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ABSTRACT: In this work, a generalized, adapted Numerov implementation capable of determining
band structures of periodic quantum systems is outlined. Based on the input potential, the presented
approach numerically solves the Schrödinger equation in position space at each momentum space
point. Thus, in addition to the band structure, the method inherently provides information about the
state functions and probability densities in position space at each momentum space point considered.
The generalized, adapted Numerov framework provided reliable estimates for a variety of increasingly
complex test suites in one, two, and three dimensions. The accuracy of the proposed methodology was
benchmarked against results obtained for the analytically solvable Kronig-Penney model. Furthermore,
the presented numerical solver was applied to a model potential representing a 2D optical lattice being
a challenging application relevant, for example, in the field of quantum computing.

The Schrödinger picture is the fundamental mathematical
description of quantum mechanics describing virtually

every known physical and chemical phenomenon.1 In order to
investigate the vibrational spectra of molecules, the coupling
strength of different vibrations, or their respective spectral
intensities, a number of different methods have emerged to
numerically solve the nuclear Schrödinger equation, the most
important being the grid-based Numerov method,2,3 discrete
variable representation (DVR) techniques,4,5 the Chebychev
collocation approach6,7 or vibrational SCF8 and vibrational
perturbation theory.9 One of the most recent developments in
this area is the adapted Numerov method, which implements an
efficient and scalable approach to retrieving spectral information
on a molecular basis.10−12 Recently, the quantum mechanical
study of solid-state systems, including the determination of their
associated band structures, has become increasingly important.
The most prominent periodic model system for representing
solid-state systems, the Kronig-Penney model, has been the
subject of numerous scientific publications.13−16 The associated
Schrödinger equation can be solved analytically, providing
access to the corresponding dispersion relation in terms of the
associated band structure. However, the Kronig-Penney model
is only a very simple model system that does not represent the
complexity of real solid-state systems. Therefore, the general
investigation of more complex solid-state systems featuring
more evolved potential energy surfaces requires numerical
solutions to the Schrödinger equation. A prime example for such
solid-state systems is so-called optical lattices, which play an

important role in the advent of quantum computing. One way to
enhance the physical properties and capabilities of quantum
computers is to introduce and refine the applied optical
lattices.17−20

In this Letter, a generalized approach of the adaptedNumerov
method is presented enabling the treatment of periodic solid-
state systems for arbitrary momentum points in the Brillouin
zone, thus allowing the calculation of the associated band
structures. The previously introduced adapted Numerov
approach11,12 is extended to also encompass the constraints
imposed by the Bloch theorem,21,22 according to which the wave
function is subject to a periodic potential. In this case, the wave
function is given by

= e ur r( ) ( )k
m i

k
mkr (1)

with crystal momentum k, a scalar index k representing a unique
identifier for k, band index m and the lattice periodic function
ukm. To obtain ukm, the following equation has to be solved
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which is obtained by inserting the Bloch wave function ukm into
the time-independent Schrödinger equation, with V̂ being the
potential energy operator of the system, ℏ the reduced Planck
constant,23 μ the effective mass, and ∇ the Nabla operator.
Unlike other strategies for determining the band structure of a
system of interest, the approach presented here solves the
generalized Schrödinger equation in position space. To obtain
information about the full band structure, the equation must be
solved at each point of interest in the momentum space.

The generalized Schrödinger equation can be applied in the
most general form of the adapted Numerov method, which is
given by

+ = =u u Eu( ) (3)

corresponding to a matrix eigenvalue equation. As in the
original adapted Numerov method, no information about the
wave functions has to be given; only the determination of the
sparse matrix r differs from the original implementation.

To construct the matrix , the numerical difference matrix r

of the adapted Numerov method has to be extended to the
following form

= + kr (4)

where k represents the momentum-dependent part of the
matrix.

Comparing the kinetic energy operator of the Schrödinger
equation with the adapted Numerov method, the construction
of the momentum space depends only on additive terms of the
generalized Schrödinger equation
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Thus, in order to construct the matrix formulation, the
Laplacian of the generalized Schrödinger equation can be

expressed via the same numerical differentiation scheme
represented as a stencil matrix as proposed earlier.11 The
momentum-dependent part of the matrix can be constructed by
the square norm of the momentum vector represented as a
diagonal matrix and the imaginary part depending on the Nabla
operator expressed via finite differences analogous to the
Laplacian. To construct the full moment-dependent matrix,
the following matrix kernel can be derived for an exemplary 2D

k matrix and an error of O(h4) for the central finite differences,
thus using a 5-point stencil.

· + ·

= + + +
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This leads to the following finite difference matrix kernel for
the momentum-dependent part of the matrix
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Table 1. Comparison of the Number of Nonzero Elements in the Hamiltonian Matrix for 1D, 2D, and 3D Potential Energy Grids
with Different Grid Sizes, Ranging from 25 to 1000 along Each Dimension for an 11-Point Stencil

D N N2D snz nnz
n

N
nz
2D in %

1 25 625 11 275 44.0
1 50 2500 11 550 22.0
1 100 10000 11 1100 11.0
1 250 62500 11 2750 4.4
1 500 250000 11 5500 2.2
1 1000 1000000 11 11000 1.1
2 25 390625 85 53125 13.6
2 50 6250000 85 212500 3.4
2 100 100000000 85 850000 0.85
2 250 3906250000 85 5312500 0.136
2 500 62500000000 85 21250000 0.034
2 1000 1000000000000 85 85000000 0.0085
3 25 244140625 439 6859375 2.810
3 50 15625000000 439 54875000 0.351
3 100 1000000000000 439 439000000 0.0439
3 250 244140625000000 439 6859375000 0.00281
3 500 15625000000000000 439 54875000000 0.000351
3 1000 1000000000000000000 439 439000000000 0.0000439
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The construction of the 3D kernel matrix is implemented
analogously to the 2D case by adding the corresponding finite
difference matrix kernels for the z-direction. The resulting
matrix is then added to the original adapted Numerov matrix

orig. In order to outline the individual steps required to set up
the Hamiltonian matrix , the workflow is described in greater
detail in the Supporting Information at the example of a 5-point
stencil implementation.

A noteworthy aspect of this extension is that the momentum-
dependent matrix kernel features an even higher number of zero
entries than the Laplacian kernel, and no elements of the
momentum-dependent kernel overlap with zero entries of the
Laplacian kernel, giving exactly the same degree of sparsity for
the full matrix equation as for the original adapted Numerov
framework.

As the presented work is based on periodic systems, the
approach shows a different degree of sparsity compared to the
adapted Numerov approach employing Dirichlet boundary
conditions.24 The dimensions of the matrix eigenvalue equation
can be constructed from the dimensions of the domain, on
which the generalized Schrödinger equation is solved. Given a

D-dimensional grid, the number nnz of nonzero entries of the
matrix can be estimated by the following equation

=
=

n s Nnz nz
i

D

i
1 (11)

where snz represents the number of nonzero entries of the s-
pointwise stencil kernel matrix and Ni the number of grid points
in the i-th dimension. For the sake of generality, no closed
formula for the number of nonzero entries in the kernel matrix is
given, since the presented approach can be easily adapted in
order to apply different finite differentiation schemes. However,
in Table 1, the number of nonzero entries for the 1D, 2D, and
3D cases applying an 11-point stencil for a central differentiation
scheme is given. Furthermore, also the degree of sparsity is
included in the table, which is defined as the ratio of nonzero
entries to the total number of entries in the matrix.

The total number of nonzero elements nnz is strongly
dependent on the size s of the pointwise stencil employed to
the generalized Numerov method; thus Tables S2 to S3 of the
Supporting Information contain the same sparsity analysis for a

Figure 1. Graphical representation of the convergence of the generalized Numerov approach employed with an 11-point stencil for the sum of cosine
potentials in 1D (top row), 2D (central row), and 3D (bottom row). The logarithmic relative deviation to a reference calculation, i.e., the calculation
with the highest number of grid points (100 for the 1D and 2D potential and 64 for the 3D potential), is plotted against the number of grid points. The
first column represents the convergence benchmark for the ground state energies, the second column for the first excited state energies, and the third
column for the second excited state energies. The Γ point is represented by cyan markers, the X point by red markers, theM point by blue markers, and
the R point by yellow markers.
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5-point, 7-point, and 9-point stencil implementation, respec-
tively.

The presented generalized, adapted Numerov framework has
been implemented in the programming language Julia.25 The
matrix eigenvalue equation inherent to the generalized, adapted
Numerov method can be solved via some basic algebraic
manipulations, i.e., using a dense matrix algorithm from the
LAPACK library26 for symmetric matrices. Considering the
generalized, adapted Numerov approach, dense matrix algo-
rithms have the disadvantage that the computational complexity
increases exponentially with an increasing number of grid points,
especially for problems of higher dimensionality. One possibility
to tackle this obstacle is to use specially designed solvers to
compute only a few eigenvalues and eigenvectors of the matrix
eigenvalue problem. Within this work, a Krylov subspace
projection method27 from the ARPACK library28 implemented
for sparse matrices was used for all calculations. This not only
reduces the computational complexity by restricting the
computation to the lowest n eigenvalues and eigenvectors but
also dramatically reduces the memory requirements and
execution times of the algorithm by applying a sparse matrix
solver.

The effective execution times for large problem sizes in higher
dimensions for the sparse algorithms are orders of magnitude

lower than those for the dense algorithms. However, it was
found that the dense matrix algorithms performed better in
terms of accuracy for larger matrix sizes without reconfiguring
the settings of the applied algorithms for each specific
calculation setup.

The presented generalized, adapted Numerov framework is
introduced based on three exemplary systems of increasing
complexity. On the one hand, the convergence of the approach is
examined, and on the other hand, it is applied to the most
prominent analytically solvable model system, the Kronig-
Penneymodel. The performance with respect to 1D, 2D, and 3D
variants of the model system is investigated. Furthermore, the
method will be used to determine the band structure of an
exemplary optical lattice potential, which represents a
challenging real world application relevant to the development
of quantum computers. These three test sets cover the most
important aspects of the presented approach, namely con-
vergence, accuracy, and applicability to real world problems.
Where not explicitly stated, the calculations were performed
using atomic units and 11-point stencils. Furthermore, the
definitions for the most important momentum space points and
their associated minimal k-path through the Brillouin zone are
taken from ref 29.

Figure 2. Visualization of the results for the 1D Kronig-Penney model obtained by applying the generalized, adapted Numerov method to a 51-point
potential energy grid with an 11-point stencil. Depiction of (a) the periodic potential energy surface and (b) the associated band structure along the Γ-
X path in momentum space. Probability densities ρ in position space for the ground state (central row) and first excited state (bottom row) at the Γ
point are shown in parts (c) and (e), respectively. The probability densities for the X point are depicted analogously in (d) and (f).
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In order to investigate the performance of the generalized,
adapted Numerov approach for different momentum vector
values and the resulting convergence with respect to the grid
spacing, three band structure calculation scans were performed
for a model cosine potential in 1D, 2D, and 3D. The cosine
potential is given by

= { } =V V x xx( ) ( ) cos( )D
i

D

i1 ...
(12)

where D is the dimensionality of the benchmark suit and xi the
position in the i-th dimension applied to a range from −π to π.
For the 1D and 2D cases, 23 different grid spacings were
employed, with a total of 12 to 100 grid points per domain. For
the 3D case, 13 different grid spacings were used, with up to 64

grid points per domain. An 11-point stencil was used for all band
structure calculations.

In order to analyze the grid spacing dependency of the
convergence, the band energy values with the highest number of
grid points were included as reference values. With these
reference values, the relative logarithmic deviations of the band

energy values were determined according to
| |

log
E E

E
ref

ref

i
k
jjj y

{
zzz.

Figure 1 shows the results of the convergence analysis for all
three-dimensionalities based on the ground state energy and the
first two excitation energies at the most important points in the
momentum space. For the one-dimensional approach, only the
Γ and X points of the Brillouin zone are reported. In the case of
the 2D approach the M and for the 3D approach the M and R
points are also included.

Figure 3. Graphical representation of the results for the 3D Kronig-Penney model calculation carried out using the generalized, adapted Numerov
approach employed with an 11-point stencil and applied to a 51 × 51 × 51 potential energy grid. (a) Depiction of the band structure along the most
important momentum space directions. (b−e) represent isosurfaces of a 3 × 3 × 1 unit cell of the ground state probability densities ρ0 in position space
at the Γ, X, M, and R point, respectively.
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Comparing the convergence of the different dimensionalities,

it can be clearly stated that the higher the dimensionality of the

approach, the lower the number of required grid points to

achieve relative convergence. This holds true not only for all

Brillouin zone points considered but also for higher excitations.

On the other hand, the 3D case shows a much lower level of

convergence in terms of relative energy deviations compared to

the 1D and 2D cases. The latter two reach the double precision

limit of approximately 10−13 for both momentum space points

and energy excitation levels.

Figure 4. Visualization of the exemplary 2D optical lattice potential solved in the position space with the generalized, adapted Numerov approach
employed with an 11-point stencil to a potential energy surface of 51 × 51 grid points. (a) Depiction of the potential energy surface and (b) associated
band structure along themost importantmomentum space directions. (c, d) show the probability densities in the position space of the ground state and
the first excited state for the Γ point, respectively. (e−h) include the probability densities for the X and M points in the momentum space in an
analogous way.
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Furthermore, for the dependency of the convergence on the
momentum space points, it can be stated that the greater the
distance in the reciprocal space from the center point of the
domain, i.e., the Γ point, the greater the number of required grid
points in order to achieve convergence.

In addition to the convergence benchmarks, the generalized,
adapted Numerov method was tested against the analytically
solvable Kronig-Penney model. Three calculations were
performed in 1D, 2D, and 3D employing 51 grid points along
each dimension ranging from −1.0 to 1.0 bohr. The potential
was set to 0.0 hartree within the inner domain, i.e., the absolute
value of the position has to be less than 0.5 bohr and 1.0 hartree
in all dimensions in the outer domain. The potentials for the 1D
and 2D cases are given in Figure 2a and Figure S1a in the
Supporting Information, respectively. No visual representation
is given for the 3D potential. The band structure of the 1D
Kronig-Penney model is shown in Figure 2b represented by
cross markers. In addition, the analytical band structures are
listed as solid lines. From this band structure calculation, it can
be seen that the newly introduced method perfectly reproduces
the analytical reference data. Table S4 in the Supporting
Information gives the absolute energy deviations for the eight
lowest eigenvalues of three selected points in the momentum
space. It can be seen that the deviations increase slightly for
higher excitation energies with a maximum deviation of 1.4 ×
10−9 hartree for the eighth eigenvalue. Furthermore, no
significant difference in the performance can be observed for
different state points at the same excitation levels.

The enormous advantage of solving the generalized
Schrödinger equation in position space rather than in
momentum space, as is done in the presented approach, is the
possibility of solving the Schrödinger equation at any point in
momentum space and inherently obtaining a numerical
representation of the complex state function and its probability
density in position space. Considering Figure 2c,d, the
probability densities of the ground state at the Γ and X points
are shown, respectively. Furthermore, Figure 2e,f represents the
probability densities of the first excited state in an analogous
manner.

The results for the 2D Kronig-Penney model can be found in
the Supporting Information in Figure S1 with an equivalent
figure setup as described above.

For the 3D Kronig-Penney potential, the resulting numerical
band structure is shown in Figure 3a. The use of cross markers
was again the preferred choice, since the solution of the adapted
Numerov approach always yields the lowest n energy
eigenvalues, while energy values belonging to the same band
do not have to be associated with the same excitation level at the
respective momentum space point. The isosurfaces of the
probability densities for the ground state at the Γ, X, M, and R
points are given in Figure 3b−e, respectively. For better
visualizability, the isovalues of the subplots differ, due to the
enormous change in the localization of the probability density at
the different state points. While the probability density at the Γ
and R positions is localized in the center of the cube, tunnel
phenomena through the barrier of the Kronig-Penney potential
can be observed along the XY plane for the X point and through
the YZ plane for theM point (i.e., nonzero probability density).

In order to design suitable optical lattice potentials, e.g., for
trapping and cooling atoms, the knowledge of the band structure
is essential. Thus, the different excitation energies in the
momentum space are of crucial importance. By applying the
generalized, adapted Numerov method, the band structure of

the 2D optical lattice potential can be calculated within a few
seconds up to a few minutes depending on the number of grid
points, lattice points, and excitation levels. Therefore, it is
possible to perform thousands of calculations in a short period of
time to construct the optical lattice potential that meets the
desired requirements.

In the context of this work, an exemplary 2D optical lattice
calculation was performed based on the following model
potential in atomic units:

= +V x y x y( , ) sin ( ) sin ( )2 2 (13)

The described potential of the 2D optical lattice is shown in
Figure 4a for 51 grid points along each dimension ranging from
−

2
bohr to

2
bohr. Furthermore, the band structure is given in

Figure 4b, while Figure 4c,e,g represents the probability
densities of the ground state at the Γ, X, and M points,
respectively. The probability densities of the first excited state
are given analogously in Figure 4d,f,h.

For the color representation of the ground and first excited
state at theM point, a different color scale had to be used due to
the expected high localization in the center of the unit cell. For
the ground state at the Γ and X points, a nonzero probability
density can be observed for this exemplary potential, indicating a
tunnel probability of the particle and thus a delocalization of the
particle in the position space. In contrast, the probability density
of the ground state at theM point is highly localized in the center
of the potential, indicating a zero tunnel probability.

For the first excited state at the Γ and M points, one would
expect a symmetric probability density in accordance with the
given input potential. Due to a degeneracy of the energy
eigenvalues at these state points, the resulting probability
densities are a superposition of the symmetric and antisym-
metric states.

In this paper, a generalization of the adapted Numerov
approach is presented, which allows one to access information
on momentum space through a series of calculations in position
space, thus allowing also the determination of band structures.
The newly developed approach shows all of the advantages of
the original adaptedNumerovmethod, such as the high accuracy
and the high computational efficiency. The high degree of
sparsity remains exactly the same as for the native adapted
Numerov method, with drastic reduction of the memory
requirements compared to the original Numerov method.
Furthermore, the newly developed approach is not limited to
one-dimensional problems but can also be applied to two- and
three-dimensional problems, with a straightforward extension of
the algorithm to even higher dimensions.

A key advantage of the presented method is the approach to
solving the momentum-space-dependent Schrödinger equation
in position space, which enables the calculation of the complex
state functions and their probability densities in position space.
Due to the nature of the Numerov approach, the calculation of
the complex state functions and their probability densities is
inherent to the method and thus does not require any additional
computational effort without the use of any approximated basis
sets.

The presented approach has been applied to the calculation of
the band structure of the 1D, 2D, and 3DKronig-Penneymodels
as well as to a 2D optical lattice potential. The values obtained
from the band structure calculations are in agreement with the
expected results, thus demonstrating the validity of the
presented approach. Furthermore, the probability densities of
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the ground and first excited states at different state points of the
Kronig-Penney model and the optical lattice potential were
calculated and visualized.

The very efficient computational demands of the generalized
Numerov approach should also be highlighted. For the largest
system, the 3D Kronig-Penney model, the calculation of the full
band structure with 116 momentum space points and 10
excitation levels took only 5 h, when running in parallel on a six-
core Intel Core i7−6800K CPU @ 3.40 GHz processor.
Furthermore, the presented algorithm is embarrassingly
parallelizable for a full band structure calculation, without any
further changes to the implementation. Since the Schrödinger
equation is solved in position space, the solutions at different
state points in momentum space are independent of each other,
thus allowing the computations to be distributed across different
cores or even different machines.

Regarding the practical application of the generalized
Numerov approach, two possible scenarios have to be
considered. First, the determination of the input potential is
done via potential energy scans based on QM or QM/MM
methods, and second, the potential is modeled via a continuous
function that best describes the physical properties of the system
of interest. In the first case, the time required for the
determination of the potential energy surface is the time limiting
factor, while the time consumption of the band structure
calculation is negligible. For the second case, the presented
approach can be used to further refine the designed model
potential, taking into account the different excitation energies at
different momentum space points by applying the approach to a
multitude of different modifications of the model potential.
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