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In [10] Nam proved a Lieb–Thirring Inequality for the kinetic 
energy of a fermionic quantum system, with almost optimal 
(semi-classical) constant and a gradient correction term. We 
present a stronger version of this inequality, with a much 
simplified proof. As a corollary we obtain a simple proof of 
the original Lieb–Thirring inequality.
© 2023 The Author(s). Published by Elsevier Inc. This is an 

open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

Let γ be a positive trace-class operator on L2(Rd) with density (i.e., diagonal) ρ. 
Such operators naturally arise as reduced density matrices of many-particle quantum 
systems. In the case of fermions, the Pauli principle dictates a bound on the eigenvalues 
of γ, which in the simplest (spinless) case reads γ ≤ 1. In this case, Lieb and Thirring 
[7,8] proved a powerful lower bound on the kinetic energy Tr(−Δ)γ, where Δ is the 
Laplacian on Rd, and the trace should really be interpreted as the one of the positive 
operator −∇γ∇. This bound is one of the key ingredients in their elegant proof of the 
stability of matter, first proved by Dyson and Lenard in [1]. It can be interpreted as a 
many-body uncertainly principle, and reads
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Tr(−Δ)γ ≥ CLT
d

∫
Rd

ρ1+2/d (1)

for some universal constant CLT
d depending only on the space dimension d. The optimal 

value of this constant is not known, and for d ≥ 3 was conjectured by Lieb and Thirring 
to equal the semi-classical Thomas–Fermi value, CTF

d = 4π d
d+2Γ(1 + d/2)2/d. We refer 

to [3] for the currently best known lower bounds, as well as to [2] for further information 
on Lieb–Thirring and related inequalities. We note that Lieb and Thirring proved (1)
by first proving a dual inequality on the sum of the negative eigenvalues of Schrödinger 
operators, but direct proofs of (1) have since also been derived [11,9,3].

In [10] Nam proved a Lieb–Thirring inequality with constant arbitrarily close to CTF
d , 

at the expense of a gradient correction term. In this paper we present an improved version 
of Nam’s inequality, with a much simpler proof. Our proof is inspired by [5, Thm. 3], 
where an analogous upper bound is proved (on the kinetic energy density functional, 
i.e., the infimum of Tr(−Δ)γ for given ρ). Interestingly, the method can also be used for 
a lower bound, in a similar spirit as the method of coherent states, which can also be 
applied to give bounds in both directions [6], but seems to be more useful for the study 
of the dual problem, however.

Our main result is the following.

Theorem 1. Let η : R+ → R be a function with

∞∫
0

η(t)2 dt
t

= 1 =
∞∫
0

η(t)2t dt (2)

and let CTF
d = 4π d

d+2Γ(1 + d/2)2/d. For any trace-class 0 ≤ γ ≤ 1 on L2(Rd) with 
density ρ,

Tr(−Δ)γ ≥ CTF
d(∫∞

0 η(t)2td+1dt
)2/d

∫
Rd

ρ1+2/d − 4
d2

∫
Rd

|∇√
ρ|2

∞∫
0

η′(t)2t dt (3)

We note that under the normalization conditions (2) we have 
∫∞
0 η(t)2td+1dt > 1

by Jensen’s inequality. In order for this integral to be close to 1, η2 needs to be close 
to a δ-distribution at 1, in which case the final factor in (3) necessarily becomes large, 
however. A possible concrete choice is

η(t) = (πε)−1/4 exp
(
−(ε/2 + ln t)2/(2ε)

)
(4)

for ε > 0. Then 
∫∞
0 η′(t)2t dt = (2ε)−1 and

∞∫
η(t)2t1+xdt = exp (εx(2 + x)/4)
0
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for any x ∈ R. For this choice of η the bound (3) thus reads

Tr(−Δ)γ ≥ CTF
d e−ε(1+d/2)

∫
Rd

ρ1+2/d − 2
d2ε

∫
Rd

|∇√
ρ|2

for any ε > 0. A similar bound was proved by Nam in [10], but with the exponent −1
of ε in the gradient term replaced by −3 − 4/d. We don’t expect the exponent −1 to be 
optimal, however. In fact, according to the Lieb–Thirring conjecture no correction term 
to the semiclassical expression should be needed at all for d ≥ 3. Some correction term is 
needed for d ≤ 2, but possibly the divergence of the prefactor as ε → 0 could be slower 
than in our bound.

As already pointed out in [10], one can combine an inequality of the form (3) with 
the Hoffmann-Ostenhof inequality [4]

Tr(−Δ)γ ≥
∫
Rd

|∇√
ρ|2 (5)

to obtain a Lieb–Thirring inequality without gradient correction. The following is an 
immediate consequence of (3) and (5).

Corollary 2. For any trace-class 0 ≤ γ ≤ 1 on L2(Rd) with density ρ, we have

Tr(−Δ)γ ≥ CTF
d Rd

∫
Rd

ρ1+2/d (6)

with

Rd = sup
η

1
(
∫
η(t)2td+1dt)2/d

1
1 + 4

d2

∫
η′(t)2t dt

(7)

where the supremum is over functions η satisfying the normalization conditions (2).

We shall show below that for d ≤ 2, Rd can be calculated explicitly. In fact, R1 =
(−3/a)3/24 ≈ 0.132, where a ≈ −2.338 is the largest real zero of the Airy function, and 
R2 = 1/4. We were not able to compute Rd for d ≥ 3, but it can easily be obtained 
numerically. For d = 3, we find Rd ≈ 0.331. In all these cases, our result is weaker than 
the best known one in [3], however, and also weaker than the one obtained in [11] where 
(6) was proved with Rd = d/(d + 4).

Proof of Theorem 1. The starting point is the following IMS type formula for any posi-
tive function f : Rd → R+,

Δ =
∞∫
η(t/f(x))Δη(t/f(x))dt

t
+ |∇f(x)|2

f(x)2

∞∫
η′(t)2t dt
0 0
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where we used the first normalization condition in (2). This follows from

1
2θ

2Δ + 1
2Δθ2 = θΔθ + (∇θ)2

applied to θ(x) = η(t/f(x)). As a consequence, we have

Tr(−Δ)γ = −
∫
Rd

ρ
|∇f |2
f2

∞∫
0

η′(t)2t dt +
∫
Rd

∞∫
0

p2〈ψp,t|γ|ψp,t〉
dt

t
dp

where ψp,t(x) = (2π)−d/2eipxη(t/f(x)). Note also that

∫
Rd

∞∫
0

t〈ψp,t|γ|ψp,t〉dt dp =
∫
Rd

ρf2
∞∫
0

η(t)2t dt =
∫
Rd

ρf2

where we used the second normalization condition in (2). Hence

Tr(−Δ)γ = −
∫
Rd

ρ
|∇f |2
f2

∞∫
0

η′(t)2t dt +
∫

ρf2

+
∫
Rd

∞∫
0

(p2 − t2)〈ψp,t|γ|ψp,t〉
dt

t
dp

Since 0 ≤ γ ≤ 1 by assumption, we can get a lower bound on the last term as

∫
Rd

∞∫
0

(p2 − t2)〈ψp,t|γ|ψp,t〉
dt

t
dp ≥

∫
Rd

∞∫
0

(p2 − t2)−‖ψp,t‖2 dt

t
dp

where ( · )− = min{0, · } denotes the negative part. Since

‖ψp,t‖2 = 1
(2π)d

∫
Rd

η(t/f(x))2dx

we have

∫
Rd

∞∫
0

(p2 − t2)−‖ψp,t‖2 dt

t
dp = − 1

(2π)d

∫
|p|≤1

(1 − p2)dp
∫
Rd

fd+2
∞∫
0

η(t)2td+1dt

Altogether, we have thus shown that
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Tr(−Δ)γ ≥ −
∫
Rd

ρ
|∇f |2
f2

∞∫
0

η′(t)2t dt +
∫
Rd

ρf2

− 1
(2π)d

∫
|p|≤1

(1 − p2)dp
∫
Rd

fd+2
∞∫
0

η(t)2td+1dt

We now choose f = cρ1/d and optimize over c > 0. This gives (3). �
Finally, we shall analyze the optimization problem in (7). Let ed > 0 denote the 

ground state energy of −∂2
t − t−1∂t + d2/(4t2) + td on L2(R+, t dt) (or, equivalently, of 

−Δ + |x|d on L2(Rd+2)). We claim that

Rd = d

2

(
d + 2
2ed

)1+2/d

(8)

To see this, let us note that by a straightforward scaling argument we can rewrite R−1
d

as

1
Rd

= 4
d2 inf

‖η‖2=1

(∫
η(t)2td+1dt

)2/d ∫ (
d2

4t2 η(t)
2 + η′(t)2

)
t dt

= 4
d2 inf

‖η‖2=1
inf
λ>0

(
2
dλ

)2/d [
d

d + 2

∫ (
d2

4t2 η(t)
2 + λtdη(t)2 + η′(t)2

)
t dt

]1+2/d

(9)

where ‖η‖2 denotes the L2(R+, t dt) norm, and we used the simple identity abx =
xx

(1+x)1+x infλ>0 λ
−x(a + λb)1+x for positive numbers a, b and x. Taking first the infi-

mum over η for fixed λ leads to the ground state energy of −∂2
t − t−1∂t + d2/(4t2) +λtd, 

which a change of variables shows to be equal to λ2/(d+2)ed. Hence we arrive at (8).
For d = 1, once readily checks that the ground state of −∂2

t − t−1∂t + 1/(4t2) + t

equals t−1/2Ai(t + a) with a the largest real zero of the Airy function Ai. In particular, 
e1 = −a. For d = 2 we find e2 = 4 (the ground state energy of −Δ + |x|2 on R4), and 
the ground state of −∂2

t − t−1∂t + 1/t2 + t2 is given by te−t2/2.
One can also check that Rd → 1 as d → ∞. In fact, using (4) as a trial state and 

optimizing over the choice of ε, one finds

Rd ≥

√
1 + 2d2

1+d/2 − 1√
1 + 2d2

1+d/2 + 1
exp

(
−1 + d/2

d2

(√
1 + 2d2

1 + d/2 − 1
))

= 1 −O(d−1/2) .
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