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Abstract
We show an (1 + ϵ)-approximation algorithm for maintaining maximum s-t flow under m edge
insertions in m1/2+o(1)ϵ−1/2 amortized update time for directed, unweighted graphs. This constitutes
the first sublinear dynamic maximum flow algorithm in general sparse graphs with arbitrarily good
approximation guarantee.

Furthermore we give an algorithm that maintains an exact maximum s-t flow under m edge
insertions in an n-node graph in Õ(n5/2) total update time. For sufficiently dense graphs, this gives
to the first exact incremental algorithm with sub-linear amortized update time for maintaining
maximum flows.
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1 Introduction

The maximum flow problem and its dual, the minimum cut problem, are one of the corner-
stones problems in combinatorial optimization. They are often used as subroutine for
solving other prominent graph problems (e.g., Gomory-Hu Trees [11], Sparsest Cut [24]),
performing divide-and-conquer on graphs [8] and have found several applications across
many areas including computer vision [2], clustering [29] and scientific computing. Designing
fast maximum flow algorithms has been an active area of research for decades, with recent
advances making tremendous progress towards the quest of designing a near-linear time
algorithm [6, 30, 26, 23, 28, 27, 31, 25, 4]. This has culminated in a recent breakthrough
result due to Chen, Kyng, Liu, Peng, Probst Gutenberg, and Sachdeva [4], which computes
a maximum flow in m1+o(1) time, where m is the number of edges of the input graph.
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Recently, we have witnessed a growing interest in designing dynamic algorithms for
computing maximum flows in dynamically changing graphs [20, 5, 1, 7, 14, 13, 3, 21]. Despite
this, the current fastest algorithms either incur super-constant approximation factors [13, 3]
or achieve competitive update times only for sufficiently dense graphs [1]. Moreover, all
previous works on dynamic flows are restricted to undirected graphs. From a (conditional)
lower bound perspective, for any δ > 0, it is known [7] that no algorithm can exactly maintain
maximum flow in O(m1−δ) amortized time per operation, even when restricted to algorithms
that support edge insertions, unless the OMv conjecture [16] is false. Nevertheless, the lower
bound construction from [7] is on dense graphs, i.e., m = Ω(n2), and thus for sparse graphs
yields only an Ω(m1/2) lower bound on the update time.

In this paper, we show a simple generic algorithmic framework for maintaining approximate
maximum flows under edge insertions.

▶ Theorem 1. Let G = (V, E) be an initially empty, directed, unweighted n-vertex graph, s

and t be any two vertices, and ϵ > 0, µ ∈ [0, n] be two parameters. If there is
(a) an incremental algorithm IncBMF(G, s, t, µ) for inserting m edges and maintaining s-t

maximum flow whose value is bounded by µ in ttotal(m, n, µ) total update time and q(m, n)
query time, and

(b) a static algorithm for computing exact s-t maximum flow in an n-vertex, m′-edge graph
in tstatic(m′, n) time, where m′ ≤ m,

then we can design an incremental algorithm for maintaining a (1 + ϵ)-approximate s-t
maximum flow under m edge insertions in

ttotal(m, n, µ + 1)
m

+ tstatic(m, n)
ϵµ

+ q(m, n)

amortized update time and q(m, n) query time.

For maintaining exact maximum flows whose value is bounded by µ, we slightly adapt
an incremental version of the Ford-Fulkerson [9] algorithm, which was initially observed by
Henzinger [17] and later by Gupta and Khan [14] (cf. Lemma 9). This gives an incremental
algorithm with O(mµ) total update time and O(1) query time. The recent breakthrough
result due to Chen, Kyng, Liu, Peng, Probst Gutenberg, and Sachdeva [4] (cf. Theorem 6)
gives a static exact maximum flow algorithm that runs in m1+o(1) time. Plugging these
bounds in Theorem 1 and choosing µ = m1/2+o(1)ϵ−1/2 yields the main result of this paper,
which we summarize in the theorem below.

▶ Theorem 2. Given an initially empty, directed, unweighted graph G = (V, E), any two
vertices s and t in V , and any ϵ > 0, there is an incremental algorithm that maintains
a (1 + ϵ)-approximate maximum s-t flow in G under m edge insertions in m1/2+o(1)ϵ−1/2

amortized update time. The algorithm supports queries about the value of the maintained
flow in O(1) time.

When the underlying graph is undirected and unweighted, we additionally show an
improved incremental version of an algorithm due to Karger and Levine [22] for maintaining
exact maximum flows whose value is bounded by µ. Concretely, our algorithm achieves
Õ(m + nµ3/2) total update time for handling m edge insertions (cf. Lemma 15). Since µ ≤ n

always holds in unweighted graphs, we immediately obtain the following result.

▶ Theorem 3. Given an initially empty, undirected, unweighted graph G = (V, E), any two
vertices s and t in V , and any ϵ > 0, there is an incremental algorithm that maintains an
exact maximum s-t flow in G under m edge insertions in Õ(n5/2) total update time. The
algorithm supports queries about the value of the maintained flow in O(1) time.
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For sufficiently dense graphs, this gives to the first exact incremental algorithm with
sub-linear amortized update time for maintaining maximum flows.

We believe that our approach to dynamic flows may serve as the basis for designing new
fully-dynamic maximum flow algorithms with competitive approximation ratio.

Independet Work. A recent independent work by Brand, Liu and Sidford [32] provides an
algorithm for incremental approximate maximum flow with n1/2+o(1)ϵ−1 amortized update
time on directed graphs. They achieve this result by implementing a dynamic variant of
the recent maximum flow algorithm based on the Interior Point Method (IPM) [4]. For
comparison, their result extends to capacitated graphs with polynomially bounded capacitites,
and achieves a speed up on the running time (albeit only on dense graphs). However, these
improvements come at the cost of employing the complicated machinery of IPMs. Our result
from Theorem 2 is simpler, matches their running time guarantee on sparse graphs and gives
a slightly better dependncy on the accuracy parameter ϵ.

2 Preliminaries

In the following, we settle some basic notation, as well as review definitions and algorithms
for computing flows on graphs.

Maximum Flow

Let G = (V, E) be a directed, unweighted graph with n vertices and m edges, let s ∈ V

be a source vertex, and let t ∈ V be a target vertex. A flow from s to t in G is a
function f : E → R+ that maps each edge to a non-negative real number; the value f(e)
represents the amount of flow sent along e. A flow must satisfy the following properties:
(i) for each e ∈ E, we have f(e) ≤ 1, known as capacity constraints, and (ii) for each
v ∈ V \ {s, t},

∑
(u,v)∈E f(u, v) =

∑
(v,u) f(v, u), known as conservation constraints. The

value of a flow f is the amount of flow leaving the source s minus the amount flow entering
s, i.e., v(f) =

∑
(s,u)∈E f(s, u) −

∑
(u,s)∈E f(u, s). In the maximum s-t flow problem,

the goal is to find a flow f with the largest v(f), called the maximum s-t flow. Let
F ∗ = max{v(f) | f is a flow in G}. Note that while F ∗ is unique, there might be multiple
maximum s-t flows attaining F ∗.

Residual graph and Augmenting Paths

Given a directed, unweighted graph G = (V, E), and a flow f from s to t in G, we let
Gf = (V, Ef ) be the residual graph of G with respect to f , where Ef contains all edges of E,
except that their direction is reversed if f(e) = 1. An edge whose direction in Gf is reversed
is referred to as a backward edge. Otherwise, the edge is a forward edge. An augmenting
path P from s to t in G is a simple directed path from s to t in Gf . We next review a
powerful result relating the residual graphs and optimal flows.

▶ Lemma 4 ([9]). If there is no directed path from s to t in the residual graph Gf , then the
flow f is a maximum s-t flow.

Another useful fact is given in the lemma below.

▶ Lemma 5. If there exists a directed path P from s to t in Gf , pushing flow along P in G

increases the value of the flow f by at exactly one.

ICALP 2023
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Exact Maximum Flow in Directed Graphs

Our incremental approximate algorithm heavily relies on the ability to compute a maximum s-
t flow quickly. Hence, we use the current fastest result [4] that achieves an exact, almost-linear
algorithm for the maximum flow problem on directed graphs.1

▶ Theorem 6 ([4]). For any directed, unweighted graph G = (V, E) and any two vertices s

and t, there is an algorithm that computes an exact maximum s-t flow in G in m1+o(1) time.

Approximate Maximum Flow

To measure the quality of approximate maximum flows, we will use the notion of α-
approximations, which indicates that the value of the current flow solution is at least
1/α of the optimum value. In other words, a flow f is α-approximate if F := v(f) ≥ 1

α F ∗.

3 A framework for Incremental Approximate Maximum Flow

In this section we show a simple generic algorithmic framework for maintaining a (1 + ϵ)-
approximate maximum s-t flow under edge insertions, i.e., prove Theorem 1. Our construction
is based on two important components: (i) incrementally maintaining maximum s-t flows
whose value is upper bounded by some parameter µ (one should think of µ being small
relative to the size of the network) and (ii) performing periodical rebuilds whenever the
maximum s-t flow of the current flow is larger than the parameter µ. The latter is a common
approach in dynamic algorithms and was used by Gupta and Peng [15] in their dynamic
algorithm for maintaining approximate matchings, and also recently leveraged in the context
of exact algorithms for the dynamic minimum cut problem [12]. We next further elaborate
on the precise requirements of both components and discuss how they lead to our algorithm.

To implement component (i), given a directed, unweighted n-vertex, m-edge graph G,
any two vertices s, t, and a parameter µ ∈ [0, n], the goal is to construct a data structure
denoted by IncBMF(G, s, t, µ), or simply IncBMF, that supports the following operations

Initialize(G, s, t, µ): Initializes the data structure.
Insert(u, v): Insert the edge (u, v) to G.
MaxFlow(s, t): Return the value of the maximum s-t flow in the current graph G if
this value is smaller than µ.

Ideally, we would like that IncBMF(G, s, t, µ) supports edge insertions in amortized time
proportional to the parameter µ, and queries in constant time. This would alone lead to an
efficient incremental maximum flow algorithm whenever the current flow value is bounded
by µ.

When the maximum flow is large (i.e., component (ii)), we can make use of the stability
of maximum flow and periodically invoke a fast static algorithm. Concretely, first note that
the value of the maximum s-t flow changes by at most one per insertion. Therefore, if we
have a large flow that is close to the maximum one, it will remain close to the maximum flow
over a large number of updates. This naturally leads to the following simple but powerful
approach: compute a flow at a certain time in the update sequence and do nothing for a
certain number of updates as long as the flow is a good approximation to the maximum
flow. This idea together with the data structure IncBMF(G, s, t, µ) yields an incremental
algorithm for approximating s-t maximum flow, which we formally describe below.

1 The algorithm extends to graphs with polynomially bound weights, but for the purposes of this paper
and simplifying the presentation, we only state the unweighted version of this result
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Given a directed, unweighted graph G = (V, E), any two vertices s, t, and two parameters
ϵ > 0, µ ∈ [0, n], our data structure maintains:

a flow estimate F to the maximum s-t flow F ∗,
a counter τ indicating the number of operations since the last rebuild,
an incremental algorithm IncBMF for maintaining graphs with the maximum flow
bounded by some parameter (µ + 1).

Initially, G is an empty graph, F ← 0, τ ← 0, and we invoke the operation Initialize of
IncBMF with (G, s, t, µ + 1) as an input. Upon insertion of an edge (u, v) to G, we query
IncBMF to determine whether the s-t maximum flow in the current graph is at most µ. If
so, we pass the edge insertion to the IncBMF data structure and update F accordingly.

On the other hand, if the current maximum s-t flow is larger than µ (and our algorithm
always correctly detects this since IncBMF run with the parameter (µ + 1) returns the
correct answer), we increment τ , which counts the number of insertions since the last reset
of τ that fall into this case. If τ ≥ ϵµ, we compute an exact maximum flow F ∗ for the
current graph from scratch using a static algorithm, update F using the value of F ∗ and set
τ = 0. We call such a step a rebuild step. Observe that since we are in the insertions-only
setting, once a maximum flow is larger than µ, it will always remain larger than that value.
Finally, to answer a query about the maximum s-t flow, we return F as an estimate. These
procedures are summarized in Algorithm 1.

Algorithm 1 Incremental Approximate Maximum Flow (IncApproxMF.)

1 Procedure Initialize(G = (V, E), s, t, ϵ, µ)
2 Set E ← 0 and F ← 0
3 Invoke IncBMF.Initialize(G, s, t, µ + 1)
4 Procedure Insert(u, v)
5 E ← E ∪ {(u, v)}
6 if IncBMF.MaxFlow(s, t) ≤ µ then
7 Invoke IncBMF.Insert(u, v)
8 Set F ← IncBMF.MaxFlow(s, t)
9 else

10 Set τ ← τ + 1
11 if τ ≥ ϵµ then
12 Compute an s-t maximum flow in G using a static algorithm
13 Set F to be the value of the flow computed in the previous step
14 Set τ ← 0

15 Procedure MaxFlow(s, t)
16 return F

▶ Theorem 7 (Restatement of Theorem 1). Let G = (V, E) be an initially empty, directed,
unweighted n-vertex graph, s and t be any two vertices, and ϵ > 0, µ ∈ [0, n] be two parameters.
If there is
(a) an incremental algorithm IncBMF(G, s, t, µ) for inserting m edges and maintaining s-t

maximum flow whose value is bounded by µ in total update time ttotal(m, n, µ) and q(m, n)
query time, and

ICALP 2023
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(b) a static algorithm for computing exact s-t maximum flow in an n-vertex, m′-edge graph
in tstatic(m′, n) time, where m′ ≤ m,

then we can design an incremental algorithm for maintaining a (1 + ϵ)-approximate s-t
maximum flow under m edge insertions in

ttotal(m, n, µ + 1)
m

+ tstatic(m, n)
ϵµ

+ q(m, n)

amortized update time and q(m, n) query time.

Proof. We first prove the correctness of the algorithm. Let G be the current graph and let
F be the estimate maintained by the algorithm to the value of the maximum s-t flow F ∗ in
G. We will show that F is an (1 + ϵ)-approximation to F ∗. To this end, we distinguish the
following three cases.
(1) If F ∗ ≤ µ, then by assumption of the theorem, the data structure IncBMFensures that
F = F ∗ and thus our claim trivially holds.
(2) If F ∗ = µ + 1, the call IncBMF.MaxFlow(s, t) returns the value µ + 1 and, thus, the
algorithm reaches the else-case for the first time (here we slightly abuse the notation and
denote this as a rebuild step).
(3) If F ∗ > µ + 1, then this is not the first time that the algorithm reaches the else-case
and, thus, there was a prior rebuild. Note that F corresponded to the value of some s-t
maximum flow at the last prior rebuild. This in turn implies that F must be larger than
µ. Let F ∗

0 be the value of the maximum s-t flow of the graph at that rebuild. Since each
edge insertion can increase the value of the maximum flow by at most 1 and we recompute
a new maximum flow every ϵµ insertions, we have that F ∗ ≤ F ∗

0 + ϵµ. Since F ∗
0 > µ and

F = F ∗
0 ≥ 1, bringing these together yields:

F ∗

F
≤ F ∗

0 + ϵµ

F
≤ (1 + ϵ)F ∗

0
F ∗

0
≤ 1 + ϵ,

which proves our claimed approximation guarantee.
We next study the running time. Note that our algorithm passes the edge insertions to

the incremental algorithm IncBMF (invoked with the parameter µ + 1) only if the value of
the maximum flow in the current graph is bounded by µ. Hence, by the theorem assumption,
the total update time to handle these insertions is ttotal(m, n, µ + 1) + mq(m, n). Amortizing
the latter over m insertions gives an amortize cost of ttotal(m, n, µ + 1)/m + q(m, n), which
in turn gives the first and the third term of our claimed running time guarantee.

It remains to analyze the cost of periodical rebuilds. Note that if the current maximum
flow value is larger than µ, our algorithm updates the estimate F every ϵµ operations. By
assumption of the theorem, the time to compute an exact maximum flow is tstatic(m′, n) ≤
tstatic(m, n) as m′ ≤ m. Charging this time over ϵµ insertions, yields an amortized cost of
tstatic(m, n)/(ϵµ), which in turn gives the second term our of claimed runtime guarantee and
completes the proof of the theorem. ◀

4 Incremental Bounded Maximum Flow

In this section we give two incremental algorithms for exactly maintaining the maximum
flow as long as its value is bounded by a predefined parameter µ. The first is an incremental
version of the Ford-Fulkerson [9] algorithm, applies to directed graphs, and runs in O(mµ)
total update time, while the second one is an incremental version of an algorithm due to
Karger and Levine [22], applies to undirected graphs and runs in Õ(m + nµ3/2) total update
time.
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4.1 Directed Graphs
The algorithm we are about to discuss applies to directed, unweighted graphs, was initially
observed by Henzinger [17] and later by Gupta and Khan [14], and can be thought of as an
incremental version of the celebrated Ford-Fulkserson algorithm [9]. We review it below and
slightly adapt it for our purposes.

Henzinger [17] showed how to incrementally maintain maximum s-t flow in O(F ∗) amort-
ized update time, where F ∗ is the value of the maximum flow in the final graph. As there
are graphs where F ∗ = Ω(n), her running time guarantee is competitive only when F ∗ is
small, e.g., sub-linear on the size of the graph. We next show to slightly adapt her algorithm
so that it maintains a maximum flow as long as its value is bounded by a parameter µ.

The key observation behind this algorithm is that the insertions of an (unit-capacitated)
edge can only increase the maximum flow value by at most 1. To check whether this value
has increased, she uses Lemma 4 as a certificate, i.e., one determines whether the insertion
of the (forward) edge in the residual graph Gf creates a directed path from s to t in Gf . A
naive way to determine this is to run a graph search algorithm on Gf after each insertion,
which requires Ω(m) for a single update and is thus prohibitively expensive for our purposes.
However, one can exploit a data structure due to Italiano [19] for incrementally maintaining
single source reachability information from a source s which requires O(m) total update time
for handling m insertions. Let us briefly review this data structure before presenting the
incremental algorithm.

Incremental Single Source Reachability

In the incremental single source reachability problem, given an (initially empty) directed,
unweighted graph G = (V, E) and a distinguished vertex s, the goal is to construct a data
structure IncSSR that supports the following operations: (i) Initialize(G, s): initialize the
data structure in G with source s, (ii) Insert(u, v): insert the edge (u, v) in G, and (iii)
Reach(u): return True if u is reachable from s, and False otherwise.

Italiano [19] observed that an incremental version of graph search leads to an efficient
incremental IncSSR data structure. The main idea is to maintain a reachability tree T from
s. Initially, the tree is initialized to {s}. Upon insertion of an edge (u, v) to G, we need to
update T iff u ∈ T and v ̸∈ T . If this is the case, we add (u, v) to T and make the v the child
of u. Moreover, the algorithm examines all outgoing neighbors w incident to v, and if w ̸∈ T ,
processes the edge (v, w) recursively using the same procedure. To answer queries, we return
True if u ∈ T , and False otherwise. These procedures are summarized in Algorithm 2.

The correctness of the data structure immediately follows by construction as we always
maintain a correct rechability tree T from s for the current graph. For the running time,
note that the total time over all insertions is O(m) as each edge is processed at most O(1)
times; once when it is inserted into the graph and once when it is added to T .
▶ Lemma 8 ([19]). Given an initially empty directed, unweighted graph G = (V, E) and a
source vertex s, the incremental algorithm IncSSR maintains reachability information from
s to every other node in V while supporting insertions in O(1) amortized update time and
queries in O(1) in worst-case time.

The Algorithm

We now have all the necessary tools to present an incremental algorithm maintaining the
maximum flow whose value is bounded by µ. Let F ∗ denote the maximum s-t flow value on
the current graph.

ICALP 2023
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Algorithm 2 Incremental Single Source Reachability (IncSSR).

1 Procedure Initialize(G = (V, E), s)
2 Set T ← {s} and E ← ∅
3 Procedure Insert(u, v)
4 E ← E ∪ {(u, v)}
5 UpdateTree(u, v)
6 Procedure UpdateTree(u, v)
7 if u ∈ T and v ̸∈ T then
8 Make v a child of u in T

9 foreach (v, w) ∈ E do
10 UpdateTree(v, w)

11 Procedure Reach(u)
12 if u ∈ T then
13 return True

14 else
15 return False

Initially, G and the residual graph Gf are empty graphs, F ∗ ← 0 and f(e)← 0 for each
e ∈ E. The algorithm proceeds in µ rounds, where a round ends when the value of the
current maximum flow increases by one. Each round starts by initializing an incremental
single source reachability data structure IncrSSR from the source s (Lemma 8) on the
residual graph Gf . Upon an edge insertion (u, v) to G, we pass the directed edge (u, v) to
the data structure IncrSSR and test whether t is reachable from s using this data structure.
If the latter holds, then we find a simple directed s-t path P in Gf , which in turn serves as
an augmenting path for G. We then send one unit of flow along the path P in G and update
the current flow and its value accordingly. To answer a query about the maximum flow
between s and t, we simply return F ∗. These procedures are summarized in Algorithm 3.

The correctness of this algorithm is immediate by Lemma 4, which correctly tells us when
to increase the value of the maximum flow, and Lemma 5, which asserts that the sending
one unit of flow along an augmenting path increases the value of the flow by exactly one.

For the running time, note that each round requires O(m) total time. As there are exactly
µ rounds, we get a total update time of O(mµ). The query time is O(1) as we simply return
the value of current maximum flow.

▶ Lemma 9. Given an initially empty directed, unweighted graph G = (V, E) with n vertices,
any two vertices s and t, and a parameter µ ∈ [0, n], the algorithm IncBMF(G, s, t, µ) exactly
maintains, under m edge insertions, the maximum s-t flow in G whose value is bounded by
µ in O(mµ) total update time and O(1) query time.

4.2 Undirected Graphs
We next give an incremental variant of the deterministic maximum flow algorithm for
unweighted, undirected graphs due to Karger and Levine [22]. For a threshold parameter µ

on the maximum flow value, we obtain a total update time of Õ(m + nµ3/2) for handling m

insertions.
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Algorithm 3 Incremental Bounded Maximum Flow (IncBMF).

1 Procedure Initialize(G = (V, E), s, t, µ)
2 Set E ← ∅
3 Set f(e)← 0 for each e ∈ E, Gf ← (V, E) and F ∗ ← 0
4 Invoke IncSSR.Initialize(Gf , s)
5 Procedure Insert(u, v)
6 if F ∗ ≤ µ then
7 Set E ← E ∪ {(u, v)}
8 Invoke IncSSR.Insert(u, v)
9 if IncSSR.Reach(t) then

10 Find a simple directed s-t path P in Gf

11 Augment f along the path P in G and let f ′ be the resulting flow
12 Set f ← f ′ and Gf ← Gf ′

13 Set F ∗ ← F ∗ + 1
14 Invoke IncSSR.Initialize(Gf , s)

15 Procedure MaxFlow(s, t)
16 return F ∗

The basic idea behind this improvement is to sparsify the residual graph on a flow problem
so that the augmenting paths can be found more efficiently than paying O(m) per path, as
we did in the incremental version of the Ford-Fulkerson algorithm. Two core components
that allow for a faster algorithm are: (i) using spanning forests for edges that do not carry
any flow in the residual graph (i.e, edges that remain undirected) and (ii) removing cycles
from the current flow after each augmentation step to make sure that the flow does not use
too many edges.

We next elaborate more on these two components. First, since we will need a different
treatment for directed and undirected edges, setting up some additional notation is useful.
For a graph G = (V, E) and a flow f on the edges of G, we let Eu

f denote the “undirected
edges” of G, i.e., edges e for which f(e) = 0, and let Ed

f denote the “directed edges” of G,
i.e., edges e for which f(e) = 1. Component (i) involves replacing the edges in Eu

f with a
spanning forest T . It is known that T captures the connectivity information among any pair
of vertices in Eu

f , and thus whenever searching for an augmenting path, it suffices to do so in
the graph induced by edge edges Ed

f and T . Another advantage is that T can have at most
(n− 1) edges, which is potentially much smaller than the size of Eu

f . One challenge with this
approach is that Eu

f evolves over time, i.e., edges might have flow added to it or flow is sent
on the reserve direction during an augmentation step. Fortunately, we have efficient data
structures to maintain such dynamic updates.

▶ Lemma 10 ([18]). Given an undirected graph G = (V, E), there is an algorithm DynSpanF
to maintain a spanning forest T of G that supports operations edge insertions and deletions
(i.e., operations Insert(u, v) and Delete(u, v)) in O(log2 n) amortized time per operation.

Unfortunately the above idea alone is not sufficient. The problem is that we do not have
any control on the size of Ed

f . It can be well the case that all edges in the graph become
eventually directed, which defeats the purpose of treating undirected edges differently. To get
around this, we first introduce the notion of acyclic flows and then review a result that shows
that integral acyclic flows use very few edges. This lays the foundations of component (ii).
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Algorithm 4 Incremental Bounded Maximum Flow for Undirected Graphs (IncBMFU).

1 Procedure Initialize(G = (V, E), s, t, µ)
2 Set f(e)← 0 for each e ∈ E, Eu

f ← ∅, Ed
f ← ∅ and F ∗ ← 0

3 Invoke DynSpanF.Initialize(G = (V, Eu
f )) to maintain a spanning forest T

4 Invoke IncSSR.Initialize(Ed
f ∪ T, s)

5 Procedure Insert(u, v)
6 if F ∗ ≤ µ then
7 Set Eu

f ← Eu
f ∪ {(u, v)}

8 Invoke DynSpanF.Insert(u, v)
9 if (u, v) ∈ T then

10 Invoke IncSSR.Insert(u, v) and IncSSR.Insert(v, u)
11 if IncSSR.Reach(t) then
12 Find a simple directed s-t path P in Ed

f ∪ T

13 Augment f along the path P in G, let f ′ be the resulting flow and set
f ← f ′

14 Set f ← Decycle(f)
// delete any edge no longer in Eu

f because flow added
15 for each e ∈ Eu

f with f(e) > 0 do
16 Set Eu

f ← Eu
f \ {e} and Ed

f ← Ed
f ∪ {e}

17 Invoke DynSpanF.Delete(e)
// insert an edge to Eu

f because flow removed
18 for each e ∈ Ed

f with f(e) = 0 do
19 Set Ed

f ← Ed
f \ {e} and Eu

f ← Eu
f ∪ {e}

20 Invoke DynSpanF.Insert(e)
21 Set F ∗ ← F ∗ + 1
22 Invoke IncSSR.Initialize(Ed

f ∪ T, s)

23 Procedure MaxFlow(s, t)
24 return F ∗

▶ Definition 11. We say that a flow f is ayclic if there is no directed cycle on which every
edge has positive flow in the direction of the cycle.

▶ Lemma 12 ([10]). Any integral acylic flow f uses at most O(n
√

v(f)) edges.

Taking cue from the lemma above, our goal would be to ensure that at any time, the
current flow we maintain is acyclic. Note that even if a flow is initially acylic, an augmentation
step may destroy this property. This suggests that we need a decycling step to bring back the
flow to the desired state. More importantly, for unweighted, undirected graphs, the decycling
procedure takes time that is proportional to the number of edges that carry non-zero flow on
the current graph.

▶ Lemma 13 ([22]). Let G be an unweighted, undirected graph, and let f be a flow of G

that is non-zero on exactly x edges. Then there is an algorithm Decycle(f) that returns an
acyclic flow f ′ with v(f) = v(f ′) and runs in O(x) time.
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The Algorithm

We now show how the above ideas lead to an incremental algorithm that maintains a
maximum flow whose value is bounded by µ. As before, let F ∗ denote the maximum s-t flow
value on the current graph.

Initially, G and the edges sets Eu
f , Ed

f are empty, F ∗ ← 0 and f(e)← 0 for each e ∈ E.
The algorithm initializes a dynamic spanning forest data structure DynamicSpanF on Eu

f

to maintain a spanning forest T (Lemma 10). There are µ rounds, and each round ends when
the value of the current maximum flow increases by one. Each round starts by initializing an
incremental single source reachability data structure IncrSSR on Ed

f ∪ T from the source
s (Lemma 8).

Upon an edge insertion (u, v) to G, we first pass this insertion to the data structure
DynamicSpanF. If the edge (u, v) ends up being added to T , we then pass this insertion as
two edge insertions (u, v) and (v, u) to the data structure IncrSSR and test whether t is
reachable from s using this data structure. If the latter holds, then we find a simple directed
s-t path in Ed

f ∪ T , which in turn serves as an augmenting path for G. We then send one
unit of flow along the path P in G. To make sure that the flow remains acyclic, we invoke
procedure Decycle to remove potential directed cycles and update the current flow to be
acyclic. Using the dynamic data structure DynamicSpanF, we delete all edges that no
longer belong to Eu

f (because they now carry non-zero flow), and insert all new edges to Eu
f

(because flow was removed from them). Finally, we increment the current flow by exactly 1.
To answer a query about the maximum flow between s and t, we simply return F ∗. These

procedures are summarized in Algorithm 4.
We next argue about the correctness of the algorithm. We start by reviewing the result

below which shows that it is safe to restrict our attention to the graph Ed
f ∪T when searching

for an augmenting path.

▶ Lemma 14 ([22]). Let Gf be the residual graph of an undirected, unweighted graph G with
respect to the flow f . Then Ed

f ∪ T has an augmenting path if and only if Gf does.

In light of the lemma above, Lemma 4 and Lemma 5, it suffices to show that our
incremental algorithm correctly maintains Ed

f ∪ T . To this end, observe that this directly
follows from (i) the correctness of DynSpanF data structure for maintaining T (Lemma 10)
and (ii) by Lines 18-20 in Algorithm 4 which makes sure that the set Ed

f is correctly updated
after each augmentation step. This completes the correctness argument.

We prove the running time complexity of the algorithm in the lemma below.

▶ Lemma 15. Given an initially empty undirected, unweighted graph G = (V, E) with
n vertices, any two vertices s and t, and a parameter µ ∈ [0, n], the algorithm IncB-
MFU(G, s, t, µ) exactly maintains, under m edge insertions, the maximum s-t flow in G

whose value is bounded by µ in Õ(m + nµ3/2) total update time and O(1) query time.

Proof. Let us first study the work done to find augmenting paths. Since we decycle flows
after each augmentation and the spanning forest T can have at most 2(n− 1) edges (two
edges in reverse direction for each undirected edge), by Lemma 12, each augmentation step
is done on a graph with O(n√µ) edges and thus takes O(n√µ) time. Similarly, note that
before an augmentation step, the set Ed

f does not change, and we only report to IncSSR
data structure the edge insertions that ended up being added to T . There can be at most
2(n − 1) such edge insertions. Therefore, the total cost of running IncSSR per round is
O(|Ed

f ∪ T |) = O(n√µ). Since there are µ rounds, the total time is O(nµ3/2).
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It remains to account for the dynamic operations handled by DynSpanF data structure.
Consider the cost of deletions. An edge is deleted from the data structure whenever we put
some non-zero flow on it. Since an augmenting path can have at most n edges, and there are
at most µ rounds, this can happen to at most nµ edges. The latter in turn leads to at most
nµ deletions for a total time of Õ(nµ) for handling them (Lemma 10).

We now turn our attention to the cost of insertions. Over the course of the incremental
algorithm we pass m edges insertions to DynSpanF, for a total time of Õ(m) (Lemma 10)).
We also also pass insertions to DynSpanF whenever flow has been removed on the edges.
However, for flow to be removed from an edge, it must have been first added an on edge, i.e.,
this edge was passed as a deletion to the data structure. Therefore, we can charge the total
cost of these insertions to the total cost of deletions, which we bounded by Õ(nµ). This
completes the proof of the lemma. ◀

5 Conclusion

In this paper we showed two algorithms for maintaining approximate and exact flows in
dynamic graphs undergoing edge insertions. Our dynamic approximation algorithm first
showed how to maintain small maximum flows efficiently in the incremental setting, and then
employed the well-known technique of periodical rebuilds. For the exact result, we showed
that the sparsifiers of residual graphs in the undirected setting can be maintained efficiently
under edge insertions.

In general, the dynamic complexity of maximum flows is a largely unexplored area, with
many fundamental questions remaining unanswered. For example, do there exist decremental
algorithms achieving comparable guarantees to the ones we obtained in the incremental
setting? Our framework from Theorem 6 readily extends to the graphs undergoing edge
deletions only. However, it is not known how to maintain small maximum flows in the
decremental setting.

Another fundamental open question is the existence of a fast fully dynamic algorithm
that approximates maximum flows up to a constant factor. For general undirected graphs,
recent research suggests that this question is intimately connected to efficient sparsifiers
constructions that (approximately) preserve the cut structure between terminal subset of
vertices on graphs. Thus, beyond dynamic graphs, any progress in answering this question
would potentially lead to understanding other fundamental problems in graph algorithms.
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