posterior belief. For the coin example, the Bayesian
monitor will begin with a prior belief about the degree of fairness, and, after
observing the outcome of each new toss, will compute a new posterior belief.
If the prior belief agrees with the true model with a high probability, then the
Bayesian monitor’s output converges to the true value of the PSE more quickly
than the frequentist monitor. In general, both monitors can efficiently estimate
more complicated PSEs, such as the ratio and the squared difference of the
probabilities of heads of two different coins. The choice of the monitor for a par-
ticular application depends on whether an objective or a subjective evaluation,
with respect to a given prior, is desired.

Both frequentist and Bayesian monitors use registers (and counters as a
restricted class of registers) to keep counts of the relevant events and store the
intermediate results. If the size of the given PSE is n, then, in theory, the fre-
quentist monitor uses O(n42n) registers and computes its output in O(n42n)
time after each new observation, whereas the Bayesian monitor uses O(n22n)
registers and computes its output in O(n22n) time after each new observation.
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The computation time and the required number of registers get drastically
reduced to O(n2) for the frequentist monitor with PSEs that contain up to one
division operator, and for the Bayesian monitor with polynomial PSEs (possibly
having negative exponents in the monomials). This shows that under given cir-
cumstances, one or the other type of the monitor can be favorable computation-
wise. These special, efficient cases cover many algorithmic fairness properties of
interest, such as demographic parity and equal opportunity.

Our experiments confirm that our monitors are fast in practice. Using a
prototype implementation in Rust, we monitored a couple of decision-making
systems adapted from the literature. In particular, we monitor if a bank is fair
in lending money to applicants from different demographic groups [48], and if
a college is fair in admitting students without creating an unreasonable finan-
cial burden on the society [54]. In our experiments, both monitors took, on an
average, less than a millisecond to update their verdicts after each observation,
and only used tens of internal registers to operate, thereby demonstrating their
practical usability at runtime.

In short, we advocate that runtime verification introduces a new set of tools in
the area of algorithmic fairness, using which we can monitor biases of deployed AI
and machine-learned systems in real-time. While existing monitoring approaches
only support sequential decision making problems and use only the frequentist
statistical viewpoint, we present monitors for the more general class of Markov
chain system models using both frequentist and Bayesian statistical viewpoints.

All proofs can be found in the longer version of the paper [33].

1.1 Motivating Examples

We first present two real-world examples from the algorithmic fairness literature
to motivate the problem; these examples will later be used to illustrate the
technical developments.

The Lending Problem [48]: Suppose a bank lends money to individuals based
on certain attributes, like credit score, age group, etc. The bank wants to max-
imize profit by lending money to only those who will repay the loan in time—
called the “true individuals.” There is a sensitive attribute (e.g., ethnicity) clas-
sifying the population into two groups g and g. The bank will be considered fair
(in lending money) if its lending policy is independent of an individual’s mem-
bership in g or g. Several group fairness metrics from the literature are relevant
in this context. Disparate impact [25] quantifies the ratio of the probability of
an individual from g getting the loan to the probability of an individual from g
getting the loan, which should be close to 1 for the bank to be considered fair.
Demographic parity [21] quantifies the difference between the probability of an
individual from g getting the loan and the probability of an individual from g
getting the loan, which should be close to 0 for the bank to be considered fair.
Equal opportunity [32] quantifies the difference between the probability of a true
individual from g getting the loan and the probability of a true individual from
g getting the loan, which should be close to 0 for the bank to be considered fair.
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A discussion on the relative merit of various different algorithmic fairness notions
is out of scope of this paper, but can be found in the literature [15,22,43,62].
We show how we can monitor whether a given group fairness criteria is fulfilled
by the bank, by observing a sequence of lending decisions.

The College Admission Problem [54]: Consider a college that announces a
cutoff of grades for admitting students through an entrance examination. Based
on the merit, every truly qualified student belongs to group g, and the rest
to group g. Knowing the cutoff, every student can choose to invest a sum of
money—proportional to the gap between the cutoff and their true merit—to be
able to reach the cutoff, e.g., by taking private tuition classes. On the other hand,
the college’s utility is in minimizing admission of students from g, which can be
accomplished by raising the cutoff to a level that is too expensive to be achieved
by the students from g and yet easy to be achieved by the students from g. The
social burden associated to the college’s cutoff choice is the expected expense of
every student from g, which should be close to 0 for the college to be considered
fair (towards the society). We show how we can monitor the social burden, by
observing a sequence of investment decisions made by the students from g.

1.2 Related Work

There has been a plethora of work on algorithmic fairness from the machine
learning standpoint [10,12,21,32,38,42,45,46,52,59,63,66]. In general, these
works improve algorithmic fairness through de-biasing the training dataset (pre-
processing), or through incentivizing the learning algorithm to make fair deci-
sions (in-processing), or through eliminating biases from the output of the
machine-learned model (post-processing). All of these are interventions in the
design of the system, whereas our monitors treat the system as already deployed.

Recently, formal methods-inspired techniques have been used to guarantee
algorithmic fairness through the verification of a learned model [2,9,29,53,61],
and enforcement of robustness [6,30,39]. All of these works verify or enforce
algorithmic fairness statically on all runs of the system with high probability.
This requires certain knowledge about the system model, which may not be
always available. Our runtime monitor dynamically verifies whether the current
run of an opaque system is fair.

Our frequentist monitor is closely related to the novel work of Albarghouthi
et al. [3], where the authors build a programming framework that allows run-
time monitoring of algorithmic fairness properties on programs. Their monitor
evaluates the algorithmic fairness of repeated “single-shot” decisions made by
machine-learned functions on a sequence of samples drawn from an underly-
ing unknown but fixed distribution, which is a special case of our more general
Markov chain model of the generator. They do not consider the Bayesian point
of view. Moreover, we argue and empirically show in Sect. 4 that our frequentist
approach produces significantly tighter statistical estimates than their approach
on most PSEs. On the flip side, their specification language is more expressive,
in that they allow atomic variables for expected values of events, which is useful
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for specifying individual fairness criteria [21]. We only consider group fairness,
and leave individual fairness as part of future research. Also, they allow logical
operators (like boolean connectives) in their specification language. However, we
obtain tighter statistical estimates for the core arithmetic part of algorithmic
fairness properties (through PSEs), and point out that we can deal with logical
operators just like they do in a straightforward manner.

Shortly after the first manuscript of this paper was written, we published
a separate work for monitoring long-run fairness in sequential decision making
problems, where the feature distribution of the population may dynamically
change due to the actions of the individuals [34]. Although this other work
generalizes our current paper in some aspects (support for dynamic changes in
the model), it only allows sequential decision making models (instead of Markov
chains) and does not consider the Bayesian monitoring perspective.

There is a large body of research on monitoring, though the considered prop-
erties are mainly temporal [5,7,19,24,40,50,60]. Unfortunately, these techniques
do not directly extend to monitoring algorithmic fairness, since checking algo-
rithmic fairness requires statistical methods, which is beyond the limit of finite
automata-based monitors used by the classical techniques. Although there are
works on quantitative monitoring that use richer types of monitors (with coun-
ters/registers like us) [28,35,36,56], the considered specifications do not easily
extend to statistical properties like algorithmic fairness. One exception is the
work by Ferrère et al. [26], which monitors certain statistical properties, like
mode and median of a given sequence of events. Firstly, they do not consider
algorithmic fairness properties. Secondly, their monitors’ outputs are correct only
as the length of the observed sequence approaches infinity (asymptotic guaran-
tee), whereas our monitors’ outputs are always correct with high confidence
(finite-sample guarantee), and the precision gets better for longer sequences.

Although our work uses similar tools as used in statistical verification [1,
4,14,17,64], the goals are different. In traditional statistical verification, the
system’s runs are chosen probabilistically, and it is verified if any run of the
system satisfies a boolean property with a certain probability. For us, the run
is given as input to the monitor, and it is this run that is verified against a
quantitative algorithmic fairness property with statistical error bounds. To the
best of our knowledge, existing works on statistical verification do not consider
algorithmic fairness properties.

2 Preliminaries

For any alphabet Σ, the notation Σ∗ represents the set of all finite words over
Σ. We write R, N, and N

+ to denote the sets of real numbers, natural numbers
(including zero), and positive integers, respectively. For a pair of real (natural)
numbers a, b with a < b, we write [a, b] ([a . . b]) to denote the set of all real
(natural) numbers between and including a and b. For a given c, r ∈ R, we write
[c ± r] to denote the set [c − r, c + r]. For simpler notation, we will use | · | to
denote both the cardinality of a set and the absolute value of a real number,
whenever the intended use is clear.
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For a given vector v ∈ R
n and a given m × n real matrix M , for some m,n,

we write vi to denote the i-th element of v and write Mij to denote the element
at the i-th row and the j-th column of M . For a given n ∈ N

+, a simplex
is the set of vectors Δ(n) := {x ∈ [0, 1]n+1 | ∑n+1

i=1 xi = 1}. Notice that the
dimension of Δ(n) is n + 1 (and not n), a convention that is standard due to
the interpretation of Δ(n) as the n + 1 vertices of an n-dimensional polytope.
A stochastic matrix of dimension m × m is a matrix whose every row is in
Δ(m−1), i.e. M ∈ Δ(m−1)m. Random variables will be denoted using uppercase
symbols from the Latin alphabet (e.g. X), while the associated outcomes will
be denoted using lowercase font of the same symbol (x is an outcome of X). We
will interchangeably use the expected value E(X) and the mean μX of X. For a
given set S, define D(S) as the set of every random variable—called a probability
distribution1—with set of outcomes being 2S . A Bernoulli random variable that
produces “1” (the alternative is “0”) with probability p is written as Bernoulli(p).

2.1 Markov Chains as Randomized Generators of Events

We use finite Markov chains as sequential randomized generators of events. A
(finite) Markov chain M is a triple (Q,M, π), where Q = [1 . . N ] is a set of
states for a finite N , M ∈ Δ(N −1)N is a stochastic matrix called the transition
probability matrix, and π ∈ D(Q) is the distribution over initial states. We often
refer to a pair of states (i, j) ∈ Q×Q as an edge. The Markov chain M generates
an infinite sequence of random variables X0 = π,X1, . . ., with Xi ∈ D(Q) for
every i, such that the Markov property is satisfied: P(Xn+1 = in+1 | X0 =
i0, . . . , Xn = in) = P(Xn+1 = in+1 | Xn = in), which is Minin+1 in our case.
A finite path #„x = x0, . . . , xn of M is a finite word over Q such that for every
t ∈ [0;n], P(Xt = xt) > 0. Let Paths(M) be the set of every finite path of M.

We use Markov chains to model the probabilistic interaction between a
machine-learned decision maker with its environment. Intuitively, the Markov
assumption on the model puts the restriction that the decision maker does not
change over time, e.g., due to retraining.

In Fig. 1 we show the Markov chains for the lending and the college admission
examples from Sect. 1.1. The Markov chain for the lending example captures
the sequence of loan-related probabilistic events, namely, that a loan applicant is
randomly sampled and the group information (g or g) is revealed, a probabilistic
decision is made by the decision-maker and either the loan was granted (gy or
gy, depending on the group) or refused (y), and if the loan is granted then with
some probabilities it either gets repaid (z) or defaulted (z). The Markov chain
for the college admission example captures the sequence of admission events,
namely, that a candidate is randomly sampled and the group is revealed (g, g),
and when the candidate is from group g (truly qualified) then the amount of
money invested for admission is also revealed.

1 An alternate commonly used definition of probability distribution is directly in terms
of the probability measure induced over S, instead of through the random variable.
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Fig. 1. Markov chains for the lending and the college-admission examples. (left) The
lending example: The state init denotes the initiation of the sampling, and the rest
represent the selected individual, namely, g and g denote the two groups, (gy) and (gy)
denote that the individual is respectively from group g and group g and the loan was
granted, y denotes that the loan was refused, and z and z denote whether the loan
was repaid or not. (right) The college admission example: The state init denotes the
initiation of the sampling, the states g, g represent the group identity of the selected
candidate, and the states {0, . . . , N} represent the amount of money invested by a truly
eligible candidate.

2.2 Randomized Register Monitors

Randomized register monitors, or simply monitors, are adapted from the (deter-
ministic) polynomial monitors of Ferrère et al. [27]. Let R be a finite set of integer
variables called registers. A function v : R → N assigning concrete value to every
register in R is called a valuation of R. Let N

R denote the set of all valuations
of R. Registers can be read and written according to relations in the signature
S = 〈0, 1,+,−,×,÷,≤〉. We consider two basic operations on registers:

– A test is a conjunction of atomic formulas over S and their negation;
– An update is a mapping from variables to terms over S.

We use Φ(R) and Γ (R) to respectively denote the set of tests and updates over
R. Counters are special registers with a restricted signature S = 〈0, 1,+,−,≤〉.
Definition 1 (Randomized register monitor). A randomized register mon-
itor is a tuple (Σ,Λ,R, λ, T ) where Σ is a finite input alphabet, Λ is an output
alphabet, R is a finite set of registers, λ : N

R → Λ is an output function, and
T : Σ × Φ(R) → D(Γ (R)) is the randomized transition function such that for
every σ ∈ Σ and for every valuation v ∈ N

R, there exists a unique φ ∈ Φ(R)
with v |= φ and T (σ, φ) ∈ D(Γ (R)). A deterministic register monitor is a ran-
domized register monitor for which T (σ, φ) is a Dirac delta distribution, if it is
defined.

A state of a monitor A is a valuation of its registers v ∈ N
R. The monitor

A transitions from state v to a distribution over states given by the random
variable Y = T (σ, φ) on input σ ∈ Σ if there exists φ such that v |= φ. Let γ
be an outcome of Y with P(Y = γ) > 0, in which case the registers are updated
as v′(x) = v(γ(x)) for every x ∈ R, and the respective concrete transition is
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written as v
σ−→ v′. A run of A on a word w0 . . . wn ∈ Σ∗ is a sequence of concrete

transitions v0
w0−−→ v1

w1−−→ . . .
wn−−→ vn+1. The probabilistic transitions of A induce

a probability distribution over the sample space of finite runs of the monitor,
denoted P̂(·). For a given finite word w ∈ Σ∗, the semantics of the monitor A
is given by a random variable [[A]](w) := λ(Y ) inducing the probability measure
PA, where Y is the random variable representing the distribution over the final
state in a run of A on the word w, i.e., PA(Y = v) := P̂({r = r0 . . . rm ∈ Σ∗ |
r is a run of A on w and rm = v}).
Example: A Monitor for Detecting the (Unknown) Bias of a Coin. We
present a simple deterministic monitor that computes a PAC estimate of the bias
of an unknown coin from a sequence of toss outcomes, where the outcomes are
denoted as “h” for heads and “t” for tails. The input alphabet is the set of toss
outcomes, i.e., Σ = {h, t}, the output alphabet is the set of every bias intervals,
i.e., Γ = {[a, b] | 0 ≤ a < b ≤ 1}, the set of registers is R = {rn, rh}, where
rn and rh are counters counting the total number of tosses and the number of
heads, respectively, and the output function λ maps every valuation of rn, rh

to an interval estimate of the bias that has the form λ ≡ v(rh)/v(rn) ± ε(rn, δ),
where δ ∈ [0, 1] is a given upper bound on the probability of an incorrect estimate
and ε(rn, δ) is the estimation error computed using PAC analysis. For instance,
after observing a sequence of 67 tosses with 36 heads, the values of the registers
will be v(rn) = 67 and v(rh) = 36, and the output of the monitor will be
λ(67, 36) = 36/67 ± ε(n, δ) for some appropriate ε(·). Now, suppose the next
input to the monitor is h, in which case the monitor’s transition is given as
T (h, ·) = (rn +1, rh +1), which updates the registers to the new values v′(rn) =
67 + 1 = 68 and v′(rh) = 36 + 1 = 37. For this example, the tests Φ(R) over the
registers are redundant, but they can be used to construct monitors for more
complex properties.

3 Algorithmic Fairness Specifications and Problem
Formulation

3.1 Probabilistic Specification Expressions

To formalize algorithmic fairness properties, like the ones in Sect. 1.1, we intro-
duce probabilistic specification expressions (PSE). A PSE ϕ over a given finite
set Q is an algebraic expression with some restricted set of operations that uses
variables labeled vij with i, j ∈ Q and whose domains are the real interval [0, 1].
The syntax of ϕ is:

ξ ::= v ∈ {vij}i,j∈Q | ξ · ξ | 1 ÷ ξ, (1a)
ϕ ::= κ ∈ R | ξ | ϕ + ϕ | ϕ − ϕ | ϕ · ϕ | (ϕ), (1b)

where {vij}i,j∈Q are the variables with domain [0, 1] and κ is a constant. The
expression ξ in (1a) is called a monomial and is simply a product of powers of
variables with integer exponents. A polynomial is a weighted sum of monomials
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with constant weights.2 Syntactically, polynomials form a strict subclass of the
expressions definable using (1b), because the product of two polynomials is not a
polynomial, but is a valid expression according to (1b). A PSE ϕ is division-free
if there is no division operator involved in ϕ. The size of an expression ϕ is the
total number of arithmatic operators (i.e. +,−, ·,÷) in ϕ. We use Vϕ to denote
the set of variables appearing in the expression ϕ, and for every V ⊆ Vϕ we
define Dom(V ) := {i ∈ Q | ∃vij ∈ V ∨ ∃vki ∈ V } as the set containing any state
of the Markov chain that is involved in some variable in V .

The semantics of a PSE ϕ is interpreted statically on the unknown Markov
chain M : we write ϕ(M) to denote the evaluation or the value of ϕ by substitut-
ing every variable vij in ϕ with Mij . E.g., for a Markov chain with state space
{1, 2} and transition probabilities M11 = 0.2, M12 = 0.8, M21 = 0.4, and M22 =
0.6, the expression ϕ = v11 − v21 has the evaluation ϕ(M) = 0.2 − 0.4 = −0.2.
We will assume that for every expression (1 ÷ ξ), ξ(M) �= 0.

Example: Group Fairness. Using PSEs, we can express the group fairness
properties for the lending example described in Sect. 1.1, with the help of the
Markov chain in the left subfigure of Fig. 1:

Disparate impact [25]: vgy ÷ vgy

Demographic parity [21]: vgy − vgy

The equal opportunity criterion requires the following probability to be close
to zero: p = P(y | g, z) − P(y | g, z), which is tricky to monitor as p contains
the counter-factual probabilities representing “the probability that an individual
from a group would repay had the loan been granted.” We apply Bayes’ rule,
and turn p into the following equivalent form: p′ = P(z|g,y)·P(y|g)

P(z|g) − P(z|g,y)·P(y|g)
P(z|g) .

Assuming P(z | g) = c1 and P(z | g) = c2, where c1 and c2 are known constants,
the property p′ can be encoded as a PSE as below:

Equal opportunity [32]: (v(gy)z ·vgy)÷c1−(v(gy)z ·vgy)÷c2.

Example: Social Burden. Using PSEs, we can express the social burden of
the college admission example described in Sect. 1.1, with the help of the Markov
chain depicted in the right subfigure of Fig. 1:

Social burden [54]: 1 · vg1 + . . . + N · vgN .

3.2 The Monitoring Problem

Informally, our goal is to build monitors that observe a single long path of a
Markov chain and, after each observation, output a new estimate for the value
of the PSE. Since the monitor’s estimate is based on statistics collected from

2 Although monomials and polynomials usually only have positive exponents, we take
the liberty to use the terminologies even when negative exponents are present.
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a finite path, the output may be incorrect with some probability, where the
source of this probability is different between the frequentist and the Bayesian
approaches. In the frequentist approach, the underlying Markov chain is fixed
(but unknown), and the randomness stems from the sampling of the observed
path. In the Bayesian approach, the observed path is fixed, and the randomness
stems from the uncertainty about a prior specifying the Markov chain’s param-
eters. The commonality is that, in both cases, we want our monitors to estimate
the value of the PSE up to an error with a fixed probabilistic confidence.

We formalize the monitoring problem separately for the two approaches. A
problem instance is a triple (Q,ϕ, δ), where Q = [1 . . N ] is a set of states, ϕ is
a PSE over Q, and δ ∈ [0, 1] is a constant. In the frequentist approach, we use
Ps to denote the probability measure induced by sampling of paths, and in the
Bayesian approach we use Pθ to denote the probability measure induced by the
prior probability density function pθ : Δ(n − 1)n → R ∪ {∞} over the transition
matrix of the Markov chain. In both cases, the output alphabets of the monitors
contain every real interval.

Problem 1 (Frequentist monitor). Suppose (Q,ϕ, δ) is a problem instance
given as input. Design a monitor A such that for every Markov chain M with
transition probability matrix M and for every finite path #„x ∈ Paths(M):

Ps,A (ϕ(M) ∈ [[A]]( #„x )) ≥ 1 − δ, (2)

where Ps,A is the joint probability measure of Ps and PA.

Problem 2 (Bayesian monitor). Suppose (Q,ϕ, δ) is a problem instance and
pθ is a prior density function, both given as inputs. Design a monitor A such
that for every Markov chain M with transition probability matrix M and for
every finite path #„x ∈ Paths(M):

Pθ,A (ϕ(M) ∈ [[A]]( #„x ) | #„x ) ≥ 1 − δ, (3)

where Pθ,A is the joint probability measure of Pθ and PA.

Notice that the state space of the Markov chain and the input alphabet of the
monitor are the same, and so, many times, we refer to observed states as (input)
symbols, and vice versa. The estimate [l, u] = [[A]]( #„x ) is called the (1− δ) · 100%
confidence interval for ϕ(M).3 The radius, given by ε = 0.5 · (u− l), is called the
estimation error, and the quantity 1 − δ is called the confidence. The estimate
gets more precise as the error gets smaller and the confidence gets higher.

In many situations, we are interested in a qualitative question of the form
“is ϕ(M) ≤ c?” for some constant c. We point out that, once the quantitative
problem is solved, the qualitative questions can be answered using standard
procedures by setting up a hypothesis test [44, p. 380].
3 While in the Bayesian setting credible intervals would be more appropriate, we

use confidence intervals due to uniformity and the relative ease of computation. To
relate the two, our confidence intervals are over-approximations of credible intervals
(non-unique) that are centered around the posterior mean.
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4 Frequentist Monitoring

Suppose the given PSE is only a single variable ϕ = vij , i.e., we are monitoring
the probability of going from state i to another state j. The frequentist monitor
A for ϕ can be constructed in two steps: (1) empirically compute the average
number of times the edge (i, j) was taken per visit to the state i on the observed
path of the Markov chain, and (2) compute the (1−δ) ·100% confidence interval
using statistical concentration inequalities.

Fig. 2. Variation of ratio
of the est. error using the
existing approach [3] to
est. error using our app-
roach, w.r.t. the size of the
chosen PSE.

Now consider a slightly more complex PSE ϕ′ =
vij + vik. One approach to monitor ϕ′, proposed by
Albarghouthi et al. [3], would be to first compute the
(1 − δ) · 100% confidence intervals [l1, u1] and [l2, u2]
separately for the two constituent variables vij and
vik, respectively. Then, the (1− 2δ) · 100% confidence
interval for ϕ′ would be given by the sum of the two
intervals [l1, u1] and [l2, u2], i.e., [l1+l2, u1+u2]; notice
the drop in overall confidence due to the union bound.
The drop in the confidence level and the additional
error introduced by the interval arithmetic accumulate
quickly for larger PSEs, making the estimate unus-
able. Furthermore, we lose all the advantages of hav-
ing any dependence between the terms in the PSE. For
instance, by observing that vij and vik correspond to
the mutually exclusive transitions i to j and i to k, we know that ϕ′(M) is
always less than 1, a feature that will be lost if we use plain merging of individ-
ual confidence intervals for vij and vik. We overcome these issues by estimating
the value of the PSE as a whole as much as possible. In Fig. 2, we demonstrate
how the ratio between the estimation errors from the two approaches vary as
the number of summands (i.e., n) in the PSE ϕ =

∑n
i=1 v1n changes; in both

cases we fixed the overall δ to 0.05 (95% confidence). The ratio remains the same
for different observation lengths. Our approach is always at least as accurate as
their approach [3], and is significantly better for larger PSEs.

4.1 The Main Principle

We first explain the idea for division-free PSEs, i.e., PSEs that do not involve
any division operator; later we extend our approach to the general case.

Divison-Free PSEs: In our algorithm, for every variable vij ∈ Vϕ, we introduce
a Bernoulli(Mij) random variable Y ij with the mean Mij unknown to us. We
make an observation yij

p for every p-th visit to the state i on a run, and if j follows
immediately afterwards then record yij

p = 1 else record yij
p = 0. This gives us

a sequence of observations #„y ij = yij
1 , yij

2 , . . . corresponding to the sequence of
i.i.d. random variables

#„

Y ij = Y ij
1 , Y ij

2 , . . .. For instance, for the run 121123 we
obtain #„y 12 = 1, 0, 1 for the variable v12.
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The heart of our algorithm is an aggregation procedure of every sequence of
random variable { #„

Y ij}vij∈Vϕ
to a single i.i.d. sequence

# „

W of an auxiliary random
variable W , such that the mean of W is μW = E(W ) = ϕ(M). We can then use
known concentration inequalities on the sequence

# „

W to estimate μW . Since μW

exactly equals ϕ(M) by design, we obtain a tight concentration bound on ϕ(M).
We informally explain the main idea of constructing

# „

W using simple examples;
the details can be found in Algorithm 2.

Sum and Difference: Let ϕ = vij + vkl. We simply combine
#„

Y ij and
#„

Y kl

as Wp = Y ij
p + Y kl

p , so that wp = yij
p + ykl

p is the corresponding observation
of Wp. Then μWp

= ϕ(M) holds, because μWp
= E(Wp) = E(Y ij

p + Y kl
p ) =

E(Y ij
p ) + E(Y kl

p ) = Mij + Mkl. Similar approach works for ϕ = vij − vkl.

Multiplication: For multiplications, the same linearity principle will not always
work, since for random variables A and B, E(A ·B) = E(A) ·E(B) only if A and
B are statistically independent, which will not be true for specifications of the
form ϕ = vij ·vik. In this case, the respective Bernoulli random variables Y ij

p and
Y ik

p are dependent: P(Y ij
p = 1)·P(Y ik

p = 1) = Mij ·Mik, but P(Y ij
p = 1∧Y ik

p = 1)
is always 0 (since both j and k cannot be visited following the p-th visit to i).

To benefit from independence once again, we temporally shift one of the
random variables by defining Wp = Y ij

2p · Y ik
2p+1, with wp = yij

2p · yik
2p+1. Since the

random variables Y ij
2p and Y ik

2p+1 are independent, as they use separate visits of
state i, hence we obtain μWp

= Mij · Mik. For independent multiplications of
the form ϕ = vij · vkl with i �= k, we can simply use Wp = Y ij

p · Y ik
p .

In general, we use the ideas of aggregation and temporal shift on the syntax
tree of the PSE ϕ, inductively. With an aggregated sequence of observations
for the auxiliary variable W for ϕ, we can find an estimate for ϕ(M) using the
Hoeffding’s inequality. We present the detailed algorithm of this monitor, namely
FreqMonitorDivFree, in Algorithm 1.

The General Case (PSEs With Division Operators): We observe that
every arbitrary PSE ϕ of size n can be transformed into a semantically equivalent
PSE of the form ϕa + ϕb

ϕc
of size O(n22n), where ϕa, ϕb, and ϕc are all division-

free. Once in this form, we can employ three different FreqMonitorDivFree
monitors from Algorithm 1 to obtain separate interval estimates for ϕa, ϕb, and
ϕc, which are then combined using standard interval arithmetic and the resulting
confidence of the estimate is obtained through the union bound. The steps for
constructing the (general-case) FrequentistMonitor are shown in Algorithm 2,
and the detailed analysis can be found in the proof of Theorem 1.

Bounding Memory: Consider a PSE ϕ = vij + vkl. The outcome wp for ϕ can
only be computed when both the Bernoulli outcomes yij

p and ykl
p are available. If

at any point only one of the two is available, then we need to store the available
one so that it can be used later when the other one gets available. It can be
shown that the storage of “unmatched” outcomes may need unbounded memory.

To bound the memory, we use the insight that a random reshuffling of the
i.i.d. sequence yij

p would still be i.i.d. with the same distribution, so that we do
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not need to store the exact order in which the outcomes appeared. Instead, for
every vij ∈ Vϕ, we only store the number of times we have seen the state i and
the edge (i, j) in counters ci and cij , respectively. Observe that ci ≥ ∑

vik∈Vϕ
cik,

where the possible difference accounts for the visits to irrelevant states, denoted
as a dummy state �. Given {cik}k, whenever needed, we generate in xi a random
reshuffling of the sequence of states, together with �, seen after the past visits
to i. From the sequence stored in xi, for every vik ∈ Vϕ, we can consistently
determine the value of yik

p (consistency dictates yik
p = 1 ⇒ yij

p = 0). Moreover,
we reuse space by resetting xi whenever the sequence stored in xi is no longer
needed. It can be shown that the size of every xi can be at most the size of
the expression [33, Proof of Thm. 2]. This random reshuffling of the observation
sequences is the cause of the probabilistic transitions of the frequenitst monitor.

4.2 Implementation of the Frequentist Monitor

Fix a problem instance (Q,ϕ, δ), with size of ϕ being n. Let ϕ be transformed
into ϕl by relabeling duplicate occurrences of vij using distinct labels v1

ij , v
2
ij , . . ..

The set of labeled variables in ϕl is V l
ϕ, and |V l

ϕ| = O(n). Let SubExpr(ϕ) denote
the set of every subexpression in the expression ϕ, and use [lϕ, uϕ] to denote the
range of values the expression ϕ can take for every valuation of every variable
as per the domain [0, 1]. Let Dep(ϕ) = {i | ∃vij ∈ Vϕ}, and every subexpression
ϕ1 · ϕ2 with Dep(ϕ1) ∩ Dep(ϕ2) �= ∅ is called a dependent multiplication.

Implementation of FreqMonitorDivFree in Algorithm 1 has two main func-
tions. Init initializes the registers. Next implements the transition function of
the monitor, which attempts to compute a new observation w for

# „

W (Line 4)
after observing a new input σ′, and if successful it updates the output of the
monitor by invoking the UpdateEst function. In addition to the registers in Init
and Next labeled in the pseudocode, following registers are used internally:

– xi, i ∈ Dom(Vϕ): reshuffled sequence of states that followed i.
– tlij : the index of xi that was used to obtain the latest outcome of vl

ij .

Now, we summarize the main results for the frequentist monitor.

Theorem 1 (Correctness). Let (Q,ϕ, δ) be a problem instance. Algorithm 2
implements a monitor for (Q,ϕ, δ) that solves Problem 1.

Theorem 2 (Computational resources). Let (Q,ϕ, δ) be a problem instance
and A be the monitor implemented using the FrequentistMonitor routine of
Algorithm 2. Suppose the size of ϕ is n. The monitor A requires O(n422n) reg-
isters, and takes O(n422n) time to update its output after receiving a new input
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Algorithm 1. FreqMonitorDivFree
Parameters: Q, ϕ, δ

Output: Λ

1: function Init(σ)

2: ϕl unique labeling←−−−−−−−−−− ϕ

3: for all vij ∈ Vϕ do
4: cij ← 0 �# of (i, j)

5: ci ← 0 �# of i

6: n ← 0 �length of #„w

7: σ ← σ �prev. symbol
8: μΛ ← ⊥ �est. mean
9: εΛ ← ⊥ �est. error
10: ResetX () �reset xi-s
11: Compute lϕ, uϕ �int. arith.

1: function Next(σ′)
2: cσ ← cσ + 1 �update counters
3: cσσ′ ← cσσ′ + 1

4: w ← Eval(ϕl)

5: if w �= ⊥ then
6: n ← n + 1

7: Λ ← UpdateEst(w, n)

8: ResetX ()

9: σ ← σ′

10: return Λ

1: function Eval(ϕl)
2: if r

ϕl = ⊥ then
3: if ϕl ≡ ϕl

1 + ϕl
2 then

4: r
ϕl ← Eval(ϕl

1) + Eval(ϕl
2)

5: else if ϕl ≡ ϕl
1 − ϕl

2 then
6: r

ϕl ← Eval(ϕl
1) − Eval(ϕl

2)

7: else if ϕl ≡ ϕl
1 · ϕl

2 then
8: if Dep(V l

ϕ1
) ∩ Dep(V l

ϕ2
) = ∅ then

9: r
ϕl ← Eval(ϕl

1) · Eval(ϕl
2)

10: else �dep. mult.
11: for vl

ij ∈ V l
ϕ2

∩ Dep(V l
ϕ1

) do
12: tl

ij ← max({tm
ik | vm

ik ∈ V l
ϕ1

})
13: tl

ij ← tl
ij + 1 �make indep.

14: r
ϕl ← Eval(ϕl

1) · Eval(ϕl
2)

15: else if ϕl ≡ vl
ij then

16: if xi[t
l
ij + 1] = ⊥ then

17: ExtractOutcome(xi, tl
ij + 1)

18: if xi[t
l
ij + 1] = j �= ⊥ then

19: r
ϕl ← 1

20: else
21: r

ϕl ← 0

22: else if ϕl ≡ c then
23: r

ϕl ← c

24: return r
ϕl

1: function UpdateEst(w, n)
2: μΛ ← μΛ·(n−1)+w

n

3: εΛ ←
√

− (uϕ−lϕ)2

2n · ln (
δ
2

)
4: return [μΛ ± εΛ]

1: function ExtractOutcome(xi, t)
�generate a shuffled sequence of symbols
seen after i so that |xi| = t

2: Let U ← {j ∈ Q | vij ∈ Vϕ}
3: for p = |xi| + 1, . . . , t do

4: q ← ∀u ∈ U .

pick u w/ prob. ciu
ci

,

pick � w/ prob.
(ci−∑

j cij)
ci

5: ci ← ci − 1

6: if q �= � then

7: ciq ← ciq − 1

8: xi[|xi| + 1] ← q

1: function ResetX ()
2: for all i ∈ Dom(Vϕ) do
3: xi ← ∅
4: for all vl

ij ∈ V l
ϕ do

5: tlij ← 0

Algorithm 2. FrequentistMonitor
Parameters: Q, ϕ, δ

Output: Λ

1: function Init(σ)

2: ϕa +
ϕb
ϕc

change form←−−−−−−−−− ϕl labeling←−−−−−− ϕ

3: Aa ← FreqMonitorDivFree(Q, ϕa, δ/3)

4: Ab ← FreqMonitorDivFree(Q, ϕb, δ/3)

5: Ac ← FreqMonitorDivFree(Q, ϕc, δ/3)

6: Aa.Init(σ)

7: Ab.Init(σ)

8: Ac.Init(σ)

1: function Next(σ′)
2: [μa ± εa] ← Aa.Next(σ′)
3: [μb ± εb] ← Ab.Next(σ′)
4: [μc ± εc] ← Ac.Next(σ′)
5: if μa �= ⊥ ∧ μb �= ⊥ ∧ μc �= ⊥ then

6: [μΛ ± εΛ] ← [μa ± εa] +
[μb±εb]
[μc±εc]

7: return [μΛ ± εΛ]
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symbol. For the special case of ϕ containing at most one division operator (divi-
sion by constant does not count), A requires only O(n2) registers, and takes only
O(n2) time to update its output after receiving a new input symbol.

There is a tradeoff between the estimation error, the confidence, and the
length of the observed sequence of input symbols. For instance, for a fixed con-
fidence, the longer the observed sequence is, the smaller is the estimation error.
The following theorem establishes a lower bound on the length of the sequence
for a given upper bound on the estimation error and a fixed confidence.

Theorem 3 (Convergence speed). Let (Q,ϕ, δ) be a problem instance where
ϕ does not contain any division operator, and let A be the monitor computed
using Algorithm 2. Suppose the size of ϕ is n. For a given upper bound on
estimation error ε ∈ R, the minimum number of visits to every state in Dom(Vϕ)
for obtaining an output with error at most ε and confidence at least 1− δ on any
path is given by:

− (uϕ − lϕ)2 ln
(

δ
2

)
n

2ε2
, (4)

where [lϕ, uϕ] is the set of possible values of ϕ for every valuation of every vari-
able (having domain [0, 1]) in ϕ.

The bound follows from the Hoeffding’s inequality, together with the fact
that every dependent multiplication increments the required number of samples
by 1. A similar bound for the general case with division is left open.

5 Bayesian Monitoring

Fix a problem instance (Q = [1 . . N ], ϕ, δ). Let M = Δ(N−1)N be the shorthand
notation for the set of transition probability matrices of the Markov chains with
state space Q. Let pθ : M → [0, 1] be the prior probability density function
over M, which is assumed to be specified using the matrix beta distribution
(the definition can be found in standard textbooks on Bayesian statistics [37,
pp. 280]). Let � be a matrix, with its size dependent on the context, whose every
element is 1. We make the following common assumption [31,37, p. 50]:

Assumption 1 (Prior). We are given a parameter matrix θ ≥ �, and pθ is
specified using the matrix beta distribution with parameter θ. Moreover, the initial
state of the Markov chain is fixed.
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When θ = �, then pθ is the uniform density function over M. After observing
a path #„x , using Bayes’ rule we obtain the posterior density function pθ(· |
#„x ), which is known to be efficiently computable due to the so-called conjugacy
property that holds due to Assumption 1. From the posterior density, we obtain
the expected posterior semantic value of ϕ as: Eθ(ϕ(M) | #„x ) :=

∫
M

ϕ(M) ·
pθ(M | #„x )dM . The heart of our Bayesian monitor is an efficient incremental
computation of Eθ(ϕ(M) | #„x )—free from numerical integration. Once we can
compute Eθ(ϕ(M) | #„x ), we can also compute the posterior variance S2 of ϕ(M)
using the known expression S2 = Eθ(ϕ2(M) | #„x )−Eθ(ϕ(M) | #„x ), which enables
us to compute a confidence interval for ϕ(M) using the Chebyshev’s inequality.
In the following, we summarize our procedure for estimating Eθ(ϕ(M) | #„x ).

5.1 The Main Principle

The incremental computation of Eθ(ϕ(M) | #„x ) is implemented in
BayesExpMonitor. We first transform the expression ϕ into the polynomial form
ϕ′ =

∑
l κlξl, where {κl}l are the weights and {ξl}l are monomials. If the size of

ϕ is n then the size of ϕ′ is O(n2
n
2 ). Then we can use linearity to compute the

overall expectation as the weighted sum of expectations of the individual mono-
mials: Eθ(ϕ(M) | #„x ) = Eθ(ϕ′(M) | #„x ) =

∑
l κlEθ(ξl(M) | #„x ). In the following,

we summarize the procedure for estimating Eθ(ξ(M) | #„x ) for every monomial ξ.
Let ξ be a monomial, and let #„xab ∈ Q∗ be a sequence of states. We use

dij to store the exponent of the variable vij in the monomial ξ, and define
da :=

∑
j∈[1..N ] daj . Also, we record the sets of (i, j)-s and i-s with positive

and negative dij and di entries: D+
i := {j | dij > 0}, D−

i := {j | dij < 0},
D+ := {i | di > 0}, and D− := {i | di < 0}.

For any given word #„w ∈ Q∗, let cij( #„w) denote the number of ij-s in #„w and
let ci( #„w) :=

∑
j∈Q cij( #„w). Define ci( #„w) := ci( #„w) +

∑
j∈[1..N ] θij and cij( #„w) :=

cij( #„w) + θij . Let H : Q∗ → R be defined as:

H( #„w) :=

∏N
i=1

∏
j∈D+

i

n

P (cij(
#„w)−1)+|dij ||dij |

∏
i∈D+

n

P (ci(
#„w)−1)+|di||di|

·
∏

i∈D−
n

P (ci(
#„w)−1)|di|

∏N
i=1

∏
j∈D−

i

n

P (cij(
#„w)−1)|dij |

,

(5)

where
n

Pnk := n!
(n−k)! is the number of permutations of k > 0 items from n > 0

objects, for k ≤ n, and we use the convention that for S = ∅,
∏

s∈S . . . = 1.
Below, in Lemma 1, we establish that Eθ(ξ(M) | #„w) = H( #„w), and present an
efficient incremental scheme to compute Eθ(ξ(M) | #„xab) from Eθ(ξ(M) | #„xa).

Lemma 1 (Incremental computation of E(· | ·)). If the following consis-
tency condition

∀i, j ∈ [1 . . N ] . cij( #„w) + dij > 0 (6)
is met, then the following holds:

E(ξ(M) | #„xab) = H( #„xab) = H( #„xa) · cab( #„x ) + dab

cab( #„x )
· ca( #„x )
ca( #„x ) + da

. (7)
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Algorithm 3. BayesExpMonitor

Parameters: Q, ϕ =
∑p

l=1 κlξl, θ

Output: E

1: function Init(σ = 1)

2: for vij ∈ Vϕ do
3: cij ← θij

4: ci ← ∑
j∈[1..N] θij

5: mij ← minl∈[1..p] dl
ij �cache

6: active ← false �Eq. 6 not true
7: σ ← σ �prev. state
8: E ← ⊥ �expect. val.

1: function Next(σ′)
2: cσ ← cσ + 1 �update counters
3: cσσ′ ← cσσ′ + 1

4: if active = false then
5: if (∀vij ∈ Vϕ . cij + mij > 0) then
6: active ← true �Eq. 6 is true
7: for l ∈ [1 . . p] do �Eq. 5
8: hl ← Hl ({cij}i,j , {ci}i)

9: else
10: for l ∈ [1 . . p] do �Eq. 7

11: hl ← hl · c
σσ′ −1+dl

σσ′
c
σσ′ −1 · cσ−1

cσ−1+dl
σ

12: if active = true then
13: E ← ∑p

l=1 κl · hl �overall expect.

14: σ ← σ′

15: return E

Condition (6) guarantees that the permutations in (5) are well-defined. The
first equality in (7) follows from Marchal et al. [51], and the rest uses the conju-
gacy of the prior. Lemma 1 forms the basis of the efficient update of our Bayesian
monitor. Observe that on any given path, once (6) holds, it continues to hold for-
ever. Thus, initially the monitor keeps updating H internally without outputting
anything. Once (6) holds, it keeps outputting H from then on.

5.2 Implementation of the Bayesian Monitor

We present the Bayesian monitor implementation in BayesConfIntMonitor
(Algorithm 4), which invokes BayesExpMonitor (Algorithm 3) as subroutine.
BayesExpMonitor computes the expected semantic value of an expression ϕ in
polynomial form, by computing the individual expected value of each monomial
using Propostion 1, and combining them using the linearity property. We drop
the arguments from ci(·) and cij(·) and simply write ci and cij as constants asso-
ciated to appropriate words. The symbol mij in Line 5 of Init is used as a book-
keeping variable for quickly checking the consistency condition (Eq. 6) in Line 5
of Next . In BayesConfIntMonitor, we compute the expected value and the vari-
ance of ϕ, by invoking BayesExpMonitor on ϕ and ϕ2 respectively, and then com-
pute the confidence interval using the Chebyshev’s inequality. It can be observed
in the Next subroutines of BayesConfIntMonitor and BayesExpMonitor that a
deterministic transition function suffices for the Bayesian monitors.

Theorem 4 (Correctness). Let (Q,ϕ, δ) be a problem instance, and pθ be
given as the prior distribution which satisfies Assumption 1. Algorithm 4 pro-
duces a monitor for (Q,ϕ, δ) that solves Problem 2.

Theorem 5 Computational resources). Let (Q,ϕ, δ) be a problem instance
and A be the monitor computed using the BayesConfIntMonitor routine of
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Algorithm 4. BayesConfIntMonitor
Parameters: Q, ϕ, θ

Output: Λ

1: function Init(σ = 1)

2: ϕ
polyn.←−−−− ϕ, ϕ2 polyn.←−−−− ϕ2 �polyn. form

3: EXP ← BayesExpMonitor(Q, ϕ, θ)

4: EXP2 ← BayesExpMonitor(Q, ϕ2, θ)

5: EXP.Init(σ)

6: EXP2 .Init(σ)

7: Λ ← ⊥

1: function Next(σ′)
2: E ← EXP.Next(σ′)
3: E2 ← EXP2 .Next(σ′)
4: if E �= ⊥ and E2 �= ⊥ then
5: S ← E2 − E2 �variance

6: Λ ←
[
E ±

√
S
δ

]
�Chebysh.

7: return Λ

Algorithm 4. Suppose the size of ϕ is n. The monitor A requires O(n22n) reg-
isters, and takes O(n22n) time to update its output after receiving a new input
symbol. For the special case of ϕ being in polynomial form, A requires only O(n2)
registers, and takes only O(n2) time to update its output after receiving a new
input symbol.

A bound on the convergence speed of the Bayesian monitor is left open. This
would require a bound on the change in variance with respect to the length
of the observed path, which is not known for the general case of PSEs. Note
that the efficient (quadratic) cases are different for the frequentist and Bayesian
monitors, suggesting the use of different monitors for different specifications.

6 Experiments

We implemented our frequentist and Bayesian monitors in a tool written in Rust,
and used the tool to design monitors for the lending and the college admission
examples taken from the literature [48,54] (described in Sect. 1.1). The gener-
ators are modeled as Markov chains (see Fig. 1)—unknown to the monitors—
capturing the sequential interactions between the decision-makers (i.e., the bank
or the college) and their respective environments (i.e., the loan applicants or the
students), as described by D’Amour et al. [16]. The setup of the experiments is as
follows: We created a multi-threaded wrapper program, where one thread simu-
lates one long run of the Markov chain, and a different thread executes the moni-
tor. Every time a new state is visited by the Markov chain on the first thread, the
information gets transmitted to the monitor on the second thread, which then
updates the output. The experiments were run on a Macbook Pro 2017 equipped
with a 2,3GHz Dual-Core Intel Core i5 processor and 8GB RAM. The tool can
be downloaded from the following url, where we have also included the scripts to
reproduce our experiments: https://github.com/ista-fairness-monitoring/fmlib.

We summarize the experimental results in Fig. 3, and, from the table, observe
that both monitors are extremely lightweight: they take less than a millisecond
per update and small numbers of registers to operate. From the plots, we observe
that the frequentist monitors’ outputs are always centered around the ground

https://github.com/ista-fairness-monitoring/fmlib
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truth values of the properties, empirically showing that they are always objec-
tively correct. On the other hand, the Bayesian monitors’ outputs can vary dras-
tically for different choices of the prior, empirically showing that the correctness
of outputs is subjective. It may be misleading that the outputs of the Bayesian
monitors are wrong as they often do not contain the ground truth values. We
reiterate that from the Bayesian perspective, the ground truth does not exist.
Instead, we only have a probability distribution over the true values that gets
updated after observing the generated sequence of events. The choice of the type
of monitor ultimately depends on the application requirements.

Scenario Size of
expression

Av. comp. time/step # registers
Freq. Bayes. Freq. Bayes.

Lending (bias) + dem. par. 1 13.0 s 29.3 s 15 17
Lending (fair) + eq. opp. 5 21.6 s 31.0 s 29 27
Admission + soc. burden 19 53.8 s 184.6 s 46 102

Fig. 3. The plots show the 95% confidence intervals estimated by the monitors over
time, averaged over 10 different sample paths, for the lending with demographic parity
(left), lending with equalized opportunity (middle), and the college admission with
social burden (right) problems. The horizontal dotted lines are the ground truth values
of the properties, obtained by analyzing the Markov chains used to model the systems
(unknown to the monitors). The table summarizes various performance metrics.

7 Conclusion

We showed how to monitor algorithmic fairness properties on a Markov chain
with unknown transition probabilities. Two separate algorithms are presented,
using the frequentist and the Bayesian approaches to statistics. The perfor-
mances of both approaches are demonstrated, both theoretically and empirically.

Several future directions exist. Firstly, more expressive classes of properties
need to be investigated to cover a broader range of algorithmic fairness criteria.
We believe that boolean logical connectives, as well as min and max operators
can be incorporated straightforwardly using ideas from the related literature [3].
This also adds support for absolute values, since |x| = max{x,−x}. On the other
hand, properties that require estimating how often a state is visited would require
more information about the dynamics of the Markov chain, including its mixing
time. Monitoring statistical hyperproperties [18] is another important direction,
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which will allow us to encode individual fairness properties [21]. Secondly, more
liberal assumptions on the system model will be crucial for certain practical
applications. In particular, hidden Markov models, time-inhomogeneous Markov
models, Markov decision processes, etc., are examples of system models with
widespread use in real-world applications. Finally, better error bounds tailored
for specific algorithmic fairness properties can be developed through a deeper
mathematical analysis of the underlying statistics, which will sharpen the con-
servative bounds obtained through off-the-shelf concentration inequalities.
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