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Abstract

The ages of solar-like stars have been at the center of many studies such as exoplanet characterization or Galactic-
archeology. While ages are usually computed from stellar evolution models, relations linking ages to other stellar
properties, such as rotation and magnetic activity, have been investigated. With the large catalog of 55,232 rotation
periods, Prot, and photometric magnetic activity index, Sph from Kepler data, we have the opportunity to look for
such magneto-gyro-chronology relations. Stellar ages are obtained with two stellar evolution codes that include
treatment of angular momentum evolution, hence using Prot as input in addition to classical atmospheric
parameters. We explore two different ways of predicting stellar ages on three subsamples with spectroscopic
observations: solar analogs, late-F and G dwarfs, and K dwarfs. We first perform a Bayesian analysis to derive
relations between Sph and ages between 1 and 5 Gyr, and other stellar properties. For late-F and G dwarfs, and K
dwarfs, the multivariate regression favors the model with Prot and Sph with median differences of 0.1% and 0.2%,
respectively. We also apply Machine Learning techniques with a Random Forest algorithm to predict ages up to
14 Gyr with the same set of input parameters. For late-F, G and K dwarfs together, predicted ages are on average
within 5.3% of the model ages and improve to 3.1% when including Prot. These are very promising results for a
quick age estimation for solar-like stars with photometric observations, especially with current and future space
missions.

Unified Astronomy Thesaurus concepts: Asteroseismology (73); Magnetic variable stars (996); Stellar ages (1581);
Stellar rotation (1629)

Supporting material: machine-readable tables

1. Introduction

The importance of stellar ages is undeniable for different
fields of astronomy whether it is to study galactic evolution,
planetary systems, or, of course, stellar physics. Stellar ages are
model dependent by their nature (Soderblom 2010), and as a
consequence a variety of approaches for estimating ages can be
found in the literature. These range from ones that rely heavily
on theoretical models to those that are primarily empirical in
nature. Stars spin down as they age, which makes rotation a
potentially powerful chronometer. However, only a few stellar
evolution codes include internal angular momentum transport
and magnetized winds (Demarque et al. 2008; Eggenberger
et al. 2008; Paxton et al. 2013; Amard et al. 2016). A major
reason why rotation is not more firmly embedded in stellar
models is that there is currently no consensus agreement on the

most important mechanisms for transport. All published models
disagree with some aspects of observed internal rotation
profiles (e.g., Ceillier et al. 2013; Aerts et al. 2019). Earlier
codes focused on hydrodynamic angular momentum transport.
Additional transport mechanisms such as internal gravity
waves (Talon & Charbonnel 2005; Fuller et al. 2014; Pinçon
et al. 2017) and magnetic field stresses (Spruit 2002; Duez &
Mathis 2010; Fuller et al. 2019; Bugnet et al. 2021; Mathis
et al. 2021) are very likely to be important, but are usually not
included because of the difficulty of properly implementing
these multidimensional processes, and because of the lack of
observational constraints on internal properties (e.g., magnetic
field). However, these models still represent a good reference
as they reproduce the Sun, and they are based on the best
physics known so far.
For a long time and for large number of stars, isochrone fitting

of observables such as colors, magnitudes, or atmospheric
parameters (effective temperature, Teff, and surface gravity,

glog ) have been used to derive stellar parameters including ages.
When done for field stars, this can lead to uncertainties on
ages larger than 50% (e.g., Lebreton & Goupil 2014).
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Isochrone ages become particularly uncertain on the lower
main sequence, where stars experience little nuclear evolution
over the age of the universe. The age estimate can be improved
for cluster stars as they share a common origin as well as
other properties like composition (e.g., Bossini et al. 2019;
Godoy-Rivera et al. 2021).

Stellar oscillations are powerful diagnostics of the global
properties of stars. The study of these oscillations, asteroseis-
mology, can provide additional constraints to the stellar
models. Indeed Lebreton & Goupil (2014) showed how the
age precision increases when spectroscopic and asteroseismic
data are combined. Asteroseismic analyses have been
performed in hundreds of solar-like stars (e.g., Appourchaux
et al. 2008; Chaplin et al. 2011b; Lund et al. 2016; García &
Ballot 2019; Chontos et al. 2021; Mathur et al. 2022) mostly
with data from space missions such as Convection, Rotation,
and Transits (Baglin et al. 2006), Kepler (Borucki et al. 2010),
K2 (Howell et al. 2014), and the Transiting Exoplanet Survey
Satellite (TESS; Ricker et al. 2015), allowing for the
determination of precise seismic ages for around 100 stars
with well-characterized individual frequencies (e.g., Silva
Aguirre et al. 2015; Creevey et al. 2017; Silva Aguirre et al.
2017). Unfortunately such seismic analysis has been done on
only a small sample of solar-like stars that the aforementioned
space missions observed, due to the short-cadence requirement
and the small amplitude of the modes that, for instance, can be
suppressed by surface magnetic activity (e.g., García et al.
2010; Chaplin et al. 2011a; Bonanno et al. 2014; Santos et al.
2018; Mathur et al. 2019).

Another way of estimating stellar ages has been developed
and used in the last decades and is based on semiempirical
methods. Indeed, it has been observed that rotation rate and
surface magnetic activity decay when a solar-like star gets older
(Skumanich 1972). These observations are explained by the
loss of angular momentum via magnetized stellar winds (e.g.,
Kawaler 1988; Pinsonneault et al. 1989). The rotation–age
relationship has been investigated using clusters, where the
most reliable ages were available, leading to the dawn of
gyrochronology (e.g., Barnes 2003, 2007). To derive such
relationship, we need calibrators with independent precise ages
(clusters, binaries, or seismic targets).

Similarly, magnetochronology has been developed where the
observable is a magnetic activity index such as the one from Ca
H & K lines (e.g., Wilson 1978; Baliunas et al. 1995), Zeeman
Doppler imaging (e.g., Marsden et al. 2014), X-ray luminosity
(e.g., Wright et al. 2018; Johnstone et al. 2021), or photometry
(e.g., Basri et al. 2013; Mathur et al. 2014a).

A few activity–age relations have been derived by calibrating
activity as a function of stellar observables, with ages computed
mostly from isochrone fitting, (Mamajek & Hillenbrand 2008;
Pace 2013; Vidotto et al. 2014; Lorenzo-Oliveira et al. 2016,
2018). Usually, those relations rely on magnetic activity proxies
that require X-ray, UV, or high-resolution spectroscopic
observations that are not trivial to obtain in particular for a
large sample of stars. Thankfully, in the era of high-precision
photometric space-based missions, measurements of the photo-
metric magnetic activity became more easily available for large
samples. In particular, Kepler allowed the detection of starspot
modulation for several tens of thousands of solar-like stars. With
the TESS mission already observing millions of stars and
the upcoming PLAnetary Transits and Oscillations (PLATO;
Rauer et al. 2014) mission that will observe several hundreds of

thousands of stars, photometric magnetic activity will be accessible
for much larger samples. Therefore, having a magnetic–age relation
based on photometric observations would be useful to constrain
stellar ages. With this in mind, in this work we study the possibility
of using the photometric magnetic activity proxy, Sph (García et al.
2010; Mathur et al. 2014b), computed with Kepler observations to
estimate ages of stars.
In Section 2, we briefly review how the rotation periods and

magnetic activity proxies have been computed for the Kepler
targets. We describe our method for inferring stellar ages in
Section 3, and we compare them with other published values
(Section 4). Different relations are then derived between the
photometric magnetic activity proxy and age, along with other
stellar parameters by means of a Bayesian approach (Section 5).
In Section 6, machine-learning tools are investigated to predict
the ages of main-sequence solar-like stars. The results and
limitations of the different ways of computing or predicting
stellar ages are discussed in Section 7. Finally, in Section 8 we
provide the conclusions of this work.

2. Magnetic Activity Proxy and Rotation Period

Rotation period measurements are possible thanks to the
presence of active regions on the stellar surface that create a
brightness modulation whose periodicity is related to the
surface rotation. With 4 yr of quasi-continuous observations of
∼ 160,000 solar-like stars on the main sequence and on the
subgiant branch (Mathur et al. 2017), the Kepler mission
provided the longest and best-quality light curves to study the
rotation and magnetic activity of solar-like stars. The most
recent catalog of surface rotation periods inferred from Kepler
observations (Santos et al. 2019, 2021, hereafter S19 and S21)
yielded a sample of 55,232 solar-like stars on the main
sequence as well as subgiants with rotation measurements.
The S19 and S21 rotation periods, Prot, were obtained by

analyzing four different sets of Kepler light curves (Jenkins
et al. 2010a; García et al. 2011) with a rotation pipeline that
uses three different methods: a time-frequency analysis with
wavelets tools (Torrence & Compo 1998; Liu et al. 2007;
Mathur et al. 2010), an auto-correlation function (García et al.
2014; McQuillan et al. 2014), and the composite spectrum, a
combination of the first two methods (Ceillier et al. 2017).
Finally, the machine-learning algorithm ROOSTER (Breton
et al. 2021) was applied to select the most likely rotation
periods among all of the results.
With up to 4 yr of time series data and given that a detection

of rotational modulation implies that the star is active, we can
characterize the typical variability of our targets precisely. To
do so, we define a magnetic proxy that we call Sph (Mathur
et al. 2014b). It is computed as the standard deviation of the
light curve by taking subseries of length 5×Prot as explained in
Mathur et al. (2014a). Finally, the average Sph value is adopted,
as computed by S19 and S21. Sph values are computed in parts
per million (ppm). This index has been shown to be a good
proxy for magnetic activity as tested for the Sun (Salabert et al.
2017) and solar analogs (Salabert et al. 2016; Karoff et al.
2018).

3. Age Inference

We used stellar evolution models that include angular
momentum evolution to estimate ages of the stars in our
sample. These models were produced using the Yale Rotating

2
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Table 1
Input Parameters for Modeling (Teff, L, [Fe/H]) and Resulting Stellar Fundamental Parameters (log g, M, R, Age, EEP) from kiauhoku

KIC Teff (K) L Llog  [Fe/H] (dex) glog (dex) M (Me) R (Re) Age (Gyr) EEP RUWE flagspec flagKOI flagbin flag

757099 5364 ± 93 −0.066 ± 0.028 0.080 ± 0.140 4.497 0.016
0.016

-
+ 1.10 0.03

0.03
-
+ 0.98 0.03

0.03
-
+ 0.05 0.00

0.01
-
+ 203.9 2.2 3 −999 2 1

757450 5301 ± 107 −0.182 ± 0.036 0.240 ± 0.130 4.513 0.014
0.013

-
+ 0.98 0.02

0.03
-
+ 0.91 0.02

0.03
-
+ 2.61 0.32

0.33
-
+ 262.5 1.0 3 0 0 0

891916 5650 ± 134 0.239 ± 0.296 0.020 ± 0.150 4.513 0.862
0.036

-
+ 1.03 0.06

0.67
-
+ 0.93 0.07

2.30
-
+ 0.46 0.07

0.69
-
+ 223.5 8.7 3 −999 0 1

892195 5333 ± 92 −0.136 ± 0.028 0.070 ± 0.140 4.495 0.016
0.015

-
+ 0.97 0.02

0.03
-
+ 0.92 0.03

0.03
-
+ 3.42 0.67

0.76
-
+ 283.1 1.1 3 −999 0 0

892713 6238 ± 126 1.252 ± 0.030 0.080 ± 0.210 3.495 0.046
0.069

-
+ 1.71 0.09

0.12
-
+ 3.85 0.35

0.24
-
+ 1.33 0.17

0.18
-
+ 529.4 1.0 3 −999 0 0

892834 4823 ± 86 −0.584 ± 0.032 -0.060 ± 0.120 4.625 0.008
0.011

-
+ 0.78 0.02

0.02
-
+ 0.71 0.02

0.02
-
+ 1.39 0.14

0.16
-
+ 219.9 1.1 3 −999 0 0

892882 5149 ± 153 −999.000 ± -999.000 -0.180 ± 0.300 4.573 0.035
0.036

-
+ 0.86 0.07

0.06
-
+ 0.79 0.06

0.06
-
+ 3.28 0.44

0.52
-
+ 247.8 −999.0 3 −999 0 1

893033 4707 ± 84 −0.715 ± 0.034 -0.240 ± 0.110 4.647 0.012
0.010

-
+ 0.70 0.02

0.02
-
+ 0.66 0.02

0.02
-
+ 3.92 0.50

0.52
-
+ 233.5 1.1 3 −999 0 0

893209 6051 ± 108 0.586 ± 0.036 0.030 ± 0.140 4.156 0.029
0.032

-
+ 1.42 0.05

0.03
-
+ 1.65 0.07

0.06
-
+ 1.82 0.19

0.30
-
+ 335.3 1.8 3 −999 0 1

893286 5297 ± 100 −0.302 ± 0.039 -0.040 ± 0.140 4.550 0.013
0.014

-
+ 0.88 0.03

0.02
-
+ 0.82 0.03

0.02
-
+ 4.01 0.57

0.61
-
+ 263.4 1.0 3 −999 0 0

893383 5680 ± 103 −0.152 ± 0.034 -0.170 ± 0.130 4.518 0.016
0.016

-
+ 0.91 0.03

0.03
-
+ 0.87 0.03

0.03
-
+ 3.63 0.69

0.80
-
+ 274.1 1.0 3 −999 0 0

Note. RUWE is from Gaia DR3. flagspec corresponds to the origin of the atmospheric parameters (0:CFOP, 1:APOGEE, 2:LAMOST, 3:B20). flagKOI is the flag for KOI (-999 = non-KOIs, 0 = confirmed planet hosts,
1 = candidate planet-hosts, 2 = false-positives). flagbin is the flag for potential binaries (0:not a binary according to other works, 1: CPCB1, 2: binaries as flagged in S19 and S21 , 3: binaries from Gaia'snonsingle star
catalog (NSS)). The column flag is set to 1 if either of the previous flags is positive, when RUWE > 1.2, when luminosity is not available, or when kiauhoku did not converge. The full table is available in machine-
readable format.

(This table is available in its entirety in machine-readable form.)
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Evolution Code (YREC; Pinsonneault et al. 1989; Bahcall et al.
2001), and the global stellar properties were then used to infer
angular momentum evolution scenarios. The models are
identical to those presented by Claytor et al. (2020a), including
the fast-launch initial rotation conditions of van Saders &
Pinsonneault (2013; Pinit = 8.1 days), except that the models
undergo weakened magnetic braking, as described by van
Saders et al. (2016). Following this prescription, the braking
weakens when the star reaches a stellar Rossby number (ratio
between the rotation period and the convective overturn time at
one pressure scale height above the base of the convective
zone) of 2.16. Further rotational evolution is purely from the
change in the stellar moment of inertia. Stellar evolution
models including weakened braking better reproduce the
observed rotation periods and seismic ages of solar-like stars
observed by the Kepler mission (van Saders et al. 2016, 2019;
Metcalfe et al. 2020; Hall et al. 2021).

We fit stellar evolution models to observational data using
the interpolation and Markov Chain Monte Carlo (MCMC)
tools in kiauhoku (Claytor et al. 2020a, 2020b). For the
MCMC, we used a χ2 log-likelihood of the form:


( )x x1

2
,

i

i i

x

2

2
i

å
s

= -
- ¢

where xi and xis are the observational input parameters and
uncertainties, respectively, xi¢ is the computed value from the
model, and i iterates over the input parameters.

The observational data used as input include the effective
temperature, metallicity, luminosity, and rotation period. These
stellar parameters were obtained from different catalogs that we
describe here. Regarding the atmospheric parameters, we took
in priority values from three spectroscopic surveys: the Kepler
Community Follow-up Observation Program (CFOP; Furlan
et al. 2018) with mid- and high-resolution spectroscopic
observations of Kepler Objects of Interest (KOIs) and seismic
targets, the Data Release 16 (DR16) of the Apache Point
Observatory for Galactic Evolution Experiment survey (APO-
GEE; Ahumada et al. 2020) and the DR7 of the Large Sky Area
Multi-Object Fiber Spectroscopic Telescope (LAMOST; Zhao
et al. 2012; Zong et al. 2020). We then completed the
atmospheric parameters for the stars without spectroscopic
observations with first the Gaia-Kepler stellar properties
catalog (Berger et al. 2020) and then with the DR25 Kepler
stellar properties catalog (Mathur et al. 2017). Then we used
Gaia DR2 luminosities from Berger et al. (2020) and rotation
periods from Santos et al. (2019, 2021).

For the full sample of S19 and S21 of more than 55,000
stars, we performed two MCMC runs using slightly different
sets of input parameters. To derive age and other fundamental
stellar parameters, we used temperature, metallicity, luminos-
ity, and rotation period. For 3167 targets (∼ 6% of the full
sample) with missing luminosities, we used the spectroscopic
surface gravity instead. However, occasionally we were unable
to fit a single model to both the luminosity (or gravity) and
rotation period. We flagged those stars (flag set to 1) if that was
the case and they were removed from the analysis below.
However, these atypical stars can reflect that the observations
do not agree among themselves or that the stars went through
an unusual evolution (such as binarity), and they can be
interesting for further analysis. They represent ∼ 1% of the full
sample, so removing them from our analysis to have a clean
sample with an usual evolution will not bias our results. We

also note that the Rossby number is another important quantity
to consider in terms of magnetic activity. However, the study
with Rossby number is beyond the scope of this paper and will
be presented in a different study (S. Mathur et al. 2023, in
preparation).

4. Age Comparison with Other Models

We computed ages using the method described in the
previous section for 55,232 Kepler main-sequence and subgiant
stars. We describe the results in terms of statistics in order to
study the general evolution of photometric magnetic activity.
We also compare the ages from different stellar evolution
models using the same or different input parameters to estimate
systematics and possible biases.

4.1. Ages from YREC Models Combined with kiauhoku

From the kiauhoku analysis, ages were obtained for the
full sample of stars. However, there are some caveats to
consider in order to select the most reliable ages. For this
analysis, we wanted to remove as much as possible potential
binary stars. Hence, we discarded stars for which Gaia
renormalized unit weight error (RUWE) is larger than 1.2, as
well as stars that are part of the Gaia DR3 nonsingle star
catalog (Holl et al. 2023), which are either SB1 or eclipsing
binaries. Finally we removed the stars where the CPCB1 flag
(for close binary candidates based on the light curves, see S19
for more details) was set to 1. As aforementioned, for
approximately 3000 stars, no luminosity from Gaia was
available, and we used surface gravity. This also means that
the RUWE was not defined for those stars. We thus discarded
them as well. From the modeling results, we removed stars with
age older than 14 Gyr, stars whose posterior age uncertainty
was greater than 60% (which is the optimal cut to remove stars
whose age posteriors were poorly converged), and stars whose
posterior luminosity mean and median were not mutually
consistent (this occurred when the sampler favored two very
different model fits equally, producing a bimodal posterior). If
any other flag was set to 1 (see Section 3), we also discarded
the stars from our analysis. This leads to a sample of 41,440
stars with reliable ages according to our criteria. The ages for
these stars are provided in Table 1. In the remainder of this
paper, we will refer to these ages as Agekiauhoku.
In Figure 1, we plot the rotation period from S19 to S21 as a

function of effective temperature and color-coded with
Agekiauhoku. We clearly see the boundaries of the gyrochrones.
The range 4–5 Gyr is shown in yellow. When going into more
details, we find some fast old rotators with an age> 5 Gyr and
Prot< 20 days mostly in the range of effective temperature
5000–6000 K. The stars with Prot longer than 50 days with Teff
between 5000 and 6000 K correspond to subgiant stars that
have already slowed down, due to radius expansion.

4.2. Comparison with Ages from the STAREVOL Code

To check the reliability of our ages, a second set of ages was
also computed with the same input parameters described above
but with a different stellar evolution code. We used the stellar
evolution grid of Amard et al. (2019), which was computed
using the STAREVOL code (Siess et al. 2000; Lagarde et al.
2012; Amard et al. 2016, 2019). The models include a self-
consistent treatment of internal angular momentum transport,
and angular momentum extraction by magnetized winds

4
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following Matt et al. (2015), calibrated to reproduce open
clusters rotation period distributions (see the grids paper for
more details; Amard et al. 2019). We use an MCMC maximum
likelihood tool adapted from the SCePtER software by Valle
et al. (2014) to interpolate in the grid of evolution models at
intermediate rotation rates. The estimated values of age and
mass are obtained by averaging the age and the mass of all of
the models with likelihood greater than 0.99 max´ , similarly
to what was done in Amard et al. (2020) to estimate only the

stellar masses. The stellar parameters obtained with STAR-
EVOL are given in Appendix A.
This allows us to quantitatively assess the impact of the

different physics included in the models. The set of stars in
common with reliable ages from both stellar evolution codes
consists of 40,220 stars. We can see (Figure 2) that kiauhoku
and STAREVOL ages are well correlated in general with a
Spearman correlation coefficient of 0.89. However we discuss
the differences in more detail below. In the lower panel, the

Figure 1. Prot vs. Teff color-coded by ages computed with kiauhoku for 41,440 stars. The Sun is represented with its usual symbol in black with a rotation period of
26.43 days (Santos et al. 2023).

Figure 2. Top: comparison of ages computed by kiauhoku and STAREVOL color-coded by density number of stars. The dashed line corresponds to the 1:1
relation. Bottom: ratio of age differences over σ, the square root of the sum of the quadratic uncertainties from each method.
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difference between the two sets of ages is centered on 0 with
some departure for younger stars. We also found that compared
to the reported uncertainties from both stellar modeling
approaches, the age differences are on average −1.22 σ, where
σ is the sum of the quadratic uncertainties from each method.
This suggests that the true uncertainty in the age is dominated
by the systematic uncertainty inherent in choosing a specific
model.

While there is generally good agreement between the
kiauhoku and STAREVOL ages, there is somewhat worse
agreement in older (>5 Gyr) and in cooler (<4500 K) stars,
with up to 5σ difference (see Figure 3). These discrepancies
can be explained by the differences in angular momentum
transport in the models underlying the two ages estimates. The
most likely source of disagreement is the presence of internal
differential rotation in the STAREVOL models, which the
YREC-based kiauhoku models lack. Differential rotation
implies that the torque is stronger at the age of the Sun (see
Amard et al. 2016; Somers & Pinsonneault 2016), resulting in
faster spin-down and a younger age given a rotation period.
The effect is more pronounced at old ages, where the models
have had more time to diverge in evolution, and in cool stars,
which experience stronger differential rotation.

Other differences between the models include the weakening
of magnetic braking (e.g., van Saders et al. 2016) in the YREC-
based models at a given Rossby number, which the
STAREVOL models do not include. The weakened braking
allows for older ages at shorter periods, which may contribute
to the age discrepancy, especially for the older kiauhoku
ages. Additionally, both sets of models are calibrated to solar-
mass stars, which could lead to different and discrepant
behaviors in the coolest regime (see, e.g., Amard & Matt 2020).

We also note that STAREVOL predicts significantly
younger stars below 1 Gyr compared to kiauhoku. The
differences at these young ages could be explained by the
different initial conditions used. Claytor et al. (2020a) began
the evolution with a 0.28Myr disk-locking time at a rotation
period of 8.1 days, while Amard et al. (2019) started at 4.5 days
after 5 Myr. By 5Myr, the YREC-based models have spun-up
under contraction to periods of 1.25–1.75 days. The initial
conditions are only expected to affect the age estimates
significantly for stars younger than 1 Gyr. Older than this, spin-
down ensures that stars “forget” their initial conditions (e.g.,
Claytor et al. 2020a).

Finally, stellar metallicity may also contribute to the age
discrepancies, as it has a nonnegligible impact on the wind
torque (Amard & Matt 2020). Recently Bonanno & Corsaro
(2022) showed that metallicity has a significant impact on the
rotational evolution of active stars in general.

4.3. Comparison with Published Ages of the Kepler Sample

Several catalogs of ages of the Kepler field stars have been
compiled, and we now compare them with our derived ages.
The most classical method consists of isochrone fittings in a
color–magnitude diagram or in a Kiel diagram where atmo-
spheric parameters are fitted. This was done in a homogeneous
way for the full or almost full Kepler sample in several Kepler
star properties catalogs (Brown et al. 2011; Huber et al. 2014;
Mathur et al. 2017; Berger et al. 2020). In the most recent of
these catalogs, which we refer to as B20, Gaia DR2 (Gaia
Collaboration et al. 2018) luminosity was also used.
Another homogeneous and large-scale catalog was derived

using gyro-kinematics relations from age–velocity dispersion
(hereafter L21; Lu et al. 2021) where they combined
gyrochronology (using previous rotation period measurements
from Kepler) and vertical velocities from Gaia or LAMOST
observations. It has been observed that vertical velocity
increases with age. However, by themselves, vertical velocities
can only provide statistical ages. By combining them with
gyrochronology, it is then possible to extract individual ages.
This work led to a catalog of almost 30,000 stars with gyro-
kinematic ages.
We also took advantage of the Gaia DR3 ages obtained with

the Final Luminosity Age Mass Estimator (FLAME, Creevey
et al. 2023, hereafter C23), that is available for 2945 of our
targets. These ages are the most reliable for the Gaia solar-like
stars as they are computed based on spectroscopic parameters
as well as astrometry and photometry.
Finally, on a smaller scale but with a higher level of

precision, we consider the catalogs of seismic ages for dwarfs
and subgiant stars. These ages are obtained by finding the best-
fit models to atmospheric as well as seismic parameters (global
or with individual mode frequencies). A catalog based on the
global seismic parameters was done for more than 400 stars
(Serenelli et al. 2017) while the detailed analysis with
individual frequencies was done for a smaller sample of 99
stars (Silva Aguirre et al. 2015, 2017, hereafter SA17). As it
was shown that the precision on stellar parameters is improved
when using the additional information from the frequencies of
the modes (Mathur et al. 2012), we make the comparison with
the ages from the smaller sample of stars. SA17 provided ages
from 6 different modeling pipelines and we compare our ages
with the ones from the BAyesian STellar Algorithm pipeline
for consistency between the two seismic samples. However we
note that in terms of seismic ages, there can be discrepancies of
1 Gyr up to 4 Gyr between model pipelines.
The comparison with the B20 isochrone ages (for 26,262

stars in common) shows a weak correlation, with a Spearman
correlation coefficient of 0.27, as it can be seen in the top-left
panel of Figure 4. Some disagreement was expected given that
isochrones are inaccurate or imprecise for main-sequence stars
cooler than the Sun, which make up two-thirds of our sample.
The luminosity of such stars does not evolve fast enough to
constrain ages precisely, even with Gaia measurements. For
cool stars, rotation period is a more precise tracer of age. The

Figure 3. Ages from kiauhoku compared to STAREVOL color-coded
with Teff.
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comparison of the gyro-kinematic ages with the isochrone ages
also shows similar disagreement (see appendix of L21).

Compared to the Gaia DR3 FLAME ages (top-right panel of
Figure 4), the agreement is reasonably good with a Spearman
correlation coefficient of 0.38, so a rather weak to moderate
correlation.

In the bottom-left panel of Figure 4, we can see that there is a
better agreement between the gyro-kinematic ages from L21
and kiauhoku ages. The Spearman correlation coefficient of
0.53 suggests a moderate correlation. While gyro-kinematics
ages were derived for individual stars, because they are
computed for a given vertical velocity in bins of magnitude,
temperature, rotation period, and Rossby number, the ages vary
smoothly, and a star with an unusual evolution or parameter
would get averaged out and might have an over- or
underestimated age. We note that for stars older than ∼ 5 Gyr
according to our models, the gyro-kinematics ages are smaller,
similarly to what was seen in the comparison with STAREVOL
ages (Section 4.2 and Figure 2). This could reflect the effect of
smoothing of the parameter space used by L21. We note that
some stars with gyro-kinematics ages are older than 14 Gyr (up
to 25 Gyr) that have been removed.

The comparison with the seismic ages in the bottom-right
panel of Figure 4 shows a strong correlation with a Spearman

correlation coefficient of 0.62. There are some stars with
seismic ages between 2 and 4 Gyr that are older in our models
and have small uncertainties (both from seismology and
gyrochronology). These stars all have temperatures hotter than
6000 K and are near the Kraft break (Kraft 1967), where the
outer convective envelope becomes thin and stars spin down
substantially less over time. In this regime, stars’ rotation rates
are more sensitive to their initial speeds, and the ages are more
sensitive to the particular braking prescription used by the
models.
We fit these stars with different spin-down models, varying

the models’ starting speed and whether they experience
weakened magnetic braking halfway through the main
sequence. Our default kiauhoku/YREC models include
weakened braking and have an initial rotation period of 8.1
days, consistent with observations of other seismic samples and
young open clusters. Even using models with no weakened
braking and a slow launch condition of 13.8 days (consistent
with the slow rotators of open clusters; van Saders &
Pinsonneault 2013), we recovered the seismic ages for only
two of the discrepant stars.
In case the discrepancy was caused by the rotation period,

we also tried relaxing the rotation constraint and fitting a YREC
isochrone to the temperature, metallicity, and luminosity of the

Figure 4. Literature ages as a function of the ages obtained in this work (Agekiauhoku). Top-left panel: Gaia-Kepler catalog (B20). Top-right panel: Gaia DR3
FLAME ages (C23). Bottom-left panel: gyro-kinematic ages (L21). Bottom-right panel: seismic ages (SA17). The red dashed line corresponds to the 1:1 line. In the
cases of the B20, Gaia DR3, and L21, only the average uncertainties are represented for clarity purposes.
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discrepant seismic stars. This reduced the disagreement for
about half of the stars, although this was at least partly due to
wider age posteriors because the models were less constrained.

Since the discrepancy with the seismic stars was not fully
solved by varying the braking prescription or relaxing the
rotation constraint, it is possible that the offsets arise because
we use different models with different input physics compared
to SA17. Tayar et al. (2022) showed that fitting different
models to the same input parameters can result in large scatter
in inferred ages, as high as 50% near the main sequence. We
emphasize that while there may be scatter between different
model-dependent ages, our homogeneous modeling procedure
produces ages that are internally consistent and highly precise
(15% median relative uncertainty).

5. Magneto-gyro-chronology

In this section we investigate how the average magnetic
activity, measured through the Sph, varies as a function of stellar
age, measured using gyrochronology (Section 3). To do so, we
focus on the main-sequence solar-like stars with an equivalent
evolutionary phase (EEP) < 454, which indicates the end of the
main sequence, defined here as the point where the core
hydrogen fraction falls below 10−12, consistent with Dotter
(2016). We also select stars with spectroscopic atmospheric
parameters, which are the most reliable parameters available for
our sample, yielding a sample of 14,637 stars. The goal is to
explore the possibility of estimating stellar ages via Sph.

Given that we have very few M dwarfs, in Figure 5 we only
show the photometric magnetic activity proxy as a function of
the age computed with kiauhoku for early-F, late-F and G,
and K dwarfs. We can see different behaviors. On the one hand,
the K dwarfs are more active than the late-F and G dwarfs, and
their magnetic activity levels decay more slowly with age. On
the other hand, early-F dwarfs have a more complex shape that
could have two interpretations. Either there is no correlation
between Sph and age, or when computing the median values on
bins of 0.5 Gyr, we find a slope up to 2 Gyr. However for the
latter, there are fewer points for younger ages that could bias that
interpretation. We will thus focus on late-F, G, and K dwarfs in
the remainder of this paper.

In this section we will perform different fits between the Sph
and age by means of the Bayesian inference tool DIAMONDS
(Corsaro & De Ridder 2014). For the fit, we adopt a standard
normal likelihood function following Corsaro et al. (2013):
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where i refers to a single element, N is the total number of
observations and uncertainties corresponding to the relative
uncertainties in Age, i.e., Ages = σAge/Age. We also compute
the Bayesian evidence ( ln ) to solve the model comparison
problem and identify the best statistical model (as a trade-off
between fitting quality and model complexity).

5.1. Magnetochronology for Solar Analogs

Studies that are looking for magnetochronology relations
usually search for a power-law relation, which translates into a
simple linear relation in the log–log space of the magnetic

activity proxy as a function of stellar age. Because of the way
uncertainties are taken into account in the Bayesian framework,
the coefficients found for a given relation do not correspond to
the coefficients for the inverse relation. As we want to predict
the ages from the magnetic activity proxy, we fitted a power
law between the ages determined from the stellar evolution
model and Sph, which in the log–log space can be expressed as:

( ) ( ) ( )a a Sln Age ln , 20 1 ph= +

where Age is in gigayears, and Sph is in ppm.
We also fitted the inverse relation, i.e., Sph as a function of

age:

( ) ( ) ( )S a aln ln Age . 3ph 0 1= ¢ + ¢

We will see that the coefficients can be different between the
two ways of fitting the relations.
To have less scatter in our plot and to focus on the most

reliable ages, we first selected stars with an effective
temperature ranging between 5700 and 5900 K (corresponding
to 2064 stars). We will refer to these stars as solar analogs.
Figure 6 shows how the photometric magnetic activity proxy
varies with the stellar age for these solar analogs. We clearly
see a trend where the magnetic activity decreases as the star
evolves. This behavior is expected and has been seen in other
proxies of stellar magnetic activity such as Ca HK or magnetic
field (e.g., Mamajek & Hillenbrand 2008; Vidotto et al. 2014).
In Figure 6, we observe a plateau for ages above ∼5 Gyr, also
seen by Masuda (2022) for a small sample of planet-host stars.
We can wonder whether the plateau is real or rather a result of
detection biases. From that same figure, we clearly see that in
our sample of stars with measured rotation periods around
3–4 Gyr, we have Sph values lower than the plateau, meaning
that our detection limit could be lower than that observed
plateau. In Section 7.4, we discuss in more detail the possibility
of a detection bias in our sample for low Sph values.
In addition to the plateau after 5 Gyr, there is another one

below 1 Gyr. So we performed a first Bayesian fit between 1
and 5 Gyr for Equation (2) and found a0 = 1.937 0.014

0.022
-
+ and a1

= −0.157± 0.009.
As mentioned above, we also performed another Bayesian

fit, similar to the previous activity index–age relations, with
Equation (3). In that case we found a0¢ = 8.513 0.003

0.004
-
+ and

a1¢ = −2.170± 0.007 as shown by the dashed red line in
Figure 6, which means that Sph∝ (Age)−2.17. This is quite
different from what has been found for other proxies of
magnetic activity, such as magnetic field or Rlog HK¢ , where the
exponent varies between −0.5 and −0.6 (e.g., Soderblom et al.
1991; Vidotto et al. 2014; Lorenzo-Oliveira et al. 2018).
However, given that Sph measures a different type of magnetic
activity feature in photometric data than the chromospheric
one, we do not expect to find the same coefficients. We remind
the reader that in the previous works, ages were obtained from
simple isochrone fitting with different stellar evolution models.
This can also impact the age determination and lead to different
coefficients.
We note that the slope from Equation (3) does not

correspond to the inverse relation of Equation (2), which is
due to the different variable for which we optimize the
inference process. Indeed in the first case of Equation (3), we
use errors on Sph while in the other case we use errors on age.
We then performed the fit by selecting different samples

where we changed the range of the effective temperature for
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both G and K dwarfs, and we found that the slope of the
( ) ( )Sln ln Ageph - relation depends on Teff. When Teff

decreases, the absolute value of the slope decreases (see
Figure 7), i.e., the relation becomes flatter as seen in Figure 5.

This suggests that lower-mass stars remain active for longer
timescales compared to higher mass stars. The steep Sph–Age
relation at young ages seen in Figure 5 is consistent with these
results.

5.2. Multivariate Regression to Infer the Stellar Age

As we have seen that the slope in the Sph–Age relation varies
with effective temperature, we investigate here relationships

Figure 5. Sph–age relation for early-F (red symbols), late-F and G (black symbols), and K (blue symbols) dwarfs all together with spectroscopic data and separated by
spectral type.

Figure 6. Sph as a function of age for solar analogs, where the red dashed line
represents the results of the linear fit (Equation (3)) done in the log–log space.
The fits were performed between 1 and 5 Gyr, and the gray dotted–dashed line
shows that lower limit in age. The red large circles represent the Sph values of
the Sun between minimum and maximum activity.

Figure 7. Slope a1¢ for Equation (3) as a function of effective temperature bins.
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connecting the Age to multiple observables related to stellar
properties. In particular, we consider a multipower relation of
the type:

( ) ( )OAge , ,..., , , 4N
i

N

i1 2
1

ia a a b b= a

=

where Oi, for i= 1,...,N, are the observables, while αi are the
corresponding exponents that, along with the multiplication
factor β, have to be estimated from a fit. Following the
approach presented by Corsaro et al. (2013) as well as in
Bonanno et al. (2014) and Corsaro et al. (2017), we linearize
this relation to become:

( ) ( )OlnAge , ,..., , ln ln . 5N
i

N

i i1 2
1

åa a a b b a= +
=

In this application, the observables Oi that are taken into
account can be: Sph, Teff, L, [ ]/Fe H , and Prot, thus a total of up
to N= 5 components of the multilinear relation.

The fit is performed by adopting a specific likelihood
function that is formally equivalent to the standard normal
likelihood given by Equation (1), except for the treatment of
the uncertainties. Following the work by Corsaro et al. (2013),
the uncertainty on each data point is computed as a total
uncertainty arising from that of each of the observables taken
into account, including the one on Age. The uncertainty on a
single data point j is thus dependent on the model parameters
{αi} and it is evaluated as:

( ) ( ), ,..., 6j N j
i

N

i i j
2

1 2 Age,
2

1

2
O, ,
2ås a a a s a s= +~

=
 

where s is the relative uncertainty because we are dealing with
logarithmic quantities in the linearized model (e.g., Ages º

AgeAges ).

5.2.1. Magneto-gyro-chronology for Solar Analogs

Focusing on the solar analogs, we tested here a relation
between Sph, Prot, and age. Based on Equation (5), this model
can be expressed as:

( ) ( )S Pln Age , , ln ln ln 71 5 1 ph 5 rota a b b a a= + +

and with a total uncertainty in a single data point j expressed as
in Equation (6) where the observables Oi,j belong to {Sph, Prot}.

The estimates of the free parameters are listed in the first line of
Table 2 for the solar analogs.
The relation with rotation (Equation (7)) is favored

compared to Equation (2) with a Bayes factor (the difference
between the two evidences) Bln = 165.

5.2.2. Adding Atmospheric Parameters

Given the different slopes obtained for different ranges of
effective temperature (see Figure 7), we performed a multi-
variate regression taking into account the atmospheric
parameters of the stars: Teff, L, and [Fe/H], in addition to
Prot. This was done with the same Bayesian tool as described
before and for stars with only spectroscopic stellar parameters
as aforementioned. For that fit, we divided the sample into late-
F (6000 K<Teff� 6250 K), G (5200 K<Teff� 6000 K), and K
dwarfs (4500 K<Teff� 5200 K), allowing us to have a broad
range of Teff and we used the range 1–5 Gyr. The G and late-F
dwarfs are put together as they behave similarly in the Sph–Age
diagram. The relation that is fitted is as follows:

[ ]
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where we indicated the uncertainty on [ ]/Fe H as a standard
uncertainty (and not relative) because [ ]/Fe H is already a
logarithmic quantity. The multivariate regression results for the
late-F and G, and K dwarfs are listed separately in Table 2.
Finally we also tested the statistical significance of the term

Prot in the fit, by setting α5= 0. The results for late-F and G,
and K dwarfs are also listed in Table 2.
For both sets of data, late-F and G dwarfs, and K dwarfs, we

found that incorporating the rotation term improves the fits
(α5≠ 0). Indeed, the Bayesian model comparison favors the
general model given by Equation (8) by a large extent:

Bln 4000> for the late-F and G dwarfs and Bln 3500> for
the K dwarfs. The improvement is also clearly visible from the
residuals of the fits, which appear flatter when the rotation term
is included. The residuals for the late-F and G dwarfs and the K
dwarfs are provided in Appendix B.
To see how the knowledge of the level of magnetic activity

with Sph changes the age prediction compared to a pure

Table 2
Fitting Coefficients from the Multivariate Fit for All of the Models Described in Section 5.2, Predicting the Age as a Function of Other Stellar Properties (See

Equation (8))

Model α1 α2 α3 α4 α5 lnb ln
Quantity (Sph) (L) (Fe/H) (Teff) (Prot)

Solar Analogs 0.122 0.013
0.017- -

+ L L L 0.387 0.014
0.015

-
+ 0.728 0.051

0.049
-
+ L

late-F and G dwarfs 0.051 0.005
0.005- -

+ 0.497 0.008
0.008

-
+ 0.618 0.034

0.026- -
+ 2.403 0.118

0.098- -
+ 0.950 0.017

0.013
-
+ 19.466 0.870

1.048
-
+ 757

late-F and G dwarfs 0.199 0.003
0.003- -

+ 0.441 0.008
0.008

-
+ 0.774 0.020

0.022- -
+ 10.322 0.121

0.112- -
+ L 91.530 0.937

1.079
-
+ −3322

late-F and G dwarfs L 0.542 0.009
0.008

-
+ 0.661 0.027

0.033- -
+ 1.458 0.097

0.113- -
+ 1.068 0.015

0.020
-
+ 10.641 0.989

0.831
-
+ 531

K dwarfs 0.021 0.005
0.005- -

+ 0.140 0.011
0.012

-
+ 0.068 0.021

0.018- -
+ 0.373 0.080

0.100- -
+ 1.384 0.014

0.013
-
+ 0.326 0.836

0.709
-
+ 1002

K dwarfs 0.036 0.0106
0.0110- -

+ 0.131 0.047
0.044- -

+ 3.114 0.058
0.066- -

+ 6.244 0.280
0.392

-
+ L 51.880 3.392

2.375- -
+ −2567

K dwarfs L 0.149 0.012
0.012

-
+ 0.086 0.019

0.021- -
+ 0.402 0.092

0.089- -
+ 1.397 0.014

0.014
-
+ 0.380 0.764

0.809
-
+ 998

Note. Median estimators and 68.3% Bayesian credible limits are reported for each free parameter. Models favored according to the Bayesian model comparison (one
for late-F and G dwarfs and one for K dwarfs) are highlighted in bold. ln corresponds to the Bayesian evidence.
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gyrochronology relation, we also tested the statistical sig-
nificance of the term Sph by taking α1= 0 for both sets of late-F
and G dwarfs and K dwarfs. The results are given in Table 2.
By comparing the evidence values, the relation with Sph is
significantly favored with a Bayes factor Bln 200> for the
late-F and G dwarfs. Concerning the K dwarfs, the Bayesian
evidence when adding Sph is very similar to the one without
including it in the relation. This suggests that for K dwarfs the
magnetic activity is not a dominant feature to predict ages.

As mentioned above, we also fitted the inverse relation to
predict Sph. The resulting coefficients are given in Appendix C.

6. Estimating Ages with Machine Learning

6.1. Description

We then took advantage of the new artificial intelligence
tools that are commonly available and developed by the
community, to estimate ages of stars from the same parameters
used in the Bayesian fits earlier. This analysis was done for
late-F, G, and K dwarfs together. We used Random Forest (RF)
algorithms (Breiman 2001), as they have proved to be very
useful in estimating stellar physical parameters from multi-
parameters laws (e.g., Miller et al. 2014; Bugnet et al. 2018;
Breton et al. 2021). RF regressors are based on the aggregation
of a large number of random decision trees that are constructed
from a training data set and internally validated to give a
prediction based on the predictor for future observations. The
RF method not only allows for the use of a large number of
parameters but also estimates their individual impact on the
regression (see Section 6.2). Here we aimed at showing that it
is possible to automatically estimate the age, based on the set of
physical parameters [Sph, Prot, Teff, ( )L Llog  , [Fe/H]].

We split the sample of stars into two sets. First, a training set
was used to train the algorithm to estimate the age from the
physical parameters. Then, a test set composed of the
remaining of stars was used to test and demonstrate the
robustness of the method.

We tried different percentages of training sets from 20%–

80% and found very similar results for the accuracy (difference
between the predicted age and the model one) in general with
some improvements in the scatter. For the rest of the paper, we
chose a training set of 50% of the stars that was a good trade-
off to have a reduced scatter but still a large number of stars for
the test set (more than 5000 of them).

In order to take into account uncertainties on physical
parameters [δSph, δProt, δ[Fe/H], δlogL/Le], and to improve
the training set, we randomly drew, for each of the stars (å) in
the training samples, 100 artificial stars () by selecting their
physical parameters as follows:

 ( )X X X 10i i0 100 0 100d= + ´   

where Xä [Sph, Prot, Teff, L Llog , [Fe/H]], δXä [δSph, δProt,
δTeff, L Llogd , δ[Fe/H] ], and  i0 100  random values
following a standard normal distribution.

We also made two other runs with slightly different sets of
parameters: one without Sph that is similar to gyrochronology
and one without Prot that is similar to magnetochronology.

6.2. Relative Importance of Each Parameter

In Figure 8, we can see the importance of the different input
parameters in the training of the RF algorithm. The so-called
gini (Gini 1912) importance is a measure of how each

parameter contributes to the homogeneity of the nodes and
leaves in the trained RF. The higher the importance value, the
higher impact the parameter has during the training process. In
the case of not including the rotation period in the RF (i.e., RF
magnetochronology, top panel of Figure 8), Sph has the highest
weight or importance, followed by the effective temperature,
luminosity, and metallicity. This is in agreement with the
results of the Bayesian fits done in Section 5 where Sph has the
largest coefficient.
In the case of RF gyrochonology (middle panel, Figure 8),

the highest importance is rotation period and then luminosity,
while temperature and metallicity have very little impact.
Finally, for RF magneto-gyro-chronology, the picture

changes drastically where the main feature that impacts the
age estimate is still the rotation period followed by luminosity.
The photometric magnetic activity proxy has very little impact,
as much as [Fe/H]. This emphasizes that for our sample of late-
F, G, and K dwarfs, rotation is the dominant factor for age
determination and that the magnetic activity proxy is redundant
compared to rotation period given the strong correlation
between the two quantities (see Figure 7 of S21).

6.3. Uncertainties from RF

To obtain uncertainties on the ages predicted by the RF, we
randomly draw, for each å in the test samples, 100  by
selecting their physical parameters following Equation (10).
The standard deviation of the distribution of the age predictions
by the RF on the 100  is then measured for each å in the test
sample.
Figure 9 reports such RF relative uncertainties in the case of

magnetochronology (red crosses). For most stars in the test
sample, the relative uncertainty is comparable to the original
uncertainty of the age measurement (black crosses). The
median uncertainties for the kiauhoku ages are 14.2%
compared to 15% for the RF uncertainties. This result is also
valid for gyro- and magnetochronology.

7. Discussion

Given the different relations found between the magnetic
proxy and the ages of the stars, we can evaluate the agreement
between the ages predicted either by the Bayesian fits or the RF
and the ones from the models. We remind the reader that the
ages used for deriving the relationships are model dependent.
However they still provide good estimates on the stellar ages,
in particular given that in our procedure we took into account
the most precise spectroscopic observations, the Gaia lumin-
osity as well as the observed rotation periods as constraints.

7.1. Ages from Magneto-(gyro-)chronology Relations

From the different relationships derived in Section 5, we
computed the predicted ages of the stars based on their stellar
parameters. We then evaluated the accuracy of those ages
compared to the modeled ones. This was done for the linear
and multivariate fits for both magnetochronology and
magneto-gyro-chronology relations. In the left panels of
Figure 10, we can see the comparison between the ages
predicted from relations presented in Section 5 and calibrated
through a Bayesian approach and those coming from the
stellar models in the case of magnetochronology (so no Prot

was used as input).
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The top-left panel shows the results for the linear fit
(Equation (2)) for the solar analogs. We can see that there is a
trend with an overestimation of the ages below 2 Gyr and an
underestimation for stars older than 4 Gyr. In particular, this
reflects that the analytical relation is not adequate enough to
reproduce the age of the young stars. The median of the
distribution of the differences between the predicted and
modeled ages (bottom-right panel) is of −6.3% with a median
absolute deviation (MAD) of 21.7%. We also notice that the
distribution is skewed toward negative values. This means that
for the solar analogs, a power-law model (Equation (2))
between age and Sph, as studied in the past for other magnetic

activity proxies, underestimates on average the ages with large
uncertainties.
By adding the information on the rotation period to the linear

fit (Equation (7)), the median difference between the model and
predicted ages for the solar analogs is of 2.7%, with a smaller
scatter of 19.1% (top-right panel of Figure 10). Young ages
below 2 Gyr are still not well retrieved. However, this
analytical relation overestimates the ages on average with
smaller differences in absolute value compared to the case
without rotation. This clearly shows the importance of the
knowledge of the rotation period to predict ages of solar
analogs where no other stellar parameters are used in the
analytical relation.
For the multivariate relation without rotation period (α5=

0), we show the same comparison between the predicted and
observed ages but for late-F and G dwarfs (middle-left panel
of Figure 10) and K dwarfs (bottom-left panel of Figure 10).
While the absolute values of the median differences with the
stellar model ages are similar for both sets (−4.7% for the
late-F and G dwarfs, and 3.5% for the K dwarfs), the MAD is
much larger for the K dwarfs (80.4% compared to 28.1%).
If we add the information on rotation period (α5≠ 0), we

clearly see an improvement on the ages prediction for both the
late-F and G dwarfs (middle-right panel of Figure 10) and K
dwarfs (bottom-right panel of Figure 10). For the former, the
distribution of the differences is centered close to 0 (median of
0.1%) with an MAD of 14.1%. There is a slight bias of
overestimated ages below 1.5 Gyr but on average the ages are
well recovered. For the K dwarfs, the improvement is even
more striking with a median difference of 0.2% and an MAD of
5.6% better than the late-F and G dwarfs. Such an improvement
can be explained by the fact that rotation period is a stronger
constraint of the ages of K dwarfs. Indeed rotation period is a
stronger constraint on stellar age than the classical stellar
parameters.
As mentioned in Section 5, we also fitted the relations

without Sph to assess the importance of the magnetic activity
proxy in the age prediction. The comparison between the
predicted and kiauhoku ages is shown in Appendix D. While
the results are similar to the case where we include Sph, the
median differences and MAD values are slightly improved
when the magnetic activity is taken into account.

Figure 8. RF features importance for magnetochronology (top panel),
gyrochronology (middle panel), and magneto-gyro-chronology (bottom panel).

Figure 9. Relative errors from kiauhoku (black crosses) and from the
magnetochronology RF algorithm (red crosses) as a function of age.
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7.2. Age Estimates from RF Algorithm

We show in the top panel of Figure 11 the comparison of the
predicted ages from the RF analysis without using the rotation
period as input. This analysis was done on all late-F, G, and K
dwarfs where the test set consisted of 5,452 stars. The predicted
ages from the RF go close to 14 Gyr, as the algorithm was
trained on the full sample of late-F, G, and K dwarfs. We see a

clear trend with increasing ages. Above 5 Gyr, the RF ages are
biased toward smaller ages compared to kiauhoku ones,
whereas below 5 Gyr, the RF tends to overestimate the ages
with a median difference of 15.9%. In particular for the old
stars, the disagreement can be quite high due to the plateau that
we observed above 5 Gyr, leading to some degeneracy. If we
take into account the full range of model ages, the median
difference goes down to 5.3% with an MAD of 48.8%.

Figure 10. Magnetochronology (without rotation, left column) and magneto-gyro-chronology (with rotation, right column) results from the Bayesian fits. Top row:
linear fit for solar analogs. Middle row: multivariate fit for late-F and G dwarfs. Bottom row: multivariate fit for K dwarfs. In each figure, the top panel shows the ages
computed from the multivariate fit compared to the model ages, and the dashed red line corresponds to the 1:1 line. The bottom plots of each panel represent the ratio
of the ages centered on 0 and the corresponding histogram (as a fraction). The median (MED) and median absolute deviation (MAD) are given for each fit in the top
right of each figure.
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When adding the rotation period as input (middle panel of
Figure 11), there is a very good agreement up to ages of
∼ 10 Gyr with less scatter compared to the previous RF run.
For the full set, we find a median difference between the RF
ages and the kiauhoku ones of 3.1% with an MAD of 8.9%.
This is around half of the median uncertainties from the RF.

Finally, we also tested the RF algorithm for pure
gyrochronology (bottom panel of Figure 11), where we used
Prot without Sph along with the atmospheric parameters as
inputs. The median difference between the predicted ages and
the model ones is 4.2% with a dispersion of 7.2%, smaller than
the RF uncertainties. By taking into account the magnetic
activity proxy, the median difference is improved but the
dispersion increases. The use of both inputs Prot and Sph
improves on average the age estimates with the RF.

7.3. On the Limitation of Ages Computed in This Work

We note that the ages computed in this work depend on
models. They rely on a long list of choices of input physics and
magnetic braking prescription, as well as calibrators needed to
produce expected behavior. While we consider that all our
choices are well motivated, they are inevitably based on an
incomplete knowledge of stellar physics and rotation.
One limitation of gyrochronological ages is the range of

available calibrators. Spin-down relations are calibrated using
stars for which precise ages and periods are known indepen-
dently, which limits us to the Sun, a handful open clusters, and
more recently a few tens of asteroseismic F, G, and K dwarfs
(e.g., Barnes 2010; Angus et al. 2015; van Saders et al. 2016;
Curtis et al. 2020; Godoy-Rivera et al. 2021). The open clusters
are all young, with the oldest one of 4 Gyr, M67, being studied
recently (Dungee et al. 2022); thus, until recently the Sun was
our oldest anchor for gyrochronology at 4.57 Gyr. The few old,
seismic dwarfs hint that braking weakens at ages older than the
Sun (van Saders et al. 2016; Hall et al. 2021), but the physical
processes that weaken the braking are still poorly understood.
Furthermore, the benchmark clusters are all near solar
composition. Any gyrochronology predictions for chemically
different stars are then extrapolations into regimes where there
are no calibrators. Spin-down is less constrained in these
regimes.
Spin-down relations are also less reliable in regimes where

stars lose their convective envelopes. With no surface
convection, there is no dynamo to generate a magnetic field,
so no braking occurs. In this regime (toward and above ∼6300
K; the Kraft break after Kraft 1967), rotation is not meaningful
as an age indicator. We note, however, that our use of
luminosity in addition to rotation to constrain the age allows for
luminosity to take over when rotation becomes less
constraining.
Other than the evolution models themselves, the parameters

we use as inputs to the MCMC fitting are also model
dependent. Effective temperatures and metallicities are deter-
mined by fitting atmospheric models to spectra, which have
different scales than those used in the evolution models.
Furthermore, the luminosities are determined by fitting yet
another set of models to Gaia parallaxes and Two Micron All
Sky Survey colors (Berger et al. 2020). Some authors calibrate
their stellar parameter estimates to a more standard scale (e.g.,
APOGEE; Holtzman et al. 2015), but using different models
with different parameter scales necessarily introduces uncer-
tainty into the model estimates (Tayar et al. 2022).
When fitting evolution models to stars, we assume solar

abundances of α elements. α-abundances influence spin-down
independently from metallicity alone, so this assumption adds
uncertainty to the estimates as well. For example, Claytor et al.
(2020a) showed that assuming solar α-abundance for a main-

Figure 11. Comparison of ages predicted from the RF with the model ages for
late-F, G, and K dwarfs. Top panel: magnetochronology. Middle panel:
magneto-gyro-chronology. Bottom panel: gyrochronology. Same legend as in
Figure 10.
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sequence star that actually has [α/M] = 0.4 results in
underestimating the age by as much as 20%.

Finally, our angular momentum evolution model in YREC
assumes that stars spin down as rigid bodies, which may be a
poor assumption at some stages of stellar evolution. Open
cluster stars exhibit a temporary epoch of stalled spin-down in
K dwarfs at 1 Gyr (Curtis et al. 2019), which could be
explained by a two-zone angular momentum model such as that
of Spada & Lanzafame (2020). The departure from expected
behavior means that there are physical mechanisms our
gyrochronology model does not capture.

Some of these limitations have the effect of stretching or
compressing our age scale, while others result in a systematic
offset. Taken together, the effects mean that while our ages are
internally consistent and precise, any individual age taken from
this data set should be vetted cautiously before being used to
support new claims.

7.4. Detection Bias: Looking at Stars without Rotation-period
Estimates

We investigate whether the plateau above 5 Gyr seen in
Figure 6 is real. To evaluate the level of bias on the stars where
we detected rotation periods in S19 and S21, we study here a
sample of more than 100,000 solar-like stars observed by the
Kepler mission for which no rotation periods could be reliably
measured for different reasons (instrumental artifacts, low-
amplitude signal, low inclination angle, or no stellar magnetic
activity during the Kepler observations).

By definition, Sph is a proxy for magnetic activity measured
from the rotational modulation in the light curves. This means
that when it is not possible to retrieve a reliable Prot, we cannot
derive Sph. In this section, in order to investigate the detection
limit for these measurements, we define a variability index Vph,
which can be obtained for stars regardless of whether a Prot was
measured. We split the light curve in subseries of length 30
days to compute the standard deviation, and we take the mean

value of all subseries. Similarly to the Sph, we subtract the
photon noise obtained from the formula by Jenkins et al.
(2010b). We call this quantity the variability index, Vph, as the
measured quantity may not be purely related to the magnetic
activity of the star, in contrast to Sph.
In the comparison that follows, we also compute Vph for stars

with Prot estimates. For these stars, Vph is still related with
magnetic activity, as we find that Sph and Vph are very similar
(see Appendix E). The comparison between Vph for the rotation
sample and the no-rotation sample in Figure 12 shows that the
stars with detected rotational modulation have larger Vph in
general than the stars without detection. This can also be seen
in the histogram in the right panel of Figure 12. For active stars,
indeed it is easier to observe rotational modulation in epochs of
larger magnetic activity. Still, some stars without Prot have
large Vph values similar to those of the stars with Prot. This
could be related to instrumental artifacts, which might still be
present in the light curves. A lack of modulation detection
could also be due to a fully spotted star, a star observed pole-on
with active latitudes close to the equator, or with high active
latitudes and long-lived spots.
The rotation analysis done by S19 and S21 extended the

rotation periods catalog toward slower rotators, which usually
have low Sph or Vph values. Hence in this work, we derived
ages older than the age of the Sun for stars with Prot showing
that we can still measure rotation periods for these old stars.
This is slightly in contrast to the findings of Masuda (2022).
Indeed the author studied a sample of 278 planet-host stars
selected as having “robust” rotation periods from Mazeh et al.
(2015) and computed ages with isochrone fittings based on the
models of Angus et al. (2015) that also take into account
surface rotation periods. He finds that there is a bias in the
rotation detection, and stars older than the Sun do not have
rotation periods measured. However, as pointed out by Masuda
(2022) for the S21 sample used in our work, the situation might
be different given the larger number of stars with longer
rotation periods.

Figure 12. Left panel: comparison of Vph for stars without Prot (black points) and stars with Prot (red points) as a function of the Kp magnitude. Right panel:
Distribution of Vph for the stars without rotation periods (black) and with rotation periods (red).
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We looked at stars older than 5 Gyr in the Sph–age diagram
to locate them in Figure 12. We found that most of the stars are
above the lower edge, i.e., above the limit of the detection (see
Figure 13). This points in the direction that the level of
magnetic activity drops past a given age with a certain flat
evolution afterwards. This does not discard the fact that old
stars could be even less active.

From previous works, the magnetic activity of the Sun
between the minimum and maximum of the solar cycle varies
between 67.4 and 314.5 ppm (Mathur et al. 2019). We added
those data points in the Sph–age diagram for solar analogs (see
Figure 6). We can see that the magnetic activity level of the
Sun agrees well with its counterpart for a similar age. Hence, it
seems that the Sun behaves like Sun-like stars selected from
spectroscopic parameters. This also agrees with the analysis of
the variability of Sph for solar analogs done by Santos et al.
(2023).

8. Conclusions

The measurement of surface rotation and magnetic activity
level of solar-like stars observed by the Kepler mission gives us
the opportunity to look for activity–rotation–age relations.

We computed ages for 55,232 stars with kiauhoku
associated with the YREC stellar evolution code that includes
treatment of angular momentum evolution as well as weakened
magnetic braking by fitting isochrones on Teff, L, [Fe/H], and
Prot. The comparison with ages computed with the STAR-
EVOL code shows a strong correlation with a Spearman
correlation coefficient of 0.89 as well as a good agreement with
kinematic and seismic ages.

We then investigated two different approaches to infer stellar
ages using the photometric activity proxy, Sph.

The first one is based on deriving relations between age and
Sph from Bayesian linear and multivariate fits. With that first
analysis, we obtained the following results:

1. The solar analogs analysis shows that including the
rotation period improves the predicted ages with a median
difference of 2.7% and an MAD of 19.1%. However,
there is a clear bias for young and old stars that is not
captured by the analytical relations that we fitted.

2. For the late-F and G dwarf sample, the multivariate
regression with rotation period is also favored, yielding a
median difference between predicted and kiauhoku
model ages of 0.1% and an MAD of 14.1%.

3. For K dwarfs, the use of rotation periods in the relation is
necessary to lead to a good agreement between predicted
and the kiauhoku model ages, with a median difference
of 0.2% and an MAD of 5.6%. This reflects the fact that
rotation period is a strong constraint in the evolution of K
dwarfs.

We note that for the late-F and G dwarfs, the relations that
include Sph are favored by the Bayesian analysis, while for the
K dwarfs both relations with or without Sph give very similar
results.
Readers that are interested in applying our relations may find

them in Table 2.
The second approach consists of applying machine learning

based on RF algorithms. By training the algorithm with late-F,
G, and K dwarfs together with Teff, L, [Fe/H], and Sph as input
parameters, we compared the predicted ages with the model
ones and found that:

1. In the magnetochronology run (where no Prot is
included), ages above 5 Gyr are biased toward younger
ages. Up to 5 Gyr, we obtain a median difference of 5.3%
between predicted and the kiauhoku model ages. The
magnetic activity index is the dominant feature to
predict ages.

2. The gyrochronology (no Sph included) and magneto-
gyro-chronology (Prot and Sph included) runs improve the
results with median differences of 4.2% and 3.1%,
respectively, with an improvement when adding the
information from Sph. Nevertheless, the scatter is slightly
larger in the magneto-gyro-chronology run than in the
pure gyrochronology run. In both cases, Prot is the most
important feature.

One advantage of the RF is the ability to predict ages for
stars older than 5 Gyr. The plateau observed above that age
prevents us from deriving an analytical relation. This also
suggests that RF finds more complexity in the relation between
the different parameters that could not be captured with the
analytical relations we had defined.
These results are of course dependent on the stellar evolution

models and the physics included to derive the ages. Caveats
should be taken into account on the limitations of those models.
We also investigated the bias in the sample with detected

rotation periods. We find that the variability Vph of stars with
rotation periods detected is in general larger than that for stars
without rotation periods, suggesting that there can be some bias
against low-activity, in principle old, stars. However, we still
find old stars (older than 5 Gyr) with measured rotation periods
that are above the detection limit. While we have fewer older
stars, our sample seems to be less biased toward younger stars
in comparison with previous catalogs.
These results are very promising for the RF analysis. Indeed,

once the algorithm is trained with a given set of stellar models,
it requires a very short computing time. Given the aforemen-
tioned improvements, it finds more complex dependencies that
are not necessarily captured by the Bayesian fits that just follow
the relation that is fed in. Such an approach can be easily
applied to estimate ages of hundreds of thousands of solar-like
stars with photometric observations obtained with missions

Figure 13. Variability index Vph as a function of the Kp magnitude for stars
without rotation periods (black dots) and stars with rotation periods and ages
derived in this work above 5 Gyr (red circles).
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such as TESS (Ricker et al. 2015) and PLAnetary Transits and
Oscillations in stars (Rauer et al. 2014).
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Appendix A
Age Comparison as a Function of Effective Temperature

The ages from STAREVOL are given in Table 3.

Appendix B
Residuals from the Bayesian Multivariate Regression for G

and K Dwarfs

We show here the residuals of the multivariate fits performed
in Section 5.2 for the late-F, G and, K dwarfs. Figure 14 shows
the sample of late-F and G dwarfs and the residuals for the
different parameters used in the fit: Sph, L, Teff, and [Fe/H].
Figure 15 also includes Prot. The residuals that do not include
rotation are smaller in general, in particular for Teff and L.
Figures 16 and 17 show the residuals for the K dwarfs

without and with rotation, respectively.

Table 3
Masses and Ages Computed with STAREVOL as Described in Section 4.2

KIC M (Me) Age (Gyr)

757450 1.02 ± 0.02 1.68 0.32
0.36

-
+

892195 1.02 ± 0.02 2.77 1.03
0.63

-
+

892713 1.46 ± 0.00 2.19 0.00
0.00

-
+

892834 0.81 ± 0.02 0.65 0.11
0.11

-
+

893033 0.72 ± 0.01 2.80 0.51
0.51

-
+

893286 0.90 ± 0.03 3.21 0.77
0.73

-
+

893383 0.93 ± 0.02 3.19 0.88
0.95

-
+

893505 1.41 ± 0.04 3.32 0.14
0.16

-
+

893507 1.48 ± 0.00 3.04 0.02
0.02

-
+

893559 0.87 ± 0.04 0.89 0.16
0.17

-
+

1026287 0.80 ± 0.04 3.68 1.45
1.50

-
+

L

(This table is available in its entirety in machine-readable form.)
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Figure 14. Residuals for late-F and G dwarfs for the multivariate regression of Section 5 without Prot: Age (top-left panel), L (top-right panel), Teff (bottom-left panel),
and [Fe/H] (bottom-right panel). The colored symbols are the observables, and the gray symbols correspond to the predicted values from the Bayesian fits.
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Figure 15. Residuals for late-F and G dwarfs for the multivariate regression of Section 5 with Prot. Same legend as in Figure 14 but with also the residuals regarding
Prot (bottom-right panel).
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Figure 16. Residuals for K dwarfs for the multivariate regression of Section 5 without Prot: Age (top-left panel), L (top-right panel), Teff (bottom-left panel), and [Fe/
H] (bottom-right panel). The colored symbols are the observables, and the gray symbols correspond to the predicted values from the Bayesian fits.

20

The Astrophysical Journal, 952:131 (24pp), 2023 August 1 Mathur et al.



Appendix C
Bayesian Analysis to Predict Sph

While in the main paper we focused on predicting ages from
Sph and other stellar parameters, we also performed the
Bayesian analysis for the inverse relation compared to
Section 5, which allows us to predict the level of magnetic
activity expected for a star with some known stellar parameters.
These relations can be useful for instance to assess whether
solar-like oscillation modes can be detected for a given star.

In Table 4, we only show the results of the favored analytical
models for the different cases: the solar analogs, the late-F and
G dwarfs, and K dwarfs.

For the late-F and G dwarfs, the Bayesian model comparison
favors the model without including rotation (having α5= 0) by
a large extent ( Bln 893> , significantly over the condition of a
strong evidence of 5 as explained in Trotta 2008), meaning that
Prot is introducing an additional level of complexity to the fit
that is not justified by the improvement obtained in the
residuals (which instead appear to worsen because they exhibit
more structures in the model incorporating Prot).
For the K dwarfs, contrary to the case of late-F and G

dwarfs, here the term incorporating the rotation (α5≠ 0) is
playing an important role in improving the overall matching
between predictions and observations.

Figure 17. Residuals for K dwarfs for the multivariate regression of Section 5 with Prot. Same legend as in Figure 14 but also with the residuals regarding Prot (bottom-
right panel).

Table 4
Fitting Coefficients from the Multivariate Fit for the Favored Analytical Models Similar to Those Described in Section 5.2 but to Compute Sph

Model α1 α2 α3 α4 α5 lnb ln

Solar Analogs 5.221 0.075
0.076- -

+ L L L 1.449 0.071
0.066

-
+ 7.562 0.132

0.162
-
+ L

Late-F and G dwarfs 2.801 0.021
0.025- -

+ 1.254 0.026
0.022

-
+ 2.601 0.060

0.063- -
+ 37.31 0.44

0.32- -
+ L 331.8 2.7

3.8
-
+ −10999

K dwarfs 4.289 0.080
0.063

-
+ 1.141 0.066

0.071- -
+ 1.868 0.098

0.097
-
+ 2.883 0.605

0.578
-
+ 7.060 0.099

0.128- -
+ 1.397 3.778

6.302- -
+ −2165

Note. Median estimators and 68.3% Bayesian credible limits are reported for each free parameter.
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Appendix D
Age Comparison for Gyrochronology Relations from the

Bayesian Fits

We show in Figure 18 the comparison between the ages
predicted the gyrochronology relation derived with
Equation (5) where the coefficient for Sph is set to 0. For the

late-F and G dwarfs, the median difference is of −0.006 with
an MAD of 15%, compared to 0.001 and 14% when adding the
magnetic activity proxy. The comparison for the K dwarfs is
very similar to the case where Sph is included in the relations as
suggested by the Bayesian evidence.

Figure 18. Age comparison for the predicted ages from Equation (5) without the Sph term with the kiauhoku ones for the late-F and G dwarfs (left panel) and the K
dwarfs (right panel). Same legend as in Figure 10.
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Appendix E
Comparison Sph and Vph

We compare here the magnetic activity index Sph with the
variability index Vph as described in Section 7.4, computed on
subseries of length of 30 days for light curves filtered above 55
days. This comparison is done for stars with reliable rotation
periods to see if there is any bias by using Vph compared to the
real index of magnetic activity. We remind the reader that the
Sph index is computed on light curves with a 20 day, 55 day, or
80 day filter depending on the rotation period (see S19 for more
details). To ensure that there is no bias due to the filter applied
on the light curves, for this comparison we use the Sph values
computed on light curves filtered above 55 days.

From Figure 19, we see that Sph and Vph are close to the 1:1
line. Depending on the rotation period of the star, we find
different small biases. For fast rotators with Prot below 10 days,
Vph overestimates the magnetic variability for small Sph values.
These fast rotators are usually F stars that also show an
additional modulation whose variability is captured with the 30
day subseries used for the Vph calculation. In spite of the slight
overestimation for the fast rotators, the median difference
between Vph and Sph, 55 is of −2.6%. The median difference for
periods between 10 and 30 days is of −12.6% and −20.8% for
stars rotating slower than 30 days. This underestimation of the
magnetic variability for slower rotators is expected as with a 30
day subseries, we have less than one rotation period and the Vph

does not capture the full modulation due to the active regions.
On average, the bias is not significant compared to the

typical uncertainties on Sph of around 10%, and we can say that
Vph is a reasonable measure of the variability of the star
associated to magnetic activity, if rotational modulation is
present.
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