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ARTICLE

Genetic insights into the age-specific biological
mechanisms governing human ovarian aging

Sven E. Ojavee,1,2,* Liza Darrous,1,2,3 Marion Patxot,1,2 Kristi Läll,4 Krista Fischer,4,5 Reedik Mägi,4

Zoltan Kutalik,1,2,3,7 and Matthew R. Robinson6,7,*
Summary
There is currently little evidence that the genetic basis of human phenotype varies significantly across the lifespan. However, time-to-

event phenotypes are understudied and can be thought of as reflecting an underlying hazard, which is unlikely to be constant through

life when values take a broad range. Here, we find that 74% of 245 genome-wide significant genetic associations with age at natural

menopause (ANM) in the UK Biobank show a form of age-specific effect. Nineteen of these replicated discoveries are identified only

by ourmodeling framework, which determines the time dependency of DNA-variant age-at-onset associationswithout a significantmul-

tiple-testing burden. Across the range of early to late menopause, we find evidence for significantly different underlying biological path-

ways, changes in the signs of genetic correlations of ANM to health indicators and outcomes, and differences in inferred causal relation-

ships. We find that DNA damage response processes only act to shape ovarian reserve and depletion for women of early ANM.

Genetically mediated delays in ANM were associated with increased relative risk of breast cancer and leiomyoma at all ages and with

high cholesterol and heart failure for late-ANM women. These findings suggest that a better understanding of the age dependency of

genetic risk factor relationships among health indicators and outcomes is achievable through appropriate statistical modeling of

large-scale biobank data.
Introduction

Age at onset and time-to-event observations are among the

most important traits of interest in cohort studies of age-

related diseases as they are critical to gain insight into

the genetics of disease development and progression.1,2

The underlying etiology of age-related outcomes likely re-

flects a variety of biological processes that are triggered at

different stages of life, long before the onset of observable

symptoms. As a result, the underlying genetic propensity

for outcomes may vary with age and depend upon

different sets of genetic risk factors at different time points,

reflecting the range of underlying molecular mechanisms

that shape the onset distribution. Therefore, identifying

the genetic variants associated with onset at different

stages of life will improve our understanding of disease

progression.

Here, we seek to test the hypothesis that genetic pro-

pensity for age at onset is age specific by focusing on

the most commonly experienced timing-related

phenotype in the human population, age at natural

menopause (ANM). Menopause is the permanent cessa-

tion of the menstrual cycle in women following the

loss of ovarian function and occurs at an average age of

51 years, with 4% of the female population experiencing

early menopause prior to age 45. Current evidence

suggests that early menopause is associated with a risk
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for cardiovascular disease3 and osteoporosis,4 and late

menopause is associated with a risk for breast cancer.5

Recent genomic studies find �50% of menopausal

timing variation is attributable to genetic markers6 that

are linked to regulation of DNA repair and immune

function.7–9 However, previous analyses make strong

assumptions that genetic effects are constant throughout

life (Figure 1A). By modeling the quantitative genetic

basis of ANM in a way that enables detection of the

age at which genetic risk factors have the greatest

influence, we report evidence for widespread age-specific

genetic effects underlying population-level variation

in ovarian aging in both the UK and Estonian Bio-

bank data.
Material and methods

Marginal age-specific mixed Cox proportional hazards

model
We present a marginal Cox age-specific mixed proportional haz-

ards (CAMP) model paired with a unique significance-testing

framework. Following the success of many genome-wide associa-

tion studies (GWASs), more attention has been attributed to better

characterizing SNP effects under different environmental condi-

tions, leading to genotype-covariate analyses.10 For a continuous

trait, one of the simplest ways to model this type of interaction

would be to include a linear interaction term. For example, to
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Figure 1. Statistical model description and previously unreported discoveries
(A) The CAMP model enables a more flexible and accurate description of the SNP effect size by introducing a slope term. The linear
change model enables three example questions to be addressed: (1) what is the interval at which there is a significant effect on the trait
(‘‘significant interval’’)? (2) At which age is there strongest evidence for an effect (‘‘strongest evidence for effect’’)? (3) Is the slope (b1)
significantly different from zero (‘‘b1’’)? Even though a more complex model can result in generally wider confidence intervals, it can
still result in a more accurate representation of the effect size, often accompanied by higher statistical power. By estimating the ef-
fect-size change, it is also possible to accurately determine trends, which constant effect assumptions cannot capture. The lower two
panels represent corresponding survival function estimates showing the probability that an individual has not experienced an event.
We observe that under linear effect assumption, the survival functions can cross, which is not possible with the constant effect
assumption.
(B) 19 previously unreported discoveries for ANM from the CAMP model across the UK and Estonian Biobank data. The coral line
indicates the genome-wide significance level of 53 10�8. Arrows indicate the positions of the previously unreported discoveries.
estimate the impact of age on SNP effects, we could write the

model as

yi ¼ mþ xijb
0
j þ xijðti � t0Þb1

j þ εi; (Equation 1)

where (for individual i and SNP j) yi is a continuous trait, m is the

intercept, xij is the SNP value, b0j is the SNP effect at time t0, ti is

the age when yij is measured, b1j is the linear effect of age, and εi

is the residual variance. However, for age-at-onset phenotypes,

the model as specified in Equation 1 would not be identifiable

because yi ¼ ti. Previous studies have proposed to analyze age-

specific effects by splitting timescales into non-overlapping inter-

vals. Individuals who have the event in a future interval are treated

as right censored, with individuals who have had an event in a pre-

vious interval excluded from the analysis. For example, this idea

has been suggested by Joshi et al.,11 where time intervals of 40–

75 and 75þ were used. Although it is correct to conduct the anal-

ysis in such a way, doing so requires defining intervals that could

be seen as an arbitrary choice, with ill-defined intervals leading to

an incomplete understanding of the effect-size distribution.

Furthermore, this type of modeling will not scale well with the

added number of intervals as each interval requires an additional

parameter. Therefore, we propose a form of Cox PH model that al-

lows specifying a functional shape for age-specific effects. To esti-

mate the marginal effect of SNP j in chromosome k, the general

form for CAMP model for each SNP j˛1;.;M is
1550 The American Journal of Human Genetics 110, 1549–1563, Sep
liðtÞ ¼ l0ðtÞ exp
�
xijbjðtÞþgk

i xj þ zidj

�
; (Equation 2)

where l0ðtÞ is the baseline hazard, i denotes the ith individual,

xij is the standardized jth marker value, gk
i is the genetic predic-

tor from all other chromosomes other than the SNP j is located

at, xj is its corresponding effect when estimating marker j, zi is

the summarized covariate value, and dj is its corresponding ef-

fect when estimating marker j. bjðtÞ is the effect-size change

function for SNP j and we define it in two ways. The effect-

size function bjðtÞ should be defined such that its domain is

the set of positive real numbers and it is (piecewise) differen-

tiable. Here, we define the effect-size function as a linear func-

tion in age

bjðtÞ ¼ b0
j þ b1

j ðt � t0Þ; (Equation 3)

where b0
j is the intercept term, effectively estimating the effect

size at time t0, and b1
j is the slope showing how much the effect

changes each year. It is possible to define any other parametric

shape; for example, the exponential decay function could be a

natural choice. However, in the first experiments on real

data, the linear effect-size change gave a higher likelihood

compared with exponential decay models. Hence, we decided

to resort to the linear effect-size model that is easier to interpret,

and the variance function can be represented without

Taylor expansion-based approximations. Given the effect-size
tember 7, 2023



function definition, we can calculate the variance at each time

point t as

Var
�
bjðtÞ

�
¼ Var

�
b0
j

�
þðt � t0Þ2Var

�
b1
j

�
þ 2ðt � t0ÞCov

�
b0
j ;b

1
j

�
;

(Equation 4)

where Varðb0
j Þ, Varðb1

j Þ, and Covðb0
j ;b

1
j Þ can be estimated from

the Hessian of the Cox model. We use the linear effect-change

definition from Equation 3 to test whether there exists a change

in the effect size across the lifespan. As including the genetic

values from other chromosomes shares properties with mixed

modeling, we are going to refer to this model as the CAMP

model.

At each time point t, we can define the test statistic function

c2
j ðtÞ for SNP j as the square of the ratio of effect size and the stan-

dard error of the effect size

c2
j ðtÞ¼

0
BB@ bb0

j þ bb1

j ðt � t0ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar�bb0

j

�
þðt � t0Þ2 dVar�bb1

j

�
þ2ðt � t0ÞdCov�bb0

j ;
bb1

j

�r
1
CCA

2

:

(Equation 5)

All that remains is to estimate gk
i , the genetic predictor from all

other chromosomes other than the SNP j. To do this, we use a

BayesW model,1 which assumes that for an individual i, the age

at onset of a disease yi has Weibull distribution, with a re-parame-

terization of the model to represent the mean and the variance of

the logarithm of the phenotype as

E
�
log

�
yi
���m;b; d;a� ¼ mþ

XF
4¼1

X4ib4 þZid; (Equation 6)

Var
�
log

�
yi
���m;b; d;a� ¼ p2

6a2
(Equation 7)

where X4 is a standardized genotype matrix containing SNPs allo-

cated to group 4, m is an intercept, b4 is the vector of SNP effects

in group 4, Zi is additional covariates (such as sex or genetic prin-

cipal components [PCs]), d is the additional covariate effect esti-

mates, and a is the Weibull shape parameter. For each group,

we assume that b4 are distributed according to a mixture of

Gaussian components with mixture-specific proportions p4 and

mixture variances s241;.;s24L and a Dirac delta at zero, which in-

duces sparsity:

b4j �p40d0 þp41N
�
0;s2

14

�þ.þ p4LN
�
0;s2

4L

�
; (Equation 8)

where L is the number of mixture components. We estimated

the hyperparameters such as genetic variance and prior inclu-

sion probability by grouping markers into ‘‘MAF-LD’’ bins, as

recent theory suggests this yields improved estimation.12 We

used 20 MAF-LD groups that were defined as minor-allele

frequency (MAF) quintiles, where we then split each quintile

into quartiles by linkage disequilibrium (LD) score. The cutoff

points for creating the MAF quintiles were 0.006, 0.013, 0.039,

and 0.172; the cutoff points for creating LD score quartiles

were 2.11, 3.08, and 4.51 for the first; 3.20, 4.71, and 6.84 for

the second; 4.70, 6.89, and 9.94 for the third; 7.65, 11.01, and

15.70 for the fourth; and 10.75, 15.10, and 21.14 for the fifth

MAF quintile, exactly as in the age-at-menopause analysis by

Ojavee et al.1 The posterior mean BayesW model estimates of
The American Jour
b4 are then used to create gk
i , the genetic predictor from all other

chromosomes other than the SNP j. This gives a two-step leave-

one-chromosome-out (LOCO) approach, where first a BayesW

model is used to estimate the genetic predictor and then a mar-

ginal age-specific CAMP model is used for the second step. Next,

we discuss how we can conduct significance testing in the sec-

ond step in an efficient manner while ensuring that the type I

error is bounded below the fixed threshold a even with a more

complex model.
Significance testing
We demonstrate that to limit type I error rate below a and given

the null hypothesis of no effect at SNP j (b0
j ¼ 0, b1

j ¼ 0), it is suf-

ficient to compare the test statistic c2
j ðt�Þ with the c2

df ¼2 1 � a

quantiles at any time point t�.
We will naturally assume that dVarðbb0

j Þ > 0 and dVarðbb1

j Þ > 0.

As c2
j ðtÞ is twice differentiable, it is possible to find its respective

first and second derivative. This will give us two extreme points

t� at which the d
dtc

2
j ðt�Þ ¼ 0. Then, the c2 score has a local

maximum if d2

dt2
c2
j ðt�Þ < 0 or the c2 score has a local minimum

weakest if d2

dt2
c2
j ðt�Þ > 0. It can be shown that the function c2

j ðtÞ
has two extreme points located at

t�1 ¼ �
bb0

jbb1

j

þ t0: (Equation 9)

t�2 ¼
bb0

j
dCov�bb0

j ;
bb1

j

�
� bb1

j
dVar�bb0

j

�
bb1

j
dCov�bb0

j ;
bb1

j

�
� bb0

j
dVar�bb1

j

�þ t0: (Equation 10)

Using the second derivative, it can be shown that c2
j ðtÞ will al-

ways have a (global) maximum at t�2 and a (global) minimum

(c2ðt�1Þ ¼ 0) at t�1. We find that in the limiting cases, the test statis-

tic is testing the significance of the slope limt/Nc2
j ðtÞ ¼ ðb1

j Þ
2

Varðb1
j Þ
and

limt/�Nc2
j ðtÞ ¼ ðb1

j Þ
2

Varðb1
j Þ
. As the domain of c2

j ðtÞ is the set of posi-

tive real numbers and there are no breakpoints in the function,

then c2
j ðtÞ is bounded within interval ½c2

j ðt�1Þ;c2
j ðt�2Þ�.

We are especially interested in the distribution of the maximum

possible c2 statistic c2
j ðt�2Þ under the null hypothesis that both

b0
j ¼ 0 and b1

j ¼ 0.

Lemma 1

Under the null hypothesis that both b0
j ¼ 0 and b1

j ¼ 0, the chi-

squared statistic evaluated at the maximum point t�2 c2
j ðt�2Þ follows

a c2
df ¼2 distribution:

c2
j

�
t�2
� � c2

df ¼2: (Equation 11)

Proof.

We define r :¼ cCovðbb0

j ;
bb1

j ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficVar ðbb0

j ÞcVarðbb1

j Þ
q and we express c2

j ðt�2Þ such that it

would be a sum of two uncorrelated random variables.
nal of Human Genetics 110, 1549–1563, September 7, 2023 1551



c2
j

�
t�2
� ¼

�bb0

j

�2 dVar�bb1

j

�
� 2bb0

j
bb1

j
dCov�bb0

j ;
bb1

j

�
þ
�bb1

j

�2 dVar�bb0

j

�
dVar�bb0

j

�dVar�bb1

j

�
� dCov�bb0

j ;
bb1

j

�2
¼

�bb0

j

�2

dVar�bb0

j

� � 2rbb0

j
bb1

jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar�bb0

j

�dVar�bb1

j

�r þ
�bb1

j

�2

dVar�bb1

j

�
1 � r2

¼

0
BB@ bb0

jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar�bb0

j

�r � r
bb1

jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar�bb1

j

�r
1
CCA

2

1 � r2
þ

0
BB@ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � r2
p bb1

jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar�bb1

j

�r
1
CCA

2

1 � r2
:

(Equation 12)
Under the null hypothesis of b0
j ¼ 0 and b1

j ¼ 0, we know thatbb0

jffiffiffiffiffiffiffiffiffiffiffiffifficVar ðbb0

j Þ
q � Nð0;1Þ and bb1

jffiffiffiffiffiffiffiffiffiffiffiffifficVarðbb1

j Þ
q � Nð0;1Þ and therefore

0
BBBBBBBBB@

bb0

jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar�bb0

j

�r � r
bb1

jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar�bb1

j

�r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2

p bb1

jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar�bb1

j

�r

1
CCCCCCCCCA

� N

��
0
0

	
;

�
1 � r2 0

0 1 � r2

		
:

(Equation 13)

The last result implies that under the null of b0
j ¼ 0 and b1

j ¼
0, Equation 12 is a sum of two uncorrelated standard Gaussian

random variables squared, which means that c2
j ðt�2Þ is from the

chi-squared distribution with degrees of freedom of 2.

This naturally gives us a rule for hypothesis testing at time t�2. If
the test fails to disprove the null hypothesis at time t�2, it will fail to

disprove the null hypothesis at any possible t. If the test accepts

the alternative hypothesis, it means that there must exist an inter-

val (or at least one point) at which the variable has an effect on the

phenotype.

Furthermore, we can show that the quantiles of c2
df ¼2 distribu-

tion result in a stringent-enough test at any time point.

Lemma 2

Suppose that we have estimated effect sizes b0
j and b1

j from a linear

effect change model bjðtÞ ¼ b0
j þ b1

j ðt � t0Þ and that the null hy-

pothesis of b0
j ¼ 0 and b1

j ¼ 0 holds. Then, for every time point

t, the probability of type I error (a) is bounded when using the

c2
2 distribution 1 � a quantile as a critical value.

Proof. To prove the lemma, we need to demonstrate that 1� a

quantile of c2
2 distribution (q1�a) is greater than 1 � a quantile of

c2ðtÞ at any time point t under the null hypothesis b0
j ¼ 0 and

b1
j ¼ 0. Suppose that the maximum test statistic value is achieved

at t�2 with value c2
j ðt�2Þ.

We suppose, in contradiction, that under the null hypothesis,

there exists some time point t�st�2 at which the distribution of

c2
j ðt�Þ would have a higher 1 � a quantile value ~q1�a than the

1 � a quantile of c2
df ¼2 distribution q1�a:

~q1�a > q1�a:
1552 The American Journal of Human Genetics 110, 1549–1563, Sep
Given this, we can write the following inequalities,

a ¼ P
�
c2
j ðt�Þ> ~q1�a

�
< P

�
c2
j ðt�Þ > q1�a

�
< P

�
c2
j

�
t�2
�
> q1�a

�
¼ a;

where the first inequality follows from the contradiction and the

second inequality from the fact that c2
j ðt�Þ is the maximum

possible value of the test statistic. The inequalities result in a

contradiction, which therefore proves the lemma.

An important corollary of this result is that we can use c2
df ¼2

quantiles to do statistical testing at any time point, and doing tests

at (many) different time points will not increase type I error. For

example, we can simultaneously test the significance of the slope

(corresponds to limt/Nc2
j ðtÞ) and significance at t�2 (using c2

j ðt�2Þ)
at the 1 � a-quantile of c2

df ¼2 distribution while limiting the

type I error at a as given the effect and variance estimates.
UK Biobank data
This project uses UK Biobank data under project 35520. UK Bio-

bank genotypic and phenotypic data are available through a

formal request at http://www.ukbiobank.ac.uk. The UK Biobank

has ethics approval from the North West Multi-centre Research

Ethics Committee (MREC). We first restricted our analysis to a

sample of European-ancestry UK Biobank (UKB) individuals. To

infer ancestry, we used both self-reported ethnic background

(UKB field 21000-0) and genetic ethnicity (UKB field 22006-0)

and selected coding 1 in both cases.We projected the 488,377 gen-

otyped participants onto the first two genotypic PCs calculated

from 2,504 individuals of the 1,000 Genomes project. Using the

obtained PC loadings, we then assigned each participant to the

closest 1,000 Genomes project population, selecting individuals

with PC1 projection < absolute value 4 and PC2 projection < ab-

solute value 3. Samples were also excluded based on UKB quality

control procedures with individuals removed of (1) extreme het-

erozygosity and missing genotype outliers; (2) a genetically in-

ferred gender that did not match the self-reported gender; (3) pu-

tative sex chromosome aneuploidy; (4) exclusion from kinship

inference; and (5) withdrawn consent. We used genotype proba-

bilities from version 3 of the imputed autosomal genotype data

provided by the UKB to hard call the genotypes for variants with

an imputation quality score above 0.3. The hard-call threshold

was 0.1, setting the genotypes with probability %0:9 as missing.

From the good-quality markers (with missingness less than 5%

and p value for Hardy-Weinberg test larger than 10�6, as deter-

mined in the set of unrelated Europeans), we selected those with
tember 7, 2023
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MAF> 0.0002 and rs identifier in the set of European-ancestry par-

ticipants. We then took the overlap with the Estonian Biobank

data described below to give a final set of 8.7 million SNPs using

both autosomal chromosomes and the X chromosome. This pro-

vides a set of high-quality SNPmarkers present across both discov-

ery and prediction datasets.

We created the phenotypic data of ANM similarly to Ojavee

et al.1 We used UKB field 3,581 to obtain the time, if available,

and excluded from the analysis (1) women who had reported hav-

ing and later not having had menopause or vice versa, (2) women

who said they had menopause but with no record of the time of

menopause (UKB field 2,724), (3) women who have had a hyster-

ectomy or the information about this is missing (UKB field 3,591),

and (4) women whose menopause is before age 33 or after 65.

Within the UKB data, there were a total of 173,424 unrelated

(only one person kept from second-degree or closer relative pairs)

European-ancestry women, out of which 125,697 had experienced

menopause and 47,727 had not had menopause based on data

field 2,724. For computational convenience when conducting

the joint BayesW analysis, we created an additional subset of

markers by removing markers in very high LD through the selec-

tion of the highest MAF marker from any set of markers with LD

R2 R0:8 within a 1-Mb window. These filters resulted in a dataset

with 173,424 individuals and 2,174,071 markers for the first-step

estimation of the LOCO genetic predictors, and then in the second

step CAMP model we analyzed 8.7 million SNPs using both auto-

somal chromosomes and the X chromosome.
Estonian Biobank data
To replicate the findings, we used the Estonian Biobank with

70,082 women (22,740 with menopause and 47,342 without

menopause). For access to be granted to the Estonian Biobank

genotypic and corresponding phenotypic data, a preliminary

application must be presented to the oversight committee, who

must first approve the project. Ethics permission must then be ob-

tained from the Estonian Committee on Bioethics and Human

Research, and finally a full project must be submitted and

approved by the Estonian Biobank. This project was granted ethics

approval by the Estonian Committee on Bioethics and Human

Research (https://genomics.ut.ee/en/content/estonian-biobank). Similar

to the UKB data, we used the age range of 33–65 and thus excluded

women with age of menopause outside this interval. In the total

Estonian Biobank data, there were 195,432 individuals genotyped

on the Illumina Global Screening Array (GSA), which were

imputed to an Estonian reference created from the whole-genome

sequence data of 2,244 participants.13 From 11,130,313

markers with imputation quality scores >0.3, we selected SNPs

that overlapped with those selected in the UKB as described above

by using the same SNP sets for the first and second steps of the

analyses.
Analysis of ANM
We investigated the three questions as proposed in Figure 1: (1) we

checked the interval at which there is a significant effect, (2) we

tested the significance at ages at which the variants had the

most evidence for an effect, and (3) we tested for the existence

of an age-specific effect.
Testing the interval at which a variant is significant
We evaluated the test statistic function using Equation 5 at ages

41, 43, 45, 47, 49, 51, 53, and 55 and calculated the p values using
The American Jour
the c2
df ¼2 distribution quantiles, as suggested by our theory above.

On these results, at each age, we applied the clumping procedure

(using plink 1.914) with a window size of 1 Mb, LD threshold of

r2 ¼ 0:05, p value threshold for index SNPs of p ¼ 53 10�8,

and no p value threshold for other SNPs belonging to a clump of

an index SNP. To detect clumps with an independent signal, we

applied the COJO procedure15 implemented in GCTA software16

with a window size of 1Mb, and the SNPs were considered inde-

pendent if the p value in the joint model was less than 53

10�8. The independent index SNPs from the COJO analysis

were then replicated at each age in the Estonian Biobank data

with replication defined as a p value lower than 0.05 and the

same effect-size estimate sign as in the discovery analysis. To check

the period during which a SNP has a significant effect (Figure 2A),

we checkedwhether the same SNP or a SNP in the same clump also

has an effect in the consecutive grid point. Specifically, we took all

the significant independent and replicated SNPs at ages 41 and 43

and then checked whether the index SNPs of age 41 mapped

directly to an index SNP at age 43 or a clump of an index SNP.

Then, we compared the ages 43 and 45 and iteratively so forth un-

til 55.
Testing the age with the maximum effect evidence
We tested the significance at ages at which the variants had the

most evidence for an effect to understand the total number of sig-

nificant effects and possibly identify previously undiscovered loci.

Furthermore, we defined a period of interest between ages 45 and

52 so the significance would only be evaluated during this period.

That was done to avoid over-interpretation of the linear effect at

uncommon high or low ages. Therefore, using Equation 10, we

first calculated the age t�2 at which the test statistic achieves the

highest value, and secondly, we evaluated the chi-squared func-

tion (Equation 5) at that age t�2. If the time point t�2 was outside

of the interval (45,52), then we instead evaluated the function at

the time point where the function c2
j ðtÞ achieved its maximum

within the interval (either age 45 or 52). We compared the chi-

squared statistics with the c2
df ¼2 distribution to calculate the p

values. We applied a similar procedure to the previous case. First,

we applied the clumping procedure (using plink 1.914) with a win-

dow size of 1 Mb, LD threshold of r2 ¼ 0:05, p value threshold for

index SNPs of p < 53 10�8, and no p value threshold for other

SNPs belonging to a clump of an index SNP. Secondly, to detect

clumps with an independent signal, we applied the COJO proced-

ure15 implemented in GCTA software16 with a window size of 1

Mb, and the SNPs were considered independent if the p value in

the joint model was less than 53 10�8. We then checked the in-

dependent and significant SNPs from the COJO analysis for previ-

ous association signals.We removed all themarkers that had a cor-

relation of r2 > 0:1 with a marker that had been previously found

associated with ANM using the GWAS catalog (published until

April 2022) and LDtrait tool with the British in England and Scot-

land population. Furthermore, we specifically compared our

candidate set for the significant SNPs reported by Ruth et al.,9

removing the markers reported by them and those with a correla-

tion r2 > 0:1. Finally, we checked our candidate set with the Phe-

noscanner database17,18 to find any previous associationswith var-

iants of interest or variants in LD. The index SNPs not removed by

the three filters were then replicated at age with maximum evi-

dence in the period (45,52) in the Estonian Biobank data, with

replication defined as a p value lower than 0.05 and the same effect

estimate sign as in the discovery analysis.
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Figure 2. Age distribution of significant effects and effect-size change
(A)We evaluated the effect-size and standard error estimates for every SNP at each age on a grid from 41 to 55 and counted the number of
significant hits replicated in the Estonian Biobank. The significant focal hits were mapped to consecutive ages, summarizing the count
since when the effects were significant.
(B) Effect sizes (log hazard ratio, HR) for 245 significant effects; the majority of variants have a larger absolute effect size at age 41 than at
age 55, and only 9 variants have an increasing effect size. We observe that the model manages to capture the effect-size change for many
variants.
(C) Classification of the menopause-associated variants by age-specific evidence by testing whether the slope parameter is equal to zero.
Variants with weak evidence have a p value lower than p < 0:05, moderate evidence requires p < 53 10�8, and strong evidence re-
quires the slope to be significant also in the replication dataset.
Testing for an age-specific effect
To verify whether there is a genome-wide significant age-specific

effect for every SNP j, we checked whether the slope parameter is

significantly different from 0

H0 : b1
j ¼ 0;

where b1
j is estimated from the model specified in Equation 2. The

chi-squared statistic was calculated as the squared ratio of the slope

size estimate and standard error estimate. As this quantity natu-

rally corresponds to limt/Nc2
j ðtÞwhere c2

j ðtÞ is defined as in Equa-

tion 5, we compare the test statistic again with the c2
df ¼2 distribu-

tion quantiles to get the p values. Similarly to two previous cases,

we first applied the clumping procedure (using plink 1.914) with a

window size of 1Mb, LD threshold of r2 ¼ 0:05, p value threshold

for index SNPs of p < 53 10�8, and no p value threshold for

other SNPs belonging to a clump of an index SNP. Second, to

detect clumps with an independent signal, we applied the COJO

procedure15 implemented in GCTA software16 with a window

size of 1 Mb, and the SNPs were considered independent if the p

value in the joint model was less than 53 10�8. The independent

index SNPs from the COJO analysis were then replicated in the

Estonian Biobank data, with replication defined as a p value lower

than 0.05 and the sign of the slope the same as in the discovery

analysis. We classified the SNPs with different levels of evidence

of age-specific effects. SNPs with a p value below the nominal sig-

nificance threshold (p < 0:05) are said to have at least weak evi-

dence for an age-specific effect; variants with a p value below the
1554 The American Journal of Human Genetics 110, 1549–1563, Sep
genome-wide significance threshold (p < 53 10�8) are said to

have at least moderate evidence for an age-specific effect; variants

with moderate evidence that also replicate in the Estonian Bio-

bank are considered to have strong evidence for an age-specific ef-

fect. The variants that do not fall under these three categories are

said to have no evidence for age-specific effects.

Enrichment analysis
We used recently presented Downstreamer software19 to identify

genes connected to our association study results through gene

expression and to identify enriched pathways. We calculated test

statistics using Equation 5 at ages 41, 43, 45, 47, 49, 51, 53, and

55 and calculated the p values using the c2
df ¼2 distribution quan-

tiles, as suggested by our theory above.

Downstreamer implements a strategy that accounts for LD

structure and chromosomal organization, operating in two steps.

In the first step, gene-level prioritization scores were calculated

for each age group’s summary statistics and a null distribution.

This aggregates p values per variant into a p value per gene while

accounting for local LD structure. GWAS gene p values were calcu-

lated for all 20,327 protein-coding genes (Ensembl release version

75). The gene p values were then converted to gene Z scores for use

in subsequent analysis. To account for the long-range effects of

haplotype structure, which results in genes getting similar gene

Z scores, a generalized least-squares (GLS) regression model is

used, which requires a gene-gene correlation matrix. This correla-

tion matrix is calculated by first simulating 10,000 random
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phenotypes by drawing phenotypes from a normal distribution

and then associating them to the genotypes of the 1000 Genomes

phase 3 non-Finnish European samples. The GWAS gene Z scores

for each of the 10,000 simulated GWAS signals alongside the Pear-

son correlations between the GWAS gene Z scores are then calcu-

lated. Correlations between simulated GWAS gene Z scores reflect

the underlying LD patterns and chromosomal organization of

genes. An additional 10,000 GWASs were simulated to empirically

determine enrichment p values, and, finally, an additional 100

simulations were used to estimate the false discovery rate (FDR).

In the second step, the gene-level prioritization scores were asso-

ciated with the co-regulation matrix and pathway annotations.

We used a previously generated co-regulation matrix that is based

on a large multi-tissue gene network.19 Publicly available RNA-seq

samples were downloaded from the European Nucleotide Archive

(https://www.ebi.ac.uk/ena) containing 56,435 genes and 31,499

samples covering a wide range of human cell types and tissues.

165 leading PCs representing 50% of the variation were selected.

For protein-coding genes, centered and scaled eigenvectors for

these 165 components (mean ¼ 0, SD ¼ 1) were calculated. The

co-regulation matrix is then defined as the Pearson correlation be-

tween the genes from the scaled eigenvector matrix, with diagonal

zero and Pearson r values converted to Z scores. To identify

pathway and disease enrichments, the Human Phenotype

Ontology (HPO), KEGG, Reactome and Gene Ontology (GO) Bio-

logical Process, Cellular Component, and Molecular Function da-

tabases were used. A Z score per pathway or term per gene is calcu-

lated, giving how much each gene contributes to these gene sets.

We collapsed correlated genes in parallel with the GWAS step to

ensure compatibility with the GWAS gene Z score and scaled all

pathway Z scores to zero mean and unit variance.

Real and simulated GWAS Z scores were rank-based inverse-

normal transformed. A linear model was used to correct for gene

length, as longer genes will typically harbor more SNPs. Genes

with a Pearson correlation rR0:8 in the 10,000 GWAS permuta-

tions were treated as one gene. A GLS regression is used to associate

the GWAS gene Z scores to the pathway Z scores and co-regulation

Z scores, with b ¼ ðXTu�1XÞ�1XTu�1y, where b is the estimated

effect size of a pathway, term, or gene from the co-regulation ma-

trix; u is the gene-gene correlation matrix; X is the design matrix

of real GWAS Z scores; and y is the vector of gene Z scores per

pathway, term, or gene from the co-regulation matrix. b for the

10,000 random GWASs were estimated in the same way and used

to estimate the empirical p value for b. These two analyses result

in pathway enrichments and core gene prioritizations, respectively.

The gene-gene correlation matrix derived from the 10,000 permu-

tations is used as a measure of conditional covariance of the error

term (u) in the GLS to account for the relationships between genes

due to LD and proximity. We present full results for each age in

Tables S2–S9. In the main figures, we present the results significant

at both FDR correction and Bonferroni correction offered by the

Downstreamer software.
Genetic correlations
We used LD score regression to calculate genetic correlations

among the test statistics generated using Equation 5 at ages 41,

43, 45, 47, 49, 51, 53, 55, and among these ages and other pheno-

types using publicly available GWAS summary data. We used UKB

results for 100 phenotypes released by Neale group and the Global

Biobank Meta-analysis Initiative consortium. The significance

threshold of 0.05 was corrected by the total number of tests
The American Jour
(800). We present only estimates in Figure 4 where the correlation

was significant in at least one age point.

Mendelian randomization
We calculated the causal effect estimates that ANM at different ages

has on various traits (Table S11) using Mendelian randomization

(MR), a statistical method that utilizes the randomized inheritance

of genetic variations in the population to estimate the potential

causal effect a modifiable risk factor or exposure has on a health-

related outcome of interest.20,21 The genetic variants used as instru-

mental variables (IVs) for our exposure were selected to have a

genome-wide significant association with the exposure (p < 53

10�8) and were then pruned using LD distance to ensure that

they were independent. This was done using the ‘‘ld_clump’’ func-

tion of the ‘‘ieugwasr’’ R package22 with default settings

(clump_kb ¼ 10,000, clump_r2 ¼ 0.001, clump_p ¼ 0.99, pop ¼
‘‘EUR’’). After the IVs of our exposure were selected, their associa-

tion effects were then obtained for each of our outcome traits of in-

terest. A single-sided t test was carried out to check whether the IVs

had a stronger association with the outcome than with the expo-

sure and were subsequently removed if so (for violating the MR as-

sumptions). The two sets of association effects were then harmo-

nized and used to calculate the causal effect estimates using the

inverse-variance weighted method found in the ‘‘TwoSampleMR’’

R package.23 This analysis was repeated for each varying age of

our exposure. It is important to note that in the case of educational

attainment as an outcome, there were few exposure IVs that over-

lapped with the outcome genetic variants, especially as the age

increased; hence, in the presence of a single IV, a Wald ratio was

used to calculate the MR causal effect estimate. Moreover, when

the trait was of a case-control nature, the effective sample size

was calculated using the following formula: (4*cases*controls)/

(casesþcontrols).24
Results

Modeling effect-size change reveals previously

unreported loci

We show in the methods that CAMP determines the time

dependency of marker age-at-onset associations without

a significant multiple-testing burden. We applied the

CAMP model to 173,424 unrelated observations of self-re-

ported ANM in the UKB data (125,697 reported events and

47,727 right-censored observations; 8,747,951 SNPs) and

70,082 observations in the Estonian Biobank (22,740

reported events and 47,342 censored observations,

Figure S1). We find 312 ANM associations in the UKB, of

which 226 replicate previous studies7–9 and 19 are previ-

ously unreported and replicate for the first time within

the Estonian Biobank (Table 1; Figures 1B and S2). In addi-

tion, we find 67 associations that have not previously been

reported, but they did not replicate in the Estonian Bio-

bank. Nevertheless, 46 out of 67 previously unreported as-

sociations show consistency with signs in the discovery

and replication datasets (Fisher’s exact test, p ¼ 0:007),

suggesting that a larger replication dataset could lead to

further replications. To test for novelty, we test for signifi-

cance at time points where the evidence is the highest

within the intervals 45 to 52 (Figure 1A, see methods).
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Table 1. Previously undiscovered regions affecting age at menopause

SNP Chr Position Eff/oth MAF Nearest gene
Maximum
effect

Age at
maximum p value Effect at 49

Yearly effect
change

rs16852403 1 178,039,226 C/T 0.200 RASAL2-AS1* 0.026 45.0 5:703 10�9 0.014 �0.0032

rs60897342 1 235,512,110 T/C 0.475 GGPS1* �0.018 49.6 4:32310�10 �0.018 0.0008

rs77629370 2 27,251,504 T/C 0.062 MAPRE3* 0.023 48.7 3:523 10�14 0.022 �0.0017

rs6544660 2 43,688,496 C/T 0.451 THADA �0.021 48.8 7:223 10�12 �0.020 0.0016

rs16839858 2 204,366,776 A/G 0.166 RAPH1 �0.017 51.0 1:303 10�9 �0.016 �0.0005

rs6443930 3 183,754,294 C/G 0.439 HTR3D 0.022 50.1 2:153 10�14 0.022 �0.0004

rs816734 5 154,272,947 T/C 0.350 GEMIN5 0.021 47.9 1:263 10�10 0.019 �0.0022

rs142490551 5 176,369,037 C/G 0.019 UIMC1 0.021 49.9 3:313 10�14 0.021 �0.0003

rs191306205 6 31,739,684 T/C 0.025 VWA7 0.020 48.5 1:363 10�11 0.020 �0.0016

rs60375899 7 860,846 A/G 0.130 SUN1 0.020 49.5 3:933 10�12 0.020 �0.0009

rs2905065 9 136,958,528 C/T 0.326 RP11-349K21.1* 0.027 48.0 1:653 10�16 0.024 �0.0026

rs7946546 11 63,595,648 G/A 0.473 C11orf84* 0.018 51.8 3:323 10�9 0.014 0.0012

rs17180987 12 66,844,882 A/G 0.018 GRIP1 �0.021 47.8 3:603 10�9 �0.018 0.0024

rs1285841 14 91,881,387 T/C 0.443 CCDC88C �0.022 47.4 3:363 10�10 �0.018 0.0024

rs143569302 15 41,258,121 T/C 0.040 CHAC1* 0.021 49.4 1:373 10�13 0.022 �0.0009

rs11638671 15 63,795,628 C/T 0.344 USP3* �0.031 45.0 2:103 10�11 �0.015 0.0039

rs11647700 16 12,108,743 T/C 0.073 SNX29 0.020 50.3 9:583 10�13 0.020 0.0000

rs9807043 17 48,875,077 T/C 0.158 RP11-294J22.5* 0.017 49.5 1:653 10�9 0.018 �0.0008

rs118159243 17 62,633,136 C/G 0.017 SMURF2 0.020 47.7 6:993 10�10 0.017 �0.0019

For 8.7M SNPs, we determined the age at which there is the strongest evidence for an effect within the CAMP model is in age range 45–52. Then, given the age
identified for each SNP, we tested for significance at this age by using the CAMP model results, and we obtained effect-size and standard error estimates. The
results were then LD clumped such that the index SNPs would have a p value below 53 10�8, and SNPs could be added to a clump if they were 1 Mb from
the index SNP, were correlated with r2 > 0:05, and were nominally significant (p < 0:05). We then used the COJO method from the GCTA software (see
methods) to find clumps with independent signals by conducting a stepwise selection of index SNPs in a 1-Mb window, and we considered SNPs independent
if they had a p value below 5310�8 in the joint model. To determine novelty, we then removed all the markers that had a correlation of r2 > 0:1 with a marker
that had been previously found associated with age at menopause using the GWAS catalog and LDtrait tool with the British in England and Scotland population.
For the remaining SNPs, we conducted an additional literature review using the Phenoscanner database (see methods) to find any previous associations with var-
iants of interest or variants in LD. The remaining candidates for previously unreported associations were then tested in the Estonian Biobank. Replication was
defined as a p value lower than 0.05 and the direction of the effect size same in both the original analysis and the replication analysis. The effect-size estimates
are reported on the log hazard scale. The column named ‘‘nearest gene’’ is mapped from the SNP using ANNOVAR software (see methods), with * in that column
denoting intergenic regions.
For significant SNPs detected in the UKB, the age distribu-

tion of maximum association evidence is concentrated be-

tween the ages of 43 and 51 (Figure S3). That is different

compared with themaximum association evidence age dis-

tribution for all SNPs, which has thicker tails with nearly

four times higher standard deviation even if the distribu-

tions have similar centers (median age of 51 and 49 for

all SNPs and significant SNPs, respectively) (Figure S3). In

conclusion, the CAMP approach yields an increase in pre-

viously unreported loci: 8% of the replicated marker asso-

ciations are previously unreported, a somewhat expected

increase resulting from our approach leveraging poten-

tially existing age specificity.

Proportion and change of age-specific effects

For quantifying the existence of age-specific effects, we first

test the null hypothesis of whether the slope term b1
j is

different from 0, with a rejection of the null implying

the existence of a time-varying genetic effect. Of the
1556 The American Journal of Human Genetics 110, 1549–1563, Sep
245 UKB associations (226 previously reported þ 19 previ-

ously unreported associations), we find that 72% (176)

show at least nominally significant (p < 0:05) age-specific

effects within UK women (Figure 2C). 37 of these 176 asso-

ciations, representing 15% of all associations, have a slope

with a genome-wide significant p value (p < 53 10�8),

constituting a more stringent criterion (strong and moder-

ate evidence in Figure 2C). Checking the significance of

the slope for all SNPs (not only genome-wide significantly

associated to ANM), we find 63 regions that exhibit a sig-

nificant slope term in the UKB (Tables 2 and S1), and we

replicate the age-specific effects for 20 regions in the Esto-

nian Biobank (Table 2), yielding a replication rate of 32%

(Figure 2C). These 20 variants have stronger effect sizes

earlier in life that mostly decay toward zero after age 50

(Figure S5), making them early-ANM specific. Although

139 variants do not pass the threshold for genome-wide

significance, they still indicate that for many regions previ-

ously identified as menopause associated, the assumption
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Table 2. Regions with a genome-wide significant age-specific effect on age at natural menopause replicated in the Estonian Biobank

SNP Chr Position Eff/oth MAF Nearest gene Yearly effect change Slope p value Strongest evidence p value

rs6684319 1 39,334,988 A/G 0.310 MYCBP 0.0061 1:123 10�19 9:633 10�57

rs185012833 2 62,779,457 C/A 0.003 PSAT1P2* �0.0033 6:033 10�9 1:813 10�6

rs6760293 2 171,816,531 A/T 0.373 GORASP2 �0.0040 1:363 10�9 7:333 10�34

rs12503643 4 185,746,088 T/G 0.399 ACSL1 0.0049 3:053 10�13 4:283 10�61

rs274722 5 6,718,668 T/C 0.406 PAPD7 �0.0040 1:063 10�9 3:643 10�25

rs58400555 5 176,454,081 T/A 0.484 ZNF346 0.0039 5:343 10�9 3:213 10�179

rs2077491 6 31,606,376 C/T 0.473 BAG6* 0.0053 1:673 10�15 1:063 10�60

rs728900 10 131,590,300 A/T 0.420 RP11-109A6.3* �0.0050 5:793 10�14 4:193 10�28

rs75770066 12 66,704,225 G/A 0.033 HELB 0.0049 6:623 10�12 1:583 10�212

rs11638671 15 63,795,628 C/T 0.344 USP3* 0.0039 3:623 10�9 1:093 10�10

rs33650 16 11,978,769 C/T 0.385 GSPT1 0.0042 3:283 10�10 6:753 10�65

rs1433753 16 34,879,951 T/C 0.441 RP11-14K3.1* �0.0048 4:213 10�13 2:263 10�23

rs8071278 17 41,193,910 T/A 0.335 BRCA1* 0.0048 5:013 10�13 4:703 10�50

rs1991401 17 62,502,435 G/A 0.310 DDX5 �0.0048 2:513 10�13 2:963 10�36

rs16960290 19 55,799,918 T/C 0.433 BRSK1 0.0079 2:803 10�32 1:113 10�86

rs117146677 19 55,833,868 A/G 0.009 TMEM150B �0.0053 1:503 10�18 1:613 10�43

rs299163 19 56,321,414 C/A 0.066 NLRP11 0.0042 4:263 10�10 8:363 10�17

rs8124538 20 61,300,863 A/G 0.212 SLCO4A1 �0.0039 1:653 10�9 3:633 10�54

rs6631137 X 30,665,762 C/T 0.316 GK* �0.0064 1:603 10�22 5:433 10�43

rs67596711 X 152,638,744 G/T 0.499 ZNF275* 0.0055 1:283 10�16 3:823 10�26

For each SNP, we tested the significance of the slope parameter using the CAMPmodel. The results were then LD clumped such that the index SNPs would have a
p value below 53 10�8, and SNPs could be added to a clump if they were 1 Mb from the index SNP, were correlated with r2 > 0:05, and were nominally sig-
nificant (p < 0:05). We then used the COJO method from the GCTA software (see methods) to find clumps with independent signals by conducting a stepwise
selection of index SNPs in a 1-Mb window, and we considered SNPs independent if they had a p value below 5310�8 in the joint model. The candidates for
significant slope were then replicated in the Estonian Biobank. Replication was defined as a p value lower than 0.05 and the direction of the effect size same
in both the original analysis and the replication analysis. The effect-size estimates are reported on the log hazard scale. The column named ‘‘nearest gene’’ is map-
ped from the SNP with ANNOVAR software (see methods); an asterisk (*) in that column denotes intergenic regions; chromosome X’s nearest gene was deter-
mined by using the UCSC Genome Browser. The column named ‘‘strongest evidence p value’’ indicates the p value at the age when there is the strongest evidence
for an effect.
of constant effect size (assumption of proportional hazards

at the SNP) is generally invalid. Indeed, the 43 UKB-discov-

ered variants with significant slope terms that did not repli-

cate in the Estonian Biobank had effect-size directions that

were broadly concordant across studies (Fisher’s exact test

p ¼ 0:051, Table S1).

Second, we observe that the number of regions affecting

ANM changes considerably with the peak number of ANM-

affecting regions observed at age 49 (Figure 2A). Moreover,

we find that the period duringwhich a particular region can

significantly impact ANM varies considerably with only

half of the significant associations at age 47 also significant

at age 41. In general, we observe that effects tend to become

insignificant with increasing age, with the drop in signifi-

cance occurring at age 53, so that by age 55 only 8

loci have a genome-wide significant effect on ANM

(Figure 2A). A similar result can be seen if we observe the

distribution of ages when the evidence for the menopause

effect is the strongest (Figure S3), as very few significant

SNPs achieve the strongest association after age 51.
The American Jour
In contrast with most associations discovered at age 49,

the general trend across 245 significant SNPs is that the ef-

fect size estimates shrink toward zero (Figure 2B). That

might imply that the increase in the number of discoveries

in the period 41 to 49 is instead due to the reduction in the

standard error, and with a higher sample size, it could be

possible to detect more associations already at earlier

ages. Interestingly, only 9 of the significant SNPs have a

larger absolute effect size at age 55 than at 41. That is in

line with many previous results reporting a reduction in

relative genetic risks with the increase in age.25,26 Finally,

we observe that there exists a stark difference between

the effect-size profiles of significant and insignificant ef-

fects (Figure S4) with a much narrower effect-size distribu-

tion for the non-significant SNPs. Meanwhile, menopause-

associated variants stand out as their effect size can change

greatly across the period of interest.We find it important to

stress that the interpretation of the effects is done using

(log�) hazard ratios as the underlying model is the

CAMP model. Specifically, in the context of the CAMP
nal of Human Genetics 110, 1549–1563, September 7, 2023 1557



model, hazard ratios need to be interpreted at each age

separately as the hazard ratio changes with age, for

example as seen in Figure 2.

Our analysis differs in one other key way from previous

ANM genetic association studies. Here, we do not censor

women who were placed on hormone replacement ther-

apy (HRT). In survival models, declaring HRT individuals

as censored makes the modeling assumption that age-at-

HRT start and ANM are independent. They are clearly

not, as for women on HRT there is a correlation between

the age of HRT and ANM of 0.58 within the UKB. For

women who were placed on HRT prior to the recorded

date of ANM, this correlation is stronger at 0.69. A Cox Pro-

portional Hazards model for ANM including a categorical

covariate of whether a woman was given HRT prior to

menopause (1 if on HRT prior to menopause, 0 otherwise)

shows that censoring for HRT prior to ANM would

significantly censor for earlier menopause (HR ¼ 0.95,

p ¼ 6:083 10�15). Thus, censoring for HRT is not the

optimal modeling choice, and additionally, it results in

the loss of 34,031 observations, reducing power. Neverthe-

less, we conduct a sensitivity analysis of our estimated ef-

fect sizes with and without adding HRT as a time-varying

covariate to the CAMP model at the 312 top loci (both

replicated and unreplicated regions) identified within our

study (Figure S6). We find very strong concordance of ef-

fect sizes across loci (Figure S6), highlighting that in prac-

tice these different modeling choices have no detectable

impact on the leading SNP association findings.

Finally, we highlight notable examples of the previously

unreported replicated associations with significant slope

terms. For example, we note that chr11: 63,595,648 (in

GRCh37 coordinates), which is downstream of SPINDOC,

is increasingly associated with menopause genetic risk as

age increases, with the highest effect size being at later age

groups. Another example is chr15: 63,795,628, which is up-

streamofUSP3,where themenopauseassociationdisappears

with increasing age. Both of these associations were previ-

ously suggestively associated with ANM, but they pass the

significance threshold in the UKB, and they replicate in the

Estonian Biobank, when our proposed model was used.

Properties of previously unreported and age-specific

genetic associations

We conduct a number of follow-up analyses to support our

age-specific association results. First, we test for significant

enrichment of the summary statistics generated by our

approach for each age group. For all categories showing sig-

nificant enrichment after Bonferroni multiple testing

correction, we find that their significance does not hold

across all age groups (Figure 3; Tables S2–S9).

Effect sizes for ANM between the ages of 41–49 were en-

riched in genes differentially expressed in the uterus, thy-

roid, prostate, ovary, fallopian tubes, and cervix within

the Genotype-Tissue Expression (GTEx) consortium data

(Figure 3). Additionally, we find enrichment between the

ages of 41 and 49 for KEGG pathway NOTCH signaling
1558 The American Journal of Human Genetics 110, 1549–1563, Sep
associated with cell proliferation and death, the GO terms

for an intrinsic pathway for apoptosis, and BH3-only pro-

teins (Figure 3). In contrast, associations with variation in

ANM for individuals older than 51 were all enriched for

genes with differential expression in several brain regions

within the GTEx data with no evidence for enrichment in

reproductive tissues (Figure 3). These results suggest that ge-

netic effects may differ across the age range.

Our next follow-up analysis used LD score regression,

where we find that genetic correlations across ages are

significantly less than 1 (Figure 4A). Genetic correlations

of ANM and other phenotypes were also largely age depen-

dent (Figure 4B). Note here that effect-size estimates for

ANM are calculated on the menopause hazard scale, and

thus a positive correlation estimated by LD score regression

would refer to a high hazard of ANM (earlier ANM) corre-

sponding to high trait values; in other words, the observed

value of ANM and the trait are in fact negatively correlated.

Thus, to ease interpretation, we flip the sign of the esti-

mated correlation to display the genetic correlation of

the observed values of ANM and each trait.

Between 41 and 49 years, we find a significant positive

genetic correlation of observed ANM values with age at

last birth and age at first birth (Figure 4B), implying a ge-

netic relationship between later reproduction and later

ANM within this age range.

Of significant note, genetic propensity for breast cancer

was significantly associated with a later ANM (Figure 4B)

before age 51. This supports previous evidence, where

genetically mediated delays in ANM were found to increase

the relative risks of several hormone-sensitive cancers.8

Additionally, evidence linking exposure to high levels of es-

trogen hormones with an increased risk of breast cancer is

supported by a significant positive genetic correlation of

ANM and oestradiol levels for women of early menopause,

implying a genetic propensity for high estrogen levels asso-

ciated with a genetic propensity for a later ANM (Figure 4B).

Furthermore, we find that a high genetic risk for leiomyoma

is consistently associated with later ANM (Figure 4B).

Together with our enrichment results presented above

(Figure 3) showing early ANM genetic associations are en-

riched for genes differentially expressed in female reproduc-

tive organs, oocytes, and DNA damage-repair mechanisms,

our findings suggest that at the genetic level, breast cancer

risk, hormone levels, and ANM are linked prior to age 50.

We also find significant genetic correlations implying

that genetically mediated later ANM is correlated with a

lower genetic predisposition to hypothyroidism, stroke,

major depression, blood albumin levels, and obesity prior

to age 51 (Figure 4B). For women at later ages, we find pos-

itive genetic correlations of ANM with cholesterol, low-

density lipoprotein (LDL), obesity, and heart failure,

implying that later ANM is correlated with an increased ge-

netic predisposition for these metabolic-associated health

measures (Figure 4B).

We find a significant positive genetic correlation of ANM

values with both educational attainment and fluid
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Figure 3. Age-specific enrichment of genetic associations across multiple genomics resources
We evaluated the significance of every SNP at each age on a grid from 41 to 55 and from the resulting summary statistics we tested for
enrichment across multiple genomics resources. Circle circumference gives the � log10 p value and the color gives the enrichment Z
score calculated from the Downstreamer software. GTEx tissue-specific expression and GO terms are given on the y axis for annotations
with genome-wide significance after multiple testing correction at one or more age groups. Full results are given in Tables S2–S9.
intelligence between 41 and 49 years (Figure 4B), implying

a genetic relationship between later reproduction, higher

education, and later ANM for women before the age of

50. Interestingly, these genetic correlations also signifi-

cantly change in sign for women whose ANM occurred af-

ter age 53, with a significant negative genetic correlation of

ANM with educational attainment and fluid intelligence

(Figure 4B), implying delayed reproduction and high

educational attainment are associated with reproductive

senescence post-age 50.
The American Jour
In a further follow-up analysis, we used MR, which uti-

lizes the randomized inheritance of genetic variations in

the population, to estimate the potential causal effect a

modifiable risk factor or exposure has on a health-related

outcome of interest. We used menopause at different

ages as an exposure in five different MR methods

(weighted median, inverse-variance weighted, simple

mode, weightedmode, andMR-Egger; see Table S10) found

in the ‘‘TwoSampleMR’’ R package. Note here again that

effect-size estimates for ANM are calculated on the
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Figure 4. Age-specific genetic correlations and causality of ANM and health-related outcomes
(A and B) We evaluated the effect-size and standard error estimates for every SNP at each age on a grid from 41 to 55, and from the re-
sulting summary statistics we tested for genetic correlations among (A) age groups and (B) among observed ANMvalues at the age groups
and 100 other health-related indicators and outcomes using LD score regression. In (B), we present correlations for outcomes with ev-
idence of a significant non-zero genetic correlation at one age group or more.
(C) In (C), we present results from inverse-weighted Mendelian randomization that estimates the potential causal relationship between
ANM and outcomes where a significant genetic correlation was found in (B) across ages. Black boxes depict ages for which significant
causal estimates were found. Major depression is excluded from (C) as there are no instrumental variables available for this analysis.
Full results from a range of Mendelian randomization models are given in Table S10.
menopause hazard scale, and thus, to ease interpretation,

we flip the sign of the estimated potential causal effect to

give values on the observed ANM scale. When repeating

the analysis for each varying age of our exposure, we find

changes in the magnitude of the potential causal effect

with age for educational attainment, leiomyoma, oestra-

diol, and neutrophil count (Figure 4C).
Discussion

Taken together, we find that the majority of ANM genetic

associations display some form of age specificity in their ef-
1560 The American Journal of Human Genetics 110, 1549–1563, Sep
fects. In turn, that translates into the associations being

differentially enriched in different biological pathways

across ages, which then leads to different genetic associa-

tions of ANM and other health indicators and outcomes

depending upon the timing of ANM, with different poten-

tial statistical causal relationships.

We find evidence that prolonged and delayed reproduc-

tion are genetically associated with reproductive senes-

cence post-age 50 as the genetic correlations significantly

change in the sign for women whose ANM occurred after

age 53, with a significant negative genetic correlation of

ANM with age at last birth and age at first birth

(Figure 4B). Similarly, we find genetic correlations between
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ANM and educational attainment or fluid intelligence

significantly turn negative for women after age 53. The

latter patterns of changing genetic correlation may simply

reflect changes in schooling opportunities or system.

Furthermore, both age at first and last birth show a similar,

but stronger, pattern, and it may be the underlying factor

acting as a confounder in the education-ANM relationship.

Complementing the results from genetic correlations,

our enrichment analysis results (Figure 3) show early

ANM genetic associations being enriched for genes differ-

entially expressed in female reproductive organs, oocytes,

and DNA damage-repair mechanisms. Hence, our find-

ings suggest that at the genetic level, breast cancer risk,

hormone levels, and ANM are linked prior to age 50.

The patterns observed in the MR analyses largely reflect

those of the genetic correlations described above, but

here we find little evidence for a causal relationship be-

tween ANM and breast cancer, heart failure, age at first

or last birth, or hypothyroidism (Figure 4C). That implies

that genetic correlation estimates likely reflect reverse

causation or the presence of heritable confounders of

the trait pairs.

Our enrichment analysis findings support a link be-

tween DNA damage-repair genes and repair and surveil-

lance for the development of oocytes for early-ANM

women. The size of the initial oocyte pool at birth, along

with the rate of atresia, influences the age at which the

oocyte pool is depleted. The meiosis that occurs in oocytes

necessitates programmed double-stranded breaks (DSBs)

that must be repaired through the homologous recombi-

nation pathway, with oocytes that do not properly repair

DSBs after this first phase of meiosis undergoing apoptosis.

Here, early-ANM-associated common variants are enriched

at loci, harboring genes involved in the DNA repair and

replication checkpoint processes, such as RNA polymerase

II, histone methyltransferase complex, and histone acety-

lation (Figure 3). One-carbon metabolism has the ability

to regulate the estrus cycle and modulate the initiation of

reproductive senescence through the loss of methyl-donor

production needed to properly maintain the epigenome.

Our results support the existence of this mechanism

as early-menopause associations are enriched in pathways

associated with the hypothalamic-pituitary-gonadal (HPG)

axis and with methylation in the nucleosome, with later-

menopausal genetic associations showing no evidence of

enrichment in these pathways (Figure 3). In humans, it

has been suggested that postmenopausal women exhibit

accelerated aging compared with premenopausal women

of the same biological age.27 However, the cause-effect rela-

tionship between epigenetic changes and reproductive

senescence remains unclear, and our results imply early-

ANM women may have a methylation pattern associated

with one-carbon metabolism that differs from the general

population. Generally, our follow-up analyses support pre-

vious studies,9,28 but we demonstrate that almost all un-

derlying pathways associated with variation in ANM act

in an age-specific manner.
The American Jour
There are several important caveats to our study. First, we

have assumed that the effect size can only change linearly

with age, whereas in reality, they could consist of more

complicated patterns that could be captured with piece-

wise exponential models. However, introducing many

more parameters on a genome-wide scale would lead to a

high multiple-testing burden, potentially hampering the

capability to detect the actual signal. Furthermore, espe-

cially for traits with a moderate range of values (90% of

the observed ANM happens between ages 45 to 55,

Figure S1), introducing many parameters could lead to

overfitting. Therefore, we find that, especially in the

context of traits such as ANM, assuming a linear effect

change is a suitable compromise between the added value

of learning new information about effect change and

limiting the model complexity without damaging the sta-

tistical power. Nevertheless, the analyses presented here

represent a first step, and we encourage specifying different

functional forms for the effect size, preferably for traits

with a broader range of values or a reasonable prior guess.

Similarly, we have refrained from drawing conclusions

about the causal effect change tendencies (e.g., linear vs.

non-linear) as analyses claiming statistically significant

non-linearity would be under-powered.

Second, the current implementation of the model is not

computationally efficient, and to handle the computa-

tional burden we have utilized the computational re-

sources of two universities to produce these results. Our

objective was simply to highlight the existence of chang-

ing genetic relationships between phenotypes and health

outcomes across the lifespan. Although it is possible to

makemarginal analyses embarrassingly parallel, it is inher-

ently time consuming to fit a CAMP model. Scaling the

inference requires new research into novel algorithms for

computationally heavy high-dimensional statistical prob-

lems of this kind.

Finally, our study focused only on European ancestry in-

dividuals in the UK and Estonian Biobanks, and future an-

alyses must take into account populations with more

diverse ancestries to get a fuller picture of the genetic archi-

tecture of ANM across the globe. This requires research into

statistical models that are capable of learning both shared

and unique age-dependent effect sizes across populations,

and it requires large-scale data to be collected from world-

wide populations.

In summary, we propose an analysis approach for

GWASs of age-at-onset phenotypes using a two-stage

mixed linear-association model, where marker effect sizes

are estimated using a CAMPmodel. Our approach provides

a better understanding of the genetic basis of ANM and ap-

plies to any form of time-to-event phenotype.
Data and code availability

Age-specific summary statistic estimates are released publicly on

Dryad: https://doi.org/10.5061/dryad.nvx0k6dx5. The BayesW

model was executed with the software Hydra, with full open source
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code available at https://github.com/medical-genomics-group/

hydra.29 The scripts used to execute CAMP model are available at

https://github.com/svenojavee/CAMP. R version 4.2.1 is available

at https://www.r-project.org/.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2023.07.006.
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