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Emergence of a Bose polaron in a small ring
threaded by the Aharonov-Bohm flux
Fabian Brauneis 1✉, Areg Ghazaryan2, Hans-Werner Hammer 1,3 & Artem G. Volosniev 2✉

The model of a ring threaded by the Aharonov-Bohm flux underlies our understanding of a

coupling between gauge potentials and matter. The typical formulation of the model is based

upon a single particle picture, and should be extended when interactions with other particles

become relevant. Here, we illustrate such an extension for a particle in an Aharonov-Bohm

ring subject to interactions with a weakly interacting Bose gas. We show that the ground

state of the system can be described using the Bose-polaron concept—a particle dressed by

interactions with a bosonic environment. We connect the energy spectrum to the effective

mass of the polaron, and demonstrate how to change currents in the system by tuning boson-

particle interactions. Our results suggest the Aharonov-Bohm ring as a platform for studying

coherence and few- to many-body crossover of quasi-particles that arise from an impurity

immersed in a medium.
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In the idealized model of a ring threaded by the Aharonov-
Bohm (AB) flux, a particle moves in a region with zero fields,
and the presence of an electromagnetic potential manifests

itself only in a minimal substitution −i∂/∂x→−i∂/∂x+Φ, where
the position-independent parameter Φ determines the strength of
the flux. This model provides insight into many physical phe-
nomena. For example, it illustrates the significance of potentials
in quantum mechanics1, geometric phases2, the Josephson effect,
and persistent currents3,4. Foundations of AB physics are based
upon a single-particle picture5,6, which already has the power to
explain some experiments qualitatively such as spectroscopy in
semiconductor rings7. However, one-body studies do not take
into account interactions with other particles, in particular, with
the environment. Therefore, they should be extended for realistic
systems. In this paper, we discuss such an extension assuming a
one-dimensional bosonic environment.

Before we proceed, let us briefly review known few-body
physics in the AB ring. If all particles are identical, then the flux
couples only to the total angular momentum of the system. It can
change the global minimum of the energy leaving the internal
[i.e., in relative coordinates] dynamics intact, see, e.g.,6,8–10. In
short, there is no interplay between particle-particle interactions
and the AB flux for identical particles. This conclusion holds true
also for distinguishable [by spin or quasi-spin] particles with
identical masses and AB fluxes. In this case, the strength of the
AB flux can however change the symmetry of the ground state,
see, e.g., Pecci et al.11.

For particles with non-identical charges and/or masses, such as
electrons and holes12,13, the internal structure of a one-
dimensional system is coupled to the AB flux. At the two-body
level, this coupling can modify the threshold for binding (which
may preclude formation of excitons for weakly attractive poten-
tials in one dimension14) or lead to the formation of dark exci-
tonic states15. Systems with more than two particles are less
explored, to the best of our knowledge.

In this paper, we study one of the simplest two-component
many-body models—a particle (impurity) coupled to the AB flux
that interacts with a Bose gas. The system is motivated by recent
cold-atom experiments on Bose polarons16–22, and by theoretical
and experimental progress in realizing ring-shape potentials and
artificial gauge fields with neutral cold atoms. For reviews of these
advances see ref. 23–25. Ring-shaped condensates with effective
gauge potentials have so far not been engineered together with
impurities. As we show below such a combination may lead to
rich physics. Note that recent advances in engineering ring-
shaped potentials26–28 and tunable gauge fields29 suggest
experiments with polaritons as other set-ups to test our results.

The focus of the paper is on ‘dressing’ the impurity—a typical
question addressed in many-body physics—which determines
properties of the system such as transport and ‘magnetization’. As
such, our results complement previous works that investigated
small systems using few-body methods and approaches.

One of the main findings of our work is that the system can be
described using ideas developed for the one-dimensional Bose-
polaron problem30–39. This connection leads to a number of
useful conclusions. First, previous studies of the Bose polaron
contribute insight into properties of our system, and provide an
intuitive interpretation of our results. This insight can be also
useful for understanding numerical lattice simulations where
electron-phonon interactions are taken into account, see, e.g.,
Monisha et al.40. Second, persistent currents can be an experi-
mental measure of validity of the Bose-polaron concept in one
dimension. In particular, they can be used to investigate phase
coherence of the polaron across the AB ring—a necessary con-
dition for the existence of persistent currents. Third, the AB ring
provides a conceptual model for defining the effective mass in a

finite-size system, allowing one to better understand a few- to
many-body crossover of one-dimensional systems. In particular,
our work paves the way for studying this crossover beyond the
standard testbed—the ground-state energy41.

Results and discussion
System. We study a one-dimensional system of N bosons and a
single impurity atom, see Fig. 1. The system is in a ring of length L,
which corresponds to periodic boundary conditions. The position
of the impurity (ith boson) is given by Ly (Lxi); the mass of the
impurity (a boson) is m (M). We assume that only the impurity is
coupled to the AB flux Φ/L. For neutral particles, Φ is not gen-
erated by a magnetic flux threading the ring. Instead, other tech-
niques are used23,42, e.g., stirring with a weak external potential
with speed v, in which case Φ=mvL/ℏ. Note that the more general
case, which might be more suitable for experimental realization,
where the artificial flux is coupled to both particle species can be
easily incorporated into our model, see Suppl. Note 1 for the flux
coupled to bosons.

The Hamiltonian in first quantization reads

H ¼ hþH þ Vib þ Vbb; ð1Þ
where h ¼ _2

2mL2 �i∂=∂y þ Φ
� �2

describes the impurity; for the

bosons, we have H ¼ � _2

2ML2 ∑i∂
2=∂x2i . The impurity-boson, Vib,

and boson-boson, Vbb, interactions are parameterized by delta-
function potentials

Vib ¼
c
L
∑
N

i¼1
δðxi � yÞ; Vbb ¼

g
L
∑
i;j
δðxi � xjÞ; ð2Þ

where c and g define the strength of interactions. For simplicity,
we shall use the system of units in which ℏ=M= 1. In the main
part of the paper, a boson and the impurity have identical masses,
m=M. [A mass imbalance does not change the main conclusions
of our study, see Suppl. Note 2]. For a fixed value of N,
dimensionless parameters that determine all physical properties
are c/g and γ= gL/N. For our numerical simulations, we shall use
γ= 0.2, which corresponds to a weakly interacting Bose gas
amenable to the mean-field treatment discussed below. We focus
on c > 0 to avoid bound states43–45 that are beyond the polaron
physics. Note that the case with γ= 0.2 and N= 19 for Φ= 0 was
considered in46 providing us with a reference point to benchmark
our numerical calculations.

In what follows, we shall use the Hamiltonian from Eq. (1) in
our analysis. However, it is worthwhile noting that the parameter
Φ can in principle be excluded from this Hamiltonian via a gauge
transformation Ψ→ eiΦyΨ, where Ψ is the wave function. The
effect of the flux is then incorporated in a ‘twisted’ boundary
condition that demands that the wave function acquires a phase
ei2πΦ after a full turn47,48. Such a condition implies that the
energy spectrum must be a periodic function with period Φ/(2π)
as shown in Fig. 1. Note that for general multi-component
systems (e.g, strongly interacting Bose-Fermi mixtures) a smaller
period of the ground-state energy is also possible, see, e.g.,10,11. As
we demonstrate below, this does not happen for an impurity in a
weakly-interacting Bose gas whose low-energy spectrum resem-
bles that of a single particle.

The HamiltonianH with Φ= 0 corresponds to one of the most
studied one-dimensional models49–52. Therefore, we can use the
already known methods to tackle our problem with Φ ≠ 0. We
choose to work in the frame co-moving with the impurity (see
below), where the mean-field approach (MFA) and flow
equations (IM-SRG) provide powerful theoretical tools for our
investigation (see Methods). These methods allow us to
investigate the effect of the AB flux on the properties of the
one-dimensional polaron problem beyond previous studies53,54,
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which investigated relevant molecular-crystal models. In parti-
cular, we can define and study flux-independent properties of the
Bose polaron (e.g., the effective mass) in a finite system.

Co-moving frame. The total momentum of the system is con-
served since all interactions are translation-invariant. Therefore,
we eliminate the impurity coordinate by writing the wave func-
tion as (cf.55)

Ψðy; fxigÞ ¼ eΨðfzigÞeiPy; ð3Þ
where zi= θ(y− xi)+ xi− y [θ(x) is the Heaviside step function],
and P/L is the total momentum. The transformation {y, xi}→ {zi}
can be seen as a coordinate-space analog of the Lee-Low-Pines
transformation56. The parameter P is quantized to fulfill the
periodic boundary conditions: P= 2πn, where n is an integer.
Note that the transformation to the co-moving frame has been
already used to study the few- to many-body transition in the
ground state of the Bose-polaron problem with Φ= 035. Here, we
study this transition for non-vanishing P where a continuous
parameter Φ provides a bridge between the discrete values of P.

The Schrödinger equation in the co-moving frame reads as
follows

� 1
2 ∑

i

∂
∂zi

� �2

þ 1
2∑i

∂2

∂z2i
þ ðPþΦÞ2

2

"

þL2Vib þ L2Vbb þ iðP þΦÞ∑
i

∂
∂zi

�eΨ ¼ EeΨ; ð4Þ

where E is the dimensionless energy of the system [to obtain the
dimensionful energy one needs to multiply E by ℏ2/(mL2)]. Note
that Φ and P enter this equation together as a sum P ¼ P þΦ. P
is a continuous variable that can be seen as an effective total

momentum that determines total currents in the system. This
observation will be crucial for interpreting our results in terms of
an effective one-body picture, see below. Note that ~Ψ

�
P solves the

Schrödinger Eq. (4) with �P, which is a manifestation of time-
reversal symmetry.

Energy spectrum. The energy spectrum for Φ= P= 0 and finite
values of N was calculated in Volosniev et al.35. Therefore, in
what follows we only calculate E(P, Φ)− E(P= 0, Φ= 0), where
E(P, Φ) is the energy of the Hamiltonian for a given value of the
total momentum, P, and the AB flux, Φ. E(P= 0, Φ= 0)
approaches the ground-state energy of the Bose-polaron problem
in the thermodynamic limit (N, L→∞ with a fixed value of N/L),
see also Suppl. Note 4. Due to the periodicity of the energy (cf.
Fig. 1), it is enough to focus on fluxes− π ≤ Φ ≤ π. Furthermore,
the energy spectrum is symmetric with respect to Φ→−Φ due to
time-reversal symmetry. Therefore, in what follows we shall cal-
culate the lowest-energy states for fixed values of P, so-called
Yrast states (cf.6), and currents only for 0 ≤ Φ ≤ π. This also fixes
the values of the flux needed to observe our findings
experimentally.

Energy for Φ ≠ 0. We illustrate the energies calculated with MFA
and IM-SRG in Fig. 2. For P= 0 and ∣P∣= 2π both methods agree
reasonably well on the energy, demonstrating that the MFA is a
useful semi-analytical tool to describe the system. We observed a
worse agreement for ∣P∣ ≥ 2π. The failure of the mean-field
approach is expected for high values of P as there are various
ways to distribute momentum between the bosons and the
impurity, see also Suppl. Note 3.

Let us give a few general remarks about Fig. 2. For Φ= ± π
there is a level crossing between two Yrast states with P= 0 and

Fig. 1 Sketch of the system and the ground state energy. a Sketch of the system. The bosons are shown as blue balls at the positions xi; the impurity is a
red ball at y. The AB flux is Φ. The strength of the boson-boson (boson-impurity) interaction is given by g (c). b Sketch of the ground-state energy as a
function of the flux without (c= 0) and with (c > 0) the interaction with the bosonic environment (leading to an energy shift Ep at Φ= 0). The total
momentum of the system is P/L. The shift of the energy spectrum, Ep, and the change of the curvature can be parameterized by effective one-body
parameters, see the text for details.
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∣P∣= 2π. It is a consequence of the rotational symmetry of the
problem. If a defect is introduced into the system, then it will lead
to an avoided crossing, see below where we discuss the role of
defects. In Fig. 2, we also present the ground-state energy of a
non-interacting impurity (c= 0), E= (P + Φ)2/2. We see that the
solid curves are always below this value. The effect is more
pronounced for stronger impurity-boson interactions—compare
the left and right panels of Fig. 2. These features can be easily
understood using the concept of a polaron and its effective mass.

Effective mass. For the thermodynamic limit with Φ= 0, one
finds that the low-energy spectrum of the system is quadratic in
the total momentum (see, e.g.,39,57 for one-dimensional Bose
polarons):

lim
P!0

EðP;Φ ¼ 0Þ � EðP ¼ 0;Φ ¼ 0Þ½ � ¼ P2

2mTD
eff

; ð5Þ

where we introduce an effective mass, mTD
eff ; other definitions of

the effective mass are discussed in Suppl. Note 5. Eq. (5) is a
cornerstone of the polaron concept and effective one-body
descriptions of mobile impurities. Note that for small systems, the
limit in Eq. (5) should be re-defined since P is discrete.

The parameter Φ is continuous. The mean-field solution as
well as time-reversal symmetry suggest that E(Φ, P= 0) is
proportional to Φ2. By analogy to the Bose-polaron problem, we
can define the effective mass of an impurity in a small AB ring

lim
Φ!0

½EðP ¼ 0;ΦÞ � EðP ¼ 0;Φ ¼ 0Þ� ¼ Φ2

2meff
: ð6Þ

This expression connects our problem to the body of knowledge
developed by solving polaron problems. The connection allows
one to make predictions about the behavior of an impurity in the
AB ring. For example, the effective mass is an increasing function
of c. Therefore, one reduces the current associated with the
impurity by increasing c, see the discussion below.

In addition, Eq. (6) demonstrates that the AB ring can be a
physical testbed for studying the few- to many-body crossover in
one-dimensional Bose-polaron problems. We illustrate this cross-
over for the effective mass in Fig. 3. For weak interactions
(c/g= 0.05), we see that the effective mass converges to the
thermodynamic limit quickly. This is not the case for strong
interactions (c/g= 5), meaning that many bosons are needed to
screen the impurity for large values of c/g. Although, our analysis
suggests that the effective mass converges somewhat slower than the
energy towards the thermodynamic limit (see also Suppl. Note 4),
the basic mechanism is the same: A high compressibility of a
weakly-interacting Bose gas requires a large number of bosons to

screen a strongly interacting impurity. Note that the number of
bosons needed for screening heavily depends on the parameter γ. In
particular, in the limit γ→∞, the system fermionizes and the
impurity is screened by a handful of particles41,58,59. This
observation highlights the fact that the few- to many-body crossover
should be studied separately for fermions and weakly-interacting
bosons.

Finally, we note that the effective mass computed with Eq. (6)
describes only the Yrast curve with P= 0 well. To illustrate this,
we calculate the second derivative of the energy in the limit
Φ→ 0 using the MFA. For a non-interacting impurity, this
derivative is given by 1/m for all values of P. For an interacting
impurity, this is not the case. The second derivative for P= 0 is by
definition given by 1/meff. The right panel of Fig. 3 shows that the
effective mass increases for stronger impurity-boson repulsion in
agreement with our expectations. The figure also shows that for
the ∣P∣= 2π state additional effects come into play and change the
second derivative. The physical picture behind these effects will
become more clear below, when we consider currents. The
difference between ‘effective masses’ defined for P= 0 and
∣P∣= 2π illustrates a shortcoming of the use of the quasiparticle
picture for a small AB ring. However, even then, the polaron
picture explains the qualitative features of the spectrum well.

Currents. The AB flux in our system induces currents that can be
defined via the continuity equations for the impurity and the
bosons in the laboratory frame:

∂ρI
∂t

¼ � ∂jI
∂y

;
∂ρB
∂t

¼ � ∂jB
∂x

; ð7Þ

where tL2 is time, ρI (ρB) is the probability density of the impurity
(bosonic) cloud. The (local) probability currents are defined as

jI ¼ � i
2

Z
dx1:::dxN Ψ� ∂Ψ

∂y
� Ψ

∂Ψ�

∂y

� �
þΦρI ; ð8Þ

jB ¼ � i
2

Z
dydx2:::dxN Ψ� ∂Ψ

∂x1
� Ψ

∂Ψ�

∂x1

� �
: ð9Þ

The rotational symmetry implies that jI, jB, ρI and ρB are
position-independent, allowing us to work with the integral
quantities, e.g., ρI= ∫ρIdy/(2π), which is more convenient. For
example, using these quantities, it is easy to show that
jI þ NjB ¼ P. Therefore, the total current—the current that
corresponds to the total density ρI+NρB—is given by
P ¼ P þ Φ. Note that even though the AB flux is coupled only
to the impurity, boson-impurity interactions also generate a
current of bosons. We illustrate these currents for c/g= 1 and

Fig. 2 The energy spectrum as a function of the AB flux, Φ. Different colors correspond to different values of the momentum: Blue P= 0 and orange
∣P∣= 2π. The parameters of the system are N= 19, γ= 0.2, and c/g= 1 (a), c/g= 5 (b). The data are obtained using the mean-field ansatz (solid curves,
MFA) and the in-medium similarity renormalization group (crosses with errorbars, IM-SRG), black triangles show results from Yang et al.46 for quantized
momenta. The dotted curves show the energy of the non-interacting system.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-023-01281-2

4 COMMUNICATIONS PHYSICS |           (2023) 6:224 | https://doi.org/10.1038/s42005-023-01281-2 | www.nature.com/commsphys

www.nature.com/commsphys


c/g= 5 in Fig. 4 (other parameters are N= 19, γ= 0.2). The
increase in the boson-impurity interaction leads to an increase in
the bosonic current. This observation is most easily explained
using the Bose-polaron picture.

Using the Hellmann-Feynman theorem, it is straightforward to
show that

jI ¼
∂E
∂Φ

; ð10Þ

which coincides with the standard definition of the current in a one-
body problem, see, e.g.,6. [Note that this expression provides an
indirect way for measuring currents by studying the energy landscape
of the problem with RF spectroscopy (cf. Scazza et al. 60).] For the
polaron picture with P= 0, this leads to jI=Φ/meff connecting the
current (and transport properties) of the impurity to its effective
mass. The bosonic current in the same approximation is given by
NjB= (1− 1/meff)Φ. The bosonic current generated by the AB flux
follows the impurity, and leads to renormalization of its mass. We

conclude that in the polaron picture the currents depend linearly on
Φ, with the slope fully determined by the effective mass.

The region of validity of this picture is determined by the boson-
impurity interaction, see the dashed lines in panels a) and b) of
Fig. 4. For c/g= 1 we observe that the polaron approximation, in
which the energy is related to the AB flux via Eq. (6), is accurate for
jPj≲ 2π, but for stronger interactions, c/g= 5, it is appropriate
merely for jPj≲ π. For even stronger interactions, Eq. (6) is
accurate only in the limit P ! 0. Our interpretation here is that
the coherent propagation of the impurity is not possible for strong
boson-impurity interaction and large fluxes. Indeed, for c→∞ the
impurity can exchange its position with a boson in a coherent
manner only at timescales given by 1/c. Thus strong (fast) impurity
currents excite bosons. This leads to a non-linear increase of the
currents with Φ, see also ref. 46 and Suppl. Note 3. To quantify
these effects, it is convenient to rely on the second derivative of the
energy (effective mass), which is larger for ∣P∣= 2π, see Fig. 3 (note
that the bosonic current is related to the impurity current via
NjB= P+Φ− jI, i.e., one can reach the same conclusion by

Fig. 3 Effective mass for a finite-size system. a Convergence of the effective mass to its thermodynamic limit for γ= 0.2 and different values of c/g.
b Inverse of d2E

dΦ2 for Φ→ 0 with P= 0 and ∣P∣= 2π. The parameters of the system are N= 19, γ= 0.2. The green curve shows the known result for P→ 0 in
the thermodynamic limit (TD. limit)39, 57. The data in both panels are obtained using the mean-field approach.

Fig. 4 Currents in the system. a, b present the impurity current. c, d demonstrate the bosonic current. Blue, orange, and green colors are for P= 0, ∣P∣= 2π,
and ∣P∣= 4π, correspondingly. The parameters of the system are N= 19 and γ= 0.2. a, c show results for c/g= 1, whereas b, d are for c/g= 5. Data were
obtained with the mean-field ansatz (solid lines, MFA) and in-medium similarity renormalization group (crosses, IM-SRG). Black triangles are the results of
Yang et al.46 for Φ= 0. Dashed lines in a, c show the impurity current in the polaron approximation jI ¼ P=meff. Here, meff is calculated within the MFA
using Eq. (6).
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considering NjB instead of jI). The IM-SRG results show a
somewhat stronger generation of bosonic currents than the MFA,
but the qualitative picture stays the same.

In addition limits of validity of the polaron picture can be
investigated by considering states with higher values of ∣P∣. For
example, Fig. 4 shows that for ∣P∣= 4π, the current of the impurity
(almost) does not depend on Φ. This current is critical in a sense
that by changing the flux of the impurity one generates only the
current of bosons. The value of the critical current, jcrI , is decreased
by increasing c, in agreement with the mean-field studies61,62.

The critical current can be seen as an analog of the critical
velocity of a classic impurity that moves in a superfluid (cf.
Landau critical velocity). Using this analogy, we can understand
why the mean-field approximation in the co-rotating frame does
not provide the correct value of the critical current. The MFA
does not describe accurately the excitations of the Bose gas when
it is decoupled from the impurity. In particular, the MFA leads to
an incorrect phononic dispersion relation and implies that the
critical velocity can be larger than the speed of sound for small
values of c/g62, which is unphysical. Furthermore, it does not
capture type-II excitations of the Lieb-Liniger gas63, which define
the lowest energy state for a given value of the momentum of the
Bose gas, see64 for tutorial. Note that our IM-SRG method also
does not capture these states well—the flow equations diverge
when the type-II excitations become relevant. For some
additional details, see Suppl. Note 3.

Role of defects. The rotational symmetry of the problem makes
the Yrast energy spectrum of Fig. 2 double degenerate at Φ= ± π.
In realistic systems, the symmetry is typically broken due to the
presence of defects, leading to avoided crossings in the energy
spectrum (cf. Fig. 5). At the maxima of the avoided crossings one-
body currents defined via ∂E/∂Φ vanish affecting transport
properties of the system5. We also note that the simplest
experimental realization of the AB flux in cold-atom set-ups can
be achieved with a rotating weak link65, which utilizes the
equivalence between the Coriolis force in a non-inertial frame
and the Lorentz force on a charged particle in a uniform magnetic
field. The rotating link introduces a ‘defect’ potential into the
problem whose effect can be studied using the methods discussed
in this section.

Our two-component set-up offers unique possibilities to
modify currents that are not present in single-body AB physics.
To illustrate this, we add to the Hamiltonian a small perturbation:

HW ¼ HþW; ð11Þ
where H is the original Hamiltonian from Eq. (1) and

W ¼ a
L
∑
i
δðxiÞ: ð12Þ

This additional term describes a short-range potential coupled

exclusively to the Bose gas. The current of the impurity is sensitive
to W only via the boson-impurity interaction, and therefore the
avoided crossing should contain information about the boson-
impurity correlation function.

As long as a is small (a→ 0), we can assume that the defect has
only a minor influence on our system unless the system is close to
the degeneracy point, Φ= ± π. Close to these points, we calculate
the dimensionless energy using degenerate state perturbation
theory:

HW ’ E0 þ L2hΨ0jWjΨ0i L2hΨ0jWjΨ1i
L2hΨ1jWjΨ0i E1 þ L2hΨ1jWjΨ1i

� �
;

where E0≃Φ2/(2meff) (E1≃Φ2/(2meff)) is the energy of the Yrast
state with P= 0 (∣P∣= 2π); Ψ0 (Ψ1) is the corresponding
eigenstate. Within the MFA, the matrix elements read as

hΨijWjΨji ¼
a
L
NαN�1

Z
eiðPj�PiÞyf �i ð yÞf jð yÞdy;

where α ¼ R
f �i ðzÞf jðzÞdz, and subscripts determine the Yrast

state, e.g., i= 0 corresponds to P= 0.
To provide insight into the avoided crossing, we focus on

Φ= ± π. In this case f1= f0, and 〈Ψi∣W∣Ψj〉 depends only on the
density in the co-moving frame (or equivalently on the impurity-
boson correlation function in the laboratory frame). This density,
hence, the splitting of the energy levels, is sensitive to the values
of c. For example, if c= 0, then the defect should destroy the
rotational invariance of the Bose gas only. Indeed, in this case,
∣ f ∣2 is constant and 〈Ψi∣W∣Ψj〉= 0.

Panel a) of Fig. 5 illustrates the avoided crossing for a small
value of a. Note that the energy of the system, E(P, Φ), increases
for a > 0. This effect does not appear in the figure as we only show
the energy difference. The interesting part is that in the presence
of W the energies of the first and second Yrast state no longer
cross. The splitting of the energies, ΔE= 2aLNI, is determined by
the integral

I ¼
Z

ei2πyj f 0ð yÞj2dy; ð13Þ

which can be estimated using the density in the thermodynamic
limit at Φ= 066:

j f 0ð yÞj2 ’
Lμ

gðN � 1Þ tanh
2 ffiffiffiffiffi

μκ
p

Lδ
ðz � L=2Þ

δL
þ 1

2

� �� �
;

where

δ ’ 1þ 2dffiffiffiffiffi
γκ

p
N
; d ¼ 1

2
asinh

2ρ
c

ffiffiffi
γ

κ

r� �
; ð14Þ

μ ’ γρ2
N � 1
N

1� 2
tanhðdÞ � 1ffiffiffiffiffi

γκ
p

N

� �
: ð15Þ

Fig. 5 Effect of a defect on the energy crossing. a The energy for P= 0 and P=−2π as a function of the flux with and without a defect. Solid lines are for
the unperturbed system; dashed lines correspond to aN= 0.01. Other parameters of the system are N= 19, γ= 0.2, and c/g= 1. b Eq. (13) in the
thermodynamic limit as a function of c/g for different boson-boson interactions γ. The data were obtained with the mean-field ansatz.
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Panel b) of Fig. 5 shows that by increasing the value of c, one
increases the energy splitting. Since the interactions are of zero
range, the value of I converges to a constant value for c→∞,
which depends on the strength of boson-boson interactions, γ.
Note that for small values of γ the impurity can modify the
density of the bosons significantly, leading to larger values of I.

Finally, we note an interference effect that appears if we place a
second small perturbation into the system:

W ¼ a
L
∑
i
δðxiÞ þ δðxi þ dÞ� �

: ð16Þ
In analogy to above, we can define a coupling integral as

I ¼ 1þ ei2πd
� � Z

ei2πyj f 0ð yÞj2dy: ð17Þ

If d= 1/2, this matrix element vanishes and the energy levels
cross again (within the lowest order of perturbation theory). This
happens because the perturbations are placed opposite to one
another, which effectively restores the rotational symmetry in this
case. This effect can be seen also for more than two perturbations,
as long as they are placed in a symmetric order on the ring (for
example three defects in a form of an equilateral triangle).

Conclusions
To summarize, we studied an impurity coupled to the AB flux in a
Bose gas. We argued that (i) the system can be described using the
ideas developed for the Bose polaron, (ii) the AB ring can be a testbed
for studies of the few- to many-body crossover in cold-atom polaron
problems. In particular, observation of persistent currents in the AB
ring with an impurity can shed light onto coherence properties of the
Bose polaron. Note that the 1D world has inherent phase fluctua-
tions, which can be captured using the IM-SRG approach (see also
Suppl. Note 3). These fluctuations should be necessarily taken into
account when studying persistent currents of polarons.

Our investigation of currents shows that the AB ring can provide a
platform for studying a few-body analog of the critical velocity in a
Bose-polaron problem. Furthermore, if we assume that the critical
current, jcrI , does not depend on Φ, then (according to Eq. (10)) the
energy of the system is E ¼ Ecr þ jcrI Φ. This expression connects the
bosonic current and the energy of the system motivating a study of
few-body precursors of collective excitations in a Bose gas.

Finally, we note that ∂2E/(∂Φ2) relates to the inverse of the
effective mass, which defines transport properties of a polaron.
This relation bears some similarity to the Thouless conductance
in a disordered medium67. It might be interesting to explore this
connection further, in particular, for a weakly interacting light
impurity that within the Born-Oppenheimer approximation
experiences a disorder potential created by heavy bosons.

Methods
Mean-field approach. We use two methods to investigate the system. The first one
is the mean-field approach (MFA) in relative coordinates. It assumes that all
bosons occupy one state in the frame co-moving with the impurity, so that the total
wave function of the system can be approximated as

eΨðz1; z2; :::; zN Þ ¼ YN
i¼1

f ðziÞ; ð18Þ

where f(z) is a normalized function determined by minimizing the Hamiltonian.
The variational procedure leads to the Gross-Pitaevskii equation, which can be
solved semi-analytically, see Cominotti et al.68 and Suppl. Note 3.

Flow equations. The MFA is a well-established approach by now whose accuracy
for stationary impurity problems has been shown by comparing to numerical
quantum Monte Carlo35,69 and state-of-the-art RG methods35,39,68,70. The MFA in
time-dependent problems was discussed in71,72. In spite of those previous tests of
MFA, we still find it necessary to validate it for the problem at hand. To this end,
we shall use flow equations in the form of the so-called in-medium similarity
renormalization group method (IM-SRG). This is an ab initio method that has

been employed in condensed matter and nuclear physics73–75 (for applications for
one-dimensional problems with impurities, see ref. 35,45,70). For convenience of the
reader, we provide a brief introduction into IM-SRG and further compare its
results to the MFA in Suppl. Note 3.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
The code used for this study is available from the corresponding author upon reasonable
request.
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