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Abstract
In this work we consider the list-decodability and list-recoverability of arbitrary q-ary codes, for
all integer values of q ě 2. A code is called pp, Lqq-list-decodable if every radius pn Hamming ball
contains less than L codewords; pp, ℓ, Lqq-list-recoverability is a generalization where we place radius
pn Hamming balls on every point of a combinatorial rectangle with side length ℓ and again stipulate
that there be less than L codewords.

Our main contribution is to precisely calculate the maximum value of p for which there exist
infinite families of positive rate pp, ℓ, Lqq-list-recoverable codes, the quantity we call the zero-rate
threshold. Denoting this value by p˚, we in fact show that codes correcting a p˚ ` ε fraction of errors
must have size Oεp1q, i.e., independent of n. Such a result is typically referred to as a “Plotkin
bound.” To complement this, a standard random code with expurgation construction shows that
there exist positive rate codes correcting a p˚ ´ ε fraction of errors. We also follow a classical proof
template (typically attributed to Elias and Bassalygo) to derive from the zero-rate threshold other
tradeoffs between rate and decoding radius for list-decoding and list-recovery.

Technically, proving the Plotkin bound boils down to demonstrating the Schur convexity of a
certain function defined on the q-simplex as well as the convexity of a univariate function derived
from it. We remark that an earlier argument claimed similar results for q-ary list-decoding; however,
we point out that this earlier proof is flawed.

2012 ACM Subject Classification Mathematics of computing Ñ Coding theory

Keywords and phrases Coding theory, List-decoding, List-recovery, Zero-rate thresholds

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.99

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2210.07754 [46]

Funding Nicolas Resch: Research supported in part by ERC H2020 grant No.74079 (AL-
GSTRONGCRYPTO).
Chen Yuan: Research supported in part by the National Key Research and Development Projects
under Grant 2022YFA1004900 and Grant 2021YFE0109900, the National Natural Science Foundation
of China under Grant 12101403 and Grant 12031011.

Acknowledgements YZ is grateful to Shashank Vatedka, Diyuan Wu and Fengxing Zhu for inspiring
discussions.

1 Introduction

Given a code C Ă rqsn, a fundamental problem of coding-theory is to determine how “well-
spread” C can be if we also insist that C have large rate R “

logq |C|

n . The most basic way of
quantifying “well-spread” is by insisting that all pairs of codewords are far apart. That is,
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99:2 Zero-Rate Thresholds

we hope that the minimum distance d :“ mintdHpc, c1q : c ‰ c1 P Cu is large, where dHp¨, ¨q

denotes Hamming distance, i.e., the number of coordinates on which the two strings differ.
Equivalently, given any word y P rqsn, we have that |BHpy, rq X C| ď 1, where r “ td{2u and
BHpy, rq “ tx P rqsn : dHpx, yq ď ru denotes the Hamming ball of radius r centered at y.

One can naturally relax this requirement to the notion of list-decodability: instead
of upper-bounding |BHpy, rq X C| by 1, we upper bound it by a larger integer L ´ 1.1
Equivalently, if we place Hamming balls of radius r on each codeword of C, no vector in rqsn

is covered by L or more balls. If C satisfies this property we call it pp, Lqq-list-decodable.
Initially introduced by Elias and Wozencraft in the 1950’s [16, 50, 17], this relaxed notion of
decoding has been intensively studied in recent years, in part motivated by purely coding-
theoretic concerns, but also due to its connections with theoretical computer science more
broadly [20, 3, 38, 37, 33, 47].

A further generalization of list-decoding is provided by list-recoverability. In this case,
one considers tuples of input lists Y “ pY1, . . . , Ynq where each Yi Ă rqs is of size at most ℓ,
and the requirement is that the number of codewords c satisfying |ti P rns : ci R Yiu| ď pn

is at most L ´ 1. Such a code is deemed pp, ℓ, Lqq-list-recoverable. Note that pp, 1, Lqq-list-
recoverability is the same as pp, Lqq-list-decoding, demonstrating that list-recoverability is a
more general notion. While it was originally defined as an abstraction required for the task of
uniquely-/list-decoding concatenated codes [21, 22, 23, 24], it has since found myriad further
applications in computer science more broadly, e.g., in cryptography [30, 31], randomness
extraction [29], hardness amplification [14], group testing [32, 41], streaming algorithms [15],
and beyond.

When it comes to list-decoding and list-recovery, the optimal tradeoff between decoding-
radius p and rate R is well-understood if one is satisfied with list-sizes L “ Op1q.2 That is,
there exist pp, ℓ, Opℓ{εqqq-list-recoverable codes of rate 1 ´ Hq,ℓppq ´ ε where3

Hq,ℓppq :“ p logq

ˆ

q ´ ℓ

p

˙

` p1 ´ pq logq

ˆ

ℓ

1 ´ p

˙

;

conversely, if the rate is at least 1 ´ Hq,ℓppq ` ε then it will not be list-recoverable for any
L “ o pqεnq [44, Theorem 2.4.12]. (Note that setting ℓ “ 1 recovers the more well-known list-
decoding capacity theorem.) While this already provides some “coarse-grained” information
concerning the list-decodability/-recoverability of codes, it leaves many questions unanswered.

For example, one can ask about the maximum rate of a pp, 3qq-list-decodable code. That is,
what is the maximum rate of a code that never contains more than 2 points from a Hamming
ball of radius pn? However, this question as stated appears be quite difficult to solve: any
improvement for the special case of L “ 2 and q “ 2 would require improving either on
the Gilbert-Varshamov bound [19, 48] (on the “possibility” side) or the linear programming
bounds [49, 39, 13] (on the “impossibility” side). Unfortunately, despite decades of interest in
this basic question hardly any asymptotic improvements on these bounds have been provided
in the past fifty years.

Zero-rate thresholds for list-decoding and -recovery. We therefore begin by targeting
a more modest question: what is the maximum p˚ “ p˚pq, ℓ, Lq such that for any p ă p˚

there exist infinite families of q-ary pp, ℓ, Lqq-list-recoverable codes of positive rate? That is,

1 We find it most convenient to let L denote 1 more than the list-size, which is admittedly nonstandard,
but will make our computations much cleaner.

2 Or indeed, if we insist on L just being subexponential.
3 For ℓ “ 1, Hq,1 reduces to the q-ary entropy function denoted by Hq.
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imagining the curve describing the achievable tradeoffs with the rate R on the y-axis and
decoding radius p on the x-axis, instead of asking to describe this entire curve, we simply seek
to determine the point where this curve crosses the x-axis (clearly, this curve is monotonically
decreasing).

Over the binary alphabet, setting ℓ “ 1 and L “ 2 in this question we recover a famous
result of Plotkin [42]: the maximum fraction of errors that can be uniquely-decoded by an
infinite family of positive rate binary codes is 1{4. Over general q-ary alphabets, this value is
similarly known to be q´1

2q (folklore; see, e.g., [28, Theorem 4.4.1]). The value of p˚p2, 1, Lq

has been computed by Blinovsky [5] for all L, and is known to be

p˚p2, 1, Lq “
1
2 ´

`2k
k

˘

22k`1 if L “ 2k or L “ 2k ` 1.

While this expression is quite impenetrable at first glance, here is a natural probabilistic
interpretation: given x1, . . . , xL P t0, 1u, let plpx1, . . . , xLq denote the number of times the
more popular bit appears.4 We then have

p˚p2, 1, Lq “ 1 ´
1
L

E
pX1,¨¨¨ ,XLq„Bernp1{2qbL

rplpX1, ¨ ¨ ¨ , XLqs ,

where the notation pX1, ¨ ¨ ¨ , XLq „ Bernp1{2qbL denotes that L independent unbiased bits
are sampled.

It is then not difficult to conjecture the value for p˚pq, ℓ, Lq: if plℓpx1, . . . , xLq denotes
the top-ℓ-plurality value of x1, . . . , xL P rqs, i.e., plℓpx1, . . . , xLq “ maxΣĎrqs:|Σ|“ℓ |ti P rLs :
xi P Σu|, then it should be that

p˚pq, ℓ, Lq “ 1 ´
1
L

E
pX1,¨¨¨ ,XLq„UnifprqsqbL

rplℓpX1, ¨ ¨ ¨ , XLqs . (1)

This quantity is fairly natural: one can interpret it as the minimum radius of a list-recovery
ball (i.e., a set of the form tv P rqsn : vi P Yi for at least p1 ´ pqn i P rnsu) that will contain
L codewords in the “typical” case. For the case of ℓ “ 1, i.e., q-ary list-decoding, a proof is
claimed in [6, 7]; however, as we outline in Section 3 this proof is flawed. In this work we
provide a rigorous derivation of Equation (1) for all values of ℓ, L and q with 1 ď ℓ ď q.

More precisely, we obtain the following results:
A proof that pp, ℓ, Lqq-list-recoverable q-ary codes with p ą p˚pq, ℓ, Lq have constant-size,
i.e., independent of n. This should be interpreted as a generalization of the Plotkin
bound [42], which states that binary codes uniquely-decodable from a 1{4 ` ε fraction of
errors have size at most Op1{εq. For this reason we call our result a “Plotkin bound for
list-recovery.”
Adapting the Elias-Bassalygo argument [4], we subsequently derive upper bounds on the
rate of pp, ℓ, Lqq-list-recoverable q-ary codes when p ă p˚pq, ℓ, Lq.
To complement this, we show that there exist infinite families of positive rate q-ary codes
that are pp, ℓ, Lqq-list-recoverable whenever p ă p˚pq, ℓ, Lq. We are therefore justified in
calling p˚pq, ℓ, Lq the zero-rate threshold for list-recovery.

We now describe our techniques in more detail.

4 We use pl to stand for “plurality”. However, we caution that this function does not output a most
popular symbol (as is perhaps more in line with the standard meaning of plurality), but the number of
i P rLs for which xi equals a most popular symbol.

ICALP 2023
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1.1 Our techniques
Schur convexity of the function fq,L,ℓ. Following prior work [6],5 our task requires us to
answer the following question. Consider the function on distributions P over the alphabet
rqs defined as

fq,L,ℓpP q :“ E
pX1,¨¨¨ ,XLq„P bL

rplℓpX1, ¨ ¨ ¨ , XLqs .

Analogously to before, the notation pX1, ¨ ¨ ¨ , XLq „ P bL means that L independent samples
are taken from the distribution P . A crucial ingredient for deriving the Plotkin bound is a
demonstration that this function is minimized by the uniform distribution.

There is a well-studied class of functions on finite distributions with the property that
they are minimized by the uniform distribution: Schur convex functions. These are the
functions that are monotonically-increasing with respect to the majorization-ordering, which
compares vectors of real numbers by first sorting the vectors in descending order and then
checking to see if all the prefix sums of one vector is greater than or equal to the prefix
sums of the other. The important detail for us is that the uniform vector p1{q, . . . , 1{qq P Rq,
corresponding to the uniform distribution, is majorized by every other vector corresponding
to a distribution over rqs.

To demonstrate the Schur convexity of this function, we use the Schur-Ostrowski criterion,
which states that Schur-convexity is equivalent to the non-negativity of a certain expression
involving partial derivatives. Showing that this expression is non-negative boils down to a
combinatorial accounting game, where we can show that the positive contributions arising
from certain terms exceed the negative contributions arising from others.

Convexity of the univariate function gq,L,ℓ. Another important technical ingredient that
we need for the proof of the Plotkin bound is the convexity of the univariate function

gq,L,ℓpwq :“ fq,L,ℓpPq,ℓ,wq,

where the distribution Pq,ℓ,w “ pp1, . . . , pqq is defined as

pi “

#

w
q´ℓ if i ď q ´ ℓ
1´w

ℓ if i ě q ´ ℓ ` 1
.

In order to show the function is convex, we prove the second derivative is non-negative. In
differentiating, we use the expression for gq,L,ℓ in terms of fq,L,ℓ and apply the chain rule.
Showing the resulting expression is positive is again a sort of combinatorial accounting game:
we can show the positive terms contribute more than the negative terms.

Quite interestingly, for ℓ “ 1 (i.e., the case relevant for list-decoding) we only prove the
convexity of the function fq,1,L on the interval r0, pq ´1q{qs. Fortunately, as we can also easily
show that gq,1,L decreases on the interval r0, pq ´ 1q{qs and then increases on the interval
rpq ´ 1q{q, 1s,6 convexity of fq,1,L on r0, pq ´ 1q{qs suffices for our purposes. And indeed, this
is not an artifact of the proof: Blinovsky had already observed that convexity of fq,1,L does
not hold on the entire interval r0, 1s [6, 7]. However, for ℓ ě 2 we obtain that convexity
of fq,ℓ,L does indeed hold on the entire interval r0, 1s. We note that the second derivative
does behave qualitatively differently, so this is perhaps not too surprising in hindsight; we
comment on this further in [46, Remark 5].

5 In fact, [6] only considers list-decoding, so a slight adaptation of this argument is required for list-recovery.
6 This is in fact an easy corollary of the Schur convexity of fq,1,L.
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Plotkin bound. Armed with these (Schur-)convexity results, we aim to prove a Plotkin
bound for list-decoding/-recovery. That is, if a q-ary code is pp, ℓ, Lqq-list-recoverable with
p ě p˚pq, ℓ, Lq ` ε, how large can the code be? Following the template of the standard
argument (although certain subtleties arise when generalizing to list-recovery), we can show
that such a code must be of constant size, i.e., independent of n.

Informally, the argument begins with a “preprocessing step” that prunes away some
(but, crucially, not too many) codewords and yields a more structured subcode that we can
subsequently analyze. The codewords of this subcode are very “balanced” in the sense that
all patterns of symbols appear with roughly the same frequency. In particular, every pattern
of length t should appear roughly a 1{qt fraction of the time (or the code is very “biased,” in
which case a separate argument bounds its size).

To analyze this subcode C1 we apply a double-counting argument to the average radius (see
[46, Definition 10]) to cover L-subsets (where for list-recoverability, this radius is measured via
the distance to a tuple of input lists). The lower bound on this quantity follows quite naturally
from the list-decodability/-recoverability of the code, together with the “balancedness” of
the subcode. For the upper bound, we compute the radius of an L-subset in terms of the
empirical distribution of a coordinate k P rns, i.e., each x P rqs is assigned probability mass
Pkpxq “ 1

M

ř

xPC1 1txk “ xu. By the Schur convexity of the function fq,L,ℓ and the convexity
of the univariate function gq,L,ℓ, we can bound this in terms of a distribution placing total
mass w ď

q´ℓ
q on the last ℓ elements of rqs and mass 1´w

q´ℓ on each of the others. The result
then follows.

We remark that, due to our use of Ramsey-theoretic arguments, the precise bound we
obtain on the code size is quite poor. We have made no effort to optimize this constant.
However, we do believe it would be interesting to improve this bound; we discuss this further
in Section 4.

Elias-Bassalygo-style bound. After deriving this Plotkin bound, a well-known argument
template (typically attributed to Elias and Bassalygo [4]) allows one to derive more general
tradeoffs between the rate R and the noise-resilience parameters pp, ℓ, Lqq. Informally, this
proceeds by covering the space rqsn by a bounded number of list-recovery balls. The radius
of these balls is carefully chosen to allow one to apply the Plotkin bound to the subcodes
obtained by taking the intersection of the code with these balls. On the other hand, the
number of list-recovery balls needed to cover rqsn, known as the covering number, can be
sharply estimated. From the above two bounds (the Plotkin bound and the covering number),
a bound on the size of the whole code can be derived.

Possibility result: random code with expurgation. To complement the Plotkin bound, we
show that if the decoding radius p is less than p˚pq, ℓ, Lq then there exist infinite families of
pp, ℓ, Lqq-list-recoverable q-ary codes. This justifies our “zero-rate threshold” terminology for
p˚pq, ℓ, Lq. The argument is completely standard, obtained by sampling a random code and
subsequently expurgating codewords to destroy all size-L lists that can fit into Hamming
balls of radius np. In fact, the lower bound on achievable rate is derived from the exact large
deviation exponent of a certain quantity known as the average radius (cf. [46, Definition
12]) of a tuple of random vectors. Therefore the bound holds under a stronger notion called
average-radius list-recovery: namely, for any subset of L codewords x1, . . . , xj and any tuple
of input lists pY1, . . . , Ynq, we have

L
ÿ

j“1
|ti P rns : xj,i R Yiu| ą Lpn .

ICALP 2023
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1.2 Discussion on related work
Lower bounds for small q and/or L. For the case of pp, 3q2-list-decoding, it was shown in
[26, Theorem 6.1] that the threshold rate7 of random binary linear codes equals

1
2 p2 ´ H2p3pq ´ 3p log2p3qq. (2)

The term threshold refers to the critical rate below which a random binary linear code is
pp, 3q2-list-decodable with high probability and above which it is not with high probability.
This result was recently extended to the following two cases [45]. For pp, 4q2-list-decoding,
the threshold rate of random binary linear code is lower bounded by [45, Theorem 1.3]

1
3 min

x1,x2ě0
x1`2x2ď4p

x1`x2ď1

3 ´ η2px1, x2q ´ 2x1 ´ x2 log2p3q. (3)

Here we use the notation

ηqpx1, . . . , xtq :“
t

ÿ

i“1
xi logq

1
xi

`

˜

1 ´

t
ÿ

i“1
xi

¸

logq

1
1 ´

řt
i“1 xi

for a partial probability vector px1, . . . , xtq P Rt
ě0 satisfying t ď q and x1 ` ¨ ¨ ¨ ` xt ď 1.

Note that η2pxq “ H2pxq, however, this is no longer the case for q ą 2. Moreover, for
pp, 3qq-list-decoding, [45, Theorem 1.5] showed that the threshold rate of random linear code
is at least

1
2 min

x1,x2ě0
x1`2x2ď3p

x1`x2ď1

2 ´ ηqpx1, x2q ´ x1 logqp3pq ´ 1qq ´ x2 logqpq ´ 1qpq ´ 2q. (4)

Our general lower bound (cf. Theorem 14) for list-recovery (numerically) matches Equa-
tions (2)–(4) upon particularizing the parameters q, ℓ, L suitably. See Figures 1a–1c. It is
possible to analytically prove this observation, though we do not pursue it in the current
paper. The rationale underlying this phenomenon is that the threshold rate of random
linear codes for list-recovery is expected to match the rate achieved by random codes with
expurgation (with the notable exception of zero-error list-recovery [25]). This conjecture, in
its full generality, remains unproved, although it is partially justified in several recent works
[40, 25, 26, 45].

Hash codes. One may note that for ℓ ě 2, our upper and lower bounds typically exhibit a
large gap even at p “ 0. See Figures 1e–1h. We provide evidence below indicating that closing
this gap is in general a rather challenging task and necessarily requires significantly new
ideas. Let us focus on the vertical axis p “ 0, known as zero-error list-recovery. We observe
that some configurations of q, ℓ, L in this regime encode several longstanding open questions
in combinatorics. Indeed, consider ℓ “ q ´ 1, L “ q. The p0, q ´ 1, qqq-list recoverability
condition can then be written as: for any Y1, ¨ ¨ ¨ , Yn P

`

rqs

q´1
˘

,

|tx P C : |tj P rns : xj R Yju| “ 0u| ď L ´ 1,

7 We warn the reader not not to confuse this concept with that of the zero-rate threshold.
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i.e.,

|tx P C : @j P rns, xj P Yju| ď L ´ 1.

Taking the contrapositive, we note that this condition is further equivalent to: for any
tx1, ¨ ¨ ¨ , xLu P

`C
L

˘

, there exists j P rns such that |tx1,j , ¨ ¨ ¨ , xL,ju| “ q. In words, for any
q-tuple of codewords in a p0, q ´ 1, qqq-list-recoverable code, there must exist one coordinate
such that the corresponding q-ary symbols in the tuple are all distinct. Such a code is
also known as a q-hashing in combinatorics. It is well-known [18, 35] that a probabilistic
construction yields such codes of rate8 at least

Cp0,q´1,qqq
ě

1
q ´ 1 logq

1
1 ´

q!
qq

. (5)

In the same paper [18] also proved an upper bound

Cp0,q´1,qqq
ď

q!
qq´1 logqp2q. (6)

Another upper bound

Cp0,q´1,qqq
ď logq

q

q ´ 1 (7)

can be proved using either a double-counting argument (a.k.a. first moment method), or
(hyper)graph entropy [35, 36, 34]. Equation (6) is much better than Equation (7) for q ě 4.
However, the latter bound log3

3
2 remains the best known for q “ 3 (called the trifference

problem by Körner). For larger q, both lower [51] and upper bounds [2, 11, 27, 10, 12] can be
improved. However, improving the bound for q “ 3 is recognized as a formidable challenge.
We will show in [46, Remark 9] that our lower bound for list-recovery (cf. Theorem 14)
recovers Equation (5) for q-hashing upon setting ℓ “ q ´ 1, L “ q. Furthermore, our upper
bound Theorem 16 recovers Equation (7) for q-hashing (cf. [46, Remark 7]).

A generalization of q-hashing known as pq, Lq-hashing (q ě L) can also be cast as zero-error
list-recoverable codes with more general values of ℓ, L. Indeed, taking L “ ℓ`1 and ℓ ď q ´1,
we can write p0, ℓ, ℓ ` 1qq-list-recoverability alternatively as: for any tx1, ¨ ¨ ¨ , xℓ`1u P

` C
ℓ`1

˘

,
there exists j P rns such that |tx1,j , ¨ ¨ ¨ , xℓ`1,ju| “ ℓ ` 1. This is in turn the precise definition
of pq, ℓ ` 1q-hashing. It can be immediately seen that pq, qq-hashing is nothing but q-hashing.
The upper and lower bounds in [18] also extend to pq, ℓ ` 1q-hashing and read as follows:

1
ℓ

logq

1

1 ´
p q

ℓ`1qpℓ`1q!
qℓ`1

ď Cp0,ℓ,ℓ`1qq
ď

`

q
ℓ

˘

ℓ!
qℓ

logqpq ´ ℓ ` 1q. (8)

Our lower bound for list-recovery in Theorem 14 also recovers the above lower bound for
pq, ℓ ` 1q-hashing by [18] upon setting L “ ℓ ` 1 (see [46, Remark 8]). The upper bound was
later improved in [36] for q ą L using the notion of hypergraph entropy:

Cp0,ℓ,ℓ`1qq
ď min

0ďjďℓ´1

`

q
j`1

˘

pj ` 1q!
qj`1 logq

q ´ j

ℓ ´ j
, (9)

though it coincides with Equation (6) when ℓ “ q ´ 1. Some improved upper bounds in
[27, 12] apply to pq, ℓ ` 1q-hashing as well. To the best of our knowledge, no improvement on
lower bounds is known for ℓ ă q ´ 1.

8 The bounds in [36, 18] are slightly adjusted so that they are consistent with our definition of code rate
which adopts a logq normalization (cf. [46, Definition 6]).

ICALP 2023
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Zero-rate thresholds for general adversarial channels. The problem of locating the zero-
rate threshold has been addressed in a much more general context [52]. The results in [52]
on general adversarial channel model can be specialized to the list-recovery setting and read
as follows. Given q, p, ℓ, L, define the confusability set Kpp,ℓ,Lqq

as the set of types9 (cf. [46,
Definition 15]) of all “confusable” L-tuple of codewords in the sense that they can fit into a
certain list-recovery ball (cf. [46, Definition 3]) of radius np. Specifically,

Kpp,ℓ,Lqq
:“

$

’

’

’

&

’

’

’

%

ÿ

YPp
rqs

ℓ q

PX1,¨¨¨ ,XL,Y “Y P ∆
´

rqs
L

¯

:

PX1,¨¨¨ ,XL,Y P ∆
´

rqs
L

ˆ
`

rqs

ℓ

˘

¯

@i P rLs,
ÿ

px,YqPrqsˆp
rqs

ℓ q
xRY

PXi,Y px, Yq ď p

,

/

/

/

.

/

/

/

-

.

In the above definition, we use the notation
ř

b PA,B“b to denote the marginalization of PA,B

onto the first variable A, and use PXi,Y to denote the marginal of PX1,¨¨¨ ,Xi,Y on pXi, Y q.
It is not hard to verify that the confusability set is piq “increasing” in p in the sense that
Kpp,ℓ,Lqq

Ă Kpp1,ℓ,Lqq
if p ď p1, and piiq convex. Define also the convex cone of completely

positive (CP) tensors of order L, i.e., tensors that can be written as a sum of element-wise
non-negative rank-one tensors:

CPbL
q :“

#

k
ÿ

i“1
pbL

i P pR
q
ě0qbL : k P Zě1, pp1, ¨ ¨ ¨ , pkq P pR

q
ě0qk

+

.

It is proved in [52] that the zero-rate threshold p˚pq, ℓ, Lq can be expressed as the smallest p

such that all completely positive distributions are confusable:

p˚pq, ℓ, Lq “ inf
!

p P r0, 1s : CPbL
q X ∆prqsLq Ă Kpp,ℓ,Lqq

)

. (10)

The above characterization is single-letter in the sense that it is independent of the blocklength
n. For q, ℓ, L independent of n (which is assumed to be the case in the current paper),
the optimization problem on the RHS of Equation (10) can be solved in constant time.
However, it does not immediately provide an explicit formula of p˚pq, ℓ, Lq and analytically
solving the optimization problem does not appear easy to the authors. On the other hand,
the characterization p˚pq, ℓ, Lq “ 1 ´ 1

LE rplℓpX1, ¨ ¨ ¨ , XLqs (where the expectation is over
pX1, ¨ ¨ ¨ , XLq „ UnifprqsqbL, cf. Equation (1)) in this paper can be seen as the explicit
solution to the optimization problem, though the way it is obtained is not by solving the
latter problem per se. Instead, we prove the characterization from the first principle by
leveraging specific structures of list-recovery. We hope that our characterization can shed
light on the geometry of the high-dimensional polytopes – the confusability set and the set
of CP distributions – involved in the characterization in Equation (10).

1.3 Organization

We state our main results in Section 2. We discuss the flaw in Blinovsky’s proof in Section 3.
We summarize our results and state open problems in Section 4. Additional notation,
definitions, preliminary results and missing proofs can be found in [46].

9 More precisely, the confusability set is the closure of the set of types of all confusable codeword tuples,
since types are dense in distributions.
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2 Main results

2.1 q-ary list-decoding
Define fq,L : ∆prqsq Ñ Rě0 as

fq,LpP q :“ E
pX1,...,XLq„P bL

rplpX1, . . . , XLqs (11)

for P P ∆prqsq.
For w P r0, 1s, let Pq,w P ∆prqsq denote the following probability vector:

Pq,w :“
ˆ

w

q ´ 1 , . . . ,
w

q ´ 1 , 1 ´ w

˙

. (12)

Define gq,L : r0, 1s Ñ Rě0 as

gq,Lpwq :“ fq,LpPq,wq. (13)

▶ Definition 1 (Majorization). Let a, b P Rd. Let aÓ, bÓ
P Rd denote the vectors obtained by

sorting the elements in a and b in descending order, respectively. We say that a majorizes b,
written as a ľ b, if

k
ÿ

i“1
aÓ

i ě

k
ÿ

i“1
bÓ

i

for every k P rds, and
d

ÿ

i“1
ai “

d
ÿ

i“1
bi.

▶ Definition 2 (Schur convexity). A function f : Rd Ñ R is called Schur-convex if fpxq ě

fpyq for every x, y P Rd such that x ľ y (in the sense of Definition 1).

▶ Theorem 3 (Schur convexity of fq,L). For any q P Zě2 and L P Zě2, the function
fq,L : ∆prqsq Ñ Rě0 defined in Equation (11) is Schur convex.

Proof. See [46, Sec. 4]. ◀

▶ Theorem 4 (Convexity of gq,L). For any q P Zě2 and L P Zě2, the function gq,L : r0, 1s Ñ

Rě0 defined in Equation (13) is convex in the interval r0, pq ´ 1q{qs.

Proof. See [46, Sec. 5]. ◀

▶ Remark 5. In the binary case (i.e., q “ 2), understanding the functions f2,L and g2,L is an
easier task. In fact, f2,L collapses to a univariate function and coincides with g2,L. It can be
computed [8, Eqn. (2.15) and (2.16)] that for L “ 2k, 2k ` 1,

p˚p2, L; wq :“ 1 ´
1
L

g2,Lpwq “

k
ÿ

i“1

`2i´2
i´1

˘

i
pwp1 ´ wqqi,

and
B2

Bw2 p˚p2, L; wq “ ´k

ˆ

2k

k

˙

pwp1 ´ wqqk´1.

The concavity (see also [43, Lemma 8]) and monotonicity of p˚p2, L; wq immediately follow.
Such explicit computation cannot be performed in the q ą 2 case (and for list-recovery) and
we have to work with summations like in [46, Lemma 14]. Other approaches to arguing
monotonicity such as induction [1, Lemma 8(d)] do not seem to work well either for larger q.

ICALP 2023
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As convexity only holds in the interval r0, pq ´ 1q{qs, we will also require the following
monotonicity properties, which follow easily from the Schur convexity of fq,L.

▶ Lemma 6. For any q P Zě2 and L P Zě2, the function gq,L : r0, 1s Ñ Rě0 defined in
Equation (13) is non-increasing on r0, pq ´ 1q{qs and non-decreasing on rpq ´ 1q{q, 1s.

Proof. See [46, Appendix B]. ◀

Define

p˚pq, L; wq :“ 1 ´
1
L

gq,Lpwq. (14)

▶ Theorem 7 (Plotkin bound for q-ary list-decoding). Fix any q P Zě2 and L P Zě2. Let
C Ă rqsn be an arbitrary pp, Lqq-list-decodable code with p “ p˚

´

q, L; q´1
q

¯

` τ for any
constant τ P p0, 1q. Then there exists a constant M˚ “ M˚pq, L, τq independent of n such
that |C| ď M˚. As a consequence, in particular, we have

p˚pq, Lq ď p˚

ˆ

q, L; q ´ 1
q

˙

“ 1 ´
1
L

gq,L

ˆ

q ´ 1
q

˙

.

Proof. The proof of this theorem can be found in [46, Sec. 6]. Specifically, a theorem (cf.
[46, Theorem 16]) of the above kind will be first proved for approximately constant-weight
codes in which all codewords have approximately the same Hamming weight. This theorem
can then be used to prove Theorem 7 above (see [46, Corollary 18] for a more quantitative
version) by partitioning a general (weight-unconstrained) code into a constant number of
almost constant-weight subcodes. ◀

The upper bound on the zero-rate threshold in Theorem 7 is in fact sharp. It turns out
that positive rate pp, Lqq-list-decodable codes exist for any p strictly smaller than the bound
1 ´ 1

L gq,L

´

q´1
q

¯

in Theorem 7. Indeed, Blinovsky [6] proved the following lower bound on
the pp, Lqq-list-decoding capacity which remains the best known to date. It can also be
implied by our lower bound (Theorem 14 below) for list-recovery upon setting ℓ “ 1.

▶ Theorem 8 ([6, Sec. 2]). For any q P Zě2, L P Zě2 and 0 ď p ă p˚

´

q, L; q´1
q

¯

, the
following lower bound on the pp, Lqq-list-decoding capacity holds:

Cpp,Lqq
ě

L

L ´ 1 ´
1

L ´ 1

$

&

%

λ˚p ` logq

»

–

ÿ

aPAq,L

ˆ

L

a

˙

expq

ˆ

´λ˚

ˆ

1 ´
1
L

max tau

˙˙

fi

fl

,

.

-

,

where λ˚ “ λ˚pq, L, pq is the solution to the following equation

p “

ř

aPAq,L

`

L
a

˘

expq

`

´λ˚

`

1 ´ 1
L max tau

˘˘ `

1 ´ 1
L max tau

˘

ř

aPAq,L

`

L
a

˘

expq

`

´λ˚

`

1 ´ 1
L max tau

˘˘ .

Blinovsky’s lower bound is plotted in Figure 1d. It is not hard to verify that the lower bound
above vanishes at

p “ q´L
ÿ

aPAq,L

ˆ

L

a

˙ ˆ

1 ´
1
L

maxtau

˙

,

and the corresponding λ˚ equals 0.
Theorems 7 and 8 together pin down the exact value of p˚pq, Lq shown in the following

corollary.
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▶ Corollary 9. For any q P Zě2 and L P Zě2, the zero-rate threshold p˚pq, Lq for pp, Lqq-
list-decoding is given by

p˚pq, Lq “ p˚

ˆ

q, L; q ´ 1
q

˙

“ 1 ´
1
L

gq,L

ˆ

q ´ 1
q

˙

“ q´L
ÿ

aPAq,L

ˆ

L

a

˙ ˆ

1 ´
1
L

maxtau

˙

.

(15)

From now on, we will use p˚pq, Lq to denote the RHS of Equation (15).

▶ Theorem 10 (Elias–Bassalygo bound for q-ary list-decoding). Fix any q P Zě2, L P Zě2 and
0 ď p ă p˚pq, Lq. Then the pp, Lqq-list-decoding capacity can be upper bounded as Cpp,Lqq

ď

1 ´ Hqpwq,Lq where wq,L is the solution to the equation p˚pq, L; wq “ p in w P r0, pq ´ 1q{qs.

Proof. The above theorem is implied by [46, Theorem 19] proved in [46, Sec. 7]. The latter
theorem shows that for any pp, Lqq-list-decodable code C Ă rqsn with p ă p˚pq, Lq and any
sufficiently small constant τ ą 0, |C| is at most B ¨n1.5 ¨qnp1´Hqpwq,L,τ qq, where B “ Bpq, L, τq

is a constant and wq,L,τ is the solution to p˚pq, L; wq “ p ´ τ . Taking τ Ñ 0 and neglecting
polynomial factors, we obtain the upper bound on the list-decoding capacity. ◀

The above upper bound is plotted in Figure 1d.

2.2 List-recovery
Define fq,L,ℓ : ∆prqsq Ñ Rě0 as

fq,L,ℓpP q :“ E
pX1,...,XLqPP bL

rplℓpX1, . . . , XLqs (16)

for P P ∆prqsq. Define gq,L,ℓ : r0, 1s Ñ Rě0 as

gq,L,ℓpwq :“ fq,L,ℓpPq,ℓ,wq, (17)

where the distribution Pq,ℓ,w P ∆prqsq is defined as

Pq,ℓ,wpiq “

#

w
q´ℓ , 1 ď i ď q ´ ℓ
1´w

ℓ , q ´ ℓ ` 1 ď i ď q
. (18)

▶ Theorem 11 (Schur convexity of fq,L,ℓ). For any q P Zě2, L P Zě2 and integer 1 ď ℓ ď q´1,
the function fq,L,ℓ : ∆prqsq Ñ Rě0 defined in Equation (16) is Schur convex.

Proof. See [46, Sec. 8]. ◀

▶ Theorem 12 (Convexity of gq,L,ℓ). For any q P Zě2, L P Zě2 and integer 2 ď ℓ ď q ´1, the
function gq,L,ℓ : ∆prqsq Ñ Rě0 defined in Equation (17) is convex in the interval w P r0, 1s.

Proof. See [46, Sec. 9]. ◀

Define

p˚pq, ℓ, L; wq :“ 1 ´
1
L

gq,L,ℓpwq. (19)

ICALP 2023
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▶ Theorem 13 (Plotkin bound for list-recovery). Fix any q P Zě2, L P Zě2 and integer 2 ď ℓ ď

q ´1. Let C Ă rqsn be an arbitrary pp, ℓ, Lqq-list-recoverable code with p “ p˚

´

q, ℓ, L; q´ℓ
q

¯

`τ

for any constant τ P p0, 1q. Then there exists a constant M˚ “ M˚pq, ℓ, τq independent of n

such that |C| ď M˚. This implies, in particular,

p˚pq, ℓ, Lq ď p˚

ˆ

q, ℓ, L; q ´ ℓ

q

˙

“ 1 ´
1
L

gq,L,ℓ

ˆ

q ´ ℓ

q

˙

.

Proof. The proof structure is similar to that of Theorem 7. We first prove the analogous
the statement for almost constant-weight codes (in which all codewords have approximately
the same list-recovery weight) in [46, Theorem 20] and then pass to general codes by weight
partitioning (cf. [46, Corollary 21]). Since the technical proofs bear many similarities to
those in the list-decoding case, we only present proof sketches in [46, Sec. 10]. ◀

To complement Theorem 13, we prove in [46, Sec. 12] the following lower bound on
the pp, ℓ, Lqq-list-recovery capacity. To the best of our knowledge, this is the first bound
for list-recovery with q, ℓ, L all being constants (independent of p and n). We believe that
improving it likely requires novel techniques beyond expurgation.

▶ Theorem 14. For any q P Zě2, L P Zě2, integer 2 ď ℓ ď q ´ 1 and 0 ď p ă

p˚

´

q, ℓ, L; q´ℓ
q

¯

, the following lower bound on the pp, ℓ, Lqq-list-recovery capacity holds:

Cpp,ℓ,Lqq ě
L

L ´ 1 ´
1

L ´ 1

$

&

%

λ˚p ` logq

»

–

ÿ

aPAq,L

˜

L

a

¸

expq

ˆ

´λ˚

ˆ

1 ´
1
L

maxℓ tau

˙˙

fi

fl

,

.

-

,

where λ˚ “ λ˚pq, ℓ, L, pq is the solution to the following equation

p “

ř

aPAq,L

`

L
a

˘

expq

`

´λ˚

`

1 ´ 1
L maxℓ tau

˘˘ `

1 ´ 1
L maxℓ tau

˘

ř

aPAq,L

`

L
a

˘

expq

`

´λ˚

`

1 ´ 1
L maxℓ tau

˘˘ .

Similar to the list-decoding case (Theorem 8), the above lower bound vanishes at

p “ q´L
ÿ

aPAq,L

ˆ

L

a

˙ ˆ

1 ´
1
L

maxℓtau

˙

,

and the corresponding λ˚ equals 0.
Theorems 13 and 14 jointly determine the value of p˚pq, ℓ, Lq shown in the corollary

below.

▶ Corollary 15. For any q P Zě2, L P Zě2 and integer 2 ď ℓ ď q ´ 1, the zero-rate threshold
p˚pq, ℓ, Lq for pp, ℓ, Lqq-list-recovery is given by

p˚pq, ℓ, Lq “ p˚

ˆ

q, ℓ, L; q ´ ℓ

q

˙

“ 1 ´
1
L

gq,L,ℓ

ˆ

q ´ ℓ

q

˙

“ q´L
ÿ

aPAq,L

ˆ

L

a

˙ ˆ

1 ´
1
L

maxℓtau

˙

. (20)

From now on, we use p˚pq, ℓ, Lq to refer to the same quantity as the RHS of Equation (20).

▶ Theorem 16 (Elias–Bassalygo bound for list-recovery). Fix any q P Zě2, L P Zě2, integer
2 ď ℓ ď q ´ 1 and 0 ď p ă p˚pq, ℓ, Lq. Then the pp, ℓ, Lqq-list-recovery capacity can be
upper bounded as Cpp,ℓ,Lqq

ď 1 ´ Hq,ℓpwq,ℓ,Lq where wq,ℓ,L is the solution to the equation
p˚pq, ℓ, L; wq “ p in w P r0, pq ´ ℓq{qs.
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Proof. Parallel to Theorem 10, the above theorem is immediately implied by a finite-
blocklength version [46, Theorem 22] (analogous to [46, Theorem 19]) whose full proof is
presented in [46, Sec. 11]. ◀

3 Discussion of Blinovsky’s results [6, 7]

As mentioned in Section 1, part of the motivation of this work is to fill in the gaps in the
proofs in [6, 7] for q-ary list-decoding. We discuss in detail below the issues therein. The main
result in [6] is a Plotkin bound (as our Theorem 7) for an arbitrary q-ary list-decodable code
C Ă rqsn. For the sake of brevity, we assume in the proceeding discussion that C is w-constant
weight. Additional bookkeeping is needed to handle small deviations in the weight, as we did
in the proof of [46, Theorem 16]. The skeleton of the proof in [6] follows Blinovsky’s proof in
the binary case [5] which we adopt here as well: piq pass to an (approximately) equi-coupled
subcode C1 “ tx1, ¨ ¨ ¨ , xM u Ă C using a Ramsey reduction; piiq handle asymmetric coupling
using Komlós’s argument (and its order-L generalization [9]); piiiq prove an upper bound
on the size M of the subcode C1 using a double-counting argument. In completing the
double-counting argument, one is required to upper bound the average radius (averaged over
all L-lists in the subcode) by the zero-rate threshold p˚pq, L; wq “ 1 ´ 1

L gq,Lpwq:

1
ML

ÿ

pi1,¨¨¨ ,iLqPrMsL

radpxi1 , ¨ ¨ ¨ , xiL
q “

n
ÿ

k“1

ˆ

1 ´
1
L

fq,LpPkq

˙

ď n

ˆ

1 ´
1
L

gq,Lpwq

˙

, (21)

where rad is defined in [46, Definition 10] and Pk P ∆prqsq is the empirical distribution of
the k-th column of C1 P rqsMˆn. The equality in Equation (21) is by elementary algebraic
manipulations (see [46, Eqn. (58)] for details). To show the inequality in Equation (21), we
need the following properties of the functions fq,L and gq,L:
1. For any P “ pp1, ¨ ¨ ¨ , pqq P ∆prqsq, we have fq,LpP q ě gq,Lp1´pqq. In words, uniformizing

P except one entry will only make fg,L no larger.
2. gq,L is convex as a univariate real-valued function on r0, pq ´ 1q{qs.
If these properties hold, one can deduce [46, Eqn. (59) and (61)] from which Equation (21)
follows. However, we observe that the proofs in [6, 7] for both properties above are problem-
atic.

To show Item 1 above, the idea in [6] is to show instead monotonicity of fq,L under the
so-called Robin Hood operation which averages two distinct entries of P . Specifically, [6]
attempts to show

fq,L pp1, ¨ ¨ ¨ , pi, ¨ ¨ ¨ , pj , ¨ ¨ ¨ , pqq ě fq,L

ˆ

p1, ¨ ¨ ¨ ,
pi ` pj

2 , ¨ ¨ ¨ ,
pi ` pj

2 , ¨ ¨ ¨ , pq

˙

, (22)

for any 1 ď i ă j ď q. This suffices since a sequence of Robin Hood operations can turn P

into Pq,1´pq
(defined in Equation (12)). [6] then proceeds to show Equation (22) by checking

the derivative of a certain function related to the Robin Hood operation. Specifically, fix
ppkqkPrqszti,ju and assume pi `pj “ c (or equivalently

ř

kPrqszti,ju pi “ 1´c) for some constant
0 ď c ď 1. Consider the function Fq,L : r0, cs Ñ R defined as:

Fq,Lppq “ fq,L pp1, ¨ ¨ ¨ , p, ¨ ¨ ¨ , c ´ p, ¨ ¨ ¨ , pqq ,

i.e., fq,L evaluated at P with pi “ p, pj “ c ´ p. The proof of Equation (22) is reduced to
proving F 1

q,Lppq ď 0 for p P r0, c{2s and F 1
q,Lppq ě 0 for p P rc{2, cs. If true, it implies that

fq,LpP q is minimized at pi “ pj “ c{2 with fixed ppkqkPrqszti,ju. However, we note that the

ICALP 2023
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(e) q “ 3, ℓ “ 2, L “ 3 (list-recovery, 3-hashing).

0 0.01 0.02 0.030

0.1

0.2

0.3

p

R

This work Theorem 14, lower bound
This work Theorem 16, upper bound

(f) q “ 4, ℓ “ 3, L “ 4 (list-recovery, 4-hashing).

0 0.05 0.1 0.150

0.2

0.4

0.6

p

R

This work Theorem 14, lower bound
This work Theorem 16, upper bound

(g) q “ 4, ℓ “ 2, L “ 3 (list-recovery, p4, 3q-hashing).

0 0.05 0.1 0.150

0.2

0.4

p

R

This work Theorem 14, lower bound
This work Theorem 16, upper bound
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Figure 1 Plots of upper and lower bounds in [5, 6, 26, 45] and this work for various values of
q ě 2, 1 ď ℓ ď q ´ 1, L ě 2.
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expression of F 1
q,Lppq (see the second displayed equation on page 27 of [6]) is incorrect. Upon

correcting it, we do not see an easy way to argue its non-positivity/-negativity. In particular,
the claim in [6] that F 1

q,Lppq, as a sum of multiple terms, is term-wise non-positive/-negative
can be in general falsified by counterexamples.

The proof (attempt) of Item 2 is deferred to a subsequent paper [7]. The methodology
thereof is similar to ours, i.e., verifying g2

q,L ě 0. However, the expression of g2
q,L in [7] is not

exactly correct (see the first displayed equation on page 36 of [7] and compare it with ours in
[46, Eqn. (34)]10) and we have trouble verifying the case analysis of the values of Gp¨q (see
[46, Eqn. (35)] in our notation, denoted by γp¨q in [7]) following that expression.

In contrast to Blinovsky’s approach [6, 7], we deduce the monotonicity property of fq,L

(cf. Item 1 above) from a stronger property: Schur convexity (cf. Theorem 3). Also, we
believe that our proof of the convexity of gq,L (cf. Item 2 above) is cleaner, more transparent
and easier to verify. Both results can be extended to list-recovery setting. Another advantage
is that the monotonicity property of gq,L (specifically, gq,L is non-increasing in r0, pq ´ 1q{qs

and non-decreasing in rpq ´ 1q{q, 1s) which is needed in the proof of the Plotkin bound
appears to be a simple consequence of the Schur convexity of fq,L (see Lemma 6). In [7],
this is proved by checking the first derivative of gq,L which involves somewhat cumbersome
calculations and case analysis.

4 Conclusion

In this work, we addressed the basic question of determining the maximum achievable
decoding radius for positive rate list-recoverable codes, i.e., we pinned down the list-recovery
zero-rate threshold. We then adapted known techniques to show that codes correcting more
errors must in fact have constant size. Subsequently, we transferred this bound to give upper
bounds on the rate of list-recoverable codes for all values of decoding radius.

As we apply general Ramsey-theoretic tools in bounding the size of list-recoverable codes
in the zero-rate regime, our dependence on the corresponding parameters is quite poor, and
indeed, we made no efforts to optimize these constants. However, for list-decodable binary
codes in the zero-rate, a recent work of Alon, Bukh and Polyanskiy [1] derived new (and,
in some cases, tight) upper bounds on their size. Obtaining similarly improved size upper
bounds for q-ary list-decodable/-recoverable codes in the zero-rate regime therefore appears
to be a natural next step.
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