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Abstract. This paper presents Lincheck, a new practical and user-
friendly framework for testing concurrent algorithms on the Java Vir-
tual Machine (JVM). Lincheck provides a simple and declarative way
to write concurrent tests: instead of describing how to perform the test,
users specify what to test by declaring all the operations to examine;
the framework automatically handles the rest. As a result, tests written
with Lincheck are concise and easy to understand. The framework auto-
matically generates a set of concurrent scenarios, examines them using
stress-testing or bounded model checking, and verifies that the results
of each invocation are correct. Notably, if an error is detected via model
checking, Lincheck provides an easy-to-follow trace to reproduce it, sig-
nificantly simplifying the bug investigation.

To the best of our knowledge, Lincheck is the first production-ready
tool on the JVM that offers such a simple way of writing concurrent
tests, without requiring special skills or expertise. We successfully inte-
grated Lincheck in the development process of several large projects,
such as Kotlin Coroutines, and identified new bugs in popular concur-
rency libraries, such as a race in Java’s standard ConcurrentLinkedDeque
and a liveliness bug in Java’s AbstractQueuedSynchronizer framework,
which is used in most of the synchronization primitives. We believe that
Lincheck can significantly improve the quality and productivity of con-
current algorithms research and development and become the state-of-
the-art tool for checking their correctness.

1 Introduction

Concurrent programming is known to be notoriously hard and error-prone. Writ-
ing a good and robust test for a concurrent data structure may be even more
challenging than implementing it. Programmers produce many such stress tests
every day, but they often are nondeterministic, cover only specific cases, and do
not catch all the bugs. Both the industry and academia need a tool that would
simplify writing reliable tests for concurrent data structures.
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In this paper, we present Lincheck [1], a new practical framework for JVM-
based languages (such as Java, Kotlin, and Scala), which simplifies writing reli-
able concurrent tests. While most existing tools require writing the algorithm in
a special language [2], specifying all possible concurrent scenarios and their out-
comes [3–6], or learning a large amount of theory [7,8], Lincheck provides a more
pragmatic declarative approach. It requires users only to list the data structure
operations, thus, specifying what to test instead of how. Taking these operations,
Lincheck generates a set of concurrent scenarios and examines them via stress
testing or model checking, verifying that the outcome results are correct. The
default correctness property is linearizability [9], but various relaxations [10–12]
are also supported. One may think of Lincheck as a mix of a fuzzer (that gener-
ates concurrent scenarios) and a model checker or stress runner (which examines
these scenarios) equipped with an automatic outcome verifier.

Lincheck by Example. The “classic” way to write a concurrent test is to man-
ually run parallel threads, invoking the data structure operations in them and
checking that some sequential history can explain the produced results. Such
tests typically contain hundreds of lines of boilerplate code and cover only easy-
to-verify scenarios. Lincheck automates the machinery, making tests short and
declarative. To illustrate that, we present a test for the ConcurrentLinkedDeque
collection (double-ended queue, which supports insertions and removals at both
ends) of the standard Java library in Listing 1.

The initial state of the testing data structure is specified in the constructor;
here, we simply create a new empty deque at line 2. The following lines 4–
9 declare the deque operations; they should be annotated with @Operation.
Finally, we run the analysis by invoking ModelCheckingOptions.check(..)
on the testing class at line 11. Replacing ModelCheckingOptions with
StressOptions switches to stress testing, which essentially runs parallel threads.

1 class DequeTest {
2 val deque = ConcurrentLinkedDeque <Int >()
3
4 @Operation fun addFirst(e: Int) = deque.addFirst(e)
5 @Operation fun addLast(e: Int) = deque.addLast(e)
6 @Operation fun pollFirst () = deque.pollFirst ()
7 @Operation fun pollLast () = deque.pollLast ()
8 @Operation fun peekFirst () = deque.peekFirst ()
9 @Operation fun peekLast () = deque.peekLast ()

10
11 @Test fun runTest () = ModelCheckingOptions ()
12 .check(this::class)
13 }

Listing 1. Concurrent test via Lincheck for Java’s ConcurrentLinkedDeque. The code
is written in Kotlin; import statements are omitted.

After executing the test, we get an error presented in Fig. 1. Surprisingly,
this class from the standard Java library has a bug; the error was originally
detected via Lincheck by the authors [13] (notably, there were several unsuc-
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= Invalid execution results = Comment: this text is a Lincheck output,
| addLast (-6) | addFirst (-8) | while the scheme is drawn by the authors
| peekFirst (): -8 | pollLast (): -8 |

= The following interleaving leads to the error =
| | addFirst (-8) |
| | pollLast () |
| | pollLast (): -8 at DequeTest.pollLast(DequeTest.kt:35) |
| | last (): Node@1 at CLD.pollLast(CLD.java :936) |
| | item.READ: null at CLD.pollLast(CLD.java :938) |
| | prev.READ: Node@2 at CLD.pollLast(CLD.java :946) |
| | item.READ: -8 at CLD.pollLast(CLD.java :938) |
| | next.READ: null at CLD.pollLast(CLD.java :940) |
| | switch |
| addLast (-6) | |
| peekFirst (): -8 | |
| | item.CAS(-8,null): true at CLD.pollLast(CLD.java :941) |
| | unlink(Node@2) at CLD.pollLast(CLD.java :942) |
| | result: -8 |

Fig. 1. The incorrect execution of the Java’s ConcurrentLinkedDeque identified by the
Lincheck test from Listing 1 and illustrated by a pictured diagram. To narrow the test
output, ConcurrentLinkedDeque is replaced with CLD.

cessful attempts to fix the incorrectness before that [14,15]). Obviously, the
produced results are non-linearizable: for pollLast() in the second thread to
return -8, it should be called before addLast(-6) in the first thread; however,
that would require the following peekFirst() to return -6 instead of -8. While
Lincheck always prints a failing scenario with incorrect results (if found), the
model checker also provides a detailed interleaving trace that reproduces the
error.

Providing a detailed and informative trace is a game-changer. With it, we
can easily understand why ConcurrentLinkedDeque is incorrect. The under-
lying data structure forms a doubly-linked list, with head and tail pointers
approximating its first and last nodes. Initially, head and tail point to a log-
ically removed (Node.item == null) node. After addFirst(-8) in the sec-
ond thread is applied, a new node is added to the beginning; head and tail
remain unchanged. Then, pollLast() starts; it finds the last non-empty node
(the previously added one) and gets preempted before extracting the element.
(The procedure linearizes on changing the Node.item value to null via atomic
Compare-and-Set (CAS) instruction.) After invoking addLast(-6) in the first
thread, a new node is added to the end of the list. The following peekFirst()
does not change the data structure logically but advances the head pointer.
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Finally, the execution switches back to the second thread. The pollLast() oper-
ation successfully removes the node containing -8 (which is no longer the last
element), extracting the item via CAS followed by unlinking the node physically.
These twelve lines of straightforward code easily find a bug in the standard
library of Java and provide a detailed trace that leads to the error, reducing
the investigation time from hours to minutes. We also believe that with such an
instrument as Lincheck, the bug would not have been released in the first place.

Practical-Oriented Design. Lincheck was designed as a tool for testing real-
world concurrent code. The following its properties are crucial in practice:

– Declarative testing. Lincheck takes only a list of operations and optional
configuration parameters (we discuss them further), which results in short
and intuitive tests — no need to learn a new language or technology.

– No implementation restrictions. Lincheck can test any real-world imple-
mentations, including those that utilize low-level JVM constructs like Unsafe
or VarHandle, without imposing any restrictions.

– No false positives. Lincheck reports only reproducible errors, which is vital
for using the framework in continuous integration (CI/CD) and unit tests.

– User-friendliness. Lincheck streamlines bug investigation by providing a
thorough trace of the discovered error, saving programmers countless hours.

– Flexibility. Lincheck supports popular constraints, such as the single-
producer/consumer workload, as well as a range of linearizability relaxations,
enabling custom scenario generation and verification when necessary.

Real-World Applications. We have successfully integrated Lincheck in the
development processes of Kotlin Coroutines [16] and JCTools [17] libraries,
enabling reliable testing of their core data structures, which are often complex
and several thousand lines of code long. Lincheck’s support of popular work-
load constraints and linearizability relaxations and its ability to handle blocking
operations, such as those of Mutex and Channel, were crucial for these tests.
Furthermore, for over five years, we have successfully used Lincheck in our
“Parallel Programming” course to automate the verification of more than 4K
student solutions annually.

We have also detected several new bugs [18] in popular libraries, includ-
ing the previously discussed race in Java’s ConcurrentLinkedDeque [13], non-
linearizabi-lity of NonBlockingHashMapLong from JCTools [19], and liveness
bugs in Java’s AbstractQueuedSynchronizer [18] and Mutex in Kotlin Corou-
tines [20].

In conclusion, Lincheck is a powerful and versatile tool for testing complex
concurrent programs. It provides non-trivial features in terms of generality, ease
of use, and performance. We provide a comprehensive overview of Lincheck in
the rest of the paper and believe that it will greatly save time and (mental)
energy tracking down concurrency bugs.
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2 Lincheck Overview

We now dive into Lincheck internals, presenting its key features as we go along.
The testing process can be broken down into three stages, as depicted in the
diagram below. Lincheck generates a set of concurrent scenarios and examines
them via either model checking or stress testing, verifying that each scenario
invocation results satisfy the desirable correctness property (linearizability [9]
by default). If the outcome is incorrect, the invocation hangs, or the code throws
an unexpected exception, the test fails with an error similar to the one in Fig. 1.

Minimizing Failing Scenarios. When an error is detected, it is often possible
to reproduce it with fewer threads and operations [21]. Lincheck automatically
“minimizes” the failing scenario in a greedy way: it repeatedly removes an opera-
tion from the scenario until the test stops failing, thus finding a minimal failing
scenario. While this approach is not theoretically-optimal, we found it working
well in practice1.

User Guide. This section focuses mainly on the technical aspects behind the
Lincheck features. For those readers who are interested in using the framework
in their project, we suggest taking a look at the official Lincheck guide [22].

2.1 Phase 1: Scenario Generation

Lincheck allows to tune the number of parallel threads, operations in them, and
the number of scenarios to be generated when creating ModelCheckingOptions
or StressOptions. The framework then generates a set of concurrent scenarios
by filling threads with randomly picked operations (annotated with @Operation)
and generating (by default random) arguments for these operations.

Operation Arguments. Consider testing a concurrent hash table. If it has a
bug, it is more likely to be detected when accessing the same element concur-
rently. To increase the probability of such scenarios, users can narrow the range
of possible elements passed to the operations; Listing 2 illustrates how to con-
figure the test in a way so the generated elements are always between 1 and 3.

1 @Param(name = "elem", gen = IntGen ::class , conf = "1:3")
2 @OpGroupConfig(name="writer", nonParallel=true)
3 class SingleWriterHashSetTest {
4 val s = SingleWriterHashSet <Int >()
5
6 @Operation(group = "writer"
) // never executes concurrently

7 fun add(@Param(name = "elem") e: Int) = s.add(e)
8 @Operation
9 fun contains(@Param(name = "elem")

e: Int) = s.contains(e)

1 Finding the minimum failing scenario is a highly complex problem, as it could be
not based on any of the generated scenarios.
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10 @Operation(group = "writer"
) // never executes concurrently

11 fun remove(@Param(name = "elem") e: Int) = s.remove(e)
12
13 @Test fun runTest () = ModelCheckingOptions ()
14 .check(this::class)
15 }

Listing 2. Testing single-writer set with custom argument generation (highlighted
with yellow) and single-writer workload constraint (highlighted with red).

Workload Constraints. Some data structures may require a part of opera-
tions not to be executed concurrently, such as single-producer/consumer queues.
Lincheck provides out-of-the-box support for such constraints, generating sce-
narios accordingly. The framework API requires grouping such operations and
restricting their parallelism; Listing 2 illustrates how to test a single-writer set.

2.2 Phase 2: Scenario Running

Lincheck uses stress testing and model checking to examine generated scenarios.
The stress testing mode was influenced by JCStress [3], but Lincheck automat-
ically generates scenarios and verifies outcomes, while JCStress requires listing
both scenarios and correct results manually. The main issue with stress testing is
the complexity of analysing a bug after detecting it. To mitigate this, Lincheck
supports bounded model checking, providing detailed traces that reproduce bugs,
similar to the one in Fig. 1. The rest of the subsection focuses on the model-
checking approach, discussing the most significant details.

Bounded Model Checker. The model-checking mode has drawn inspiration
from the CHESS (also known as Line-Up) framework for C# [5]. It assumes
the sequentially consistent memory model and evaluates all possible schedules
with a limited number of context switches. Unlike CHESS, Lincheck bounds
the number of schedules rather than context switches, which makes testing time
independent of scenario size and algorithm complexity.

In some cases, the specified number of schedules may not be enough to explore
all interleavings, so Lincheck studies them evenly, probing logically different sce-
narios first. For instance, imagine a case where Lincheck is analyzing interleavings
with a single context switch and has previously explored only one interleaving,
which originated from the first thread containing four atomic operations. Under
these circumstances, Lincheck presumes that 25% of the interleavings have been
explored when starting from the first thread, while the second thread remains
unexplored. As a result, Lincheck becomes more inclined to select the second
thread as the starting point for the next exploration.

Switch Points. To control the execution, Lincheck inserts internal method
calls at shared memory accesses by on-the-fly byte-code transformation via ASM
framework [23]. These internal methods serve as switch points, enabling manual
context switching. Notably, Lincheck supports shared memory access through
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AtomicFieldUpdater, VarHandle, and Unsafe and handles built-in synchroniza-
tion via MONITORENTER/MONITOREXIT, park/unpark, and wait/notify. Inter-
nally, it replaces there synchronization primitives with custom implementations,
thus, enabling full control of the execution.

Progress Guarantees. While exploring potential switch points, Lincheck can
detect active synchronization, handling it similarly to locks. This capability
to detect blocking code enables Lincheck to verify the testing algorithm for
obstruction-freedom2, the weakest non-blocking guarantee [10]. Although more
popular lock- and wait-freedom are part of Lincheck’s future plans, the majority
of practical liveness bugs are caused by unexpected blocking code, making the
obstruction-freedom check fairly useful for lock-free and wait-free algorithms.

Optimizations. Lincheck uses various heuristics to speed up the analysis and
increase the coverage. The most impactful one excludes final field accesses from
the analysis, as their values are unchanging. Our internal experiments indicate a
reduction in the number of inserted switch points by over ×2 in real-world code.
Another important optimization tracks objects that are not shared with other
threads, excluding accesses to them from the analysis. This heuristic eliminates
an additional 10–15% of switch points in practice.

Happens-Before. When an operation starts, Lincheck collects which opera-
tions from other threads are already completed to establish the “happens-before”
relation; this information is further passed to the results verifier.

Modular Testing. When constructing new algorithms, it is common to use
existing non-trivial data structures as building blocks. Considering such under-
lying data structures to be correct and treating their operations as atomic may
significantly reduce the number of possible interleavings and check only mean-
ingful ones, thus increasing the testing quality. Lincheck makes it possible with
the modular testing feature; please read the official guide for details [22].

Limitations. For the model checking mode, the testing data structure must be
deterministic to ensure reproducible executions, which is a common requirement
for bug reproducing tools [24]. For the algorithms that utilize randomization,
Lincheck offers out-of-the-box support by fixing seeds for Random; thus, making
the latter deterministic. To our experience, Random is the only source of non-
determinism in practical concurrent algorithms.

Model Checking vs Stress Testing. The primary benefit of using model
checking is obtaining a comprehensive trace reproducing the detected error,
as demonstrated in Fig. 1. However, the current implementation assumes the
sequentially consistent memory model, which can result in missed bugs caused
by low-level effects, such as an omitted volatile modifier in Java. We are in
the process of incorporating the GenMC algorithm [6,25] to support weak mem-
ory models and increase analysis coverage through the partial order reduction

2 The obstruction-freedom property ensures that any operation completes within a
limited number of steps if all other threads are stopped.
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technique. In the meantime, we suggest using stress testing in addition to model
checking.

2.3 Phase 3: Verification of Outcome Results

Once the scenario is executed, the operation results should be verified against
the specified correctness property, which is linearizability [9] by default. In brief,
Lincheck tries to match the operation results to a sequential history that pre-
serves the order of operations in threads and does not violate the “happens-
before” relation established during the execution.

LTS. Instead of generating all possible sequential executions, Lincheck lazily
builds a labeled transition system (LTS) [26] and tries to explain the obtained
results using it. Roughly, LTS is a directed graph, which nodes represent the
data structure states, while edges specify the transitions and are labeled with
operations and their results. Execution results are considered valid if there exists
a finite path in the LTS (i.e., sequential history) that leads to the same results.
Lincheck lazily builds LTS by invoking operations on the testing data struc-
ture in one thread. Thus, the sequential behavior is specified implicitly. Figure 2
illustrates an LTS lazily constructed by Lincheck for verifying incorrect results
of ConcurrentLinkedDeque from Fig. 1.

Fig. 2. An LTS constructed for verify-
ing ConcurrentLinkedDeque results from
Fig. 1.

Sequential Specification. By default,
Lincheck sequentially manipulates
the testing data structure to build
an LTS. It is possible to specify the
sequential behavior explicitly, provid-
ing a separate class with the same
methods as those annotated with
@Operation. It allows for a sin-
gle Lincheck test instead of sepa-
rate sequential and concurrent ones.
For API details, please refer to the
guide [22].

Validation Functions. It is possible
to validate the data structure invari-
ants at the end of the test, adding the
corresponding function and annotating it with @Validate. For example, we have
uncovered a memory leak in the algorithm for removing nodes from a concurrent
linked list in [27] by validating that logically removed nodes are unreachable at
the end.

Linearizability Relaxations. Additionally to linearizability, Lincheck sup-
ports various relaxations, such as quiescent consistency [10], quantitative relax-
ation [11], and quasi-linearizability [12].

Blocking Operations. Some structures are blocking by design, such as the case
of Mutex or Channel. Consider a rendezvous channel, also known as “synchronous
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queue”, as an example: senders and receivers perform a rendezvous handshake
as a part of their protocol (senders wait for receivers and vice versa). If we run
send(e) and receive() in parallel, they both succeed. However, executing the
operations sequentially will result in suspending the first one. To reason about
correctness, the dual data structures formalism [28] is usually used. Essentially, it
splits each operation into two parts at the point of suspension, linearizing these
parts separately. We extend this formalism by allowing suspended requests to
cancel and by making it more efficient for verification.

3 Evaluation

Lincheck has already gained adoption in Kotlin and Java communities, as well
as by companies and universities. It has been integrated into the development
processes of Kotlin Coroutines [16] and JCTools [17], enabling reliable testing of
their core data structures, and was used to find several new bugs in popular con-
currency libraries and algorithms published at top-tier conferences. Furthermore,
for over five years, we have successfully used Lincheck in our “Parallel Program-
ming” course to automate the verification of more than 4K student solutions per
year. Notably, many users appear to especially appreciate Lincheck’s low entry
threshold and its ability to “explain” errors with detailed traces.

Novel Bugs Discovered with Lincheck. We have uncovered multiple
new concurrency bugs in popular libraries and authors’ implementations of
algorithms published at top conferences. These bugs are listed in Table 1
and include some found in the standard Java library. Lincheck not only
detects non-linearizability and unexpected exception bugs, but also liveliness
issues. For example, it identified an obstruction-freedom violation in Java’s
AbstractQueuedSynchronizer framework, which is a foundation for building
most synchronization primitives in the standard Java library.

Notably, the tests that uncover the bugs listed in Table tab1 are publicly
available [18], allowing readers to easily reproduce these bugs.

Running Time Analysis. We have designed Lincheck for daily use and expect
it to be fast enough in interactive mode. Various factors, including the complexity
of the testing algorithm and the number of threads, operations, and invocations,
can impact its performance. We suggest using two configurations for the best user
experience and robustness: a fast configuration for local builds to catch simple
bugs quickly and a long configuration to perform a more thorough analysis on
CI/CD (Continuous Integration) servers:

– Fast: 30 scenarios of 2 threads × 3 operations, 1000 invocations per each;
– Long: 100 scenarios of 3 threads × 4 operations, 10000 invocations per each.

We assess the performance and reliability of Lincheck with these fast and long
configurations by measuring the testing times and showing whether the expected
bugs were detected. We run the experiment on the buggy algorithms listed in
Table 1, along with ConcurrentHashMap and ConcurrentLinkedQueue from
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Table 1. Novel bugs discovered with Lincheck; tests are publicly available [18].

Source Data structure Description

Java ConcurrentLinkedDeque Non-linearizable [13]; see Fig. 1
Java AbstractQueuedSynchronizer Liveliness error
Kotlin Coroutines [16] Mutex Liveliness error [20]
JCTools [17] NonBlockingHashMapLong Non-linearizable [19]
Concurrent-Trees [29] ConcurrentRadixTree Non-linearizable [30]
PPoPP’10 [31] SnapTree Unexpected internal exception
PPoPP’14 [32] LogicalOrderingAVLa Deadlock
ISPDC’15 [33] CATree Deadlock
Euro-Par’17 [34] ConcurrencyOptimalTree Unexpected internal exception
a The deadlock in the LogicalOrderingAVL algorithm was originally found by Trevor
Brown and later confirmed with Lincheck.

Table 2. Running times of Lincheck tests with fast and long configurations using
both stress testing and model checking (MC) for the listed data structures. Failed
tests, which detect bugs, are highlighted with red. Notably, finding a bug may take
longer than testing a correct implementation due to scenario minimization.

Data Structure Fast Configuration Long Configuration
Stress MC Stress MC

ConcurrentHashMap (Java) 0.3 s 2.7 s 38.1 s 1 m 44 s
ConcurrentLinkedQueue (Java) 0.4 s 1.7 s 1m 26 s 1 m 41 s
LockFreeTaskQueue (Kotlin Coroutines) 1.1 s 1.4 s 39.6 s 54.8 s
Semaphore (Kotlin Coroutines) 2.1 s 3.6 s 22.3 s 1 m 44 s
ConcurrentLinkedDeque (Java) 0.4 s 1.2 s 19.7 s 10.7 s
AbstractQueueSynchronizer (Java) 1.6 s 0.5 s 18.2 s 8.6s
Mutex(Kotlin Coroutines) 0.9 s 2.6 s 23.6 s 8.7 s
NonBlockingHashMapLong (JCTools) 0.6 s 1.3 s 4.4 s 7 s
ConcurrentRadixTree ([29]) 2.9 s 10.6 s 40.9 s 2m30 s
SnapTree [31] 1.7 s 5.8 s 38.4 s 5m6 s
LogicalOrderingAVL [32] 1.5 s 4.2 s 17.1 s 36.9 s
CATree [33] 20.1 s 0.8 s 41.3 s 6.5 s
ConcurrencyOptimalTree [34] 0.4 s 1.5 s 3 s 7.3 s

the Java standard library and a quasi-linearizable LockFreeTaskQueue with
Semaphore from Kotlin Coroutines. The results are available in Table 2. The
experiment was conducted on a Xiaomi Mi Notebook Pro 2019 with Intel(R)
Core(TM) i7-8550U CPU @ 1.80GHz and 32Gb RAM. The results show that
the fast configuration ensures short running times, being suitable for use as unit
tests without slowing down the build and able to uncover some bugs. However,
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some bugs are detected only with the long configuration, emphasizing the need
for more operations and invocations to guarantee correctness. Despite this, the
running time remains practical and acceptable.

4 Related Work

Several excellent tools for linearizability testing and model checking have been
proposed, e.g. [4,5,35–41], and some even support relaxed memory models [6,25,
42,43] and linearizability relaxations [36,44]. Due to space limitations, we focus
our discussion on the works that shaped Lincheck.

Inspiration. Lincheck was originally inspired by the JCStress [3] tool for JVM,
which is designed to test the memory model implementation. However, JCStress
does not offer a declarative approach to writing tests. The bounded model
checker in Lincheck was influenced by CHESS (Line-Up) [5] for C#, which is
also non-declarative and does not support linearizability extensions. Lincheck
offers several novel features and usability advantages compared to these inspira-
tions, making it a versatile platform for research in testing and model checking.
Although other tools such as GenMC [6,25,43] have superior features, Lincheck
is designed to be extensible and can integrate new tools. In particular, we are
working on incorporating the GenMC algorithm into Lincheck at the moment
of writing this paper.

Lincheck Compared to Other Solutions. To the best of our knowledge,
no other tool offers similar functionality. In particular, Lincheck allows certain
operations to never execute in parallel (supporting single-producer/consumer
constraints), detects obstruction-freedom violations (which is crucial for checking
non-blocking algorithms), provides a way to specify sequential behavior explic-
itly (enabling oracle-based testing), and supports blocking operations for Kotlin
Coroutines. Furthermore, Lincheck is a highly user-friendly framework, featur-
ing a simple API and easy-to-understand output, which we have found users to
highly appreciate.

5 Discussion

We introduced Lincheck, a versatile and expandable framework for testing con-
current data structures. As Lincheck is not just a tool but a platform for incor-
porating advancements in concurrency testing and model checking, we plan to
integrate cutting-edge model checkers that support weak memory models. Writ-
ten in Kotlin, Lincheck is also interoperable with native languages such as Swift
or C/C++. Our goal is to extend Lincheck testing to these languages, making
it the leading tool for checking correctness of concurrent algorithms. We believe
that Lincheck has the potential to significantly improve the quality and effi-
ciency of concurrent algorithms development, reducing time and effort to write
reliable tests and investigate bugs.
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