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Stretching the limits of extracellular signal-related
kinase (ERK) signaling — Cell mechanosensing to
ERK activation
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Abstract

Extracellular signal-regulated kinase (ERK) has been recog-
nized as a critical regulator in various physiological and path-
ological processes. Extensive research has elucidated the
signaling mechanisms governing ERK activation via
biochemical regulations with upstream molecules, particularly
receptor tyrosine kinases (RTKs). However, recent advances
have highlighted the role of mechanical forces in activating the
RTK–ERK signaling pathways, thereby opening new avenues
of research into mechanochemical interplay in multicellular
tissues. Here, we review the force-induced ERK activation in
cells and propose possible mechanosensing mechanisms
underlying the mechanoresponsive ERK activation. We
conclude that mechanical forces are not merely passive factors
shaping cells and tissues but also active regulators of cellular
signaling pathways controlling collective cell behaviors.
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Introduction
Cells utilize a range of diverse signaling mechanisms to
communicate with one another, enabling them to

effectively coordinate their activities and respond to
changes in their environment. Understanding how sig-
nals are transmitted cell-to-cell is critical to compre-
hending biological regulatory systems for various cellular
processes in multicellular tissues and organs. A principle
that has recently emerged to govern this regulation is
the interplay between mechanical forces and biochem-
ical signals, i.e., mechanochemical feedback loops in
cells [1,2]. These feedback loops involve mechano-
sensation at the molecular level, biochemical signal
transduction, and the generation of mechanical forces,

which creates a rich dynamical system of cells and
molecules within the multicellular tissues.

A prime example of the cell signaling systems that form
part of the mechanochemical feedback loops is the
extracellular signal-related kinase (ERK)/mitogen-acti-
vated protein kinase (MAP) kinase signaling pathway,
known to regulate various cellular processes, such as
cell differentiation, proliferation, metabolism, and
motility. Typically, the ERK/MAP kinase signaling
pathway is initiated when an extracellular ligand binds

to and activates the receptor tyrosine kinases (RTKs)
at the plasma membrane, followed by sequential acti-
vation of RAS, RAF, MEK, and ERK [3,4]. It was pre-
viously believed that the RTKseERK signaling
pathways were solely activated by chemical signals,
such as growth factors, cytokines, and hormones.
However, mounting evidence has suggested that me-
chanical forces can also activate this signaling pathway,
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ultimately leading to the generation of cellular me-
chanical forces through cytoskeletal activities. In
particular, recent efforts have been devoted to uncov-
ering how molecular machinery involved in mechano-
sensing stimulates the ERK signaling pathways.

This review aims to discuss the current understanding of
the interplay between intercellular mechanical forces and

the ERK signaling pathway in multicellular tissues. First,
we introduce an overview of intercellular propagation of
ERK activation observed in various contexts and explain
the mechanism based on mechanochemical feedback
loops underlying the phenomenon. Then, we discuss
recent studies that have uncovered the role of mechan-
ical forces in activating the ERK signaling pathway, with a
particular focus on the mechanosensing involved in.
Finally, we propose potential avenues that need to be
explored for future research.
Stretch-induced ERK activation and
intercellular transmission
The propagation of ERK activation within multicellular
tissues is an exemplary phenomenon of intercellular signal
transmission. In a confinement release assay using
MadineDarby Canine Kidney (MDCK) cells, the cells
migrate coherently toward the cell-free space, while the
activation of ERK propagates as traveling waves in the
opposite direction of cell migration, i.e., from the leading
edge to the center of the monolayer cell sheet (Figure 1a)
[5,6]. ERK activation waves travel for around 7 min,
spanning one cell scale, across the MDCK monolayer

tissue [7], which is faster than the time scales of the
transcription and translation, indicating that intercellular
ERK signal transmission is likely passed through the
changes in molecular activities but not gene expressions
in this context. The intercellular propagation of ERK
Figure 1

Intercellular propagation of ERK activation during collective cell migrati
image (bottom) of migrating MDCK cells released from confinement. The cells
the opposite direction of cell migration. The images were reproduced with mo
permission from Elsevier under the terms of the license number 55501001528
the front cell by pulling force. Subsequently, the ERK activation generates cell
behind. ERK, extracellular signal-related kinase; MDCK, Madin–Darby Canin
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activation has been observed not only in the specific
setting of in vitro system but also in various in vivo physi-
ological situations, such as tissue morphogenesis [8e10],
regeneration [11], and tissue homeostasis [12e14].

In confluent epithelial tissues, cells mechanically
interact with one another, pulling and pushing through
cell-cell adhesions. During directed collective cell

migration, mechanical signals in the form of intercellular
mechanical stress are initiated by cells at the leading
edge that pull neighboring follower cells and propagate
throughout the constituent cells on a large scale [15,16].
The readout of this intercellular mechanical signal
transmission is the wave propagations of cell deforma-
tion, such as cell extension and shrinkage along the
orientation of migration [15,17], which is well-correlated
with the ERK activation waves [7]. Perturbation assays
have unveiled a sequence of processes whereby ERK
activation triggered by cell stretch induces cellular con-

tractile forces, pulling subsequent follower cells and
evoking the propagation of ERK activation (Figure 1B)
[7,18,19]. This concept is supported by the observation
that depletion of a-catenin, a tension transducer that
mediates binding between E-cadherin and actin fila-
ments [20,21], abolishes organized ERK activationwaves
[7]. Thus, the pulling forces serve as a spatial mediator of
signal transmission in this context.

How do mechanical forces trigger ERK activation? So far,
biochemical assays have shown that mechanical stretch

applied to various cell types activates RTKs, such as
epidermal growth factor receptor (EGFR) [22,23],
fibroblast growth factor receptor (FGFR) [24,25],
vascular endothelial growth factor receptor [26], and
platelet-derived growth factor receptor [27], as well as
their downstream signaling targets. Recent studies have
further shown that stretch-induced ERK activation
on. (a) Shown here are phase contrast image (upper) and ERK activity
migrate toward the free space while the ERK activation waves propagate in
difications from a previous publication [7] and have been reused with
39 granted. (b) ERK activation occurs when the center cell is stretched by
contraction, which transmits the stretch-induced ERK activation to the cell
e Kidney.
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plays a crucial role in physiological function under in vivo
situations. For example, mechanical stretching of
murine skin cells increases the expression of the mole-
cules through the EGFReERK signaling pathway,
including the transcription factor AP1 [28]. The acti-
vation of AP1 alters gene expression to control prolif-
eration and differentiation for stem cell renewal in
murine skin. Another example is that stretching the

ectodermal tissue in Xenopus embryos activates ERK
through FGFR [24]. The force-induced FGFReERK
signaling increases the stiffness and integrity of
epithelial tissues, ensuring proper morphogenesis
during early development.

Proposed mechanisms of mechanosensing
to ERK activation
Although the mechanosensing mechanisms underlying

ERK activation remain unclear, several scenarios have
emerged from recent studies. One feasible scenario
suggests that tensile stress at the cellecell junction
elicits EGFR activation by releasing the complex for-
mation of E-cadherin and EGFR (Figure 2a). Previous
studies showed that E-cadherin associates with EGFR
and thereby regulates ERK [29e31], but the details of
the underlying regulatory mechanism remain elusive.
Sullivan et al. demonstrated using epithelial cell lines
that E-cadherin and EGFR form heterocomplexes, most
likely heterotrimers consisting of two E-cadherins and

one EGFR, at the plasma membrane, and the mechan-
ical disruption of these complexes by increased junc-
tional tension activates ligand-dependent signaling [32].
E-cadherin forms constitutive cis dimers at the plasma
membrane, regulated by p120 catenin bound to the
intracellular region [33], indicating that E-cadherin
tends to sequester EGFR monomers to prevent EGFR
from homodimerization and activation under weak
junctional tension. Once junctional tension arises,
homophilic E-cadherin bonds dissociate from EGFR,
resulting in EGFR dimerization and its binding to EGF,

which eventually leads to the activation of ERK. In the
context of directed collective cell migration, pulling
forces from one cell to the follower cell would increase
junctional tension, activating the EGFReERK pathway.
Shear forces that occur when two unaligned forces pull
or push against each other on adjacent plasma mem-
branes could also be a mechanical stimulant, as they
trigger E-cadherin-mediated EGFR activation and its
signal transduction [34]. Still, how mechanical forces
disrupt the E-cadherineEGFR complexes at the plasma
membrane needs to be further investigated.

Another proposed mechanism involves receptor-
mediated endocytosis triggered by plasma membrane
tension. Rosenblatt et al. recently proposed that an in-
crease in membrane tension can activate Piezo1, known
as a mechanosensitive channel [35], giving rise to EGFR
endocytosis and subsequent downstream signaling
(Figure 2b) [36]. Intriguingly, the internalization of
www.sciencedirect.com
EGFR induced by Piezol-mediated Ca2þ influx may not
rely on canonical EGFR autophosphorylation but
instead on Src-family kinases and p38-dependent non-
canonical EGFR phosphorylation. This mechanism
could account for ERK activation via stretch-induced
Piezo1 in controlling the maintenance of cell density
in confluent epithelial tissues [37] as well as during
directed collective cell migration.

Notably, membrane tension, which can be modulated
by mechanical stretching or relaxing, regulates endo-
cytosis [38] and ERK activity. For example, De Belly
et al. demonstrated that a decrease in membrane ten-
sion during cell spreading causes increased endocytosis
of FGF signaling components, resulting in ERK acti-
vation necessary for exit from naive pluripotency in
mouse stem cells [39]. The activation of ERK by
membrane tension is not only restricted to the FGFR
pathway but also could extend to other RTK signaling

pathways, given the dynamic interplay and feedback
between membrane tension and endocytic activity
[40]. For instance, overexpression of Rab5a, which
regulates endocytosis, has been shown to enhance
EGFR endocytosis and subsequent ERK activation in
epithelial cells, switching from solid to liquid behaviors
in cell collectives [41,42]. This observation is remi-
niscent of the concept of the mechanochemical feed-
back that integrates membrane tension, ERK activation
through EGFR endocytosis and cellular force genera-
tion, which needs to be addressed in the future. It

appears that this regime does not align with the
stretch-induced ERK activation discussed earlier,
particularly viewed at the entire cell scale. Neverthe-
less, the plasma membrane of a cell could be stretched
by adjacent cells exerting local pulling forces, leading to
the separation of the membrane from cortical cyto-
skeletons and the generation of the excess flabby
membrane at the subcellular scale. This, in turn,
prompts a decrease in membrane tension and the
subsequent receptor internalization-mediated signal
transduction to the ERK activation (Figure 2c).

Lastly, the mechanosensing mechanism associated with
ERK activation may involve cell organelles that are
physically connected to actin fibers. In both epithelial
and fibroblast cells, mechanical stretch builds up acto-
myosin fiber bundles, which align along the orientation
of the applied tensile forces, and results in ERK acti-
vation, of which magnitude is dependent on the tension
in the actomyosin fibers [43]. In smooth muscle cells,
mechanical stretch triggers ERK activation via Ca2þ ion
channels located on the endoplasmic reticulum mem-
brane. This process requires tension in actin fibers, but

not in microtubules [44]. These findings suggest that
tensile stress along actin fibers, coupled with non-
muscle myosin, may play a role in the mechanosensing
in response to cell stretch in order to trigger the ERK
activation in cells (Figure 2d).
Current Opinion in Cell Biology 2023, 84:102217
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Figure 2

Possible mechanosensing mechanisms that lead to ERK activation. (a) Increase in junctional tension triggers EGFR dimerization and binding with
the ligands through dissociation of heterotrimer of two E-cadherins and one EGFR. (b) Increase in membrane tension opens PIEZO1, leading to Ca2+-
mediated non-canonical EGFR activation. (c) Decrease in membrane tension caused by separation of plasma membrane from cortical cytoskeletons
enhances endocytosis, leading to the receptor– ligand complex internalization. (d) Increase in cytoskeletal tension along with actomyosin bundles ele-
vates ER membrane tension, resulting in Ca2+-mediated ERK activation. EGFR, epidermal growth factor receptor; ERK, extracellular signal-related
kinase
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Conclusions and perspectives
This review examines specifically potential mechano-
sensing mechanisms that respond to cell stretching,
leading to the stimulation of the ERK signaling pathway
Current Opinion in Cell Biology 2023, 84:102217
in multicellular epithelial tissues. While the mechano-
sensing and transduction pathways mediated through
celleextracellular matrix adhesions have been exten-
sively studied [45,46], mechanochemical regulatory
www.sciencedirect.com
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systems resulting from cell-cell interactions have only
recently been explored from a tissue mechanobiology
perspective as discussed in this review. Consequently,
there are many avenues and challenges that could be
taken to delve deeper into further investigation. Moving
forward, we highlight the following points that need to
be addressed.

First, further technological advancement in the simul-
taneous measurement of force and signal activity is
required to gain a comprehensive insight into how,
when, and where mechanical forces are exerted on and
signals are transduced in cells. Although state-of-the-art
technologies have enabled high-resolution mapping of
time-varying mechanical fields [47,48], the continued
development of force measurement in situ conditions
will provide a vivid and quantitative picture of the input
properties for mechanochemical feedback systems.

Second, mechanical force is not the sole determinant
factor to trigger the cell signaling systems as discussed
earlier, and thus understanding in detail the state of re-
ceptor molecules is essential when a mechanical force
acts as the input in signal transduction. In particular, it
depends on the types of receptors and cells whether the
presence or absence of ligands is necessary to function as
a mechanosensing unit. For example, the binding of EGF
to EGFR is necessary in the regime where disruption of
E-cadherineEGFR complexes induces ERK activation
[32]. Additionally, stretch-induced ERK activationwaves

in MDCK cells require proteinase activity of ADAM (a
disintegrin and metalloproteinase) contributing to the
ectodomain cleavage of EGF-family proteins [7,12],
suggesting that EGF ligands are essential for the
mechanotransduction of ERK activation. As the EGFR
ligands, such as EGF and HBEGF, have redundancy in
generating ERK activation waves [49], those ligands
could be involved in presetting for the mechanical forces
to work as a trigger cue of the signaling system. On the
other hand, evidence has shown that FGF is dispensable
for force-induced FGFR activation in Xenopus embryos
[24], although the molecular mechanism is still unclear.

This observation may pave the way for the discovery of a
novel mode of receptor activation and signal trans-
duction, possibly by connecting with an intriguing report
that dimerized FGFR undergoes phosphorylation even
without the ligands [50].

Lastly, it is fascinating to explore the interplay between
intracellular signals originating from different inputs and
their integration to achieve specific cellular behaviors. In
this review, we have highlighted stretch-induced ERK
activation as a mechanism for intercellular propagation of

ERK activation. However, an alternative mechanism
based on ligandereceptor interaction may be involved in
generating spatiotemporal patterning of ERK activity
during physiological processes. For instance, ERK
www.sciencedirect.com
activity propagates in the scale bone tissues during the
regeneration and development of zebrafish [11], where
the ERK activation waves take about an hour to travel
across a single cell length; the timescale of ERK activa-
tion waves in zebrafish scale bone is much slower due to
the involvement of gene expression than the case in
MDCK cell monolayers. Despite the significant differ-
ences in the timescale of events, these signal activation

mechanisms need not be mutually exclusive. We expect
further studies to contrast the characteristics of each
mode [19] and to understand their cooperativity through
experiments and theory. From a broader perspective, it is
important to investigate how the network circuit design
and reaction timescale of intracellular signals from
different inputs are adaptively integrated to regulate
cellular behavior. Furthermore, exploring crosstalk be-
tween ERK signaling and other mechanical cues, such as
the stiffness of cell substrate [51], will aid in developing
a comprehensive understanding of the mechanochemical

regulatory systems.
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