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Abstract
We consider the spectrum of random Laplacian matrices of the form Ln = An − Dn

where An is a real symmetric randommatrix and Dn is a diagonal matrix whose entries
are equal to the corresponding row sums of An . If An is a Wigner matrix with entries
in the domain of attraction of a Gaussian distribution, the empirical spectral measure
of Ln is known to converge to the free convolution of a semicircle distribution and a
standard real Gaussian distribution. We consider real symmetric random matrices An

with independent entries (up to symmetry) whose row sums converge to a purely non-
Gaussian infinitely divisible distribution, which fall into the class of Lévy–Khintchine
randommatrices first introduced by Jung [TransAmMath Soc, 370, (2018)]. Ourmain
result shows that the empirical spectral measure of Ln converges almost surely to a
deterministic limit. A key step in the proof is to use the purely non-Gaussian nature
of the row sums to build a random operator to which Ln converges in an appropriate
sense. This operator leads to a recursive distributional equation uniquely describing
the Stieltjes transform of the limiting empirical spectral measure.
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1 Introduction

We consider the empirical spectral measure1 of random Laplacian-type matrices of
the form

Ln = An − Dn (1.1)

where An = (Ai j )
n
i, j=1 is an n × n real symmetric random matrix with independent

entries up to symmetry, and Dn is a diagonal matrix with (Dn)i i =∑n
j=1 Ai j . When

An is aWigner matrix, i.e. An has independent entries up to symmetry with mean zero
and variance 1

n , the empirical spectral measure of An converges toWigner’s semicircle
law, the empirical spectral measure of Dn converges to a standard Gaussian distribu-
tion, and it was shown in [10] that the empirical spectral measure of Ln converges
to the free convolution of the semicircle law and the standard real Gaussian measure.
In this paper, we will consider An such that the diagonal entries of Dn converge in
distribution, not to the Gaussian distribution, but rather to a non-Gaussian infinitely
divisible distribution. This model will include Lévy matrices, sometimes referred to
as heavy-tailed Wigner matrices, where the entries of An are independent up to sym-
metry, but have infinite second moment, see Subsection 1.1 for more details. Another
important example arises when An is the adjacency matrix of an Erdős–Rényi ran-
dom graph where the expected degree of any vertex remains fixed as the number of
vertices goes to infinity. These An fall into the class of Lévy–Khintchine matrices, a
generalization of Lévy matrices defined by Jung in [24], see Subsection 1.2 for more
on these matrices.

The term Laplacian comes from graph theory, where the combinatorial Laplacian
of a graph with vertex set {1, 2, . . . , n} is defined by:

Li j =

⎧
⎪⎨

⎪⎩

deg(i), if i = j

−1, if i ∼ j

0, if i � j,

(1.2)

where i ∼ j if {i, j} is an edge in the graph and deg(i) is the number of edges
incident to a vertex i . The combinatorial Laplacian is the negative of what we refer
to as the Laplacian. If the entries of An are almost surely nonnegative, then Ln is the
infinitesimal generator of a (random) continuous time randomwalk, and for this reason,
Ln is referred to as aMarkovmatrix in someof the literature.Weuse the termLaplacian
throughout. Spectral properties of real symmetric random Laplacian matrices have
been studied in [4, 10, 12, 13, 16, 17, 21–23] and for non-symmetric randomLaplacian
matrices in [6] when the entries of An are in the domain of attraction of either a
real or complex Gaussian random variable. Though because of the widespread use
of graph Laplacians this list is incomplete. In these light-tailed cases, the limiting
spectral measure has a particularly nice free probabilistic interpretation (see [27] for

1 The definition for the empirical spectral measure and other notation used throughout is established in
Subsection 1.3.
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an introduction to free probability and random matrices). In [10], Bryc, Dembo, and
Jiang proved the following:

Theorem 1.1 (Theorem 1.3 in [10]) Let {Xi j : j ≥ i ≥ 1} be a collection of i.i.d. real
random variables with EX12 = 0 and EX2

12 = 1, Xi j = X ji for 1 ≤ i ≤ j , and let
An = (Xi j/

√
n
)n
i, j=1 be a random real symmetric matrix. With probability one, the

empirical spectral measure of the matrix Ln defined in (1.1) converges weakly to the
free additive convolution of the semicircle and standard Gaussian measures.

The analogous free probabilistic limit was established in [6] for non-symmetric An .
While some of the above references study sparse Laplacian matrices, none consider
random Laplacian matrices with heavy-tailed entries or sparse Laplacian matrices
where the expected number of nonzero entries in a row is uniformly bounded in n.

Many of the tools and techniques we employ were developed in the study of heavy-
tailed real symmetric, or Lévy, matrices by Bordenave, Caputo, and Chafaï in [7]. Lévy
matrices were introduced in [14] as heavy-tailed versions of Wigner matrices. For the
purposes of this paper, an important distinction between Lévy and Wigner matrices is
that the row sums of a Wigner matrix converge in distribution to a Gaussian random
variable, while the row sums of a Lévy matrix converge to an α-stable distribution for
0 < α < 2. The techniques in [7] were extended by Jung in [24] to random matrices
whose row sums converge in distribution to an infinitely divisible distribution.

1.1 Lévy Matrices

Lévy matrices are the heavy-tailed analogue of Wigner matrices, where the entries are
independent up to symmetry, but fail to have two finite moments.

Definition 1.2 A real symmetric random matrix X is a Lévy matrix if the diagonal
entries are zero, the entries above the diagonal are independent and identically dis-
tributed (i.i.d.) copies of a real random variable ξ , and there exists θ ∈ [0, 1] and
α ∈ (0, 2) such that

(i) lim
t→∞

P(ξ≥t)
P(|ξ |≥t) = θ,

(ii) P(|ξ | ≥ t) = t−αL(t) for all t ≥ 1, where L is a slowly varying function, i.e.
L(t x)/L(t) → 1 as t → ∞ for any x > 0.

The conditions in Definition 1.2 are the same conditions for ξ to be in the domain of
attraction of an α-stable distribution. Unlike withWigner matrices, the natural scaling
on an n × n Lévy matrix X is not

√
n, but instead

an := inf
{
x : P(|X12| > x) ≤ n−1

}
. (1.3)

For an n × n Lévy matrix Xn , the matrix An in equation (1.1) will be defined as
An := a−1

n Xn . We will refer to An as a normalized Lévy matrix.
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1.2 Lévy–KhintchineMatrices

Jung in [24] defined a generalization of Lévy matrices. Instead of assuming the entries
are in the domain of attraction of an α-stable distribution, the entries are in the domain
of attraction of any infinitely divisible distribution.

Definition 1.3 A sequence of real symmetric random matrices {An}n≥1 is called a
Lévy–Khintchine random matrix ensemble with characteristics (σ 2, b,m) if for each
n, An = (A(n)

i j )ni, j=1 is n×n, the diagonal entries of An are 0, the non-diagonal entries

are i.i.d. up to symmetry and
∑n

j=1 A
(n)
1 j converges in distribution as n → ∞ to a

random variable Y with

log(EeitY ) = −1

2
t2σ 2 + i tb +

∫

R

(

eitx − 1− i t x

1+ x2

)

dm(x) (1.4)

for all t ∈ R, where m is a measure on R with m({0}) = 0 satisfying

∫

R

1 ∧ |x |2dm(x) < ∞. (1.5)

Remark 1.4 It isworth noting that the distribution of A(n)
12 may changewith n. However,

for many important examples A(n)
12 is either a rescaling of a fixed random variable or

is the product of a fixed random variable and a Bernoulli random variable where only
the Bernoulli random variable is changing with n.

A random variable Y satisfying (1.4) is said to have an infinitely divisible distri-
bution with characteristics (σ 2, b,m), and (1.4) is referred to as the Lévy–Khintchine
representation of Y . When σ = 0, Y is called purely non-Gaussian and has an
important connection to Poisson point processes with intensity measure m outlined in
Propositions 3.6 and 3.7. Section3 additionally contains background on Poisson point
processes.

1.3 Notation

Throughout this paper, we use ⇒ to denote weak convergence of probability mea-
sure, convergence in distribution of random variables, and vague convergence of finite
measures. For an n× n real symmetric matrix M , the eigenvalues will always be con-
sidered in non-increasing order λ1 ≥ λ2 ≥ · · · ≥ λn . We define the empirical spectral
measure of an n × n real symmetric matrix M to be the probability measure

μM = 1

n

n∑

i=1

δλi , (1.6)

where δx is the Dirac delta measure at x .
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A coupling of two probability measures μ1 and μ2 is a random tuple (X ,Y ) such

that X is μ1 distributed and Y is μ2 distributed. The symbol
d= will be used to denote

equality in distribution of random variables and L(X) will be used to denote the
distribution of a randomvariable X . For two complex-valued square integrable random
variables ξ andψ , we define the covariance between ξ andψ as Cov(ξ, ψ) := E[(ξ −
Eξ)(ψ − Eψ)].

Throughout we will consider Poisson point processes on R̄ \ {0}, the one point
compactification of R with the origin removed, with some intensity measure m. We
will consider both finite and infinite measures, so for convenience we will denote
the points of this process by {yi }i≥1 for general m where yi = 0 for any i greater
than an appropriate (possibly identically infinite) Poisson random variable, and when
considering a specific finite measure m, we will denote the points by {yi }Ni=1 for a
Poisson random variable N . See Sect. 3 for details on Poisson point processes.

For a topological space E , let CK (E) denote the set of real-valued continuous
functions on E with compact support. We will use C+ to be the set of complex
numbers with strictly positive imaginary part. For a probability measure μ on R, we
define the function sμ : C+ → C+ by

sμ(z) =
∫

R

1

x − z
dμ(x), (1.7)

and refer to sμ as the Stieltjes transform of μ.
We will use asymptotic notation (O, o,	, etc.) under the assumption that n → ∞

unless otherwise stated. X = O(Y ) if X ≤ CY for an absolute constant C > 0 and
all n ≥ C , X = o(Y ) if X ≤ CnY for Cn → 0, X = 	(Y ) if cY ≤ X ≤ CY for
absolute constants C, c > 0 and all n ≥ C , and X ∼ Y if X/Y → 1.

2 Main Results

Throughout we will assume An = (A(n)
i j )ni, j=1 is the n-th element of a Lévy–

Khintchine random matrix ensemble with characteristics (0, b,m), Dn is a diagonal
matrix with (Dn)i i =∑n

j=1 A
(n)
i j , and

Ln = An − Dn . (2.1)

Definition 2.1 Let {An}n≥1 be a Lévy–Khintchine randommatrix ensemble with char-
acteristics (0, b,m) and for each n ≥ 1 let V1n ≥ V2n ≥ · · · ≥ V(n−1)n be the order

statistics of {|A(n)
2n |, |A(n)

3n |, . . . , |A(n)
nn |}. {An}n≥1 satisfies Condition C1 if:

• The Poisson point process with intensity measure m is almost surely summable.
• (Vjn) j≥1 is almost surely uniformly integrable in n, i.e.

lim
k→∞ sup

n>k

n−1∑

i=k+1

Vin = 0, (2.2)
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almost surely.
• There exists ε > 0 and C > 0 such that

m({x ∈ R : |x | ≥ t}) ≤ Ct−ε, (2.3)

and

nP

(
|A(n)

12 | ≥ t
)
≤ Ct−ε (2.4)

for all t > 1/4 and for every n ∈ N.

Remark 2.2 From Campbell’s formula (Lemma 3.3), almost sure summability of a
Poisson point process with intensity measure m is equivalent to

∫

R\{0}
|x | ∧ 1dm(x) < ∞. (2.5)

Remark 2.3 Some interesting and important examples of random matrices satisfying
condition C1 include:

(i) An = a−1
n Xn for a Lévy matrix Xn with α ∈ (0, 1) and an as defined in (1.3). In

this case, m = mα where mα is the measure on R with density

f (x) = α|x |−(1+α)
(
θ1{x>0} + (1− θ)1{x<0}

)
,

for α and θ as in Definition 1.2.2

(ii) The adjacency matrix An of an Erdős–Rényi random graph G(n, p) with np →
λ ∈ (0,∞). In this case, the row sums of An converge to Poisson random variables
so that in (1.4) m = λδ1 and b = λ/2.

(iii) The matrix An = 1√
λ
En ◦ Xn where En is the adjacency matrix of an Erdős–Rényi

random graph G(n, p) with np → λ ∈ (0,∞), Xn is chosen from the Gaussian
Orthogonal Ensemble (GOE), and ◦ is the Hadamard product of matrices. In this
case, m = λGλ where Gλ is the centered Gaussian probability measure with
variance 1

λ
.

The first two points of Condition C1 will be important for handling the diagonal
entries of Ln . (2.5) implies a Poisson point process with intensity measurem is almost
surely summable, which is stronger than the almost sure square summability implied
by (1.5). An essential component of the proofs in Sect. 6 is the convergence of the
empirical point process of entries in a row of An to a Poisson point process with
intensity measure m; however, convergence as point processes does not necessarily
imply convergence of the row sum to the sumof the Poisson point process. The uniform
integrability assumption (2.2) will allow us in Sect. 6 to conclude that the row sums
converge to the sum of the Poisson point process with intensity measure m. The last

2 For α ∈ [1, 2), (2.5) and (2.2) will not hold. For this reason, we believe the case where α ∈ [1, 2) would
require different techniques than those used here.
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point is a technical assumptions needed in the proof of the main theorem given below.
Heuristically the last point of Condition C1 states that the infinitely divisible random
variable Y in Definition 1.3 has at least t−ε tail decay, and this tail assumption holds
entry-wise uniformly in n. The assumption in (2.4) is technical and used to prove
tightness of the empirical spectral measures, but perhaps is not necessary, and there
may be room for refinement. The choice of 1/4 in the final condition is arbitrary, any
positive constant would be sufficient.

Theorem 2.4 (Eigenvalue Convergence for Laplacian Lévy–Khintchine matrices) Let
{An}n≥1 be a Lévy–Khintchine randommatrix ensemble with characteristics (0, b,m)

all defined on the same probability space satisfying ConditionC1, and for every n ∈ N

let Ln be defined by (2.1). Then, there exists a deterministic probability measure μm

depending only on m such that a.s. μLn converges weakly to μm, as n → ∞.

While the random matrices satisfying Condition C1 may appear very different for
different m, a general description of μm is available through its Stieltjes transform
and a recursive distributional equation (RDE). A recursive distributional equation is
an equation of the form

X
d= g((Y1, X1), (Y2, X2), . . . ) (2.6)

where {Xn}∞n=1 are i.i.d. copies of X and {Yn}∞n=1 is some sequence of randomvariables
independent from {Xn}∞n=1. While we do not use existing results from the literature,
we did find the survey [1] and the unpublished manuscript [2] helpful for better under-
standing RDEs and contraction arguments in proving uniqueness of solutions. We
encourage the interested reader to begin there for more information on RDEs.

Theorem 2.5 (Recursive Distributional Equation for Stieltjes Transform of μm) Let
μm be the limiting deterministic measure from Theorem 2.4, and let sm(z) =∫

R

1
x−z dμm(x) be the Stieltjes transform of μm. Then for every z ∈ C+, sm(z) =

Es∅(z) where s∅ is the Stieltjes transform of a random probability measure. More-
over, the distribution of s∅ is the unique distribution on the space of Stieltjes transforms
of probability measures such that

s∅(z)
d= −
⎛

⎝z −
∞∑

j=1

y j
s j (z)y j − 1

⎞

⎠

−1

for all z ∈ C+, (2.7)

where {y j } j≥1 is a Poisson point process with intensity measure m and {s j } is a
collection of i.i.d. copies of s∅ independent from the point process.

Theorems 2.4 and 2.5 give that the limiting empirical spectral measure of Ln is
uniquely determined by a Poisson point process with intensity measure m. For the
examples outlined in Remark 2.3, we will now give some more explicit descriptions
of the corresponding point processes.
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(i) Let E1, E2, . . . be a sequence of independent exponential random variables with
mean 1 and �k = E1+· · ·+ Ek . Additionally let ε1, ε2, . . . be a sequence of i.i.d.
random variables such that

P(ε1 = 1) = θ = 1− P(ε1 = −1).

Then (see [15] Proposition 2) the collection {εk�−1/α
k }k≥1 is a Poisson point pro-

cess with intensity measure mα , the measure arising for Lévy matrices, example
(i) in Remark 2.3.

(ii) For the Laplacian of very sparse random graphs, discusses in Remark 2.3 (ii), the
Poisson point process is quite simple. Let N be a Poisson random variable with
mean λ and for k ≥ 1 define yk by

yk =
{
1, k ≤ N ,

0, k > N
.

Then, {yk}k≥1 is a Poisson point process with intensity measure λδ1.
(iii) For a very sparse GOE matrix described in example (iii) in Remark 2.3, let

Y1,Y2, . . . be independent standard real Gaussian random variables, and let N
be a Poisson random variable with mean λ. Define

yk =
{

Yk√
λ
, k ≤ N

0, k > N
.

Then, {yk}k≥1 is a Poisson point processwith intensitymeasureλGλ. This example
is explored a bit further in Theorem 2.7.

RDE (2.7) can be written as:

s∅(z)
d= −
⎛

⎝z +
∞∑

j=1

y j −
∞∑

j=1

y2j s j (z)

s j (z)y j − 1

⎞

⎠

−1

. (2.8)

If we consider a diagonal matrix D̃n independent from An with independent entries

(D̃n)i i
d= (Dn)i i and the matrix L̃n = An− D̃n , then the work below leading up to the

existence of (2.7) could be adapted in a straightforwardway to arrive at a corresponding
RDE for L̃n . Specifically,

s∅(z)
d= −
⎛

⎝z +
∞∑

j=1

ỹ j −
∞∑

j=1

y2j s j (z)

⎞

⎠

−1

, (2.9)

where {ỹ j } is an independent copy of the point process of {y j }, independent of {s j }.
For light-tailed An , Theorem 1.1 gives that the limiting spectral measure of Ln is
the free additive convolution of the semicircle measure and the Gaussian measure.
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This is the same limiting spectral measure for An − Dn , when An is independent of
Dn . In contrast, the differences between equations (2.8) and (2.9) suggest that for
Lévy–Khintchine An , the dependence between An and Dn can be seen in the limiting
measure μm .

2.1 Outline

Section 3 contains a brief introduction to Poisson point processes, and important results
on these processes used throughout. In Sects. 4 and 5, we define local convergence for
operators on �2(V ) for a countable set V and use the measure m to build a random
operator L . In Sect. 6, we show that Ln converges locally in distribution to L , and
then, in Sect. 7 we upgrade this to convergence of the empirical spectral measures.
Finally in Sect. 8, we show that the Stieltjes transform of the limiting empirical spectral
measure can be described as the expected value of the unique solution to (2.7). In the
appendices, we prove almost sure tightness of the collection {μLn }n≥1 and list some
technical lemmas. We end this section with two corollaries of Theorem 2.5. The first
is a continuity result for the map m �→ μm . In the second, we use (2.7) to recover the
free convolution of a semicircle and a standard Gaussian measure from the limiting
empirical measure of very sparse random matrices.

2.2 Corollaries of Theorem 2.5

The first corollary of Theorem 2.5 concerns continuity of themappingm �→ μm where
μm is the limiting measure of Theorem 2.4. Uniqueness of the solution to the RDE in
Theorem 2.5 is crucial to the proof of Corollary 2.6.

Corollary 2.6 Let R̄ denote the one point compactification of R. Let {mn}∞n=1 be a
collection of measures on R such that

∫

R

1 ∧ |x | dmn(x) < ∞,

for all n ∈ N ∪ {∞}. Let μm1 , μm2 , . . . and μm∞ be the deterministic limiting
measures described in Theorem 2.4 for a Lévy–Khintchine random matrix ensem-
ble with characteristics (0, b,m1), (0, b,m2), . . . and (0, b,m∞), respectively. If for
any f ∈ CK (R̄\{0}),

∫

R

f dmn →
∫

R

f dm∞,

and for any ε > 0

lim
k→∞ sup

n≥1
P

⎛

⎝
∞∑

j=k

|y(n)
j | > ε

⎞

⎠ = 0, (2.10)

123



942 Journal of Theoretical Probability (2024) 37:933–973

where for each n ∈ N, {y(n)
j }∞j=1 is a Poisson point process with intensity measure mn,

and then, μmn converges weakly to μm∞ as n → ∞.

Proof Let sn be the Stieltjes transforms of μmn , and let rn be the random Stieltjes
transform solving (2.7) corresponding to mn , so that sn = Ern . By Lemma B.2, in
order to prove Corollary 2.6 it is enough to show that pointwise limn→∞ sn = Er ,
where r solves RDE (2.7) corresponding to m∞. Take any subsequence {snk }nk of
{sn}n , with corresponding subsequence {rnk }nk of {rn}n . From Lemma B.3, it follows
that {rnk } is tight in the space of analytic function on C+ with the topology of uniform
convergence on compact subsets, and we pass to a further subsequence n′k converging
to another random analytic function r(z). As {rnk } is almost surely uniformly bounded
on compact subsets is follows that r is almost surely bounded on compact subsets. For
any fixed z ∈ C+, it follows by the dominated convergence theorem that

lim
n′k→∞

sn′k (z) = lim
n′k→∞

Ern′k (z) = Er(z). (2.11)

Corollary 2.6 then follows if r is a random Stieltjes transform solution to RDE (2.7)
corresponding to m∞.

To this end, let n be Poisson random measures with intensity measures mn . For
a positive function f ∈ CK (R̄\{0}), 1 − e− f (x) is also a continuous function with
compact support. Thus,

lim
n→∞ exp

(∫

R

1− e− f (x)dmn(x)

)

= exp

(∫

R

1− e− f (x)dm∞(x)

)

. (2.12)

It follows from Propositions 3.4 and 3.5 that n converges in distribution to ∞. For
n ∈ N let {y(n)

j } j≥1 be the points of the process n and {y j } j≥1 the points of the

process ∞. The points may be ordered such that for every j ∈ N, y(n)
j converges

in distribution to y j (see Section 2 of [15] for more details). In fact, from (2.10)

and Lemma 1 of [15] {y(n)
j } j≥1 converges in distribution to {y j } j≥1 in �1(N). Using

Skorokhod’s representation theorem, we may put {rn′k }, {n′k }, ∞ and r on a single
probability space such that all the above convergences in distributions are almost sure,
and

lim
n→∞

∞∑

j=1

|y(n)
j − y j | = 0 (2.13)

almost surely. For fixed z ∈ C+,

r(z) = lim
n′k→∞

rn′k (z)

= lim
n′k→∞

−
⎛

⎜
⎝z −

∞∑

j=1

y
(n′k )
j

r ( j)
n′k

(z)y
(n′k )
j − 1

⎞

⎟
⎠

−1
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= −
⎛

⎜
⎝z − lim

n′k→∞

∞∑

j=1

y
(n′k )
j

r ( j)
n′k

(z)y
(n′k )
j − 1

⎞

⎟
⎠

−1

= −
⎛

⎝z −
∞∑

j=1

y j
r j (z)y j − 1

⎞

⎠

−1

, (2.14)

for independent copies r1, r2, . . . of r , where the last equality follows from (2.13).
Thus, r is an analytic solution to RDE (2.7). From (2.14) and the almost sure
boundedness of r on compact subsets of C+ that almost surely

lim
t→∞ i tr(i t) = −1, (2.15)

and thus r is almost surely the Stieltjes transform of a probability measure. From
(2.11) and the uniqueness of the solution to RDE (2.7), it follows that for any z ∈ C+

lim
n′k→∞

sn′k (z) = s∞(z). (2.16)

As the subsequence nk was arbitrary is follows that sn converge pointwise to s∞ and
μmn converges weakly to μm∞ as n → ∞. ��

Theorem 2.7 considers the λ → ∞ limit of example (iii) in Remark 2.3. The
limiting measure is the same limiting measure found in Theorem 1.1. The works of
Jiang [22] and Chatterjee and Hazra [13] established Theorem 1.1 for sparse random
matrices where the expected number of nonzero entries in a row tends to infinity with
the size of thematrix. Theorem 2.7, when combinedwith Theorem 2.4 and Remark 2.3
(iii), can then be interpreted as splitting the limit to where first n → ∞ and then the
expected number of nonzero entries tends to infinity.

Theorem 2.7 Let Gλ denote the Gaussian probability measure with mean 0 and vari-
ance 1

λ
, and let mλ = λGλ. If μmλ is the deterministic limiting probability measure

from Theorem 2.4, thenμmλ converges weakly to the free convolution of the semicircle
distribution and the standard real Gaussian distribution, as λ → ∞.

Proof Denote the free convolution of a standard semicircle measure and standard
Gaussian measure by SC � G1. It is known [5] that the Stieltjes transform, sfc, of
SC � G1 can be defined as the unique solution to

sfc(z) =
∫

R

1

x − z − sfc(z)

1√
2π

e−x2/2dx (2.17)
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satisfying Im(sfc(z)) ≥ 0 and sfc(z) ∼ −z−1 as z → ∞. If sλ is the Stieltjes transform
of μmλ , then from Theorem 2.5 we know sλ(z) = Erλ(z) where rλ satisfies the RDE

rλ(z)
d= −
⎛

⎝z −
N∑

j=1

y j
r j (z)y j − 1

⎞

⎠

−1

, (2.18)

N ∼ Pois(λ), {y j }∞j=1 are i.i.d. Gaussian random variables with mean zero and vari-

ance 1
λ
and {r j }∞j=1 are i.i.d. copies of rλ, independent of the collection {y j }∞j=1. We

will instead use the equivalent recursive distributional equation

rλ(z)
d= −
⎛

⎝z + 1√
λ

N∑

j=1

y j + 1

λ

N∑

j=1

r j (z)y2j

1− r j (z)y j/
√

λ

⎞

⎠

−1

, (2.19)

where {y j }∞j=1 are i.i.d. standard real Gaussian random variables. Fix z ∈ C+. We first

consider the sum Sλ = 1√
λ

∑N
j=1 y j . For t ∈ R, define

ϕSλ(t) := E exp(i t Sλ)

=
∞∑

k=0

(

e−
t2
2λ

)k
λke−λ

k!

= exp (−λ) exp

(

λe−
t2
2λ

)

= exp

(

−λ + λ − t2

2
+ o

(
1

λ

))

,

where here and throughout the proof asymptotic notation is as λ → ∞. Thus, Sλ

converges to a standard real Gaussian random variable as λ → ∞.

We will compare the sum 1
λ

∑N
j=1

r j (z)y2j
1−r j (z)y j /

√
λ
to increasingly simpler sums. The

first comparison is to the sum 1
λ

∑N
j=1 r j (z)y

2
j . Notice that

∣
∣
∣
∣
∣
∣

1

λ

N∑

j=1

r j (z)y2j

1− r j (z)y j/
√

λ
− 1

λ

N∑

j=1

r j (z)y
2
j

∣
∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣
∣

1

λ3/2

N∑

j=1

r j (z)2y3j

1− r j (z)y j/
√

λ

∣
∣
∣
∣
∣
∣

≤ 1

Im(z)2λ3/2

N∑

j=1

|y j |3
|1− r j (z)y j/

√
λ|

≤ 2

Im(z)2λ3/2

N∑

j=1

|y j |3
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+ 1

Im(z)2λ3/2

N∑

j=1

|y j |3
|1− r j (z)y j/

√
λ|1A j,λ ,

where 1A j,λ is the indicator of the event A j,λ = {|y j | ≥
√

λ Im(z)/2}. We will now
show both pieces of this bound converge in probability to zero. From Lemma 3.3,

lim
λ→∞E

1

λ3/2

N∑

j=1

|y j |3 = lim
λ→∞

E|y1|3√
λ

= 0.

From standard tail estimates of Gaussian random variables, we have that

lim
λ→∞P

⎛

⎝
N∑

j=1

1A j,λ �= 0

⎞

⎠ = lim
λ→∞

∞∑

k=0

P

⎛

⎝
k∑

j=1

1A j,λ �= 0

⎞

⎠ e−λ λk

k!

≤ lim
λ→∞

∞∑

k=0

kP

(
|y1| ≥

√
λ Im(z)/2

)
e−λ λk

k!

≤ lim
λ→∞

∞∑

k=0

k
2√

2πλ Im(z)
e−λ Im(z)2/8e−λ λk

k!
≤ lim

λ→∞Ce−cλ
√

λ,

for some positive constants C, c > 0 independent of λ. Thus 1
λ

∑N
j=1

r j (z)y2j
1−r j (z)y j /

√
λ
−

1
λ

∑N
j=1 r j (z)y

2
j ⇒ 0 as λ → ∞. Next we compare to the sum 1

λ

∑N
j=1(Erλ(z))y

2
j .

To this end, let Z j = r j (z)y2j − (Erλ(z))y2j , and consider the Taylor expansion of

characteristic function of the real part of 1
λ

∑N
j=1 Z j

lim
λ→∞E exp

⎛

⎝i t
1

λ

N∑

j=1

Re(Z j )

⎞

⎠ = lim
λ→∞

∞∑

k=0

[

E exp

(

i t
1

λ
Re(Z1)

)]k
e−λ λk

k!
= lim

λ→∞ exp (−λ + λ + i tERe(Z1) + O(1/λ))

= 1.

An identical argument follows from the imaginary part, and we see that 1
λ

∑N
j=1 Z j

converges in probability to zero. It is also straightforward to show 1
λ

∑N
j=1 y

2
j ⇒ 1,

and thus, 1
λ

∑N
j=1 E(rλ(z))y2j − Erλ(z) converges in probability to zero. These three

comparisons lead to

1

λ

N∑

j=1

r j (z)y2j

1− r j (z)y j/
√

λ
− Erλ(z) = 1

λ

N∑

j=1

r j (z)y2j

1− r j (z)y j/
√

λ
− 1

λ

N∑

j=1

r j (z)y
2
j
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+ 1

λ

N∑

j=1

r j (z)y
2
j −

1

λ

N∑

j=1

E(rλ(z))y
2
j

+ E(rλ(z))

⎛

⎝1

λ

N∑

j=1

y2j − 1

⎞

⎠ ,

which converges in distribution to 0. Since this limit is a constant, we may conclude
that jointly

⎛

⎝ 1√
λ

N∑

j=1

y j ,
1

λ

N∑

j=1

r j (z)y2j

1− r j (z)y j/
√

λ
− Erλ(z)

⎞

⎠⇒ (Y , 0), (2.20)

where Y is a standard Gaussian random variable.
Let {λn}∞n=1 be an arbitrary increasing sequence of positive real numbers going

to infinity and let {λnk } be an arbitrary subsequence. From Lemma B.3, {rλnk }nk is
tight as a family of random analytic functions on C+ with the topology of uniform
convergence on compact subsets, and thus, there exists a further subsequence λnk′
such that rλnk′ (z) → r̃(z) for some random analytic function r̃ . Fix z ∈ C+, it
follows from the dominated convergence theorem that Erλnk′ (z) → Er̃(z) =: r(z)
for some deterministic limit r(z). As z ∈ C+ was arbitrary, it follows from the above
convergence in distribution and the continuous mapping theorem that

r(z) = lim
nk′→∞Erλnk′ (z)

= − lim
nk′→∞E

⎛

⎝z + 1
√

λnk′

N∑

j=1

y j + 1

λnk′

N∑

j=1

rλnk′ (z)y
2
j

1− rλnk′ (z)y j/
√

λnk′

⎞

⎠

−1

= E

−1

z + Y + r(z)

=
∫

R

1

x − z − r(z)

1√
2π

e−x2/2dx,

pointwise on C+. Thus, r(z) = sfc(z) along every one of these further subsequences
of {λnk }, and sλ(z) = Erλ(z) → sfc(z). By Lemma B.2, this pointwise convergence
of the Stieltjes transforms implies μmλ converges weakly to SC � G1 as λ → ∞. ��

The matrix Xn in Remark 2.3 (iii) has Gaussian entries, and for convenience, we
stated Theorem 2.7 for the corresponding measure λGλ. However, the proof can be
adapted in a straightforward way to the analogous measures corresponding to Xn from
Remark 2.3 (iii) having entries with mean zero, variance 1

λ
, and three finite moments.
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3 Poisson Point Processes and Infinitely Divisible Distributions

This section contains a brief overview of Poisson point processes and their relation to
infinitely divisible distributions. It includes results used throughout the paper, whose
proofs can be found in [15, 25, 28, 29].

We will assume throughout the section that E = R̄ \ {0} with the relative topology,
where R̄ is the one point compactification of R. Many of the results below can be
extended to higher-dimensional Euclidean space and other sufficiently nice topological
spaces. It is also worth noting that we consider R̄ \ {0} for the purpose of defining the
appropriate notion of a compact subset of R, i.e. one which is closed and bounded
away from 0. However, many of the results below could be stated on R.

Denote by M(E) the set of simple point Radon measures

μ =
∑

x∈S
δx , (3.1)

where S is a multiset, and μ is such that μ ((−∞,−r) ∪ (r ,∞)) < ∞ for any r > 0.
Denote by H(E) the set of supports corresponding to measures in M(E), where the
support of a simple point measure μ is taken to be the multiset S. The elements of
H(E) are called configurations.

Intuitively, a point process should be a random collection of points on some space.
From this intuition, we want to define a point processes to be random variables taking
values inH(E); however, to do so one would need to define an appropriate σ -algebra
onH(E). This is done through the spaceM(E), as spaces of measures can be topol-
ogized in a straightforward way using an appropriate class of test functions. From this
topology, one can then take the Borel σ -algebra to makeM(E) an measureable space
which our random variables can take values in. To this end, we say a sequence of mea-
sure μn in M(E) converge vaguely to a measure μ if for any continuous compactly
supported f on E

∫

E
f dμn →

∫

E
f dμ.

We refer to the topology on M(E) defined through vague convergence as the vague
topology. In fact,M(E) with the vague topology is a Polish space, and thus complete
and metrizable.

The vague topology on M(E) can be pushed forward to configurations H(E)

by considering the bijection, F , from simple point Radon measures to configurations
defined by F(μ) = S in (3.1). Then, vague convergenceμn → μ corresponds to point-
wise convergence of the configurations in some labeling of the elements of themultisets
F(μn), i.e. there exists labeling F(μn) = {x (1)

n , x (2)
n , . . . }, where x (1)

n , x (2)
n , . . . need

not be distinct, such that for all k ∈ N, x (k)
n → x (k).

With M(E) appropriately topologized, we define a simple point process N as
a measurable mapping from a probability space (�,F , P) to (M(E),B(M(E))),
where B(M(E)) is the Borel σ -algebra defined by the vague topology.
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Definition 3.1 Let m be a Borel measure on E . A point process N is a Poisson point
process with intensity measure m if we have the following:

1. For any Borel set A, N (A) is a Poisson random variable with mean m(A).3

2. If A1, . . . , Ak are pairwise disjoint Borel sets, then N (A1), . . . , N (Ak) are
independent random variables.

Lemma 3.2 is a technical result for Poisson point processes with intensity measure
satisfying (2.5). We do not believe that the result is novel; however, we are unable to
find a reference in the point process literature. The proof below is a modification of
the proof for Lemma A.4 in [7].

Lemma 3.2 Let m be a measure on R \ {0} such that

∫

R

1 ∧ |x |dm(x) < ∞, (3.2)

and let {yk}Nk=1 be a Poisson point process with intensity measure m where N = ∞ a.s.

if m(R \ {0}) = ∞. If τκ = inf
{
t ≥ 0 :∑N

k=t+1 y
2
(k) ≤ κ

}
where y(1) ≥ y(2) ≥ . . .

is a non-increasing ordering of {yk}Nk=1, then Eτκ < ∞ for all κ > 0 and Eτκ → 0
as κ → ∞.

Proof The fact that τκ is almost surely finite follows from the integrability condition

on m. Additionally P(τκ = 0) = P

(∑N
k=1 y

2
k ≤ κ
)
and clearly converges to 1 as

κ → ∞. Thus, it is sufficient to prove Eτκ < ∞ for all κ > 0. Let 0 < rt <

1 be some monotonically decreasing function of t such that rt → 0 as t → ∞,
St =∑N

k=1 y
2
k 1{|yk |≤rt }, and  =∑N

k=1 δy j . Define the event At = {((−∞,−rt )∪
(rt ,∞)) ≥ t}. On Ac

t the collection of points summed over in the definition of τκ is a
strict subset of the collection of points summed over in the definition of St . Then,

{τκ > t} ⊆ ({τκ > t} ∩ Ac
t

) ∪ ({τκ > t} ∩ At )

⊆ ({St ≥ κ} ∩ Ac
t

) ∪ At

⊆ {St ≥ κ} ∪ At .

We will now show for appropriate rt the probabilities of the events {St ≥ κ} ∪
{((−∞,−rt ) ∪ (rt ,∞)) ≥ t} are summable in t ∈ N.

For a Poisson random variable X with mean λ, P(X ≥ t) ≤ exp(−t log( t
λe )).

Letting Et = E((−∞,−rt )∪ (rt ,∞)) = m((−∞,−rt )∪ (rt ,∞)) < ∞ we have

P (((−∞,−rt ) ∪ (rt ,∞)) ≥ t) ≤ exp

(

−t log

(
t

Et e

))

. (3.3)

For the event {St ≥ κ} notice that for every θ > 0,

P(St ≥ κ) ≤ exp(−θκ)E exp(θ St ),

3 In the case m(A) = ∞, we say N (A) is a Poisson random variable which is almost surely ∞.
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and from Campbell’s formula, Lemma 3.3,

E exp(θ St ) = exp

(∫ rt

−rt
(eθx2 − 1)dm(x)

)

≤ C exp

(

θ

∫ rt

−rt
x2dm(x)

)

.

Letting θ = θt =
(∫ rt

−rt
x2dm(x)

)−1
the above gives us

P(τκ > t) ≤ exp

(

−t log

(
t

Et e

))

+ C ′ exp(−θtκ). (3.4)

Notice the integrability assumption on m implies

εm ((−∞,−ε) ∪ (ε,∞)) ≤ C (3.5)

for all ε ∈ (0, 1) and some constant C . From the integrability assumption, we also
have that

∫ 1

−1
|x | dm(x) = I (3.6)

for some 0 < I < ∞. From this, we see that

∫ rt

−rt
x2 dm(x) ≤ rt I , (3.7)

and θt ≥ (I rt )−1. Taking rt = c
t for some c > 0 gives θt ≥ (cI )−1t . For an appropriate

choice of c > 0 (3.5) and the definition of Et imply that Et ≤ t/2e. Thus, from (3.4)
we get

Eτκ =
∞∑

t=0

P(τκ ≥ t) < ∞. (3.8)

This completes the proof. ��
The next lemma, known asCampbell’s formula, is a fundamental result in the theory

of point processes and gives a description of the functions belonging almost surely to
L1() for a Poisson random measure .

Lemma 3.3 (Campbell’s Formula, Sect. 3.2 in [26]) Let  be a Poisson point process
on E with intensity measure m. Let u : E → R be a measurable function. Then with
probability 1,

S =
∫

E
u(x)d(x) < ∞ (3.9)
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if and only if

∫

E
1 ∧ |u(x)| dm(x) < ∞. (3.10)

If either of the above integrals are finite then

E exp(θ S) = exp

(∫

E
eθu(x) − 1dm(x)

)

(3.11)

for any θ ∈ C for which the integral on the right-hand side is finite. Moreover,

E

∫

E
u(x)d(x) =

∫

E
u(x)dm(x), (3.12)

whenever u ≥ 0 or
∫ |u(x)|dm(x) < ∞.

The next two lemmas, which can be found in Chapter 5 of [29], characterize Poisson
point processes and convergence of point processes in terms of (3.11).

Proposition 3.4 (Theorem 5.1 in [29]) A point process  on E is a Poisson point
process with intensity measure m if and only if

E exp

(

−
∫

E
u(x)d(x)

)

=
∫

E
(e−u(x) − 1) dm(x),

for every bounded positive measurable function u.

Proposition 3.5 (Theorem 5.2 in [29]) Let 1,2, . . . and ∞ be simple point
processes on E. Then n ⇒ ∞ as n → ∞ if and only if

E exp

(

−
∫

E
u(x)dn(x)

)

→ E exp

(

−
∫

E
u(x)d∞(x)

)

,

as n → ∞ for every bounded positive measurable function u.

The next two propositions outline the connection between Poisson point processes
and triangular arrays converging to infinitely divisible distributions. For 0 < h < 1,
define

σ 2
h := σ 2 +

∫

|x |≤h
x2dm(x), and bh := b −

∫

h<|x |
x

1+ x2
dm(x).

Proposition 3.6 (Corollary 15.16 in [25]) Suppose {Xni : 1 ≤ i ≤ n}n≥1 is a triangu-
lar array of random variables such that each row consists of i.i.d. random variables.
Then, the sum

n∑

i=1

Xni ,
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converges in distribution to an infinitely divisible random variable with characteristic
(σ 2, b,m) as n → ∞ if and only if for every 0 < h < 1 which is not an atom of m

• nP(Xn1 ∈ ·) ⇒ m(·) on R \ {0},
• nE

[
X2
n11{|Xn1|≤h}

]→ σ 2
h , and• nE

[
Xn11{|Xn1|≤h}

]→ bh,

as n → ∞.

Proposition 3.7 (Theorem 5.3 in [29]) Suppose {Xni : 1 ≤ i ≤ n}n≥1 is a triangular
array of random variables on R \ {0} such that each row consists of i.i.d. random
variables. Let N be a Poisson point process with intensity measure m. Then,

n∑

i=1

δXni ⇒ N

as n → ∞ if and only if

nP(Xn1 ∈ ·) ⇒ m(·)

as n → ∞.

4 Operators on �2(V)

Let V be a countable set and let �2(V ) denote the Hilbert space defined by the inner
product

〈φ,ψ〉 :=
∑

u∈V
φ̄uψu, φu = 〈δu, φ〉,

where δu is the unit vector supported on u ∈ V . Let D(V ) denote the dense subset of
�2(V ) of vectors with finite support. Let (wuv)u,v∈V be a collection of real numbers
with wuv = wvu such that for all u ∈ V ,

∑

v∈V
|wuv|2 < ∞.

We then define a symmetric linear operator A with domain D(V ) by

〈δu, Aδv〉 = 〈δv, Aδu〉 = wuv. (4.1)

Definition 4.1 (Local Convergence) Suppose (An) is a sequence of bounded operators
on �2(V ) and A is a linear operator on �2(V ) with domain D(A) ⊃ D(V ). For any
u, v ∈ V , we say that (An, u) converges locally to (A, v), and write

(An, u) → (A, v),
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if there exists a sequence of bijections σn : V → V such that σn(v) = u and, for all
φ ∈ D(V ),

σ−1
n Anσnφ → Aφ,

in �2(V ), as n → ∞.

Here we use σn for the bijection on V and the corresponding linear isometry defined
in the obvious way. This notion of convergence is useful to random matrices for two
reasons. First, we will make a choice on how to define the action of an n × n matrix
on �2(V ), and the bijections σn help ensure the choice of location for the support of
the matrix does not matter. Second, local convergence also gives convergence of the
resolvent operator at the distinguished points u, v ∈ V . This comes down to the fact
that local convergence is strong operator convergence, up to the isometries. See [8]
for details.

Theorem 4.2 (Theorem 2.2 in [7]) If (An)
∞
n=1 and A are self-adjoint operators such

that (An, u) converges locally to (A, v) for some u, v ∈ V , then, for all z ∈ C+,

〈δu, (An − z)−1δu〉 → 〈δv, (A − z)−1δv〉 (4.2)

as n → ∞.

To apply this to random operators, we say that (An, u) → (A, v) in distribution
if there exists a sequence of random bijections σn such that σ−1

n Anσnφ → Aφ in
distribution for every φ ∈ D(V ).

5 PoissonWeighted Infinite Tree

Let ρ be a positive Radon measure on R \ {0}. PWIT(ρ) is the random infinite
weighted rooted tree defined as follows. The vertex set of the tree is identified with
N

f := ⋃k∈N∪{0} N
k by indexing the root as N

0 = ∅, the offspring of the root as

N and, more generally, the offspring of some v ∈ N
k as (v1), (v2), · · · ∈ N

k+1.
Define T as the tree on N

f with edges between parents and offspring. Let {�v}v∈N f

be independent realizations of a Poisson point process with intensity measure ρ. Let
�∅ = {y1, y2, . . . } be ordered such that |y1| ≥ |y2| ≥ · · · with the convention yi = 0
for all i large enough4 if ρ(R\{0}) < ∞, and assign the weight yi to the edge between
∅ and i , assuming such an ordering is possible. More generally assign the weight yvi
to the edge between v and vi where �v = {yv1, yv2, . . . } and |yv1| ≥ |yv2| ≥ · · · ,

again with the convention yvi = 0 for all i larger than �v(R \ {0}) if ρ(R \ {0}) < ∞.
For a measure m on R \ {0} satisfying (1.5) and a realization of PWIT(m) define

the linear operator A on D(N f ) by the formulas

〈δv, Aδvk〉 = 〈δvk, Aδv〉 = yvk (5.1)

4 If ρ(R \ {0}) < ∞ then the number of points in R \ {0} is a Poisson random variable. By large enough
we mean larger than this random variable.
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and 〈δv, Aδu〉 = 0 otherwise. From (1.5) one can see that the points in �v are almost
surely square summable for every v ∈ N

f , and thus A is a well defined linear operator
on D(N f ), though is possibly unbounded on �2(N f ).

5.1 PoissonWeighted Infinite Tree with Loops

The Poisson weighted infinite tree has been utilized in [7–9, 11, 24] to study the
empirical spectral distribution of heavy-tailed randommatrices by showing the random
matrices converge to the operator defined by (5.1) for an appropriate measure m. One
key feature of those matrices is the diagonal elements are negligible when compared
to the largest entries in a row or column. This will not be the case for the Laplacian
matrix Ln , thus we will need to define an operator on a slightly modified graph.

Let m be a measure on R \ {0} such that

∫

R\{0}
|x | ∧ 1dm(x) < ∞. (5.2)

Define the Poisson weighted infinite tree with loops PWITL(m) as the random
weighted graph with vertex set N

f and edge set E ∪ ⋃v∈N f {v, v} where E is the
edge set of PWIT(m). The weights on edges in E of PWITL(m) are the weights on
edges in E of PWIT(m), while the weight on a loop {v, v} is

yvv := −yul −
∞∑

k=1

yvk, (5.3)

where ul = v if v is not ∅ and the weight on {∅, ∅} is

y∅∅ := −
∞∑

k=1

yk . (5.4)

(5.2) is enough to guarantee yvv is a well-defined random variable, see Lemma 3.3.
Define the operator L by

〈δv, Lδvk〉 = 〈δvk, Lδv〉 = yvk and 〈δv, Lδv〉 = yvv, (5.5)

and 〈δv, Lδu〉 = 0 otherwise. In which case we say L is the operator associated to
PWITL(m).

We will show the sequence {(Ln, 1)}n≥1 converges locally in distribution to (L, ∅)

where L is the linear operator on �2(N f ) associated to the PWITL(m).

5.2 Self-Adjointness

In this section, we review and apply a criteria established by Bordenave, Caputo,
and Chafaï in [7] for unbounded operators to be essentially self-adjoint. There are
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two minor issues which prevent immediately applying their results to the operator L
associated to PWITL(m). First is they consider operators with skeletons which are
trees, and not trees with loops. This is easy to overcome. The second obstacle is in the
application of the criteria they consider only point processes associated to α-stable
distributions and not more general infinitely divisible distributions. This is overcome
by Lemma 3.2.

Proposition 5.1 (Lemma A.3 in [7]) Let A be a linear operator on �2(N f ) defined by
(4.1). We say u ∼ v if u = v, u = vk, or v = uk for some k ∈ N. Assume wuv = 0 if
u � v. Suppose there exists a constant κ > 0 and sequence of finite connected subsets
Sn ⊂ N

f , such that Sn ⊂ Sn+1, N
f =⋃n∈N

Sn, and for every n and v ∈ Sn,

∑

u /∈Sn :u∼v

|wuv|2 ≤ κ. (5.6)

Then A is essentially self-adjoint.

Proof Proposition 5.1 is not stated identically to Lemma A.3 in [7]; however, the only
added assumption is that vertices are connected to themselves, so that the graph of
the skeleton of A is not a tree. The step in the proof given in [7] which uses the tree
structure is the fact that if v ∈ Sn , u ∼ v, and v′ ∈ Sn\{v} then u � v which is also
true for a tree with loops. ��
Proposition 5.2 (Proposition A.2 in [7]) Let m be a measure on R \ {0} satisfying
(1.5). Let {�v}v∈N f be a collection of Poisson point process on R \ {0} with intensity
measure m. Let �∅ = {y1, y2, . . . } be ordered such that |y1| ≥ |y2| ≥ · · · , and
�v = {yv1, yv2, . . . } be ordered such that |yv1| ≥ |yv2| ≥ · · · with the convention
the yvk or yk are eventually zero if m(R \ {0}) < ∞. Additionally let {yvv}v∈N f be
a collection of real random variables. Define the symmetric linear operator A on
�2(N f ) by

〈δv, Aδvk〉 = 〈δvk, Aδv〉 = yvk, and 〈δv, Aδv〉 = yvv,

and 〈δu, Aδv〉 = 0 otherwise. Then, with probability 1, A is essentially self-adjoint.

Proof Proposition 5.2 may not initially appear to be Proposition A.2 in [7]; however,
the proofs are essentially identical. The only minor difference is replacing LemmaA.4
in [7] with Lemma 3.2. ��

6 Local Convergence for the Laplacian of Lévy–KhintchineMatrices

For an n × n matrix M , extend M to a bounded operator on �2(N f ) as follows. For
1 ≤ i, j,≤ n, let 〈δi , Mδ j 〉 = Mi j , and 〈δu, Mδv〉 = 0 otherwise.

Theorem 6.1 Let Ln be thematrix defined by (2.1), where {An}n≥1, a Lévy–Khintchine
random matrix ensemble satisfying C1. Let L be the linear operator on �2(N f )

associated with PWITL(m). Then, in distribution, (Ln, 1) → (L, ∅), as n → ∞.
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The rest of this section is devoted to the proof of Theorem 6.1. Before considering
(Ln, 1), we begin by showing (An, 1) converges to (L+ D, ∅) where D is a diagonal
operator. This follows from the work of Jung in [24]. We include the proof to establish
notation and for the convenience of the reader. We define a network as a graph with
edge weights taking values in some normed space. To begin, let Gn be the complete
network, without loops, on {1, . . . , n}whose weight on edge {i, j} equals ξni j for some
collection (ξni j )1≤i< j≤n of random variables taking values in some normed space. Now
consider the rooted network (Gn, 1)with the distinguished vertex 1. For any realization
(ξni j ), and for any B, H ∈ N such that (BH+1−1)/(B−1) ≤ n, we will define a finite

rooted subnetwork (Gn, 1)B,H of (Gn, 1) whose vertex set coincides with a B-ary
tree of depth H . To this end, we partially index the vertices of (Gn, 1) as elements in

JB,H :=
H⋃

l=0

{1, . . . , B}l ⊂ N
f ,

the indexing being given by an injective map σn from JB,H to Vn := {1, . . . , n}.
We set I∅ := {1} and the index of the root σ−1

n (1) = ∅. The vertex v ∈ Vn \ I∅
is given the index (k) = σ−1

n (v), 1 ≤ k ≤ B, if ξn1,v has the k-th largest norm

value among {ξn1 j , j �= 1}, ties being broken by lexicographic order5. This defines
the first generation, and let I1 be the union of I∅ and this generation. If H ≥ 2
repeat this process for the vertex labeled (1) on Vn\I1 to order {ξn(1) j } j∈Vn\I1 to get
{11, 12, . . . , 1B}. Define I2 to be the union of I1, and this new collection. Repeat
again for (2), (3), . . . , (B) to get the second generation and so on. Call this vertex set
V B,H
n = σn JB,H .
For a realization T of PWITL(m), recall we assign the weight yvk to the edge

{v, vk} and the weight yvv to the edge {v, v}. Then (T , ∅) is a rooted network. Call
(T , ∅)B,H the finite rooted subnetwork obtained by restricting (T , ∅) to the vertex
set JB,H , and the edge set without the loops. If an edge is not present in (T , ∅)B,H

assign the weight 0. We say a sequence (Gn, 1)B,H , for fixed B and H , converges in
distribution, as n → ∞, to (T , ∅)B,H if the joint distribution of the weights converges
weakly.

Let ξni j = Li j = A(n)
i j , where Li j is the i j-th entry of Ln for 1 ≤ i < j ≤ n. We

aim to show with the choice of weights (ξni j )1≤i< j≤n that for fixed B, H (Gn, 1)B,H

converges weakly to (T , ∅)B,H .
Order the elements of JB,H lexicographically, i.e. ∅ ≺ 1 ≺ 2 ≺ · · · ≺ B ≺ 11 ≺

12 ≺ · · · ≺ B · · · B. For v ∈ JB,H let Ov denote the offspring of v in (Gn, 1)B,H .
By construction I∅ = {1} and Iv = σn

(⋃
w≺v Ow

)
, where w ≺ v must be strict

in this union. Thus at every step of the indexing procedure we order the weights of
neighboring edges not already considered at a previous step. Thus for all v,

(ξnσn(v), j ) j /∈Iv
d= (ξn1 j )1< j≤n−|Iv |.

5 To help keep track of notation in this section, note that v = (w) ∈ Vn if w ∈ JB,H and σn(w) = v.
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Note that by independence, Proposition 3.7 still holds if you take the sum of Dirac
measures at the random variables over {1, . . . , n} \ I for any fixed finite set I . Thus,
by Proposition 3.7 the weights from a fixed parent to its offspring in (Gn, 1)B,H

converge weakly to those of (T , ∅)B,H . By independence we can extend this to joint
convergence. Recall (Gn, 1)B,H is a complete graph and not a tree with loops. Thus,
it remains to show the edges in (Gn, 1)B,H which were not considered in the sorting
procedure converge to 0. This was shown for heavy-tailed weights in [7] and for more
general Lévy–Khintchine weights in [24].

Let L be the operator associated to PWITL(m). For fixed B, H let σ
B,H
n be the

map σn above associated with (Gn, 1)B,H , and arbitrarily extend σ
B,H
n to a bijection

on N
f , where Vn is considered in the natural way as a subset of the offspring of ∅.

From the Skorokhod representation theorem, we may assume (Gn, 1)B,H converges
almost surely to (T , ∅)B,H . Thus, there are sequences Bn, Hn tending to infinity and
σ̂n := σ

Bn ,Hn
n such that for any pair v,w ∈ N

f with w �= v, ξn
σ̂n(v),σ̂n(w)

converges
almost surely to

⎧
⎪⎨

⎪⎩

yvk, if w = vk for some k

ywk, if v = wkfor some k

0, otherwise.

Thus for any u, v ∈ N
f with u �= v

〈δu, σ̂−1
n Ln σ̂nδv〉 = 〈δu, σ̂−1

n An σ̂nδv〉 → 〈δu, (L + D)δv〉 = 〈δu, Lδv〉 (6.1)

almost surely. We now consider the diagonal elements. Let u ∈ N
f , B = H = k for

some k ∈ N such that u ∈ Jk,k . From the above we know almost surely

∑

v∈Jk,k
ξn(u),(v) →

∑

v∈Jk,k ,v∼u

yv. (6.2)

Assume v /∈ Jk,k , then ξn(u),(v) → 0 almost surely. By the uniform summability
condition of C1 we have almost surely

∑

v /∈Jk,k
ξn(u),(v) → 0. (6.3)

As k was arbitrarily large we have that almost surely for any v ∈ N
f

〈δv, σ̂
−1
n Ln σ̂nδv〉 → 〈δv, Lδv〉. (6.4)

From linearity it suffices to show for every v ∈ N
f that σ̂−1

n Ln σ̂nδv → Lδv , i.e.

∑

u∈N f

[
〈δu, σ̂−1

n Ln σ̂nδv〉 − 〈δu, Lδv〉
]2 → 0. (6.5)
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We have shown 〈δu, σ̂−1
n Ln σ̂nδv〉 → 〈δu, Lδv〉 almost surely for every u ∈ N

f , thus
(6.5) holds if

{〈δu, σ̂−1
n Ln σ̂nδv〉

}
u∈N f is uniformly square-summable. This follows

from the uniform summability of C1. This completes the proof of Theorem 6.1.
We will need the following extension of Theorem 6.1.

Theorem 6.2 Let Ln be the matrix defined by (2.1) for {An}n≥1, a Lévy–Khintchine
random matrix ensemble satisfying C1. If L and L ′ are two independent copies of
the linear operator on �2(N f ) associated to PWITL(m), then, in distribution, (Ln ⊕
Ln, (1, 2)) → (L ⊕ L ′, (∅, ∅)) as n → ∞.

Proof Using Proposition 2.6 in [7] and the arguments above, we can construct isome-
tries σn on �2(N f ) ⊕ �2(N f ) such that for any v ∈ N

f , σ−1
n (Ln ⊕ Ln)σn(δv, 0) →

L ⊕ L ′(δv, 0) and σ−1
n (Ln ⊕ Ln)σn(0, δv) → L ⊕ L ′(0, δv) in �2(N f ) ⊕ �2(N f )

almost surely. The result then follows by linearity. ��

7 Resolvent Convergence and the Proof of Theorem 2.4

Theorem 7.1 Let sLn (z) be the Stieltjes transform ofμLn , and let s∅(z) be the Stieltjes
transform of the measure μ∅ defined by

〈δ∅, f (L)δ∅〉 =
∫

R

f dμ∅ (7.1)

for any continuous bounded function f : R → C, where f (L) is defined by the
continuous functional calculus. Then,

lim
n→∞EsLn (z) = Es∅(z) (7.2)

for every z ∈ C+.

Proof For z ∈ C+, we define the operators

Rn(z) = (Ln − z)−1, (7.3)

and

R(z) = (L − z)−1. (7.4)

Additionally for u, v ∈ N
f , we define the functions Rn(z)uv, R(z)uv : C+ → C by

Rn(z)uv := 〈δu, Rn(z)δv〉, and R(z)uv := 〈δu, R(z)δv〉. (7.5)

From Proposition 5.2, L is self-adjoint with probability 1. Thus from Theorem 4.2
and Theorem 6.1

Rn(z)11 = 〈δ1, (Ln − z)−1δ1〉 ⇒ 〈δ∅, (L − z)−1δ∅〉 = R(z)∅∅. (7.6)
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For every z ∈ C+, Rn(z)11 and R(z)∅∅ are bounded, thus

lim
n→∞ERn(z)11 = ER(z)∅∅. (7.7)

By definition s∅(z) = R(z)∅∅, while

sLn (z) =
1

n
tr(Ln − z)−1 = 1

n

n∑

i=1

Rn(z)i i . (7.8)

It is clear from the matrix of cofactors method of inversion Rn(z)i i
d= Rn(z) j j for

every i, j ∈ [n]. Thus,

EsLn (z) =
1

n

n∑

i=1

ERn(z)i i

= 1

n

n∑

i=1

ERn(z)11

= ERn(z)11.

This completes the proof. ��

7.1 Proof of Theorem 2.4

We are now ready to complete the proof of Theorem 2.4. From Lemma A.1, {μLn }n≥1
is almost surely tight. Consider the Stieltjes transfrom sLn of μLn . From tightness and
Lemma B.2, it is enough to prove that almost surely there exists a probability measure
with Stieltjes transform s, such that for any subsequence {nk}

lim
nk→∞ sLnk

(z) = s(z), (7.9)

for all z ∈ C+. We know from Theorem 7.1 that for all z ∈ C+

lim
n→∞EsLn (z) = Es∅(z). (7.10)

We now upgrade this to almost surely convergence of sLn (z) to Es∅(z). For z ∈ C+

E|sLn (z) − Es∅(z)| ≤ E|sLn (z) − EsLn (z)| + |EsLn (z) − Es∅(z)|.

For z ∈ C+

E|sLn (z) − EsLn (z)| = E

∣
∣
∣
∣
∣

1

n

n∑

i=1

(Rn(z)i i − ERn(z)i i )

∣
∣
∣
∣
∣
, (7.11)
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and by the exchangeability of the matrix entries

E

⎡

⎣

∣
∣
∣
∣
∣

1

n

n∑

i=1

Rn(z)i i − ERn(z)i i

∣
∣
∣
∣
∣

2
⎤

⎦ = 1

n
E |Rn(z)11 − ERn(z)11|2

+ n − 1

n
Cov(Rn(z)11, Rn(z)22)

≤ 1

n Im(z)2

+ n − 1

n
Cov(Rn(z)11, Rn(z)22).

FromTheorems4.2 and6.2,weknow Rn(z)11 and Rn(z)22 are asymptotically indepen-
dent random variables bounded uniformly in n, and thus asymptotically uncorrelated.
From this, we get

lim
n→∞E

⎡

⎣

∣
∣
∣
∣
∣

1

n

n∑

i=1

Rn(z)i i − ERn(z)i i

∣
∣
∣
∣
∣

2
⎤

⎦ = 0,

and

lim
n→∞E|sLn (z) − Es∅(z)| = 0. (7.12)

Taking μm = Eμ∅ completes the proof of Theorem 2.4.

8 Proof of Theorem 2.5

We will follow the approach of [7] and take advantage of the tree structure on N
f

to arrive at (2.7) before proving uniqueness. Let L be the operator associated to
PWITL(m), we have already seen that sm(z) = Es∅(z) where

s∅(z) = 〈δ∅, (L − z)−1δ∅〉. (8.1)

We now decompose the operator L as

L = C +
∞⊕

k=1

Lk (8.2)

where

〈δk,Cδ∅〉 = 〈δk, Lδ∅〉
〈δk,Cδk〉 = −yk

〈δ∅,Cδ∅〉 = 〈δ∅, Lδ∅〉 (8.3)
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and for every k ∈ N, Lk is supported on kN
f = {kv ∈ N

f : v ∈ N
f }. Note

〈δv,Cδu〉 = 0 for any other combination of u, v ∈ N
f . Under this decomposition

{Lk}k≥1 is a collection of i.i.d. random operators each equal in distribution, up to an
isometry, to L . For convenience, define the operator L̃ by

L̃ :=
∞⊕

k=1

Lk, (8.4)

and the operators R(z) := (L − z)−1 and R̃(z) := (L̃ − z)−1 for z ∈ C+. From (8.2)
we get the resolvent identity

R̃(z)CR(z) = R̃(z) − R(z). (8.5)

Additionally denote by Ruv(z) := 〈δu, R(z)δv〉 and R̃uv(z) := 〈δu, R̃(z)δv〉. Note
R̃∅∅(z) = −z−1, R̃kl(z) = 0 for all k, l ∈ N with k �= l, and R̃∅k(z) = 0 = R̃k∅(z)
for all k ∈ N.

From (8.5), one immediately gets

〈δk, R̃(z)CR(z)δ∅〉 = −Rk∅(z). (8.6)

It also follows that

〈δk, R̃(z)CR(z)δ∅〉 =
〈

δk, R̃(z)C
∑

v∈N f

Rv∅(z)δv

〉

=
〈
δk, R̃(z)R∅∅(z)y∅∅δ∅

〉
+
〈

δk, R̃(z)
∑

l∈N

R∅∅(z)ylδl

〉

+
〈

δk, R̃(z)
∑

j∈N

R j∅(z)y jδ∅

〉

−
〈

δk, R̃(z)
∑

j∈N

R j∅(z)y jδ j

〉

= 0+ R̃kk(z)yk R∅∅(z) + 0− R̃kk(z)yk Rk∅(z).

Rearranging we arrive at

Rk∅(z) = R̃kk(z)yk R∅∅(z)

R̃kk yk − 1
. (8.7)

A similar computation for 〈δ∅, R̃(z)CR(z)δ∅〉 gives

R̃∅∅(z) − R∅∅(z) = R̃∅∅(z)y∅∅R∅∅(z) +
∞∑

j=1

R̃∅∅(z)y j R j∅(z). (8.8)
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Combining (8.7) and (8.8) gives

R̃∅∅(z) = R∅∅(z) + R̃∅∅(z)y∅∅R∅∅(z) +
∞∑

j=1

R̃∅∅(z)y j R j∅(z)

= R∅∅(z) + R̃∅∅(z)y∅∅R∅∅(z) +
∞∑

j=1

R̃∅∅(z)y j
R̃ j j (z)y j R∅∅(z)

R̃ j j y j − 1

= R∅∅(z)

⎡

⎣1+ R̃∅∅(z)y∅∅ +
∞∑

j=1

R̃∅∅(z)y j
R̃ j j (z)y j

R̃ j j y j − 1

⎤

⎦ ,

which, along with R̃∅∅(z) = −z−1, implies

R∅∅ = −
⎛

⎝z − y∅∅ −
∞∑

j=1

R̃ j j (z)y2j

R̃ j j (z)y j − 1

⎞

⎠

−1

. (8.9)

Noting y∅∅ = −∑∞
j=1 y j gives (2.7). Note that for j ∈ N R̃ j j (z) depends only on z

and L j , and hence {R̃ j j (z)} j∈N is a collection of i.i.d. random variables independent
of {y j } j∈N.

8.1 Uniqueness

In this section, we prove uniqueness of the solution to (2.7) from Theorem 2.5. While
the argument is technical, the core is a contraction approach. We will show the map
T defined below in (8.10) would contract, in an appropriate metric, two fixed points
belonging to a nice subset of all probability measures on the space of Stieltjes trans-
forms. We then extend this result to any two potential fixed points by moving from
this metric to a functional separating distinct points.

Let S be the set of Stieltjes transforms of probability measures on R and P(S)

be the set of probability measures on S. Define T : P(S) → P(S) as follows: for
μ ∈ P(S)

T (μ) := L

⎛

⎜
⎝−
⎛

⎝z −
N∑

j=1

y j
s j (z)y j − 1

⎞

⎠

−1
⎞

⎟
⎠ , (8.10)

where {s j } are i.i.d. with distribution μ, {y j }∞j=1 is a Poisson point process with
a fixed intensity measure m independent of the collection {s j } j≥1, N is a Poisson
random variable with mean m(R) such that y j = 0 if j > N , and L(X) is the law of
a random variable X . Thus the distribution of s∅ is a fixed point of T and we aim to
show it is the unique fixed point. The notation of distance for which T contracts fixed
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points will involve the infimum over all couplings of these fixed point measures. Let
μ1, μ2 ∈ P(S) be two fixed points of T and let (s(z), r(z)) be an arbitrary coupling
of μ1 and μ2. Additionally let μr and μs be the random probability measures on R

defined uniquely by

s(z) =
∫

R

1

x − z
dμs(x) and r(z) =

∫

R

1

x − z
dμr (x),

for all z ∈ C+. For now, we will assume there exists M ∈ N such that almost surely
μr ([−M, M]) ≥ 1

2 and μs([−M, M]) ≥ 1
2 . This assumption will be removed later.

As r and s are analytic functions on the upper half plane, we will consider them only
on the box

CM =
{

z ∈ C : |Re(z)| ≤ 1

2
, fm(M) ≤ Im(z) ≤ fm(M) + 1

}

, (8.11)

where fm is a positive increasing function on N such that fm(M) → ∞ as M → ∞,
which will be chosen later to satisfy (8.17) below. Note for z ∈ CM , the assumption
on μr and μs imply Im(r(z)), Im(s(z)) ≥ 1

2
Im(z)

(M+ 1
2 )2+Im(z)2

. Let {(r j , s j )}Nj=1 be i.i.d.

copies of (s(z), r(z)). Define the random functions s̃ and r̃ , pointwise on C+ and the
sample space, by

s̃(z) = −
⎛

⎝z −
N∑

j=1

y j
s j (z)y j − 1

⎞

⎠

−1

and r̃(z) = −
⎛

⎝z −
N∑

j=1

y j
r j (z)y j − 1

⎞

⎠

−1

,(8.12)

where {y j }∞j=1 is a Poisson point process with intensity measurem independent of the
collection {(r j , s j )}∞j=1. If μ1 and μ2 are fixed points of T , then (r̃ , s̃) is a coupling
of μ1 and μ2. We show that

E sup
z∈CM

|r̃(z) − s̃(z)| ≤ 4

5
E sup

z∈CM

|r(z) − s(z)|

for an appropriate choice of fm(M) independent of the coupling (r , s). First note

E sup
z∈CM

|r̃(z) − s̃(z)| ≤ E sup
z∈CM

1

Im(z)2

N∑

j=1

|r j (z) − s j (z)|y2j
|r j (z)y j − 1||s j (z)y j − 1|

≤ E

N∑

j=1

sup
z∈CM

1

Im(z)2
|r j (z) − s j (z)|y2j

|r j (z)y j − 1||s j (z)y j − 1| . (8.13)

To handle the denominator, we will consider separately the points where Re(r j (z)y j )
is small and the few points where Im(r j (z)y j ) is large. Let m̂ be equal to m with
support restricted to [− fm(M)/2, fm(M)/2] and m̃ := m − m̂. Decompose the point

process {y j }Nj=1 into two independent Poisson point processes {ŷ j }N̂j=1 and {ỹ j }Ñj=1
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with intensitymeasures m̂ and m̃, respectively.Wewill divide the sum in (8.13) into two
sums over these point processes. To begin note for z ∈ CM , |s j (z)ŷ j−1||r j (z)ŷ j−1| ≥
1/4 and thus

E

N̂∑

j=1

sup
z∈CM

1

Im(z)2
|r j (z) − s j (z)|ŷ2j

|r j (z)ŷ j − 1||s j (z)ŷ j − 1|

≤ E

N̂∑

j=1

sup
z∈CM

4

Im(z)2
|r j (z) − s j (z)|ŷ2j

≤ 4

fm(M)2
E

N̂∑

j=1

sup
z∈CM

|r j (z) − s j (z)|ŷ2j

= 4

fm(M)2
E sup

z∈CM

|r1(z) − s1(z)|IM,m,

where IM,m = ∫ fm (M)/2
− fm (M)/2 y

2dm(y) and the last equality follows from Lemma 3.3 and
independence. From (2.3)

∫ fm (M)/2

− fm (M)/2
y2dm(y) ≤

∫ 1

−1
y2 dm(y) +

∫

1≤|x |≤√
fm (M)

y2 dm(y)

+
∫

√
fm (M)≤|x |≤ fm (M)/2

y2 dm(y)

≤ C ′ + C ′ fm(M) + fm(M)2

4
m({x : |x | ≥ √ fm(M)})

≤ C fm(M)2−ε/2

where ε > 0 is from (2.3), and C,C ′ > 0 are constants which depend only on the
measure m. Thus,

E

N̂∑

j=1

sup
z∈CM

1

Im(z)2
|r j (z) − s j (z)|ŷ2j

|r j (z)ŷ j − 1||s j (z)ŷ j − 1| ≤
C ′

fm(M)ε/2
E sup

z∈CM

|r1(z) − s1(z)|.

(8.14)

To handle the other sum first note |s j (z)ỹ j − 1||r j (z)ỹ j − 1| ≥ ỹ2j C
−1
z,M where

Cz,M =
4
((

M + 1
2

)2 + Im(z)2
)2

Im(z)2
.
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Then,

E

Ñ∑

j=1

sup
z∈CM

1

Im(z)2
|r j (z) − s j (z)|ỹ2j

|r j (z)ỹ j − 1||s j (z)ỹ j − 1|

≤ E

Ñ∑

j=1

sup
z∈CM

Cz,M

Im(z)2
|r j (z) − s j (z)|

≤ Ci( fm (M)+1),M

fm(M)2

Ñ∑

j=1

sup
z∈CM

|r j (z) − s j (z)|

= Ci( fm (M)+1),M

fm(M)2
EÑE sup

z∈CM

|r1(z) − s1(z)|, (8.15)

where the final equality follows from Lemma 3.3. Finally combining (8.14) and (8.15)
gives

E sup
z∈CM

|r̃(z) − s̃(z)| ≤
(

C ′

fm(M)ε/2
+ Ci( fm (M)+1),M

fm(M)2
EÑ

)

E sup
z∈CM

|r1(z) − s1(z)|.
(8.16)

Notice this coefficient is independent of the coupling and depends only on M , fm and
m. From the definition of Cz,M , we have that Cz+i,M/ Im(z)2 → 4 as Im(z) → ∞.
We also have that EÑ = m ((−∞,− fm(M)/2) ∪ ( fm(M)/2,∞)) ≤ C fm(M)−ε .
We choose fm to be such that

(
C ′

fm(M)ε/2
+ Ci( fm (M)+1),M

fm(M)2
EÑ

)

≤ 4

5
, (8.17)

for each M ∈ N. As the left-hand side of (8.17) is decreasing in fm(M), fm may be
chosen to be increasing and unbounded.

Next we remove that assumption that, for some M , almost surely μr and μs have
half their mass in [−M, M]. For a positive, increasing, unbounded function fm on N,
we define the function d fm : P(S)2 → [0,∞) by

d fm (μ1, μ2) = inf
(r ,s)∈C(μ1,μ2)

E

∞∑

M=1

sup
z∈CM

|r(z) − s(z)|/2M , (8.18)

and the function d ′fm : P(S)2 → [0,∞) by

d ′fm (μ1, μ2) = inf
(r ,s)∈C(μ1,μ2)

E

∞∑

M=1

sup
z∈CM

|r(z) − s(z)|1AM /2M ,
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where 1AM is the indicator function of the event

AM =
{

μr ([−M, M]) ≥ 1

2
and μs([−M, M]) ≥ 1

2

}

,

CM is the set defined by (8.11), and C(μ1, μ2) is the set of all couplings of μ1 and μ2
for μ1, μ2 ∈ P(S). It is straightforward to check that ρ : S × S → [0,∞) defined
by

ρ(s, r) =
∞∑

M=1

sup
z∈CM

|r(z) − s(z)|/2M (8.19)

is a metric on S, and thus, d fm is the 1st-Wasserstein metric onP(S) (see [18] Chapter
11 for details). Let μ1 and μ2 be two fixed points of T . Let (s, r) be a coupling of μ1
and μ2 such that

E

∞∑

M=1

sup
z∈CM

|r(z) − s(z)|1AM /2M ≤ 10

9
d ′fm (μ1, μ2), (8.20)

and let s̃ and r̃ be built from i.i.d. copies of (s, r) as in (8.12). Using the specific
coupling (s̃, r̃), (8.16), and (8.20) we get

d ′fm (μ1, μ2) ≤ E

∞∑

M=1

sup
z∈CM

|r̃(z) − s̃(z)|1AM /2M

≤ 4

5
E

∞∑

M=1

sup
z∈CM

|r(z) − s(z)|1AM /2M

≤ 8

9
d ′fm (μ1, μ2),

and thus d ′fm (μ1, μ2) = 0.
If d ′fm was a metric, it would be immediate that μ1 = μ2; however, it is not clear

this is the case. The only property of a metric needed is that d ′fm separates distinct
points in P(S), and thus, we conclude the proof using the following lemma.

Lemma 8.1 Fix a positive, increasing, unbounded function fm : N → R.
d ′fm (μ1, μ2) = 0 if and only if d fm (μ1, μ2) = 0 for the metric d fm defined in (8.18).

Proof Assume d ′fm (μ1, μ2) = 0, fix ε > 0, and note there exists M0 ∈ N such that
for any M ≥ M0 and any coupling (r , s) one has

P(AM ) ≥ 1− ε. (8.21)
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We have that

inf
(r ,s)∈C(μ1,μ2)

E sup
z∈CM0

|r(z) − s(z)|1AM0
= 0, (8.22)

and thus we can find a sequence of couplings {(rn, sn)}∞n=1 such that

lim
n→∞E sup

z∈CM0

|rn(z) − sn(z)|1An
M0

= 0, (8.23)

where An
M0

= {μn
r ([−M, M]) ≥ 1

2 and μn
s ([−M, M]) ≥ 1

2 } and μn
r and μn

s are the
random probability measures associated to rn and sn . Let M1 be such that fm(M1) >
1
2ε , and hence for any M ≥ M1

sup
z∈CM

|r(z) − s(z)| ≤ ε, (8.24)

for any Stieltjes transforms r and s.
We will now extend the convergence in (8.23) to the supremum over the

larger compact set C̃ = ∪M1
j=1C j . The L1-convergence of the random variables

supz∈CM0
|rn(z) − sn(z)|1An

M0
in (8.23) to zero implies convergence in probability to

zero. Thus, we can find a subsequence converging almost surely to zero, and without
loss of generality, we denote this subsequence {supz∈CM0

|rn(z) − sn(z)|1An
M0
}∞n=1.

Let G = {limn→∞ supz∈CM0
|rn(z) − sn(z)|1An

M0
= 0}, and decompose G into

G1 = {ω ∈ G : 1An
M0

(ω) = 1 i.o.} and G0 = G\G1. Clearly on G0 the random

variables supz∈C̃ |rn(z) − sn(z)|1An
M0

are eventually identically 0. For ω ∈ G1, we

consider the further subsequence {nk} such that 1Ank
M0

(ω) = 1 for all k. For this out-

come ω, we have {(rnk − snk )(ω)}∞n=1 is a sequence of complex analytic functions on
C+, uniformly bounded on compact subsets of C+, converging uniformly to 0 on a set
with an accumulation point. Thus applying theVitali convergence theorem for analytic
functions, Lemma B.1, we get that supz∈C̃ |(rnk (z) − snk (z))|(ω) → 0 as nk → ∞.
From the above and the bounded convergence theorem, we get

lim
n→∞E sup

z∈C̃
|rn(z) − sn(z)|1An

M0
= 0. (8.25)

Combining (8.21), (8.24), and (8.25), we obtain

d fm (μ1, μ2) = inf
(r ,s)∈C(μ1,μ2)

E

∞∑

M=1

sup
z∈CM

|r(z) − s(z)|/2M

≤ inf
(r ,s)∈C(μ1,μ2)

E

∞∑

M=1

(

sup
z∈CM

|r(z) − s(z)|1AM0
/2M + 2

fm(1)
P(Ac

M0
)/2M
)
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< inf
(r ,s)∈C(μ1,μ2)

E

M1∑

M=1

sup
z∈C̃

|r(z) − s(z)|1AM0
/2M + ε + 2

fm(1)
ε

≤ inf
(r ,s)∈C(μ1,μ2)

E sup
z∈C̃

|r(z) − s(z)|1AM0
+
(

1+ 2

fm(1)

)

ε

=
(

1+ 2

fm(1)

)

ε.

As ε > 0 was arbitrary we have d fm (μ1, μ2) = 0. For the other direction, note

d ′fm (μ1, μ2) = inf
(r ,s)∈C(μ1,μ2)

E

∞∑

M=1

sup
z∈CM

|r(z) − s(z)|1AM /2M

≤ inf
(r ,s)∈C(μ1,μ2)

E

∞∑

M=1

sup
z∈CM

|r(z) − s(z)|/2M

= d fm (μ1, μ2),

for any μ1, μ2. ��
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Appendix A: Tightness of �Ln

Lemma A.1 Let {An}n≥1 be a Lévy–Khintchine random matrix ensemble with char-
acteristics (0, b,m) satisfying C1 and Ln be the matrix defined by (2.1). Then there
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exists r > 0 such that almost surely

lim sup
n→∞

∫

R

|t |rdμLn (t) < ∞,

and thus almost surely {μLn }n≥1 is tight.

Proof This is essentially an extension of the argument in Lemma B.3 of [7] to Lévy–
Khintchinematrices andwith thematrix−Dn added. Applying LemmaB.5 and noting
|λi (A)| = s(A) for some singular value of a Hermitian matrix A, one gets for any
0 ≤ k ≤ n − 1

|λ1+k(Ln)| ≤ |λ1+�k/2�(An)| + |λ1+�k/2�(−Dn)|.

Thus,

∫

R

|t |rdμLn (t) ≤ 8

(∫

R

|t |rdμAn (t) +
∫

R

|t |rdμDn (t)

)

. (A.1)

Dn is a diagonal matrix so

∫

R

|t |rdμDn (t) =
1

n

n∑

k=1

∣
∣
∣
∣
∣
∣

∑

j∈{1,...,n}\{k}
A(n)
k j

∣
∣
∣
∣
∣
∣

r

≤ 1

n

n∑

k=1

∣
∣
∣
∣
∣
∣

∑

j∈{1,...,n}\{k}
|A(n)

k j |
∣
∣
∣
∣
∣
∣

r

.

(A.2)

Assuming 0 ≤ r ≤ 2 and applying the Schatten Bound, Lemma B.4, to An we get

∫

R

|t |rdμAn (t) ≤
1

n

n∑

k=1

∣
∣
∣
∣
∣
∣

∑

j∈{1,...,n}\{k}
|A(n)

k j |2
∣
∣
∣
∣
∣
∣

r/2

. (A.3)

We will prove that almost surely

lim sup
n→∞

∫

R

|t |rdμDn (t) < ∞. (A.4)

The proof for μAn follows with only minor changes. Both follow the arguments of
Lemma B.1 in [7]. Define the random variable Yn,k by

Yn,k :=
∣
∣
∣
∣
∣
∣

∑

j∈{1,...,n}\{k}
|A(n)

k j |
∣
∣
∣
∣
∣
∣

r

,

123



Journal of Theoretical Probability (2024) 37:933–973 969

for all k ∈ {1, . . . , n}. From the proof of Lemma B.1 in [7], we see it is enough to
show

sup
n≥1

EY 4
n,1 < ∞. (A.5)

Define for any 0 ≤ a < b

Sn,a,b :=
n∑

j=2

|A(n)
1 j |1{|A(n)

1 j |∈[a,b)}.

Then Y 4
n,1 = S4rn,0,∞ = (Sn,0,1/2 + Sn,1/2,∞)4r and

EY 4
n,1 ≤ 24r−1

(
ES4rn,0,1/2 + ES4rn,1/2,∞

)
.

If we further assume 4r < 1, we can apply Jensen’s inequality to get

ES4rn,0,1/2 ≤ (ESn,0,1/2)
4r .

Applying Proposition 3.6 to the triangular array {|A(n)
1 j |} we get that

(ESn,0,1/2)
4r → b̂1/2.

as n → ∞. For the larger entries of the row

ES4rn,1/2,∞ ≤ E[(NnMn)
4r ]

where

Mn := max
2≤ j≤n

|A(n)
1 j |,

and

Nn := |{2 ≤ j ≤ n : |A(n)
1 j | ≥ 1/2}|,

where |G| is the cardinality of a set G. Again, using Proposition 3.6 we get for
sufficiently large n and any k ∈ N

P(Nn = k) ≤
(
n

k

)

P(|A(n)
12 | ≥ 1/2)k

=
(n
k

)

nk

(
nP(|A(n)

12 | ≥ 1/2)
)k

≤
(n
k

)

nk
ck
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≤ ck

k!
where c = m((−∞, 1/2] ∪ [1/2,∞)) + 1, and we see

P(Nn ≥ k) ≤ ec −
k−1∑

j=1

c j

j ! ≤
Cck

k! .

Thus supn≥1 ENη
n < ∞ for any η > 0. For Mn note that from (2.4)

P(Mn ≥ t) ≤ nP(|A(n)
12 | ≥ t) ≤ Ct−ε.

It follows that supn≥1 EMγ
n < ∞ for any 0 < γ < ε. Returning to Sn,1/2,∞ and

applying Hölder’s inequality, we get

sup
n≥1

ES4rn,1/2,∞ ≤ sup
n≥1

E[(NnMn)
4r ] ≤ sup

n≥1
(EN 4rp

n )1/p(EM4rq
n )1/q < ∞

for small enough q, completing the proof. ��

Appendix B: Additional lemmas

Lemma B.1 (Vitali’s convergence theorem for analytic functions, Lemma 2.14 in [3])
Let f1, f2, . . . be analytic in D, a connected open set of C, satisfying | fn(z)| ≤ M for
every n and z ∈ D, and fn(z) converges as n → ∞ for each z in a subset of D having
an accumulation point in D. Then there exists a function f analytic in D for which
fn(z) → f (z) for all z ∈ D. Moreover on any set bounded by a contour interior to
D, the convergence is uniform.

Though Stieltjes transforms are not uniformly bounded on C+, it is straightforward
to apply Theorem B.1 to them by considering first C+,m = {z ∈ C : Im(z) > 1/m}
and letting m → ∞.

Lemma B.2 (TheoremB.9in [3]) Assume that {μn} is a sequence of functions proba-
bility measure, with Stieltjes transforms {sn}. Then,

lim
n→∞ sn(z) = s(z) (B.1)

for all z ∈ C+ if and only if there exists a positive measure μ with Stieltjes transform
s such that μn converges to μ vaguely.

For the following lemma, we use the notation of [30]. For a connected open domain
D ⊂ C, letH(D) be the space of analytic functions on D equipped with the topology
of uniform convergence on compact subsets of D.
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Lemma B.3 (Proposition 2.5 in [30]) Let X1, X2, X3, . . . be a sequence of random
analytic functions on a connected open set D ⊂ C, with probability distribution mea-
sures μX1 , μX2 , . . . onH(D). If for every K ⊂ D compact {maxz∈K |Xn(z)|}n≥1 is a
tight sequence of random variables, then {μXn }n≥1 is tight in the space of probability
measures onH(D).

Lemma B.4 (Schatten Bound, see proof of Theorem 3.32 in [31]) Let A be an n × n
complex Hermitian matrix with rows R1, . . . , Rn. Then for every 0 < r ≤ 2,

n∑

k=1

|λk(A)|r ≤
n∑

k=1

‖Rk‖r2,

where ‖ · ‖2 is the Euclidean norm on C
n.

Lemma B.5 (See [20],Chapter 3) If A and B are n×n complex matrices and s1(A) ≥
s2(A) ≥ · · · ≥ sn(A) and s1(B) ≥ s2(B) ≥ · · · ≥ sn(B) are the singular values of A
and B then

s1(AB) ≤ s1(A)s1(B) and s1(A + B) ≤ s1(A) + s1(B),

max
1≤k≤n

|sk(A + B) − sk(A)| ≤ s1(B),

si+ j−1(A + B) ≤ si (A) + s j (B)

for 1 ≤ i, j ≤ n and i + j ≤ n + 1.

Lemma B.6 (See [8] Lemma C.1 and [19] Theorem VIII.9.2) Let Z be a positive
random variable such that for every t > 0,

P(Z ≥ t) = L(t)t−α

for some slowly varying function L and some α ∈ (0, 2). Then, for every p > α,

lim
t→∞

E[Z p1{Z≤t}]
c(p)L(t)t p−α

= 1,

where c(p) := α/(p − α).
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