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Abstract. In resource allocation games, selfish players share resources that are
needed in order to fulfill their objectives. The cost of using a resource depends
on the load on it. In the traditional setting, the players make their choices concur-
rently and in one-shot. That is, a strategy for a player is a subset of the resources.
We introduce and study dynamic resource allocation games. In this setting, the
game proceeds in phases. In each phase each player chooses one resource. A
scheduler dictates the order in which the players proceed in a phase, possibly
scheduling several players to proceed concurrently. The game ends when each
player has collected a set of resources that fulfills his objective. The cost for each
player then depends on this set as well as on the load on the resources in it – we
consider both congestion and cost-sharing games. We argue that the dynamic set-
ting is the suitable setting for many applications in practice. We study the stability
of dynamic resource allocation games, where the appropriate notion of stability
is that of subgame perfect equilibrium, study the inefficiency incurred due to self-
ish behavior, and also study problems that are particular to the dynamic setting,
like constraints on the order in which resources can be chosen or the problem of
finding a scheduler that achieves stability.

1 Introduction
Resource allocation games (RAGs, for short) [21] model settings in which selfish agents
share resources that are needed in order to fulfill their objectives. The cost of using a
resource depends on the load on it. Formally, a k-player RAG G is given by a set E
of resources and a set of possible strategies for each player. Each strategy is a subset
of resources, fulfilling some objective of the player. Each resource e P E is associated
with a latency function `e : NÑ R, where `epγq is the cost of a single use of e when it
has load γ. For example, in network formation games (NFGs, for short) [2], a network
is modeled by a directed graph, and each player has a source and a target vertex. In the
corresponding RAG, the resources are the edges of the graph and the objective of each
player is to connect his source and target. Thus, a strategy for a player is a set of edges
that form a simple path from the source to the target. When an edge e is used by m
players, each of them pays `epmq for his use.

A key feature of RAGs is that the players choose how to fulfill their objectives in
one shot and concurrently. Indeed, a strategy for a player is a subset of the resources –
chosen as a whole, and the players choose their strategies simultaneously. In many set-
tings, however, resource sharing proceeds in a different way. First, in many settings, the
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choices of the players are made resource by resource as the game evolves. For example,
when the network in an NFG models a map of roads and players are drivers choosing
routes, it makes sense to allow each driver not to commit to a full route in the beginning
of the game but rather to choose one road (edge) at each junction (vertex), gradually
composing the full route according to the congestion observed. Second, players may
not reach the junctions together. Rather, in each “turn” of the game, only a subset of the
players (say, these that have a green light) proceed and chose their next road.

As another example to a rich composition and scheduling of strategies, consider
the setting of synthesis from component libraries [16], where a designer synthesizes a
system from existing components rather than from scratch as in the traditional problem
[20]. It is shown in [4,6] that when multiple designers use the same library, a RAG
arises. Here too, the choice of components may be made during the design process and
may evolve according to choices of other designers.

In this work we introduce and study dynamic resource allocation games, which
allow the players to choose resources in an iterative and non-concurrent manner. A
dynamic RAG is given by a pair G “ xG, νy, where G is a k-player RAG and ν :
t1, . . . , ku Ñ t1, . . . , ku is a scheduler. A dynamic RAG proceeds in phases. In each
phase, each player chooses one resource. A phase is partitioned into at most k turns,
and the scheduler dictates which players proceed in each turn: Player i moves at turn
νpiq. Note that the scheduler may assign the same turn to several players, in which case
they choose a resource concurrently in a phase. Once all turns have been taken, a phase
is concluded and a new phase begins. A strategy for a player in a dynamic RAG is a
function that takes the history of choices made by the players so far (in the current phase
as well as previous ones), and returns the next choice the player makes. A player finishes
playing once the resources he has chosen forms a strategy in the underlying RAG. In an
outcome of the game, each player selects a set of resources. His cost depends on their
load and latency functions as in usual RAGs.

Example 1. Consider the 4-player network formation game that is depicted in Figure 1.
The interesting edges have names, e.g., a, b, c . . ., and their latency function is depicted
below the edge. For example, we have `apxq “ x and `c1pxq “ 10x. The other edges
have latency function 0. The source and target of a node of Player i are depicted with a
node called s and t, respectively, and with a subscript i. For example, Player 2’s source
is s1,2 and he has two targets tL2 and tR2 . The players’ strategies are paths from one of
their sources to one of their targets.

Consider a dynamic version of the game in which Player i chooses an edge at turn i.
At first look, it seems that edge g will never be chosen. However, we show that Player 1’s
optimal strategy uses it. Player 1 has three options in the first turn, either choose g, a,
or b3. Assume he chooses a (and dually b). Then, we claim that Player 2 will choose b.
Note that Players 3 and 4 move oposite of Player 2 no matter how Player 1 moves, as
they prefer avoiding a load of 2 on c1 and c2, which costs 20 each, even at the cost of
a load of 3 on f , which costs only 3. Knowing this, Player 2 prefers using b alone over
sharing a with Player 1. Since the loads on a and e are 1 and 3, respectively, Player 1’s
cost is 1` 3 “ 4.

3 In this example we require the players to choose their paths incrementally, which is not the
general definition we use in the paper.
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On the other hand, if Player 1 chooses g in the first phase, he postpones revealing
his choice between left and right. If Player 2 proceeds left, then Players 3 and 4 proceed
right, and Player 1 proceeds left in the second phase. Now, the load on a and e is 2 and
1, respectively, thus Player 1’s cost is 1

2 ` 2` 1 “ 3 1
2 . [\
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Fig. 1. A network formation game in which it is beneficial to select a path that is not simple.

The concept of what we refer to as a dynamic game is old and dates back to Von
Neumann’s work on extensive form games [18]. Most work on RAGs considers the
simultaneous setting. However, there have been different takes on adding dynamicity to
RAGs. In [17], the authors refine the notion of NE by considering lookahead equilibria;
a player predicts the reactions of the other players to his deviations, and he deviates only
if the outcome is beneficial. The depth of lookahead is bounded and is a parameter to the
equilibria. A similar setting was applied to RAGs in [7], where the players are restricted
to choose a best-response move rather than a deviation that might not be immediately
beneficial. Concurrent ongoing games are commonly used in formal methods to model
the interaction between different components of a system (c.f., [1]). In such a game,
multiple players move a token on a graph. At each node, each player selects a move,
and the transition function determines the next position of token, given the vector of
moves the players selected. The objectives of the players refer to the generated path
and no costs are involved. Closest to our model is the model of [15], and its subsequent
works [8,10]. They study RAGs in which players arrive and select strategies one by one,
yet in one shot.

Our dynamic games differ from all of these games in two aspects. We allow the
players to reveal their choices of resources in parts, thus we allow “breaking” the strate-
gies. Moreover, the choices the players make in all the games in earlier work are either
concurrent or sequential, and we allow a mix between the two. These new aspects we
introduce are natural and general, and can be applied to other games and settings.

The first question that arises in the context of games, and on which we focus in
this work, is the existence of a stable outcome of the game. In the context of RAGs,
the most prominent stability concept is that of a Nash equilibrium (NE, for short) –
a profile such that no player can decrease his cost by unilaterally deviating from his
current strategy. It is well known that every RAG has an NE [21]. The definition of
an NE applies to all games, and can also be applied to our dynamic RAGs. As we
demonstrate in Example 2, the dynamic setting calls for a different stability concept,
and the prominent one is subgame perfect equilibrium (SPE, for short) [24], which we
define formally in Section 2.

Classifying RAGs, we refer to the type of their latency functions as well as the
type of the objectives of the players. Congestion games [22] are RAGs in which the
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latency functions are increasing, whereas in cost-sharing games [2], each resource has
a cost that is split between the players that use it (in particular, the latency functions are
decreasing). In terms of objectives, we consider singleton RAGs, in which the objectives
of the players are singletons of resources, and symmetric RAGs, in which all players
have the same objective.

Our most interesting results are in terms of equilibrium existence. It is easy to show,
and similar results are well known, that every dynamic RAG with a sequential scheduler
has an SPE. The proof uses backwards induction on the tree of all possible outcomes
of the game. One could hope to achieve a similar proof also for schedulers that are
not sequential, especially given the fact that every RAG has an NE. Quite surprisingly,
however, we show that this is not the case. For congestion games, we show examples of
a singleton congestion game and a symmetric congestion game with no SPE. Moreover,
the latency function in both cases is linear. On the positive side, we show that singleton
and symmetric congestion games are guaranteed to have an SPE for every scheduler. For
cost-sharing games, we also show an example with no SPE. In the cost-sharing setting,
however, we show that singleton objectives are sufficient to guarantee the existence of
an SPE in all schedules. It follows that singleton dynamic congestion games are less
stable than singleton dynamic cost-sharing games. This is interesting, as in the one-shot
concurrent setting, congestion games are known to be more stable than cost-sharing
games in various parameters. One would expect that this “order of stability” would
carry over to the dynamic setting, as is the case in other extensions of the traditional
setting. For example, an NE is not guaranteed for weighted cost-sharing games [9] as
well as very restrictive classes of multiset cost-sharing games [5], whereas every linear
weighted congestion game [12] and even linear multiset congestion game is guaranteed
to have an NE [6].

It is well known that decentralized decision-making may lead to solutions that are
sub-optimal from the point of view of society as a whole. In simultaneous games, the
standard measures to quantify the inefficiency incurred due to selfish behavior is the
price of anarchy (PoA) [14] and price of stability (PoS) [2]. In both measures we com-
pare against the social optimum (SO, for short), namely the cheapest profile. The PoA
is the worst-case inefficiency of an NE (that is, the ratio between the cost of a worst
NE and the SO). The PoS is the best-case inefficiency of an Nash equilibrium (that is,
the ratio between the cost of a best NE and the social optimum). For the dynamic set-
ting, we adjust these two measures to consider SPEs rather than NEs, and we refer to
them as DPoA and DPoS. We study the equilibrium inefficiency in the classes of games
that have SPEs. We show that the DPoA and DPoS in dynamic singleton cost-sharing
games as well as dynamic singleton congestion games coincide with the PoA and PoS
in the corresponding simultaneous class. As mentioned above, [15,8,10] study games in
which players arrive one after the other. Since their games are sequential, they always
have an SPE. They study the sequential PoA, and show that it can either be equal, below,
or above the PoA of the corresponding class of RAGs.

We then turn to study the computational complexity of deciding whether a given
dynamic RAG has an SPE. We show that the problem is PSPACE-complete for both
congestion and cost-sharing games. Our lower bound for cost-sharing games implies
that finding an SPE in sequential games is PSPACE-hard. To the best of our knowledge,
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while this problem was solved in [15] for congestion games, we are the first to solve it
for cost-sharing games.

Due to lack of space, some proofs and examples are given in the full version, which
can be found in the authors’ homepages.

2 Preliminaries
Resource allocation games For k ě 1, let rks “ t1, . . . , ku. A resource-allocation
game (RAG, for short) is a tuple G “ trks, E, tΣiuiPrks, t`euePEu, where rks is a set
of k players; E is a set of resources; for i P rks, the set Σi Ď 2E is a set of objectives4

for Player i; and, for e P E, we have that `e : N Ñ R is a latency function. The
game proceeds in one-round in which the players select simultaneously one of their
objectives. A profile P “ xσ1, . . . , σky P Σ1 ˆ . . .ˆΣk is a choice of an objective for
each player. For e P E, we denote by nusedpP, eq the number of times e is used in P ,
thus nusedpP, eq “ |ti P rks : e P σiu|. For i P rks, the cost of Player i in P , denoted
costipP q, is

ř

ePσi
`epnusedpP, eqq.

Classes of RAGs are characterized by the type of latency functions and objectives.
In congestion games (CGs, for short), the latency functions are increasing. An excep-
tionally stable class of CGs are ones in which the latency functions are affine (c.f.,
[12,6]); every resource e P E has two constants ae and be, and the latency function is
`epxq “ ae ¨ x ` be. In cost-sharing games (SG, for short), each resource e P E has a
cost ce and the players that use the resource share its cost, thus the latency function for
e is `epxq “ ce

x , and in particular is decreasing. We use DCGs and DSGs to refer to dy-
namic CGs and dynamic SGs, respectively. In terms of objectives, we study symmetric
games, where the players’ sets of objectives are equal, thus Σi “ Σj for all i, j P rks,
and singleton games, where each σ P Σi is a singleton, for every i P rks.

Dynamic resource allocation games A dynamic RAG is pair G “ xG, νy, where
G is a RAG and ν : rks Ñ rks is a scheduler. Intuitively, in a dynamic game, rather
than revealing their objectives at once, the game proceeds in phases: in each phase,
each player reveals one resource in his objective. Each phase is partitioned into at most
k turns. The scheduler dictates the order in which the players proceed in a phase by
assigning to each player his turn in the phases. If the scheduler assigns the same turn
to several players, they select a resource concurrently. Once all players take their turn,
a phase is concluded and a new phase begins. There are two “extreme” schedulers: (1)
players get different turns, i.e., ν is a permutation, (2) all players move in one turn,
i.e., ν ” 1. We refer to games with these schedulers as sequential and concurrent,
respectively. Note that ν might not be an onto function. For simplicity, we assume that,
for j ą 1, if turn j is assigned a player, then so is turn j ´ 1. We use tν to denote the
last turn according to ν, thus tν “ maxi νpiq.

Let EK “ E Y tKu, where K is a special symbol that represents the fact that a
player finished playing. Consider a turn j P rks. We denote by beforepjq the set of
players that play before turn j; thus beforepjq “ ti P rks : νpiq ă ju. A player
has full knowledge of the resources that have been chosen in previous phases and the

4 We use “objectives” rather than “strategies” as the second will later be used for dynamic games.
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resources chosen in previous turns in the current phase. A strategy for Player i in G is
a function fi : pE

rks
K q

˚ ¨ pE
beforepνpiqq
K q Ñ EK. A profile P “ xf1, . . . , fky is a choice

of a strategy for each player. The outcome of the game given a profile P , denoted
outpP q, is an infinite sequence of functions π1, π2, . . ., where for i ě 1, we have
πi : rks Ñ EK. We define the sequence inductively as follows. Let m ě 1 and j P rks.
Assume m ´ 1 phases have been played as well as j ´ 1 turns in the m-th phase, thus
π1, π2, . . . , πm´1 are defined as well as πmj´1 : beforepjq Ñ EK. We define πmj as
follows. Consider a player i with νpiq “ j. The resource Player i chooses in the m-th
phase is fipπ1, . . . , πm´1, πmj´1q. Finally, we define πm “ πmtν .

We restrict attention to legal strategies for the players, namely ones in which the
collection of resources chosen by Player i in all phases is an objective in Σi 5. Also,
once Player i choosesK, then he has finished playing and all his choices in future phases
must also be K. Formally, for a profile P “ xf1, . . . , fky with outpP q “ π1, π2, . . .
and i P rks, let outipP q be π1piq, π2piq, . . .. For j ě 1, let ej “ πjpiq be the resource
Player i selects in the j-th phase. Thus, outipP q is an infinite sequence over EK. We
say that fi is legal if (1) there is an index m such that ej P E for all j ă m and ej “ K
for all j ě m, and (2) the set te1, . . . , em´1u is an objective in Σi. (In particular, a
player cannot select a resource multiple times nor a resource that is not a member in his
chosen objective). We refer to an outcome in which the players use legal strategies as a
legal outcome and a prefix of a legal outcome as a legal history.

In outpP q, every player selects a set of resources. The cost of a player is calculated
similarly to RAGs. That is, his cost for a resource e, assuming the load on it is γ, is
`epγq, and his total cost is the sum of costs of the resources he uses. When the outcome
of a profile P in a dynamic RAG coincides with the outcome of a profile Q in a RAG
G, we say that P and Q are matching profiles.

Equilibrium concepts A Nash equilibrium6 (NE, for short) in a game is a profile in
which no player has an incentive to unilaterally deviate from his strategy. Formally, for
a profile P , let P ri Ð f 1is be the profile in which Player i switches to the strategy f 1i
and all other players use their strategies in P . Then, a profile P is an NE if for every
i P rks and every legal strategy f 1i for Player i, we have costipP q ď costipP riÐ f 1isq.
It is well known that every RAG is guaranteed to have an NE [21].

The definition of NE applies to all games, in particular to dynamic ones. Every
NE Q in a RAG G matches an NE in a dynamic game xG, νy, for some scheduler
ν, in which the players ignore the history of the play and follow their objectives in
Q. However, such a strategy is not rational. Thus, one could argue that an NE is not
necessarily achievable in a dynamic setting. We illustrate this in the following example.
Example 2. Consider a two-player DCG with resources ta, bu, latency functions `apxq “
x and `bpxq “ 1.5x, and objectives Σ1 “ Σ2 “ ttau, tbuu. Consider the sequential
scheduling in which Player 1 moves first followed by Player 2. Since the players’ ob-
jectives are singletons, the dynamic game consists of one phase. Consider the Player 2
strategy f2 that “promises” to select the resource a no matter what Player 1 selects, thus

5 It is interesting to allow players to use “redundant resources”; a player’s choice of resources
should contain one of his objectives. While in the traditional setting, using a redundant resource
cannot be beneficial, in the dynamic setting, it is, as a variant of Example 1 demonstrates.

6 Throughout this paper, we consider pure strategies as is the case in the vast literature on RAGs.
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f2paq “ f2pbq “ a. Let fa1 and f b1 be the Player 1 strategies in which he selects a and
b, respectively, thus fa1 pεq “ a and f b1pεq “ b, where ε denotes the empty history. Note
that these are all of Player 1’s possible strategies. The profile P “ xf b1 , f2y is an NE.
Indeed, Player 2 pays 1, which is the least possible payment, so he has no incentive to
deviate. Also, by deviating to fa1 , Player 1’s payoff increases from 1.5 to 2, so he has no
incentive to deviate either. Note, however, that this strategy of Player 2 is not rational.
Indeed, when it is Player 2’s turn, he is aware of Player 1’s choice. If Player 1 plays fa1 ,
then a rational Player 2 is not going to choose a, as this results in a cost of 2, whereas
by b, his cost will be 1.5. Thus, an NE profile with f2 may not be achievable. [\

To overcome this issue, the notion of subgame perfect equilibrium (SPE, for short)
was introduced. In order to define SPE, we need to define a subgame of a dynamic
game. Let G “ xG, νy. It is helpful to consider the outcome tree TG of G, which is
a finite rooted tree that contains all the legal histories of G. Each internal node in TG
corresponds to a legal history, its successors correspond to possible extensions of the
history, and each leaf corresponds to a legal outcome. Consider a legal history h. We
define a dynamic RAG Gh, which, intuitively, is the same as G after the history h has
been played. More formally, the outcome tree of Gh is the subtree T h

G whose root is the
node h. We define the costs in Gh so that the costs of the players in the leaves of T h

G
are the same as the corresponding leaves in TG . Assume that h ends at the m-th turn. A
profile P in G corresponds to a trimming of TG in which the internal node h has exactly
one child h ¨ σ, where σ is the set of choices of the players in ν 1́

pmq when they play
according to their strategies in P . The profile P induces a profile Ph in Gh, where the
trimming of T h

G according to Ph coincides with the trimming of G according to P . We
formally define the outcome tree and a subgame in the full version.

Definition 1. A profile P is an SPE if for every legal history h, the profile Ph is an NE
in Gh.

Note that the profile P “ xf b1 , f2y in the example above is an NE but not an SPE.
Indeed, for the history h “ a, the profile Ph is not an NE in Gh as Player 2 can benefit
from unilaterally deviating as described above.

3 Existence of SPE in Dynamic Congestion Games
It is easy to show that every sequential dynamic game has an SPE by unwinding the
outcome tree, and similar results have been shown before (c.f., [15]). The proof can be
found in the full version.

Theorem 1. Every sequential dynamic game has an SPE.

One could hope to prove that a general dynamic game G also has an SPE using a
similar unwinding of TG , possibly using the well-known fact that every CG is guaran-
teed to have an NE [21]. Unfortunately, and somewhat surprisingly, we show that this
is not possible. We show that (very restrictive) DCGs might not have an SPE. For the
good news, we identify a maximal fragment that is guaranteed to have an SPE.

Recall that a CG is singleton when the players’ objectives consist of singletons of
resources, and a CG is symmetric if all the players agree on their objectives. We start
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with the bad news and show that symmetric DCGs and singleton DCGs need not have
an SPE, even with linear latency functions. We then show that the combination of these
two restrictions is sufficient for existence of an SPE in a DCG.

Theorem 2. There are symmetric and singleton linear DCGs with no SPE.

Proof. We first describe a linear DCG with no SPE, and then alter it to make it sym-
metric. The proof for singleton linear DCG is given in the full version.Consider the
following three-player linear CG G with resources E “ ta, a1, b, b1, cu and linear la-
tency functions `apxq “ `bpxq “ x, `a1pxq “ 3

4x, `b1pxq “ 1 1
4 , and `cpxq “ x ` 2

3 .
Let Σ1 “ Σ2 “ tta, a

1u, tb, b1u, tcuu and Σ3 “ ttcu, ta
1, buu. Consider the dynamic

game G in which Players 1 and 2 move concurrently followed by Player 3. Formally,
G “ xG, νy, where νp1q “ νp2q “ 1 and νp3q “ 2.

We claim that there is no SPE in G. Note that since the players’ objectives are
disjoint, then once a player reveals the first choice of resource, he reveals the whole
objective he chooses, thus we analyze the game as if it takes place in one phase in
which the players’ reveal their whole objective. The profiles in which Players 1 and 2
choose the same objective are clearly not a SPE as they are not an NE in the game Gε. As
for the other profiles, in Figure 2, we go over half of them, and show that none of them
is an SPE. The other half is analogous. The root of each tree is labeled by the objectives
of Players 1 and 2, and its branches according to Player 3’s objectives. In the leaves we
state Player 3’s payoff. In an SPE, Player 3 performs a best-response according to the
objectives he observes as otherwise the subgame is not in an NE. We depict his choice
with a bold edge. Beneath each tree we note the payoffs of all the players in the profile,
and the directed edges represent the player that can benefit from unilaterally deviating.
In the full version, we construct a symmetric DCG G1 by altering the game G above. We
do this by adding a fourth player and three new resources so that G1 simulates G. [\

{a, a′}, {b, b′}

12

3
31

2

〈13

4
, 21

4
, 12

3
〉

{c} {a′, b}

{a, a′}, {c}

22

3
21

2

〈21

2
, 12

3
, 21

2
〉

{c} {a′, b}

{b, b′}, {c}

22

3
23

4

〈21

4
, 22

3
, 22

3
〉

{c} {a′, b}

{b, b′}, {a, a′}

12

3
31

2

〈21

4
, 13

4
, 12

3
〉

{c} {a′, b}

Fig. 2. Profiles in the game G with no SPE.

We now prove that combining the two restrictions does guarantee the existence of
SPE. We note that while our negative results hold for linear DCGs, which tend to be
stabler than other DCGs, our positive result holds for every increasing latency function.

Theorem 3. Every symmetric singleton DCG has an SPE.

Proof. Consider a symmetric singleton DCG G “ xG, νy. Recall that since G is a
singleton game, every outcome of G consists of one phase. Let P be an NE in G (recall
that according to [21] an NE exists in every CG). Since G is symmetric, we can assume
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that, for 1 ď j ă k, the players that move in the j-th turn do not pay more than the
players that move after them. Formally, for i, i1 P rks, if νpiq ă νpi1q, then costipP q ď
costi1pP q. In particular, the players who move in the first turn pay the least, and the
players that move in the last turn pay the most. We construct a profile Q in G and show
that it is an SPE. Intuitively, in Q, the players follow their objectives in P assuming
the previous players also follow it. Since the costs are increasing with turns, if Player i
deviates, a following Player j will prefer switching resources with Player i and also
switching the costs. Thus, the deviation is not beneficial for Player i. In the full version,
we construct Q formally and prove that it is an SPE. [\

4 Existence of SPE in Dynamic Cost-sharing Games
Cost sharing games tend to be less stable than congestion games in the concurrent set-
ting; for example, very simple fragments of multiset cost-sharing games do not have
an NE [5] while linear multiset congestion games are guaranteed to have an NE [6]. In
this section we are going to show that, surprisingly, there are classes of games in which
an SPE exists only in the cost-sharing setting. Still, SPE is not guaranteed to exist in
general DSGs. We start with the bad news.

Theorem 4. There is a DSG with no SPE.

Proof. Consider the following four-player SGGwith resourcesE “ ta, a1, a2, b, b1, b2, c, c1, c2u
and costs ca “ cb “ cc “ 6, ca1 “ cb1 “ cc1 “ 4, and ca2 “ cb2 “ cc2 “ 3.
Let Σ1 “ tta, a1u, tb, b2uu, Σ2 “ ttb, b1u, tc, c2uu, Σ3 “ ttc, c1u, ta, a2uu, and
Σ4 “ tta, a1u, tb, b1u, tc, c1uu. Consider the dynamic game G in which players 1,2,
and 3 move concurrently followed by Player 4. Formally, G “ xG, νy, where νp1q “
νp2q “ νp3q “ 1 and νp4q “ 2.

We claim that there is no SPE in G. Similar to Theorem 2, since the players’ objec-
tives are disjoint, we analyze the game as if it takes place in one phase. In Figure 3, we
depict some of the profiles and show that none of them are an SPE. As in Theorem 2,
the root of each tree is labeled by the objectives of Players 1, 2, and 3, its branches
according to Player 4’s choices, and in the leaves we state the cost of Player 4 assuming
he chooses his best choice given the other players’ choices. Finally, it is not hard to
show that every profile not on the cycle of profiles cannot be an SPE. [\
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4 7 10

〈4, 10, 5, 4〉

{a, a′} {b, b′} {c, c′}

{a, a′}, {c, c′′}, {a, a′′}

4 10 7

〈4, 9, 5, 4〉

{a, a′} {b, b′} {c, c′}

{a, a′}, {c, c′′}, {c, c′}

7 10 4

〈10, 5, 4, 4〉

{a, a′} {b, b′} {c, c′}

Fig. 3. Profiles in the game with no SPE. Bold edges depict Player 4’s best choice given the other
players choices. Directed edges represent the player that can benefit from unilaterally deviating.
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Recall that singleton DCGs are not guaranteed to have an SPE (Theorem 2). On
the other hand, we show below that singleton DSGs are guaranteed to have an SPE. In
order to find an SPE in such a game, we use a firmer notion of an equilibria in SGs.

A strong equilibrium (SE, for short) [3] is a profile that is stable against deviations
of coalitions of players rather than deviations of a single player as in NEs (see the full
version for a formal definition). We show a connection between strong equilibria and
SPEs in singleton SGs. It is shown in [13] that every singleton SG has an SE.

Theorem 5. Consider a singleton DSG G “ xG, νy. Then, every strong equilibrium in
G matches an SPE of G. In particular, every singleton DSG has an SPE.

Proof. We describe the intuition of the proof and the details can be found in the full
version. Consider a singleton DSG G “ xG, νy, and let Q be an SE in G. We describe
a profile P in G that matches Q, and we claim that it is an SPE. Consider a history h
that ends in the i-th turn. Assume the players that play in h follow their objective in
Q. Then, the players who play next, namely these in ν 1́

pi ` 1q, also follow Q. Thus,
P matches Q. The definition of the strategies in P for histories that do not follow Q
is inductive: assume only the players in ν 1́

piq choose differently than in Q, then the
subgame Gh is a singleton DSG. We find a strong equilibrium in Gh and let the players
in ν 1́

pi ` 1q choose according to it. In order to show that no Player i can unilaterally
benefit from deviating to a resource e from P , we observe that it is not possible that
all players that deviate into e decrease their costs (as Q is an SE). So, there must be a
Player j1 that deviates from some resource e1 to e and increases his cost. This can only
happen if there is a Player j2 that also uses e1 in Q and deviates to e2 while decreasing
his cost. The same reasoning holds for players deviating to e2. Thus, we find a sequence
of resources, which must contain a loop as there are finitely many resources. Using it
we can reach a contradiction to the fact that Player i benefits. [\

5 Equilibrium Inefficiency
It is well known that decentralized decision-making may lead to sub-optimal solutions
from the point of view of society as a whole. We define the cost of a profile P , denoted
costpP q, to be

ř

iPrks costipP q. We denote by OPT the cost of a social-optimal solu-
tion; i.e., OPT “ minP costpP q. Two standard measures that quantify the inefficiency
incurred due to self-interested behavior are the price of anarchy (PoA) [14,19] and price
of stability (PoS) [2,23]. The PoA is the worst-case inefficiency of an NE; The PoA of
a game G is the ratio between the cost of the most expensive NE and the cost of the
social optimum. The PoS measures the best-case inefficiency of an NE, and is defined
similarly with the cheapest NE. The PoA of a family of games F is supGPF PoApGq,
and the definition is similar for PoS.

In dynamic games we consider SPE rather than NE. We adapt the definitions above
accordingly, and we refer to the new measures as dynamic PoA and dynamic PoS (DPoA
and DPoS, for short). We study the equilibrium inefficiency in the classes of games that
are guaranteed to have an SPE, namely singleton DSGs and symmetric singleton DCGs.

The lower bounds for the PoA and PoS for singleton SG and singleton symmetric
CGs follow to the dynamic setting as we can consider the scheduler in which all players
choose simultaneously in the first turn. For the upper bound we start with the DPoS.
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In the congestion setting, we show that every NE in the underlying RAG matches an
SPE. In the cost-sharing setting, recall that an SE in the traditional game matches an
SPE in the dynamic game, and by [26], a singleton SG has an SE whose cost is at most
logpkq ¨ OPT . This matches the logpkq lower bound. We continue to study DPoA. In
the cost-sharing setting, the upper bound follows from the same argument as traditional
games. For congestion games, it follows by applying a recent result by [10] to our
setting. The details can be found in the full version.

Theorem 6. The DPoA and DPoS in singleton DSGs and singleton symmetric DCGs
coincide with the PoA and PoS in singleton SGs and singleton symmetric CGs, respec-
tively.

Thus, for singleton DSGs we have DPoA “ k and DPoS “ log k [2], and for
singleton symmetric DCGs we have DPoA “ 4{3 [11] and we are not aware of bounds
for the PoS in the corresponding CGs.

6 Deciding the Existence of SPE
In the previous sections we showed that dynamic RAGs are not guaranteed to have an
SPE. A natural decision problem arises, which we refer to as DSPE: given a dynamic
RAG, decide whether it has an SPE. We show that the problem is PSPACE-complete
in DSGs and DCGs. We start with the lower bound. The crux of the proof is given in
the following lemma. For DCGs, such a construction is described in [15], which uses a
construction by [25] in order to simulate the logic of a NAND gate by means of a CG.
For SGs we are not aware of a similar known result. We describe the construction in the
full version, which is inspired by the construction in [15].

Lemma 1. Given a QBF instance ψ, there is a fully sequential game Gψ that is either
a DCG or a DSG, and two constants γ, δ ą 0, such that in every SPE P in Gψ , (1) if ψ
is true, then cost1pP q ă γ, and (2) if ψ is false, then cost1pP q ą δ.

To conclude the lower-bound proof, we combine the game that is constructed in
Lemma 1 and a game that has no SPE as in the examples we show in the previous
sections. For the upper bound, consider a dynamic RAG G, and let TG be the outcome
tree of G. Recall that there is a one-to-one correspondence between leaves in TG and
legal outcomes of G. In order to decide in PSPACE whether G has an SPE, we guess a
leaf l in TG and verify that it is an outcome of an SPE. Thus, we ask if there is an SPE
P in G whose outcome corresponds to l.

Theorem 7. The DSPE problem is PSPACE-complete for dynamic RAGs.

7 Extensions
In the full version we study two extensions of the dynamic setting. In the first, we
consider the problem of finding a schedule that admits an SPE under given constraints
on the order the players move, and show that this problem is also PSPACE-complete.
Then, we consider dynamic RAGs in which there is an order on the resources that the

11



players choose. So, if for two resources e1 and e2, we have e1 ă e2, then a player
cannot choose e1 in a later phase than e2. The motivation for an order on resources is
natural. For example, returning to network formation games, a driver can only extend
the path he chooses as the choices are made during driving. We show that all our results
carry over to the ordered case.
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