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Figure 1: Shooting a heavy sphere at a column (a): as the column breaks, the topmost fragment is pushed upwards into the bunny, whose
ears break off close to the smallest cross-section (b). As the remainder of the bunny falls down it hits a sharp edge of a fragment from the
column (d) and fractures again (e). The entire fracture simulation for this scene takes just over 16 minutes on commodity hardware.

Abstract

We present a boundary element based method for fast simulation of
brittle fracture. By introducing simplifying assumptions that allow
us to quickly estimate stress intensities and opening displacements
during crack propagation, we build a fracture algorithm where the
cost of each time step scales linearly with the length of the crack-
front.

The transition from a full boundary element method to our faster
variant is possible at the beginning of any time step. This allows
us to build a hybrid method, which uses the expensive but more
accurate BEM while the number of degrees of freedom is low, and
uses the fast method once that number exceeds a given threshold as
the crack geometry becomes more complicated.

Furthermore, we integrate this fracture simulation with a standard
rigid-body solver. Our rigid-body coupling solves a Neumann
boundary value problem by carefully separating translational, ro-
tational and deformational components of the collision forces and
then applying a Tikhonov regularizer to the resulting linear system.
We show that our method produces physically reasonable results in
standard test cases and is capable of dealing with complex scenes
faster than previous finite- or boundary element approaches.

Keywords: boundary elements, brittle fracture, crack propagation

Concepts: •Computing methodologies → Physical simulation;
•Mathematics of computing→ Integral equations;

∗e-mail: david.hahn@ist.ac.at
†e-mail: wojtan@ist.ac.at

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored.
c© 2016 Copyright held by the owner/author(s).

SIGGRAPH ’16 Technical Paper, July 24-28, 2016, Anaheim, CA,
ISBN: 978-1-4503-4279-7/16/07
DOI: http://dx.doi.org/10.1145/2897824.2925902

1 Introduction

The concept of adding fracture effects to rigid-body simulations has
received a lot of attention from the computer graphics community,
both in recent research as well as in industrial applications. The
most commonly used methods rely either on pre-fractured models,
where constraints between individual fragments are removed at the
appropriate time, or on pre-defined fracture patterns that are applied
when and where collisions occur.

Fully elastodynamic simulations are able to handle both the global
motion as well as deformation and fracture. However, they become
inefficient for almost rigid materials, as the speed of sound within
the material increases, restricting the time step size. Consequently,
many previous methods combine elastostatic continuum mechani-
cal models with rigid-body methods to simulate elastic fracture me-
chanics in a quasi-static sense. These fracture simulations typically
use a volumetric discretization such as the finite element method.

Recently, surface integral formulations of linear elastic fracture me-
chanics have also been investigated. These surface based models
promise to reduce the computational cost by reducing the number
of degrees of freedom by an order of magnitude over volumetric
discretizations at comparable resolution. The resulting dense linear
systems are typically harder to solve than their sparse volumetric
counterparts though, negating most of the theoretical speed-up even
when using fast summation techniques such as the fast multipole
method.

In this paper, we present a fracture algorithm based on the bound-
ary element method (BEM), coupled to a rigid-body simulation
where the resolutions of the collision mesh, the BEM mesh, and
the implicit surface containing the resulting geometry can be freely
chosen by the user. The only constraint is that the BEM mesh is
coarsest, the implicit surface is finest, and the collision mesh is in
between these two. We simulate crack propagation at the same res-
olution as the implicit surface, which allows us to generate detailed
fracture surfaces.

We present physics-based approximations that reduce the computa-
tional cost of the fracture simulation significantly. In particular, the
cost of one time step of our method scales linearly in the length of
the crack-front, while even fast multipole boundary element meth-
ods scale linearly in the surface area, and finite element methods
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scale linearly in the volume. We show that this approach reduces the
runtime considerably over a standard BEM implementation. Con-
sequently, we can simulate scenes with a huge amount of fractures
and detail that would not be practical with any other physics-based
method. Finally, our approach can also be combined with an ex-
isting BEM solver, where the transition from the full solution to
the approximate one is possible at any time, giving rise to a hybrid
method. This allows the user to directly control speed vs. accu-
racy by specifying when to switch from the full solution to the fast
approximation.

In summary, our main contributions are:

• Fast approximations of fracture mechanical quantities based
on a direct boundary element method, resulting in a linear
time simulation of high-resolution crack propagation.

• A hybrid method giving the user direct control over the speed
and accuracy of the simulation.

• Coupling these methods to a rigid-body simulation, while
carefully treating the resulting Neumann boundary value
problem.

2 Related work

The practical approach to simulate brittle fracture of (nominally)
rigid objects consists of pre-defining the geometry of all the indi-
vidual pieces of an object and then “gluing” them back together
using constraints. Treating all fragments as rigid bodies allows for
fast impulse-based dynamics simulation. When a sufficiently strong
collision occurs, the constraints between the fragments are released,
giving the impression of fracture; see also [Baker et al. 2011] for
details. While this approach gives artists full control over the shape
and location of fractures, it also becomes tedious to edit scenes with
many fragments of complicated geometry.

Geometry-based methods [Su et al. 2009; Müller et al. 2013] im-
prove upon the standard approach by applying fracture patterns dy-
namically upon impact. These patterns can be either pre-defined
or generated from geometric decompositions of 3d space, such as
Voronoi diagrams. While these geometric methods increase the
flexibility of the workflow, the realism of the fractures depends en-
tirely on the choice of fracture pattern. Other methods use elas-
tic deformation models to guide geometric fracturing [Iben and
O’Brien 2006; Glondu et al. 2012; Schvartzman and Otaduy 2014]
or add visual detail to coarse simulation results as a post-process
[Chen et al. 2014].

Linear elastic fracture mechanics describes the behavior of break-
ing objects under the assumptions of continuum mechanics and in-
finitesimally small deformations. As such, it is a suitable model
to build fracture simulations for almost-rigid objects. O’Brien and
Hodgins [1999] use a fully dynamic finite element method (FEM)
to simulate brittle fractures. However, as the material approaches
rigidity, the speed of sound in the material grows, demanding very
small time steps or risking artifacts from under-resolved pressure
waves. Consequently, many methods such as [Müller et al. 2001;
Bao et al. 2007; Glondu et al. 2013] use quasi-static formulations
of fracture mechanics to avoid this issue, while objects are treated
as rigid bodies when simulating their dynamic motion.

The challenging part of coupling rigid-body dynamics to a (quasi-
static) elastic fracture simulation is the transition from the rigid to
the deformable model. While elastic models consider forces, rigid
models typically operate with impulses to resolve collisions. These
impulses are independent of the time step size (see [Bender et al.
2012] for a review of rigid-body dynamics) as collisions are as-
sumed to be resolved instantaneously in a rigid model. In a de-

formable model, collisions are resolved gradually within a finite
time interval. Converting impulses to forces consequently requires
scaling by the collision duration, which cannot be determined from
the rigid-body time step. Müller et al. [2001] require the user to
specify this duration, while Bao et al. [2007] ignore this issue
altogether, referring to the resulting elastostatic stress as “time-
averaged”, although “time-integrated” would be more accurate as
it is not scaled by any characteristic duration. Both Glondu et al.
[2013] and Koschier et al. [2014] use a Hertzian contact model
to estimate the collision duration, which we also employ (see also
Chapter 5 in [Popov 2010] as well as [Chadwick et al. 2012]).

Another interesting aspect of the coupling between rigid bodies and
deformable models is how to apply boundary conditions to the de-
formable model. The main idea is to let the rigid-body simulation
handle translations and rotations, while treating deformations sep-
arately. Once collision impulses have been converted to forces, the
problem that needs to be solved in the deformable model has only
Neumann boundary conditions. In this case, the elastostatic solu-
tion is only defined up to arbitrary translation and rotation, leading
to a rank deficient linear system after discretization. This issue can
be avoided by either using a more expensive elastodynamic model
as in [Koschier et al. 2014], placing additional Dirichlet boundary
conditions [Müller et al. 2001], removing the null-space of the lin-
ear system by projection [Zheng and James 2010], or modification
of the linear solver [Bao et al. 2007].

The methods described in [Bao et al. 2007; Zheng and James 2010]
deal with FEM discretizations and consequently with sparse ma-
trices and iterative solvers. In contrast, our method is based on the
direct boundary element method of [Hahn and Wojtan 2015], result-
ing in a dense linear system which we solve by factorization. Zhu
et al. [2015] use an indirect boundary element method, which im-
plicitly removes the null-space by solving for a potential function
first and representing displacements as boundary integrals of this
potential. Since we use a direct BEM, our treatment of the elas-
tostatic Neumann problem’s null-space follows the same principle
as [Zheng and James 2010], however, they operate on the nodes of
a tetrahedral mesh, while we work on the elements of a triangular
surface mesh.

2.1 Brittle fracture simulation

Many of the early works in fracture animation use point-masses
connected by either elastic springs or linear constraints; fractures
are represented by removing these connections [Terzopoulos and
Fleischer 1988; Norton et al. 1991; Hirota et al. 2000; Smith et al.
2001]. Similarly, particle-based discretizations of continuum me-
chanics include fractures by modifying the interaction forces be-
tween particles [Pauly et al. 2005; Stomakhin et al. 2013; Levine
et al. 2014].

Fractures are typically represented in FEM simulations by cutting,
disconnecting, or duplicating elements [O’Brien and Hodgins 1999;
O’Brien et al. 2002; Molino et al. 2004; Parker and O’Brien 2009;
Glondu et al. 2013; Koschier et al. 2014], or by additional basis
functions in extended FEM [Moës et al. 2002; Gravouil et al. 2002;
Kaufmann et al. 2009; Mousavi et al. 2011].

Boundary element methods focus all the computations on the sur-
face of 3d objects [James and Pai 1999; Messner and Schanz 2010;
Keeler and Bridson 2014]. Fractures are represented as additional
surfaces in the BEM mesh [Aliabadi 1997; Frangi et al. 2002; Hahn
and Wojtan 2015; Zhu et al. 2015]. The main advantage of these
methods is that they avoid complicated volumetric meshing op-
erations and reduce the required number of degrees of freedom.
Hahn and Wojtan [2015] have presented a boundary element based
method that can simulate crack propagation at high resolution on
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top of a coarse deformation model. They apply rigid-body dy-
namics only as a post-process, however, and only deal with mixed
boundary value problems, while our rigid-body coupling relies on
pure Neumann ones. Our implementation is based on their publicly
available source code. In Section 3 we extend their method to han-
dle Neumann problems, while details on the rigid-body coupling
are given in Section 5. Section 4 describes our approximate method,
which considerably improves the theoretical scaling as well as the
practical runtime and memory allocation of the fracture algorithm.

3 Boundary element fractures

In this section we summarize the boundary element based brittle
fracture simulation of [Hahn and Wojtan 2015] and describe how
we extend their method to treat pure Neumann boundary value
problems resulting from rigid-body collisions. Given the geome-
try of an object we first construct a coarse triangle mesh of its sur-
face. We define both the surface displacement and traction fields
as piecewise linear and piecewise constant interpolations over this
mesh respectively; see [Kielhorn 2009; Hahn and Wojtan 2015] as
well as our appendix for details.

This discretization yields the linear system Ku = f , where K is
effectively a “surface-based” stiffness matrix and f represents ex-
ternal forces due to boundary conditions. In the case of pure Neu-
mann boundary conditions, this matrix has a null-space with respect
to rigid translations and linearized rotations. As K is constructed
from a boundary element formulation, it is also dense.

We first construct a Tikhonov regularizer, which penalizes global
translations and rotations, in order to reliably solve this linear elas-
tostatic system. We then proceed to include fracture surfaces in the
system. Our regularizer consists of two parts, measuring translation
and rotation respectively: T :=

(
T>d T>r

)>, where each part
is a 3 × 3n block, where n is the number of surface nodes in the
mesh. These blocks are defined such that Td measures the aver-
age surface displacement us, given a piecewise linear displacement
field u, and similarly Tr measures the global surface rotation rs:

us =

∫
Γ

u(x) dx =
∑

e

1

3
Ae
∑3

i=1
ue,i = Tdu, (1)

and

rs =

∫
Γ

u(x)× x dx = Tru

=
∑

e

1

3
Ae
∑3

i=1
ue,i ×

1

4
(xe,i + xe,1 + xe,2 + xe,3).

(2)

Here ue,i is the displacement at the i-th node in triangle e, while
xe,i is the material space position of this node, and Ae is the trian-
gle’s area. Integration proceeds over the object’s surface Γ and we
assume (without loss of generality) that the object’s center of mass
is at the coordinate origin.

We can now use the regularizer T to turn our rank-deficient linear
system into the well-posed problem

KR u = K>f , (3)

where the regularized system matrix is KR := K>K + γT>T.
The scaling parameter γ := (tr(K)/(3n))2 is the squared aver-
age diagonal entry in K. Intuitively we want the regularizer to be
roughly as “important” as the system matrix. The exact value of γ is
not crucial, because the regularizer acts only on the null-space of K
by construction. The boundary conditions, however, must be com-
patible with a solution free of translation and rotation, or in other
words, the right hand side f must be in the range of K as pointed

out by [Zheng and James 2010]. We provide a similar method to
theirs to build such a surface traction field from collision impulses
in Section 5.

Now we want to extend Eq. (3) to simulate quasi-static brittle frac-
ture. As in [Hahn and Wojtan 2015] we represent a crack by a single
sheet of triangles in the BEM mesh. The unknown quantity on the
nodes of this sheet is the crack opening displacement, ∆u, which
is defined as the jump in displacement between the two faces of the
crack. Adding these new unknowns to the linear elastostatic system
gives: [

KR K>C
C> D

] [
u

∆u

]
=

[
K>f

0

]
, (4)

where the lower part on the right hand side is 0 because we as-
sume traction-free fractures. The additional blocks C and D de-
scribe crack-surface and crack-crack interactions respectively, see
Eq. (8) in the appendix for details. Note that the regularizer is not
affected by the extension of the system, which means that we do
not need to rebuild the regularizer when adding new cracks. When
fractures grow, the blocks ∆u, C, and D also grow to account
for the influence of the new opening degrees of freedom, but KR

remains unchanged. This means that we can pre-factor the regu-
larized matrix KR. Solving this system using Schur complements
results in (C>H −D)∆u = C>b and u = b −H∆u, where
b := KR

−1K>f and H := KR
−1K>C.

The fracture simulation proceeds in the same way as in [Hahn and
Wojtan 2015]: given an unfractured object, we solve for the surface
displacement and compute surface stresses per element. Basically,
we initiate new cracks orthogonal to the largest principal surface
stress, if this stress exceeds the material’s strength. However, we
use a more accurate surface stress evaluation than [Hahn and Woj-
tan 2015], which we describe in §4.1. Whenever there are fractures
in the object, we solve Eq. (4) for both the surface displacement and
the crack opening displacement, ∆u, and then compute the stress
intensities for all crack-front elements using the displacement cor-
relation technique [Ingraffea and Wawrzynek 2003]. We propagate
the crack-front at high resolution if the stress intensity exceeds the
material’s toughness. As in [Hahn and Wojtan 2015], we incorpo-
rate high-frequency spatial variations of the material’s strength and
toughness and store the resulting high-resolution geometry as an
implicit surface.

We consider this method to be sufficiently accurate within the as-
sumptions of quasi-static linear elastic fracture mechanics. How-
ever, it becomes very slow for large numbers of crack-opening de-
grees of freedom.

4 Fast approximate fractures

Having summarized the boundary element method for quasi-static
fracture simulation in the previous section, we now develop a set
of approximations that will speed up the crack propagation simu-
lation significantly. In particular the poor scaling of the method
described in §3 is due to the cost incurred by the growing matrix
block D in Eq. (4). Our approximations allow us to ignore this
block altogether, by sacrificing accurate treatment of crack-crack
interactions.

Stress intensity factors (SIFs) describe the singular stress field in the
vicinity of a crack-front. The main idea is to estimate these stress
intensity factors from the non-singular part of the local stress. This
means that we do not need to solve Eq. (4) for the crack-opening
displacements. Instead, we can propagate the crack-front using es-
timated SIFs. Furthermore, as an object fractures, its overall defor-
mation is going to change due to cracks opening; in order to retain
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good SIF estimates as the fractures grow, we also account for this
additional surface displacement.

Our local stress measure relies only on the object’s surface degrees
of freedom, excluding fractures. This approximation ignores di-
rect crack-crack interactions (including branching). However, the
efficiency gained allows us to handle scenarios with such detailed
fracture geometry that these effects will not be visually noticeable
in our results.

In the remainder of this section, we first describe how to evaluate
local stresses both in the interior as well as on the surface of the
object (§4.1), then we present the SIF estimation (§4.2), and finally
we discuss how to update the surface displacement due to growing
fractures (§4.3).

4.1 Interior and surface stress evaluation

We evaluate stresses in the interior of the domain by integrating
over the surface and applying the Kelvin stress kernels as listed
in the appendix. However, these kernels diverge as the evaluation
point moves to the surface itself, so they cannot be used to evaluate
surface stresses. Similarly, the surface stress computation of [Hahn
and Wojtan 2015] cannot be used in this case, because it assumes
a general 3d stress state. In particular, their stress computation dis-
regards the (known) surface traction and computes a stress purely
based on the surface displacements, which would result in a dis-
continuity between the interior and surface stresses. In this section,
we present a surface stress evaluation that accurately includes the
known traction and allows for a smooth transition from the inte-
rior to the surface stress evaluation. Since the interior evaluation
suffers from numerical noise close to the boundary, we transition
to the surface stress evaluation at a small distance away from the
boundary.

Here we describe how to compute an accurate 3d stress for a sur-
face triangle, given the displacements of its nodes u (assumed to
be linear over the element) as well as the traction q (assumed to
be constant over the element). For a pure Neumann problem, q is
specified as a boundary condition and u results from Eq. (3). We
aim to calculate a surface stress σ, which is “compatible” with the
given traction, i. e. it satisfies σn1 = q, where n1 is the triangle’s
face normal. Furthermore, we also account for the Poisson contrac-
tion in the plane of this triangle caused by the given out-of-plane
traction, as illustrated in Fig. 2a. Finally, the surface stress must
also be symmetric.

The vectors n1 (the triangle’s surface normal), as well as n2 (the
unit vector along the first edge of the triangle) and n3 := n1 × n2

define a local orthonormal coordinate system. We first compute
a 2d stress σ2d in the plane spanned by n2 and n3. We do this
by mapping the nodal displacements into the n2 × n3-plane and
collect them in the vector u2d. The stress computation follows the
principle of a basic 2d FEM discretization, i. e. σ2d := SBu2d,
where S encodes the Hookean stress-strain relation and B contains
the derivatives of the linear shape functions. We then rotate σ2d

into the global 3d coordinate system to obtain traction vectors q∗2
and q∗3. These traction vectors are (q∗2 q∗3) := (n2 n3) σ2d. In
other words, they are defined as the first and second column of the
rotated 2d stress respectively.

Given three traction vectors with corresponding orthogonal nor-
mals, the 3d stress can be constructed by dyadic summation, as
in Eq. (5). However, doing this with (q,q∗2,q

∗
3) might not re-

sult in a symmetric matrix, since the tractions built from the
in-plane stresses might not be consistent with the given out-of-
plane traction q: they need to satisfy q2 · n1 = q · n2 and
q3 · n1 = q · n3. Furthermore, the presence of an out-of-plane

traction will modify the in-plane tractions due to Poisson’s ef-
fect. Consequently, we define the corrected in-plane tractions as
qi := q∗i+n1(q · ni)+ni(q · n1)ν/(1− ν), where i ∈ {2, 3},
and ν is Poisson’s ratio. Finally, we compute the 3d stress by dyadic
summation:

σ := (q q2 q3) (n1 n2 n3)>. (5)

Verifying that σ is symmetric and satisfies σn1 = q is straightfor-
ward. In order to derive the factor ν/(1 − ν) for the Poisson cor-
rection, consider a cube under uniaxial tension, σz , as illustrated
in Fig. 2a: the strain along the z-axis, εz , satisfies σz = Eεz,
where E is Young’s modulus. The Poisson contraction along both
x- and y-axis is εx = εy = −νεz . Now consider a triangle on the
top face of this cube: the in-plane stress due to Poisson’s effect is
σx = E∗(εx + νεy) = −E∗(1 + ν)νεz with E∗ := E/(1− ν2)
(and analogously for σy), which is exactly the result we get for σ2d.
However, since this stress is caused by the out-of-plane tension, σz ,
and there is no external force along either x- or y-axis, we know that
the correct result should be σx = σy = 0. Consequently, we need
to add E∗(1 + ν)νεz = νEεz(1 + ν)/(1 − ν2) = σzν/(1 − ν)
to both σx and σy .

In summary, we can reliably evaluate the stress on the surface of
an object according to Eq. (5), as well as in the interior of the ob-
ject (using the integral kernels given in the appendix). Because we
carefully account for the traction q, our surface stress, σ, matches
the interior stress in an infinitesimal neighborhood. We proceed to
estimate local stress intensities based on this stress measure.

4.2 Stress intensity from local stresses

For very simple crack geometries and uniform far-field stress states,
it is possible to get closed-form results for stress intensities, as sum-
marized in [Gross and Seelig 2011]. The basic relation between
stress intensity factors, Ki, and far-field stresses, σi, (i = 1..3) is:
Ki = kσi

√
πa, with a constant factor k depending on the crack

geometry; according to Table 4.1 (5) in [Gross and Seelig 2011] we
chose k = 1.1215 for all our examples. Furthermore, σi are the
projections of the traction vector, σn, onto the crack-front’s local
coordinates (illustrated in Fig. 2b), where n is the crack’s surface
normal. Finally, a is the crack-length; in 3d we measure the area of
a crack, A, and assume a planar circular geometry to determine the
equivalent length a =

√
A/π.

However, these results assume a constant far-field stress, whereas
we work with local stress information. When applying the formula
above directly we have observed oscillatory crack propagation in
our numerical experiments, see Fig. 3. This stems from the fact
that using these stress intensity estimates will not result in a crack
path that is aligned with an eigenvector of the stress field.

We aim to rectify this behavior by choosing the ratio r := KII/KI
such that the resulting propagation angle θ aligns the crack’s surface

(a)

I
II

III
(b)

θ

(c)

Figure 2: Illustration of Poisson contraction (a): uniaxial tension
(blue arrows) causes the highlighted triangle to contract (yellow
arrows). Definition of crack opening modes (b) and the out-of plane
crack propagation angle (c).
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(a) (b)

(c) (d)

Figure 3: Comparison of BEM results to the basic SIF estimator
for nominally mode-I (a, b) and mode-II (c, d) loaded test cases
(arrows) containing pre-defined initial cracks (red). This estimator
produces unacceptable oscillation artifacts (b, d) on the crack path.

normal with an eigenvector of the stress. The propagation angle in
the crack-front’s local coordinate system (see Fig. 2c) is given by
[Patricio and Mattheij 2007]

θ = 2 atan
[(
KI − (KI

2 + 8KII
2)

1/2
)
/(4KII)

]
.

Substituting KII = rKI and solving for the ratio r, which produces
a desired angle θ yields: r(θ) = tan(θ/2)/(2tan2(θ/2) − 1),
if cos(θ) ≤ 1/3, i. e. θ is less than approx. 70 degrees. We
do not explicitly handle larger turning angles, which can only
occur under compression. Having computed the desired ratio,
we set the stress intensities accordingly and scale them such that
K2

I +K2
II = (λk 4

√
πA)2, where λ is the eigenvalue corresponding

to the eigenvector we are trying to align with.

Finally, we need to decide how to choose the appropriate eigenvec-
tor of the stress. The fracture process should release as much elastic
energy as possible; therefore the default choice is the eigenvector
corresponding to the largest eigenvalue. However, this eigenvec-
tor might not be sufficiently close to the crack normal to satisfy
cos(θ) ≤ 1/3. In this case, we choose either the second largest or
the most negative eigenvalue, depending on which has the higher
magnitude after applying the material’s ratio of compressive to ten-
sile toughness to the negative eigenvalue (if such an eigenvalue ex-
ists). If two eigenvectors are not sufficiently aligned with the crack
normal, we choose the remaining one. Because the stress is sym-
metric it has orthogonal eigenvectors with real eigenvalues, so at
least one of them must be close enough to the crack normal to be a
valid choice (as any eigenvector can be multiplied by −1, we have
a possible choice every 90 degrees). As shown in Fig. 4, aligning
the crack propagation angle with an eigenvector of the local stress
removes the oscillation artifacts from the crack surface.

Unfortunately, comparing the estimated stress intensities with the
results from the BEM simulation described in Section 3 reveals that
the estimates do not grow fast enough as the crack expands, even
though the crack’s surface area is taken into account; see Fig. 4c, d.
We address this issue in the following section.
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Figure 4: Aligning the crack path with an eigenvector of the stress
field (a, b) removes the oscillations seen in Fig. 3. Stress intensities
(c, d) are underestimated as the crack approaches the boundary.

4.3 Surface displacement update

In the previous section we have described how to estimate stress
intensities based on the object’s surface displacements and trac-
tions. At the beginning of each fracture simulation, we obtain this
information by solving a boundary element system. As the object
fractures, however, it effectively weakens and deforms more eas-
ily overall. Consequently, in order to get more accurate SIF esti-
mates, it is necessary to update the surface displacements after each
crack propagation time step. A full BEM solve, Eq. (4), would give
the correct new displacements, but doing so would be too costly.
In this section we describe how to approximate the change of the
surface displacement, u, due to estimated crack opening displace-
ments, ∆u.

Given the (estimated) stress intensities, Ki, at the beginning
of any one time step, and the new crack-front position at the
end of the same time step, we can estimate the crack-opening
displacement, ∆u, at any previous crack-front position by in-
verting the displacement correlation technique [Ingraffea and
Wawrzynek 2003; Hahn and Wojtan 2015]. This process results
in (∆u)i = Kic

√
2 d/(µ

√
π), where µ is the shear modulus, d is

the distance the crack has propagated during the time step, and the
coefficient c = 1 if i = 3 and c = (1− ν) otherwise.

We can now substitute the estimated new opening displacements
for the unknown ones in Eq. (4) and move them to the right hand
side. Remember that we only aim to update the displacements of
the object’s surface, so we consider only the first row in Eq. (4).
Consequently we find KRu = K>(f −C∆u). We apply an up-
date of the form −K>C∆u to the right-hand side after each time
step in order to compute the new surface displacement. Here, the
matrix C describes the influence of new crack-opening displace-
ments on the surface degrees of freedom; as we only need the result
of the product C∆u, this matrix is never explicitly assembled. We
build C∆u only for those crack-front nodes that have propagated
during the most recent time step. The (regularized and pre-factored)
system matrix KR does not change due to these updates.

As shown in Fig. 5, updating the surface displacements in this man-
ner allows the local stress to increase, yielding good stress intensity
estimates for basic test cases. Note that this procedure can be ap-
plied analogously to mixed boundary value problems such as those
discussed in [Hahn and Wojtan 2015] as well.
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Figure 5: Comparison of stress intensities obtained by the BEM
(solid lines) vs. our estimator (dashed lines): using our right-hand-
side updates provides good estimates for both test cases. The cor-
responding crack surfaces are qualitatively the same as in Fig. 4.

4.4 Scaling and speed-up

In order to analyze the computational cost of our approximations,
let l be the number of nodes on the crack-front: we first need to
compute l local stress evaluations. If we evaluate the stress in the
interior of the object, this requires an integration over the object’s
surface, but excluding fracture surfaces. Assuming the number of
surface degrees of freedom is n, then evaluating all required stress
intensities for any one time step takes O(ln) time. Similarly, the
right-hand-side update, C∆u, is only assembled for those crack-
front nodes that have actually propagated during the time step,
therefore it also takes at most O(ln) time. The mesh of the ob-
ject’s surface, however, is not changed during the fracture simula-
tion, which means n remains constant and the cost per time step
scales linearly with the length of the crack-front.

This linear scaling represents a significant improvement over the
full BEM solution, where the assembly of the additional matrix
block D in Eq. (4) scales quadratically with the crack area, while
the dense linear solve scales cubically. In principle, a fast multipole
method [Zhu et al. 2015] could reduce the runtime to (almost) lin-
ear in the crack surface area. As our approximation removes the
need to assemble and store the dense matrix D, this also reduces
the required memory considerably.

The practical speed-up depends strongly on the number of fracture
elements in the mesh. For simple cases with less than 1000 ele-
ments, such as those shown in Fig. 6, the total runtime is dominated
by the high-resolution surface tracking and is therefore almost equal
for both the full BEM and the approximation. On more complex ex-
amples, however, our approximations are considerably faster, as de-
tailed in §6: for example, we obtained a speed-up of approximately
35x for the scene shown in Fig. 8, using about 3x less memory.

Having established that the cost for a single time step scales linearly
in the crack-front length, it follows that the computational cost of
the entire fracture simulation is linear in the generated fracture sur-
face area. Since the cost of producing any explicit surface must at
least scale with the surface area, we conclude that our crack propa-
gation method provides optimal scaling.

We can apply our fast estimators described in this section either
immediately after solving the unfractured BEM system, Eq. (3),
or after computing any number of time steps using the full BEM
system, Eq. (4). However, once we do use our estimators, we do
not maintain the matrix block D anymore, so switching back to the
full solution would be costly. We construct a hybrid method by
allowing the user to set a threshold for the number of elements in
the BEM mesh: as long as the number of elements is below this
threshold, we use the more accurate BEM solution, and we switch
to our fast approximations afterwards.

(a) (b)

(c) (d)

Figure 6: Comparison of results obtained with the full BEM solu-
tion, §3, (a, c) and the fast approximation, §4, (b, d). The fracture
locations and surface details are qualitatively equivalent. Please
also refer to our accompanying video.

5 Rigid-body coupling

Having developed our fast fracture method in the previous sections,
we now describe how we integrate this method with a standard
impulse-based rigid-body simulation. The main parts of this cou-
pling are: computing the right-hand-side vector f in Eq. (3) and
generating the collision shapes for the resulting fragments. Re-
member that f must be free of global translations and linearized
rotations; otherwise the regularization would counteract these com-
ponents of the boundary condition and lead to undesirable results.
Note that the considerations presented in this section apply equally
to both the boundary element fracture simulation (§3) as well as the
fast approximate fractures (§4).

5.1 Surface tractions from impulses

In this section we describe how to construct a traction field that
is free from global translational and rotational forces and conse-
quently admits an elastostatic equilibrium solution of Eq. (3) and
(4). We build this traction field based on the collision impulses af-
ter each rigid-body time step. For any one object, we map each of
its collision points to the closest element in the BEM mesh, result-
ing in a piecewise constant input traction field qi by applying the
Hertzian contact model (we defer the details until the end of this
section).

We then solve a quadratic optimization problem with linear con-
straints to find the smallest correction, qc, such that the result-
ing traction field q := qi − qc has no global linear force or
torque. Similar to Eq. (1) and (2), except that we now use
piecewise constant instead of piecewise linear shape functions,
we build the linear constraints fs =

∫
Γ

q(x) dx = Afq = 0 and
τ s =

∫
Γ

q(x)× x dx = Aτq = 0 to enforce vanishing global
force and torque respectively.

We can now write our optimization problem as min q>c qc s. t.
Af (qi − qc) = 0 and Aτ (qi − qc) = 0, or equivalently as the
KKT system with Lagrange multipliers v:[

I A>

A 0

] [
qc
v

]
=

[
0
b

]
,

A :=

[
Af

Aτ

]
, b :=

[
Afqi
Aτqi

]
.

(6)
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The Schur complement solution of this system is: qc = −A>v
and v = −(AA>)−1b. Note that the matrix AA> has dimension
6×6 regardless of the number of triangles in the mesh. This matrix
can be built directly, requiring only one pass through the element
list. The projection used by [Zheng and James 2010] applies a sim-
ilar idea to a tetrahedral mesh. Having found the translation- and
rotation-free piecewise-constant surface traction field, q, closest to
the input tractions, qi, we assemble the right hand side, f , of Eq. (3)
according to Eq. (9) in the appendix.

Each collision contributes the traction (or force per area)
Jn̂/(tcAe) to the entry corresponding to element e in the input
traction vector qi. Here Ae is the area of the element, J is the im-
pulse transferred by the collision, n̂ is a unit vector pointing along
the direction of approach (in the object’s local coordinate system),
and finally tc is the contact duration.

The collision impulse is independent from the rigid-body time
step, therefore we need to estimate the contact duration, tc,
for each collision. Hertz [1881] describes the collision of
two elastic spheres, or equivalently of one elastic sphere with
a rigid plane. This sphere is described by an effective elas-
tic modulus E = [(1− ν2

1 )/E1 + (1− ν2
2 )/E2]−1, radius

R = (R−1
1 +R−1

2 )−1, and mass m = (m−1
1 +m−1

2 )−1. Each of
these three effective quantities combines the parameters of both
objects involved in the collision. The collision duration is then
tc = 2.87[m2/(E2Rv)]1/5, where v is the velocity at which the
two objects locally approach one another. We refer the interested
reader to Chapter 5 in [Popov 2010] for a detailed derivation.

We obtain the required parameters as follows: elasticity parameters
and densities are user inputs and constant per object, the local ve-
locities of the contact points, as well as the transferred impulse are
taken from the rigid-body simulation, and the effective radii are the
inverse of the mean curvature at the contact locations. The volume
of each object, required to compute its mass, is measured on the
high-resolution implicit surface.

5.2 Fragment generation

Once the fracture simulation for any one rigid body has been com-
pleted, we need to identify new fragments and update the rigid-body
scene accordingly. Similar to [Hahn and Wojtan 2015] we use a
level set to represent the high-resolution surface of each object, in-
cluding all fractures, and use a breath-first-search algorithm to find
connected components, i. e. fragments.

We call the rigid body which has just fractured the “parent” object.
At the beginning of the rigid-body simulation the total volume of
each object is computed, and this information is copied from parent
to fragments. We refer to this as the “original volume” and classify
fragments into the following four groups based on their relative vol-
ume:

(a) very small fragments (0.5% or less of the original volume): for
efficiency reasons these are not allowed to fracture any further
in our implementation and are represented by their convex hull
in the rigid-body scene;

(b) small fragments (0.5–2% of the original volume): cannot frac-
ture either, but use a (possibly non-convex) mesh for collision
detection;

(c) large fragments (more than 2% of the original, but less than
95% of the parent’s volume): can fracture again and have both
a mesh for collision detection as well as a (coarser) mesh on
which the BEM computations of future collisions are handled;

(d) very large fragments: if we find a fragment that has more than
95% of its immediate parent’s volume, we do not start a new
BEM instance and instead retain the one from the parent object,
while the rigid-body collision shape is updated. This way we
avoid the overhead incurred from creating a new BEM mesh as
well as building, regularizing and pre-factoring the matrix KR.
If there is no such fragment, the parent object is deleted along
with all its associated BEM data.

We mostly classify fragments based on the object’s original vol-
ume rather than the volume of their immediate parent object be-
cause it retains a better notion of scale: a fragment of a particular
size should be treated in the same way regardless of whether it has
broken off the original object right away, or after a series of inter-
mediate fracture events.

Except for large ones, all other fragments are easily handled by
adding (or updating) their shape in the rigid-body scene and copy-
ing all material parameters from the parent. Positions and velocities
of all fragments are set such that they match the motion of the par-
ent object before the collision happened. Once all fragments are in
place, we repeat the rigid-body time step that caused the collision
(but without starting any new fracture simulations), allowing the
newly created fragments to respond to the collision.

5.3 Fragments containing incomplete cracks

For large fragments, we need to construct a boundary element mesh
and assemble the linear system as described in §3. As each frag-
ment may contain cracks that do not cut it into separate pieces (yet),
we also have to represent these cracks in the BEM mesh to allow
them to propagate in future fracture simulations; we refer to them
as “incomplete” fractures.

We first obtain a BEM mesh by extracting a high-resolution trian-
gle mesh from the fragment’s level-set representation, excluding all
incomplete fractures, and coarsening according to a user specified
resolution. Then we identify all incomplete fractures and copy their
level-set representation, as well as all elements from the parent’s
BEM mesh that are inside of the fragment.

This way the representation of an incomplete fracture in the frag-
ment’s BEM mesh is a subset of its representation in the parent’s
BEM mesh; we take care to ensure that this subset is a collection
of manifolds with boundary, i. e. the new crack-front, which is the
bounding curve of this subset of triangles, has exactly two edges
meeting at each node. Wherever the new crack-front coincides with
the old one, we copy high-resolution crack-front data from the par-
ent as well. This treatment allows “old” fractures to propagate fur-
ther due to subsequent collisions of the fragment.

6 Results

In this section, we first discuss test cases demonstrating that our
estimated stress intensity factors produce results that are accept-
ably close to the BEM solution. We also show that our estimator
is much faster than solving the full BEM system, which enables us
to simulate larger scenes with many more fragments in a reason-
ably short time. Finally, we compare the distribution of fragment
volumes generated by our simulation to theoretical results, before
introducing more artistic examples that are also featured in our ac-
companying video.

In Section 4 we introduced the main components of our SIF estima-
tor, namely alignment with an eigenvector of the stress field, and
the update to the right-hand side of the linear elastostatic system
on the object’s surface. Figures 3 and 4 show that these compo-
nents are necessary to avoid both oscillation artifacts on the result-
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Figure 7: Smashing a bunny (a) using our hybrid method. The
CPU time required to compute each time step (b) increases dra-
matically when using the full BEM solution, but immediately be-
comes independent from the number of elements in the mesh once
we switch to our fast estimators. The “BEM only” control run is
plotted until it reaches a memory consumption of 4GB.

ing crack surface and underestimation of stress intensities as the
crack-front approaches the surface of the object. Figure 5 shows
that with our modifications, we are able to obtain good SIF esti-
mates for basic test cases. The mode-I test uses mixed boundary
conditions, while the mode-II case uses only Neumann boundary
conditions. In our experiments mixed boundary conditions on the
mode-II case resulted in underestimation of KI, making the ma-
terial appear tougher. We accept this limitation, as we use pure
Neumann coupling in all our rigid-body scenes.

Figure 6 visually compares the full BEM solution and our fast ap-
proximations for two low-complexity, yet non-trivial, examples:
the 3-point-bending test of a notched bar, as in [Hahn and Wojtan
2015], and a similar setup for a bar without notching. In both cases
our approximations yield qualitatively equivalent results, providing
further evidence that our estimates are physically reasonable. The
notched bar example, however, shows that the compressive zone at
the bottom is not quite as well resolved by the fast method, resulting
in a fracture surface that is not as perpendicular to the length-axis
of the bar.

In general, simulating very few clean cuts through an object re-
quires a more accurate deformation solution, which means that the
full BEM, or our hybrid method are better choices than the fast es-
timators. The approximation errors become visually unnoticeable
as the number of fractures increases.

Figure 7 demonstrates the efficiency of our SIF estimation method
compared to a BEM approach: we use a setup similar to the ex-
ample in Table 1 (6) of [Hahn and Wojtan 2015], smashing the
bunny by applying mixed boundary conditions and one-way rigid-
body coupling. The example shown here uses a weaker material
and higher boundary traction to produce more fractures than theirs.
We use our hybrid method, solving the full boundary element sys-
tem as long as there are less than 3000 elements in the mesh, and
applying our fast SIF estimation method afterwards. The CPU time
required to compute each crack propagation time step is shown in
Fig. 7b. While the BEM quickly becomes very slow, our estima-
tor is independent from the total number of elements in the mesh:
it only scales with the length of the crack-front, which actually
reduces slightly as the crack-front reaches the object’s surface in
some places earlier than others. The simulation terminates when all
cracks have reached the surface.

By applying our two-way rigid-body coupling and SIF estima-
tor, and choosing an even weaker material for the bunny, we can
extend this example to produce over 1000 fragments in 4 rigid-
body time steps. We show the distribution of fragment volumes
in Fig. 8 and compare it to Mott’s formula, a widely accepted the-

(a)
1e−007 0.0001 0.1

0

0.5

1

volume ratio

c
u
m

u
la

ti
v
e
 p

ro
b
a
b
ili

ty

 

 

our result

Mott’s  formula

(b)

Figure 8: Smashing a weak bunny using our SIF estimation
method. The distribution of fragment volumes is in reasonable
agreement with theoretical predictions.

oretical model for fragment size distribution, which is given by
P (V ) = e−

3√ζV , ζ = 6/V̄ . Here V̄ is the average fragment
volume (see also Eq. (20) in [Elek and Jaramaz 2008]). Figure 8b
plots the probability that a randomly selected fragment has a rela-
tive volume equal or larger than a given ratio. Fragment volumes
are measured relative to the original object’s volume. The volume
distribution of our result is in good agreement with theoretical pre-
dictions overall, except that our result contains less very small frag-
ments than predicted. We believe this deviation to be mostly due
to the resolution limit of the implicit surface on which we store
the high-resolution geometry; i. e. fragments much smaller than the
voxel size cannot be represented.

As described in §4.4, the speed-up (i. e. the reduction of runtime
spent on fracture simulation for a particular scene) depends strongly
on the number of elements used to represent fractures. Our ba-
sic comparisons in Fig. 4 and 6 take about the same time for each
method due to the very low element count. For the “Bowl” example
in our video, a scene of medium complexity, the fast approximate
fracture simulation runs about 10x faster than the full BEM solu-
tion. Similarly, our hybrid method applied to the scene in Fig. 7
reduces the runtime roughly by a factor of 14, i. e. the simulation
completes in less than 15 minutes instead of almost 3.5 hours re-
quired for the full BEM. On our largest example in terms of frac-
ture elements, Fig. 8, the fast approximation is about 35x faster than
the BEM (about 22 minutes instead of 13 hours). All of these tim-
ings refer only to the fracture simulation, excluding time spent on
rigid-body dynamics.

More artistic examples are shown in Fig. 1 and 9, as well as in our
accompanying video. Please refer to Table 1 for an overview of our
method’s performance on these scenes. In many of these examples,
fracture simulation accounts for about 70% of the total CPU time,
while rigid-body time stepping accounts for the other 30%.

7 Limitations and future work

In our current implementation we use a basic single-threaded rigid-
body simulation based on Bullet [Coumans 2015] and our coupling
to the fracture simulation considers collisions only. It might be in-
teresting to also include inertial forces, such that fast spinning can
cause fracture. Bullet’s collision detection is prone to popping ar-
tifacts when performed on meshes. This issue could be improved,
and also sped up, by convex decomposition [Mamou and Ghorbel
2009]. For example, the scene shown in Fig. 1 contains geometri-
cally interlocking fragments, which require higher resolution colli-
sion shapes and consequently slow down the collision detection step
of the rigid-body solver considerably. Because we did not imple-
ment known rigid-body optimizations, the time spent on rigid-body
dynamics (marked with ‘*’ in Table 1) should not be considered
to be representative in this case. We manually removed rigid-body
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Table 1: Performance overview: timings were obtained on a 4x3.2GHz CPU with 4GB available memory. Columns: method of fracture
(when using the hybrid method the number of elements beyond which we switch to the fast estimators is given in brackets), number of
fragments produced f , total time spent on fracture simulations tf , number of rigid-body collisions causing new fractures r, maximum number
of triangles contained in a fracture simulation due to a single collision mmax, total number of triangles involved in all fracture simulations
mall, time spent on rigid-body dynamics trb, number of rigid-body time steps, rigid-body frame rate per seconds 1/dt. Scenes are listed in
order of appearance in our accompanying video. We do not include rigid-body timings for the example in Fig. 7, because the dynamics were
simulated separately after the fragments had been generated.

Scene Method f tf r mmax mall trb Steps 1/dt

Breaking Π (Fig. 6) BEM 122 388.58s 17 1004 9645 79.97s 1000 250
Breaking Π EST 100 292.73s 13 933 7552 140.60s 1000 250
Breaking Π HYB (400) 168 461.36s 16 1225 9705 108.76s 1000 250
Bunny one-way (Fig. 7) HYB (3000) 185 892.25s 1 10981 10981 (post-process)
Brick breaking HYB (300) 60 216.11s 26 412 7525 78.18s 500 2000
Bunny two-way (Fig. 8) EST 1099 1328.17s 5 15381 35555 565.92s 500 250
Column (Fig.1) EST 367 966.81s 18 7980 31529 *2628.18s 1000 250
Armadillos (Fig. 9) EST 148 885.95s 14 1792 18079 1710.42s 600 250
Window (Fig. 9) EST 455 1256.85s 7 6459 31186 1731.38s 1000 250
Bowl EST 139 845.99s 14 3250 19504 351.32s 500 250
Falling boxes EST 654 706.43s 77 704 26879 1498.49s 1000 500

(a) (b)

(c) (d)

Figure 9: Arguing armadillos cause collateral damage (a, b).
Even though boundary element based methods are most efficient for
objects with large volume to surface ratios, our method is capable
of fracturing a thin (but volumetric) window (c, d).

popping artifacts from some of our examples by post-processing the
motion, because collision resolution problems are orthogonal to our
work and we did not want them to interfere with the presentation of
our main research contribution.

We have shown that the SIF estimation works well for crack prop-
agation, but branching is not handled at the moment. This could be
done by adding an explicit branching criterion, for example based
on the remaining two eigenvalues of the local stress, which corre-
spond to eigenvectors close to the crack surface’s tangent plane. We
also ignore direct crack-crack interactions in the estimator, although
some analytical results exist describing these effects (sometimes re-
ferred to as “transmission factors”). It might be possible to further
speed up the initial BEM solution by using a pre-computed proxy
shape, similar to the “sound proxy” of [Zheng and James 2010]. It
could also be interesting to include their “fracture impulses” in the
rigid-body dynamics after generating fragments.

In summary, we have presented a physics-based simulation method
for brittle fractures using fast estimation of stress intensities to
speed up crack propagation, which is simulated at high resolution.

Both deformations and collisions are handled on coarser meshes.
All three resolution levels can be chosen by the user. This results
in a practical and efficient physics-based simulation of rigid-body
fracture, which is both faster in practice and scales better than pre-
vious finite- or boundary element methods. In light of the fact that
any method that generates a fracture surface mesh must iterate over
each node in that mesh at least once, we consider the scaling of our
crack propagation algorithm to be optimal.
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tem on Low-dimensional Lipschitz Domains, 137–160.

MESSNER, M., AND SCHANZ, M. 2010. An accelerated sym-
metric time-domain boundary element formulation for elasticity.
Engineering Analysis with Boundary Elements 34, 11, 944–955.
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Appendix

Loosely following the notation of in Eq. (A.1) in [Kielhorn 2009],
the Kelvin kernels for evaluating the interior stresses given sur-
face displacements and tractions resulting from the elastostatic 3d
boundary value problem are defined as:

σ(x) =

∫
Γ

[S1(x,y)q(y)− S2(x,y)u(y)] dy,

S1[i, j, k](x,y) :=
1

8π(1− ν)r2
[(1− 2ν)(δkj∂ir

+δki∂jr − δij∂kr) + 3∂ir∂jr∂kr] ,

S2[i, j, k](x,y) :=
E

8π(1− ν2)r3
[3∂nr((1− 2ν)δij∂kr (7)

+νδjk∂ir + νδik∂jr − 5∂ir∂jr∂kr)

+3nk(1− 2ν)∂ir∂jr + ni((1− 2ν)δjk

+3ν∂jr∂kr) + nj((1− 2ν)δik + 3ν∂ir∂kr)

−nkδij(1− 4ν)] ,

with r := |y−x| and consequently ∂ir = ∂r/∂yi = (yi − xi)/r,
and ∂nr = (y − x) · n/r. Furthermore, n is the surface normal at
y, and (E, ν) are Young’s modulus and Poisson’s ratio respectively.
The contribution of the product S1q to σij in index notation is∑
k S1[i, j, k] qk and analogously for S2u, where i, j, k ∈ {1..3}

refer to the coordinate axes.

The entries of the system matrix blocks in Eq. (4) are defined as
follows, see also Eq. (5.17) in [Kielhorn 2009], where the indices
i, j enumerate nodes on the object’s surface and k, l refer to nodes
on fracture surfaces:

Kij :=

∫
Γ

ψi(x)Tx
∫

Γ

(TyU)>(y − x)ψj(y)dsydsx,

Cik :=

∫
Γ

ψi(x)Tx
∫

Γ

(TyU)>(y − x)ψck(y)dsydsx,

Dlk :=

∫
Γ

ψcl (x)Tx
∫

Γ

(TyU)>(y − x)ψck(y)dsydsx.

(8)

We use piecewise-linear shape functions, ψ, for displacements;
superscript-c indicates shape functions corresponding to crack-
opening degrees of freedom.

The right-hand side vector is assembled from the given surface trac-
tion field, q:

fj :=

∫
Γ

ψj(x)

[
1

2
q(x) +

∫
Γ

(TxU)(y − x)q(y)dsy

]
dsx. (9)

Finally, U is the 3d elastostatic fundamental solution (or
Green’s function), see Eq. (4.46) in [Kielhorn 2009], and the
traction operator T is a conormal derivative and defined ac-
cording to Eq. (1.4) in [Mayboroda and Mitrea 2006] as:
Txu := λ(∇x · u)nx + µ(∇xu + (∇xu)>)nx, where nx is the
outward unit surface normal at x and (λ, µ) are Lamé parameters.

Source code is available at
http://pub.ist.ac.at/group wojtan/projects/2016 Hahn FastFracture.
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