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ORDER 5 BRAUER–MANIN OBSTRUCTIONS TO THE
INTEGRAL HASSE PRINCIPLE ON LOG K3

SURFACES

by Julian LYCZAK (*)

Abstract. — We construct families of log K3 surfaces and study the arithmetic
of their members. We use this to produce explicit surfaces with an order 5 Brauer–
Manin obstruction to the integral Hasse principle.

Résumé. — Nous construisons plusieurs familles de surfaces log K3 et en étu-
dions l’arithmétique. Nous en déduisons des exemples explicites de surfaces avec
une obstruction de Brauer–Manin d’ordre 5 au principe de Hasse entier.

Introduction

The goal of this paper is to add to the study of integral points on ample
log K3 surfaces as started by Harpaz [16]. This is done by first giving a
geometrically flavoured construction for such equations. One upshot of this
construction is that one even gets a family of such surfaces for which the
arithmetic properties of the members can be studied simultaneously. We
will present two families of log K3 surfaces for which a positive proportion
of the fibres fails the Hasse principle, i.e. these surfaces are everywhere
locally soluble but they do not admit integral points.

For the geometrically similar K3 surfaces it has been conjectured by Sko-
robogatov that the Brauer–Manin obstruction is the only one to the Hasse
principle [27]. This is however not the case for log K3 surfaces [16]. The
examples in this paper exhibit new arithmetic behaviour and it is hoped
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obstruction.
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448 Julian LYCZAK

that the accompanying ideas for studying log K3 surfaces will contribute
to a workable conjecture for integral points on log K3 surfaces.

Main results

We will use the integral Brauer–Manin obstruction as introduced by
Colliot-Thélène and Xu [7] to prove the failure of the integral Hasse prin-
ciple, which is based on the Brauer–Manin obstruction by Manin [23]. Let
U/Z be a model of a variety U/Q for which we want to prove that U(Z) = ∅.
The technique uses an element A ∈ BrU := H2(U,Gm) to define an inter-
mediate set

U(Z) ⊆ U(AQ,∞)A ⊆ U(AQ,∞)

in the inclusion of the integral points of U in its set of integral adelic points,
meaning its points over the ring AQ,∞ = R ×

∏
p Zp. Hence if U(AQ,∞) is

non-empty but U(AQ,∞)A is empty, then A obstructs the integral Hasse
principle on U . The order of the obstruction is the order of A in BrU/BrQ.
We will be mainly interested in obstructions coming from elements in the
algebraic Brauer group Br1 U := ker

(
BrU → BrU

)
⊆ BrU .

In this paper we have restricted to a specific type of log K3 surface to
showcase our ideas. In passing we pick up the first Brauer–Manin obstruc-
tions to the Hasse principle of order greater than 3. The existence of a high
order element in the Brauer group of our log K3 surfaces depends on the
splitting field of a related del Pezzo surface. Recall that the splitting field
of a del Pezzo surface is the minimal field over which all its −1-curves are
defined.

Theorem 0.1 (Theorem 2.5). — Let X be a quintic del Pezzo surface
over Q with splitting field K. We consider the log K3 surface U = X\C
with C a geometrically irreducible anticanonical divisor on X. We have

Br1 U/BrQ ∼=

{
Z/5Z if K/Q is cyclic of degree 5;
0 otherwise.

Also, each cyclic extension K/Q of degree 5 is the splitting field of a del
Pezzo surface over Q. Such a surface is unique up to isomorphism.

We will consider del Pezzo surfaces with a non-trivial algebraic Brauer
group and our first explicit example comes from the quintic extension
Q(ζ11 + ζ−1

11 )/Q. Consider the projective scheme X ⊆ P5
Z given by the
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ORDER 5 OBSTRUCTIONS TO THE INTEGRAL HASSE PRINCIPLE 449

five quadratic forms

u0u3 + 22u0u4 + 121u0u5 − u2
1 − 121u1u3 + 2662u1u4 − 36355u2u4

− 9306u2u5 + 10494u3u4 − 242u3u5 − 215501u2
4 + 68123u4u5 − 13794u2

5,

u0u4 + 11u0u5 − u1u2 − 11u1u3 + 242u1u4 − 3223u2u4 − 847u2u5

+ 902u3u4 − 11u3u5 − 19272u2
4 + 6413u4u5 − 1331u2

5,

u0u5 − u1u3 + 22u1u4 − u2
2 − 286u2u4 − 77u2u5 + 77u3u4

− 1694u2
4 + 572u4u5 − 121u2

5,

u1u4 − u2u3 − 11u2u4 − 77u2
4 + 55u4u5 − 11u2

5,

u1u5 − u2u4 − 11u2u5 − u2
3 + 11u3u4 − 44u2

4.

This scheme is constructed and studied in Section 3. In Section 4 we prove
the arithmetic properties stated in the following theorem.

Theorem 0.2. — For each geometrically irreducible hyperplane section
Ch := {h = 0} ∩ X we define Uh = X \Ch.

(1) The scheme X/Z is a flat proper model of the del Pezzo surface
over Q which splits over the quintic extension Q(ζ11 + ζ−1

11 ).
(2) The existence of an algebraic Brauer–Manin obstruction to the in-

tegral Hasse principle on Uh only depends on the reduction of h
modulo 11.

(3) There exists an h, and hence even a residue class h mod 11, for
which Uh has an order 5 obstruction to the integral Hasse principle.

The same construction can be used to produce many more examples.
The arithmetic behaviour is mainly determined by the primes which are
ramified in the splitting field K. Any tamely ramified prime can be studied
in a similar matter. For completeness we also add an example in Section 5
involving the wildly ramified prime 5.

Theorem 0.3. — There exists a scheme X ⊆ P5
Z with the following

properties.
(1) The scheme X is a flat model for the del Pezzo surface X = XQ over

Q which splits over the unique quintic number field K ⊆ Q(ζ25).
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450 Julian LYCZAK

(2) The existence of an algebraic Brauer–Manin obstruction on Uh :=
X \{h = 0} to the integral Hasse principle only depends on the
reduction of h modulo 25.

(3) There exists an h, and hence even a residue class h mod 25, for
which Uh has an order 5 obstruction to the integral Hasse principle.

We will also briefly touch upon the cases where the Brauer–Manin ob-
struction and many other obstructions, for example those introduced by
Jahnel and Schindler [19], are inconclusive. In these situations one is some-
times able to find an explicit point, but the question whether Uh(Z) is
non-empty is still open for many linear forms h.

Let us put these results in context.

Integral points on log K3 surfaces

Integral points on log K3 surfaces are believed to behave to a certain
degree in a similar way to rational points on K3 surfaces. For those surfaces
it has been conjectured by Skorobogatov [27] that the existence of solutions
is completely controlled by the Brauer–Manin obstruction. However, results
by Ieronymou and Skorobogatov [18] and Skorobogatov and Zarhin [28] say
that there cannot be an odd order Brauer–Manin obstruction to the Hasse
principle for smooth diagonal quartic surfaces over the rational numbers
and for Kummer varieties over any number field. An algebraic obstruction
of order 3 on a K3 surface was found in [10] and Berg and Várilly-Alvarado
[2] even produced a transcendental cubic obstruction.

For log K3 surfaces the situation is however different; it was proven that
the Brauer–Manin obstruction is not the only obstruction to the integral
Hasse principle [16] and [19]. On the other hand, Colliot-Thélène and Wit-
tenberg [9] showed that the Brauer group never obstructs the Hasse prin-
ciple for the equation x3 + y3 + z3 = n which is in line with the conjecture
that this equation has an integral solution for n ̸≡ ±4 mod 9.

The Hasse principle and the effectivity of the Brauer–Manin obstruction
for the equation x3 + y3 + z3 −xyz = k were studied by Ghosh and Sarnak
[13], Colliot-Thélène, Wei and Xu [8], and Loughran and Mitankin [21].
Another classical affine cubic equation was studied in this manner by Bright
and Loughran [4].

This paper gives the first examples of higher odd order Brauer–Manin ob-
structions on any type of scheme; all other known examples of the Brauer–
Manin obstruction to the (integral) Hasse principle are of either order 2 or
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3. This is the highest possible prime order for such an obstruction on log
K3 surfaces; for a generic anticanonical divisor C on a del Pezzo surface X
the order of algebraic Brauer groups of X\C is only divisible by the primes
2, 3 and 5, see Table 1 in [5]. The results in [5] also show that the quintic
algebraic obstructions described in this paper are particular to the degree
5 case; there is an inclusion BrX ↪→ Br1 U and the order of an element
in the cokernel divides the degree of the del Pezzo surface X. Hence if
Br1 U/BrX has 5-torsion then X is a quintic del Pezzo surface.

A study in families

The novel approach in this paper is to study affine surfaces U in families
by fixing the compactification X and letting the complementary divisor C
vary. An understanding of the arithmetic and geometry of X will be helpful
in studying the open surfaces U .

We propose a general methodology for studying this setup, which we
illustrated in the special setting of del Pezzo surfaces of degree 5. An im-
portant result for these surfaces is that they always have a point. This is a
classical result by Enriques [12] which was also proved by Swinnerton-Dyer
[29], Skorobogatov [26] and many others. This proves that X is rational
over k [30, Theorem 2.1], BrX/Br k = 0 and that X satisfies weak approx-
imation. It also allows one to classify and to construct such surfaces over
k, which was done in detail in [14].

We produce models X/Z for X/Q by following this construction over
the integers. In this process one has a few more choices along the way
which allow one to control the reductions Xp for all primes p. To finally
construct a model of a log K3 surface one considers the complement Uh of
a hyperplane section {h = 0} in X .

Using the abundance of points on quintic del Pezzo surfaces we can
deduce that for any h the open subscheme Uh has points over all Zℓ, except
possibly for a very few small primes ℓ. In our cases only local solubility at
ℓ = 2 is not immediate and will depend on h.

We also use the geometric and arithmetic properties of quintic del Pezzo
surfaces to compute the Brauer–Manin obstruction on each Uh. We show
that the invariant maps are identically 0 for all but an explicit finite list
of primes. To effectively deal with a remaining prime p we show that it
is enough to only study the closed fibre of X × Zp; a surprising result
especially for the wildly ramified prime p = 5. We end up with examples of
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quintic Brauer–Manin obstructions to both the Hasse principle and strong
approximation.

There is no reason why this construction only works for affine opens of
quintic del Pezzo surfaces; one could use a similar construction to produce
models of rational varieties while controlling the arithmetic of the individ-
ual fibres.

Outline

We start by recalling some necessary facts on del Pezzo and log K3
surfaces, Brauer groups and the Brauer–Manin obstruction. Then we com-
pute the algebraic Brauer group of log K3 surfaces U = X\C where X
is a del Pezzo surface of degree 5 and C is an anticanonical divisor. In
the third section we give an example of a construction of a model X/Z of
a quintic del Pezzo surface X/Q such that any anticanonical complement
Uh = X\{h = 0} has an element of order 5 in the Brauer group. The next
section is devoted to the arithmetic of each Uh. In particular we compute
the Brauer–Manin obstruction coming from the element of order 5. In the
last section we use the same construction to produce a different family of
log K3 surfaces Uh for which the arithmetic behaves differently, but there
still is an element of order 5 in the Brauer group.

Notation and conventions

Let k be a field. We will write k for a fixed algebraic closure and ksep

for the separable closure of k in k. The absolute Galois group of a field k

is denoted by Gk = Gal(ksep/k). A variety over a field k is a separated
scheme of finite type over Spec k. A curve over a field k is a variety over
k of pure dimension 1, it need not be irreducible, reduced or smooth. A
surface over a field k is a geometrically integral variety of dimension 2 over
k. A curve on a surface over a field k is a closed subscheme of the surface
which is a curve over k. For a scheme X over a field k we will write XK

for the base change X ×k K for any field extension K of k. The notation
X will be synonymous with Xk.
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1. Preliminaries

We will consider the existence of integral solutions to polynomial equa-
tions defining surfaces. We will first collect the key notions and results on
the surfaces we will encounter. Then we will recall the necessary results on
Brauer groups and the Brauer–Manin obstruction to integral points.

1.1. Del Pezzo surface of degree 5

We will review some facts about del Pezzo surfaces. The main references
will be [24] and [11]. For an overview of the arithmetic of such surfaces one
is referred to [30].

Definition 1.1. — Let k be a field. A del Pezzo surface is a smooth pro-
jective surface X over k such that the anticanonical line bundle ω−1

X is am-
ple. The degree of a del Pezzo surface is the anticanonical self-intersection
K2

X .

We will only need del Pezzo surfaces of degree 5. In which case ω−1
X is

even very ample over k and we see that every del Pezzo surface of degree 5
can be embedded as a degree 5 surface in P5

k. Let us collect some facts on
the geometry of these surfaces.

Lemma 1.2. — Let X be a del Pezzo surface of degree 5 over a separably
closed field k.

(1) The Picard group PicX is free of rank 5 and it has an orthogo-
nal basis L0, L1, . . . , L4 with respect to intersection pairing which
satisfies L2

0 = 1 and L2
i = −1 for i ̸= 0.

(2) In any such basis the canonical class is given by KX = −3L0 +L1 +
L2 + L3 + L4.

(3) There are precisely ten classes D ∈ PicX which satisfy D2 = D ·
KX = −1, namely Li for i ̸= 0 and Lij := L0 − Li − Lj for 0 <

i < j ⩽ 4. Each of these classes contains a unique curve, and these
curves are smooth, irreducible and have genus 0.

(4) The intersection graph of these ten −1-curves is the so-called Pe-
tersen graph shown in Figure 1.1.

TOME 73 (2023), FASCICULE 2
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L1
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L23 L14

L13

L34

L24

L3 L4

Figure 1.1. The intersection graph of −1-curves on a del Pezzo surface
of degree 5.

(5) Let A(X) be the group of automorphisms of PicX which preserve
the intersection pairing and the canonical class. Then A(X) is iso-
morphic to S5 and this isomorphism is unique up to conjugation.

Proof. — The first result follows from the fact that a del Pezzo surfaces
of degree 5 is geometrically the blowup of the projective plane in 4 points,
no three of which lie on a line, see for example [11, III, Proposition 3]. From
here one can deduce the remaining statements.

We do draw attention to a particularly nice proof of the last statement.
Note that A(X) permutes the −1-classes and that these classes generate
the Picard group. So A(X) is a subgroup of the automorphism group of
the Petersen graph. To compute this automorphism group we identify the
vertices with

(
I
2
)

for I = {1, 2, 3, 4, 5} such that {{i, j}, {k, l}} is an edge
precisely if i, j, k and l are distinct. This makes it straightforward to
show that the automorphism group of the Petersen graph is isomorphic to
S5. Next one checks that each automorphism of the graph preserves the
relations between the −1-classes and hence extends to an automorphism of
the whole Picard group.

It follows that A(X) is non-canonically isomorphic to S5. However this
identification is unique up to conjugation since S5 is an inner group. □

ANNALES DE L’INSTITUT FOURIER
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Let us now switch to del Pezzo surfaces of degree 5 over general fields. The
following proposition shows that the geometric Picard group as a Galois
module is a principal invariant.

Proposition 1.3. — Let k be a field. There is a bijection between iso-
morphism classes of quintic del Pezzo surfaces over k and S5-conjugacy
classes of group homomorphisms Gk → S5.

Proof. — This is Lemma 14 in [14]. □

We will describe how to construct a del Pezzo surface from such a group
homomorphism as was done in [14].

Proposition 1.4. — Let k be a field with absolute Galois group Gk and
let Λ be the effective generator of PicP2

k. Consider a group homomorphism
ψ : Gk → S5. Fix five points Pi ∈ P2

k(ksep) such that no three lie on a line
and that Gk acts on these points as S5 acts on its indices.

(1) The linear system L =
∣∣∣OP2

k
(5Λ − 2P1 − 2P2 − 2P3 − 2P4 − 2P5)

∣∣∣
has dimension 5.

(2) The image of the associated map is a del Pezzo X surface of de-
gree 5.

(3) The composition Gk → A(Xsep)
∼=−→ S5 recovers ψ up to conjugacy.

(4) The isomorphism class of X only depends on the conjugacy class of
ψ and is independent of the choice of Pi.

Proof. — The first two statements are Theorem 5 in [14]. This theorem
also shows that the −1-curves on X correspond to the lines on P2

ksep passing
through two of the points Pi. This shows that the Galois action on the −1-
curves on X and hence on PicXsep equals ψ up to conjugacy. This proves
the third statement. To conclude the proof we use Proposition 1.3. □

1.2. Log K3 surfaces of dP5 type

For our interest in integral points we move to surfaces which are not
necessarily projective. The following class will be important.

Definition 1.5. — Let U be a smooth surface over a field k. A log K3
structure on U is a triple (X,C, i) consisting of a proper smooth surface
X over k, an effective anticanonical divisor C on X with simple normal
crossings and an open embedding i : U → X, such that i induces an iso-
morphism between U and X\C. A log K3 surface is a simply connected,
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smooth surface U over k together with a choice of log K3 structure (X,C, i)
on U .

Let X be a del Pezzo surface of degree 5 and let C be an effective
anticanonical divisor on X. The affine surface U = X\C is called a log
K3 surface of dP5 type.

Whenever we consider such a surface U without explicitly specifying
X we will assume the choice of compactification to be understood from
context.

1.3. Brauer groups

Let U be a scheme over a field k. We will need the concept of the Brauer
group BrU of U . Two common definitions are the étale cohomology group
BrU := H2(U,Gm) and the group BrAz U of equivalence classes of Azumaya
algebras on U . There is a natural morphism BrAz U → BrU which induces
an isomorphism between BrAz U and (BrU)tors if U is a quasi-projective
scheme over k by an unpublished result by Gabber. Another proof by De
Jong can be found in [20]. In Theorem 6.6.7 in [25] we find conditions for
BrU to be a torsion group and we conclude that we can identify both types
of Brauer groups for regular integral schemes which are quasi-projective
over a field. All the varieties for which we will consider the Brauer group
will satisfy these conditions and we will pass freely between the two notions.

Using the functoriality of associating the Brauer group to the scheme we
can define the following filtration: Br0 U ⊆ Br1 U ⊆ BrU , where the con-
stant Brauer group Br0 U is defined as Im(Br k → BrU) and the algebraic
Brauer group Br1 U is ker(BrU → BrU sep). We will denote the quotient
Br1 U/Br0 U by Br1 U/Br k although the map Br k → Br1 U need not be
injective.

If k is either a local or a global field, it follows from the Hochschild–
Serre spectral sequence that Br1 U/Br k is isomorphic to H1(Gk,PicU sep)
in certain cases. This is well-known if U is proper, see for example [25,
Corollary 6.7.8], but the proof actually works under the weaker condition
Gm(U sep) = ksep,×.

If U is an integral noetherian regular scheme over a field of characteristic
0 the natural map BrU → Brκ(U) is an inclusion [15, Section II.1]. So in
this case we can represent elements of the Brauer group by classes of central
simple algebras over the field κ(U). We will construct Azumaya algebras
on U as cyclic algebras over the function field.

ANNALES DE L’INSTITUT FOURIER
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Definition 1.6. — Let κ be a field and n an integer not dividing the
characteristic of κ. An Azumaya algebra in the image of the cup product

H1(κ, µn) × H1(κ,Z/nZ) → H2(κ, µn) ∼= Br k[n]

is called a cyclic algebra over κ.
A cyclic extension κ′/κ of degree n with a fixed generator σ ∈ Gal(κ′/κ)

determines an element of Hom(Gκ,Z/nZ) ∼= H1(κ,Z/nZ) by sending σ

to 1. Any element a ∈ κ× gives an element in H1(κ, µn) ∼= κ×/(κ×)n. The
cyclic algebra a ∪ (κ′/κ, σ) is denoted by (a, κ′, σ).

For more details, see [25, Section 1.5.7]. Here one also finds the following
important result.

Lemma 1.7. — A cyclic algebra (a, κ′, σ) is trivial in Brκ precisely when
a ∈ Nκ′/κ(κ′×).

To see if a cyclic algebra in Brκ(U) comes from BrU we have the fol-
lowing lemma.

Lemma 1.8. — Consider a smooth and geometrically integral variety U
over a field k satisfying Gm(U sep) = ksep,×. Fix a finite cyclic extension
K/k, a generator σ ∈ Gal(K/k), and an element g ∈ κ(U)×.

The cyclic algebra A = (g, κ(UK)/κ(U), σ) lies in the image of BrU →
Brκ(U) precisely if divg = NmK/k(D) for some divisor D on UK . If k, and
hence K, is a number field, and U is everywhere locally soluble then A is
constant exactly when D can be taken to be principal.

Proof. — This lemma is similar to Proposition 4.17 from [6]. The differ-
ence is that the projectivity assumption is replaced by the weaker condition
Gm(U sep) = ksep,×. One can check that under this assumption the proof
presented in [6] is still valid. □

1.4. Brauer–Manin obstruction

In some cases elements of the Brauer group allow us to prove that there
are no integral points on a scheme. Let U/Z be a model of U = UQ. The
Brauer–Manin set of A is the subset of the integral adelic points U(AQ,∞) =
U(R) ×

∏
ℓ U(Zℓ) defined by

U(AQ,∞)A =
{

(Pℓ) ∈ U(AQ,∞)

∣∣∣∣∣ ∑
ℓ

invℓ A(Pℓ) = 0
}
.
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Here the invariant maps invℓ are those defined in [25, Theorem 1.5.34].
Note that the infinite sum is well-defined by [25, Proposition 8.2.1]. The
Brauer–Manin set is of particular interest because of the property described
in the following theorem from [7].

Lemma 1.9. — Let U be a scheme over the integers and let U be the
generic fibre over Q. For any element A ∈ BrU we have the following chain
of inclusions

U(Z) ⊆ U(AQ,∞)A ⊆ U(AQ,∞).

When A is a cyclic algebra we can use Lemma 1.7 to compute the images
of the invariant maps and we might gain some information on the set of
integral points.

Definition 1.10. — We say that an element A ∈ BrU obstructs the
integral Hasse principle if U(AQ,∞) is non-empty, but U(AQ,∞)A is empty.
The order of the obstruction is the order of A in BrU/BrQ.

2. The interesting Galois action

The main goal will be to construct affine schemes U ⊆ A5
Z which have

a Brauer–Manin obstruction to the integral Hasse principle. In all our ex-
amples we will construct U in such a way that U = UQ is a log K3 surface
of dP5 type. This means that we will be interested in the Brauer group of
such surfaces. The following terminology will turn out to be helpful in that
regard.

Definition 2.1. — Let X be a del Pezzo surface of degree 5 over a field
k. Let K be the minimal Galois extension of k over which all −1-curves on
X are defined. We say that X is interesting if [K : k] = 5. A log K3 surface
of dP5 type U = X\C is called interesting if X is an interesting del Pezzo
surface and C is geometrically irreducible.

The field K is called the splitting field of the interesting surfaces X
and U .

Consider an interesting log K3 surface U = X\C. By definition of a log
K3 surface we see that C is smooth. The curve C is also geometrically
irreducible since U is interesting. The results in this paper are also true for
the complement of a geometrically irreducible anticanonical curve C on a
del Pezzo surface X of degree 5. To be able to use the language of log K3
surfaces we do keep the superfluous condition that C is smooth.

The following lemma shows that two interesting del Pezzo surfaces over
a field k are isomorphic precisely if their splitting fields are isomorphic.
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ORDER 5 OBSTRUCTIONS TO THE INTEGRAL HASSE PRINCIPLE 459

Lemma 2.2. — Let K/k be a Galois extension of degree 5 in a fixed
separable closure ksep of k. There exists an interesting del Pezzo surface X
over k with splitting field K. The surface X is unique up to isomorphism.

Proof. — Fix a generator σ ∈ Gal(K/k) of the Galois group of the cyclic
extension K/k. Consider a non-trivial group homomorphism Gal(K/k) →
S5 by mapping σ to any element of order 5. This gives a group homomor-
phism Gk → Gal(K/k) → S5. By Proposition 1.3 it corresponds to an
isomorphism class of quintic del Pezzo surfaces X. Since GK is the kernel
of Gk → S5 we conclude that X is interesting.

The uniqueness follows from the fact that any two non-trivial group
homomorphisms GK → S5 are S5-conjugate, hence any two interesting
del Pezzo surfaces with splitting field K ⊆ ksep give conjugate group ho-
momorphisms Gk → S5. By Proposition 1.3 we see that the surfaces are
isomorphic over k. □

Definition 2.3. — Let K/k be a Galois extension of degree 5. The
isomorphism class of interesting del Pezzo surfaces of degree 5 over k which
are split by K is denoted by dP5(K).

Note that the proof of Lemma 2.2 can be used to identify the action of
the Galois group on PicXsep. In particular we have the following result.

Lemma 2.4. — On an interesting del Pezzo surface there are two Galois
orbits of geometric −1-curves, each of size 5. The sum of the −1-curves in
one such orbit is an anticanonical divisor.

Proof. — Let K be the splitting field of X. Since X is interesting the
extension K/k is by definition of degree 5. It follows from the minimality of
K that Gal(K/k) does not fix any of the ten −1-curves, hence there must
be two orbits of size 5. After choosing a possibly different basis of PicXsep

we see that these two orbits are the two regular pentagons in Figure 1.1 and
that there is a σ ∈ Gal(K/k) which acts on the outer pentagon by rotating
counter-clockwise. Since σ preserves the intersection pairing it will rotate
the inner pentagon counter-clockwise. This determines the action of σ on
the −1-classes:

L1 7→ L12 7→ L2 7→ L23 7→ L14 7→ L1,

L3 7→ L4 7→ L13 7→ L34 7→ L24 7→ L3.

The last statement is now easily checked. □

If we consider the complement U of a geometrically irreducible anticanon-
ical divisor C on a del Pezzo surface of degree 5 over a number field k we can
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compute its algebraic Brauer group modulo constants as H1(Gk,PicU sep).
The following proposition shows that the action of Gk on PicXsep is inter-
esting precisely when Br1 U/Br k is non-trivial.

Theorem 2.5. — Let U = X\C be a log K3 surface of dP5 type over
a number field k with C geometrically irreducible. We have

Br1 U/Br k ∼=

{
Z/5Z if U is interesting;
0 otherwise.

Proof. — It was mentioned in [5, Remark at the end of Section 2.1] that
the algebraic Brauer group modulo constants of log K3 surfaces of dP5 type
with a geometrically irreducible anticanonical divisor C is trivial except for
one specific action of the Galois group on the geometric Picard group. So it
suffices to verify the statement for interesting del Pezzo surfaces over k. We
will fix a basis (L0, L1, L2, L3, L4) of PicX as in the proof of Lemma 2.4.

Since C ⊆ X is geometrically irreducible we find the following exact
sequence of Galois modules

0 → Z j→ PicX → PicU → 0,

where j maps n to −nKX . This shows that PicU ∼= PicX/ZC ∼= Z4, since
the anticanonical divisor class −KX = 3L0 − L1 − L2 − L3 − L4 is primi-
tive. So PicU is torsion free and from the inflation–restriction sequence we
conclude that the inflation homomorphism induces an isomorphism

H1(Gal(K/k),PicUK) inf−→ H1(Gk,PicU).

We will compute the action of σ on the quotient PicU of PicX using the
specific action of σ on PicX in the proof of Lemma 2.4. We first determine
that σ maps L0 = L12 + L1 + L2 to 2L0 − L1 − L2 − L3.

The classes [L0], [L1], [L2] and [L3] in PicUK form a basis and in this
basis the class of L4 becomes [L4] = 3[L0] − [L1] − [L2] − [L3]. So σ acts on
PicU as

σ =


2 1 1 3

−1 −1 0 −1
−1 −1 −1 −1
−1 0 −1 −1

 .

By results on group cohomology of cyclic groups [31, Theorem 6.2.2] we
get

H1(G,PicU) ∼= ker(1 + σ + σ2 + σ3 + σ4)/Im(1 − σ).
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Since 1 + σ + σ2 + σ3 + σ4 = 0 and the image of 1 − σ is generated by
(1, 0, 0, 2), (0, 1, 0, 4), (0, 0, 1, 4) and (0, 0, 0, 5) we find

Br1 U/Br k ∼= Z/5Z. □

Consider an interesting log K3 surface U . On the compactification X

of U we have three important effective anticanonical divisors. First of all
C = X\U , but also the two divisors supported on −1-curves as described in
Lemma 2.4. These anticanonical sections are important enough to introduce
some notation.

Definition 2.6. — Let X be an interesting del Pezzo surface of de-
gree 5 over a field k. Let l1, l2 ∈ H0(X,ω∨

X) be the anticanonical sections
supported on −1-curves from Lemma 2.4.

We will use these elements to construct explicit generators of Br1 U/Br k
for an interesting log K3 surface U = X\C.

Lemma 2.7. — Let K be the splitting field of an interesting log K3
surface U = X\C over a number field k. Fix a generator σ of Gal(K/k) ∼=
Z/5Z. Let h ∈ H0(X,ω∨

X) be a global section whose divisor of zeroes is C.
The cyclic κ(X)-algebras(

l1
h
, σ

)
and

(
l2
h
, σ

)
are similar over κ(X), their class A lies in the subgroup BrU ⊆ Brκ(X)
and generates Br1 U/Br k.

Proof. — As divU ( l1
h ) and divU ( l2

h ) are orbits of −1-curves defined over
K it follows from Lemma 1.8 that the cyclic algebras lie in the subgroup
BrU . The algebras

(
l1
h , σ

)
⊗

(
l2
h , σ

)opp and
(

l1
l2
, σ

)
are similar and divU ( l1

l2
)

is the norm of a principal divisor on U since this is even the case on X.
Indeed, the divisors L14 + L1 − L2 and L24 are linearly equivalent on X,
and their norms NmK/k(L14 +L1 −L2) and NmK/k(L24) are the divisors of
zeroes of l1 and l2. It follows again from Lemma 1.8 that

(
l1
l2
, σ

)
is trivial

in BrU .
The algebra A is split by the degree 5 extension K and this implies that

A is either trivial or of order 5. Suppose that the class of A is trivial, then
by Lemma 1.8 there is a principal divisor D on UK such that NmK/k D =
divU l1. This implies that there is a g ∈ κ(UK) such that divUK

g = D. Con-
sider g as a function on XK and D as a divisor on XK . Then divXK

g = D+
nC for an integer n, since C is geometrically irreducible. From NmK/k D =
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divU l1 we find KXK
·D = −1 and we conclude that

0 = KXK
· divXK

g = KXK
·D + nKXK

· C = −1 − 5n,

which is a contradiction. □

Note that l1 and l2 are only defined up to multiplication by an element
in k×. From now on we will denote the class in Lemma 2.7 by A ∈ Br1(U)
which is uniquely defined up to an element in Br k. Fix for the moment an
interesting del Pezzo surface X. We will consider the class Ah on Uh as h
varies over all linear forms. We have seen that Ah is of order 5 if h cuts
out a geometrically irreducible curve. The next lemma shows that this only
fails for specific choices of h.

Lemma 2.8. — Let X ⊆ P5
k be an interesting del Pezzo surface over a

field k. A hyperplane section given by the vanishing of an h ∈ H0(X,O(1))
fails to be geometrically irreducible if and only if h is a scalar multiple of
either l1 or l2.

Proof. — Consider a hyperplane section C ⊆ X. Let D be a k-irreducible
component of C and consider a −1-curve L on Xsep. It follows that L ·
Dsep = σ(L) ·Dsep and as the Galois orbit of L is an anticanonical divisor,
we find

5 ⩾ −KX ·D = 5L ·Dsep > 0,

since the degree of D ⊆ P5
k is positive and at most the degree of C, which

equals 5. This proves that L ·Dsep = 1 for all −1-curves L and hence C−D

is an effective divisor of degree 0. We conclude that C = D and this proves
that any anticanonical section C is irreducible over k.

If C is not geometrically irreducible, then it must have at least two
geometrically irreducible components of the same degree d since the Galois
group acts on the set of geometrically irreducible components of C. Since
C is of degree 5 we find 2d ⩽ 5 and hence d is either 1 or 2. But in both
cases we see that C contains a geometrically irreducible curve of degree 1,
which must be a −1-curve L. Then C also contains all conjugates of L and
hence C is the Galois orbit of a −1-curve. This proves that C is defined by
the vanishing of either l1 or l2. □

In the next section we will use Proposition 1.4 to produce explicit equa-
tions for an interesting del Pezzo surface.
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3. A model of dP5(Q(ζ11)+) over the integers

We have seen that all interesting del Pezzo surfaces split by a given
quintic extension K of the base field k are isomorphic. We can use Propo-
sition 1.4 to construct such a surface as the image of a rational map
P2

k 99K P5
k. We will also use this proposition to recover the anticanoni-

cal sections l1 and l2; in the notation of Proposition 1.4, let Λi,j be the
line through the points Pi and Pj in P2

k(ksep). Without loss of generality
we can assume that there is a generator σ ∈ Gal(K/k) which maps Pi to
Pi+1, where we consider the indices modulo 5. The divisors

∑
Λi,i+1 and∑

Λi,i+2 over K are Galois invariant and hence their classes lie in the linear
system L over k. These are the only divisors in L supported on lines and
correspond to l1 and l2 on X. We will now give an explicit first example of
how one can construct models of this surface.

We will use the quintic extension K = Q(α) of k = Q where α = ζ11 +
ζ−1

11 . We will write mα for the minimal polynomial of α over Q. Let αi be
the conjugates of α.

Definition 3.1. — Let Q ⊆ Z[x, y, z](5) be the sub-Z-module consist-
ing of all quintic polynomials which vanish at least twice at the points Pi =
(α2

i : αi : 1) ∈ P2
Q.

Lemma 3.2. — The Z-module Q is free of rank 6 and Z[x, y, z](5)/Q is
torsion free.

Proof. — Clearly Q is a free Z-module. To compute its rank we use the
result in the proof of Theorem 5 in [14] which says that Q ⊗ Q[x, y, z] has
dimension 6. The last statement follows from the fact that for λ ∈ Z\{0}
and q ∈ Z[x, y, z](5) we have λq ∈ Q precisely if q ∈ Q. □

Let us fix a basis qi ∈ Q.

Definition 3.3. — Let X ⊆ P5
Z be the image of the rational map P2

Z 99K
P5
Z defined by the qi.

There are two primitive elements of Q which factor into linear polyno-
mials over Q. These correspond to the two primitive linear forms l1, l2 ∈
Z[u0, u1, . . . , u5].

Note that the scheme X does not depend on the choice of basis of Q.
It does however depend on the choice of α. The statements are easier, but
not by much, since we have chosen an integral α; we could have picked any
generator of K over Q.
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Proposition 3.4. — The scheme X ⊆ P5
Z is given by the quadratic

polynomials

u0u3 + 22u0u4 + 121u0u5 − u2
1 − 121u1u3 + 2662u1u4 − 36355u2u4

− 9306u2u5 + 10494u3u4 − 242u3u5 − 215501u2
4 + 68123u4u5 − 13794u2

5,

u0u4 + 11u0u5 − u1u2 − 11u1u3 + 242u1u4 − 3223u2u4 − 847u2u5

+ 902u3u4 − 11u3u5 − 19272u2
4 + 6413u4u5 − 1331u2

5,

u0u5 − u1u3 + 22u1u4 − u2
2 − 286u2u4 − 77u2u5 + 77u3u4

− 1694u2
4 + 572u4u5 − 121u2

5,

u1u4 − u2u3 − 11u2u4 − 77u2
4 + 55u4u5 − 11u2

5,

u1u5 − u2u4 − 11u2u5 − u2
3 + 11u3u4 − 44u2

4.

In this example, the two relevant hyperplane sections are given by

l1 = u0 + 22u1 − 363u2 + 165u3 − 1859u4 + 484u5,

l2 = u0 + 22u1 − 352u2 + 143u3 − 1595u4 + 363u5.

Also,
(1) the generic fibre X = XQ is isomorphic to dP5(K), and
(2) X is the flat closure of X in P5

Z.

Proof. — The magma code for these computations can be found on
the journal’s website under https://doi.org/10.5802/aif.3529. We use
those computations also for the proofs of some of the following statements.

(1) This follows from the fact that dP5(K) is the image of the rational
map P2

Q 99K P5
Q using a basis of Q ⊗ Q.

(2) We used a Gröbner basis computation to compute the image of
the rational map P2

Z 99K P5
Z. The upshot of this that the equations

above also define a Gröbner basis of the ideal I ⊆ Z[u0, u1, . . . , u5] of
X ⊆ P5

Z. Since the leading coefficients of the basis elements are units
we conclude from [1, Proposition 4.4.4] that IQ[u0, u1, . . . , u5] ∩
Z[u0, u1, . . . , u5] is equal to I and hence that X is the flat closure
of its generic fibre. □

This last proof also shows that X itself is integral, since X is integral.
From this or the fact that X is flat over Z we deduce the important fact
that all fibres Xℓ are equidimensional of dimension 2.
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3.1. Fibres of the model

We can now study almost all fibres of X → Spec(Z) using the reduction
of the minimal polynomial mα modulo primes.

Lemma 3.5. — Let ℓ ∈ Z be a prime for which the reduction mα ∈ Fℓ[s]
is separable. The fibre Xℓ is a del Pezzo surface of degree 5. The hyperplane
sections given by the vanishing of l1 and l2 each cut out five −1-curves
on Xℓ.

Proof. — Consider the rational map P2
Fℓ

99K P5
Fℓ

using the basis qi ⊗ 1
of Q ⊗ Fℓ. By construction this morphism lands in X .

If mα is separable modulo ℓ then the reductions of the points Pi modulo
ℓ are distinct and Q ⊗ Fℓ consists of all quintics over Fℓ vanishing at least
twice at these points. By Proposition 1.4 we see that the image Y is a del
Pezzo surface of degree 5. Hence we have Y ⊆ Xℓ ⊆ P5

Fℓ
.

From Corollary III.9.6 in [17] we see that all irreducible components of
Xℓ are of dimension 2. Hence Y is one such component of Xℓ. By flatness
X → SpecZ we see that Xℓ has degree 5 in P5

Fℓ
, just like Y . Hence Xℓ has

no other irreducible components.
The statement about l1 and l2 also follows from the flatness of X over Z.

□

There are actually two possibilities if the reduction of mα modulo ℓ is
separable.

Corollary 3.6.
(1) If mα is irreducible modulo ℓ then Xℓ is interesting.
(2) If mα splits completely in Fℓ with distinct roots, then Xℓ is split,

i.e. all −1-curves are defined over Fℓ.

Proof. — In the proof of the previous lemma we have seen that Xℓ is
the image of P2

Fℓ
of all quintics vanishing at least twice at the five points

Pi = (α2
i : αi : 1) modulo ℓ. The action of Galois on the −1-curves on Xℓ is

determined by the action of Galois on the points Pi.
We have seen before that an interesting del Pezzo surface is obtained

precisely if the five points are defined over a quintic extension, but are con-
jugate over the base field. A split del Pezzo surface of degree 5 corresponds
to the case that all points are defined over the base field. □

Remark 3.7. — It is possible to determine the fibres of X/Z directly from
the splitting of mα in Fℓ even for primes which divide the discriminant
of mα. But this requires a long geometric treatise of singular del Pezzo
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surfaces, see the Ph.D. thesis of the author [22]. For our explicit examples it
is much shorter to just study the remaining finitely many fibres separately.

For this example we are only left with the fibre over ℓ = 11, since
∆(mα) = 114.

Lemma 3.8. — The fibre X11 is an integral surface in P5
F11

with precisely
one singular point.

The divisor on X11 defined by l1 is supported on a line L. The singu-
lar point lies on this line. Also, a hyperplane section given by the van-
ishing of h ∈ F11[u0, u1, . . . , u5] contains L precisely if h lies in the ideal
(u0, u1, u2, u3) ⊆ F11[u0, . . . , u5].

Proof. — We have explicit equations for X and hence for X11 and all
statements can be checked explicitly. □

The surface X11 is actually well-understood. It is a singular del Pezzo
surface and the unique singular point which is of type A4 lies on a unique
line L on X11 ⊆ P2

F11
, i.e. a −1-curve (on its minimal desingularisation).

We even have a birational morphism P2 99K X11 which restricts to an
isomorphism A2 ∼=−→ X11\L,

(1 : y : z) 7→ (1 : y : z : y2 : yz : y3 + z2).

This will allow one to transfer many problems on X11 to a problem on
the affine or the projective plane.

Remark 3.9. — This is not at all particular to this one example; for any
choice α ∈ Q of degree 5 we can construct a relative surface X over Z. If the
minimal polynomial mα reduces to the fifth power of a linear polynomial
modulo ℓ then Xℓ always has these properties.

We will forgo this general approach and stick to our explicit examples.

4. A family of log K3 surfaces

Consider the model X ⊆ P5
Z of the interesting del Pezzo surface of the

previous section. We will use it to construct a family of log K3 surfaces of
dP5 type together with their models.

Definition 4.1. — Let h ∈ Z[u0, u1, u2, u3, u4, u5](1) be a primitive
linear form. Let Uh be the complement of Ch = {h = 0} ∩ X in X .

We will consider when Uh does not have integral points. First of all this
happens when Uh is not everywhere locally soluble. We can make precise
when this happens.
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Lemma 4.2. — The affine surface Uh is everywhere locally soluble pre-
cisely when

h ̸≡ u2 + u5 mod 2.

Proof. — One can check that the points
(1 : 0 : 0 : 0 : 0 : 0) (−693: − 88: − 11: 0 : 1 : 1)

(−725: − 120: − 11: 1 : 0 : 1) (967: 122: 11: − 1: 0 : 1)
(−3345: − 328: − 46: − 4: 4 : 4) (−3497: − 331: − 34: 1 : 1 : 0)

(−6138: − 407: − 44: 0 : 1 : 0)
lie on X . Also, their coordinates as vectors in Z6 define a lattice of dimen-
sion 6 of index 2. This proves that for any prime ℓ ̸= 2 and any linear form
h at least one of these points P satisfies h(P ) ̸≡ 0 mod ℓ. This shows that
such a point determines an element in Uh(Zℓ).

We have seen in Lemma 3.5 that X2 is smooth. One can check that
#X (F2) = 5 and that these points lie on the indicated hyperplane section
over F2. □

4.1. Obstructions coming from Ah

Note that if CQ is geometrically irreducible, i.e. h is not a multiple of l1
or l2 by Lemma 2.8, then we see that BrUh/BrQ contains an element of
order 5. Let us compute the invariant maps for this element.

Lemma 4.3. — Consider a geometrically irreducible hyperplane section
given by a primitive h. Let ℓ be a prime and let A be a generator for
Br1 Uh/BrQ. We consider the invariant map

invℓ A : Uh(Zℓ) → Q/Z.

If ℓ ̸= 11 then invℓ A is identically zero.

Proof. — The statement is immediate for the infinite place and primes
ℓ which split completely in K, since in those cases AQℓ

∼= AKl
is trivial in

BrUQℓ
for any prime l of K above ℓ.

Now suppose that mα is irreducible modulo ℓ. The Kummer–Dedekind
theorem implies that ℓ is inert in Z[α]. This also proves that ℓ is inert in
OK and there is a unique prime l above ℓ. Also, XQℓ

is an interesting del
Pezzo surface since mα is irreducible over Qℓ. Hence the hyperplane section
given by the vanishing of l1 modulo ℓ is a cycle of five conjugate lines and
does not contain Fℓ-points. Hence l1 is invertible on all points in U(Zℓ).
This shows that l1

h (P ) ∈ Z×
ℓ for all P ∈ U(Zℓ). Since the extension Kl/Qℓ
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of local fields is unramified we see that any unit is a norm. Hence invℓ A is
also in this case constantly 0. □

Lemma 4.4. — Let L be the unique line on X11 ⊆ P5
F11

. If L does not
lie in the zero locus of h then inv11 A : Uh(Z11) → 1

5Z/Z is surjective.

Proof. — We have seen in Lemma 3.8 that the condition is equivalent to
h mod 11 not lying in F11[u0, . . . , u3]. Let h be this reduction modulo 11.

On points P for which l1
h (P ) ∈ Z11 is invertible we can use Lemma 1.7 to

compute the inv11 A(P ). To be precise, the invariant at such a point P only
depends on l1

h (P ) ∈ F11 up to fifth powers and there is an isomorphism
ψ : F×

11/{±1} → 1
5Z/Z such that inv11 A(P ) = ψ

(
l1
h (P )

)
.

Hence it will suffice to prove the following stronger statement: the map
l1
h : (Uh\L) (F11) → F×

11 is surjective for h ̸∈ (u0, . . . , u3). Note that both
the domain and the map depend on our choice of h. For this statement we
only have the finitely many h which we need to evaluate on a subset of the
finitely many points X11(F11). The code for this computation can be found
on the journal’s website under https://doi.org/10.5802/aif.3529. □

Proposition 4.5. — Define f = h(1, y, z, y2, yz, y3 + z2) ∈ F11[y, z].
The value 0 ∈ Q/Z lies in the image of inv11 A precisely when the polyno-
mial f assumes at least one of the values ±1 modulo 11 for y, z ∈ F11.

The image of inv11 A : Uh(Z11) → 1
5Z/Z has size

• 1 precisely when f is a constant;
• 4 precisely when f is a separable quadratic polynomial in y;
• 5 in all other cases.

Note in the second case that f is in particular independent of z.
Proof. — Using the last lemma we will only need to consider the

h ∈ (u0, . . . , u3). In this case we have that

(Uh\L) (Z11) = Uh(Z11)

since L lies in the zero locus of h. Furthermore, the value of inv11 A at a
point P only depends on l1

h (P ) modulo 11 or equivalently the reduction
P ∈ Uh(F11) of P . The statement can now be checked completely by a
computer.

We would however like to provide a little more insight. Using the isomor-
phism X11\L

∼=−→ A2
F11

from Lemma 3.8 we see that Uh,11\L
∼=−→ A2

F11
\{f =

0}. Hence we are interested in the image of f : A2
F11

\{f = 0} → F×
11/{±1}.

If h depends on u5, then f is a cubic polynomial and f = c for any c ∈ F11
is likely to have a solution, as made precise in the previous lemma. If h is
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independent of u5 but does depend on either u2 or u4, then f is linear in
z with the leading coefficient being linear in y. Fixing y to be a suitable y0
shows that f(y0, z) = c always has a solution in F11. Hence in these cases
(Uh\L) (Z11) → F×

11/{±1} is surjective.
For the remaining cases we have that h is independent of u2, u4 and u5.

This implies that f is a polynomial independent of z of degree at most 2.
We also see from Lemma 3.8 that Uh,11 = Uh,11\L

∼=−→ A2
F11

\{f = 0}. So it
suffices to study the image of f : A2

F11
\{f = 0} → F×

11/{±1}. This is further
simplified since f does not depend on the variable z.

When f is constant we immediately get the first case. Whenever f is
linear or an inseparable quadratic polynomial with root ρ ∈ F11 the sur-
jectivity of f : F11\{ρ} → F×

11/{±1} is immediate.
For the last case it is easily checked that for a quadratic separable poly-

nomial f = c(y−ρ1)(y−ρ2) the image of f : F11\{ρ1, ρ2} → F×
11/{±1} has

size four. This is independent of whether f splits over F11 or over F112 . □

We can now apply the above results to compute the Brauer–Manin ob-
struction for a fixed h and find actual algebraic obstructions of order 5 to
the integral Hasse principle.

Theorem 4.6. — Let H be the hyperplane in P5
Z given by the vanishing

of u1 −7u3. The complement U = X \H has points over Q and every Zℓ, but
there is an order 5 Brauer–Manin obstruction to the existence of integral
points.

Remark 4.7. — Let S be a set of rational primes which split completely
in K. The proof of the above statement can easily be adapted to show that
there are no S-integral points on X .

On the other hand if ℓ is an inert prime then invℓ A need not be constant
on Qℓ-points even if it is so on Zℓ-points. Although our model U is regular
this does not contradict Theorem 1 in [3]. Hence the concept of a regular
model is not as useful for S-integral points as it is for rational points.

A careful analysis of the proof of Proposition 4.5 yields the following
result.

Theorem 4.8. — Let Uh be the complement in X of a geometrically
irreducible hyperplane section given by a primitive linear form h. The class
of h modulo 2 determines whether the affine surface Uh is locally soluble.
The existence of an algebraic obstruction to the Hasse principle for integral
points depends only on the reduction of h modulo 11. Out of the 116 −
1 = 1771560 possible reductions h of h modulo 11 precisely 228 give an
obstruction.
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Note that this does not mean that the reduction of h modulo 2 and 11 is
the only condition; the proof still uses the assumption that h is primitive. It
follows from Lemma 2.8 that the condition that the section is geometrically
irreducible is immediately satisfied if h does not reduce to ±u0 modulo 11.
For hyperplanes h reducing to either of these two forms it is easily shown
that inv11 A is identically equal to 0 on Uh(Z11).

Proof of Theorem 4.8. — Let us count the non-zero linear forms h over
F11 for which such an obstruction exists. In Proposition 4.5 we saw that
we get no obstruction unless f is either constant or a separable quadratic
polynomial in y.

If f is constant then we see that inv11 A is constant and we get an
obstruction if f is one of the 8 non-fifth powers modulo 11.

For an h such that f is a quadratic inseparable polynomial we have seen
that f : F11\{ρ1, ρ2} → F×

11/{±1}, x 7→ f(x) misses exactly one value. If f
misses the value q ∈ F×

11/{±1} we see that λf for λ ∈ F×
11 misses the class

of λq. There are 10 · 112 quadratic polynomials over F11 and 10 · 11 of these
are inseparable. The group F×

11 acts on the remaining 102 · 11 quadratic
polynomials by multiplication. All orbits have size 10 and in such an orbit
exactly 2 miss the unit element in F×

11/(F
×
11)5. This proves that for an h

for which the invariant map at 11 assumes precisely 4 values there is an
obstruction if the associated polynomial f is one of these 2 · 10 · 11 = 220
separable quadratic polynomials. □

Remark 4.9. — We can also consider the affine surfaces Uh for which
Uh(AQ)A is non-empty. Of course rational points on X are Zariski dense
since it is a del Pezzo surface of degree 5. The question now is whether
some of those points x ∈ X(Q) lie on Uh, i.e. h(x0, . . . , x5) = ±1 for the
primitive coordinates xi of the point x. For some hyperplanes such a point
is easily found, but not for the linear form h = u2 − u3 − u4.

For this h we see from Proposition 4.5 that there is no algebraic obstruc-
tion. Let us consider other types of obstructions. Let C ⊆ X be the curve
cut out by h = u2−u3−u4 = 0. This curve is smooth, has a point and hence
is an elliptic curve. We now apply Remark 4.10(iii) in [19] which holds for a
smooth anticanonical section on any del Pezzo surface. In our situation we
see that an n-torsion element of BrUh/Br1 Uh gives a non-zero Q-isogeny
C → D of degree n where D(Q) has a proper n-torsion point. Since one
can prove that C is only Q-isogenous to itself and C(Q) is torsion free,
we conclude that BrUh = Br1 Uh. Hence there is also no transcendental
Brauer–Manin obstruction.
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Next we consider the set of real points and the notions of an obstruc-
tion at infinity coming from [19]. First we prove that U(R) is connected.
Consider the morphism U → A1

Q, u⃗ 7→ u4
h which induces a continuous map

π : U(R) → R. Every −1-curve on X is defined over the real numbers and
can be checked to induce a section of this map. One can even show that, for
any hyperplane section h = 0 defined over the rationals, the set of points
in U(R) which lie on a −1-curve is connected. Now consider the fibres of π.
Since the hyperplane sections u4 = 0 and h = 0 intersect in precisely one
real point, each fibre of π is an affine real curve which is the complement
of a single point on a genus 1 curve. A computation shows that the associ-
ated proper elliptic fibration has four singular fibres which lie over the real
numbers t1 < t2 < t3 < t4 = 0. The curves above the intervals (t1, t2) and
(t3, t4) have two components, but in either case each component meets at
least one of the −1-curves. This proves that U(R) is connected and there is
no strong obstruction at infinity. By Theorem 2.7 of [19] we even conclude
that Uh is not weakly obstructed at infinity.

So, many obstructions to the existence of integral points are inconclusive.
We can however use the above map π to search for points more effectively;
for a real point u⃗ on X with h(u⃗) = 1 and a fixed value of u4 the value
of u5 lies in a bounded interval, for example ( u4

6 , 4u4) if u4 ⩾ 1. Fixing an
integral value for u4 and then trying all possible values of u5 yields a single
integral point

x = (−78849858: 1180075: − 473168: − 513818: 40649: 85706).

with |u4| ⩽ 105.
For surfaces Uh for some other linear form h with small coefficients, such

as h = u2 − u3 − u4 + u5, it is still unclear if there are no integral points,
or if there are only none of small height.

Remark 4.10. — We can use the same construction to produce models
X with a different splitting field K. However if K is ramified at a prime
p > 11 then one can show that the image of invp Uh(Zp) has either size 1 or
5. Furthermore, the first case happens precisely when l1

h is constant modulo
p similar to above. The interesting thing to note is that the intermediate
case in which the invariant map assumes 4 invariants does not occur any
more.

We are left with the case of quintic fields K/Q which are ramified at 5.
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5. Explicit examples with splitting field K ⊆ Q(ζ25)

It is also possible to find obstructions of order 5 to the integral Hasse
principle when X is a model of the interesting del Pezzo surface X split by
the unique quintic extension K contained in Q(ζ25). In that case K has 5
as a wildly ramified prime. For example, define the field K ⊆ Q(ζ25) as the
splitting field of the polynomial

mα = s5 − 20s4 + 100s3 − 125s2 + 50s− 5.

This produces the projective surface X over the integers given by the five
equations

u0u3 + 40u0u4 + 400u0u5 − u2
1 − 400u1u3 + 16000u1u4 − 365050u2u4

−49995u2u5+51985u3u4−200u3u5−2029975u2
4+392250u4u5−39375u2

5,

u0u4 + 20u0u5 − u1u2 − 20u1u3 + 800u1u4 − 18125u2u4 − 2500u2u5

+ 2550u3u4 − 5u3u5 − 101015u2
4 + 19800u4u5 − 2000u2

5,

u0u5 − u1u3 + 40u1u4 − u2
2 − 900u2u4 − 125u2u5 + 125u3u4

− 5000u2
4 + 985u4u5 − 100u2

5,

u1u4 − u2u3 − 20u2u4 − 125u2
4 + 50u4u5 − 5u2

5,

u1u5 − u2u4 − 20u2u5 − u2
3 + 20u3u4 − 100u2

4.

The two linear forms over Z cutting out the two quintuples of −1-curves
are

l1 = u0 + 25u1 − 700u2 + 200u3 − 3425u4 + 575u5,

l2 = u0 + 75u1 − 1675u2 + 375u3 − 5175u4 + 575u5.

By construction this scheme shares many properties with the previous ex-
ample.

Proposition 5.1.
(1) The scheme X is integral, with integral fibres.
(2) If mα is irreducible modulo ℓ then Xℓ is an interesting del Pezzo

surface.
(3) If mα has five distinct roots in Fℓ then Xℓ is a split del Pezzo surface

of degree 5.
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(4) For ℓ = 5 the surface X5 contains a unique line L for which
divX5(l1) = 5L, and X5 has a unique singular point of type A4
which lies on L. There is a birational map X5 99K P2

F5
which re-

stricts to an isomorphism X5\L
∼=−→ A2

F5
.

The only fibre not discussed in this lemma is the one over 7, since ∆(K) =
5876. Although X7 is again a singular del Pezzo surface, we will not need
any information about this fibre this since 7 splits completely in K.

Proof. — One can follow the proofs in Section 3 for this different choice
of α and corresponding equations for X . □

We will consider Uh = X \{h = 0} like in the previous sections. As before,
local solubility is immediate at most primes.

Lemma 5.2. — The surface Uh is everywhere locally soluble precisely
when

h ̸≡ u2 + u3 mod 2.

Proof. — As for the proof of Lemma 4.2 it is easy enough to find enough
points on X whose reductions do not lie on a hyperplane modulo ℓ > 2.
For ℓ = 2 the fibre X is again smooth, #X (F2) = 5 and all F2-points lie on
the unique hyperplane given by u2 + u3 ≡ 0 mod 2. □

The computation of the invariant maps at the unramified primes is the
same computation as in Lemma 4.3 for the previous example.

Lemma 5.3. — Consider the invariant map

invℓ A : Uh(Zℓ) → Q/Z.

If ℓ ̸= 5, then the invariant map is identically zero.

Let us consider the remaining prime.

Theorem 5.4. — Then inv5 A : U(Z5) → 1
5Z/Z is not surjective pre-

cisely when there exist integers λ, c1 and c3 satisfying 5 ∤ λ, and 5 | c1, c3
or 5 ∤ c3 such that

h ≡ λu0 + 5(c1u1 + c3u3) mod 25.

The invariant map is constant when 5 | c1, c3 and otherwise the size of its
image is 3.

The value 0 ∈ Q/Z lies in the image of inv11 A precisely when λ+5(c1y+
c3y

2) assumes one of values ±1,±7 modulo 25 for y ∈ Z.

To prove this result one can use the fact that the model X is regular.
However, if 5 is ramified in K one has a similar statement for any model
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Xα, which does not need to be regular. The following chain of results also
implies a similar result in the more general case.

Lemma 5.5. — Consider a point P ∈ (Uh\L) (F5). Let P be the set of
the 25 lifts of P in X (Z/25Z). The image of

l1
h

: P → (Z/25Z)×

is either of size 1 or 5.

Proof. — Define V := Uh,5\L ⊆ A5
F5

on which h
l1

is given by haff =
a0 + a1u1 + · · · + a5u5. Now let x⃗ = (x1, x2, x3, x4, x5) be a 5-tuple of
integers reducing to P ∈ V(F5). We will first show that the lifts of P to
points in X (Z/25Z) are x⃗ + 5w⃗ where w⃗ is any vector in a translation of
the tangent space of V at P .

Indeed, suppose that X is given by polynomials gj in the variables ui.
The tangent space at P is by definition

TP V =
{
v⃗ ∈ F5

5 :
5∑

i=1

∂gj

∂ui
(P )vi ≡ 0 mod 5 for all j

}
and if x⃗+ 5w⃗ ∈ X (Z/25Z) then for all j

0 ≡ gj(x⃗+ 5w⃗) ≡ gj(x⃗) + 5
5∑

i=1

∂gj

∂ui
(x⃗)wi mod 25

which proves that the set of possible w⃗ is an affine translation of TP V.
To compute haff at these lifts, let us write a⃗ = (a1, a2, a3, a4, a5) ∈ Z5.

Then we find

haff(x⃗+ 5w⃗) ≡ haff(x⃗) + 5a⃗ · w⃗ mod 25.

This concludes the proof since the w⃗ live in a linear space over F5. □

This result is very powerful when combined with the following fact.

Lemma 5.6. — An element a ∈ Z×
5 is a fifth power precisely if it is so

modulo 25, i.e. if its reduction â ∈ Z/25Z lies in {±1,±7}.
Hence, the five lifts of any a ∈ (Z/5Z)× in (Z/25Z)× lie in different

classes modulo fifth powers.

To prove Theorem 5.4 using brute computational force one would need
to list all possible linear forms h and points in X (Z5) modulo 25. We will
use these last two results to show we can do this computation while only
using the points and linear forms modulo 5; drastically improving on the
time needed for the computations.
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Let us first show we can ignore the singular point on X5, or even the
unique line L ⊆ X5 containing this point.

Proposition 5.7. — If h is not a multiple of l1 modulo 5 then

inv5 A : Uh(Z5) → 1
5Z/Z

is surjective.

Proof. — We will prove a stronger statement. Define V := U5\L ⊆ A5
F5

on which the linear form is given by h = a0 + a1u1 + · · · + a5u5. We will
show that there is an F5-point P on V such that h : TP V → F5 is surjective;
note that one can consider the tangent space as a linear or affine subspace
of F5

5, since this does not change the size of the image of this functional.
One can prove this stronger statement by translating it back to a study

of plane curves using the isomorphism V ∼= A2
F5

\{f = 0} for

f = h(1, y, z, y2, yz, y3 + z2)

and conclude that for every h there are at least 10 such points.
Now let P be such an F5-point in V ⊆ X . By the defining property of

P we see that inv Ah assumes five values on the points in Uh(Z5) reducing
to P . □

Corollary 5.8. — If h does not vanish on the line L ⊆ X5 then inv5 A
is surjective.

We can now efficiently prove Theorem 5.4.
Proof of Theorem 5.4. — By Proposition 5.7 we only need to consider

the case that h is a multiple of u0 modulo 5 hence we can write h = λu0 +
5(c1u1 + · · · + c5u5) ∈ Z[u0, u1, . . . , u5]. Let us write k = c1u1 + · · · + c5u5.
Since l1 ≡ u0 mod 25 we see that the value of h

l1
= λ + 5k( u1

u0
, . . . , u5

u0
)

mod 25 at any P ∈ U(Z5) only depends on its reduction P ∈ U(F5).
We are interested in the values k takes on U(Z5) modulo 5. A computer

check available on the journal’s website under https://doi.org/10.5802/
aif.3529 shows that for the listed cases k assumes the indicated number of
values in F5. Hence h

l1
assumes the same number of values in (Z/25Z)× each

of which is a different lift of λ ∈ F×
5 . This shows that l1

h assumes exactly 1,
3 or 5 values in Z×

5 modulo fifth powers. Hence we see that inv5 A assumes
these many values on Uh(Z5).

To provide a little more insight we can again use the isomorphism U5 ∼=
A2

F5
\{f = 0} now using f = k(1, y, z, y2, yz, y3 + z2). One can check that

f is surjective to F×
5 if it describes a line, a conic with two distinct ratio-

nal points at infinity, a geometrically integral conic with a single point at
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infinity, or a cubic curve. The remaining cases are the constant functions
and the quadratics which are independent of z. In these cases we have
k ≡ c1u1 + c3u3 mod 5.

The hyperplane section of P5
F5

defined by the vanishing of k ≡ c1u1+c3u3
mod 5 corresponds to the polynomial c1y+ c3y

2 on A2
F5

which is quadratic
if c3 ̸= 0 and constant if c1 = c3 = 0. By symmetry we see that a quadratic
in one variable over F5 assumes exactly 3 values. And obviously h ≡ λl1
mod 25 precisely when c1 and c3 are zero in F5. □

For completeness we will give an example of a hyperplane section for
which the associated affine scheme over the integers does not have integral
solutions.

Theorem 5.9. — Consider an h which cuts out a geometrically irre-
ducible hyperplane section such that 0 does not lie in the image of inv5 A.
The reduction of h modulo 25 is one of 176 out of the (52)6−56 = 244125000
possible linear forms over Z/25Z. For example, the surface Uh/Z for h =
2u0 − 15u1 + 10u3 admits a Brauer–Manin obstruction of order 5 to the
existence of integral points.

Proof. — Let (Z/25Z)× act by multiplication on the linear forms modulo
25 for which inv5 A is not surjective. Multiplication by λ translates the
image of the invariant map by an element of 1

5Z/Z corresponding to the
class of λ in (Z/25Z)× modulo fifth powers. So if the size of the image of
an invariant map corresponding to a hyperplane {h = 0} has one element,
then 4

5 of the scalar multiples of h do not have 0 in the image. For invariant
maps whose image is of size 3 precisely 2

5 of the scalar multiples have
this property. Using Theorem 5.4 we see that the number of linear forms
modulo 25 for which 0 does not lie in the image of the invariant map is
4
5 · 20 + 2

5 · 20 · 4 · 5 = 176.
Now consider the linear form h = 2u0−15u1+10u3. The affine surface Uh

is locally soluble by Lemma 5.2. The result follows from the Theorem 5.4;
take λ = 2, c1 = −3 and c3 = 2 and note that 2 − 15x+ 10x2 only assumes
the values 2, 12, 22 mod 25. So 0 does not lie in the image of the invariant
map at 5 and the invariant maps at the other primes are all constant zero
by Lemma 5.3. □

We can also show that in the two explicit examples with splitting fields
with conductor 11 and 25 the absence of integral points is not explained
by the principle of obstructions at infinity as introduced by Jahnel and
Schindler in [19].
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