
Monitoring Hyperproperties with Prefix
Transducers

Marek Chalupa(B) and Thomas A. Henzinger

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
marek.chalupa@ist.ac.at

Abstract. Hyperproperties are properties that relate multiple execu-
tion traces. Previous work on monitoring hyperproperties focused on syn-
chronous hyperproperties, usually specified in HyperLTL. When monitor-
ing synchronous hyperproperties, all traces are assumed to proceed at the
same speed. We introduce (multi-trace) prefix transducers and show how
to use them for monitoring synchronous as well as, for the first time, asyn-
chronous hyperproperties. Prefix transducers map multiple input traces
into one or more output traces by incrementally matching prefixes of the
input traces against expressions similar to regular expressions. The pre-
fixes of different traces which are consumed by a single matching step of
the monitor may have different lengths. The deterministic and executable
nature of prefix transducers makes them more suitable as an intermedi-
ate formalism for runtime verification than logical specifications, which
tend to be highly non-deterministic, especially in the case of asynchronous
hyperproperties. We report on a set of experiments about monitoring
asynchronous version of observational determinism.

1 Introduction

Hyperproperties [20] are properties that relate multiple execution traces of a
system to each other. One of the most prominent examples of hyperproperties
nowadays are the information-flow security policies [33]. Runtime monitoring [1]
is a lightweight formal method for analyzing the behavior of a system by checking
dynamic execution traces against a specification. For hyperproperties, a moni-
tor must check relations between multiple traces. While many hyperproperties
cannot be monitored in general [3,13,25], the monitoring of hyperproperties can
still yield useful results, as we may detect their violations [24].

Previous work on monitoring hyperproperties focused on HyperLTL specifi-
cations [3,13], or other synchronous hyperlogics [2]. Synchronous specifications
model processes that progress at the same speed in lockstep, one event on each
trace per step. The synchronous time model has been found overly restrictive
for specifying hyperproperties of asynchronous processes, which may proceed at
varying speeds [7,9,12,27]. A more general, asynchronous time model allows mul-
tiple traces to proceed at different speeds, independently of each other, in order
to wait for each other only at certain synchronization events. As far as we know,
there has been no previous work on the runtime monitoring of asynchronous
hyperproperties.
c© The Author(s) 2023
P. Katsaros and L. Nenzi (Eds.): RV 2023, LNCS 14245, pp. 168–190, 2023.
https://doi.org/10.1007/978-3-031-44267-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-44267-4_9&domain=pdf
http://orcid.org/0000-0003-1132-5516
http://orcid.org/0000-0002-2985-7724
https://doi.org/10.1007/978-3-031-44267-4_9

Monitoring Hyperproperties with Prefix Transducers 169

Fig. 1. Traces of abstract events. The event I(x, v) signals an input of value v into
variable x; and O(x, v) signals an output of value v from variable x. The event Dbg(b)
indicates whether the debugging mode is turned on or off.

The important class of k-safety hyperproperties [20,22] can be monitored
by processing k-tuples of traces [3,22]. In this work, we develop and evaluate
a framework for monitoring k-safety hyperproperties under both, synchronous
and asynchronous time models. For this purpose, we introduce (multi-trace)
prefix transducers, which map multiple (but fixed) input traces into one or more
output traces by incrementally matching prefixes of the input traces against
expressions similar to regular expressions. The prefixes of different traces which
are consumed by a single matching step of the transducer may have different
lengths, which allows to proceed on the traces asynchronously. By instantiating
prefix transducers for different combinations of input traces, we can monitor k-
safety hyperproperties instead of monitoring only a set of fixed input traces. The
deterministic and executable nature of prefix transducers gives rise to natural
monitors. This is in contrast with monitors synthesized from logical specifications
which are often highly non-deterministic, especially in the case of asynchronous
(hyper)properties.

We illustrate prefix transducers on the classical example of observational
determinism [37]. Informally, observational determinism (OD) states that when-
ever two execution traces agree on low (publicly visible) inputs, they must agree
also on low outputs, thus not leaking any information about high (secret) inputs.
Consider, for example, the traces t1 and t2 in Fig. 1. These two traces satisfy OD,
because they have the same low inputs (events I(l, ·)) and produce the same
low outputs (events O(l, ·)). All other events in the traces are irrelevant to OD.
The two traces even satisfy synchronous OD, as the input and output events
appear at the same positions in both traces, and thus they can be analysed by
synchronous-time monitors (such as those based on HyperLTL [3,13,24]), or by
the following prefix transducer:

q0 q1q2

τ1 : _�(Il + Ol)e1

τ2 : _�(Il + Ol)e2

[τ1[e1] = τ2[e2]]
� τo �→ �

τ1 : _�(Ol)e1

τ2 : _�(Ol)e2

[τ1[e1] �= τ2[e2]]
� τo �→ ⊥

τ1 : _�(Il)e1

τ2 : _�(Il)e2

[τ1[e1] �= τ2[e2]]
� τo �→ �

170 M. Chalupa and T. A. Henzinger

The transducer reads two traces τ1 and τ2 that are instantiated with actual
traces, e.g., t1 and t2. It starts in the initial state q0 and either repeatedly takes
the self-loop transition, or goes into one of the states q1 or q2 where it gets
stuck. The self-loop transition matches the shortest prefix of τ1 that contains
any events until a low input or output is found. This is represented by the prefix
expression _�(Il + Ol), where we use Il (resp. Ol) to represent any low input
(resp. output) event, and _ stands for any event that does not match the right-
hand side of �. The same pattern is independently matched by this transition
also against the prefix of τ2. Moreover, the low input or output events found
on traces τ1 and τ2 are labeled by e1 and e2, resp. The self-loop transition is
taken if the prefixes of τ1 and τ2 match the expressions and, additionally, the
condition τ1[e1] = τ2[e2] is fulfilled. The term τ [e] denotes the sequence of events
in trace τ on the position(s) labeled by e. Therefore, the condition τ1[e1] = τ2[e2]
asserts that the matched input or output events must be the same (both in terms
of type and values). If the transducer takes the self-loop transition, it outputs
(appends) the symbol � to the output trace τo (as stated by the right-hand side
of �). Then, the matched prefixes are consumed from the input traces and the
transducer continues with matching the rest of the traces. The other two edges
are processed analogously.

It is not hard to see that the transducer decides if OD holds for two syn-
chronous input traces. State q0 represents the situation when OD holds but may
still be violated in the future. If the self-loop transition over q0 cannot be taken,
then (since we now assume synchronised traces), the matched prefixes must end
either with different low input or different low output events. In the first case,
OD is satisfied by the two traces and the transducer goes to state q2 where it
gets stuck (we could, of course, make the transducer total to avoid getting stuck,
but in this example we are interested only in its output). In the second case,
OD is violated and before the transducer changes the state to q1, it appends ⊥
to the output trace τo. OD is satisfied if τo does not contain (end with) ⊥ after
finishing reading (or getting stuck on) the input traces.

The transducer above works also for monitoring asynchronous OD, where the
low input and output events are misaligned by “padding” events (but it requires
that there is the same number and order of low input and output events on
the input traces – they are just misaligned and possibly carry different values;
the general setup where the traces can be arbitrary is discussed in Sect. 5). The
transducer works for asynchronous OD because the prefix expressions for τ1 and
τ2 are matched independently, and thus they can match prefixes of different
lengths. For example, for τ1 = t1 and τ2 = t3, the run consumes the traces in
the following steps:

t1 : I(l, 1) I(h, 1) O(l, 1) O(l, 1)

t3 : I(l, 1) Dbg(1) I(h, 2) O(l, 1) O(l, 1)

step 1 step 2 step 3

Monitoring Hyperproperties with Prefix Transducers 171

Hitherto, we have used the output of prefix transducers to decide OD for
the given two traces, i.e., to perform the monitoring task. We can also define a
prefix transducer that, instead of monitoring OD for the two traces, transforms
the asynchronous traces τ1 and τ2 into a pair of synchronous traces τ ′

1 and τ ′
2 by

filtering out “padding” events:

q0τ1 : _�(Il + Ol)e1 � τ ′
1 �→ τ1[e1] τ2 : _�(Il + Ol)e2 � τ ′

2 �→ τ2[e2]

In this example, the transducer appends every event labeled by ei to the
output trace τ ′

i , and so it filters out all events except low inputs and outputs.
It reads and filters both of the input traces independently of each other. The
output traces from the transducer can then be forwarded to, e.g., a HyperLTL
monitor1.

Contributions. This paper makes the following contributions:

– We introduce multi-trace prefix expressions and transducers (Sect. 2 and
Sect. 3). These are formalisms that can efficiently and incrementally process
words (traces) either fully synchronously, or asynchronously with synchro-
nization points.

– We suggest that prefix transducers are a natural formalism for specifying
many synchronous and asynchronous k-safety hyperproperties, such as obser-
vational determinism.

– We design an algorithm for monitoring synchronous and asynchronous k-
safety hyperproperties using prefix transducers (Sect. 4).

– We provide some experiments to show how our monitors perform (Sect. 5).

2 Prefix Expressions

In this section, we define prefix expressions – a formalism similar to regular
expressions designed to deterministically and unambiguously match prefixes of
words.

2.1 Preliminaries

We model sequences of events as words over finite non-empty alphabets. Given
an alphabet Σ, the set of finite words over this alphabet is denoted as Σ∗. For
two words u = u0...ul ∈ Σ∗

1 and v = v0...vm ∈ Σ∗
2 , their concatenation u · v, also

written uv if there is no confusion, is the word u0...ulv0...vm ∈ (Σ1 ∪ Σ2)∗. If
1 One more step is needed before we can use a HyperLTL monitor, namely, to trans-

form the trace of abstract events from the example into a trace of sets of atomic
propositions. This can be also done by a prefix transducer.

172 M. Chalupa and T. A. Henzinger

w = uv, we say that u is a prefix of w, written u ≤ w, and v is a suffix of w. If
u ≤ w and u �= w, we say that u is a proper prefix of w.

For a word w = w0...wk−1 ∈ Σ∗, we denote |w| = k its length, w[i] = wi

for 0 ≤ i < k its i-th element, w[s..e] = wsws+1...we the sub-word beginning at
index s and ending at index e, and w[s..] = wsws+1...wk−1 its suffix starting at
index s.

Given a function f : A → B, we denote Dom(f) = A its domain. Partial
functions with domain A and codomain B are written as A ↪→ B. Functions
with a small domain are sometimes given extensionally by listing the mapping,
e.g., {x �→ 1, y �→ 2}. Given a function f , f [x �→ c] is the function that coincides
with f on all elements except on x where it is c.

2.2 Syntax of Prefix Expressions

Let L be a non-empty set of labels (names) and Σ a finite non-empty alphabet.
The syntax of prefix expressions (PE) is defined by the following grammar:

α ::= ε | a | (α.α) | (α + α) | (α�β) | (α)l

β ::= a | (β + β) | (β)l

where a ∈ Σ and l ∈ L. Many parenthesis can be elided if we let ’�’ (iteration)
take precedence before ’.’ (concatenation), which takes precedence before ’+’
(disjunction, plus). We write a.b as ab where there is no confusion. In the rest
of the paper, we assume that a set of labels L is implicitly given, and that L
always has „enough” labels. We denote the set of all prefix expressions over the
alphabet Σ (and any set of labels L) as PE(Σ), and PE(Σ, L) if we want to
stress that the expressions use labels from L.

The semantics of PEs (defined later) is similar to the semantics of regular
expressions with the difference that a PE is not matched against a whole word
but it matches only its prefix, and this prefix is the shortest one possible (and
non-empty – if not explicitly specified). For this reason, we do not use the classi-
cal Kleene’s iteration as it would introduce ambiguity in matching. For instance,
the regular expression a∗ matches all the prefixes of the word aaa. And even if
we specify that we should pick the shortest one, the result would be ε, which is
usually not desirable, because that means no progress in reading the word. Pick-
ing the shortest non-empty prefix would be a reasonable solution in many cases,
but the problem with ambiguity persists. For example, the regular expression
(ab)∗(a + b)∗ matches the word ab in two different ways, which introduces non-
determinism in the process of associating the labels with the matched positions.

To avoid the problems with Kleene’s iteration, we use a binary iteration
operator that is similar to the until operator in LTL in that it requires some
letter to appear eventually. The expression α�β could be roughly defined as
β + αβ + α2β + . . . where we evaluate it from left to right and β must match
exactly one letter. The restriction on β is important to tackle ambiguity, but it
also helps efficiently evaluate the expression – it is enough to look at a single
letter to decide whether to continue matching whatever follows the iteration, or

Monitoring Hyperproperties with Prefix Transducers 173

whether to match the left-hand side of the expression. Allowing β to match a
sequence of letters would require a look-ahead or backtracking and it is a subject
of future extensions. With our iteration operator, expressions like (ab)�(a + b)�

and a� are malformed and forbidden already on the level of syntax.
Sub-expressions of a PE can be labeled and the matching procedure described

later returns a list of positions in the word that were matched for each of the
labels. We assume that every label is used maximally once, that is, no two sub-
expressions have the same label. Labels in PEs are useful for identifying the
sub-word that matched particular sub-expressions, which will be important in
the next section when we use logical formulae that relate sub-words from different
words (traces). Two examples of PEs and their informal evaluation are:

– (a + b)l
�

a – match a or b, associating them to l, until you see a. Because
whenever the word contains a, the right-hand side of the iteration matches,
the left part of the iteration never matches a and a is redundant in the left-
hand side sub-expression. For the word bbbaba, the expression matches the
prefix bbba and l is associated with the list of position ranges (0, 0), (1, 1), (2, 2)
that corresponds to the positions of b that were matched by the sub-expression
(a + b).

– (a�b)l1((b + c)�(a + d))l2 – match a until b is met and call this part l1; then
match b or c until a or d and call that part l2. For the word aabbbada, the
expression matches the prefix aabbba. The label l1 is associated with the range
of positions (0, 2) containing the sub-word aab, and l2 with the range (3, 5)
containing the sub-word bba.

2.3 Semantics of Prefix Expressions

We first define m-strings before we get to the formal semantics of PEs. An m-
string is a sequence of pairs of numbers or a special symbol ⊥. Intuitively, (p, ⊥)
represents the beginning of a match at position p in the analyzed word, (⊥, p)
the end of a match at position p, and (s, e) is a match on positions from s to e.
The concatenation of m-strings reflects opening and closing the matches.

Definition 1 (M-strings). M-strings are words over the alphabet M = (N ∪
{⊥}) × (N ∪ {⊥}) with the partial concatenation function
 : M∗ × M ↪→ M∗

defined as

α
 (c, d) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(c, d) if α = ε ∧ c �= ⊥
α · (c, d) if α = α′ · (a, b) ∧ b �= ⊥
α′ · (a, d) if α = α′ · (a, b) ∧ b = ⊥ ∧ c = ⊥
α′ · (c, d) if α = α′ · (a, b) ∧ b = ⊥ ∧ c �= ⊥

Every m-string is built up from the empty string ε by repeatedly concate-
nating (p, ⊥) or (⊥, p) or (p, p). The concatenation
 is only a partial function
(e.g., ε
 (⊥, ⊥) is undefined), but we will use only the defined fragment of
the domain. It works as standard concatenation if the last match was closed

174 M. Chalupa and T. A. Henzinger

(e.g., (0, 4)
 (7, ⊥) = (0, 4)(7, ⊥)), but it overwrites the last match if we start a
new match without closing the old one (e.g., (0, ⊥)
 (2, ⊥) = (2, ⊥)). Overwrit-
ing the last match in this situation is valid, because labels are assumed to be
unique and opening a new match before the last match was closed means that
the old match failed.

We extend
 to work with m-strings on the right-hand side:

α
 w =
{

α if w = ε

(α
 x)
 w′ if w = x · w′

While evaluating a PE, we keep one m-string per label used in the PE. To
do so we use m-maps, partial mappings from labels to m-strings.

Definition 2 (M-map). Let L be a set of labels and M = (N∪{⊥})×(N∪{⊥})
be the alphabet of m-strings. An m-map is a partial function m : L ↪→ M∗. Given
two m-maps m1, m2 : L ↪→ M∗, we define their concatenation m1
 m2 by

(m1
 m2)(l) = σ1
 σ2

for all l ∈ Dom(m1) ∪ Dom(m2) where σi = ε if mi(l) is not defined and
σi = mi(l) otherwise.

We denote the set of all m-maps L ↪→ M∗ for the set of labels L as ML.
The evaluation of a PE over a word w is defined as an iterative application

of a set of rewriting rules that are inspired by language derivatives [5,14]. For
the purposes of evaluation, we introduce two new prefix expressions: ⊥2 and
[α]l. PE ⊥ represents a failed match and [α]l is a ongoing match of a labeled
sub-expressions (α)l. Further, for a PE α, we define inductively that ε ∈ α iff

– α = ε, or
– α is one of (α0 +α1) or (α0 + α1)l or [α0 + α1]l and it holds that (ε ∈ α0∨ε ∈

α1).

For the rest of this section, let us fix a set of labels L, an alphabet Σ,
and denote E = PE(Σ, L) the set of all prefix expressions over this alphabet
and this set of labels. The core of evaluation of PEs is the one-step relation
a,p=⇒⊆ (E×ML)×(E×ML) defined for each letter a and natural number p, whose
defining rules are depicted in Fig. 2. We assume that the rules are evaluated
modulo the equalities ε · α = α · ε = α, and we say that α′ is a derivation of α if
α

a,p=⇒ α′ for some a and p.
The first seven rules in Fig. 2 are rather standard. Rules for disjunction are

non-standard in the way that whenever an operand of a disjunction is evaluated
to ε, the whole disjunction is evaluated to ε (rule Or-end) in order to obtain
the shortest match. Also, after rewriting a disjunction, operands that evaluated

2 Because PEs and m-strings never interact together, we use the symbol ⊥ in both,
but formally they are different symbols.

Monitoring Hyperproperties with Prefix Transducers 175

Fig. 2. One-step relation for evaluating prefix expressions. The rules are evaluated
modulo the equalities ε · α = α · ε = α.

to ⊥ are dropped (unless the last one if we should drop all operands). The only
non-shortening rule is Iter that unrolls α if β was not matched in α�β. Thus,
evaluating α�β can first prolong the expression and then eventually end up again
in α�β after a finite number of steps. This does not introduce any problems as
the set of derivations remains bounded [16].

There are four rules for handling labellings. Rule L-ltr handles one-letter
matches. Rule L-start handles the beginning of a match where the expression
(α)l gets rewritten to [α]l so that we know we are currently matching label l in
the next steps. Rules L-cont and L-end continue and finish the match once
the labeled expression evaluates to ε. Concatenating m-maps in the rules works
well because of the assumption that no two sub-expressions have the same label.
Therefore, there are no collisions and we always concatenate information from
processing the same sub-expression.

The one-step relation is deterministic, i.e., there is always at most one rule
that can be applied and thus every PE has a unique single derivation for a fixed
letter a and position p.

176 M. Chalupa and T. A. Henzinger

Theorem 1 (Determinism of a,p=⇒). For an arbitrary PE α over alphabet Σ,
and any a ∈ Σ and p ∈ N, there exist at most one α′ such that α

a,p=⇒ α′ (that
is, there is at most one defining rule of a,p=⇒ that can be applied to α).

Proof (Sketch). Multiple rules could be applied only if they match the same
structure of α (e.g., that α is a disjunction). But for such rules, the premises are
pairwise unsatisfiable together.

Having the deterministic one-step relation, we can define the evaluation func-
tion on words δ : E×Σ∗ → E×ML that returns the rewritten PE and the m-map
resulting from evaluating the one-step relation for each single letter of the word:
δ(α, w) = δ(α, w, 0, ∅) where

δ(α, w, p, M) =
{

(α, M) if w = ε

δ(α′, w′, p + 1, M ′) if w = aw′ ∧ (α, M) a,p=⇒ (α′, M ′)

We also define the decomposition function ρ : E×Σ∗ → (Σ∗×ML×Σ∗)∪{⊥}
that decomposes a word w ∈ Σ∗ into the matched prefix with the resulting m-
map, and the rest of w:

ρ(α, w) =
{

(u, m, v) if w = uv ∧ δ(α, u) = (ε, m)
⊥ otherwise

Function ρ is well-defined as there is at most one u for which δ(α, u) = (ε, _).
This follows from the determinism of the one-step relation. Function ρ is going
to be important in the next section.

Before we end this section, let us remark that thanks to the determinism of
the one-step relation and the fact that there is only a finite number of derivations
of any PE α, the evaluation function for a fixed PE can be represented as a
finite transducer [16]. Given the transducer for PE α and w ∈ Σ∗ s.t. (u, m, v) =
ρ(α, w), u is the prefix of w that leads the transducer to the accepting state and
the transducer outputs a sequence m0, ..., mk such that m0
 ...
 mk = m. As
a result, we have an efficient and incremental way of evaluating PEs. Moreover,
it suggests how to compose and perform other operations with PEs.

3 Multi-trace Prefix Expressions and Transducers

In this section, we define multi-trace prefix expressions and multi-trace prefix
transducers.

3.1 Multi-trace Prefix Expressions

A multi-trace prefix expression (MPE) matches prefixes of multiple words. Every
MPE consists of prefix expressions associated with input words and a condition
which is a logical formula that must be satisfied by the matched prefixes.

Monitoring Hyperproperties with Prefix Transducers 177

Definition 3 (Multi-trace prefix expression). Multi-trace prefix expression
(MPE) over trace variables Vτ and alphabet Σ is a list of pairs together with a
formula:

(τ0, e0), . . . , (τk, ek)[ϕ]

where τi ∈ Vτ are trace variables and ei are PEs over the alphabet Σ. The
formula ϕ is called the condition of MPE. We require that for all i �= j, labels in
ei and ej are distinct.

If the space allows, we typeset MPEs over multiple lines as can be seen in
the examples of prefix transducers throughout the paper.

MPE conditions are logical formulae over m-strings and input words3. Terms
of MPE conditions are l1 = l2, τ1[l1] = τ2[l2], and τ1[l1] = w for labels or m-
string constants l1, l2, trace variables τ1, τ2 ∈ Vτ , and (constant) words w over
arbitrary alphabet. Labels are evaluated to the m-strings associated with them
by a given m-map, τ [l] is the concatenation of sub-words of the word associated
with τ on positions specified by the m-string for l, and constants evaluate to
themselves. For example, if label l evaluates to (0, 1)(3, 4) for a given m-map,
then τ [l] evaluates to abba if τ is mapped to abcba. A well-formed MPE condition
is a boolean formula built up from the terms.

The satisfaction relation of MPE conditions is defined w.r.t an m-map M ,
and a trace assignment σ : Vτ → Σ∗ which is a map from a set of trace variables
Vτ into words. We write σ, M |= ϕ when σ and M satisfy condition ϕ. Because
of the space restrictions, we refer to the extended version of this paper [16] for
formal definition of the satisfaction relation for MPE conditions. Nonetheless,
we believe that MPE conditions are intuitive enough from the examples.

Given an MPE α, we denote as α(τ) the PE associated with trace variable τ
and if we want to highlight that α has the condition ϕ, we write α[ϕ]. We denote
the set of all MPEs over trace variables Vτ and alphabet Σ as MPE(Vτ , Σ). An
MPE α[ϕ] over trace variables VI = {τ1, ..., τk} satisfies a trace assignment σ,
written σ |= α, iff ∀τ ∈ VI : ρ(α(τ), σ(τ)) = (uτ , Mτ , vτ) and σ, Mτ1
...
Mτk

|=
ϕ. That is, σ |= α if every prefix expression of α has matched a prefix on its
trace and the condition ϕ is satisfied.

3.2 Multi-trace Prefix Transducers

Multi-trace prefix transducers (MPT) are finite transducers [36] with MPEs as
guards on the transitions. If a transition is taken, one or more symbols are
appended to one or more output words, the state is changed to the target state
of the transition and the matched prefixes of input words are consumed. The
evaluation then continues matching new prefixes of the shortened input words.

3 The conditions can be almost arbitrary formulae, depending on how much we are
willing to pay for their evaluation. They could even contain nested MPEs. As we will
see later, MPE conditions are evaluated only after matching the prefixes which gives
us a lot of freedom in choosing the logic. For the purposes of this work, however, we
use only simple conditions that we need in our examples and evaluation.

178 M. Chalupa and T. A. Henzinger

Fig. 3. The MPT from Example 1 and a demonstration of its two runs. Colored regions
show parts of words as they are matched by the transitions, the sequence of passed
states is shown above the traces.

Combining MPEs with finite state transducers allows to read input words asyn-
chronously (evaluating MPEs) while having synchronization points and finite
memory (states of the transducer).

Definition 4 (Multi-trace prefix transducer). A multi-trace prefix expres-
sion transducer (MPT) is a tuple (VI , VO, ΣI , ΣO, Q, q0, Δ) where

– VI is a finite set of input trace variables
– VO is a finite set of output trace variables
– ΣI is an input alphabet
– ΣO is an output alphabet
– Q is a finite non-empty set of states
– q0 ∈ Q is the initial state
– Δ : Q × MPE(VI , ΣI) × (VO ↪→ Σ∗

O) × Q is the transition relation; we call
the partial mappings (VO ↪→ Σ∗

O) output assignments.

A run of an MPT (VI , VO, ΣI , ΣO, L, Q, q0, Δ) on trace assignment σ0 is a
sequence π = (q0, σ0) ν0−→ (q1, σ1) ν1−→ . . .

νk−1−−−→ (qk, σk) of alternating states
and trace assignments (qi, σi) with output assignments νi, such that for each
(qi, σi)

νi−→ (qi+1, σi+1) there is a transition (qi, α, νi, qi+1) ∈ Δ such that σi |= α
and ∀τ ∈ VI : σi+1(τ) = vτ where (_, _, vτ) = ρ(α(τ), σi(τ)). That is, taking a
transition in an MPT is conditioned by satisfying its MPE and its effect is that
every matched prefix is removed from its word and the output assignment is put
to output.

The output O(π) of the run π is the concatenation of the output assignments
ν0 · ν1 · ... · νk−1, where a missing assignment to a trace is considered to be ε.
Formally, for any t ∈ VO, νi · νj takes the value

(νi · νj)(t) =

⎧
⎪⎨

⎪⎩

νi(t) · νj(t) if νi(t) and νj(t) are defined
νi(t) if νi(t) is defined and νj(t) is undefined
νj(t) if νi(t) is undefined and νj(t) is defined

Monitoring Hyperproperties with Prefix Transducers 179

Example 1. Consider the MPT in Fig. 3 and words t1 = ababcaba and t2 =
babacbab and the assignment σ = {τ1 �→ t1, τ2 �→ t2}. The run on this assignment
is depicted in the same figure on the bottom left. The output of the MPT on σ is
⊥���. For any words that are entirely consumed by the MPT without getting
stuck, it holds that τ1 starts with a sequence of ab’s and τ2 with a sequence of
ba’s of the same length. Then there is one c on both words and the words end
with a sequence of a or b but such that when there is a in one word, there must
be b in the other word and vice versa.

Now assume that the words are t1 = abababcaba and t2 = babacbab with
the same assignment. The situation changes as now the expression on trace t1
matches the prefix (ab)3 while on t2 the prefix (ba)2. Thus l1 = (0, 6) �= (0, 4) = l2
and the match fails. Finally, assume that we remove the condition [l1 = l2] from
the first transition. Then for the new words the MPT matches again and the
match is depicted on the bottom right in Fig. 3.

In the next section, we work with deterministic MPTs. We say that an MPT
is deterministic if it can take at most one transition in any situation.

Definition 5 (Deterministic MPT). Let T = (VI , VO, ΣI , ΣO, Q, q0, Δ) be
an MPT. We say that T is deterministic (DMPT) if for any state q ∈ Q, and
an arbitrary trace assignment σ : VI → Σ∗

I , if there are multiple transitions
(q, α1, ν1, q1), ..., (q, αk, νk, qk) such that ∀i : σ |= αi, it holds that there exists a
proper prefix η of σ, (i.e., ∀τ ∈ VI : η(τ) ≤ σ(τ) and for some τ ′ it holds that
η(τ ′) < σ(τ ′)), and there exist i such that η |= αi and ∀j �= i : η �|= αj.

Intuitively, an MPT is DMPT if whenever there is a trace assignment that
satisfies more than one transition from a state, one of the transitions matches
“earlier” than any other of those transitions.

4 Hypertrace Transformations

A hyperproperty is a set of sets of infinite traces. In this section, we discuss an
algorithm for monitoring k-safetyhyperproperties, which are those whose viola-
tion can be witnessed by at most k finite traces:

Definition 6 (k-safety hyperproperty). A hyperproperty S is k-safety hyper-
property iff

∀T ⊆ Σ
ω : T �∈ S =⇒ ∃M ⊆ Σ

∗ : M ≤ T ∧ |M | ≤ k ∧ (∀T
′ ⊆ Σ

ω : M ≤ T
′ =⇒ T

′ �∈ S)

where Σω is the set of infinite words over alphabet Σ, and M ≤ T means that
each word in M is a (finite) prefix of a word in T .

We assume unbounded parallel input model [25], where there may be arbi-
trary many traces digested in parallel, and new traces may be announced at
any time. Our algorithm is basically the combinatorial algorithm for monitor-
ing hyperproperties of Finkbeiner et al. [23,28] where we exchange automata
generated from HyperLTL specifications with MPTs. That is, to monitor a k-
safety hyperproperty, we instantiate an MPT for every k-tuple of input traces.
An advantage of using MPTs instead of monitor automata in the algorithm of

180 M. Chalupa and T. A. Henzinger

Finkbeiner et al. is that we automatically get a monitoring solution for asyn-
chronous hyperproperties. A disadvantage is that we cannot automatically use
some of the optimizations designed for HyperLTL monitors that are based on
the structure (e.g., symmetry) of the HyperLTL formula [24].

The presented version of our algorithm assumes that the input is DMPT as
it is preferable to have deterministic monitors. Deciding whether a given MPT is
deterministic depends a lot on the chosen logic used for MPE constraints. In the
rest of the paper, we assume that the used MPTs are known to be DMPTs (which
is also the case of MPTs used in our evaluation). We make the remark that in
cases where the input MPT is not known to be deterministic and/or a check is
impractical, one may resort to a way how to resolve possible non-determinism
instead, such as using priorities on the edges. This is a completely valid solution
and it is easy to modify our algorithm to work this way. In fact, the algorithm
works also with non-deterministic MPTs with a small modification.

4.1 Algorithm for Online Monitoring of k-safety Hyperproperties

Our algorithm is depicted in Algorithm 1 and Algorithm 2 (auxiliary proce-
dures). In essence, the algorithm maintains a set of configurations where one
configuration corresponds to the state of evaluation of one edge of an DMPT
instance. Whenever the algorithm may make a progress in some configuration,
it does so and acts according to whether matching the edge succeeds, fails, or
needs more events.

Now we discuss functioning of the algorithm in more detail. The input
is an DMPT ({VI , {τO}, ΣI , {⊥, �}, Q, q0, Δ}). W.l.o.g we assume that VI =
{τ1, ..., τk}. The DMPT outputs a sequence of verdicts {�, ⊥}∗. A violation of
the property is represented by ⊥, so whenever ⊥ appears on the output, the
algorithm terminates and reports the violation.

A configuration is a 4-tuple (σ, (p1, ..., pk), M, e) where σ is a function that
maps trace variables to traces, the vector (p1, ..., pk) keeps track of reading posi-
tions in the input traces, M is the current m-map gathered while evaluating the
MPE of e, and e is the edge that is being evaluated. More precisely, e is the
edge that still needs to be evaluated in the future as its MPE gets repeatedly
rewritten during the run of the algorithm. If the edge has MPE E, we write
E[τ �→ ξ] for the MPE created from E by setting the PE for τ to ξ.

The algorithm uses three global variables. Variable workbag stores configu-
rations to be processed. Variable traces is a map that remembers the so-far-seen
contents of all traces. Whenever a new event arrives on a trace t, we append it
to traces(t). Traces on which a new event may still arrive are stored in variable
onlinetraces. Note that to follow the spirit of online monitoring setup, in this
section, we treat traces as opaque objects that we query for next events.

In each iteration of the main loop (line 5), the algorithm first calls the pro-
cedure update_traces (line 6, the procedure is defined in Algorithm 2). This
procedure adds new traces to onlinetraces and updates workbag with new con-
figurations if there are any new traces, and extends traces in traces with new
events. The core of the algorithm are lines 9–39 that take all configuration sets
and update them with unprocessed events.

Monitoring Hyperproperties with Prefix Transducers 181

Algorithm 1: Online algorithm for monitoring hyperproperties with
MPTs
Input: an DMPT ({{τ1, ..., τk}, {τO}, ΣI , {⊥, �}, Q, q0, Δ})
Output: false + witness if an DMPT instance outputs ⊥, true if no DMPT instance

outputs ⊥ and there are finitely many traces. The algorithm does not
terminate otherwise.

1 traces ← ∅ // Stored contents of all traces
2 onlinetraces ← ∅ // Traces that are still being extended
3 workbag ← ∅ // Sets of configurations to process
4
5 while true do
6 update_traces (workbag, onlinetraces, traces)
7 workbag′ ← ∅ // The new contents of workbag
8
9 foreach C ∈ workbag do

10 C′ ← ∅ // The rewritten set of configurations
11
12 // Try to move each configuration in the set of configurations

13 foreach c = (σ, (p1, ..., pk), M, q
E[ϕ]�ν−−−−−→ q′)) ∈ C do

14 E′, M ′ ← E, M
15 (p′

1, ..., p′
k) ← (p1, ..., pk)

16 // Progress on each trace where possible
17 foreach 1 ≤ i ≤ k s.t. pi < |traces(σ(τi))| ∧ E(τi)
= ε do
18 E′ ← E′[τi �→ ξ] where E(τi), M ′ traces(σ(τi))[pi],pi=============⇒ ξ, M ′′
19 M ′ ← M ′′
20 p′

i ← p′
i + 1

21 if ξ = ⊥ then // Configuration failed
22 continue with next configuration (line 13)
23 if ∀j.E′(τj) = ε then // All prefix expressions matched
24 if σ, M ′ |= ϕ then // The condition is satisfied
25 // Compare p′

1, ..., p′
k against positions in other

configurations from this set to see if this must be
the shortest match

26 if (p′
1, ..., p′

k) < (p′′
1 , ..., p′′

k) for all (p′′
1 , ..., p′′

k) of c′ ∈ C, c′
= c

then
27 if ⊥ ∈ ν then // Violation found
28 return false + σ
29 // Edge is matched, no violation found, queue

successor edges
30 workbag′ ←

workbag′ ∪ {cfgs(q′, (σ(τ1), ..., σ(τk)), (p′
1, ..., p′

k))}
31 // This set of configurations is done
32 continue outer-most loop (line 9)
33 else
34 continue with next configuration (line 13)
35 // If the configuration has matched or it can still make a

progress, put it back (modified) to the set
36 if E′ has matched or

¬ (∀1 ≤ i ≤ k : σ(τi)
∈ onlinetraces ∧ pi = |traces(σ(τi))|) then

37 C′ ← C′ ∪ {(σ, (p′
1, ..., p′

k), M ′, q
E′[ϕ]�ν−−−−−−→ q′)}

38 if C′
= ∅ then
39 workbag′ ← workbag′ ∪ {C′} // Queue the modified set of

configurations
40
41 workbag ← workbag′
42 if workbag = ∅ and no new trace will appear then
43 return true

182 M. Chalupa and T. A. Henzinger

Algorithm 2: Auxiliary procedures for Algorithm 1
1 // Auxiliary procedure that returns a set of configurations for

outgoing edges of q
2 Procedure cfgs(q, (t1, ..., tk), (p1, ..., pk))
3 σ ← {τi �→ ti | 1 ≤ i ≤ k}
4 return {(σ, (p1, ..., pk), (0, ..., 0), ∅, e) | e is an outgoing edge from q }
5
6 // Auxiliary procedure to add new traces and update the current

ones
7 Procedure update_traces(workbag, onlinetraces, traces)
8 if there is a new trace t then // Update traces and workbag with the

new trace
9 onlinetraces ← onlinetraces ∪ {t}

10 traces ← traces[t �→ ε]
11 tuples ← {(t1, ..., tk) | tj ∈ Dom(traces), t = ti for some i}
12 workbag ← workbag ∪ {cfgs(q0, (t1, ..., tk), (0, ..., 0)) | (t1, ..., tk) ∈

tuples}
13
14 foreach t ∈ onlinetraces that has a new event e do // Update traces

with new events
15 traces(t) = traces(t) · e
16 if e was the last event on t then // Remove finished traces from

onlinetraces
17 onlinetraces ← onlinetraces \ {t}

The algorithm goes over every set of configurations from workbag (line 9) and
attempts to make a progress on every configuration in the set (line 13). For each
trace where a progress can be made in the current configuration (line 17), i.e.,
there is an unprocessed event on the trace τi (pi < |traces(σ(τi))|), and the corre-
sponding PE on the edge still has not matched (E(τi) �= ε), we do a step on this
PE (line 18). The new state of the configuration is aggregated into the primed
temporary variables (E′, M ′, ...). If the MPE matches (lines 23 and 24), we check
if other configurations from the set have progressed enough for us to be sure that
this configuration has matched the shortest prefix (line 26). That is, we compare
p′
1, ..., p′

k against positions p′′
1 , ..., p′′

k from each other configuration in C if it is
strictly smaller (i.e., p′

i ≤ p′′
i for all i and there is j s.t., p′

j < p′′
j). If this is true, we

can be sure that there is no other edge that can match a shorter prefix and that
has not matched it yet because it was waiting for events. If this configuration is
the shortest match, the output of the edge is checked if it contains ⊥ (line 27) and
if so, false with the counterexample is returned on line 28 because the monitored
property is violated. Else, the code falls-through to line 30 that queues new con-
figurations for successor edges as the current edge has been successfully matched
and then continues with a new iteration of the outer-most loop (line 32). The con-
tinue statement has the effect that all other configurations derived from the same
state (other edges) are dropped and therefore progress is made only on the con-
figuration (edge) that matched. If any progress on the MPE can be made in the
future, or it has already matched but we do not know if it is the shortest match yet,

Monitoring Hyperproperties with Prefix Transducers 183

the modified configuration is pushed into the set of configurations instead of the
original one (line 37). If not all the configurations from C were dropped because
they could not proceed, line 39 pushes the modified set of configurations back to
workbag and a new iteration starts.

4.2 Discussion

To see that the algorithm is correct, let us follow the evolution of the set of con-
figurations for a single instance of the DMPT on traces t1, ..., tk. The initial set
of configurations corresponding to outgoing edges from the initial state is created
and put to workbag exactly once on line 12 in Algorithm 2. When it is later taken
from workbag on line 9 (we are back in Algorithm 1), every configuration (edge) is
updated – a step is taken on every PE from the edge’s MPE (lines 17–18) where a
step can be made. If matching the MPE fails, the configuration is discarded due
to the jump on line 22 or line 34. If matching the MPE has neither failed nor
succeeded (and no violation has been found, in which case the algorithm would
immediately terminate), the updated configuration is pushed back to workbag and
revisited in later iterations. If the MPE has been successfully matched and it is
not known to be the shortest match, it is put back to workbag and revisited later
when other configurations may have proceeded and we may again check if it is the
shortest match or not. If it is the shortest match, its successor edges are queued
to workbag on line 30 (if no violation is found). Note that the check for the short-
est match may fail because of some configuration that has failed in the current
iteration but is still in C. Such configurations, however, will get discarded in the
current iteration and in the next iteration the shortest match is checked again
without these. This way we incrementally first match the first edge on the run of
the DMPT (or find out that no edge matches), then the second edge after it gets
queued into workbag on line 30, and so on.

The algorithm terminates if the number of traces is bounded. If it has not
terminated because of finding a violation on line 28, it will terminate on line 43.
To see that the condition on line 42 will eventually get true if the number of traces
is bounded, it is enough to realize that unless a configuration gets matched or
failed, it is discarded at latest when failing the condition on line 36 after reading
entirely (finite) input traces. Otherwise, if a configuration fails, the set is never
put back to workbag and if it gets matched, it can get back to workbag repeatedly
only until the shortest match is identified. But if every event comes in finite time,
some of the configurations in the set will eventually be identified as the shortest
match (because the MPT is deterministic), and the set of configurations will be
done. Therefore, workbag will eventually become empty.

Worth remark is that if we give up on checking if the matched MPE is
the shortest match on line 26 (we set the condition to true) and on line 32,
we continue with the loop on line 13 instead of with the outer-most loop, i.e.,
we do not discard the set of configurations upon a successfully taken edge, the
algorithm will work also for generic non-deterministic MPTs.

Even though this algorithm is very close to the algorithm of
Finkbeiner et al. [23,25,28] where we replace monitoring automata with pre-
fix transducers, there is an important difference. In our algorithm, we assume

184 M. Chalupa and T. A. Henzinger

that existing traces may be extended at any time until the last event has been
seen. This is also the reason why we need the explicit check whether a matched
configuration is the shortest match. The algorithm of Finkbeiner et al. assumes
that when a new trace appears, its contents is entirely known. So their algorithm
is incremental on the level of traces, while our algorithm is incremental on the
level of traces and events.

The monitor templates in the algorithm of Finkbeiner et al. are automata
whose edges match propositions on different traces. Therefore, they can be seen as
trivial DMPTs where each prefix expression is a single letter or ε. Realizing this,
we could say that our monitoring algorithm is an asynchronous extension of the
algorithm of Finkbeiner et al. where we allow to read multiple letters on edges,
or, alternatively, that in the context of monitoring hyperproperties, DMPTs are
a generalization of HyperLTL template automata to asynchronous settings.

5 Empirical Evaluation

We conducted a set of experiments about monitoring asynchronous version of
OD on random and semi-random traces. The traces contain input and output
events I(t, n) and O(t, n) with t ∈ {l, h}, and n a 64-bit unsigned number.
Further, a trace can contain the event E without parameters that abstracts any
event that have occurred in the system, but that is irrelevant to OD.

Fig. 4. The DMPT used for monitoring asynchronous OD in the experiments.

The DMPT used for monitoring OD is a modified version of the DMPT for
monitoring OD from Sect. 1, and is shown in Fig. 4. The modification makes the
DMPT handle also traces with different number and order of input and output
events. The letter $ represents the end of trace and is automatically appended to
the input traces. We abuse the notation and write τ1[e1] = Ol for the expression
that would be formally a disjunction comparing τ1[e1] to all possible constants
represented by Ol. However, in the implementation, this is a simple constant-
time check of the type of the event, identical to checking that an event matches
Ol when evaluating prefix expressions. The term τi[ei] �∈ {Ol, $} is just a shortcut
for τi[ei] �= Ol ∧ τi[ei] �= $.

The self-loop transition in the DMPT in Fig. 4 has no output and we enabled
the algorithm to stop processing traces whenever � is detected on the output of
the transducer because that means that OD holds for the input traces. Also, we
used the reduction of traces [24] – because OD is symmetric and reflexive, then

Monitoring Hyperproperties with Prefix Transducers 185

Fig. 5. CPU time and maximal memory consumption of monitoring asynchronous OD
on random traces with approx. 10% of low input events and 10% of low output events.
Values are the average of 10 runs.

if we evaluate it on the tuple of traces (t1, t2), we do not have to evaluate it for
(t2, t1) and (ti, ti).

Monitors were implemented in C++ with the help of the framework
Vamos [17]. The experiments were run on a machine with AMD EPYC CPU
with the frequency 3.1 GHz. An artifact with the implementation of the algo-
rithm and scripts to reproduce the experiments can be found on Zenodo4.

Experiments on Random Traces. In this experiment, input traces of different
lengths were generated such that approx. 10% were low input and 10% low
output events. These events always carried the value 0 or 1 to increase the
chance that some traces coincide on inputs and outputs.

Results of this experiment are depicted in Fig. 5. The left plot shows that
the monitor is capable of processing hundreds of traces in a short time and seem
to scale well with the number of traces, irrespective of the length of traces. The
memory consumption is depending more on the length of traces as shown in
the middle plot. This is expected as all the input traces are stored in memory.
Finally, the maximal size of the workbag grows linearly with the number of traces
but not with the length of traces, as the right plot shows.

Experiments on Periodic Traces. In this experiment, we generated a single
trace that contains low input and output events periodically with fixed distances.
Multiple instances of this trace were used as the input traces. The goal of the
experiment is to see how the monitor performs on traces that must be processed
to the very end and if the performance is affected by the layout of events.

The plots in Fig. 6 show that the monitor scales worse than on random traces
as it has to always process the traces to their end. For the same reason, the
performance of the monitor depends more on the length of the traces. Still, it
can process hundreds of traces in a reasonable time. The data do not provide
a clear hint on how the distances between events change the runtime, but they
do not affect it significantly. The memory consumption remains unaffected by
distances.

4 https://doi.org/10.5281/zenodo.8191723.

https://doi.org/10.5281/zenodo.8191723

186 M. Chalupa and T. A. Henzinger

Fig. 6. The plot shows CPU time and memory consumption of monitoring asyn-
chronous OD on instances of the same trace with low input and output events laid
out periodically with fixed distances.

6 Related Work

In this section, we review the most closely related work. More exhaustive review
can be found in the extended version of this paper [16].
Logics for Hyperproperties. Logics for hyperproperties are typically cre-
ated by extending a logic for trace properties. Hyperlogics HyperLTL [19] and
HyperCTL∗ [19] extend LTL and CTL∗, resp., with explicit quantification over
traces. The logic FO[<,E] [26] and S1S[E] [21] are first- and second- order logics
with successors extended with the equal level predicate that relates the same time
points on different traces.

All of the hitherto mentioned logics use synchronous time model. Asyn-
chronous HyperLTL [9], Stuttering HyperLTL [12], and Context HyperLTL [12]
are extensions of HyperLTL to asynchronous time model. Gutsfeld et al. [27]
introduce Multi-tape Alternating Asynchronous Word Automata (AAWA) and
the temporal fixpoint calculus Hμ for the specification and analysis of asyn-
chronous hyperproperties. AAWAs are so far the only automata-based formal-
ism for specification of asynchronous hyperproperties. Beutner et al. define
HyperATL∗ [11], an extension of the logic ATL∗ [4] that can capture asyn-
chronous hyperproperties via quantification over strategies of a scheduler. Hyper-
node automata [8] introduced by Bartocci et al. combine finite-state automata
with the hypertrace logic which allows to describe properties that have multi-
ple „phases”. The hypertrace logic ignores stuttering and prefixing to enable
asynchronous time model.
Runtime Monitoring of Hyperproperties. The first paper on runtime mon-
itoring of hyperproperties is due to Agrawal and Bonakdarpur [3]. They con-
sider monitoring k-safety hyperproperties specified with HyperLTL. In general,
monitoring algorithms for hyperproperties can be classified as combinatorial or
constraint-based [28]. Combinatorial algorithms [23,24,28] construct multiple
instances of an monitoring automaton and therefore our algorithm fall into this
category. Constraint-based algorithms [2,13,28,29] translate the monitoring task
into a set of constraints (e.g., SMT formulae) and apply rewriting and solving
of the constraints to monitor a given hyperproperty.

Monitoring Hyperproperties with Prefix Transducers 187

Stream runtime verification (SRV) [35] specifies monitoring as transformation
of streams of data, which makes SRV also related to transducers. It is common
that there are multiple input and output streams in an SRV specification, and
languages like TeSSLa [32] support asynchronous time model. So far as we know,
no one has used SRV languages in the context of hyperproperties yet.

Automata and Regular Expressions. Automata and transducers [36] are the
basis of MPTs and are well explored. Multi-track automata [15] are automata
that read n-tuples of letters. They commonly use also a special letter λ for a
gap (no letter) and thus can describe asynchronous reading of words. Regular
expressions (RE) are an ubiquitous formalism with many uses and many restric-
tions/extensions. Prefixed regular expressions (PRE) [6] are a subset of REs
with some properties similar to PEs. Semantically, prefix-free REs [30] are closer
to PEs than PREs, because PEs give raise to prefix-free languages as follows
from [31, Lemma 1] and the fact that a PE corresponds to a prefix-free trans-
ducer [16]. REs with the shortest-match semantics [18] are very close to PEs,
however, unlike PEs, they can be ambiguous. MPTs with a single input word
could be seen as a modification of expression automata [31], which are automata
with REs on edges.

Backreferences in regular expressions refer to parts of the word that were
already matched [34]. They can be even named [10], raising more similarities to
our labels. In REs, backreferences bring a great power as they allow non-regular
languages to be matched [10]. PEs can also recognize some non-regular patterns,
however, labels are much weaker than backreferences because MPE constraints
are evaluated only a posteriori, while backreferences modify the way how REs
are matched.

7 Conclusion and Future Work

We introduced prefix expressions and multi-trace prefix transducers, a formal-
ism that we see as a natural executable specification for the monitoring of syn-
chronous and asynchronous hyperproperties. Prefix expressions are similar to
regular expressions, but match only prefixes of words. The reason why we prefer
prefix expressions over regular expressions (that could also be used to match pre-
fixes) is that our prefix expressions are deterministic and unambiguous. These
properties make evaluating prefix expressions efficient. The matched prefixes,
more precisely their parts that were explicitly labeled, can be then reasoned
about using logical formulae, which are a part of multi-trace prefix expressions
that extend prefix expressions to multiple words. Multi-trace prefix expressions
are used as guards on edges in multi-trace prefix transducers, which incremen-
tally match and consume prefixes of input words and transform them into output
words. Combining prefix expressions with finite state transducers allows us to
read input words asynchronously (matching prefix expressions) with synchroni-
sation points (states of the transducer).

We use prefix transducers to monitor synchronous and asynchronous k-safety
hyperproperties. Our experimental evaluation of monitoring asynchronous obser-

188 M. Chalupa and T. A. Henzinger

vational determinism shows that a prefix-transducer-based monitoring algorithm
can scale to thousands of traces.

Prefix transducers provide a flexible formalism for optimizing monitoring
algorithms. We currently implement an asynchronous monitoring algorithm that
uses prefix transducers to summarize the seen traces, similar to the constraint-
based algorithms for monitoring synchronous hyperproperties [28]. We also want
to analyze the transducers to avoid instantiating them on redundant tuples of
traces, similar to the optimizations for HyperLTL monitors [24]. Furthermore,
the evaluation of prefix transducers provides many opportunities for paralleliza-
tion, ranging from parallelizing the workbag in Algorithm 1 to evaluating prefix
expressions for different traces in parallel. Finally, we work on compiling pre-
fix transducers from a high-level logical specification languages for asynchronous
hyperproperties, namely [8]. All our implementation work is carried out to extend
the Vamos [17] software infrastructure for monitoring.

Acknowledgements. This work was supported in part by the ERC-2020-AdG
101020093. The authors would like to thank Ana Oliveira da Costa for commenting on
a draft of the paper.

References
1. Bartocci, E., Falcone, Y. (eds.): Lectures on Runtime Verification - Introductory

and Advanced Topics. LNCS, vol. 10457. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-75632-5

2. Aceto, L., Achilleos, A., Anastasiadi, E., Francalanza, A.: Monitoring hyperprop-
erties with circuits. In: Mousavi, M.R., Philippou, A. (eds.) FORTE 2022. LNCS,
vol. 13273, pp. 1–10. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-
08679-3_1

3. Agrawal, S., Bonakdarpour, B.: Runtime verification of k-safety hyperproperties
in HyperLTL. In: CSF 2016, pp. 239–252. IEEE (2016). https://doi.org/10.1109/
CSF.2016.24

4. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J.
ACM 49(5), 672–713 (2002). https://doi.org/10.1145/585265.585270

5. Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton
constructions. Theor. Comput. Sci. 155(2), 291–319 (1996). https://doi.org/10.
1016/0304-3975(95)00182-4

6. Baeza-Yates, R.A., Gonnet, G.H.: Fast text searching for regular expressions or
automaton searching on tries. J. ACM 43(6), 915–936 (1996). https://doi.org/10.
1145/235809.235810

7. Bartocci, E., Ferrère, T., Henzinger, T.A., Nickovic, D., da Costa, A.O.: Flavors
of sequential information flow. In: Finkbeiner, B., Wies, T. (eds.) VMCAI 2022.
LNCS, vol. 13182, pp. 1–19. Springer, Cham (2022). https://doi.org/10.1007/978-
3-030-94583-1_1

8. Bartocci, E., Henzinger, T.A., Nickovic, D., da Costa, A.O.: Hypernode automata
(2023). https://doi.org/10.48550/arXiv.2305.02836

9. Baumeister, J., Coenen, N., Bonakdarpour, B., Finkbeiner, B., Sánchez, C.: A
temporal logic for asynchronous hyperproperties. In: Silva, A., Leino, K.R.M. (eds.)
CAV 2021. LNCS, vol. 12759, pp. 694–717. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-81685-8_33

https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.1007/978-3-031-08679-3_1
https://doi.org/10.1007/978-3-031-08679-3_1
https://doi.org/10.1109/CSF.2016.24
https://doi.org/10.1109/CSF.2016.24
https://doi.org/10.1145/585265.585270
https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1145/235809.235810
https://doi.org/10.1145/235809.235810
https://doi.org/10.1007/978-3-030-94583-1_1
https://doi.org/10.1007/978-3-030-94583-1_1
https://doi.org/10.48550/arXiv.2305.02836
https://doi.org/10.1007/978-3-030-81685-8_33
https://doi.org/10.1007/978-3-030-81685-8_33

Monitoring Hyperproperties with Prefix Transducers 189

10. Berglund, M., van der Merwe, B.: Regular expressions with backreferences re-
examined. In: Stringology Conference 2017, pp. 30–41. Czech Technical University
in Prague (2017). http://www.stringology.org/event/2017/p04.html

11. Beutner, R., Finkbeiner, B.: A temporal logic for strategic hyperproperties. In:
CONCUR 2021. LIPIcs, vol. 203, pp. 24:1–24:19. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.CONCUR.2021.24

12. Bozzelli, L., Peron, A., Sánchez, C.: Asynchronous extensions of HyperLTL.
In: LICS 2021, pp. 1–13. IEEE (2021). https://doi.org/10.1109/LICS52264.2021.
9470583

13. Brett, N., Siddique, U., Bonakdarpour, B.: Rewriting-based runtime verification for
alternation-free HyperLTL. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS,
vol. 10206, pp. 77–93. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-54580-5_5

14. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11(4), 481–494
(1964). https://doi.org/10.1145/321239.321249

15. Bultan, T., Yu, F., Alkhalaf, M., Aydin, A.: Relational string analysis. In: Bultan,
T., Yu, F., Alkhalaf, M., Aydin, A. (eds.) String Analysis for Software Verification
and Security, pp. 57–68. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-68670-7_5

16. Chalupa, M., Henzinger, T.A.: Monitoring hyperproperties with prefix transducers
(2023). https://doi.org/10.48550/arXiv.2308.03626

17. Chalupa, M., Muehlboeck, F., Lei, S.M., Henzinger, T.A.: VAMOS: middleware for
best-effort third-party monitoring. In: Lambers, L., Uchitel, S. (eds.) FASE 2023.
LNCS, vol. 13991, pp. 260–281. Springer, Cham (2023). https://doi.org/10.1007/
978-3-031-30826-0_15

18. Clarke, C.L.A., Cormack, G.V.: On the use of regular expressions for searching
text. ACM Trans. Program. Lang. Syst. 19(3), 413–426 (1997). https://doi.org/
10.1145/256167.256174

19. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014. LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54792-8_15

20. Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18(6), 1157–
1210 (2010). https://doi.org/10.3233/JCS-2009-0393

21. Coenen, N., Finkbeiner, B., Hahn, C., Hofmann, J.: The hierarchy of hyperlogics.
In: LICS 2019, pp. 1–13. IEEE (2019). https://doi.org/10.1109/LICS.2019.8785713

22. Finkbeiner, B., Haas, L., Torfah, H.: Canonical representations of k-safety hyper-
properties. In: CSF 2019, pp. 17–31. IEEE (2019). https://doi.org/10.1109/CSF.
2019.00009

23. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: Monitoring hyperproperties.
In: Lahiri, S., Reger, G. (eds.) RV 2017. LNCS, vol. 10548, pp. 190–207. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67531-2_12

24. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: RVHyper: a runtime verifica-
tion tool for temporal hyperproperties. In: Beyer, D., Huisman, M. (eds.) TACAS
2018. LNCS, vol. 10806, pp. 194–200. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89963-3_11

25. Finkbeiner, B., Hahn, C., Stenger, M., Tentrup, L.: Monitoring hyperproper-
ties. Formal Methods Syst. Des. 54(3), 336–363 (2019). https://doi.org/10.1007/
s10703-019-00334-z

http://www.stringology.org/event/2017/p04.html
https://doi.org/10.4230/LIPIcs.CONCUR.2021.24
https://doi.org/10.1109/LICS52264.2021.9470583
https://doi.org/10.1109/LICS52264.2021.9470583
https://doi.org/10.1007/978-3-662-54580-5_5
https://doi.org/10.1007/978-3-662-54580-5_5
https://doi.org/10.1145/321239.321249
https://doi.org/10.1007/978-3-319-68670-7_5
https://doi.org/10.1007/978-3-319-68670-7_5
https://doi.org/10.48550/arXiv.2308.03626
https://doi.org/10.1007/978-3-031-30826-0_15
https://doi.org/10.1007/978-3-031-30826-0_15
https://doi.org/10.1145/256167.256174
https://doi.org/10.1145/256167.256174
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.1007/978-3-642-54792-8_15
https://doi.org/10.3233/JCS-2009-0393
https://doi.org/10.1109/LICS.2019.8785713
https://doi.org/10.1109/CSF.2019.00009
https://doi.org/10.1109/CSF.2019.00009
https://doi.org/10.1007/978-3-319-67531-2_12
https://doi.org/10.1007/978-3-319-89963-3_11
https://doi.org/10.1007/978-3-319-89963-3_11
https://doi.org/10.1007/s10703-019-00334-z
https://doi.org/10.1007/s10703-019-00334-z

190 M. Chalupa and T. A. Henzinger

26. Finkbeiner, B., Zimmermann, M.: The first-order logic of hyperproperties. In:
STACS 2017. LIPIcs, vol. 66, pp. 30:1–30:14. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2017). https://doi.org/10.4230/LIPIcs.STACS.2017.30

27. Gutsfeld, J.O., Müller-Olm, M., Ohrem, C.: Automata and fixpoints for asyn-
chronous hyperproperties. In: POPL 2021, pp. 1–29 (2021). https://doi.org/10.
1145/3434319

28. Hahn, C.: Algorithms for monitoring hyperproperties. In: Finkbeiner, B., Mariani,
L. (eds.) RV 2019. LNCS, vol. 11757, pp. 70–90. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-32079-9_5

29. Hahn, C., Stenger, M., Tentrup, L.: Constraint-based monitoring of hyperproper-
ties. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 115–131.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1_7

30. Han, Y.-S., Wang, Y., Wood, D.: Prefix-free regular-expression matching. In: Apos-
tolico, A., Crochemore, M., Park, K. (eds.) CPM 2005. LNCS, vol. 3537, pp. 298–
309. Springer, Heidelberg (2005). https://doi.org/10.1007/11496656_26

31. Han, Y.-S., Wood, D.: The generalization of generalized automata: expression
automata. In: Domaratzki, M., Okhotin, A., Salomaa, K., Yu, S. (eds.) CIAA
2004. LNCS, vol. 3317, pp. 156–166. Springer, Heidelberg (2005). https://doi.org/
10.1007/978-3-540-30500-2_15

32. Leucker, M., Sánchez, C., Scheffel, T., Schmitz, M., Schramm, A.: TeSSLa: runtime
verification of non-synchronized real-time streams. In: SAC 2018, pp. 1925–1933.
ACM (2018). https://doi.org/10.1145/3167132.3167338

33. McLean, J.: Security models and information flow. In: SP 1990, pp. 180–189. IEEE
(1990). https://doi.org/10.1109/RISP.1990.63849

34. Penna, G.D., Intrigila, B., Tronci, E., Zilli, M.V.: Synchronized regular expressions.
Acta Informatica 39(1), 31–70 (2003). https://doi.org/10.1007/s00236-002-0099-
y

35. Sánchez, C.: Synchronous and asynchronous stream runtime verification. In: VOR-
TEX 2021, pp. 5–7. ACM (2021). https://doi.org/10.1145/3464974.3468453

36. Veanes, M., Hooimeijer, P., Livshits, B., Molnar, D., Bjørner, N.S.: Symbolic finite
state transducers: algorithms and applications. In: POPL 2012, pp. 137–150. ACM
(2012). https://doi.org/10.1145/2103656.2103674

37. Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program
security. In: CSFW 2003, p. 29. IEEE (2003). https://doi.org/10.1109/CSFW.2003.
1212703

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.4230/LIPIcs.STACS.2017.30
https://doi.org/10.1145/3434319
https://doi.org/10.1145/3434319
https://doi.org/10.1007/978-3-030-32079-9_5
https://doi.org/10.1007/978-3-030-32079-9_5
https://doi.org/10.1007/978-3-030-17465-1_7
https://doi.org/10.1007/11496656_26
https://doi.org/10.1007/978-3-540-30500-2_15
https://doi.org/10.1007/978-3-540-30500-2_15
https://doi.org/10.1145/3167132.3167338
https://doi.org/10.1109/RISP.1990.63849
https://doi.org/10.1007/s00236-002-0099-y
https://doi.org/10.1007/s00236-002-0099-y
https://doi.org/10.1145/3464974.3468453
https://doi.org/10.1145/2103656.2103674
https://doi.org/10.1109/CSFW.2003.1212703
https://doi.org/10.1109/CSFW.2003.1212703
http://creativecommons.org/licenses/by/4.0/

	Monitoring Hyperproperties with Prefix Transducers
	1 Introduction
	2 Prefix Expressions
	2.1 Preliminaries
	2.2 Syntax of Prefix Expressions
	2.3 Semantics of Prefix Expressions

	3 Multi-trace Prefix Expressions and Transducers
	3.1 Multi-trace Prefix Expressions
	3.2 Multi-trace Prefix Transducers

	4 Hypertrace Transformations
	4.1 Algorithm for Online Monitoring of k-safety Hyperproperties
	4.2 Discussion

	5 Empirical Evaluation
	6 Related Work
	7 Conclusion and Future Work
	References

