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Abstract

We introduce the notion of a Faustian interchange in a 1-parameter family of smooth
functions to generalize the medial axis to critical points of index larger than 0.
We construct and implement a general purpose algorithm for approximating such
generalized medial axes.
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Chapter 1

Introduction

Given an embedded curve in the Euclidean plane, the medial axis consists of the
points t ∈ R2 that have at least two distinct closest points on the curve [2]. Equiv-
alently, the smallest circle centered at t that has a non-empty intersection with the
curve touches the curve in at least two points; see Figure 1.1. More precisely, the
medial axis is the closure of these points, which effectively adds the centers of os-
culating circles that meet the curve in only one point. A related concept is the
symmetry set, which is the closure of the set of centers of circles that touch the
curve in at least two distinct points [3]. This condition is weaker, which implies
that the symmetry set contains the medial axis. By requiring that the points at
which the circle touches the curve minimize the distance from the center, the medial
axis selects a more manageable subset that captures important aspects of the shape.
Indeed, the medial axis enjoys applications in many fields, while the symmetry set
is too unwieldy to be of much practical relevance.

Figure 1.1: The medial axis of a closed curve. We only show the component inside
the region enclosed by the curve.

In both definitions, we can interpret the required double-tangency as an inter-
change of critical points in the parametrized family of squared distance functions
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on the curve. Each function in this family corresponds to a point t ∈ R2 and maps
every point of the curve to the Euclidean distance from t. In the case of the medial
axis, this interchange is between the two minima with smallest value, while in the
case of the symmetry set, these can be any two critical points, as long as they share
the same value.

We suggest that the closest two minima owe their significance to the topological
roles they play in the evolution of the sublevel set when we increase the threshold:
the first minimum pairs up with the empty set to end the reign of nothingness,
while the second minimum starts the first gap between two sprouting empires. By
focusing on the simultaneous occurrence of the first two minima, the medial axis
traces the fine line along which the competition between who ends and who starts is
yet undecided. In the reduced homology interpretation of the sublevel set filtration,
this balancing act is between the death of the (−1)-dimensional class and the birth
of the first 0-dimensional class.

The main contribution of this thesis is the generalization of the topologically
motivated selection criterion to classes of dimension higher than −1 and 0.

Prior work. In the late 1960s, Blum [2] revolutionized the automated classification
of shapes arising from biology by suggesting the medial axis as a tool fit to describe
amorphous blobs, as opposed to the rectilinear methods used at the time. Since then
it has been used as a tool in shape classification, animation, computer graphics,
and other fields that benefit from skeletonization of an unwieldy object of study
[1, 16, 17]. The distance from a submanifold in Euclidean space is studied in the
smooth case by Mather [12]. It has also proved useful in the theoretical setting,
often paired up with notions of curvature and local feature size. In fact, the medial
axis was introduced in this setting by Federer [7, Def. 4.1 on page 432] almost a
decade prior to Blum’s paper, but due to the dense nature of Federer’s writing and
the unassuming name he gave it, Federer’s contribution is frequently overlooked,
and Blum given the sole credit for its introduction.

Outline. Chapter 2 provides the necessary technical background. Chapter 3 gen-
eralizes the medial axis. Chapter 4 explains how the generalized medial axis can be
computed. Chapter 5 exhibits examples of the generalized medial axis. Chapter 6
concludes the paper.



Chapter 2

Background

We need background from Morse theory, Cerf theory, homology, and persistent
homology. As sources for more extensive background, we recommend [13] for Morse
theory, [9, 14, 15] for singularity theory including Cerf theory, [10] for algebraic
topology including homology, and [6] for persistent homology.

2.1 Morse Functions

Let g : M → R be a smooth function on a k-dimensional manifold, so derivatives of
all orders exist, although we will need only those of first and second order. A critical
point of g is a point a ∈ M at which the first derivative vanishes. All other points
of M are regular or non-critical. A critical value of g is the value of a critical point.
All other values are regular or non-critical, but note that it is quite possible that
a non-critical point has a critical value, which it necessarily shares with a critical
point. A critical point, a, is non-degenerate if the Hessian of g at a is invertible.
Equivalently, a has a parametrized neighborhood such that

g(x) = g(a)− x2
1 − . . .− x2

p + x2
p+1 + . . .+ x2

k, (2.1)

for every x = (x1, x2, . . . , xk) in this neighborhood. The number of minus signs is
called the index of the critical point, denoted index(a) = p. The critical point is a
minimum if p = 0, a maximum if p = k, and a saddle if 0 < p < k. Non-degenerate
critical points are necessarily isolated. If M is compact, this implies that g has only
finitely many non-degenerate critical points.
Definition 1 (Morse function): A smooth function on a manifold, g : M → R, is

3



4 2.2. Interchanges and Cancellations

Morse if all its critical points are non-degenerate, and no two of them have the same
value.

2.2 Interchanges and Cancellations

We are interested in parametrized families of smooth functions, and it is too re-
strictive to require that all their functions be Morse. Letting G : M × R → R be a
smooth map, we call the gt : M → R defined by gt(x) = G(x, t) a 1-parameter family
of smooth functions.
Definition 2 (Cerf family of smooth functions): The family of functions gt, with
t ∈ R, is Cerf if gt is Morse except for a finite number of values of t, and for every
such exceptional value, s ∈ R, there is only one violation of gs being Morse, namely

I two critical points of gs share the same value, or

II one critical point, a ∈ R, of gs is degenerate, and (a, s) has a neighborhood
such that

gt(x) = gs(a) + [x3
1 ± tx1]− x2

2 − . . .− x2
p + x2

p+1 + . . .+ x2
k, (2.2)

for every (x = (x1, x2, . . . , xk), t) in this neighborhood.

We call a violation of type I an interchange, and we call a violation of type II a
cancellation if the sign of the linear term in (2.2) is positive, and an anti-cancellation
if the sign is negative. In a cancellation, two critical points get destroyed when t

passes from the negative to the positive side of the real line, and with the notation in
(2.2), the indices of these critical points are p−1 and p. In an anti-cancellation, two
critical points of index p− 1 and p get created as t passes from the negative to the
positive side of real line. By the essential property in Cerf theory, any 1-parameter
family that starts with a Morse function and ends with a Morse function, can be
approximated by a Cerf family of smooth functions.

2.3 Stratified Control Spaces

We borrow the term control space from catastrophe theory [8, 14, 15], where the
control space is used to identify sudden changes caused by smooth alterations to
a system. An example is the phase transition diagram between solid, liquid, and
gaseous states of water. Next, we take some definitions taken from [14]. We consider
a smooth family of functions fu(x) (also denoted F (x, u)), where x ∈ Rn and u ∈ Ra.
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We require that F is smooth in both u and x (so F is smooth in n + a variables).
Then we can define the catastrophe set of F to be

CF =

{︃
(x, u) ∈ Rn × Ra | ∂fu

∂x1

(x) = · · · = ∂fu
∂xn

(x) = 0

}︃
.

Intuitively, the catastrophe set is the set of points (x, u) ∈ Rn+a such that fu has a
critical point at x. An important subset of the catastrophe set is the singular set,
denoted ΣF , which is the set of points in CF where the critical point is degenerate,
meaning the determinant of the Hessian at x is zero. Next, we define the bifurcation
set ∆F . If we let πF be the map projecting CF onto the parameter space Ra, then

∆F = πF (ΣF ) = {u ∈ Ra | ∃x ∈ Rn, (x, u) ∈ ΣF}.

In this paper, we will focus on a closely related but slightly larger set: the set
of all control points at which the function fails to be Morse.

Definition 3 (Stratification): A stratification of the control space is a partition
Rd = X0 ⊔X1 ⊔ . . . ⊔Xd such that

(i) Xq is a smoothly embedded q-manifold in Rd, called the q-stratum, for 0 ≤
q ≤ d;

(ii) X0 ⊔X1 ⊔ . . . ⊔Xq is closed, for 0 ≤ q ≤ d, and equal to Rd, for q = d.

We note that individual strata are not necessarily connected. We require that
the family of smooth functions admits a stratification of the control space such that
the drawing of interest is the union of the strata of dimension at most d− 1. Hence
gt is Morse whenever t is a point of the d-stratum. If this is the case, we call the gt

a d-parameter Cerf family of smooth functions.

A stratification that we will make use of in this paper is the symmetry set [3].
For a smooth manifold M in Rn, the symmetry set S(M) is defined to be the closure
of the set of points u ∈ Rn which are centers of spheres tangent to M at two or
more distinct points. The connection with singularity theory and control spaces is
that the symmetry set S(M) can be described alternatively as the levels bifurcation
set of the family of distance-squared functions on M . In our paper, we will look
at a subset of the symmetry set. As [3] notes, the canonical stratification of the
bifurcation set in its entirety is a “hopelessly complicated object”.
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2.4 Homology

We use the homology of the sublevel sets to turn a continuous map into an algebraic
object, which can be studied with discrete methods. Assuming a smooth function
g : M → R, where M is a manifold in Rn, we write Mr = g−1(−∞, r] for the
sublevel set at r ∈ R. Homology is an algebraic formalism that captures the p-
dimensional connectivity of Mr in terms of an abelian group, referred to as the
p-th homology group, denoted Hp(Mr). There is some variability depending on the
coefficients used to add classes in this group, and we keep things simple by adopting
modulo-2 arithmetic, for which Hp(Mr) is a vector space. The rank of that vector
space, denoted βp(Mr) = rankHp(Mr) and referred to as the p-th Betti number, is
interpreted as the number of independent and non-bounding p-cycles in Mr. The
algebraic details that explain what exactly these cycles are can be found in standard
topology texts, including [10].

There are different theories that all lead to the same numbers, two of which
are used in this paper. In singular homology, the p-cycles are sums of maps of
the standard p-simplex to Mr in such a way that their boundaries cancel. This is
mathematically convenient since it does not require any additional structure on top
of the sublevel set. When we compute Betti numbers, we use simplicial homology,
which first triangulates Mr and second expresses the vector spaces in terms of the
boundary matrices that connect the simplices in adjacent dimensions. More about
this in Section 4, where we talk about algorithms.

As a substitute for the algebraic details, we illustrate the Betti numbers with
an example. Let M be the torus with a nose in Figure 2.1, and let g : M → R be
the height function. It has six critical points, which are all non-degenerate: two
minima, u1 and u2, three saddles, u3, u4, and u5, and one maximum, u6. Choose
interleaved non-critical values, r0 < g(u1) < r1 < . . . < g(u6) < r6, and simplify
notation by writing Mi = g−1(−∞, ri]. Since M is 2-dimensional, all Betti numbers
in dimension beyond 2 vanish. We use reduced homology, so 0-cycles are gaps
between components rather than components themselves, and the empty set is a
(−1)-cycle. In sequence, M0 is empty, M1 is a disk, M2 is two disks, M3 is a cylinder
and a disk, M4 is a cylinder, M5 is a torus with a cap removed, and M6 is a torus.
The non-zero Betti numbers are therefore, β−1(M0) = 1, β0(M2) = 1, β0(M3) = 1,
β1(M3) = 1, β1(M4) = 1, β1(M5) = 2, β1(M6) = 2, β2(M6) = 1. All other Betti
numbers vanish, and in particular all Betti numbers of M1 vanish since we work
with reduced homology.
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Figure 2.1: The six non-empty sublevel sets at regular values interleaved between
the critical values of the height function on the torus-with-a-nose. On the right, we
see the barcode that shows for which value a gap, loop, or closed surface exists in
the sublevel set.

2.5 Persistent Homology

Classical homology is useful for studying topological features in data, but has the
disadvantage of lacking the discernment to pick the correct scale to extract features
from. Persistent homology remedies this shortcoming by studying nested sequences
of complexes, instead of a fixed one, thus extracting features across many scales.

We return to the example of the torus, M , in Figure 2.1. The height function,
g : M → R, yields inclusions Mi ⊆ Mj for i ≤ j, i, j ∈ N, some of which are
represented in the figure. This sequence of sublevel sets is called a filtration, and it
naturally gives rise to a sequence of homology groups and linear maps induced by the
inclusions between the sublevel sets. Rather than considering homology groups for
each dimension individually, we write H(Mi) for the direct sum over all dimensions
p. This allows us to write the persistence module of the filtration compactly in a
single line:

. . . → H(Mi−1) → H(Mi) → . . . → H(Mj−1) → H(Mj) → . . . . (2.3)

Composing the maps between consecutive groups, we get a map between any two
groups in the module. We say a homology class α ∈ H(Mi) is born at Mi if it is
not in the image of the map from H(Mi−1) to H(Mi). If α is born at Mi, it dies
entering Mj if the image of the map from H(Mi−1) to H(Mj−1) does not contain
the image of α, but the image of the map from H(Mi−1) to H(Mj) does. The
persistence of α is the difference between the function values at its birth and its
death. If g is a Morse function on a manifold, then precisely one Betti number
changes when the threshold passes a crticial value. If the index of the corresponding
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critical point is p, then either a p-dimensional class is born, so βp increases by one,
or a (p− 1)-dimensional class dies, so βp−1 decreases by one.

Referring to the right half of Figure 2.1, we use a persistence barcode to encode
the birth-death information of all of the p-dimensional homology classes of M arising
from the sublevel set filtration induced by the height function. In this particular
barcode, we see a (−1)-dimensional class which lasts from the beginning of time until
the first component appears, a 0-dimensional class which lasts from the arrival of
the second compoment to its merging with the first, two 1-dimenional classes, which
correspond to the two loops of the torus, and a 2-dimensional class representing
the closed surface. Note that in this particular example, the 1- and 2-dimensional
classes never die.

2.6 Parametrized Persistence

The concept of parametrized functions and, correspondingly, of parametrized per-
sistence modules, plays an important role in this paper. Take for example the
torus-with-a-nose in Figure 2.1, and instead of the height function in the vertical
direction, consider the height functions in all possible directions. More concretely,
let M be the torus in an arbitrary but fixed position in R3, let u ∈ S2 be a direction,
and let gu : M → R defined by gu(x) = ⟨x, u⟩ be the height function in the direction
u. We thus have a 2-parameter family of functions, and similarly a 2-parameter
family of persistence modules.

A motivating factor in the construction of parametrized persistence modules is
the Stability Theorem of persistent homology originally proved in [4]. It asserts
that similar functions have similar barcodes. More precisely, the bottleneck distance
between the barcodes of functions gu, gv : M → R is bounded from above by the
infinity norm of their difference:

W∞(Bar(gu),Bar(gv)) ≤ ∥gu − gv∥∞, (2.4)

in which Bar(g) is the barcode of g, a matching between the two barcodes is quan-
tified by the supremum of the max-distances between matched bars, and W∞ is the
infimum over all possible matchings, in which we allow the introduction of zero-
length bars, which we preferably match with short bars in the barcodes. Intuitively,
the bottleneck distance describes the worst disparity between the best matching of
points in persistence diagrams: the worst disparity is the “bottleneck” preventing a
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smaller distance. See [6, Chapter VIII] for details.
For example, the difference between the height functions along directions u, v ∈

S2 has infinity norm at most ∥M∥(1 − ⟨u, v⟩), in which ∥M∥ is the maximum Eu-
clidean distance of point in M from the origin. It follows that various aspects of the
height function, as measured by persistence, vary continuously with the direction.
One example is the length of the longest bar in the barcode, or really the length of
any bar in the barcode.

This gives rise to the concept of vineyard, introduced in [5]. It formalizes the
idea that a feature of gu is still recognizable in gv, provided the two functions u and
v are not too far apart. Features are bars in the barcode, and the association is a
matching between the bars of gu and of gv. As it turns out, the situation is sensitive
to numerical error, so that computing the matching from the two barcodes is not
practical. Instead, [5] proposes an algorithm that traces the features (bars) while
continuously deforming gu into gv. This is what we call the vineyard algorithm. We
will use it in Chapter 4 to trace the features we use to define the generalized medial
axis. Further details can be found there.



Chapter 3

Generalized Medial Axes

In this section, we introduce the generalization of the classic medial axis, which we
refer to as the 0-th medial axis. For technical convenience, we limit ourselves to
smooth functions on submanifolds of Euclidean space. The ideas extend beyond
this setting, but we prefer to avoid the technical complications that come with more
general settings and distract from the main construction.

3.1 Pointed Squared Distance Functions

In this paper, a submanifold of Rd is a smoothly embedded manifold of dimension
k < d in d-dimensional Euclidean space. We refer to it as a curve, if k = 1, and a
surface, if k = 2.

Definition 4 (Squared Distance Functions): Given a submanifold M ⊆ Rd

and a point t ∈ Rd, the (pointed) distance function at t is ft : M → R defined by
ft(x) = ∥x − t∥2. We write F : M × Rd → R defined by F (x, t) = ft(x) for the
corresponding d-parameter family.

When we think of F as a family, we take t ∈ Rd as the parameter that distin-
guishes different members. Alternatively, we can take x ∈ M as the parameter, but
the function x defines records the distance to a single point, namely x, which is not
very interesting.

Lemma 5 (Smoothness of Squared Distance Functions): Let M be a submanifold
of Rd. Then F : M × Rd → R is smooth. It follows that for every t ∈ Rd \M , the
pointed squared distance function, ft : M → R, is smooth.

The derivative of F decomposes into the derivative of the embedding of M at
x and the derivative of ∥x − t∥2 at t. To see that both parts are smooth, it is
helpful to consider an example (pictured in Figure 3.1). Let M be a closed curve in

10



Chapter 3. Generalized Medial Axes 11

R2, and let x be a point on M and t a point in R2\M . Note that x has only one
degree of freedom, while t has two. The pointed squared distance function from t

to x is a paraboloid, which is indeed a smooth surface. Moving t around in R2\M
just explores the surface of the paraboloid; in particular the line between t and x is
projected to a parabola. The distance relationship is symmetric (d(x, t) = d(t, x)),
so the reverse direction is also smooth. Note that, had we chosen to use only the
pointed distance function instead of squaring it, we would have a hyperboloid instead
of a paraboloid, and in particular it would be pointy at x = t, and therefore not
everywhere smooth. We avoid this annoyance by squaring the distance. Stepping
back from our example, we have the following proof.

Proof. We let M be a submanifold of Rd and observe that the pointed squared
distance function for x ∈ M and t in Rd\M is still symmetric with respect to t

and still a paraboloid centered at x, and is therefore smooth. The other part of
the decomposition, the embedding of M at x, is also differentiable because Rd is a
smooth manifold and M a submanifold of it.

Figure 3.1: An illustration of the pointed squared distance function. As in the
above example, we have M a closed loop in R2, x ∈ M , and t a point in R2\M . The
squared distance function from t to x forms a paraboloid at x.

3.2 Faustian Interchanges

We are interested in a special type of interchange, namely one that alters the pairing
in the persistence module. Such an interchange affects two critical points, b and x,
that satisfy the following four conditions:

1. index(b) = index(x), and we write p for this common index;

2. f(b) = f(x) < f(c) for all other index-p critical points c of f ;

3. before the interchange, b gives death and x gives birth;
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4. after the interchange, x gives death and b gives birth.

Of course, strictly before and strictly after the interchange, we are talking about
different functions in the 1-parameter family, and different critical points altogether.
We can however make the change at the time of the interchange, preparing the
function for the time after the interchange. The time-lag between before and after
the interchange is therefore zero, so it makes sense to talk about the same critical
point before and after. We call an interchange that satisfied Conditions 1, 2, 3, 4
an index-p Faustian interchange. Drawing the function values from left to right, we
can visualize the effect of the Faustian interchange on the pairing in the persistence
module as illustrated in Figure 3.2.

Figure 3.2: Effect of a Faustian interchange on the pairing of critical points in the
persistence module. The deal between b and x is that b may give birth in exchange
for allowing x the pleasure to give death.

Definition 6 (Faustian Switch): We call s ∈ Rd a Faustian p-switch if there
is a smooth curve, γ : R → Rd, with s = γ(0), such that the family of functions
ft : M → R, with t = γ(u), is Cerf and the violation of fs to being Morse is an
index-p Faustian interchange.

Recall that we use reduced homology to construct the persistence module of ft.
At a points s ∈ Rd that has two closest points, b, x ∈ M , we can find a smooth
curve γ : R → Rd, with γ(0) = s, that defines a Cerf family of smooth functions
such that b and x define an index-0 Faustian interchange at s. Hence, such a point
s is a Faustian 0-switch.

3.3 Main Definition

We are ready to present the main new concept in this paper. Recall that a Faustian
interchange in a 1-parameter Cerf family of smooth functions is an interchange that
has a particular effect on the associated persistence module, and that a Faustian
switch is the point in Rd at which the Faustian interchange occurs.
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Definition 7 (Generalized Medial Axis): Let M be a submanifold of Rd, and let
the ft : M → R, with t ∈ Rd, be its family of squared distance functions. The (p)-th
medial axis of M is the closure of the Faustian p-switches in Rd, denoted Ap(M).
Assuming k < d is the dimension of M , the p-th medial axis is defined for 0 ≤ p ≤ k.
For p = 0, we get A0(M), which agrees with the medial axis as introduced in [2].
Indeed, we have already observed that the points with two closest points in M are
Faustian 0-switches. The 0-th medial axis is the closure of these points.

3.4 Geometric Interpretation

Since the generalized medial axes are defined in terms of the squared Euclidean
distance from a submanifold, M ⊆ Rd, there is a direct geometric interpretation of
the concept. Write S = S(r, t) for the (d− 1)-sphere with center t ∈ Rd and radius
r > 0. We say this sphere touches M in x ∈ M if ft(x) = ∥x − t∥2 = r2 and x

is a critical point of ft. Clearly x ∈ S ∩ M , and if x is a minimum, then there
is a neighborhood of x in M such that ∥y − t∥2 > r2 for all points y ̸= x in this
neighborhood.

Letting B(x, ε) be the closed ball with center x ∈ Rd and sufficiently small radius
ε > 0, N(x, ε) = M ∩B(x, ε) is such a neighborhood. Write ∂N = ∂N(x, ε) for the
boundary of this neighborhood, and define

∂Nr = {y ∈ ∂N | ∥y − t∥2 ≤ r2}. (3.1)

If x is a minimum, then ∂Nr = ∅, but for critical points of index p > 0, the
situation is more interesting, namely ∂Nr has the homotopy type of Sp−1. If two
index-p critical points perform a Faustian interchange, then this local picture is
complemented by a global, topological picture.

To describe the global picture and corresponding geometric interpretation, we
first let M be a submanifold of Rd. Then t ∈ Rd is a Faustian p-switch iff there is a
closed ball, B = B(r, t), such that

• its bounding sphere, ∂B, touches M in (at least) two points, b and x;

• M ∩ B contains a family of non-bounding p-cycles, all of which pass through
b and x;

• r is the smallest radius for which a ball centered at t contains a non-bounding
p-cycle.
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We walk the reader through these observations. The first follows from the definition
of a Faustian p-switch. The second and third are better illustrated with the example
pictured in Figure 3.3.

Figure 3.3: Here we illustrate all three points in the global situation described
above. M in this case is the blue squished cylinder, and t is a point in the pink
bisecting plane of the cylinder. The pink plane is not meant to be part of M , but
is drawn to make identification of t’s location easier. B is a white ball centered at t
and b and x are the points whose inclusion in M ∩B (drawn in grey) finally allows
for a 1-cycle to form in M ∩ B which wraps around the cylinder (in other words,
the radius of B is the smallest radius which admits a non-bounding 1-cycle). We
illustrate this cycle as an ellipse with endpoints b and x, and observe that there is
room in M ∩ B for a whole family of non-bounding 1-cycles passing through b and
x.

Some comments. If M is a one-dimensional manifold, such as a closed curve,
we can already begin to see that ∂Nr has the homotopy type of Sp−1. Take again
the example of an ellipse. If x is outside of the ellipse, we first encounter M with
B(x, ϵ) at an index-0 critical point, namely, a minimum. As we continue to grow
r, B increases in size, and so does its intersection N with M . Eventually, N is so
large that it reaches the top of the ellipse, closing the growing curve and forming
a 1-cycle. This corresponds with a 2-index critical point, the maximum. These
examples are clear, but not very interesting. The more interesting examples occur
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in higher dimensions, where we can have more types of critical points, namely, more
interesting saddles. There, the generalized medial axis really shines.



Chapter 4

Computation

The construction of the medial axis is numerically demanding and generally unstable,
and so is the construction of the generalized medial axis. We therefore aim for an
approximation algorithm sufficient to showcase the concept while leaving room for
improvement. It combines elements of image processing with the vineyard algorithm
reviewed in the background section. The goal for implementation is to generate
points of the p-th medial axis by comparing the changes in the persistence pairing
that occur when the object of study is filtered by the squared radius from a point
as the point moves through space. The collection of points we add to approximate
the p-th medial axis are those points at which Faustian p-switches occur. More
concretely, we take a simplicial complex as input, sample a grid across it, find the
filtration of the complex arising from the squared distance to the complex from each
grid point, and compare changes in the persistence pairing that arise when travelling
from a grid point to its neighbor. If a Faustian p-switch occurs when travelling from
a grid point to its neighbor, we might think to include their midpoint as a naïve point
on the p-th medial axis. This is going in the right direction, but is not sufficient, as
this does not guarantee us to observe all of the switches in the ordering one by one.
We are quite likely to miss some important transitions, unless we get extremely lucky
with our grid sampling. Therefore we invoke the power of the vineyard algorithm,
using it to traverse the distance between grid points, guaranteeing that we capture
every change in the ordering between grid neighbors.

4.1 The Setting

As before, let M be a k-dimensional submanifold of Rd. The computations are done
for a finite sample, A ⊆ M , and a simplicial complex, K, with vertex set A that

16
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triangulates M . Recall that ft : M → R maps every point x ∈ M to its squared
Euclidean distance from t ∈ Rd. Let f̄ t : |K| → R be the piecewise linear extension
of ft evaluated at the points of A:

f̄ t(x) = λ0fta0) + λ1ft(a1) + . . .+ λpft(ap), (4.1)

in which the ai are the vertices of a p-simplex in K, x is a point of this p-simplex,
and the λi are the non-negative parameters that satisfy λ0 + λ1 + . . .+ λp = 1 and
λ0a0 + λ1a1 + . . .+ λpap = x.

Suppose A and K are such that drawing straight edges and higher-dimensional
simplices connecting the points in A produces no spurious intersections. This is
not necessary for our purposes but reasonable to assume since spurious intersections
between simplices are indications of insufficiently dense sampling. Note however
that even in this reasonable case, f̄ t is not the pointed squared distance function of
|K| at t ∈ Rd. Nevertheless, f̄ t is a reasonable approximation of ft provided A is a
sufficiently dense sample of M .

4.2 1-parameter Vineyard

Suppose t0 ̸= t1 are points in Rd. Write f̄ 0, f̄ 1 : |K| → R for the piecewise linear
functions that approximate the pointed squared distance functions at t0 and t1. The
straight-line homotopy from f̄ 0 to f̄ 1 consists of the maps f̄λ : |K| → R defined by

f̄λ(x) = (1− λ)f̄ 0(x) + λf̄ 1(x), (4.2)

for 0 ≤ λ ≤ 1. We review the vineyard algorithm for the straight-line homotopy and
refer to [5] for details. It begins with the lower star filtration of simplicial complex
K defined by f̄ 0. Specifically, we map each simplex, σ ∈ K, to the maximum value
of its vertices, and we list the simplices in the order of non-decreasing value, while
ordering lower- before higher-dimensional simplices if they share the same value.
Write σ1, σ2, . . . , σn for the resulting sequence, and let Ki = {σ1, σ2, . . . , σi} be the
i-th complex in this filtration. The ordered boundary matrix is

∂[i, j] =

{︄
1 if σi ⊆ σj and dimσi = dimσj − 1,

0 otherwise.
(4.3)
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Initialize R = ∂ and U to the n-by-n identity matrix, so that RU = ∂. To get the
algorithm started, we use the classic left-to-right column operations to reduce R.
We apply each operation also to U in order to maintain the relation RU = ∂.

The difference between f̄ 0 and f̄ 1 is in the sequence of simplices, which deter-
mines the ordering of rows and columns in ∂. We transform the sequence defined
by f̄ 0 one transposition at a time to the sequence defined by f̄ 1. The ordering of
the transformations follows the straight-line homotopy, which prescribes the value
of every vertex at any moment of time, from λ = 0 to λ = 1. Each transposition
amounts to a sequence of matrix operations, which are detailed in [5]. After per-
forming all transpositions, we arrive at the reduced matrix relation, RU = ∂, but
now for the ordering of the simplices defined by f̄ 1.

4.3 Detecting Interchanges and (Anti-)Cancellations

An elementary step is the transposition of two consecutive simplices in the ordering.
We follow the description in [5] but focus on the actions rather than their correctness.
To transpose simplices σi and σi+1, we exchange the corresponding two rows and
columns, both in R and in U , which we write by multiplying with the permutation
matrix:

RU = ∂ −→ (PRP )(PUP ) = P∂P, (4.4)

because PP is the identity matrix. The trouble is that in some cases, PRP is not
reduced and PUP is not upper triangular. The vineyard algorithm fixes this with
a constant number of row and column operations. We write low(j) for the largest
row index so that R[low(j), j] = 1.

Case 1: σi and σi+1 both give birth. Let U [i, i+ 1] = 0, just in case.

Case 1.1: there are columns k and ℓ with low(k) = i, low(ℓ) = i + 1, and
R[i, ℓ] = 1.

Case 1.1.1: k < ℓ. Add column k of PRP to column ℓ; add row ℓ of
PUP to row k.

Case 1.1.2: ℓ < k. Add column ℓ of PRP to column k; add row k

of PUP to row ℓ. We witness a change in the pairing but not of
Faustian type.

Case 1.2: such columns k and ℓ do not exist. Done.
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Case 2: σi and σi+1 both give death.

Case 2.1: U [i, i+ 1] = 1. Add row i+ 1 of U to row i; add column i of R to
column i+ 1.

Case 2.1.1: low(i) < low(i+ 1). Done.

Case 2.1.2: low(i+ 1) < low(i). Add column i of PRP to column i+1;
add row i + 1 of PUP to row i. We witness a non-Faustian type
change of the pairing.

Case 2.2: U [i, i+ 1] = 0. Done.

Case 3: σi gives death and σi+1 gives birth.

Case 3.1: U [i, i+ 1] = 1. Add row i+ 1 of U to row i; add column i of R to
column i + 1. Furthermore, add column i of PRP to column i + 1; add
row i + 1 of PUP to row i. We witness a Faustian type change in the
pairing.

Case 3.2: U [i, i+ 1] = 0.

Case 4: σi gives birth and σi+1 gives death. Set U [i, i+ 1] = 0, just in case.

According to the reduced matrix, every simplex gives either birth or death. In
other words, no simplex has a neutral effect, which implies that cancellations and
anti-cancellations cannot happen. This is of course not possible, and the resolution
to the apparent dilemma is that consecutive simplices may enter the complex at the
same moment in time. To recognize this case, we store with each vertex the distance
to t, and with each simplex of dimension 2 or higher a pointer to its vertex with
maximum distance from t.

4.4 Staircase Approximations

Using the vineyard algorithm to go from t0 to t1, we construct a staircase approx-
imation of the generalized medial axis. As mentioned above, we assume a finite
sampling, A ⊆ Rd, of a submanifold, M of Rd, and a simplicial complex, K, with
vertex set A that triangulates M . Letting k < d be the dimension of M , the gener-
alized medial axis, Ap(M), is defined for 0 ≤ p ≤ k. Generically, the dimension of
Ap(M) is d− 1 and thus independent of p.

To approximate Ap(M), we fix a resolution, ϱ > 0, and write ϱZd for the scaled
integer lattice in Rd. Two points in ϱZd are adjacent if the Euclidean distance
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between them is ϱ. In this case, there are integers i1, i2, . . . , id and 1 ≤ j ≤ d such
that one of the points is t0 = (i1, i2, . . . , id)ϱ and the other is t1 = (i1, . . . , ij +

1, . . . , id)ϱ. The (d − 1)-dimensional surface element that separates the two points
is

A(t0, t1) = [i1 − 1
2
, i1 +

1
2
]ϱ× . . .× (ij +

1
2
)ϱ× . . .× [id − 1

2
, id +

1
2
]ϱ. (4.5)

Write Āp(M) for the approximation of the p-th medial axis of M , which we define
as a collection of surface elements. To decide whether or not A(t0, t1) is part of this
approximation, we run the vineyard algorithm from t0 to t1. Let Ip(t0, t1) be the
index-p Faustian interchanges that occur in the linear homotopy from t0 to t1. Then

A(t0, t1)

{︄
∈ Āp(M) if #Ip(t0, t1) odd,
̸∈ Āp(M) if #Ip(t0, t1) even,

(4.6)

see Figure 4.1 for an example. With a straightforward implementation of the vine-

Figure 4.1: Staircase approximation of the 1-st medial axis shown in Figure 1.1.
To simplify the picture, we show only the part inside the region bounded by the
closed curve.

yard algorithm, we can decide the membership of any surface element in O(n3)

time, in which n is the number of simplices in K. There are numerous practical
considerations and possible improvements, of which we list a few.

• Instead of the entire lattice, ϱZd, we explore only a bounded piece, eg. the
points inside [−1, 1]d. The running time is O(n3/ϱd).

• Along any line, two vertices change order only once, so we can compute the
membership of the surface elements along a coordinate line in O(n3) time in
total. The overall improvement is to O(n3/ϱd−1) time.
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• The Euclidean distance is 1-Lipschitz, so distances change only gradually and
we may be able to discard large regions of [−1, 1]d without running the vineyar
algorithm.
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Experiments

In this chapter, we showcase the results of implementing the algorithm in the pre-
vious chapter. We verify that our method finds the standard medial axis (which we
now call the 0-th medial axis), and we present pictures of the new 1-st medial axis.
We note that for simplicity, we use the naïve method mentioned in the introduc-
tion to the previous chapter, namely we sample a grid over our input complex, and
test for Faustian p-switches between neighboring grid cell centers. If we find such
a switch, we draw the edge that the two grid cells share. We realize that we incur
some noise, miss some detail, and have a slower running time by not making full use
of the vineyards algorithm to find precise locations of switches and ensure we don’t
miss any. Refining with the vineyards algorithm is an obvious next step for future
implementation. A second obvious next step would be to extend our computations
to 3D.

5.1 Some Pretty Pictures

Using the (naïve version of the) algorithm proposed in the previous chapter, we can
already see an advantage over the standard Voronoi-based algorithm for computing
the medial axis. In Figure 5.1, we compute an approximation of the 0-th medial axis
of a flower shape. We purposely choose a very sparse point sample (only 20 points)
to illustrate that whereas the Voronoi method cannot improve itself without adding
more points to the input sample, our method can improve its result by tuning the
grid, even with the same bad 20-point input. However, a downfall of our method
is that one must balance a system of parameters to achieve success. We see that
a much denser input sample of 200 points doesn’t improve our result if we don’t
calibrate the grid as well.

22
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Figure 5.1: Top left: the best the standard Voronoi method can do with 20 input
points. Continuing: we refine the grid and get a better approximation with our
method, still with 20 input points. Last: our method performs roughly the same
with 200 points as it does with 20 if we do not refine the grid with the sampling (the
grid density in the bottom right image is the same as that in the top center image).

We show in Figure 5.2 the staircase approximation of the medial axis for several
different inputs. The strength of the regular grid is also its downfall: if the grid
edges happen to fall where the medial axis edges should be, it can cause confusion
for the algorithm. See Figure 5.3 for an example of a misaligned medial axis that
is caused by a grid placement problem. Additionally, Figure 5.3 showcases the 1-st
medial axis.

As an alternative that is less impacted by poor placement (but looks more
wobbly and tends to have more spurious edges), we run the naïve algorithm from
the previous chapter, but instead of testing for an index-p Faustian switch between
neighboring grid cells, we do the following:
1. Run a Poisson point process in a rectangle that covers the input shape, with
intensity i

2. Compute the Voronoi tesselation of the Poisson points
3. Look at the dual Delaunay edges of the Voronoi edges whose vertices are both
contained in the interior of the input shape. If, by running along the Delaunay
edge, one encounters an index-p Faustian switch, draw the corresponding Voronoi
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Figure 5.2: Our Poisson and staircase, and the standard Voronoi medial axis
approximations of the rectangle and flower. See data in Table 5.3.

edge as part of the medial axis approximation. One can also exchange the Delaunay
and Voronoi diagrams in these steps, drawing Delaunay edges if their corresponding
Voronoi edges encounter an index-p Faustian switch.
Figure 5.4 illustrates the process, and Figure 5.5 shows how the approximation
changes when increasing the Poisson intensity i and the pruning parameter ϵ. See
also Figure 5.2.

For both the grid and Poisson methods, we can tune various parameters to affect
the accuracy of the medial axis approximation. In the grid setting, we can refine the
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Figure 5.3: Here we demonstrate the first medial axis of the ellipse and the rectan-
gle, with both grid and Poisson approaches. We cannot show the traditional Voronoi
approach, as it is only defined for the traditional, or 0-th medial axis. We also show
that grid alignment matters. See Table 5.4 for parameters.

grid density with parameter g, which is the distance between neighboring cells. We
can also increase n, the number of points we sample along the input shape. For the
Poisson method, we can increase the intensity i, sampling more points. Increasing
any of these parameters results in an approximated medial axis which covers more
of the real medial axis, but also results in more spurious edges. To prune some of
these, we compare the distance |p1−p0| between the test points (the grid cell centers
or the Delaunay vertices) to the distance |x1−x0| between the simplices of the input
shape that are involved in the index-p Faustian interchange. If |x1−x0| > |p1−p0|ϵ,
we keep the edge p⃗. Increasing ϵ thus prunes away more edges.

In Figure 5.6, we demonstrate the infamous instability of the medial axis by
adding a bump to our input shape, and confirm that our method is just as unstable
as the traditional one.
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Figure 5.4: Top: we sample points around an ellipse and run a Poisson point pro-
cess to generate the light purple points. Middle left: we take the Voronoi tesselation
of the Poisson points. Dashed lines go to infinity. Middle right: we show the restric-
tion of the Voronoi tesselation to the interior of the ellipse, and their corresponding
dual Delaunay edges (dashed edges). Bottom: we further restrict the Voronoi edges
to those whose dual Delaunay edges traverse an index-p Faustian interchange. This
is an approximation of the ellipse’s medial axis.
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Figure 5.5: Increasing the Poisson intensity improves the medial axis approxima-
tion. However, spurious edges enter the scene. We can prune them (bottom two
images), but this can also go too far and remove parts of the medial axis we want
to keep (last image). For parameters, see Table 5.1.

One problem with the Poisson-based Voronoi/Delaunay approach is that the
sampled Poisson points are not evenly distributed, and this leads to noise in the
approximated medial axes that is difficult to eliminate. We can combat this by
adding “blue noise” to the Poisson point process: we add Poisson points one by one,
and check that each new point is outside a predetermined radius of each other point.
See Figure 5.7. This prevents Poisson points from being too close together. Now the
grid edges are more regular, and pruning works better. One problem with the blue
noise, however, lies in a future avenue of exploration: there have been some nice
results [11] approximating intrinsic volumes with Poisson-Delaunay mosaics, and
we think we could use these results to determine bounds on the distortion factor a
Poisson-Voronoi/Delaunay medial axis would have with respect to the length of the
theoretical medial axis, but by adding the blue noise, we could no longer rest on the
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Table 5.1: Data for Fig 5.5. n is the number of points used to sample the ellipse,
ϵ is the pruning parameter, and i is the Poisson point process intensity. Fig number
is ordered top down, left to right.

fig n ϵ i

1 100 2 1
2 100 2 3
3 100 2 5
4 100 2 15
5 100 4 15
6 100 9 15

Table 5.2: Data for Fig 5.6. n is the number of points used to sample the ellipse,
g is the grid density, ϵ is the pruning parameter, and i is the Poisson point process
intensity.

Method n g i ϵ

Poisson 100 – 15 3
Grid-based 100 0.3 – 4

Voronoi 100 – – –

laurels of these previous results.
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Figure 5.6: Instability of our Poisson and grid-based approaches, as well as the
traditional Voronoi approach. see Table 5.2 for parameters.
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Table 5.3: Data for Fig 5.2. Fig number is ordered top down, left to right.

fig n g ϵ i

1 60 - 4 20
2 150 - 2 500
3 160 0.3 2 -
4 150 0.1 2 -
5 60 - - -
6 150 - - -

Table 5.4: Data for Fig 5.3. Fig number is ordered top down, left to right.

fig n g ϵ i

1 50 0.7 1 -
2 50 - 5 19
3 60 0.4 2 -
4 60 0.4 2 -
5 60 - 4 19

Figure 5.7: The Poisson-based grid method with blue noise added to make the
“grid” more regular. On the left, the edges of the medial axis are Voronoi edges, and
on the right, they are Delaunay edges. Note that there are cycles in the medial axis
that should not be there; this is most likely an artifact of using the naïve method
and skipping the sanity check the vineyards algorithm provides.
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Discussion

The main contribution of this paper is a generalization of the medial axis using the
persistent homology of pointed squared distance functions, and an algorithm for
approximating it. The algorithm is used to illustrate the new concept but has not
been optimized for speed and appearance.

Open mathematical questions.

• Is Ap(M) homotopy equivalent to the solid body bounded by M (if it exists)?

• Can the λ-medial axis be extended to a stable version of the generalized medial
axis?

• Is there a scale-dependent version of the generalized medial axis based on the
persistent homology of the pointed squared distance functions?

Open computational questions.

• Do we need adaptive sampling as we change the point t for the pointed squared
distance function?

• Can we use the derivative of the persistence diagram to trace out Ap(M)?

• Is there an analog of the fast distance transform that can be used to compute
an approximation of the generalized medial axis?

• Is there a hierarchical approach to computing the generalized medial axis that
avoids spending time in portions of space that are empty of the medial axis?

31
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