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Abstract. We provide a learning-based technique for guessing a win-
ning strategy in a parity game originating from an LTL synthesis prob-
lem. A cheaply obtained guess can be useful in several applications. Not
only can the guessed strategy be applied as best-effort in cases where the
game’s huge size prohibits rigorous approaches, but it can also increase
the scalability of rigorous LTL synthesis in several ways. Firstly, checking
whether a guessed strategy is winning is easier than constructing one.
Secondly, even if the guess is wrong in some places, it can be fixed by
strategy iteration faster than constructing one from scratch. Thirdly, the
guess can be used in on-the-fly approaches to prioritize exploration in
the most fruitful directions.

In contrast to previous works, we (i) reflect the highly structured logi-
cal information in game’s states, the so-called semantic labelling, coming
from the recent LTL-to-automata translations, and (ii) learn to reflect it
properly by learning from previously solved games, bringing the solving
process closer to human-like reasoning.

1 Introduction

LTL Synthesis. [38] is a framework for automatic construction of reactive sys-
tems specified by formulae of linear temporal logic (LTL) [37]. Since LTL is a
prominent logic in the area of safety-critical and provably reliable dynamic sys-
tems, LTL synthesis is a very tempting option to construct such systems since it
avoids error-prone manual implementation; instead it is replaced with the need
for a complete specification of the system (which is not trivial either, but in
some cases easier). However, there is also an important computational caveat:
the problem of LTL synthesis is 2-EXPTIME complete. Despite the infeasibility
in the worst-case, many heuristics have been designed that can cope with practi-
cal problems, as documented by the yearly progress in the synthesis competition
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SYNTCOMP [18], which has an LTL track for a number of years. Yet, many
reasonable instances even in the benchmark set of SYNTCOMP still remain
practically unsolvable. In this paper, we aim at guessing a solution through a
machine-learning model, even for hard cases, thus possibly providing an appli-
cable answer, in a sense, without reading the input formula. We achieve that by
learning from other games and by reflecting semantic information, bringing the
process closer to human reasoning.

The classic technique for solving LTL synthesis is to

1. turn the LTL formula into a deterministic parity automaton (DPA),
2. turn the DPA (and the partitioning of atomic propositions into system vari-

ables and environment variables) into a parity game (PG) between the system
and the environment players, and

3. solve the PG; any winning strategy of the system player then directly induces
a system policy (also representable as a circuit) satisfying the LTL formula.

Due to the worst-case doubly-exponential blowup in the first step and the prac-
tically bad performance of (Safra’s [39] and others’ [36,40]) determinization pro-
cedures, this option was rarely used practically until direct, more practical trans-
lations were given [8,12]. The significantly smaller automata [20] have made this
approach feasible and, in fact, winning in SYNTCOMP since then. The app-
roach is implemented in the tool Strix [33], which additionally constructs the
DPA/PG only partially, on-the-fly until it finds a winning strategy for one of
the players. This helps to overcome some more cases where the DPA is still very
large; yet, more complex specifications often remain out of reach.

Semantic Labelling. The key difficulty in the on-the-fly exploration is a good
heuristic that prioritizes exploration in promising directions, so that a solution
can be obtained quickly, without constructing “irrelevant” parts of the game.

In a concrete state of a PG, is it better to go left or right? While this question
obviously does not have a simple answer in general, we take a step back and
instead of a PG we solve the LTL synthesis problem. For instance, consider
a state of a PG corresponding to satisfying Ga, i.e. “always a holds”. Then,
the letter {a} is clearly a better choice (for the system) than ∅. The former
leads to the obligation of satisfying again Ga; the latter to the obligation ff
(falsifying the formula). Taking the former edge does not guarantee winning,
but the chances are certainly higher than giving up directly. In order to estimate
the chances of winning with some obligation, we can evaluate it by randomly
assigning truth values to temporal subformulae; intuitively, Ga can be true or
false, so its “trueness” is 0.5, ff has trueness 0. Trueness is examined in [22] and
utilized in newer versions of Strix [31] as guidance.

Does every state correspond to a goal in LTL? And if so, can we determine
which continuation brings us closer to satisfying it? Recall that the classic trans-
lations of LTL to non-deterministic Büchi automata (NBA), stemming from [43],
label the states of the NBA with a conjunction of LTL formulae, which are the
current goals in this state. For deterministic automata, the situation is inevitably
more complex. While the determinization procedures obfuscated any possible
such semantic labelling, the more recent approach re-established it, e.g., [8] with
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goal

Fig. 1. Simple game where it is not clear which edges are “winning”.

[26], or [42] with [9]. Beside the overall goal, it is necessary to also monitor the
progress of subgoals. For example, consider GF(a ∧ Xb) “infinitely often a is
followed by b”. No matter what happens, the goal remains the same. However,
whenever a, we are progressing with the subgoal of seeing the a − b sequence
once, yielding a subgoal b, which is regarded as promising.

Our Aim. In this paper, we aim at better guessing of winning decisions than in
[22,31]. While the previous work only reflected trueness of the main goal, which
is just the percentage of truth assignments leading to satisfaction of a Boolean
formula, our approach reflects also (i) the temporal structure of the formulae,
(ii) the monitored subgoals, and (iii) learns from previously solved games. On
the technical level, we design over 200 structural features instead of just trueness,
learn an SVM classifier comparing which edge is most promising, and use data
from previously solved games, i.e. which edges are “winning”. As it turns out,
defining this notion already is surprisingly tricky: We cannot simply use the
output of classical strategy improvement algorithms, as there may be multiple,
incompatible solutions. Indeed, already for reachability, there are no maximal
permissive strategies [3], see Fig. 1. Here the edge (v2, v3) is winning iff (v3, v2)
is not used, and vice versa; using both makes them losing. Nevertheless, they are
“better” than, e.g., the self-loop on v1, which is always losing. Thus, we want to
value both edges between v2 and v3 equally, and higher than the self loop on v1.

Our Contribution can be summarized as follows:

– We learn a model predicting which edge has better chances to be winning. To
this end, we define features on the semantic labelling in Sect. 5.1, introduce
a way to measure the degree of “winning” of an edge in Sect. 4, and apply
learning of support vector machines using our novel ground truth in Sect. 5.2.

– We evaluate “how winning” the suggested strategy is, i.e. how many wrong
choices it made, on several inputs in Sect. 6.2. Surprisingly, this value often
is 0, i.e. our strategy is often winning even for complex formulae, and even
without reading them (meaning that our strategy is of constant size, inde-
pendent of the formula, as opposed to a decision table in the concrete game;
it can be run on the fly with no pre-computation, and decisions depend only
on the labelling of the current state).

– Besides, while Strix’s architecture and interface ask for a significantly
different type of advice (not just for the better of two edges), we show
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Strix already profits from our advice and—modulo our unoptimized advice
implementation—speeds up significantly, as we see in Sect. 6.3.

Usage of our Results:

– We provide an immediate solution (without even reading the input formula),
which is often winning; moreover, it is applicable even to games too huge to
be analyzed in any way. Besides, it is even of a constant size, i.e. independent
of the size of the state space.

– Our approach opens the way to (i) a solver based on the semantic labelling,
for instance, based on strategy iteration only quickly fine-tuning the already
almost correct guess, and (ii) an on-the-fly-exploration advisor to Strix, with
the proven potential to be the most efficient among the current techniques.

Related Work. To the best of our knowledge, there is only one other approach
to using machine learning in LTL-synthesis. Here, the authors train a very pow-
erful model (a hierarchical transformer) in order to directly predict a controller
or counter example solely off the LTL specification [41]. Further, if their predic-
tion is refuted by a classical model checking algorithm, they train a separated
hierarchical transformer to repair it [5] until it is correct. While this turns out
to be an overall competitive approach that also manages to solve some instances
where classical synthesis tools as Strix [33] fail, this does not yield a complete
procedure, as the repair loop is not guaranteed to ever terminate. In this work,
we aim to improve existing, complete procedures such as implemented in Strix
by means of machine learning based heuristics.

2 Preliminaries

We introduce notation and provide an overview of necessary background knowl-
edge. Due to space constraints, we only briefly comment on several topics and
refer the interested reader to the respective literature.

We use N to denote the set of non-negative integers. The constants tt and
ff denote true and false, respectively.

2.1 Synthesis & Games

The synthesis problem in its general form asks whether a system can be con-
trolled such that it satisfies a given specification under any (possible) environ-
ment. Moreover, one often is interested in obtaining a witness to this query, i.e.
some controller or strategy which specifies the system’s actions.

Parity Games are a standard formalism used in synthesis. A parity game is a
tuple G = ((V, E), v0, P, p), where (V, E) is a finite digraph, v0 ∈ V a starting
vertex, P : V → {S, E} a player mapping, and p : V → N a priority assignment.
Each vertex belongs to one of the two players S (called system) and E (called
environment). In other words, the set of vertices is partitioned into player S’s
vertices VS and player E ’s vertices VE . See Fig. 2 for an example.
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v0, 4 v1, 2

v2, 1

v3, 3

v4, 5

Fig. 2. An example parity game, taken from [22]. Rounded rectangles belong to the
system S and normal rectangles to the environment E . The vertices are additionally
labelled with their priorities.

Remark 1. In our implementation priorities are assigned to edges instead of ver-
tices, as this allows for a much more concise representation and suits most
translations better. However, for ease of presentation, we consider state-based
acceptance instead of transition-based.

Playing. To play the game, a token is placed in the initial vertex v0. Then,
the player owning the token’s current vertex moves the token along an outgoing
edge of the current vertex. This is repeated infinitely, giving rise to an infinite
sequence of vertices containing the token ρ = v0v1v2 · · · ∈ V ω, called a play. We
write ρi to refer to the i-th vertex in a play. A play ρ is winning (for the system
player) if the smallest priority occurring infinitely often is odd. (Using “maximal”
instead of “minimal” or “even” instead of “odd” does not fundamentally change
the problem at hand.) Formally, we define inf(ρ) = {v ∈ V | ∀j. ∃k ≥ j. ρj = v}
as the set of infinitely occurring states. Since the game graph is finite, this set
always is non-empty. The smallest priority occurring infinitely often is given as
p(ρ) = min{p(v) | v ∈ inf(ρ)} and system wins the play ρ if p(ρ) is odd.

Strategies. A strategy of player p is a mapping σp : Vp → E assigning to each
of p’s vertices an appropriate edge along which the token will be moved, i.e.
(v, σp(v)) ∈ E for all v ∈ Vp.1 Once both players fix a strategy, the game is
fully determined and a unique run is induced. We call a strategy of system σS
winning if for all strategies of the environment σE the induced play is winning,
i.e. system wins no matter what the environment does.

For example, consider again the game depicted in Fig. 2. Fixing the strategies
σS = {v0 	→ (v0, v2), v2 	→ (v2, v3), v4 	→ (v4, v4)} and σE = {v1 	→ (v1, v2), v3 	→
(v3, v3)} induces the play v0v2v3v3 · · · . The set of infinitely often seen priorities
equals {3}, hence the system player wins with these strategies. Moreover, the
strategy σ0 is winning, since the play always ends up in either v3 or v4.

Synthesis. With these notions, we can compactly define the synthesis question:
Given a parity game G, does there exist a winning strategy for the system player?
In the example above, σ0 is a witness to this question.
1 Strategies may be more complex, e.g., by using memory. However, “positional”

strategies are sufficient for parity games, thus we omit the general definition.



Guessing Winning Policies in LTL Synthesis by Semantic Learning 395

This problem is still intensely studied due to its broad applications. It also
is one of the few problems which canonically lie in NP ∩ coNP (even in UP ∩
coUP [19]), with recent breakthroughs achieving quasi-polynomial algorithms
[4,14,28].

Extensive-Form Game. A common notion in game theory is the extensive-form
game. Intuitively, this means completely “unrolling” the game into an explicit
representation. See e.g. [34, Chp. 5–7] for details. In our case, we consider the
game tree, where each node corresponds to a simple path in the game G. Suppose
we are in state s = (v1, . . . , vi) of the game tree. Then, the successors of s are
determined by all successors of vi in the game, i.e. {u | (vi, u) ∈ E} as follows.
Suppose such a successor u already occurs along s, i.e. a loop is closed, we check
if the corresponding play is winning or losing. In that case, the choice leads to
a corresponding winning or losing leaf of the tree, respectively. Otherwise, i.e.
when no loop is closed by the choice, it leads to s ◦ u. Essentially, this game
tree represents all potential simple paths (and thus, intuitively, all potential
positional strategies) that can arise in the game, and each edge corresponds to
a particular move of a player (also called ply in game theory). In particular, it
is finite, however of potentially exponential size. Note that we can restrict to
simple paths only because positional strategies are sufficient.

Minimax Game Solving. A fundamental way to solve games is the minimax deci-
sion rule, which intuitively corresponds to exhaustively exploring the extensive-
form game (also discussed in [34]). Suppose we assign a value of 0 to “losing”
leaves of the game tree and a value of 1 to the “winning” leaves. Then, we can
“back-propagate” values by setting V (s) the maximum of all successors of s if
it currently is the turn of the system player and the minimum if instead it is
environment’s turn (which wants the system to lose). The game is winning if
the value in the initial state of the game tree is 1. This approach is also called
backward induction or retrograde analysis: starting from the winning / losing
positions of the game, we consider all moves which could lead to such situations.

Strategy Improvement (or strategy iteration, abbreviated by SI ) is the most
prominent practical way of solving parity games, i.e. answering the synthe-
sis question. It received significant attention due to recent practical advances
[13,15,17,32] and modern tool developments [6,33]. We explain the approach
briefly, since its details are not important for this work. Intuitively, SI starts
from arbitrary initial strategies for each player, and then performs the follow-
ing steps in a loop. First, we check whether either strategy is winning. If yes,
the algorithm exits, returning this strategy. Otherwise, one of the strategies is
improved by changing its choices in some vertices. If an improvement is not pos-
sible, there exists no winning strategy for the respective player. Otherwise, the
process is repeated with the new strategy.

This algorithm converges to the correct result in finite time for any initial
strategy. However, if this initial strategy is chosen “close” to a winning strat-
egy, then SI intuitively needs to perform fewer steps to converge to an optimal
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one. Thus, a heuristic which often comes up with a “good” initial strategy may
improve the runtime significantly over arbitrary or random initialization.

2.2 Linear Temporal Logic and Reactive Synthesis

Linear Temporal Logic (LTL) [37] is a standard logic used to specify desired
behaviour of a system. The syntax usually is given by

φ:: = ff | a | ¬φ | φ ∧ φ | Xφ | φ U φ,

where a ∈ AP is an atomic proposition, inducing the alphabet Σ = 2AP. These
formulae are interpreted over infinite sequences w ∈ Σω called ω-words. A word
w = w0w1 · · · ∈ Σω satisfies the next operator Xφ iff φ is satisfied in the next
step. Similarly, the until operator φUψ is satisfied iff φ holds until ψ is eventually
satisfied. Usual abbreviations are defined as finally Fφ ≡ tt U φ and globally
Gφ ≡ ¬F¬φ, which require that φ holds at least once or always, respectively.
Moreover, the construction underlying our work also considers strong release
φ M ψ ≡ ψ U (ψ ∧ φ), (weak) release φ R ψ ≡ Gψ ∨ (φ M ψ), and weak until
φ W ψ ≡ Gφ ∨ (φ U ψ). Considering these additional operators allows formulas
to be represented in negation normal form, i.e. the negation ¬ only appears in
front of atomic propositions. In the interest of space, we refer to [12] for precise
definition on the semantics and discussion of these subtleties. Understanding
these issues is however not required for this work.

LTL Synthesis is an instance of the general synthesis problem, where the spec-
ification to be satisfied is given in form of an LTL formula [38]. Due to recent
advances [11,12,16,20,21,25], the automata-based approach [43] to LTL synthe-
sis received significant attention. In particular, the tool Strix [33], built on top
of Owl [24], which in turn implements these ideas, won several iterations of the
synthesis competition SYNTCOMP [18]. Essentially, the given LTL formula is
translated into an ω-automaton, which in turn is transformed into a parity game.
Solving the resulting game yields a solution to the original synthesis question.

This game is obtained by “splitting” the automaton, as follows. The set
of atomic propositions is split into system- and environment-controlled propo-
sitions, i.e. AP = APS ∪ APE , and the players’ actions correspond to choosing
which of their propositions to enable. Once both players chose their propositions’
values, the automaton moves to the next vertex according to the players’ choices.
Concretely, for an automaton state p, the environment can choose to move into
(p, v) where v ⊆ 2APE , and from there, system can move to any automaton state
q = δ(p, v′∪v) where v′ ⊆ 2APS and δ is the transition function of the automaton.
In particular, this means that the obtained game is alternating, i.e. system and
environment take turns in alternation. Moreover, by convention the environment
moves first. See e.g. [33] for more details on this approach.

Semantic Translations from LTL to automata are the key ingredient to our
approach. On top of providing a parity game, they also give a semantic labelling,
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a XG b

a F c G(r F g) . . .
G b F c G(r F g) . . .

a a

Fig. 3. Motivational example to provide guidance through semantic labelling.

i.e. interpretable meaning, to the game’s vertices. In particular, the approach
introduced in [8] (see also [10–12]) and implemented in Owl [25] intuitively yields
for each vertex a list of LTL formulae, which roughly correspond to (sub-)goals
which still have to be fulfilled, possibly repetitively.

2.3 Our Goal

In this work, we want to demonstrate that this semantic labelling can be effi-
ciently exploited for reactive synthesis. For a motivational example to consider
semantic labelling, we display a (vastly simplified) labelled game in Fig. 3. We
are offered with the choice of choosing a or ¬a. While it is not completely clear
that choosing a is indeed better, it certainly seems to be more promising, as
the subsequent labelling seems much “easier” to handle. Thus, faced with a
choice, we likely would first try to win with a. Observe that without the seman-
tic labelling, our best option in this situation would be a random guess. In [22],
the authors used a simple, manually designed mechanism trying to capture this
notion, called trueness. Motivated by the (surprisingly good) results of this app-
roach, we want to tackle this problem by more sophisticated means. Concretely,
we want to make meaningful decisions based on the labelling. However, while
the theory underpinning semantic translations is quite clean and pleasant [12],
the actual labellings appearing in practice are quite complex. To further com-
plicate things, the highly optimized implementation thereof [25] employs several
subtle optimizations and special cases. We provide an example to showcase the
complexity of this labelling in practice later in Sect. 5, kept brief in the interest
of space, and a small real-world example in [23, Appendix A.1]. Since we have
a simple intuition which however seems difficult to formalize, we opt to tackle
this problem through means of machine learning.

3 Previous Approaches and Their Limitations

In this section, we briefly summarize the ideas of [22] and the inherent problems
associated with them. The primary motivation of [22] is to exploit the seman-
tic labelling provided by [25], which gives us an indication of the long term
goals in the game. As an analogy, consider the game of chess. Here, the “seman-
tic labelling” is given by the board state, i.e. the position of each piece. This
labelling provides us with a reasonable indication of (i) our current situation
and (ii) which moves might be better than others. In particular, understanding
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and evaluating the semantics of the game is what allows humans to have a good
intuition about the quality of moves, without thinking through the intractably
large game tree. Likewise, this understanding is what enabled algorithms to per-
form beyond human capabilities.

3.1 Parity Game Solving by Trueness

A central notion of [22] is trueness, an approximation of how close a formula is
to being satisfied, i.e. tt. The intuition is that the semantic labelling of states
effectively describes “goals” of the system player. If the formula is tt, the system
has satisfied all goals and consequently won the game. Likewise, increasing the
trueness is indicative for a good move. Remaining with the analogy of chess,
trueness somewhat corresponds to counting the number of pieces on the board (or
rather the difference between our and the opponent’s pieces): If no enemy pieces
remain, we certainly have won, and a change of this difference, i.e. capturing an
enemy piece or avoiding capture of own pieces, is a good indicator for the quality
of a move. In particular, this prohibits us from taking moves which immediately
lead to a piece being taken.

In [22], the authors propose two ideas. First, they suggest to use a trueness-
maximizing strategy as initial one for strategy iteration, i.e. in each state select
the edge which maximizes (or minimizes, in the case of E) the obtained trueness.
Second, they use Q-Learning, a popular reinforcement learning approach, as
a solver for parity games, i.e. as competitor to strategy iteration, using three
different reward signals. There, each edge is given a reward, which is mostly
based on (the change of) trueness, and these values then are back-propagated
until choosing optimal rewards in each step yields a winning strategy.

While they also show Q-Learning to be an interesting avenue, we primarily
focus on the “initializing strategy iteration” approach, since our goal is to aug-
ment exiting strategy iteration solvers. Moreover, the experimental evaluation
of [22] suggests that Q-Learning scales poorly to large real-world formulae.

3.2 Problems

We now outline two key issues of this approach.
Myopic Trueness The primary heuristic in [22] is trueness. While this app-

roach already performs surprisingly well, especially for so called safety and
co-safety formulae, it fails to take into account temporal dependencies; true-
ness is myopic. Again, considering chess, while counting the change of pieces
does help us avoid “obviously stupid” moves, it does not stop us from moving
pieces into positions where they are effectively guaranteed to be taken even-
tually and does not allow for sacrificing a piece in exchange for a long-term
advantage.

Manual Design Their reward functions were defined manually, in contrast to
being obtained from a learning process. While the intuition behind these
definitions is reasonable, obtaining a guidance heuristic as a result of an opti-
mization process is a much more principled approach.
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We proceed to outline how we tackle these issues by a more sophisticated app-
roach.

4 A New Hope

We want to improve reactive synthesis by applying machine learning. As already
motivated by [22], we want to approach this problem by identifying “promising”
edges, choosing those as initial strategy for SI. Naturally, as a first step, we need
training data for our learning approach. In particular, we need to identify which
actually are the actual good choices in games, i.e. the ground truth. As it turns
out, this is more complicated than one might expect.

4.1 Obtaining Training Data with SI

As SI allows us to solve a game and determine winning edges, one might try to
employ SI for obtaining a ground truth (as we did initially). However, SI actually
provides us with potentially misleading or even conflicting information! As we
already hinted in the introduction through Fig. 1, SI cannot give us a canonical
ground truth. In the example, one edge is winning iff the other is not used, and
vice versa. Thus, SI will yield a strategy which does not take both edges and we
would consider one of them losing. Moreover, note that there is no fundamental
reason to prefer one edge over the other, so SI might in one run classify the edge
from v2 to v3 as good and in a second run (or on a similar game) do the opposite
or even consider neither winning. The underlying problem is that parity games
do not allow for a unique maximally permissive strategy (see e.g. [3]), thus we
cannot derive the “suitability” of an edge from a single solution strategy.

4.2 Solving the Game Tree

Instead of using a particular strategy obtained from SI, we therefore propose to
identify “all” solutions, i.e. all edges which are part of a winning strategy. More
formally, for each vertex v we want to determine the value of each outgoing edge
in the corresponding game tree rooted at v. To prefer “shorter” solutions over
larger, we add a beta-decay to the value. Concretely, suppose we consider the
game tree state s = (v1, . . . , vi) which ends in a system state vi. Then, the value
of s is defined by val(s) = β · maxs′∈successors(s) val(s′) for a fixed 0 < β < 1.

As we already mentioned, evaluating this tree is intractably large, namely
exponential in the size of the game, which itself is already doubly-exponential in
the input formula [27,38]. Thus, we employ a classical technique of game theory.

4.3 Monte Carlo Tree Search (MCTS)

Intuitively, we explicitly unfold the tree up to a specified depth, e.g. 7 plies,
and then assign the results of (guided) random sampling to the occurring leaves,
approximating the (beta-decayed) value of the game in these vertices.



400 J. Křetínský et al.

We describe our method to approximate the value of a node s = (v1, . . . , vi)
in the game tree. In essence, starting from vi, we randomly select successors,
with the following restrictions for each player. The environment plays optimally,
i.e. if a state is winning for the environment (which we can determine beforehand
through classical approaches) we immediately stop sampling and return a value
of 0. Otherwise, the environment heuristically tries to delay the play as long
as possible (decreasing the value the system player obtains due to beta-decay).
In contrast, the system player checks in a one-step lookahead if a choice is
trivially winning, i.e. leading to a state labelled tt, always choosing such an
edge if one exists. Otherwise, the system randomly chooses among edges which
are not trivially losing, i.e. lead to a ff state. If either player closes a loop, i.e.
selects a successor which already occurs along the path, we determine the value
by checking if the loop is winning or losing. A loss yields a value of 0, while
a win yields βlength. In summary, we approximate the probability of winning
by playing randomly (avoiding obvious mistakes) against an optimal opponent,
under-approximating the true value. We deliberately opt for this random-choice
approach to prefer regions where there is less potential for error.

4.4 Optimizations

While MCTS makes approximation of the game tree value feasible, we added
several further technical improvements to arrive at a practically viable method.

SCC Decomposition. We exploit the structure of the game by decomposing it into
its strongly connected components (SCCs) and put them in reverse topological
order. Computing (or approximating) the value in that order allows for caching:
Once a run in the game tree leaves an SCC, it can only reach SCCs further down
in the topological order, and, since we compute values in this order, the value of
the reached state is already known, allowing us to re-use it immediately.

Pruning. In addition to employing the MCTS values as game values in the tree
expansion, we also use it to prune the game tree. In particular, once we computed
the Monte Carlo values for each state, we restrict the choice of the environment
to the successors which yield (close to) the lowest Monte Carlo value (recall that
the environment prefers lower values). We empirically chose 0.02 as a threshold,
i.e. we only keep those edges for the environment which are within 0.02 value
of the lowest decision. While in theory this might remove crucial paths due to
statistical fluctuations of MCTS, in practice it allows for a much deeper game
tree, which in our experiments heavily outweighed the theoretical downside.

5 Handling the Truth

We introduced a way how to obtain a well-founded notion of “value” (to be
precise, an approximation thereof) for a choice, i.e. an indication how good this
choice is. As such, we can rank edges by their value in each state. Intuitively,
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picking an edge which is ranked very highly should correspond to a good chance
of winning. A high value means that even against an optimal player we can very
likely close a winning loop, and, due to beta decay, do so quickly, thus minimizing
the chance for an error.

Recall that our goal is to provide a good initial strategy. Thus, the exact
values actually are irrelevant, since we only want to give the best edge as initial
choice. Instead of trying to predict the exact value, we therefore want to learn
this relative ranking. Formally, suppose we consider a system vertex v ∈ VS with
edges Ev = {(v, u) | (v, u) ∈ E}. A ranking of edges effectively corresponds to
a (total) order ≺v ⊆ Ev × Ev. The principle of pairwise ranking [30] suggests
that we learn a function f : Ev × Ev → {−1, 1} that classifies pairs of edges
depending on which one is the better choice, i.e. f(e, e′) = 1 if e′ ≺v e and
−1 otherwise. However, such a function might not be perfect. For example, we
could get f(e1, e2) = 1, f(e2, e3) = 1, and f(e3, e1) = 1, which is incompatible
with any order. Thus, learning to rank suggests to determine an ordering ≺ that
minimizes the inversions w.r.t. f , i.e. the number of cases where f(e, e′) = 1 but
e ≺v e′. This problem, called rank aggregation, is known to be NP-hard, and
we employ a greedy approximation as suggested by [30].

Our concrete goal thus now is to learn such a function f based on the semantic
labelling of the start and end vertices of the two edges. We want to employ
machine learning for this purpose: While the high-level intuition of the semantic
labelling is rather clear, the actual implementation used to obtain the games [24]
employs numerous optimizations, separate cases, etc. To provide the reader with
a sense of the complexity, we display a single edge in the automaton obtained
for a simple formula in Fig. 4, and a real-world scenario in [23, Appendix A.1].

((a b G b) ((c F c) GF c))

M1:
co-safety: [c F c]
safety: tt

M2:
co-safety: [tt]
safety: a b G b

((c F c) GF c)

M1:
co-safety: [c F c]
safety: tt

a tt, b ff, c ff

Fig. 4. A single transition in the automaton computed for the formula (a∧Gb)∨GFc.

We proceed to describe (i) (some of) the features we use, i.e. which quantities
we extract from the labelling, (ii) the model we employ, and (iii) the dataset and
methodology used to train our model.

5.1 Features

In total, we have defined over 200 different features to convert the edges into
a usable vector of reals. In the interest of space we only present the high-level
ideas of a small subset which covers most interesting ideas.

Since most information is contained in the states rather than in the edges
themselves, the majority of our features are defined for the former. An edge is
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then either associated with the feature value of its successor or with the change
in a feature value between its predecessor and successor. As indicated in Fig. 4,
the semantic labelling comprises several formulae, namely a “master” formula,
which intuitively indicates the global state, and several “monitors” (which them-
selves comprise several formulae), monitoring repeating sub-goals. We define base
features, which convert a single formula to a single number. These features can
then be applied to both the master as well as monitor formulae, where further
aggregation is necessary. Some notable base features are the following:

Number of Conjuncts We count the number of conjuncts if the top level
operator is a conjunction and otherwise default to 1. The intuition behind this
feature is that less conjuncts tend to correspond to a less constrained formula.
Further, reducing the number of conjuncts along an edge often means that
sub-goals have been achieved. (We consider several further syntactic features
such as the number of disjuncts, the height of the syntax tree, or the number
of temporal operators, which all follow similar ideas.)

Trueness Since this has proven to be a solid heuristic on its own, we again
incorporate it as a feature.

System Control This feature (and variations thereof) incorporate the infor-
mation of the variable partitioning by approximating how much impact the
choice of the system variables has on the truth value of the formula. Intu-
itively, a higher system control is desirable. Further, this feature also coun-
teracts false positives of, e.g., trueness, as high values of trueness are worth
much less if the system has no control on whether one of the many satisfying
assignments is played.

Obligation Set This group of features is based on the idea of obligation sets as
introduced by [29]. In essence, an obligation set for a formula ϕ is an assign-
ment that, if played indefinitely, satisfies the formula. Using the inductive
definition of [29], we can compute a formula ϕ′ whose satisfying assignments
are exactly the obligation sets of ϕ, see [23, Appendix A.2]. Using this new
formula, we can obtain numerous new features by applying other base fea-
tures to ϕ′. In particular, we are interested in the new formulas trueness as
this indicates how many obligation sets exist. Further, we are interested in
its system control, as a higher value makes it more likely that the system can
enforce at least one obligation set.

In addition to the base features, we define the following edge-specific features:

Priority As priorities are crucial for winning a play, it is only natural to incor-
porate that information in our features. However, as SVMs struggle with par-
ity information, we reorder the priorities by how beneficial they are for the
system and map them to [−1, 1] (similar to [22]). In particular, the smallest
odd priority gets mapped to 1 and the smallest even priority to −1. For this
normalization, we use an a-priori upper bound provided by the underlying
automaton construction.

Progress This feature is rather similar to [22]’s progress feature. We com-
pute the percentage of already succeeded sub-goals of a monitor (instead of
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their trueness) and aggregate by weighted average (rather than maximum).
Additionally, we introduce punishments for failing monitors. Intuitively, this
encourages long-term progress for temporal goals.

One Step Here, the idea is to recommend an assignment that is to be played
in the current state by traversing the syntax tree and propagating recom-
mendations upwards, which is inspired by message passing in graph neural
networks. For example, if we see a ∧ b we strongly recommend playing a and
b, if we see F(a ∧ b) we take the previous recommendation and tune it down,
since F is “less urgent”. The feature value is obtained by measuring how well
the valuation of an edge aligns with the recommended assignment.

5.2 Pair Classification by Support Vector Machines

To instantiate our pair classification function f , we opt for support vector
machines. In principle, one could employ any binary classifier, which is why
we also experimented with other models such as decision trees, random forests
or gradient boosted trees. However, SVMs proved to perform best, which we
attribute to their great ability to generalize due to their margin maximiz-
ing nature [30]. Additionally, SVMs are rather simple (compared to our other
options) and provide us with extra information known as confidence. Given by
the distance of the predicted sample to the decision hyperplane, its magnitude
can be interpreted as how confident the SVM is in its prediction. We denote the
confidence of a pair (e1, e2) by c(e1, e2) and use it to slightly alter the greedy
ranking algorithm from literature. To rank the edges of a vertex v, each edge
e ∈ Ev gets assigned a score s(e) =

∑
e′∈Ev,e′ �=e c(e, e′). Recall that if we predict

e ≺v e′, the confidence is negative. Finally, we rank the edges according to their
score, where a higher score corresponds to a better edge, and the recommended
strategy is obtained by playing the highest ranked edge for each state.

5.3 Further Notes on Implementation

In addition to the feature extraction, there are several other engineering aspects,
which are crucial for the final performance. In this section, we comment on the
three most important ones.

Statewise Feature Normalization. Before passing the features to the model, we
proceed to normalize them. Due to possible future applications in on-the-fly
solvers, we only consider feature values of edges from the same state for this
normalization. The crucial observation is that this already introduces compara-
tive information in the features. A normalized trueness value of 1, for example,
means this edge has the best trueness among all other edges from their state
although it does not tell us anything about its absolute value. While the latter
might also be important in theory, we observed that in practice the statewise
normalized value is more important with only a few exceptions.
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State Classification. We observed several significantly different behaviours
required in different states. For example, in some states we need to exclusively
focus on the master formula, while in others only the monitors play a role. This
also relates to the underlying principles of the automaton construction. It is very
difficult, especially for a simple model like an SVM, to switch between different
behaviours. We divide states into three groups which approximate the different
classes, and train separate models for each class. The three classes we suggest are
(i) states without monitors, (ii) states where the master formula does not change
in any successor, (iii) and states that fall into neither category. In addition to
having the separate models learn separate behaviours, we can also provide them
with separate feature sets that only include relevant information. For example,
the first class only requires features of the master formula, whereas these can be
neglected in the second one.

Complement Construction. The underlying automaton construction uses the fact
that the system being able to enforce satisfaction of a formula ϕ is equivalent to
the environment being able to enforce falsification of ¬ϕ. In other words, solving
the game for the negated formula and swapped roles yields the same result.
However, in the game obtained for ¬ϕ the role of “system”, the player who choses
second and for which we learnt the recommendation, i.e. for transitions from
states (p, v) to q, now corresponds to the original environment. This drastically
changes the meaning of features. For example, a trueness of 0 suddenly is very
desirable. We tackle this by training separate models for both cases. Together
with state classification, this yields a total of 6 different models that we assemble
for our heuristic.

5.4 Training the Model

With these ideas at hand, we conclude this section by discussing our dataset, in
particular how we preprocess it, and how we train our model.

Dataset and Preprocessing. As one of our goals is to exploit human bias in writ-
ing LTL formulae, the foundation of our dataset is given by the LTL benchmarks
of SYNTCOMP.2. To further augment the data, we mutate these formulae by
randomly replacing temporal operators. This yields new (random) samples that
syntactically resemble the original, human-written structure. For practical rea-
sons, we only consider formulae which can be converted to a DPA within 10 min.
Ultimately, this leaves us with 405 original and 514 mutated formulae, of which
we use 60% each for training, 20% for validation, and 20% for evaluation.

Obtaining the edge pairs for training requires several further steps. First of
all, we exclude trivial cases that can easily be detected by simple rules (see Sect.
4.3), allowing our model to focus on complicated cases. Further, we exclude pairs
where the ground truth value happens to be equal, as it is unclear which edge
the model should predict. In particular, we exclude all edges originating in losing

2 Available on GitHub https://github.com/SYNTCOMP/benchmarks.

https://github.com/SYNTCOMP/benchmarks
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states (since there is no sensible action to recommend). Finally, we only include
a limited amount of pairs per game in the training set: Pairs of the same game
tend to look similar, thus a few disproportionately large games would result in
a very unbalanced dataset. All remaining edge pairs are added in both orders,
i.e. ((e1, e2), y) and ((e2, e1), −y), where y ∈ {1, −1} determines which edge is
better, in order to prioritize teaching symmetry to the model.

Training. For each of the 6 models, we first compute mean and standard devi-
ation of the respective training set and use them to standardize the input to
N (0, 1). Further, we perform recursive feature elimination for each state class
individually, adapted to features appearing twice (once for each input edge). For
each state class, we ended up with 30–40 features.

For the actual training process, we performed an extensive grid search for
several model types (decision trees, random forests, etc., see Sect. 5.2) in order
to determine suitable values for the hyper-parameters. As mentioned earlier,
we ultimately opted for the SVMs due to their simplicity and generalization
abilities.

6 Experimental Evaluation

In this section, we present experimental evaluation of our tool SemML. The model
was learnt by communicating the relevant data to a Python process running
scikit-learn [35]. We then extracted the learnt weights and, based on them,
implemented the recommendation procedure in Java, on top of Owl [24]. The
artifact can be found at [1], which references a slightly improved version from
the one we submitted to the artifact evaluation [2].

6.1 Evaluation Goals

Our primary goal in this work is to show that our approach, enabled by our
new ground truth, can be used to solve more complicated instances than the
approach of [22], in particular formulae going beyond pure (co-)safety. Thus, our
first evaluation goal is the following:

Research Question 1: How much does our model based on SVM and the
game tree ground truth outperform the trueness-based initial strategy rec-
ommendation approach of [22]?

We refer to the trueness-based initial strategy of [22] as TrueSI.
Although not the focus of this work, we ultimately want to improve synthesis

through meaningful exploration guidance, in particular, by suggesting likely win-
ning edges. Thus, we are interested how our prototype performs in a real-world
scenario.

Research Question 2: How do initial strategies recommended by our app-
roach synergize with state-of-the-art synthesis tools?

We address both questions separately.
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6.2 RQ1: Quality of Initial Strategy

Datasets. To fairly compare to [22], we consider the same dataset, i.e. randomly
generated LTL formulae, split into three categories: “(Co-)Safety”, “Near (Co-
)Safety”, and “Parity”. See [22] for details on how these are obtained. In essence,
the tool randltl [7] is used to generate random formulae with different biases.
Then, we filter out formulae which need more than 10 min to be translated to a
parity automaton. As a second dataset, we also use some (original and mutated)
SYNTCOMP formulae (the test set described in Sect. 5.4). We only consider
formulae where the corresponding game can be won by system. We do this simply
because we can only recommend on games which are winning – otherwise there
is no preference on edges since every action is losing by definition. In total, this
leaves 262 randomly generated formulae and 123 from SYNTCOMP.

Metrics. We consider two metrics for our comparison. Firstly, similar to [22],
we consider the fraction of immediately solved games, i.e. games where following
actions recommended by SemML or TrueSI directly yields a winning strategy. In
light of our motivation to augment SI solvers, we want to measure how “close”
the recommended strategy is to being correct in case is not immediately winning.
To this end, we feed it to (a modified version of) the parity game solver Oink
[6] and compute the (relative) distance of the obtained strategy, as follows. We
count the number of (reachable) states in which the winning strategy determined
by Oink differs from the recommended one, i.e. how many “wrong” choices were
recommended, and divide it by the total amount of (reachable) states. We note
that this unfortunately induces a slight bias that we cannot measure: Oink may
potentially change winning decisions because of internal details of the algorithm.
Ideally, we would want to obtain the minimal distance over all winning strategies;
however this quantity is intractable to compute due to the exponential size of
the strategy space. Nevertheless, we believe that this measure strongly correlates
with the quality of the strategy.

We argue that simply measuring the number of iterations required by strategy
iteration to converge is a too crude metric: On the one hand, even a “very wrong”
strategy can be changed to a winning strategy in a single iteration by changing
the choice in every single state. On the other hand, even a nearly correct strategy,
requiring only a hand full of changes, may need as many iterations. Moreover,
this additionally induces the same bias as above.
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Table 1. Summary of our comparison between TrueSI, the approach of [22], and our
tool SemML. We first list the fraction of immediately winning strategies (larger is better),
followed by the geometric mean of the relative distance, i.e. the fraction of states in
which the decision was adapted by Oink to obtain a winning strategy (smaller is better).
For the first comparison, we also consider random initialization as a baseline. For this
second comparison to be fair, we only consider games where neither tool yielded an
immediately winning strategy.

Tool (Co-)Safety Near (Co-)Safety Parity SYNTCOMP
Immediately Solving

TrueSI 100% 85% 66% 44%
SemML 99% 95% 88% 85%
Random 7% 2% 5% 3%

Relative Distance
TrueSI – 75% 45% 29%
SemML – 52% 28% 16%
Ratio of both – 1.4 1.6 1.8
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Fig. 5. A detailed comparison on SYNTCOMP formulae. The left plot compares how
many games were immediately solved, grouped by size and considering the (arithmetic)
mean in each group. SemML’s values are displayed by crosses, TrueSI by circles. The
right plot compares the relative distance of SemML’s and TrueSI’s solutions.

Expectations. Since our approach incorporates trueness as one of its many fea-
tures, we expect that our approach should be at least on par with the previous
one of [22]. As we also consider long-term temporal information beyond true-
ness, we particularly expect to outperform TrueSI on larger, more complicated
instances.

Results. We ran this evaluation on consumer hardware (Intel Core i7-8565U
with 16GB RAM). We summarize our findings in Table 1. Clearly, our approach
vastly outperforms the previous one. In particular, while TrueSI perfectly han-
dles (co-)safety formulae, its performance quickly drops when going to more
complicated formulae. In comparison, the SemML solves the vast majority of for-
mulae immediately, even on the quite complicated SYNTCOMP dataset. We
note that these findings are not “absolute” (as to be expected from machine
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learning approaches). There are few instances where the previous approach does
perform better. Our baseline comparison to a random initialization approach
validates that both approaches indeed solve a non-trivial problem.

Since we are particularly interested in complex, “human written” formulae,
we investigate the SYNTCOMP dataset more closely. In Fig. 5, we provide a
more detailed view on our two metrics. First, we investigate how the “immedi-
ately solving” performance evolves in comparison to the size of the game, which
intuitively correlates with the difficulty of the synthesis question. We observe
that SemML solves practically all smaller games and still performs well on larger
games, compared to TrueSI, which quickly falls off. The second plot displays the
relative distances for each instance which neither recommendation solved imme-
diately. We clearly see that the strategies recommended by SemML are better in
almost all cases.

This positively answers our first question. Aside from the direct comparison
to the previous approach, the significant percentage of immediately solved games
gives us an interesting implication: If SemML solves many games immediately, we
can use SemML as a best-effort guidance tool for reactive synthesis questions
which are intractably large to solve. Moreover, SemML thus presents us with a
constant size representation of a winning strategy for many games, effectively
described by approximately a few hundred SVM weights compared to a decision
table for thousands of states in each game.

6.3 RQ2: On-the-fly SemML

In our second experiment, we evaluate the suitability of SemML for real-world
parity game solving by using it as guidance tool for the state-of-the-art reactive
synthesis tool Strix [33].

Strix’ Anatomy. We first briefly describe how Strix works and how it uses
guidance heuristics. In essence, Strix builds the parity game on-the-fly, i.e.
iteratively constructs parts of the game it deems important. Then, two strategy
improvements are running in parallel, one for either player. Not yet explored
states are treated as losing for both. In this way, if we find a winning strategy for
either player on the constructed part of the game, it is winning for the complete
game. Otherwise, we need to explore further. Here, a key ingredient for practical
efficiency is a heuristic to decide which states should be explored first: If we
explore states reachable under the “smallest” winning strategy, we naturally find
this strategy as quickly as possible. In its current form, Strix employs trueness
for this guidance and selects an automaton edge with the globally highest trueness
for exploration. (Dually, edges with the lowest trueness are also followed, since
these are “promising” for the environment.)

Integration. We integrate SemML with Strix as follows. Suppose we are asked to
compute a global score for an automaton edge e = (p, q) (recall that SemML gives
local advice on edges in the game). We explicitly build up the game between the
automaton states p and q, i.e. all choices of the environment in p followed by the
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respective system choices. For each occurring system state s, we compute the
SemML ranking score as explained in Sect. 5.2, i.e. the confidence based score.
This only gives us local information: the magnitude of our score only reflects the
preference relative to actions available in the system state s = (p, v). Since the
previously used trueness proved to be a good indicator for global progress, we
multiply our local score by this global value. Finally, to obtain a value for the
automaton edge, we take the minimal value of all arising system states, since
the environment chooses first. We additionally apply straightforward rules such
as assigning values of 0 and 1 values to ff and tt states, respectively. Finally,
Strix by default employs a decomposition approach, which does not build a
single DPA. Therefore, SemML would not be applicable, and we disable it for the
purpose of evaluation.

Dataset. We considered 188 randomly selected formulae of SYNTCOMP (which
were not used in the training of the model), also including unrealizable ones.

Metrics. We evaluate the total required time to solve the game and compare
to Strix in its normal configuration. Since we expect the unoptimized compu-
tation of SemML’s advice to take considerable time, we separately measure the
required time and additionally perform a comparison with this time subtracted.
Since our scoring function is a straightforward SVM, we strongly believe that by
tailoring the evaluation to Strix’ requirements, it can be significantly sped up.
In particular, our advice computation re-constructs information which is com-
puted during the exploration of the automaton but difficult to access without
significant changes to both Strix and Owl.

Expectations. We do not expect this approach to work to its full potential
because Strix architecture does not exactly fit our approach (recall that our
primary motivation was to compare to [22]). We discuss these differences and
possible ways to address them later. Moreover, as we construct the intermedi-
ate game states for every recommendation and evaluate the recommender SVM
several times, we expect that significant time is spent computing the advice of
SemML.

Results. We conducted our experiments on a server with an Intel Xeon E5-2630
v4 processor with 256GiB of RAM and employed a 10 min timeout per exe-
cution. We summarize our findings in Fig. 6. Strikingly, our approach already
performs favourably, despite the differences in architecture, hardly optimized
advice computation, and no specific re-training for the task at hand. Exclud-
ing the time spent for advice computation, our approach performs significantly
better in practically all instances. This answers our second question positively,
too.

Adapting SemML to Strix In order to adapt our underlying approach, we require
several non-trivial changes to SemML. We discuss the “mismatches” between the
current approach and how they could be addressed. First, Strix selects a glob-
ally optimal edge to explore while SemML suggest actions locally. In particular,
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Fig. 6. Scatter plot comparing Strix with guidance provided by SemML and the default
Trueness. On the left, we depict the total runtime excluding time spent for computing
the guidance, and on the right we show the total time. We plot all models for which at
least one method produced a result and count timeouts as 20 min (twice the timeout
of 10 min). Note that the plot is logarithmic. The dashed lines denote a 10x difference.

our scoring is not trained to compare edges of two different states. While true-
ness seems to be a good compromise for the time being, we believe that (through
significant engineering effort) Strix can be modified to accommodate local rec-
ommendations, or, alternatively, a more sophisticated indicator of a state’s global
relevance can be learnt. Second, Strix performs two searches, one for the environ-
ment and one for the system player. However, the parity games we deal with are
not entirely symmetric – environment always moves first. Thus, we cannot directly
apply SemML’s ranking to environment states, as they have a different structure.
Here, we believe that the best solution is to train a separate model for the environ-
ment (or rather, six further models). Thirdly, Strix only constructs the automa-
ton explicitly and computes the game implicitly. As such, Strix requests scoring
information only for edges in the automaton and not in the game. This can be
addressed by closely integrating the scoring computation with the exploration of
the automaton – instead of rebuilding the game for each edge (p, q), we can com-
pute all scores for all outgoing edges of p at once. Finally, as we mentioned, Strix
by default applies a decomposition approach which builds several sub-automata.
These also are equipped with semantic labelling, however with a different mean-
ing – enough to create a significant hurdle for our learning approach. We note
that Strix actually builds automata by communicating with Owl through a highly
optimized interface between Java and C++, significantly complicating passing
information back and forth between the processes.

7 Conclusion

We demonstrated that semantic labelling can be exploited for practical gains in
LTL synthesis. Our experimental evaluation shows that we vastly outperform the
simple approach of [22], the first step in this direction. Moreover, despite several
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mismatches, our approach shows promising results for real world applications of
this idea, i.e. when combined with the state-of-the-art tool Strix.

Future Work. As discussed above, the main point for future work is a tight,
tailored integration with Strix. In particular, we want to modify our approach to
be applicable to the decomposition methods of Strix, modify Strix to consider
local guidance, and actually learn for the precise task required by Strix.

Aside from this, we believe that there might be further interesting features
(hand-crafted or learnt) which could provide us with additional insights. In par-
ticular, we want to employ automated feature extraction, through more sophis-
ticated model architectures such as transformers or graph neural networks.
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