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Many-body localization proximity effect in a two-species bosonic Hubbard model
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The many-body localization (MBL) proximity effect is an intriguing phenomenon where a thermal bath
localizes due to the interaction with a disordered system. The interplay of thermal and nonergodic behavior in
these systems gives rise to a rich phase diagram, whose exploration is an active field of research. In this paper, we
study a bosonic Hubbard model featuring two particle species representing the bath and the disordered system.
Using state-of-the-art numerical techniques, we investigate the dynamics of the model in different regimes, based
on which we obtain a tentative phase diagram as a function of coupling strength and bath size. When the bath
is composed of a single particle, we observe clear signatures of a transition from an MBL proximity effect to a
delocalized phase. Increasing the bath size, however, its thermalizing effect becomes stronger and eventually the
whole system delocalizes in the range of moderate interaction strengths studied. In this regime, we characterize
particle transport, revealing diffusive behavior of the originally localized bosons.
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I. INTRODUCTION

The concept of a thermal bath plays a central role in the
description of equilibrium systems in statistical mechanics.
Typically, a bath is defined as a large system, unaffected by
the coupling to the system considered, whose role is to provide
a reservoir of energy to the system and thermalize it. Recent
advances in the field of quantum simulators, however, allow
for an unprecedented degree of control over the experimental
setup parameters. This has introduced the possibility of study-
ing small quantum baths and their interactions with otherwise
isolated quantum systems [1,2]. In this scenario, one can also
study the effect of the coupling to the system on the bath itself.

Intuitively, coupling an ergodic system to a bath will result
in a combined system with similar properties. However, in
the cases where the system is nonergodic and hence does not
satisfy the eigenstate thermalization hypothesis [3,4], more
exotic phenomena can be observed. A natural question then
arises regarding the various phases in these systems and their
stability with respect to the model parameters. Examples of
nonergodic systems are integrable models [5–7], however,
these are known to be unstable to weak perturbations [8].
Thus, the expected outcome is the eventual thermalization
of the system through the coupling with the bath, although
recent studies have shown that, in special cases, seemingly
stable bound states can form [9,10]. A more robust scenario is
offered by disordered systems, since the many-body localized
(MBL) phase [11–14] arising there represents an example
of strong ergodicity breaking stable to weak perturbations,
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thus providing an interesting case of study for the fate of
non-ergodic systems coupled to baths.

In this scenario, two distinct outcomes are possible. First,
similarly to the case of integrable models, the coupling to
the bath could lead to the system thermalizing. Alternatively,
the quantum bath can be affected by the coupling to the
disordered system leading to a breakdown of thermalization
in the bath itself, via the so-called MBL proximity effect [15].
Motivated by experiments [1,2] and by the fundamental ques-
tion of the stability of MBL in the presence of a bath, a
large number of works [15–29] considered the interplay of
disordered and ergodic systems in different setups. Of these,
Refs. [16,17,19,23,25,27] studied the case when the back
action of the MBL system onto the bath can be discarded,
thus excluding the possibility of an MBL proximity effect.
A different setting, where the thermal bath is modeled as an
ergodic many-body system, thus being potentially prone to
localization due to the interaction with the MBL system, was
considered by Refs. [15,18,28,29].

In this context, some recent studies [28,29] provided nu-
merical evidence for the stability of the MBL proximity effect
in the special case of a quantum bath consisting of a single par-
ticle. The bath-MBL coupling was realized using a Hubbard
model with two hard-core bosonic species, inspired by the
experimental setup of Ref. [1]. In this model, one of the parti-
cle types, the disordered bosons, experience a random on-site
potential, thus representing a nonergodic localized system.
The second species—the clean bosons—are not subject to the
random on-site potential and play the role of a quantum bath
of variable size, depending on the number of such particles.
Using matrix product state (MPS) [30] based algorithms for
numerical time evolution and for accessing highly excited
eigenstates, Refs. [28,29] demonstrated that at strong disorder
and strong bath-system coupling, the single clean boson fails
to thermalize an extensive number of disordered particles and
gets localized by the disorder induced by the interaction with
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the localized particles. Despite providing evidence of the real-
ization of the MBL proximity effect, Refs. [28,29] left many
open questions. In particular, the fate of the system at weaker
interactions and in the case of larger baths (for instance, at a
finite density of clean particles) remained unexplored. More-
over, a recent work [31] challenged the conclusions on the
stability of localization, hinting at the possibility of delocal-
ization at longer times.

In this paper, we use state-of-the-art numerical methods
with large computational resources to consider hitherto in-
accessible regimes of the two-species Hubbard model. First,
we address the case of a small quantum bath represented by a
single clean boson at weak system-bath interaction. Analytical
arguments suggest the possibility of a breakdown of the MBL
proximity effect in this regime and the delocalization of the
clean particle. Numerically, we investigate the time evolution
of the model and additionally consider a related Floquet model
with similar properties, which enables the study of much
longer timescales, as well as the investigation of Floquet-
MBL [32–36]. At sufficiently large interaction strengths, we
still observe characteristic features of localization, in contrast
with the claims of Ref. [31]. Upon decreasing the coupling
strength, we observe signatures of delocalization of the clean
particle, whereas the disordered bosons still show extremely
slow dynamics, making their behavior hard to capture unam-
biguously.

After establishing the possibility of delocalization of the
single-particle bath, we investigate the effects of increasing
the size of the quantum bath. Using operator dynamics, we
consider the case when the particle density of the bath and
of the localized particles are comparable. In this case, we find
nonvanishing (diffusive or weakly subdiffusive) particle trans-
port for both clean and disordered bosons, providing strong
evidence of delocalization. As the density of the clean parti-
cles is reduced, such that their average spacing approaches the
localization length of a single clean particle in the case of the
MBL proximity effect, we observe dynamics compatible with
localization at short times. The rapid growth of entanglement
prevents us from reaching longer timescales, where from the
analytical treatment of related problems delocalization may be
expected [37,38].

By pushing the limits of numerical simulations to large sys-
tems, long evolution times, and large entanglement regimes,
our work sheds light on the fate of a localized system cou-
pled to a bath with varying number of particles. For a weak
quantum bath, we demonstrate the persistence of localization
in systems with a much larger number of particles than is
accessible to exact diagonalization, suggesting the stability
of MBL on long timescales and possibly in the thermody-
namic limit [39,40]. In the opposite limit of a large quantum
bath, our investigation of transport shows a surprisingly fast
emergence of diffusive behavior of the localized system due
to its coupling with the bath, in contrast with observations
of subdiffusive transport throughout the delocalized phase of
more conventional disordered many-body Hamiltonians with
a single species of particles [41,42]. This is suggestive of
a possible effective long-range interaction induced by the
clean bosons, bearing a distant analogy to studies of two-
level systems coupled to waveguides that mediate long-range
interactions [43].

The paper is structured as follows. In Sec. II, we introduce
the model and give a summary of the different methods and
regimes studied throughout the paper. We then investigate
the case of a quantum bath represented by a single particle,
exploring the localization-delocalization transition both nu-
merically and with an analytical approximation in Secs. III A
and III B, respectively. Section IV is devoted to the case of a
finite density of particles in the bath: We first study transport
in the limit of large particle densities in the bath in Sec. IV A
and attempt to capture the transition as a function of particle
density in the bath in Sec. IV B. Finally, we summarize our
results and highlight possible future directions in Sec. V.

II. MODEL

We study a one-dimensional system of hard-core bosons
(also referred to as spinless fermions in the literature) fea-
turing two different particle types. Disordered bosons, or
d bosons, are subject to a random on-site potential εi ∈
[−W,W ] and are thus Anderson localized in the absence of
interactions [44,45]. Clean bosons (c bosons) instead have
no on-site potential, with hopping amplitude tc, and represent
the bath. The two-particle species are then coupled through a
Hubbard-type density-density local interaction, leading to the
full Hamiltonian

Ĥ = td
∑

i

(d̂†
i+1d̂i + H.c.) +

∑
i

εin̂d,i

+ tc
∑

i

(ĉ†
i+1ĉi + H.c.) + U

∑
i

n̂c,in̂d,i, (1)

where n̂c,i = ĉ†
i ĉi, and n̂d,i = d̂†

i d̂i. In our numerical simu-
lations, we will consider the system with open boundary
conditions with a system size chosen sufficiently large to
ensure the absence of finite size effects (see Apppendix A 2
for details). The model has U (1) × U (1) symmetry due to the
simultaneous particle conservation of both bosonic species.
This results in a block-diagonal structure of the Hamiltonian,
with the dimension of each block determined by dim(H) =
CL

Nd
CL

Nc
, with Nc/d = ∑

i n̂c/d,i being the total particle number,
L the system size, and Cm

n the binomial coefficient.
Throughout this paper, we study the dynamics numerically

using both continuous Hamiltonian time evolution and pulsed
Floquet driving. The Hamiltonian evolution is generated by
the unitary time-evolution operator Û (t ) = exp(−ıĤt ), im-
plemented numerically using a fourth-order Suzuki-Trotter
decomposition [46] over alternating pairs of sites with a time
step δt = 0.05. The Floquet dynamics, instead, are generated
by the following time-dependent periodic Hamiltonian:

Ĥ (t ) =
{

Ĥeven nTF � t < (n + 1/2)TF

Ĥodd (n + 1/2)TF � t < (n + 1)TF ,
(2)

where Ĥeven(odd) represents the Hamiltonian in Eq. (1). Here
the sum of the hopping terms is restricted to even (odd) sites,
the interaction and disorder terms are halved, TF = 0.5 is the
period, and n ∈ N. The unitary Floquet operator

ÛF = e−ıĤoddTF /2e−ıĤevenTF /2 (3)
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FIG. 1. The phase diagram for the Hamiltonian system as func-
tion of the coupling U and the bath size νc, and for the Floquet
dynamics in the case of bath consisting of a single particle (Nc =
1 or νc = 1/L). The markers show different points in parameter
space explored in this paper, and refer to time evolution that uses
Hamiltonian or Floquet (red markers) propagation of wave functions
and Hamiltonian evolution of density matrices (blue crosses). The
colors schematically show the different phases, blue representing
MBL and green the ergodic phase. The shading corresponds to the
putative transition regime, obtained from our numerical simulations.
Based on previous studies, we expect more stable localization in
the regime of strong interactions, however, in the present paper we
deliberately choose interactions smaller than the disorder strength,
U < W = 6.5.

then describes the dynamics at stroboscopic times nTF . Al-
though the Hamiltonian and Floquet models are, strictly
speaking, different, the Floquet dynamics is expected to
reduce to the Hamiltonian case in the limit of TF → 0. More-
over, both models are characterized by the exact conservation
of the particle numbers of the two bosonic species. This
allows us to compare the transport and particle spreading
between the two models. As we demonstrate below, Floquet
and Hamiltonian time evolution show similar phenomenology,
with Floquet time evolution enabling us to probe the stability
of MBL proximity effect and delocalization on much longer
timescales at a comparable computational cost.

To address different regimes in the parameter space of the
model, we investigate the dynamics of two different types
of initial conditions. Whenever the density of clean bosons
is small, νc = Nc/L � 1/6, we fix the d boson density to
νd = 1/3 and study the evolution of the quantum wave func-
tion represented as an MPS from an initial state consisting of
clean (disordered) bosons forming a density wave of period
1/νc(d ), respectively. Our numerical simulations show that,
upon increasing the density of clean particles in the bath,
the whole system approaches thermalization, thus leading to
rapid entanglement spreading and making the time evolution
of the MPS wave function extremely challenging. Thus, in the
regime of νc > 1/6 we time evolve density matrices initialized
close to infinite temperature (ρ∞ ∝ 1) represented as a matrix
product operator (MPO), whose simulation is more efficient in
the thermal phase; see Appendix B for details.

In Fig. 1, we summarize the main results of this paper
through a tentative phase diagram as a function of interaction
strength U and bath size controlled by the density of clean
particles, νc, for fixed parameters tc = td = 1 and W = 6.5
used in previous works to ensure a short localization length
of d bosons ξd � 1 [28,29]. We consider interactions to be

of order or smaller than disorder strength. This restriction
may disfavor the localized phase that is expected to be more
stable at strong interaction, but at the same time it avoids the
presence of very different energy scales in the problem.

In Sec. III, we study the transition as a function of the inter-
action strength for the single-particle bath case, expanding our
previous work [28,29] to a hitherto unexplored regime. The
joint results of our numerical simulations and analytical con-
siderations allow us to establish the existence of two phases in
this regime, an MBL phase at strong interactions (blue in the
phase diagram) and a thermal phase at weak U (light green),
characterized by diffusive behavior of the bath particle and
extremely slow relaxation of the d bosons. In this part of
our paper, we use both Hamiltonian and Floquet dynamics,
presenting qualitatively similar results.

As the number of c bosons becomes extensive, Nc ∝ L,
corresponding to finite densities of clean bosons, we observe,
in Sec. IV, a weakening of localization, eventually yielding
delocalization shown as a crossover from blue to green in the
phase diagram in Fig. 1. Finally, as νc is increased, we further
investigate particle transport deep in the delocalized region
of the diagram, finding diffusive spreading of both bosonic
species.

III. BATH CONSISTING OF A SINGLE CLEAN BOSON

We first investigate our model in the case of a bath com-
posed of a single clean boson, Nc = 1. As already shown in
Refs. [28,29], at strong interactions the disordered bosons
induce localization of the small bath. Here we address the
presence of a transition to the thermal phase as the interac-
tion strength is decreased, using both quasiexact large-scale
numerical simulations and analytical considerations.

A. Numerical evidence for a phase transition

Using a highly efficient parallel implementation of the
time-evolving block decimation (TEBD) algorithm [47] with
a large bond dimension χ = 5000 and small truncation error
ε = 10−9, we simulate the dynamics generated by the Hamil-
tonian Eq. (1) in large systems of L = 252 sites. This choice
of parameters, together with the fourth-order Suzuki-Trotter
decomposition with a small time step (δt = 0.05), guarantees
almost exact numerical results up to the times when bond
dimension saturates. We further explore Floquet dynamics of
MPSs of maximal bond dimension χ = 2048 and systems
with up to L = 2000 sites. The large system sizes studied and
the long timescales achieved in our work allow us to exclude
boundary effects due to the finite size of the system and reach
the high entanglement regime. As we shall demonstrate below,
this is particularly important in the weak interaction case due
to the delocalization and spreading of the clean boson to large
distances.

In both the Hamiltonian and Floquet cases, we focus on
the dynamics of an initial product state corresponding to a d
boson ( ) density wave of period 1/νd = 3 and a single clean
boson ( ) initialized in the middle of the system at site i =
L/2:

|ψ0〉 = | ◦ ◦︸︷︷︸
1/νd

◦ ◦ . . . ◦
L/2

◦ ◦ . . . ◦ ◦〉. (4)
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FIG. 2. In the top row, we show data for the Floquet model. (a) At U = 1, the density profiles at long times 150 � t � 200 collapse
when rescaling the space axis by

√
t , indicating diffusive behavior of the c boson. (b) At U = 6, a similar collapse of the density profile is

obtained with a much smaller exponent α = 0.03, a value that could be consistent with zero, suggesting localization. (c) The exponent α(U )
as a function of interaction strength U shows that diffusive spreading of the c boson at weak interactions α ≈ 1/2 slows down and becomes
localized at strong U as witnessed by α → 0. The color scale indicates the time range used to obtain the exponent; range of accessible times is
limited at weak U by entanglement growth. (d) Decay of the c boson density at its original site i = L/2 is consistent with 1/

√
t (black dashed

line) in the delocalized phase, and it shows signatures of saturation at strong interaction U � 4. The bottom row shows similar data but for
Hamiltonian dynamics limited to shorter times. (e) Hamiltonian dynamics show a similar behavior indicating diffusion of the c boson at weak
interaction. (f) At larger U , density profiles collapse with a larger exponent α than in the Floquet case. This can be attributed to the shorter
times achieved in Hamiltonian dynamics, as Floquet dynamics show comparable values of α at earlier times, see panels (g) and (h). The system
size is L = 2000 for Floquet and L = 252 for Hamiltonian dynamics, data are averaged over ten disorder realizations.

The choice of this initial state allows us to sample the behavior
of typical states where the clean boson is far from the bound-
aries and is surrounded by a sea of d bosons of approximately
uniform density.

1. Diffusive behaviors of the bath at weak interaction

We analyze the behavior of the clean particle that consti-
tutes the bath by studying the evolution of its density profile
〈n̂c,i(t )〉 = 〈ψ (t )|n̂c,i|ψ (t )〉 with time. In the localized and
ergodic phases, the bath spreading is expected to show very
different characteristic properties. When the c boson gets lo-
calized through the MBL proximity effect, the density profile
decays exponentially away from the initial position and the
localization length is expected to saturate at long times. In
contrast, when the MBL proximity effect fails to localize the
bath, the clean boson is expected to spread diffusively due
to the influence of the disordered system, hence showing a
Gaussian density profile with the density at the original site
decaying as ∝ 1/

√
t .

To characterize the dynamics of the c boson, we perform
collapses of its density profile at different times, using the
following scaling form:

〈n̂c,i(t )〉 = t−α f
( i − L/2

tα

)
. (5)

The value of the exponent α(U ) can be thought of as a proxy
for the inverse dynamical exponent and is used to distinguish
the diffusive and localized behavior of the bath. These den-
sity profile collapses are shown in Figs. 2(a) and 2(b) for
Floquet dynamics and in Figs. 2(e) and 2(f) for Hamiltonian
evolution. At weak interaction strength U = 1, the value of
α ≈ 0.5 in both the Hamiltonian and Floquet cases suggests
a delocalized bath. Conversely, the Floquet model at strong
interaction U = 6 exhibits a vanishing exponent α ≈ 0 high-

lighting the saturation of the c boson spreading and suggesting
the persistence of the MBL proximity effect already observed
at stronger interactions [28,29]. In the Hamiltonian time evo-
lution, however, the exponent α is still decaying and attains a
larger value that can be ascribed to the shorter times achieved
in this regime. Indeed, a comparison with the collapse in the
corresponding time window of the Floquet evolution results
in a good agreement of the value of α as shown in Fig. 2(c),
suggesting that at later times the exponent will eventually
decay also in the Hamiltonian case.

In addition to different values of α obtained from
the rescaling, the density profiles of the clean boson in
Figs. 2(a), 2(b), 2(e), and 2(f) also have a qualitatively differ-
ent form. In the delocalized phase, the boson density shows a
characteristic Gaussian profile as opposed to the exponential
decay observed at strong interactions.

The study of exponent α at different times and as a function
of U is presented in Figs. 2(c) and 2(g). Saturation towards
α = 1/2 is observed at U < 2, and is especially apparent for
Floquet evolution. For Hamiltonian dynamics, the values of
the exponent remain close to α = 1 at times t ≈ 150. This
suggests that a much longer time evolution is needed to see
the crossover to diffusion. In contrast, for U � 2.5 the value
of α decreases with increasing evolution time. This hints at a
possible transition from delocalization to localization occurs
in the window of interaction strengths 1 � U � 2.5. Due to
the fast entanglement growth observed in it, this critical region
is also the most challenging to treat numerically, thus pre-
venting a more accurate estimate of the transition point. The
transition in the behavior of the bath can also be captured by
the different dynamics of the central site density decaying as
≈1/

√
t in the delocalized case and saturating to a finite value

at strong U , as shown in Figs. 2(d) and 2(h). Note that the
saturation of the density in the Floquet dynamics for U = 2 in
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FIG. 3. Density-density connected correlation functions for d bosons in Floquet (a)–(c) and Hamiltonian (d)–(f) time evolution. At weak
interactions, (a) and (d), correlations decay algebraically with distance, consistent with 1/i dependence (black dashed line). Such algebraic
decay of connected correlation functions suggests delocalization of d bosons on long timescales. As U is increased, however, the localized
behavior is eventually recovered, and (c) and (f) show exponentially decaying correlation functions for U = 4. We notice the emergence of a
plateau far from i = L/2 in the Floquet case, which is due to the truncation error arising from the faster saturation of bond dimension in this
type of time evolution. Data are averaged over ten disorder realizations for system size L = 2000 and L = 252 for the Floquet and Hamiltonian
systems, respectively.

Fig. 2(d) at long times may suggest that the bath is localized
at this interaction strength, at the timescales accessible to
our simulations. Finally, in Appendix A 3 we provide further
evidence of the c boson transition by showing a diverging
decay length at U < 2.

2. Slow delocalization of disordered bosons

Due to the small bath size, changing the interaction
strength U has a much weaker influence on the density pro-
files of d bosons. Indeed, comparing the density profiles and
the imbalance at different values of U naïvely suggests that
the disordered particles remain localized for all values of
interaction strength, at least at the accessible timescales. A
deeper investigation of more sensitive probes, provided by the
entanglement entropy and the connected correlation functions
of d bosons, however, reveals the existence of two contrasting
behaviors at weak and strong U .

As shown in Appendix A 4, the global half-chain entan-
glement entropy grows algebraically for small values of the
interaction, characterized by a universal behavior SL/2(t ) ∝
(tU β )γ , with γ ≈ 0.39 and β ≈ 1.1 in the Floquet case. In
the Hamiltonian case, a qualitatively similar picture holds,
although the value of β suddenly drops to ≈0.6 as U > 1. This
deviation from the logarithmic growth of the entanglement en-
tropy indicates that the system cannot be fully localized. The
analysis of the entanglement profile provides further evidence
in favor of delocalization, as its growth is not limited to the
central part of the chain but propagates to regions far from the
initial position of the clean particle.

To further probe the behavior of the d bosons, we analyze
their density-density connected correlations,

〈n̂d,in̂d, j〉c = 〈n̂d,in̂d, j〉 − 〈n̂d,i〉〈n̂d, j〉, (6)

shown in Fig. 3 [Floquet (a)–(c), Hamiltonian (d)–(f)] as a
function of the distance from the center and at different times.
At weak interactions below the transition U < Uc, the con-
nected correlations present a slow 1/|i − j| decay in space
(black dashed line) and spread in time to regions far from the
center, confirming the slow delocalization of the d bosons. On
the other hand, in the MBL proximity effect phase, density
correlations decay exponentially, with a decay length slowly
increasing in time and eventually saturating, as highlighted by
the collapse of the curves at late times. For values of U � 4,
we notice that the decay length of the d boson correlations,
d (t ), seems to saturate to a value comparable with the length
scale of the exponential suppression of the c boson density,
c(t ). Note that the saturation value of c,d ≈ 5 obtained for
U = 4 is much smaller than the simulated system size, thus
hinting at the localization of c and d bosons.

In conclusion, our large-scale numerical simulations reveal
two qualitatively different behaviors in the system at large and
weak interaction strengths. Such distinction would be difficult
to make in smaller systems where the finite size affects the
spreading of both particle types. In the regime of large U , both
boson species are localized. At weak U , while we observe a
spreading of c bosons over the distances of hundreds of lattice
sites, the dynamics of d bosons are much slower, and we are
unable to fully determine their fate despite reaching long times
t � 200 in our simulations.

B. Estimating the critical coupling from mapping
to a Bethe lattice

After identifying numerically the existence of two different
phases, we construct a phenomenological picture of the tran-
sition that allows to obtain analytical estimates. To analyze
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FIG. 4. Schematic representation of the Bethe lattice, where a
small K = 4 is chosen for clarity. Each node represents a different
boson configuration in Fock space. Elastic scattering (horizontal
edges) connects nodes where only the c boson moves with a hopping
amplitude V . The simultaneous hopping of clean and disordered
bosons instead gives rise to inelastic processes (vertical edges) with
amplitude V ′.

the behavior of our model in the weak interaction regime,
we first consider the Hartree picture presented in Ref. [29],
where both the bath and d bosons are localized with localiza-
tion length ξc � 10 � ξd

1 at weak coupling. The Anderson
orbitals {|α〉} form a complete basis that we use to rewrite the
particle creation and annihilation operators d̂†

i = ∑
α φα (i)d̂†

α ,
with φα (i) = 〈α|i〉 ≈ exp(−|i − xα|/ξα )/

√
2ξα ). The interac-

tion then corresponds to simultaneous c and d bosons hopping
among different localized orbitals:

U
∑

i

n̂c,in̂d,i =
∑
αβγ δ

V γ δ

αβ d̂†
α d̂β ĉ†

γ ĉδ. (7)

In particular, we focus on the motion of the clean boson
comprising the quantum bath. The hopping between different
orbitals, arising from the interaction term in Eq. (7), can be
depicted on a graph representing the Fock space. Each node
in this graph corresponds to a certain filling of localized
orbitals and edges connect different configurations with the
matrix element obtained from Eq. (7). While long-range hop-
pings are allowed, they are exponentially suppressed due to
the localization of both particle species in the Hartree limit.
Therefore, neglecting the edges connecting configurations
where the particles move farther than their localization length,
we approximate the full Fock space as a graph of connectivity
K ≈ ξ 2

c ξdνd (1 − νd ), where the νd (1 − νd ) term accounts for
the finite density of d bosons and their hard-core nature (see
Ref. [29] for detailed derivation).

A second, crucial, approximation corresponds to neglect-
ing all loops in the graph, resulting in a Bethe lattice with
coordination number K , as shown pictorially in Fig. 4 for
K = 4. In this graph, we distinguish two types of hopping

1Note that the large localization length of the c boson could po-
tentially give rise to avalanches [48] which would delocalize the
entire chain. Nevertheless, such delocalization within the avalanche
mechanism is expected to occur on timescales that exceed the reach
of current simulations.

processes for the clean boson, elastic and inelastic. In elastic
hoppings, the c boson moves without changing the pattern of
occupation of d boson orbitals, i.e., α = β in Eq. (7). These
processes, depicted by solid arrows in Fig. 4, correspond to
the motion of the clean particle in the random environment
created by the d bosons. Alternatively, the c boson motion
can simultaneously produce a scattering of the d boson from
one orbital to another. We refer to this second type of process
as inelastic and represent it as dashed arrows in Fig. 4.

A phenomenological mapping of the motion of the c boson
to a finite coordination number Bethe lattice allows us to use
the results of Abou-Chacra et al. [49] and obtain a condition
for the stability of localization. The stability of the localized
phase is controlled by the interplay of the disorder strength on
the lattice W , the connectivity K , and the matrix element of
the hopping processes, V . Reference [49] derives a trascen-
dental equation for the critical value of the matrix element Vc,
2KeVc
W ln( W

2Vc
) = 1, such that the localized phase is stable for

V < Vc. To apply this result to our model, we estimate the
typical matrix element V , the disorder strength W , and the
connectivity K . To establish the typical matrix element V , we
first consider its approximate expression

V γ δ

αβ ≈ U

ξcξd

∑
i

e− |i−xα |+|i−xβ |
ξd e− |i−xγ |+|i−xδ |

ξc , (8)

where we replace the orbital-specific localization length with
its average and neglect the oscillatory part of the wave func-
tion. In Appendix A 5, we estimate the typical value of V ,
which in the case of ξc � ξd ≈ 1 can be approximated as
V ≈ U/(2ξd ). Finally, using the estimate for the connectivity
K ≈ ξ 2

c ξdνd (1 − νd ) [29], we can estimate the transition by
numerically solving the equation for the critical hopping am-
plitude on the Bethe lattice at fixed tc = td = 1 and W = 6.5.
In the Hartree approximation, the effective disorder results
from the interaction with the d bosons, and is thus propor-
tional to the coupling strength, W ∝ U . Also, the localization
length of the c boson scales as ξc ∝ U −2 [29]. Thus, the de-
crease of the hopping amplitude at weak U is counteracted by
a larger effective connectivity and weaker effective disorder,
leading to instability of localization below a certain critical
value of interaction strength. The numerical estimate suggests
that in this parameter range, localization becomes unstable at a
critical value of the coupling Uc ≈ 3, in good agreement with
the transition window inferred from the numerical results of
Sec. III A.

In summary, the phenomenological mapping of the hop-
ping of the single clean boson to the Bethe lattice discussed
above predicts an instability of localization at sufficiently
weak interactions U in agreement with our numerical simu-
lations. The present approach differs from the method used
previously in Ref. [29], where the ratio of the typical matrix
element to the level spacing was used as a criterion for delo-
calization. While the resulting critical curves are qualitatively
similar, we expect the current mapping to the Bethe lattice
to be more accurate in the weak coupling regime. Indeed, in
the present paper we focus primarily on the behavior of the c
boson in the case of ξc � ξd ≈ 1, where the problem can be
interpreted as a weakly localized single particle occasionally
perturbed by the inelastic scattering of d bosons. Additionally,
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considering the motion of the c boson in the Bethe lattice gives
an intuitive explanation of the diffusive behavior observed in
Sec. III A. In the standard picture of single-particle localiza-
tion on the Bethe lattice, the motion of the particle in the
delocalized phase is ballistic, since the majority of the steps
increase the distance of the particle to the origin. In contrast,
our mapping naturally reproduces diffusion in the delocalized
phase, since at each point half of the hopping processes move
the c boson to the left and the remaining half moves it to the
right, see Fig. 4 for a schematic picture.

In the case of finite density of c bosons, we expect the
approximation to the Bethe lattice presented above to break
down due to the relevant presence of loops. Discarding them
can lead to inaccurate conclusions favoring delocalization due
to the fact that loops correspond to quantum interference
whose effect is typically to enhance localization. Understand-
ing if the present phenomenological mapping to the Bethe
lattice is capable of reproducing other aspects of numerical
simulations, such as entanglement dynamics or very slow
relaxation of d bosons in the delocalized phase, remains an
interesting open question.

IV. EXTENSIVE BATH

In the previous section, we provided evidence of a transi-
tion between regimes of localized and delocalized small baths
tuned by the interaction strength, U . In this section, we study
the effect of increasing the density of c bosons that constitute
the bath to a finite value. First, in Sec. IV A we consider the
case when the density of c bosons is close to half filling, and
investigate particle transport. Afterward, we study the regime
of finite but small density of clean bosons in Sec. IV B.

A. Particle transport at large clean boson density

We first approach the regime where the clean particles have
a large overall density νc � 1/5. In this regime, we expect that
the bath triggers delocalization of the d bosons. To charac-
terize the resulting delocalized phase, we study the transport
of bosons using the time evolution of density matrices close
to infinite temperature represented as MPOs. This has several
advantages over simulating states directly, which we discuss
in Appendix B.

Following a well-established approach [50], we initialize
the system in a density matrix characterized by a small step
in the center of the particle density profile. Figure 5 illustrates
such an initial density profile, with density in the left (right)
part of the chain being set to νc(d ) ± μc(d ). This condition
translates to an initial density matrix written as a tensor prod-
uct of density matrices on individual sites. The density matrix
of individual site of c bosons (and, analogously, d bosons) can
be written as

ρ (i)
c =

(
1 − νc − μc(i) 0

0 νc + μc(i)

)
, (9)

where μc(i) = ±0.01 in the left and right halves, respectively.
Since the time evolution of density matrices represented as
MPOs is most efficient when they are close to infinite tem-
perature, we fix the d boson density to be νd = 1/2. We then
apply operator TEBD to large chains of L = 100 sites up to

νd − μ

νd

νd + μ

〈n̂
d
,i
(t

)〉

νd = 1/2

t = 0

t = 300

1 25 50 75 100
i

νc − μ

νc

νc + μ

〈n̂
c,

i(
t)
〉 νc = 1/3

t = 0

t = 300

FIG. 5. Density profile of disordered and clean bosons at late
(solid lines) and initial (dashed lines) times. The small density step
of magnitude 2μ slowly melts due to the particle current running
from the left to the right part of the chain. Data are shown for U = 6,
W = 6.5, and averaged over 30 disorder realizations.

times T = 300, using a maximal bond dimension in the range
χ ∈ [128, 192], depending on the convergence of the results,
shown in Appendix B 1.

To characterize particle transport, we study the evolution
of the transferred particle number, δnc(d )(t ), defined as the
difference between the density profile at zero time and time
t , 〈n̂c(d ),i(t )〉:

δnc(d )(t ) =
L/2∑
i=1

[〈n̂c(d ),i(0)〉 − 〈n̂c(d ),i(t )〉]. (10)

The change of density with time corresponds to the current
across the central site, integrated over time, thus quantify-
ing the transport of particles. In particular, the logarithmic
derivative of δnc(d ) with respect to time can be related to the
instantaneous inverse dynamical exponent 1/z(t ):

1

z(t )
= d ln δn(t )

d ln t
. (11)

We study the particle flow as a function of interaction
strength U and density of particles in the bath, νc. As we
show in Fig. 6, δnc(d )(t ) at times larger than t � 10 has a clear
power-law behavior for both particle species, confirming the
delocalization of the originally Anderson localized d bosons
due to the coupling to the bath. However, the fact that d bosons
without coupling to the bath are localized is reflected by the
qualitatively different behavior of the transported number of
particles with changing U apparent in Figs. 6(a) and 6(b).
With increasing interaction strength, the c bosons exhibit
slower transport, whereas the d bosons are characterized by
faster transport.

In Figs. 6(c)–6(f), we show the instantaneous dynamical
exponent zc(d )(t ) extracted using Eq. (11). We report results
for two different particle densities in the bath, νc = 1/2 in
Figs. 6(c)–6(e) and νc = 1/3 in Figs. 6(d)–6(f), at different
coupling strengths U . Figures 6(e) and 6(f) show that the
transport features of the bath are unaffected by the variation
of the bath particle density and interaction strength, U , with
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FIG. 6. (a), (b) Dynamics of the particle flow across the central site for d and c bosons at large νc = νd = 1/2 and W = 6.5. In both cases,
δn(t ) shows a clear power-law behavior close to diffusion ≈ √

t (dashed line). However, while for the c bosons δnc increases as the interaction
strength decreases, in agreement with their free nature at U = 0, for the disordered particles δnd vanishes at weak interactions, approaching
the Anderson localized phase. (c)–(f) Inverse dynamical exponent of d bosons 1/zd (t ) and c bosons 1/zc(t ) for different values of the bath
size νc = 1/2 (c), (e) and νc = 1/3 (d)–(f). At large U , 1/zd (t ) saturates to a diffusive value zd = 2 for both clean particle densities. As U is
decreased and the Anderson localized phase is approached, however, d boson transport shows signatures of subdiffusive behavior. On the other
hand, c boson transport is almost unaffected by the coupling strength, always showing diffusive behavior, except for U = 1. In this case, 1/zc

eventually vanishes due to the finite size of the system, thus requiring larger systems to properly evaluate the dynamical exponent at late times.

1/zc(t ) always rapidly converging to a value of 1/zc ≈ 1/2
at late times. Note that at U = 1 and νc = 1/2, the transport
of c bosons is affected by the boundaries, as highlighted by
the slowdown of the growth of δnc(t ) shown in Fig. 6(b), thus
requiring larger systems to properly assess its value at late
times.

In contrast to the c bosons, transport of the disordered
bosons is more sensitive to the choice of parameters. In
particular, the value of the inverse dynamical exponent sys-
tematically decreases as the interaction strength and the
density of particles in the bath are lowered, as indicated by the
weakly subdiffusive behavior observed for U � 2. This slight
subdiffusive behavior, however, is in contrast with previous
results showing strong subdiffusion in a wide parameter range
in the vicinity of the transition into the ergodic phase of
disordered Hamiltonians [41,42,51].

To highlight the difference between transport observed in
the present model to standard many-body localized systems,
we investigate transport in the the disordered Heisenberg
chain [52,53]. In the two-species Hubbard model considered
here, interactions and hopping are of the same order, while
disorder is larger and fixed to W = 6.5. Inspired by these
values of parameters, we consider the disordered Heisenberg
chain with fixed disorder W = 6.5 and hopping J = 1. We
use interaction strength as a control parameter to tune de-
lolcalization. Indeed, at small values of Jz � 1, the model
exhibits MBL properties, whereas for larger Jz delocalization
is expected.

Using density matrix simulations of the Heisenberg chain,
as shown in Appendix B 2, we first confirm that the inverse
dynamical exponent 1/z(t ) decreases with increasing time at
small values of Jz, consistent with localization. For larger
values of Jz, we observe a reversal of this trend, with 1/z(t )
increasing with time. Nevertheless, even for the longest ac-
cessible times 100 � t � 250 and for the considered broad
range of Jz = 1.5 . . . 10, the value of 1/z(t ) remains well

below one-half. This is consistent with previous numerical
studies [41,42,51] that suggested the presence of a broad
subdiffusive regime even for parameter values for which the
model is deep into the delocalized phase. Since interaction,
disorder strength, and hopping are comparable in the two
Hamiltonians, this result suggests that the presence of the bath
in our model cannot simply be replaced by an effective local
interaction. Intuitively, the rapid onset of diffusion for the
disordered bosons in the present model may be attributed to an
effective long-range coupling among them, mediated via the
particles in the quantum bath, thus providing a faster transport
channel. Quantifying such emergent long-range interaction
via specific observables that can be probed in TEBD time
evolution remains an interesting avenue for the future work.

B. Potential delocalization at small particle density in the bath

The ergodic behavior observed in the previous section sug-
gests the presence of a transition as function of the bath size.
To capture this transition, we explore the parameter space
close to the MBL phase, fixing U = 6 and slowly increasing
the c boson density νc = 1/24, 1/12 . . . 1/6.

As the clean particle density decreases, the density ma-
trices from Eq. (9) are too far from infinite temperature and
give rise to large operator entanglement, thus rendering our
method inefficient. We hence again use MPS time evolution,
which can still capture the dynamics of the system, although
the timescales may be limited by the relatively fast growth
of entanglement entropy. In this framework, we modify the
initial state defined in Eq. (4) by replacing the single c boson
with a density wave of period 1/νc,

|ψ0〉 = | ◦︸︷︷︸
1/νd

◦ ◦ ◦ ◦ ◦︸ ︷︷ ︸
1/νc

◦ ◦ ◦ ◦ . . . 〉,

(12)
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FIG. 7. (a) Entanglement entropy across a cut between sites lp

and lp + 1, where 〈n̂c,lp (t = 0)〉 = 1 for all the densities studied. For
densities νc � 1/12, we observe a deviation at a time τS (νc ) from
the curve corresponding to the case of a single c boson (purple line).
In the inset, we show the behavior of this characteristic timescale as
a function of density, suggesting a power-law behavior. Comparison
of τ obtained from the entanglement entropy (blue dots) and the one
obtained from the growth of the correlation functions (red squares)
suggests that both timescales behave in a similar way. (b) The decay
length c(t ) averaged among all c bosons composing the bath also
deviates from the decay length of a single clean boson (black dashed
line) at late times for νc � 1/12.

so it can accommodate an extensive number of clean bosons.
We further choose a large system size L = 126 such that even
at the smallest density, νc = 1/24, the bath hosts a significant
number of clean bosons, Nc = 5.

In Appendix B 3, we report on the behavior of density
profiles and imbalance, confirming delocalization at large νc

characterized by relaxation of the initial density wave pattern.
At smaller bath densities, however, signatures of thermal-
ization are absent up to timescales T ≈ 50. To capture the
transition, then, we analyze the behavior of a more sensitive
probe—entanglement entropy.

Since entanglement growth is influenced by the distance
to the closest c boson, we compare bipartite entanglement
across a cut lp such that 〈n̂c,lp (t = 0)〉 = 1 for all consid-
ered densities of clean bosons. This comparison is shown in
Fig. 7(a), together with the entanglement entropy relative to
the bath consisting of a single clean particle. After an initial
transient logarithmic regime, entanglement entropy eventually
curves upwards, indicating a faster power-law growth with
time. We observe such deviation from the single-particle case
for all values νc � 1/12 and track its characteristic onset
time τS (νc). The scaling of τS (νc) is shown in the inset of
Fig. 7(a). Within the considered range of densities, the be-

havior of τS (νc) is consistent with a power-law increase at
low νc, τS (νc) ∝ 1/ν−2.48

c , that implies eventual delocalization
at any finite density of clean bosons. Of course, the limited
data range does not allow us to rule out the possibility that
τS (νc) diverges at a finite value of νc, signaling stability of
localization at a finite density of clean bosons.

The analysis of the density-density correlation functions
of the c bosons shown in Appendix B 3, provides a possible
explanation for the power-law entanglement growth. We no-
tice that the correlations among two initially occupied sites
lp and l ′

p become relevant at a timescale scaling with the
bath density with the same power-law exponent observed for
τS , as shown by the red line in the inset of Fig. 7(a). The
agreement between the scaling of the two timescales implies
that the faster entanglement growth is triggered only when c
boson correlations become significant. As a consequence of
the strong suppression of the spreading of the clean boson
degrees of freedom, when νc is small enough correlations may
saturate to a very small value compatible with the logarithmic
growth of entanglement, thus possibly leading to a localized
phase even at a finite density of clean bosons.

Deviations from single-particle behavior can also be ob-
served in the time evolution of the c boson density profiles. In
particular, we probe this by studying the decay length c(t ) of
each individual c boson obtained by fitting the density profile
in the vicinity of each lp to the ansatz proposed in Ref. [28]:

nc(x, t ) = Nc(t ) exp

(
− |x|

c(t ) tanh
(R(t )

|x|
)
)

. (13)

Here Nc(t ) is a time-dependent normalization factor and R(t )
describes the Gaussian part of the profile emerging at small
densities. In the present case, we average the results for c(t )
obtained for each clean boson. As shown in Fig. 7(b), at early
times the decay length behaves in agreement with the single-
particle case for all densities νc (note that the deviations from
the dashed curve can be attributed to the additional averaging
for finite νc). At later times marked by circles, however, the
decay length grows consistently faster than in the case of an
intensive bath for all bath sizes νc � 1/12.

While the scaling of τ shown in the inset of Fig. 7(a) seems
to suggest thermalization at all finite νc, the potential localiza-
tion of the individual c bosons indicated by the agreement of
the decay length for νc = 1/24 with the single c boson curve
might lead to a breakdown of the delocalization mechanism
at small, albeit extensive, bath sizes. Unfortunately, on the
timescales available to our numerical simulations, we are not
able to confirm that the νc = 1/24 bath leads to power-law
growth of entanglement or to deviations in the growth of c(t ).
Using the power-law fit for τS (νc), we can estimate that the
deviation from logarithmic growth at small bath size would
take place at a time T ≈ 100, corresponding to a nearly uni-
form entanglement entropy S � 3—an extremely challenging
regime in TEBD simulations.

V. DISCUSSION

Our work highlights physical aspects of localization that
can be studied using multispecies lattice models. While con-
sidering the mixture of two hard-core bosons severely impacts
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the system sizes reachable with exact diagonalization tech-
niques, it presents a smaller limiting factor for the highly
efficient MPS-based numerical simulations employed here. In
the present case, considering the two-species model resulting
in a mixture of disordered and clean particles allowed us to
show the stability of the MBL proximity effect [15]. Besides
the persistence of localization at strong coupling, we also
presented evidence of a transition driven by the interaction
strength. Decreasing the interaction leads to delocalization
and diffusion of the clean particle, together with a slow in-
homogeneous relaxation of the disordered bosons.

In addition, we explored the presence of a phase transition
tuned by the density of clean bosons. Our study of transport
highlights that at large densities of clean particles the system
is delocalized. The investigation of the putative delocalization
transition at small but finite density of clean bosons, however,
is not conclusive due to the rapid entanglement growth pre-
venting our simulation from reaching sufficiently late times.
Thus, further studies are needed to understand if there exists a
finite critical density of clean particles below which the entire
system stays localized [15] or whether delocalization occurs at
any finite density of clean particles akin to scenario suggested
by Refs. [37,38].

Numerous other questions remain open. In particular, al-
though the single clean particle spreads diffusively at weak
interactions, the disordered bosons show extremely slow
relaxation. Such behavior is intuitively similar to the delo-
calized yet nonergodic phase suggested to exist on Bethe
lattices [54–56]. It remains to be understood if our phe-
nomenological mapping of the two-species Hubbard model
to the Bethe lattice can reproduce the relaxation of disordered
bosons, entanglement dynamics, and other physical proper-
ties, such as the behavior of connected correlation functions.
More broadly, the delocalization of a single particle atop the
infinite sea of localized bosons presents a deviation from the
standard thermodynamic limit, where typically densities of all
particle species are assumed to be finite. Building a theory
of the delocalization transition for such a system remains
an interesting challenge. Furthermore, the role of interac-
tions between disordered particles as well as the nature of
disorder (random or quasiperiodic) provide a complemen-
tary set of control parameters that was not explored in this
paper.

In a different direction, the consideration of finite density
of clean particles allows for a standard thermodynamic limit,
but turns out to be an extremely challenging problem for
numerical simulations. In this regime, although we were able
to confirm delocalizaiton at large densities of clean particles,
the intermediate density regime proved to be hard to access
due to rapid entanglement growth. Understanding the struc-
ture of this entanglement and searching for a quasilocal basis
transformation may potentially assist one in reaching longer
simulation times. This may be crucial for getting insights
into microscopic processes and the structure of resonances
created by the clean particles that drive the delocalization of
the entire system. Additionally, further investigation of the
diffusive transport at large densities of particles in the bath
may provide useful insights for a better understanding of the
subdiffusion observed in standard disordered models used to
study MBL [41,42,51].

Finally, modern experiments with ultracold atoms motivate
the study of other geometries and setups for the many-
body lozalization proximity effect. In particular, the study
involving the two-dimensional cold atom microscope [1] that
inspired our paper calls for an extension of our results to
two-dimensional systems. While simulating dynamics with
two-dimensional tensor network ansatzes is extremely chal-
lenging, the study of the present model on ladders with
MPS methods may provide useful insights into the qualitative
difference between one- and two-dimensional systems [57]
Likewise, large-scale numerical studies of models where
the coupling between the localized system and the bath
is local [2] may provide useful insights for the theory of
MBL and its potential instabilities known as bubbles or
avalanches [19,48,58,59].
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APPENDIX A: INTENSIVE BATH

In the main text, we showed numerical results suggest-
ing the existence of a transition to a delocalized phase as
the interaction strength between the bath and the disordered
particles is decreased. In this Appendix, we provide some
additional numerical results for the dynamics of the bath, of
the d bosons, and of the system as a whole.

1. Evaluation of the accuracy of TEBD simulations

Due to the finite bond dimension χ and the finite truncation
error ε, the wave function evolved using the TEBD algorithm
|ψχ (t )〉 deviates from the true state |ψ (t )〉. The error produced
by the truncation of the singular values λa and corresponding
Schmidt states, however, is well controlled and can be easily
evaluated. At each singular value decomposition, the local
weight of the wave function lost is given by

εn =
∑
λa<ε

λ2
a or εn =

∑
a>χ

λ2
a, (A1)

depending on whether the bond dimension at the evaluated
link is saturated or not.

The global error at each time step, then, corresponds to

ε(t ) = 1 − |〈ψ (t )|ψχ (t )〉|2 = 1 −
∏

n

(1 − εn). (A2)

The total discarded weight at the end of the time evolution
finally amounts to the integrated error ε(t ).
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In the work presented in the main text, we used extremely
large bond dimensions and a low truncation error, thus en-
suring the accuracy of our simulations. In the Hamiltonian
case, we set χ = 5000 and ε = 10−9, resulting in a maximum
truncation error of ε = 2 × 10−5 arising close to the putative
transition, at U = 1.25. In the Floquet simulations, we use a
smaller bond dimension χ = 2048 and the same truncation as
for the Hamiltonian evolution. This gives rise to a maximum
error of ε = 8 × 10−3, again at interaction strength U = 1 in
the vicinity of the transition.

2. System size comparison

In the main text, we reported results for the largest systems
studied in our paper, L = 252 and L = 2000 for Hamiltonian
and Floquet models, respectively. In both cases, the density
of the c boson never reaches the boundaries of the system
at the timescales investigated, thus ensuring the absence of
boundary effects. To show that the finite size of the system
is negligible in our simulations, we report the comparison of
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FIG. 8. The c boson density at times t = 56 and t = 100 for
the Hamiltonian evolution at U = 1 (a) and U = 6 (b). Comparison
of two system sizes shows near perfect agreement, confirming the
absence of finite-size effects. Panel (c) shows the density profile for
different interaction strengths at the respective latest time reached
in the Floquet time evolution (t ∈ [210, 1600]). The c boson never
reaches the edges of the system, thus ensuring that there are no finite
size effects.
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FIG. 9. Clean boson decay length c(t ) shows different behaviors
at weak and strong interactions both in the Floquet (a) and Hamilto-
nian (b) time evolution. At small values of U , below the estimated
transition, c(t ) grows persistently with no signs of saturation, reach-
ing the value of half system size L/2 = 126 for the Hamiltonian
dynamics (black dashed line). As the interaction is increased, the
decay length first grows as a power law in time (shaded dashed lines),
but eventually, at the long timescales accessible in Floquet evolution,
starts saturating. This saturation suggests the potential stability of
localization at large U .

two different system sizes L = 252 and L = 126 in Fig. 8.
As reported in Fig. 8, the late time (t = 56 and t = 100 for
U = 1 and U = 6, respectively) density of the c boson is not
affected by the system size. Similarly, in the Floquet model the
c boson never approaches the boundary for all the interaction
strengths.

3. Additional evidence of bath delocalization

In Sec. III A, we studied the density profile of the clean
boson, highlighting the stark difference at weak and strong
interactions. We now use the ansatz for the density introduced
in Ref. [28],

nc(x, t ) = Nc(t ) exp

(
− |x|

c(t ) tanh
(R(t )

|x|
))

, (A3)

to study the behavior of the decay length c(t ) as the interac-
tion is changed.

In Fig. 9, the dynamics of the decay length is presented for
both the Floquet (a) and the Hamiltonian (b) models. The data
show a continuous increase of the value of c(t ) as interaction
is decreased, in agreement with the transition predicted. In
particular, the decay length shows signatures of saturation to
a value much smaller than the system size for U � 2 and
U � 4 in the Floquet and Hamiltonian dynamics, respectively.
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FIG. 10. Late time d boson density profiles [shown for the latest common time among different values of U , T = 205, and T = 54 for
Floquet (a) and Hamiltonian (c) dynamics, respectively] show very weak dependence on the interaction strength. The slight enhancement of
relaxation at the center of the chain at large U is caused by the increased effect of localized c bosons on disordered particles. The dynamics of
imbalance I (t ) in (b) [Floquet] and (d) [Hamiltonian] also illustrates nearly complete absence of density pattern relaxation.

At weaker interactions, instead, it keeps growing, which is
suggestive of delocalization.

4. Disordered boson imbalance and global entanglement

Due to the vanishing density of the bath particle in the
extremely large systems we study, its effect on the d boson
density is weak and hard to capture from the study of their
density alone. However, in Sec. III A we demonstrate that
a study of the density-density connected correlations allows
one to observe a qualitative change in the behavior of the
disordered particles at weak interactions.

We now show numerical results concerning the density
profiles and the relative imbalance to highlight the necessity
of studying more complicated operators, such as the con-
nected correlations, and entanglement entropy, to distinguish
the behavior of the system at weak and strong interactions.
In Figs. 10(a)–10(c), we show the d boson density profiles
in Floquet (Hamiltonian) dynamics at late times T = 205
(T = 54), respectively. A monotonously enhanced relaxation
is observed close to the central site i = L/2 as the interac-
tion increases. This observation that the density of localized
bosons is more affected by the clean particle at strong interac-
tions (when the clean particle is localized) is readily explained
by the fact that the confinement of the clean boson to a smaller
region helps to relax the density pattern of disordered particles
within the localization volume. Far from the center of the
chain, however, no significant variation is observed as the
interaction strength is changed.

A more quantitative understanding can be obtained from
the study of the imbalance [61,62],

I (t ) = No(t ) − Ne(t )

No(t ) + Ne(t )
, (A4)

where N̂o/e represent the density in the initially
occupied/empty sites. For a period 1/νd = 3 density wave,
they read

N̂o =
L/3∑
i=1

n̂d,3i−2, N̂e = 1

2

L/3∑
i=1

(n̂d,3i + n̂d,3i−1). (A5)

As imbalance measures the memory of the initial condition, its
vanishing implies delocalization. However, as can be seen in
Figs. 10(b)–10(d), both in Floquet and Hamiltonian dynamics
the imbalance does not show any sign of decay on the acces-
sible timescales, irrespective of the interaction strength. This
suggests that the relaxation of the d bosons quantified by their
density pattern is extremely slow.

The study of the entanglement entropy

S(i, t ) = −trρA(t ) ln ρA(t ), (A6)

where the chain is split into two subsystems A = [1, i],
B = [i + 1, L], and we consider density matrix ρA(t ) =
trB|ψ (t )〉〈ψ (t )|, provides further evidence in favor of the exis-
tence of a transition. In many-body localized systems, entan-
glement entropy is expected to grow logarithmically [63,64],
hence a deviation from the logarithmic behavior can be
interpreted as a breakdown of MBL. As we show in
Figs. 11(a)–11(c) entanglement entropy at weak interactions
shows faster than logarithmic behavior, suggesting thermal-
ization. In particular, this leads to a universal power-law
scaling of entanglement given by S ≈ (tU β )γ with the value
of γ ≈ 0.39 for both Floquet (a) and Hamiltonian (b) cases.
The value of β is similar between the two models β ≈ 1.1,
however, only for U � 1. For larger values of U up to 1.5,
β stays the same in the Floquet case and abruptly changes
to β ≈ 0.6 (not shown) in the Hamiltonian case. The uni-
versal behavior is captured by the collapse of the different
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FIG. 11. Dynamics of entanglement entropy show signatures of delocalization for weak coupling U both in Floquet (a), (b) and
Hamiltonian (c), (d) dynamics. The power-law growth of entanglement across the central cut shown in (a)–(c) at weak coupling is clearly
distinct from the logarithmic behavior observed for U � 4. The different behavior is also highlighted by the entanglement collapse shown in
the inset, suggesting a universal power-law behavior in the ergodic phase. The behavior of real-space entanglement profiles at a fixed time
[T = 205 for Floquet (b) and T = 52 for Hamiltonian dynamics (d)] in (b)–(d) also shows nonmonotonic behavior, with a peak in the region
U ∈ [1, 2] separating two distinct regimes. At weaker interactions, entanglement spreads more uniformly through the chain, suggesting the
presence of a large ergodic region close to the center. In contrast, at strong coupling, entanglement growth remains limited to the center of the
chain, in agreement with the phenomenology of the MBL proximity effect [28].

entanglement curves shown in the inset of Figs. 11(a)–11(c).
As the interaction strength increases, logarithmic growth is
eventually restored at U = 4, 6, in agreement with MBL.

The different behavior is also highlighted by the spatial
profile of entanglement, i.e., the entanglement entropy shown
as a function of the size of subsystem A at a fixed time T [T =
205 in Fig. 11(b) and T = 52 in Fig. 11(d)]. Figures 11(b)–
11(d) show that at strong interactions, entanglement growth
is limited to the center of the chain, in agreement with the
phenomenology proposed in Ref. [28]. At weaker interac-
tions, entanglement starts spreading more uniformly through
the chain, indicating the creation of large ergodic regions
in the chain. Interestingly, this phenomenon gives rise to a
nonmonotonicity of the peak of the entanglement profile as
a function of interaction strength. At very weak interactions,
entanglement spreads to far regions, and in turn its value in
the center is lower than at intermediate U , where its spreading
is reduced. We observe a maximum of the peak around U ≈ 2
in the Floquet case and U ≈ 1.5 in the Hamiltonian dynamics,
which could correspond to the transition point, separating the
two entanglement regimes. The value U at which we observe
the largest entanglement appears to be stable with respect to
the fixed time T for all accessible times T > 10.

5. Hopping matrix element for effective mapping to Bethe lattice

In the main part of the text, we used the approach of
Ref. [49] to estimate the critical interaction strength sepa-
rating the localized and ergodic phases. In this Appendix,
we detail the evaluation of the typical matrix element, cru-
cial in estimating the transition. As mentioned in the text,

the functional form of the matrix element Eq. (8) depends
on the relative position of the different particles involved
in the process. In particular, they can be either mixed, i.e.,
dcdc, dccd, cdcd, cddc, or they can be ordered, corre-
sponding to ddcc, ccdd .

Let us first consider the mixed case and analyze the case
cdcd in detail. We define the different positions of the par-
ticles as x(1,2)

c,d , where the numerical indices represent the
ordering from left to right. It will be useful to define the
distance among same type particles rc(d ) = x(2)

c(d ) − x(1)
c(d ) and

the center of mass xc(d ) = (x(2)
c(d ) + x(1)

c(d ) )/2. In this setup,

we identify three different regions: region I: j � x(1)
d , region

II: x(1)
d < j < x(2)

c , and region III: j � x(2)
c . In region I, the

summand is f ( j) � e−rc/ξc e−2(xd − j)/ξd ; in region II f ( j) is
constant and attains its maximal value f ( j) = e−rc/ξc−rd /ξd ;
finally, in region III, f ( j) � e−rd /ξd e−2( j−xc )/ξc . Consequently,
the sum in Eq. (8) can be split into three terms

V � U

ξcξd

⎡
⎢⎣e−rc/ξc

∑
j�x(1)

d

e−2(xd − j)/ξd

+ e−rc/ξc−rd /ξd (dcd − 2) + e−rd /ξd
∑
j�x(2)

c

e−2( j−xc )/ξc

⎤
⎦,

(A7)

where we introduce dcd = x(2)
c − x(1)

d as the distance between
the two middle particles.
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The two sums now can be rewritten, introducing a geomet-
ric series∑

j�x(1)
d

e−2(xd − j)/ξd =
∑
j�x(1)

d

e−(rd −2( j−x(1)
d )/ξd

= e−rd /ξd
∑
k�0

e−2k/ξd = e−rd /ξd

1 − e−2/ξd
. (A8)

A similar approach can be used for the second sum in
Eq. (A7). The matrix element for the case of cdcd configu-
ration can thus be estimated to be

V ≈ U

ξcξd
e−rd /ξd −rc/ξc

[
1

1 − e−2/ξd
+ (dcd − 2) + 1

1 − e−2/ξc

]
.

(A9)
With a similar approach, we can also obtain the upper bound
for the matrix element in the remaining cases of mixed bosons,
leading to the same result for the dcdc case and to

V ≈ U

ξcξd
e−rd /ξd −rc/ξc

[
2

1 − e−2/ξc(d )
+ (dcc(dd ) − 2)

]
(A10)

for the dccd (cddc) cases. We numerically check that, in most
cases, the bound is reasonably tight, yielding a very small
percentage difference from the actual value. We now consider
the case of ordered particles. In this case, the summand f ( j)
is peaked at the position of the middle boson with shorter
localization length. Again, for the sake of clarity, we illustrate
a particular configuration, but an analogous approach can be
used for the other configurations. We choose to show the
results for the case ddcc where the localization length of d
bosons is shorter than the one of the c boson (the most typical
case). In this setup, we can identify two different regions:
region I, j � x(2)

d , where f ( j) � e−rd /ξd e−2(xc− j)/ξc , and region
II, j > x(2)

d , where f ( j) � e−2( j−xd )/ξd −2(xc− j)/ξc . The matrix
element in region I is upper bounded by

V (I) � U

ξcξd
e−rd /ξd

∑
j�x(2)

d

e
2 j−x(1)

c −x(2)
c

ξc

= U

ξcξd
e−rd /ξd −rc/ξc−2ddc/ξc

∑
j�x(2)

d

e
2( j−x(2)

d )

ξc

= U

ξcξd

e−rd /ξd −rc/ξc−2ddc/ξc

1 − e−2/ξc
. (A11)

In region II we obtain

V (II) � U

ξcξd

∑
j�x(1)

d +1

e
−2 j+x(1)

d +x(2)
d

ξd e
2 j−x(1)

c −x(2)
c

ξc

= U

ξcξd
e− rd +2

ξd e− rc+2ddc−2
ξc

∑
k�0

e−2
ξc−ξd
ξcξd

k

= U

ξcξd

e− rd +2
ξd e− rc+2ddc−2

ξc

1 − e−2
ξc−ξd
ξcξd

. (A12)

The case for ξc < ξd can be obtained in the same way, bearing
in mind that now f ( j) is peaked at j = x(1)

c and yields the
same results as Eqs. (A11) and (A12), except with subscripts

FIG. 12. The critical curve obtained from solving Eq. (A13)
numerically (red line) compared with the level spacing ratio for a
small L = 15 system. Our analytical approach predicts a transition
at a critical interaction strength Uc ≈ 3 for the disorder W = 6.5
used in the numerical simulations. This estimate is compatible with
the transition window suggested by the results of our large-scale
numerical simulations.

for c and d bosons exchanged. A similar statement is valid for
the case of ccdd ordered bosons.

Now the estimate of the typical matrix element corresponds
to evaluating the average distances rc(d ) and dcd , which results
in 〈rc(d )〉 ≈ ξc(d )/2 and dcd ≈ min(ξc, ξd ). Finally, using the
localization length obtained numerically in the Hartree ap-
proximation [29] and solving the equation for the critical point

2KeVc

W ln

( W
2Vc

)
= 1 (A13)

numerically, we draw the critical line shown in red in Fig. 12.
In the heat map, we additionally show results for the av-
erage level spacing ratio 〈r〉 [53,65] obtained from exact
diagonalization of the Hamiltonian Eq. (1) on L = 15 sites.
From this approximate analysis, we extract a critical value
of the coupling Uc ≈ 3 for the disorder strength W = 6.5
used throughout this paper. This result is somewhat counter-
intuitive, given that the hopping amplitude is proportional to
the interaction, V ∝ U . Nevertheless, as already obtained in
a previous work [29], the effective disorder for the c boson
is proportional to the coupling strength, and hence its local-
ization length ξc ∝ U −2. This results in the observed trend
yielding delocalization at weak U and localization at strong
interactions.

APPENDIX B: EXTENSIVE BATH

When studying the behavior of the model with a finite
density of c bosons, we employ two distinct approaches. At
relatively low densities, we use MPS simulations with the c
bosons initially equidistant to one another. However, at higher
densities this approach will lead to a prohibitively fast growth
of entanglement entropy, which slows down numerical sim-
ulations and prohibits us from reaching long timescales. To
avoid this issue, we employ an MPO-based approach at large
densities around half filling, where we simulate the dynamics
of the system’s density matrix. In particular, we prepare an
initial density matrix with a small step in the c and d boson
densities, which can be written as a trivial MPO with bond
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FIG. 13. Bond dimension comparison for two exemplary values of the interaction strength and density, U = 6, νc = 1/2 in (a), (b) and
U = 2, νc = 1/3 in (c), (d). The main panels show the density profiles for d and c bosons at the latest time T = 300, confirming the convergence
of our results for the bond dimensions used. Additionally, in the insets we compare the time evolution of the density at the central site, which
also shows good convergence with increasing bond dimension.

dimension one. Provided that the local boson density remains
near half filling (such as 1/2 or 1/3), this initial density matrix
leads to relatively slow growth of operator space entanglement
entropy (as was also observed in an earlier work [50]). This
allows us to reach the timescales necessary to extract informa-
tion on the transport properties of our model at a high density
of c bosons.

1. Bond dimension comparison for density matrix TEBD

To estimate the accuracy of our simulations, we compare
the value of certain observables throughout time evolution for
different bond dimensions. In Fig. 13, we present the different
density profiles of the d bosons and the bath for different
values of the interaction and different sizes of the bath. In
the top row, we show U = 6 and νc = 1/2, while Figs. 13(c)
and 13(d) present U = 2 and νc = 1/3. The density profiles
at T = 300, shown in the main panels, are converged at the
bond dimensions used in the simulations presented in the main
text. Additionally, in the insets we plot the time evolution of
the density at the central site for different bond dimensions,
similarly showing converged dynamics at the largest bond
dimensions.

2. Transport in the disordered Heisenberg chain

The clear diffusive behavior observed in the transport of
d bosons in Sec. IV A is not commonly observed in dis-
ordered systems. Previous studies [41,42,51] have reported
slow, subdiffusive transport in the ergodic phase of disordered
Hamiltonians.

In this Appendix, we explore dynamics in the disordered
Heisenberg chain in a parameter range where disorder and
hopping are comparable to the ones investigated in our paper.
The aim of this paper is to check whether there exists a
coupling strength such that the nearest-neighbor interaction
of the disordered Heisenberg chain can reproduce diffusive
dynamics in a similar timescale as the one observed in the
main text.

Although the two-species Hubbard model and Heisenberg
chain have different local Hilbert spaces, one can transform
the Hubbard model to spin language to identify the com-
parable range of parameters. Under this transformation, the
hopping td becomes equivalent to exchange terms that are
proportional to J in the Heisenberg model, and we set J = 1.
The random chemical potential εi acting on bosons translates
to a random magnetic field hi = εi/2. Thus, we choose the
Heisenberg model with the following parameters:

Ĥ =
∑

i

[
ŝx

i ŝx
i+1 + ŝy

i ŝy
i+1 + Jz

2
ŝz

i ŝ
z
i+1 + εi

2
ŝz

i

]
, (B1)

where ŝα
i = σα/2 are spin-1/2 operators on a given site. We

set W = 6.5 that controls the distribution of εi ∈ [−W,W ],
and sweep through different interaction strengths Jz since
nearest-neighbor interaction does not have a direct analog
to the on-site Hubbard interaction. The Heisenberg model

2 4 6 8 10
Jz

0.00

0.25

0.50

0.75

1.00

1/
z(

t)

t ∈ [100,150]

t ∈ [125,175]

t ∈ [150,200]

t ∈ [175,225]

t ∈ [200,250]

FIG. 14. The inverse dynamical exponent as a function of the
interaction strength Jz. At small values of Jz, dynamics are extremely
slow and oscillations complicate the estimation of 1/z on available
timescales. For larger Jz � 3, 1/z shows a more regular behavior,
highlighting much slower transport in the Heisenberg chain com-
pared to the two-species Hubbard model. The data are obtained
averaging over 50 disorder realizations and using a bond dimension
χ = 256.
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FIG. 15. The density profiles of both particle types show a clear trend, suggesting thermalization at large bath densities. However, at
νc = 1/24 〈n̂c,i〉 keeps the characteristic density wave structure and the d boson density profile is significantly farther from relaxation than
at larger densities. The imbalance confirms a monotonous slowdown of the relaxation towards thermal equilibrium as the bath density is
decreased. The density profiles are shown at the latest time reached by the νc = 1/6 simulation, the most expensive to simulate, T = 16. The
value of the coupling is fixed to U = 6.

Eq. (B1) conserves total magnetization, allowing for the study
of spin transport across a small step, in analogy with the mixed
state used in Eq. (9) in the main text. A similar analysis to
the one carried out in the main text results in the inverse
dynamical exponent 1/z(t ) shown in Fig. 14. The data reveal
much slower transport as compared to the results of Fig. 6
in the whole parameter range explored, suggesting that the
effect of the c bosons cannot be accounted for by an emergent
local interaction term among disordered bosons. A possible
explanation, then, is that the c bosons effectively act as a
long-range interaction, justifying the faster transport observed
in the two-particle species Hubbard model.

3. Dynamics at small densities of clean bosons

In the main text, we reported the deviation from logarith-
mic entanglement growth as a probe of delocalization at small,
albeit extensive, bath size. Here we present some additional
data regarding the density profiles and the imbalance, as de-
fined in Eq. (A4).

Figures 15(a) and 15(b) show the behavior of d bosons.
In Fig. 15(a), we compare the density profile for different
bath densities νc ∈ [1/24, 1/6] at fixed U = 6 and W = 6.5.
The relaxation of the initial density wave toward equilibrium
becomes monotonously more pronounced as the density, νc,
is increased, in agreement with the results of the main text.
A similar phenomenology can be observed in the dynamics
of the imbalance, which shows much faster decay at νc = 1/6
compared to νc = 1/24.

The bottom panels in Fig. 15 are dedicated to the c bosons.
Similarly to the disordered particles, the density wave is sub-
stantially smeared at large c boson densities, while at νc =
1/24 large regions with nearly zero density of clean bosons
are visible. Figure 15(d) reveals that at every bath size ex-

plored in this paper, the imbalance of the c bosons (Ic) decays
in time, although in a slower fashion at smaller bath densities.

Finally, we analyze the connected correlation function
of c bosons. The data shown in the main text lead to the
hypothesis that the deviation from logarithmic growth of
the entanglement entropy could be generated by a signifi-
cant correlation among the different c bosons. To check this
hypothesis, we studied the behavior of the density-density
connected correlation function among different sites lp and l ′

p,
where the distance between sites lp and l ′

p corresponds to the
initial position of adjacent c bosons. The results are shown
in Fig. 16. The density-density correlations start growing at
progressively earlier times as the density νc is increased and

10−1 100 101 102

t

10−10

10−7

10−4

〈n̂
c,

l p
n̂

c,
l′ p
〉 c

νc = 1/6

νc = 1/9

νc = 1/12

νc = 1/24

FIG. 16. Density-density connected correlations among different
c bosons at fixed U = 6. The characteristic time at which they be-
come larger than ε = 10−4 defines an additional timescale τcc(νc )
that shows approximate power-law dependence on νc, τcc ∝ 1/νk

c ,
with k ≈ 2.53 for larger values of νc. For the smallest density νc =
1/24, correlations may be speculated to show signatures of saturation
to a value much smaller than ε, but longer times are needed to verify
this hypothesis.
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the correlation function crosses the threshold value ε = 10−4

(dashed line) at a timescale τcc scaling in bath size with the
same power-law observed for the onset of the deviation of
entanglement growth from logarithmic. This indeed suggests
that correlations among clean bosons may be responsible for

the onset of more rapid entanglement growth shown in Fig. 7
in the main text. Also, consistent with all other probes, the
connected correlation function for the lowest density case,
νc = 1/24, does not cross the threshold value ε within the
available simulation time.
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