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Abstract
Magic-angle spinning (MAS) nuclear magnetic resonance
(NMR) is establishing itself as a powerful method for the
characterization of protein dynamics at the atomic scale. We
discuss here how R1r MAS relaxation dispersion NMR can
explore microsecond-to-millisecond motions. Progress in
instrumentation, isotope labeling, and pulse sequence design
has paved the way for quantitative analyses of even rare
structural fluctuations. In addition to isotropic chemical-shift
fluctuations exploited in solution-state NMR relaxation disper-
sion experiments, MAS NMR has a wider arsenal of observ-
ables, allowing to see motions even if the exchanging states do
not differ in their chemical shifts. We demonstrate the potential
of the technique for probing motions in challenging large en-
zymes, membrane proteins, and protein assemblies.
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Dynamic structural biology
Biological processes are determined by the way how

proteins interact with each other in the complex cellular
environment and how the jiggling and wiggling of atoms
enable enzymatic catalysis, recognition, binding, and
www.sciencedirect.com
folding. Despite the enormous usefulness of the static
structures determined from proteins frozen in crystals or
on EM grids, it is of great importance to include dy-
namics for deciphering how biomolecules function.

Nuclear magnetic resonance (NMR) spectroscopy oc-
cupies an important place in studies of protein dy-
namics because it can determine equilibrium dynamics

with a resolution of individual atoms, without the need
for crystallization or freezing and without adding any
chemical labels. Because NMR exploits a property
inherent to every atom (1H, 13C, 15N, 31P), it simul-
taneously probes the local environment at hundreds of
sites. Nuclear spins not only report on their average
environment, but they are exquisitely sensitive to the
way the environment fluctuates around the time-
averaged conformations.

Solution-state NMR spectroscopy is routinely used for

the determination of structures and dynamics of pro-
teins below ca. 40 kDa. Due to the overall molecular
tumbling in solution, some interactions that a nuclear
spin has with its environment are averaged to zero,
which makes spectra simple; but if the overall tumbling
is slow (tens of nanoseconds or longer, corresponding to
proteins of ca. 40 kDa or more), then it entails rapid spin
relaxation, i.e. a loss of signal. Consequently, studying
larger proteins becomes tricky. Solution-state methyl-
TROSY NMR can provide powerful insights into motion
and function [1,2], but it reduces the number of re-

porters to methyl groups only.

Many molecular assemblies of biological interest are
inherently insoluble (e.g., membrane proteins, amyloid
fibrils), excluding solution-state NMR. Even for inher-
ently soluble large proteins, which are difficult to study
by solution-state NMR because of the aforementioned
slow tumbling, one may want to have those proteins in an
immobilized state (e.g., sedimented). All these cases,
where the protein molecules are not tumbling, are herein
referred to as a solid state; besides insoluble assemblies

(large capsids, tubes, fibrils) or proteins embedded in
liposomes, bound to cell walls, or embedded in some
matrix or in a crystal, one may obtain “solid” samples also
by ultracentrifuging a solution of protein to obtain a
pellet, which has the properties of a solid [3,4]. Typical
samples for solid-state NMR are highly hydrated
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(typically more than 50% of the sample mass is water),
and the historical term “solid” might be misleading.

As the molecules in solid-state NMR samples are fixed in
orientation, the aforementioned averaging of interactions
of a spin with its environment, which is brought about by
overall tumbling in solution, is absent. Because of these
large, orientation-dependent interactions, NMR spectra

of solids, i.e., a static collection of molecules oriented in
all possible directions, are very complex and hardly
useful. In order to obtain spectral resolution allowing to
resolve individual atoms, one needs to mimic the overall
tumbling process by subjecting the entire sample to rapid
rotation around the so-called magic angle (ca. 54.7�,
which is the zero-crossing of a mathematical function
that describes the orientation-dependence of the in-
teractions). Sample-spinning frequencies range up to ca.
160 kHz nowadays. In contrast to the stochastic tumbling
in solution, the sample rotation subjects the spin in-

teractions to a well-defined time dependency. The
spectroscopist can use pulses of electromagnetic field in
the radio-frequency range (RF pulses) to rotate spins and
thereby create interferences between the time-
dependent sample rotation and the time-dependent
rotation of spins by the pulses. This opens a vast play-
ground for the spectroscopists to design RF pulse se-
quences tailored to detect a particular aspect of the
molecular structure or dynamics, with more possibilities
than what solution-state NMR can offer.

This review focuses on such magic-angle spinning
(MAS) NMR experiments and more specifically onMAS
NMR spin-relaxation experiments suitable to probe
motions on the nanosecond-microsecond-millisecond
Figure 1

Motion probed by MAS NMR, as exemplified by ring flips. (a) Energy landsc
main conformations (red and blue), separated by a 180� flip of the aromatic r
states, the highlighted C–H site is subjected to different electronic environmen
the chemical-shielding tensor (depicted by an ellipsoid), relative to the static m
flip motion (top) and fast low-amplitude rotation. These faster motions can be
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(nsemsems) timescales. The reader is referred to
other reviews on MAS NMR dynamics measurements
for a more in-depth view [5e10].

How NMR observables can see molecular motion
Dynamics of a moleculeeirrespective of whether it is
local bond libration or large-scale domain
motionsereorients atoms and bonds in space. There-
fore, it modifies the spatial distribution of electrons
(molecular orbitals), and many interatomic distances
and orientations. Figure 1 illustrates a simple example of

rotation of a phenylalanine ring around its c2 angle. As
the ring flips between the two equivalent states, the
orientation of the indicated CeH bond is flipped by
120�; moreover, the CeH site experiences different
environments in the two states, e.g., because more or
less electronegative neighbors render the two environ-
ments nonequivalent. For a ring buried in the interior of
a protein, this transition is associated with a significant
energy barrier, and flips often take many ms or longer
[11]. Within each well, the ring undergoes faster,
smaller-angle rotations (Figure 1b).

From an NMR standpoint, these fluctuations of bond
angles, distances, and electronic environments translate
to fluctuations of spin interactions: (i) The electronic
environment gives rise to a local magnetic field at the
location of the nucleus, which partially shields the
external magnetic field. This so-called chemical-shift
interaction essentially reflects how the electrons are
distributed around the nucleus; in general, this distri-
bution is different in different directions around a nu-
cleus, i.e., anisotropic. The orientation-averaged value

of the chemical shift, also called the isotropic chemical
ape of a phenylalanine ring embedded in a protein. The ring can adopt two
ing, and additional faster small-scale rotations within each well. In the two
ts and interatomic distances. Additionally, the orientations of the bond and
agnetic field, are altered. (b) Time trace of the c2 dihedral angle slow ring
studied by, e.g., longitudinal relaxation (R1, see Figure 2h).

www.sciencedirect.com
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shift, determines the position of a given resonance peak
in an NMR spectrum. As the molecule undergoes some
conformational change (e.g., changes of dihedral angles
or distances from the atom to others), so does the
electronic cloud, and therefore, the isotropic chemical
shift fluctuates stochastically. As a consequence, the
spin experiences a local fluctuating magnetic field due
to dynamics.

(ii) Moreover, the chemical shift is generally anisotropic,
i.e., the shielding is different along different spatial di-
rections. The instantaneous resonance frequency of a
given spin depends on the orientation of this chemical-
shift anisotropy (CSA) tensor with respect to the mag-
netic field. Motion means that the spin experiences a
fluctuation of its CSA tensor.

(iii) Besides the chemical shift, the other very
important interaction is the dipolar coupling which is

a through-space interaction between two spins. It
depends on the distance between nuclei, and the
angle between the inter-atomic vector and the mag-
netic field. Thus, like the anisotropic part of the
chemical-shift interaction discussed previously, the
dipolar coupling is also orientation-dependent. Again,
molecular motion leads to a fluctuation of the dipolar
coupling, which translates to a fluctuating magnetic
field, from the spin’s standpoint.

For completeness, two other interactions shall not be

left out in this discussion: firstly, the quadrupolar
coupling, which is the interaction of the quadrupole
moment of the nucleus with the electric-field gradient.
Because 1H, 13C, and 15N nuclei do not possess a
quadrupole moment, these nuclei are not concerned.
Relevant for biomolecules, however, are deuterium (2H)
nuclei, and we refer the reader to interesting de-
velopments of using deuterium for detecting slow mo-
tions in proteins [12]. In the remainder of this review,
we will focus only on spins without quadrupole moment.
Lastly, the spins also have a through-bond coupling,
which for simplicity we leave out here, as it generally has

a minor role for dynamics studies.

To come back to the example of Figure 1, a ring flip
entails a change of the couplings, e.g., that of the 1H spin
with the bonded 13C spin or with the surrounding 1H
spins; moreover, the orientation of the chemical-
shielding tensor (indicated as an ellipse) in space is
altered; and lastly, the fact that the 1H spin is located in a
different chemical environment also means that its
isotropic chemical shift is different in the
two conformations.

Spins are sensitive to the amplitude and time scale of
these fluctuations, i.e., (i) the (orientationally averaged,
i.e., isotropic) chemical shift, (ii) the CSA, and (iii) the
dipolar couplings, in two ways.
www.sciencedirect.com
On one hand, the time-averaged interaction strength,
compared to its expected value in the absence of
motion, directly reports on the amplitude of motion,
averaged over all time scales shorter than a few tens of
ms. In solids, this reduction of the interaction strength
reports on internal motional amplitudes. (More pre-
cisely, it is the product of the relative populations of
states and a function describing the difference in the

orientation between those, which determine the
amount by which the dipolar coupling is reduced.)

On the other hand, the speed of relaxation of a spin
towards its thermal equilibrium, after it has been
excited by RF pulses, depends on the amplitudes and
timescales of these fluctuations. Again, solid-state
NMR has an inherent advantage over its solution-
state counterpart for detecting motions on timescales
longer than tens of nanoseconds, even in the absence of
isotropic chemical-shift differences. This is because in

solution, only the isotropic chemical-shift fluctuations
survive as reporters of slow motion, whereas CSAs and
dipolar couplings are averaged to zero by the tumbling.
Several MAS NMR approaches are available for
detecting msems motions in MAS NMR, including
CarrePurcelleMeiboomeGill relaxation dispersion
[13], chemical-exchange saturation transfer [14],
centerband-only detection of exchange [15,16], dif-
ferential multiple-quantum relaxation [13], or deute-
rium line shape analysis [17]. We refer the interested
reader to additional reviews on topics of dynamics by

MAS NMR [18,6,19e21]. The focus of this review is on
a technique that has proven particularly versatile and
robust for detecting msems motion: R1r relaxation
dispersion (RD) experiments.

NMR relaxation experiments workflow and its
information content
A relaxation measurement generally consists of pre-
paring a particular spin state by RF pulses, and
following its evolution during a relaxation delay by
measuring the peak intensity remaining at the end of
the relaxation delay. By repeating the measurement,
and increasing the relaxation delay from one experi-
ment to the next, one obtains the relaxation-rate con-
stant from fitting this intensity decay as a function of
the relaxation delay length, most often using an expo-

nential decay. To obtain site-specific information, the
readout is often a two-dimensional correlation spec-
trum that separates, e.g., all amide signals according to
the 1H and 15N frequencies. For the case of R1r mea-
surements (Figure 2a,b), a spin state is prepared and
allowed to relax during a time trelax in the presence of a
continuous RF pulse (called spinlock pulse) with a
certain RF field strength nSL (in kHz).

In R1r RD measurements, the experiment is repeated
with different nSL values, and the dependency of R1r on

nSL is called relaxation dispersion (Figure 2bed). msems
Current Opinion in Structural Biology 2023, 82:102660
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Figure 2
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R1r relaxation dispersion measurements in MAS NMR. (a) Schematic depiction of a two-dimensional pulse sequence to measure R1r relaxation. After
excitation of protons, magnetization is transferred to the nucleus of which the relaxation properties are measured (e.g ,15N or 13C). In the relaxation block,
an RF spinlock pulse of variable length trelax and field strength nSL is applied. Then, the two chemical-shift frequencies are recorded to obtain amino-acid
wise resolution. (b) A single R1r rate constant is obtained by recording a series of experiments with increasing trelax and monitoring the trelax-dependent
intensity decay. A relaxation dispersion profile is recorded by repeating measurements with increasing nSL. (c) The extracted peak intensities are fitted to
exponential decays to determine the relaxation-rate constant at each nSL. (d) The resulting relaxation dispersion profile (e) A simple two-site model of a
two-spin system (e.g., 1H–

13C), involving rotation of the bond by an angle Q at an exchange-rate constant kex. Motions results in (i) fluctuations of the
isotropic chemical shift d of one nucleus or (ii) reorientation of anisotropic-spin interactions (chemical-shift anisotropy and dipolar coupling), which are
depicted here by an interaction tensor (ellipsoid). (f) Spin simulations of this jump model with a correlation time tc of 200 ms and different combinations of
Dd and Q. A change of d leads to Bloch–McConell relaxation dispersion at low nSL, whereas reorientational jumps (Q) result in near-rotary-resonance
relaxation dispersion as nSL approaches nMAS. (g) Dependence of R1r on the correlation time tc. (h) Different view of the same situation, plotted as a
function of tc, highlighting that R1r near-rotary-resonance relaxation dispersion occurs only for ms–ms motion.
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fluctuation of the isotropic chemical shift results in a
population-weighted averaged peak position; it induces
line broadening and an increase of R1r at low RF field
strengths. This latter effect is termed BlocheMcConnell
relaxation dispersion (BMRD) and is also present in so-
lution NMR.

In the vicinity of so-called rotary-resonance conditions
(nSL = 1

2nMAS, nSL = nMAS, nSL = 2nMAS), on the other
hand, interference effects between nSL and the magic-
angle sample spinning frequency nMAS lead to
enhanced R1r. At these resonance conditions, the
Current Opinion in Structural Biology 2023, 82:102660
periodic fluctuation of the dipolar interaction that is
imposed onto, e.g., a pair of 1He13C atoms by MAS is
“undone” by the periodicity imposed onto the spins by
the RF field. As a consequence, the MAS-induced
averaging of the dipolar coupling (which leads to sharp
lines) is counteracted for the time during which the RF

field is on. This effect, called recoupling, is used in
experiments that exploit the dipolar coupling, e.g., for
correlating frequencies of spins, where, e.g., the 13C
coherence is transferred to 1H (and thereby, it decays
quickly). This effect is present even in samples without
any dynamics.
www.sciencedirect.com
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However, in the presence of dynamics, this decay of
coherence occurs not only exactly at the resonance
conditions, but also around them, i.e., the resonance
conditions are broadened by dynamics, which appears as
an increased relaxation. This broadening of the reso-
nance conditions (i.e., an increase in R1r; Figure 2d,f,g)
happens only if this stochastic motion is of the order of
the sum or difference between the sample rotation

(MAS) and spin rotation (RF field) frequencies.

At the different conditions mentioned previously,
different types of interactions are relevant. For example,
at nSL = 1

2nMAS it is the quadrupolar coupling (if appli-
cable) and the homonuclear dipolar coupling, such as
between two 1H spins, which get “recoupled” and give
rise to the enhanced relaxation. At nSL = nMAS, it is the
heteronuclear dipolar coupling and the CSA. Thus, at
the latter condition, one sees motion of , e.g., the
1He15N bond and the 15N CSA, whereas at the former

condition, one sees the relative motion of two 1H spins.

This effect of enhanced relaxation when the RF field
and MAS frequencies approach these specific condi-
tions is also called near-rotary-resonance relaxation
dispersion (NERRD), a term introduced by Kurauskas
et al. [22]. It is specific to MAS NMR and is a useful
detector of the presence of ms motions, as demon-
strated by example calculations and spin dynamics
simulations (Figure 2geh).

Accurate quantification of R1r-rate constants is chal-
lenged by the fact that the apparent decay rate constant
is not only caused by dynamics, but also by unwanted
effects unrelated to dynamics, which may lead to faster
decay. Particularly, this is the case for so-called dipolar
dephasing, which arises due to the presence of strong
dipolar 1He1H couplings that are not sufficiently well-
suppressed by MAS. Faster MAS [23] and the replace-
ment of non-needed 1H nuclei by 2H (which has weaker
dipolar couplings) help suppressing these unwanted
effects. In this respect, an important development is the
selective introduction of sparse protonation in an

otherwise deuterated environment, leaving 1H only at
the sites one wants to detect. As higher MAS fre-
quencies (currently up to ca. 160 kHz) and specific la-
beling of side chains became available, RD experiments
are becoming increasingly popular and widespread.

From MAS NMR RD data to motional models
Different approaches can be used to interpret relaxation
data and characterize the underlying motion [9]. As
NMR parameters probe the motion only indirectly, their
interpretation generally involves models.

Explicit physical models may be adapted whenever one

knows about possible motions of a molecule. This is
particularly the case for, e.g., ring flip motion (symmetric
www.sciencedirect.com
two-site jump) or other side-chain rotamer transitions
(asymmetric n-site jumps). Two-state models are often
also used for interpreting BMRD data, e.g., an exchange
between a major and a minor conformer. Further physical
models are, e.g., rocking motion of a protein or a protein
domain within a crystal [22] or a complex [24] or of a
helix in a membrane [25]. These models are ideally
backed up by molecular dynamics simulations. Explicit

physical models are also used for treating (mostly faster)
local librations (e.g., assuming the wobbling of a bond in
a cone).

Other classes of models make assumptions about the
mathematical form of the correlation functions, rather
than assuming an explicit physical motional model
[26e30]. For example, Smith et al. proposed an
approach that aims to reflect the complexity of molec-
ular motion by extracting the amplitude of motion in
different timescale windows, the so-called “detectors”

[31,32], from relaxation data and (optionally) dipolar
order parameters (but not BMRD data). The idea of the
detectors approach is the realisation that different
relaxation experiments (e.g., longitudinal relaxation at
different magnetic field strengths or transverse relaxa-
tion recorded with different strengths of applied radio-
frequency fields) are sensitive to different timescales
of motion. Therefore, given a set of experimental data,
collected under certain conditions, the approach
searches to find which time windows the experimental
data can report on and determines the “amount of

motion” (amplitude) in each of these time windows,
aiming to reflect the multitude of motions occurring at
different time scales. It makes fewer assumptions than,
e.g., an explicit two-site exchange model that is often
used to analyze BMRD data; one may argue that the
result of the detectors approach may be more reliable if
one does not know whether a certain models is actually
justified. It allows for a combined analysis of different
experiments aiming to draw an extensive picture of the
complexity of molecular motion and also link them to
molecular dynamics simulations [33,34].
Applications
Protein motion occurs on various timescales. In some
cases, the mobility of individual side chains holds the
key to function of enzymes. Often, larger segments of
the protein, such as long loops or entire secondary-

structure elements, sample different conformational
states. In the following, we provide some spotlights on
recent RD studies, from local to long-range motions.

Side-chain dynamics
Established originally for solution-state NMR [2],
methyl-labeling in deuterated proteins has turned out
very useful for MAS NMR. 13CHD2-labeling in
deuterated proteins has been used to study sub-ms
rotamer equilibria [35,36] and also for NERRD
Current Opinion in Structural Biology 2023, 82:102660
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experiments of Ile, Leu, and Val side chains in the 0.5-
MDa large TET2 aminopeptidase complex [37]. Se-
lective labeling methods are being extended to other
residues, such as aromatics [38]. These are over-
represented at protein interfaces and catalytic sites
and can report on local unfolding events (so-called
breathing motion) if ring-flip events are observed [39].
Selective labeling of phenylalanines with 1He13C labels

in either the site that is colinear with the ring axis (Cz)
or is inclined by 60� to the axis (Cε) was introduced in
the dodecameric TET2 peptidase [40]. These two la-
beling schemes have allowed the detection of the
timescale of ring flips and ring-axis motion. Ring flips of
buried aromatics require larger-scale breathing motions
of proteins that create a transient void volume to allow
for the flip. Interestingly, the timescales of flips of the
ten Phe residues in TET2 vary greatly, from few ns to
hundreds of ms, and MD simulations have been used to
rationalise the findings [40]. Moreover, experiments

down to �173 �C allowed studying the thermal activa-
tion of the fast ring-flip motion. Using BMRD experi-
ments, localized msems dynamics was also detected at
the protomer interfaces and on the structural pathway
between the entry pore and the catalytic site.

The same Phe-labeling scheme has been used to probe
how the crystalline environment impacts aromatic ring
flips by comparing three different crystal forms of
ubiquitin, using 13C and 1H R1r data and MD simula-
tions [41]. Using phenylalanine and tyrosine-labeling of

two amyloid fibrils (HET-s and HELLF), we have
recently revealed that the amyloid core is rigid, without
Figure 3

Examples of protein motion investigated by solid-state NMR. (a) Loop an
(b) Motion of a flexible loop, involved in the stabilization of substrate in the ac
protein–water network at the active site of hCAII [47]. (d) Transient unfolding o
increased aggregation propensity [50]. (e) Bacteriophage tail tube–bending m
disulfide-bonding in a decameric peroxiredoxin [56].

Current Opinion in Structural Biology 2023, 82:102660
any ring flips up to at least hundreds of milliseconds
(presumably longer), whereas rings on the surface rotate
on a ms timescale [42]. The backbone dynamics of the
HELLF fibrils have also been studied in a very rigorous
study by Smith, Ernst et al. [43]. Note that solution
NMR is unable to quantify motions on the nsems
timescale, such that ring-flip motion is often hard to
quantify. Overall, the use of selectively labeled amino

acids with MAS NMR has revealed a surprisingly diverse
spectrum of motion.

The Pintacuda lab has studied how metal-binding to the
active site of superoxide dismutase alters the side-chain
dynamics (using 15N-labeled histidine sites) and back-
bone dynamics [44]. Metal-binding does not simply
rigidify the protein but rather redistributes the time-
scales on which motions occur.

Motion of secondary structure elements
Frequently, conformational exchange associated with
protein function involves several residues, in a catalytic
pocket or throughout a loop, a-helix or b-sheet. This is
the case for an intramembrane rhomboid protease, GlpG,
which was studied in liposomes [45] (Figure 3a). BMRD
data demonstrated how one of the transmembrane he-
lices of GlpG undergoes a transition between a closed,
major state and an open, minor state. Fitting of the
dispersion curves to a global, two-state exchange model
revealed a motional timescale of ca. 40 ms. Conforma-
tional dynamics has also been studied in, e.g., rhodopsin,
providing evidence for collective motions of trans-
membrane helices [25].
d helix dynamics in an intramembrane protease studied in liposomes [45].
tive site of the TET2 aminopeptidase [37]. (c) Shared motion of a
f a b-sheet in the excited state of a microglobulin mutant, responsible for its
ediated by flexible hinge regions [53]. (f) Dynamic disorder induced by

www.sciencedirect.com
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The power of MAS NMR to study large molecular as-
semblies has allowed elucidating the role of a highly
flexible loop in TET2 aminopeptidase, using 13CHD2

methyl-directed NERRD experiments mentioned
previously [37]. A long loop in the catalytic chamber,
which could not be resolved in X-ray crystallography
structures, undergoes ms motions and can adopt con-
formations that stabilize the substrate at the active site

(Figure 3b). The flexibility allows substrate passage,
while also retaining the ability to stabilize the substrate
once bound to the catalytic center. Loop dynamics on
the ms time scale have also been identified in SH3
crystals, using 1H and 15N R1r methods [46].

Singh, Linser et al. identified the presence of
proteinewater network-shared motion in the catalytic
site of the 29-kDa large human carbonic anhydrase
hCAII (Figure 3c). By combining 15N R1r BMRD with
1H and 15N R1r NERRD profiles, they observed un-

ambiguous dynamics of the watereHebonded moieties,
which was severely decreased after binding of the in-
hibitor dorzolamide. Comparing these results with the
knowledge about ordered proteinewater networks from
X-ray crystallography, they proposed that water in the
catalytic pocket not only acts as a solvent, but its
structural role might determine the dynamic personality
of the enzyme [47].

Occasionally, changes in dynamics are the determinants
behind the phenotypical differences in protein mutants.

Several point mutants of the KcsA potassium channel
were investigated, mimicking substitutions present in
the eukaryotic voltage-gated channels [48,49]. The
mutants, characterized by different gating modes,
showed severe shifts in dynamics at the selectivity filter,
the entry access for potassium ions.

Mutations are sometimes responsible for disease, such
as, for example, amyloidosis. The effect of the highly
pathogenic D76N mutation in b2-microglobulin was
elucidated by solid-state NMR in crystals [50]. This
causes the weakening of a set of electrostatic in-

teractions, determining the loss of structure in the
protective edge b-strand (Figure 3d). The highly
aggregation-prone regions are therefore exposed, trig-
gering amyloid formation.

Besides probing the function-related motion, MAS
NMR experiments have also allowed addressing how the
crystalline environment impacts motion. In ubiquitin, a
peptide plane in a b-turn flips between two conforma-
tions, including some side-chain and hydrogen-bonding
rearrangements. It was shown that the process, which

had been extensively characterized in solution, is still
present in crystals, although the exchange kinetics can
become slowed down by an order of magnitude.
www.sciencedirect.com
Moreover, the predominant state in one crystal can
become a minor state in another [51,52].
Motions involving larger structural elements
Solid-state NMR is particularly powerful for large
protein complexes or assemblies. Zinke et al. analyzed
15N R1 and

15N R1r rate constants in polymerized tail

tubes of the bacteriophage SPP1 (Figure 3e). They
identified highly dynamic hinge regions, undergoing
stretching motion upon tube bending. Flexibility was
confirmed by the pronounced density variances of
these regions in the cryo-EM maps. Furthermore,
BMRD was measured to detect motion on the msems
timescale. Most residues in the barrel, forming the
vertebrae of the tube, were involved in slow motion,
and the R1r values could be fitted in a correlated
manner to a two-state exchange model. Thus, this was
proposed to represent tube bending [53].

The overall motion of an entire protein within its envi-
ronment has also been reported for several small proteins.
TheLewandowski grouphas revealedbyR1r experiments
that the protein GB1 has small-amplitude overall motion
when it is bound to an antibody, while it is more fixed
within the crystal [24]. RD measurements, backed up
with MD simulations and crystallography, have revealed
that ubiquitin has markedly different overall rocking
motion within different crystal lattices [54,22]. Krush-
elnitsky et al. have investigated rocking motion also in
crystals of GB1 and SH3 [55]. These findings provide

important insights into overall motion and its relationship
to crystallographic resolution and its modeling (B-factors,
translation-libration-screwmodeling of crystal structures,
etc); unlike crystallography, MAS NMR is also able to
quantify the time scale of overall motions.

A recent study [56] has used MAS NMR RD experi-
ments to investigate the effects of disulfide-bond for-
mation on the dynamics and structure of the
peroxiredoxin Tsa1, an important player for detoxifying
cells from peroxides, that forms 220-kDa large deca-

meric rings (Figure 3f). Its functional cycle involves the
formation of a disulfide bond. Disulfide-bond formation
induces ms motion, particularly around the two involved
cysteines, which are sensed by 15N R1r NERRD data of
amides throughout almost the entire protein. Inter-
estingly, a large part of the protein in its disulfide-
bonded state had been unobservable by crystallo-
graphic methods, presumably due to the dynamics that
MAS NMR has identified. The dynamics has been
ascribed to structural frustration, i.e., the inability to
simultaneously satisfy favorable interactions, due to the

constraints imposed by the disulfide. In addition,
BMRD data have revealed dynamics at the intersubunit
interfaces of the decameric rings, in both the reduced
and oxidised states.
Current Opinion in Structural Biology 2023, 82:102660
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Outlook
Over the last 10 years, MASNMR has made a substantial

leap from small crystalline model proteins to dynamics
investigations of, e.g., membrane proteins and enzymes
of hundreds of kilodaltons in total size, and monomer
sizes of several hundred residues. The examples cited
previously provide a glimpse of the types of insight that
one can obtain from such data. This information is highly
complementary to the structures obtained by crystal-
lography or cryo-EM, and several examples show that
often the interesting dynamic parts are simply unob-
servable in crystallographic and EM models.

The continuous improvement of NMR hardware (in
particular faster MAS), isotope-labeling and pulse-
sequence methods has been (and will continue to be)
of great importance. For example, MAS frequencies of
50 kHz and above, combined sparse protonation in a
deuterated background and 1H-detected pulse se-
quences, have been instrumental to allow for artefact-
free relaxation dispersion measurements. MD simula-
tions have been extremely useful for interpreting the
NMR data and providing atom-level details that exper-
imental techniques have a hard time to get. We foresee

further developments in all these areas:

(i) The need for deuteration-specific labeling may be
relaxed to some degree with even faster MAS (soon
towards 200 kHz).

(ii) On the other hand, using organic chemistry to
design new selectively 1He13Ce1He15Ne19F-
labeled side chains holds the key to focusing on
dynamics of sites that currently are not so easy to
study at the same level of detail as the ones
described previously. It will be exciting to be able

to dwell on particular sites of, e.g., enzymes and
decipher the motions of, e.g., Ser, Glu, or His side
chains often found in the active sites of enzymes.

(iii) On the pulse sequence design side, we are devel-
oping methods that make RD experiments more
sensitive. In particular, we are exploring methods to
decouple 1H spins, which would enhance sensi-
tivity particularly close to the rotary-resonance
conditions (where oscillations at the onset of the
spinlock severely reduce sensitivity [55]), and
which would also allow extending the methods

towards slower (ms) motions. Ongoing work es-
tablishes the potential of the method. While
writing this review, an interesting work along these
lines has been published too [57].

(iv) The addition of paramagnetic cosolutes can accel-
erate data acquisition in NMR by speeding up
longitudinal relaxation between repetitions of
scans, thereby allowing to repeat experiments
faster [58e60]. That this would work for quanti-
fying relaxation in dynamics measurements is not
granted, as the paramagnetic cosolute enhances the
Current Opinion in Structural Biology 2023, 82:102660
relaxation in a way that is not related to the dy-
namics of interest; one may, however, either fit
both the dynamics part and the paramagnetic part
(related to solvent accessibility) simultaneously to
the relaxation data or assume (and verify) that the
paramagnetic contribution is independent of the
applied RF field and thus analyze a the RF-field
dependency (i.e., relaxation dispersion) only in
terms of ms motion, as pioneered by Lewandowski
and co-workers for BMRD experiments [61].
Alternative approaches to R1r RD experiments for

detecting msems motions, such as
CarrePurcelleMeiboomeGill and differential
multiple-quantum relaxation [13] are also
promising.

(v) An obvious further development is towards other
nuclei, such as 19F. Although ambitious, it would be
exciting to push methods that detect ms motions
not only by “local” spies but also by directly
monitoring the fluctuation of long-range inter-
atomic distances.

(vi) The way how data are analyzed has made progress
from simple “model-free” treatments a decade ago

to more advanced methods such as the detectors
approach. A very exciting development along these
lines is the direct incorporation of MD simulations
into the data fitting, as pioneered by Smith et al.
[9,34]. A challenge for the analysis of ms motions
using methods such a MAS NMR RD/MD analysis
is that for statistically relevant sampling, one re-
quires MD data equivalent to many tens of ms.
These challenges are being worked on extensively
[62e64]. Moreover, developments of MD integra-
tion data with experimental methods [65] will

likely be instrumental also for MAS NMR.
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