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SUMMARY

The execution of cognitive functions requires coordinated circuit activity across different brain areas that in-
volves the associated firing of neuronal assemblies. Here, we tested the circuit mechanism behind assembly
interactions between the hippocampus and the medial prefrontal cortex (mPFC) of adult rats by recording
neuronal populations during a rule-switching task. We identified functionally coupled CA1-mPFC cells that
synchronized their activity beyond that expected from common spatial coding or oscillatory firing. When
such cell pairs fired together, the mPFC cell strongly phase locked to CA1 theta oscillations and maintained
consistent theta firing phases, independent of the theta timing of their CA1 counterpart. These functionally
connected CA1-mPFC cells formed interconnected assemblies. While firing together with their CA1 assem-
bly partners, mPFC cells fired along specific theta sequences. Our results suggest that upregulated theta
oscillatory firing of mPFC cells can signal transient interactions with specific CA1 assemblies, thus enabling
distributed computations.

INTRODUCTION

Hebb’s postulate1 that coordinated activity enables neurons to

associate with each other and ultimately establish cell assem-

blies influenced neuroscience from the cellular to systems levels

for decades. Recent developments in multi-neuronal recordings

have provided the means to test the cell assembly hypothesis

over larger neuronal populations.2 While neurons can exhibit

highly correlated activity, similar firing responses can also arise

from common sensory inputs. The reactivation of population

firing patterns during sleep offered a potential testing ground

for assemblies, considering the diminished sensory input to

cortical areas in sleep.3 It is also possible to investigate assem-

blies outside sleep by applying statistical methods such as noise

correlations that were developed initially in sensory neurosci-

ence to take into account the common sensory input.4–6 How-

ever, one may need to consider additional non-sensory factors,

such as network oscillations, that can synchronize large popula-

tions of cells.7

To understand the contribution of cell assemblies to cognitive

functions at the systems level, one needs to determine how as-

semblies in different brain areas work together and how the ac-

tivity of assemblies propagates across regions. The synfire chain

theory provided a potential mechanism in which the synchro-

nized activity of associated assemblies is part of a synfire chain

that propagates across multiple brain regions.8 As for within-re-

gion assemblies, sleep reactivation provides a means to identify

related cross-regional assemblies independent of a common

sensory drive. Reactivation in the hippocampus is linked to sharp

wave-ripple patterns (SWRs),9 and synchronized network pat-

terns during SWRs induce large-scale, brain-wide synchroniza-

tion.10,11 Furthermore, reactivated spatial assembly activity in

one region can recruit assemblies with similar coding properties

in another region.12–14 However, the reactivation of place-coding

assemblies is often not coordinated across regions, or the

assemblies recruited in a downstream area in sleep do not corre-

spond with waking assemblies. While transient sequential acti-

vation of spatially firing cells inmultiple brain regions can express

trajectories, these sequential reactivation patterns detected in

different regions are not coordinated,15,16 although, in certain

conditions, coherent sequences can be observed.17 Further-

more, neurons downstream may decode non-local spatial infor-

mation derived from hippocampal reactivated patterns in sleep

but not during waking behavior. In agreement with this, some

medial prefrontal cortex (mPFC) cells increase their firing when

trajectories of a specific maze arm are reactivated in the hippo-

campus without these cells showing increased firing at that arm

during behavior.18

It is expected that assemblies exhibit coordinated activity

across regions during behavior as well, when their activity is

also co-modulated by a common sensory drive. In this condition,

as is the case of within-region assemblies, one needs to take into

account common factors that can lead to coherent activity

across regions without one area influencing the other. Here,

we tested whether assemblies coordinate their activity across

the hippocampus and the mPFC while both regions engaged in
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spatial coding. We were able to identify CA1-mPFC assemblies

that synchronize their activity independently from common sen-

sory or oscillatory inputs. We also showed that when these as-

semblies were active, the theta-oscillation-related temporal

firing patterns of mPFC cells signaled interactions with their

CA1 partners.

RESULTS

We analyzed simultaneously recorded neuronal population ac-

tivity data in the dorsal hippocampal CA1 area and the prelimbic

mPFC during a task requiring a switch between spatial and cue-

guided rules on a plus maze15 (Figures 1A and 1B). Inactivation

studies suggest that CA1-mPFC spatial representations mutu-

ally influence each other,19 even though they can code for spatial

information in different forms.15,20,21 In our experiments, mPFC

populations encoded relative maze distance more accurately

than actual 2D positions.15 In a plusmaze, such an arm-indepen-

dent distance code requires similar spatial firing on opposite

arms. In agreement with this, we found that a large proportion

of mPFC cells had symmetric firing fields (Figure S1B). Although

the mPFC is a crucial region for rule switching,22 spatial repre-

sentations showed only marginal differences across the two

rules and exhibited significant differences in the hippocampus

only (Figure 1D), and even in error trials were representations

similar (Figure S1E). To quantify the encoding dynamics of

spatial representations, we tested whether spatial coding in

one region lagged behind the other. Moreover, to infer whether

spatial information in one region is used by the other, we as-

sessed the correlation of decoding errors.23 The best alignment

of decoded positions was seen when the mPFC lagged behind
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Figure 1. Delayed spatial coding in the

mPFC relative to the hippocampus

(A) Behavioral rules applied during the task.

(B) Population firing during a single trial. Top two

panels: raster plot of CA1 and mPFC population

firing. Each line represents the firing of a separate

cell. Bottom panel: position prediction from pop-

ulation activity and the actual position of the

animal.

(C) Experimental paradigm: three sessions were

separated by rest periods, and the rule is switched

in the middle session.

(D) Similarity of average firing rate population

vectors (PVs) across rules (ARs) vs. within rules

(WRs) for CA1 (n = 530) and mPFC (n = 477) pu-

tative principal cells. Only CA1 PV similarity is

different ARs vs. WRs (Tukey’s HSD post hoc AR

vs. WR, CA1 p = 0.019; mPFC, p = 0.95, all other

p > 0.08). Error bars: ±SEM.

(E and F) Correlation of predicted locations and

decoding errors as a function of mPFC time shift.

Shaded area: 95% confidence interval (CI), solid

lines: peak, n = 13 sessions in four animals.

the CA1 by z114 ms (Figures 1E and

S1A), and decoding errors also correlated

the strongest at z150 ms mPFC delay

(Figure 1F). A transfer entropy measure24

that assesses information exchange without assuming spatial

coding also indicated a preference for CA1-to-PFC interactions

(Figure S1C). These findings show that CA1 spatial coding

emerges earlier and that the more abstract distance code in

the mPFC may use information derived from CA1 cogni-

tive maps.

To test for the presence of interregional assembly interactions,

we first examined whether functional interactions can be identi-

fied at the cellular level. Neurons in both regions code for place

while also engaging in coherent oscillations.23,25 Therefore, we

calculated functional cross-correlations of CA1-mPFC cell pairs

that measured the strength of correlated firing that occurred

independently of spatial firing, oscillations, or other possible

common drivers. For each cell, we fitted a generalized linear

model (GLM)26 that included spatial position, trajectory, speed,

theta-oscillatory firing, spiking history, and the within-area

spiking of other cells (Figure S2; see STAR Methods). The

cross-correlogram calculated from the data was compared (Z

scored) with the distribution of cross-correlograms computed

on simulated spiking (10,000 times) using the GML model

(Figures 2A and 2B). In testing different temporal offsets, we

found that the maximal percentage of cell pairs with strong func-

tional correlation (>4.5 Z, p < 0.00001) occurred with a z50 ms

mPFC delay relative to the CA1, and such strong functional cor-

relations occurred mostly within a 125 ms time window (Fig-

ure 2C). We therefore selected functionally coupled (FnC) cell

pairs that had >4.5 Z peak functional cross-correlation within

[0.125] ms (Figures 2B, S3A, and S3B).

Although FnC cells synchronized their firing independently of a

common spatial drive, CA1 firing fields tended to be on the same

arms as those of their FnC mPFC counterparts (Figures 2B, S4,
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and S5). Furthermore, CA1 FnC cells either exhibited a tendency

for symmetrical place fields (Figures 2D and S1D) or pairs of

them fired on the opposite arms (in a complementary fashion)

(Figures 2E and S4G). Moreover, the CA1 place fields predicted

the firing field of the FnC mPFC cell (see STAR Methods;

Figures 2F and S4H), and opposite mPFC prediction of CA1

place fields was also possible (Figure S4I). A computational

model of spatial information transfer that maximizes mutual in-

formation (see STAR Methods) predicted these connectivity

rules (Figures S4A–S4F, S4J, and S4K).

The cross-correlations among FnC cell pairs exhibited theta-

modulated peaks (Figures 2B and S5), indicating the mPFC cells

phase locked to hippocampal theta oscillations. Previously it

was shown that mPFC theta-oscillatory coupling to the CA1

changes in strength depending on the cognitive demand.25,27

Therefore, we examined theta phase locking of mPFC cells

separately at different task phases in the start and goal arms.

FnC mPFC cells exhibited stronger phase locking to CA1 theta

oscillations than non-FnC cells both on the start and the goal

arms, while CA1 pyramidal cells did not show such differences

(two-way ANOVA, start arm: F(FnC/non-FnC) = 6.85, df = 1,

p < 0.01, goal arm: F(FnC/non-FnC) = 4.71, df = 1, p < 0.03;

Holm post-hoc t test, FnC vs. non-FnC, start arm: CA1 p = 1,

mPFC p = 0.00124; goal arm: CA1: p = 1, mPFC: p = 0.0302;

Figures 3A and 3B). The phase locking of mPFC cells improves

when it is referenced to a time-delayed theta-oscillatory local

field potential (LFP) signal from the CA1.28 Therefore, we calcu-

lated the optimal time delay for the theta phase locking of mPFC

cells. The median delay was 23 ms in the start arm and 47 ms in

the goal arm (Figure 3C). Considering the delay differences we

saw for theta phase locking, we also recalculated the proportion

of significant functional correlations separately for start and goal

arms, which showed delays of 25 (start arm) vs. 75 ms (goal arm)

(Figure 3D). Although theta phase locking predicted whether a

mPFC cell functionally connected to a CA1 cell, mPFC cell

recruitment to hippocampal SWRs and gamma oscillations

was similar when FnC and non-FnC cells were compared

(Kolmogorov-Smirnov [KS] test, all p > 0.435; Figure S6A).

Next, we examined the underlying mechanisms that allow for

cross-area interactions. Theta-modulated cross-correlations

can be seen when one or both cells phase lock to theta oscilla-

tions but otherwise fire independently. However, in our FnC cells,

the theta-modulated firing of cells was accounted for by theGLM

(Figures 2A and 4A); hence, we do not expect theta modulation

on the functional correlations of independently firing theta-

modulated cells. Therefore, theta-modulated functional correla-

tions could indicate a transient increase in the theta phase lock-

ing of FnC cells when they synchronize their activity. This

enhanced phase locking of the mPFC cell can signal firing

epochs, in which it synchronizes its firing with its CA1 FnC coun-

terpart. To directly test this, we examined whether mPFC cells

exhibited better phase locking to theta oscillations when they

fired within a theta-cycle delay of their FnC CA1 counterparts

(Figures 4B and 4C). To quantify this effect, we also identified un-

paired mPFC spikes, in which cases the mPFC cell fired inde-

pendently from its CA1 counterpart (Figure 4C, bottom panels).

Then, we randomly subsampled the unpaired mPFC spikes so

that we got an equal amount to that of the paired spikes. In a

bootstrapping procedure, we repeated the subsampling 200

times to estimate the mean and SD of the theta phase-locking

strength of unpaired spikes and then Z scored the phase-locking

strength of the paired spikes (Figure 4D). These Z scores of

different mPFC cells showing the normalized phase-locking

strength difference of paired and unpaired spikes exhibited a

significant positive bias (Figure 4E, top row, binomial test,

p < 0.001). Therefore, when FnC cell pairs fired in the same theta

A

C D E F

B Figure 2. CA1-mPFC functional correlations

(A) Functional correlation (FNC) calculations: real

data cross-correlations were compared to a null

distribution from 10,000 GLM simulated cross-

correlations.

(B) Example cross-correlations with significant

interaction (Z > 4.5 relative to GLM). Left and right:

CA1 and mPFC firing rate map (inset number: max

firing rate). Center: cell-pair cross-correlograms,

real data (solid black line); null model mean (dotted

back) ± 4.5 SD (shaded area).

(C) Proportion of significant FnC pairs (Z > 4.5) as a

function of mPFC delay. Shaded area: 95% CI,

n = 23,482 pairs across 13 sessions.

(D) Left: example place fields of non-FnC and FnC

cells. Right: proportion of symmetric place fields for

FnC and non-FnC cells.

(E) Complementariness (i.e., a tendency to fire at

opposite arms, see STAR Methods) of rate maps of

the two CA1 units with the strongest FNC to the

same mPFC unit vs. random.

(F) Prediction of mPFC firing rate map by FnC CA1

firing rate maps. mPFC map was predicted by the

FNC weighted sum of the CA1 maps (see STAR

Methods) vs. random.

(D–F) Mann-Whitney U test: **p < 0.01, ***p < 0.001.

Error bars: ±95% CI.
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cycle, mPFC theta phase locking was stronger than that during

independent firing. Such a difference was significantly smaller

when non-FnC pairs were tested (Figure 4E, bottom row, Mann

Whitney U test, all p < 0.0003). For cell pairs detected with a

lower threshold (3.5 < Z < 4.5), we still observed a stronger

mPFC cell phase locking for CA1-paired firing compared with

unpaired ones (Figure S3C).

Although we observed enhanced phase locking of mPFC cells

when synchronizedwith their FnCCA1 counterpart, this does not

imply that it was required to detect a functional coupling. There-

fore, we verified that the enhanced precision of mPFC spike

timing (due to strengthened theta phase locking) was a critical

factor for observing CA1-mPFC functional coupling. We ran-

domized the theta spike timing of the mPFC cells during

synchronized firing with the FnC CA1 counterparts. The GLM-

corrected cross-correlation peak (that accounted for theta-

modulated cell firing) was reduced by z50%, and the number

of significant FnC cells dropped to a quarter of the original num-

ber (Figures S7A–S7C). We also performed an additional spike-

jittering procedure, where spikes of each mPFC neuron, within

every theta cycle, are redrawn according to their theta-phase

histogram (Figure S7D). This procedure ensured that mPFC

spikes remained in the same theta cycle and also preserved

every aspect of mPFC activity apart from fine, subtheta cycle

synchronization. Even in this conservative procedure, the num-

ber of detected significant CA1-mPFC FnC pairs drastically

reduced (Figure S7E). These results demonstrate that the tran-

sient strengthening of mPFC phase locking to hippocampal

theta can be a critical mechanism for CA1-mPFC functional

coupling.

Although CA1 cells exhibit, on average, a phase preference for

theta oscillations, they can also systematically change their theta

phases during theta phase precession.29 Considering thatmPFC

cells transiently phase locked to theta oscillations during syn-

chronized firing with FnC CA1 counterparts, they may either

maintain a consistent theta phase or mirror theta phase preces-

sion of their CA1 counterparts. We calculated CA1-mPFC func-

tional cross-correlations separately for cases when the CA1 cell

fired at different theta phases (Figure 4F). The plot of significant

interactions now exhibited theta-modulated peaks, and the

peaks shifted in the opposite direction relative to the CA1 cells’

theta-phase change (Figure 4F). This indicates that the correla-

tion delay compensated for the phase shift of the CA1 cell. To

verify this, we calculated the average phase difference of FnC

mPFC-CA1 pairs when CA1 cells fired at different theta phases.

This showed a negative relationship: the forward movement of

CA1 phases was compensated by a backward change of

mPFC-CA1 phase differences, indicating that mPFC cells

A

C

B

D

Figure 3. Coupling is delayed in the goal arm relative to the start arm

(A) Examples of theta spike phase histograms of FnC and non-FNC mPFC cells. MVL, mean theta vector length of the plotted cell quantifying place-locking

strength.

(B) Average theta phase-locking strength of CA1 (blue) or mPFC (red) cells, comparing FnC vs. non-FnC (Holm post hoc t test, start arm: CA1 p = 1, mPFC

p = 0.00124; goal arm: CA1: p = 1, mPFC: p = 0.0302).

(C) Optimal delay that produced the best theta locking of each mPFC cell, found by computing a phase histogram for each delay and measuring the mean vector

length.28 Mann-Whitney U test for start vs. goal arm optimal theta delay, N = 477, p < 0.001. KS test for the distributions, p < 0.001. Solid vertical line represents

the median.

(D) Proportion of significant cell pairs (Z > 4.5) in start arm (left) vs. goal arm (right) as a function of mPFC delay. Shaded area represents the 99%CI for the mean.

n = 23,482 pairs, N = 13 sessions.
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D

Figure 4. mPFC cells strengthen their phase locking to theta oscillations when cofiring with their FnC CA1 counterpart

(A) Two examples of FnC cell pairs. Left and right: CA1 andmPFC firing rate mapwith numbers indicating the peak rate (Hz). Center: real cross-correlogram (solid

black line) vs. GLM simulation (solid red: average, shaded area: ±4.5 SD) for start and goal arms.

(B) Example theta-phase histograms when mPFC cells fired together at the same theta cycle with FnC CA1 counterparts (left) vs. fired independently (right).

Trough of oscillation: 0�.
(C) Example theta cycles with paired CA1/mPFC spikes vs. independent mPFC firing for a FnC pair.

(D) Schema illustrating how the bootstrapping procedure was used to reference (Z score) the theta phase-locking strength of paired spikes relative to unpaired

ones. The mean vector length (MVL) was used as a measure to quantify theta phase locking of cells (see STAR Methods). The unpaired spikes were randomly

drawn so that they were equal to the paired spikes, and the MVL of the subsampled unpaired spikes was calculated. This subsampling was repeated 200 times,

and the mean and SD of the MVL were calculated. Finally, the MVL of paired spikes was Z scored relative to the subsampled unpaired spike results.

(legend continued on next page)
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maintained a relatively fixed theta phase (Figure 4G). These find-

ings show that during periods of synchronized firing, eachmPFC

cell maintained a consistent theta phase and did not follow the

theta-phase changes of their CA1 counterparts.

Gamma oscillations can synchronize distributed sensory rep-

resentations30 or spatial representations during memory encod-

ing.31 Therefore, we tested whether transient synchronization of

gamma (or other) oscillations contributed to the functional

coupling. We compared the power spectrum and coherence of

the CA1 and mPFC LFPs at times when FnC CA1-mPFC cells

fired together or independently (Figure 5). No differences were

seen in any of the frequency bands, suggesting that selective

mPFC cell theta phase locking is the primary mechanism behind

the CA1-mPFC functional coupling and that these coupling

events do not influence the global oscillatory state of the circuits

per se.

So far, we have identified functional correlations between indi-

vidual CA1-mPFC pairs. Can this pairwise connectivity reveal

organized interregional assemblies? We applied a bipartite

spectral graph-clustering algorithm32,33 that divided cells into

subgraphs. When we plotted the graph of FnC cells ordered by

the graph-clustering algorithm, the different subgraphs could

be clearly separated (Figure 6A), and the probability of a cell pro-

jecting out of a cluster was about a quarter of the probability of

projecting within a cluster, i.e., cluster cleanliness z0.75 (Fig-

ure S3D, right panel). We examined whether these subgraphs

(we refer to them as graph assemblies) met the criteria of func-

tional assemblies. First, we confirmed that mPFC cells within a

graph assembly exhibited a stronger functional correlation with

each other than with mPFC cells of different assemblies (Figures

6D and 6E). We then identified times when graph assemblies

were active by selecting theta cycles in which at least two

mPFC and two CA1 cells from the same graph assembly fired

together. When such a graph assembly was active, we found

that mPFC theta phase locking was stronger as compared with

out-of-assembly activity (Figures 6F and 6G, right). Finally, we

found that assembly activity encoded spatial locations consis-

tently over time and that the firing fields of different graph assem-

blies were different (Figures 6B and 6C).

We showed above that FnCmPFC cells tend to fire at relatively

fixed theta phases during graph-assembly activation (Figures

4E–4G). In doing so, they all may fire at similar theta phases, or

if they fire at different theta phases, they can organize their firing

into sequential patterns. To test this, first we calculated the

preferred theta phase of mPFC cells during assembly activation.

These preferred theta phases spanned the entire theta cycle

(Figures 6F and 6G, left). During graph-assembly activation,

mPFC cell members may therefore exhibit a consistent temporal

bias in their spike timing to theta oscillations. For eachmPFC cell

pair from the same graph assembly, we tested whether they ex-

hibited a significant theta temporal bias during assembly activa-

tion, i.e., one cell consistently fired at an earlier theta phase than

the other. Indeed, in total, 45% (start arm) and 42% (goal arm) of

FnC mPFC pairs exhibited a significant bias (Figure 6H, binomial

tests: all p < 0.001), confirming that, at the population level, a sig-

nificant proportion of cells showed a theta-phase bias. There-

fore, during assembly activation, a significant portion of mPFC

cell pairs show a preferred temporal order in their activity, lead-

ing to sequentially biased firing patterns (Figure 6I). We expect

such sequences to be independent of CA1 firing patterns,

considering that mPFC cells decoupled from the theta spike

timing of CA1 cells (Figures 4E–4G). Theta sequences in the hip-

pocampus reflect the compressed time order at which place

cells fire on a linear maze.34,35 If mPFC cells of a graph assembly

exhibit similar maze-related activation sequences, the temporal

activation order of mPFC cells (seen on their long-range cross-

correlograms) should predict their theta-phase bias during

graph-assembly activation. However, this was not the case (Fig-

ure 6J, top), suggesting that during assembly activation, mPFC

cells can exhibit unique sequences that are independent of their

longer time scale activation patterns driven by maze trajectories.

As a verification, we also checked that mPFC cells in a graph as-

sembly do not exhibit maze-trajectory-related theta sequences

by plotting the relationship place field distance vs. theta-range

cross-correlation delay,34 which also does not show a relation-

ship (Figure 6J, bottom start arm: Spearman r = �0.09, p =

0.302; goal arm: r = 0.093, p = 0.389). Hence, these sequences

could represent unique non-spatial information and signal func-

tional interactions with specific CA1 assemblies.

Finally, we examined the synchronization of graph assemblies

at different task stages. We measured the average synchroniza-

tion level (i.e., proportion active) of these start and goal assem-

blies at different relative maze locations. When correct and error

trials were compared, a larger proportion of assemblies were

active in error trials but only on the goal arms excluding the cen-

tral stem (Figures 7A and 7B, >20 cm, three-way ANOVA

F(position) = 285.115798, df = 2, p < 0.0001, F(error) =

132.580, df = 1, p < 0.0001, Tukey’s honest significant difference

[HSD] post hoc, all p < 0.04). Next, we compared assembly syn-

chronization in three subsequent trials during rule switching: the

trial when the animal followed the new rule for the first time and

the trials right before and right after that (Figure 7C). In this case,

we saw increased assembly synchronization of start-arm as-

semblies before the strategy switch (compared with the other

two trials) at the end of the arm (Figure 7D, three-way ANOVA

F(position) = 19.627883, df = 19, p < 0.0001; F(switch) =

28.887530, df = 2, p < 0.0001; Tukey’s HSD post hoc, all

p < 0.02), while for goal-arm assemblies, only the before-switch

and strategy switch trials were significantly different (Figure 7E,

Tukey’s HSD post hoc, p = 0.0236). This finding is probably

related to the error trial results (Figure 7B), considering that the

before-switch trial was often an error trial. Finally, in the center

(E) Top: Z scored MVL of mPFC cells during paired firing relative to the subsampled unpaired firing (see D). Bottom: same as in the top but for randomly selected

non-FnC pairs. The Z scored MVLs were significantly larger for FnC pairs than for non-FnC ones (***, Mann Whitney U test, all p < 0.0003, start: FnC pairs = 444,

non FnC = 693; goal: FnC pairs = 397, non-FnC pairs = 632).

(F) Left: schema of theta-dependent FNC calculation. Arrows point to cross-correlograms computed at different theta phases. Right: proportion of z >3 FnC pairs

as a function of CA1 theta phase and mPFC time shift.

(G) Average mPFC-CA1 theta-phase difference at different CA1 firing phases. Shaded area: 95% CI.
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of the maze, start-arm assemblies synchronized more strongly

during the switch than before (Figure 7C, Tukey’s HSD post

hoc, p = 0.001), while between the switch and after the switch,

there was only a trend for significance (Tukey’s HSD post hoc,

p = 0.0575). These results showed that graph-assembly syn-

chronization could vary at certain behavioral conditions and

could be modulated by errors or rule switching. Periods of

strongly synchronized graph-assembly activation may corre-

spond to a special network state marked by the enhancement

of certain network oscillations. However, hippocampal and

mPFC LFP power spectra did not show differences at periods

of low- and high-synchrony assembly activation when the bot-

tom and top 20% assembly synchrony levels were compared

(Figures S6B and S6C, Mann-Whitney U test, CA1 all p > 0.23,

mPFC all p > 0.11).

DISCUSSION

Here, we identified a subgroup of mPFC and CA1 cells that syn-

chronized their activity beyond that expected from similar spatial

coding, oscillatory firing, and background network activity.

When such CA1-mPFC pairs fired together within the same theta

cycle, mPFC cells enhanced their phase locking to hippocampal

theta oscillations and maintained a consistent theta phase, even

when the phase of their CA1 counterpart varied (Figure 4). These

findings suggest a mechanism for interregional assembly inter-

actions that goes beyond coherent oscillatory coupling or firing

rate modulation-mediated temporal synchronization.

The role of oscillations in mediating interregional
interactions
It has been shown before that theta oscillations synchronize hip-

pocampal and mPFC populations, and such theta oscillation-

mediated synchronization can be strengthened at specific task

phases.25,27,28 While here, theta oscillations provided a refer-

ence frame for synchronization, the phase locking of mPFC cells

was influenced by the activity of their FnC hippocampal partners.

Consequently, the transient increase in the phase locking of

mPFC cells signaled an interaction with their CA1 counterparts

(Figures 4B–4E). The critical role of the enhanced phase locking

in detecting CA1-mPFC functional correlations was demon-

strated by the observation that randomizing mPFC theta spike

timing during synchronization abolished about 75% of the de-

tected functional correlations and halved the correlation peaks

(Figure S7). Furthermore, this mode of interaction did not require

the coherent oscillatory firing of the CA1-mPFC cell pair: their

A B

C

D

Figure 5. Paired firing of mPFC-CA1 FnC pairs is not accompanied by significant changes in underlying oscillations

(A) Illustration of the power spectra variation of the LFP during a single trial. In addition, the figure also plots the proportion of active FnC cells and the position and

speed profile of the animal.

(B–D) Average power spectrum density (PSD) function (B and C) and coherence (D) for paired (orange) vs. independent (blue) activity of FnC cell pairs. PSDs were

computed using Welch’s method on 400 ms time segments centered on mid-theta cycles using a Hanning window and constant detrending. The power and

coherence were not significantly different in the paired condition compared with the independent conditions for theta (5–10 Hz), gamma (40–80 Hz), and ripple

(150–250 Hz) frequency bands (power: CA1 all p > 0.41; mPFC all p > 0.48; coherence all p > 0.69). Error bars: ±SEM.
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B C

Figure 6. Graph-assembly activity is signaled by mPFC theta sequences

(A) Graph-assembly examples. Functional connections are represented on a graph with vertices representing cells and edges the functional connections. Circles

(vertices): CA1 (blue) and mPFC (red) cells. Solid lines (edges): FNCs. Dotted lines: assembly boundaries.

(B) Example graph-assembly firing rate maps.

(C) Graph-assembly rate map similarity between first vs. second half of recordings (W/in) across different assemblies (Acr.). Mann-Whitney U test: p < 0.001.

(legend continued on next page)
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relative theta spike timing could vary, while the mPFC cell main-

tained a consistent theta phase (Figures 4F and 4G). In this re-

gard, this mode of synchronization was different from that

seen during coherent oscillatory coupling in the visual cortex

during sensory binding or attention-related modulation.30 How-

ever, gamma-band oscillations can synchronize CA1 and

mPFC cells, and such theta-modulated gamma-oscillatory

coupling is enhanced between the hippocampus and the

mPFC during spatial working memory tasks.36 While we were

able to confirm the presence of coherent gamma oscillations

during our task as well (Figure 5D), at the times when FnC

CA1-mPFC pairs fired together, oscillatory power and coher-

ence in the gamma band did not increase across the CA1 and

the mPFC.

In addition to theta-oscillatory coupling, the synchronized

firing rate changes of mPFC neurons can also signal interac-

tions across these regions.18,20 Such synchronization has

been shown during hippocampal SWRs when a subpopulation

of mPFC cells increases or decreases their firing.37 The SWR-

associated firing of mPFC cells is modulated by behavioral

state and context and can signal hippocampal reactivation

related to specific arms in a maze.17,18,20 Furthermore, in

certain conditions, spatially selective mPFC cells can exhibit

coherent reactivation with the hippocampus; however, the

mPFC can reactivate trajectories independent of the hippo-

campus.15,17 However, in our case, coordinated assemblies

did not represent coherent reactivation because we detected

FnC CA1-mPFC pairs during active behavior dominated by

theta oscillation. Moreover, SWR-associated ripple-band po-

wer did not increase in the CA1 region during times when

FnC cells fired together (Figure 5). Overall, we showed that

across-area interactions were not signaled by changes in the

SWR-mediated firing rate nor by coherent gamma-oscillatory

firings across the regions. These results all suggest that the

transient increase of mPFC phase locking to theta oscillations

was the primary factor that marked the functional coupling of

specific CA1-mPFC cells and assemblies.

Hippocampal influence on prefrontal spatial coding
Past work suggests that accurate spatial coding requires the

mutually interdependent functioning of the intact hippocampus

and mPFC circuits.19,38–40 Furthermore, one might expect that

the execution of our task, which involved rule switching between

spatial and non-spatial tasks, requires bidirectional interactions

across these regions.41 Yet, several of our analysis results inde-

pendently suggested a stronger influence of hippocampal as-

semblies on prefrontal assemblies than in the opposite direction.

Firstly, we found that spatial coding in the mPFC lags behind the

hippocampus. Coherent location coding and correlated location

decoding errors have been shown before between the hippo-

campus and themPFC.23 In our case, both the decoding of loca-

tions and decoding errors showed the strongest correspon-

dence when CA1 preceded the mPFC (Figures 1E and 1F).

Secondly, independent of spatial coding, a transfer entropy

measure also suggested a stronger influence of CA1 population

activity on mPFC activity than mPFC influence on CA1 (Fig-

ure S1C). Thirdly, as seen before during other spatial tasks,28

mPFC cells exhibited a stronger phase locking to temporally

shifted hippocampal theta oscillations that occurred earlier (Fig-

ure 3C). Finally, instances of significant functional coupling be-

tween CA1-mPFC cells were also more frequent when CA1 cells

fired earlier than mPFC cells (Figure 3D).

We also modeled how optimal interactions can be structured

to maximize mPFC spatial information when it is derived from

CA1 place cell inputs (Figure S4). As we saw for FnC cells in

our data, mPFC firing fields in the model were shaped by CA1

place cells that had place fields at an arm where the mPFC cell

also possessed a firing field. In agreement with the model, we

found in our data that the mPFC firing field can be predicted

from the FnCCA1 place fields. Of course, none of these analyses

can exclude the possibility that a common input to both regions

(such as the MEC) drove parallel hippocampal and mPFC activ-

ity, and the delayed mPFC spatial responses were due to more

complex mPFC computations that require longer processing

times.42 Yet, in addition to our analyses, recent work also indi-

cates that CA1 outputs influence mPFC spatial representation:

it was shown that the gradient of spatially selective cells in the

mPFC correlates with CA1 input density,43 and the intact hippo-

campus is necessary to maintain precise neocortical spatial

representations.44

Although, in our case, CA1 responses were consistently earlier

during the entire task involving both spatial and non-spatial rules,

it is also possible that in certain behavioral conditions, the domi-

nant direction of hippocampus-mPFC communications can be

reversed. For example, the correlation (including Granger corre-

lations) of LFPs showed that hippocampal theta oscillations pre-

cede mPFC theta oscillations during spatial contextual tasks,

while this trend reverses in an object-guided task.45 In other

cases, the influence may be bidirectional, lasting over several

theta cycles.46

(D) Example of FnC mPFC pair within the same assembly.

(E) The proportion of significant (Z > 4.5) FnCmPFC pairs within vs. across assemblies. Shaded area: 95%CI. N = 13 sessions. Mann-Whitney U test: p < 0.01 for

shifts = �25, 0, and +25 ms.

(F and G) Histogram of average theta phase (left) and Z scored phase-locking strength (right) of mPFC cells during assembly activity. Phase-locking strength was

Z scored relative to bootstrapped non-assembly activity. Binomial tests: all p < 0.001.

(H) The number of bootstrap iterations for different assembly cell pairs in which one cell fired at an earlier (i.e., <180� difference) theta phase than its counterpart

during graph-assembly activation. Dotted lines mark the boundary for the pairs in which the preferred theta phases of the pair were significantly different (i.e., one

cell fired consistently earlier than the other): 45% start arm and 42% goal arm (binomial test p < 0.05).

(I) Example mPFC sequences during graph-assembly activation. Activation patterns of the same graph assembly are displayed, and mPFC cells were ordered

according to their theta phase in the top left panel.

(J) Top: the preferred theta-phase difference of mPFC cells during graph-assembly activation vs. cross-correlation (CCG) delay. Left: start arm (Spearman

r = 0.01, p = 0.9). Right: goal arm (r = 0.19, p = 0.058). Bottom: Place field distance vs. cross-correlation delay. Left: start arm (Spearman r = �0.09, p = 0.302).

Right: goal arm (r = 0.093, p = 0.389).
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Prefrontal delay as a function of cognitive load
We also found that the delay between the CA1 and the mPFC

was shorter when cognitive demand was higher in the start

arm while the animal had to choose the goal arm. We found

this in relation to mPFC phase locking to hippocampal theta os-

cillations and for the significant CA1-mPFC functional correla-

tions (Figures 3C and 3D). This may indicate that CA1-mPFC in-

teractions were enhanced when cognitive demand was high

before a spatial decision had to be performed. This is in line

with studies on theta-oscillatory synchronization that showed

enhanced coupling before the choice point or when rules have

changed.25,27 It is possible that the routing of spatial information

follows different paths at different processing stages or that the

mPFC cells are tuned to respond to hippocampal inputs with a

A

C

D E

B

Figure 7. Synchronization of graph assemblies at different behavioral stages

(A and B) The average proportion of active assemblies was compared at correct (N = 719) and error (N = 199) trials at different locations on the maze. Assemblies

detected on the start (A) and goal (B) arms were analyzed separately (start assemblies N = 142, goal assemblies N = 133).

(C) Graphical illustration of the rule-switching period used in (D) and (E). This included three trials: the trial when the animal followed the new rule the first time and

the trials before and after that.

(D and E) The average proportion of active assemblies was compared before, during, and after rule switching. Assemblies detected at the start (D) and goal

(E) locations were analyzed separately (start N = 142, goal N = 133). Error bars: ±95% CI. Three-way ANOVA, Tukey’s HSD post hoc, *p < 0.04, **p < 0.01,

***p = 0.001.
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shorter delay at the start arm. Note that in previous work, hippo-

campal-driven mPFC activity was seen only during the encoding

but not the recall stage of a spatial working memory task,47 indi-

cating that the effectiveness of the hippocampal spatial input to

the mPFC can be modulated. Nevertheless, in our case, the hip-

pocampal drive was maintained during the entire task but with

different delays.

It is also possible that the routing of spatial information fol-

lows different paths with different types of cognitive load. In

support of this observation is the fact that direct projections

from the ventral hippocampus to the mPFC are important

only for task periods requiring memory encoding.47 There are

several possible routes via which the hippocampus could

transmit spatial information to the mPFC. Apart from the prom-

inent direct projections arising from the ventral hippocampus,

indirect projections can be established through entorhinal and

perirhinal cortices.48,49 Information may also be transferred

indirectly via the thalamic nucleus reuniens; this area bidirec-

tionally connects with the mPFC,50 projects to the hippocam-

pus,50 and in turn receives hippocampal input mostly via the

subiculum.51

Interacting assemblies can use different temporal
coding schemes
Here, we also showed that FnC CA1-mPFC pairs could be sub-

divided into separate assemblies, and the theta spike timing of

mPFC cells can signal the activation of specific CA1-mPFC inter-

regional assemblies (Figure 6). Because different mPFC cells of

an assembly showed different theta-phase preferences during

assembly activation, we expect that mPFC cells fire in theta se-

quences during assembly activation. However, the order in

whichmPFC cells fired during assembly activation did not reflect

their temporal activation pattern on the maze. Therefore, these

sequences did not represent reactivated behavioral trajectories

or theta sequences, which occur in other instances.15,23 As a

consequence, different temporal coding schemes can operate

in the mPFC: while spatially selective mPFC cells can transiently

reactivate trajectories, at other times, different sequential activa-

tion patterns can indicate the activity of specific CA1 assemblies.

Furthermore, sequential activity patterns that represent trajec-

tories are different from those related to interregional assem-

blies; hence, the two coding schemes do not interfere with

each other and can be differentiated and decoded indepen-

dently in downstream areas.

Our findings also suggest that different temporal coding

schemes can operate in the hippocampus and in the mPFC

during the interactions, considering that the relative spike

timing of CA1-mPFC pairs could vary within a theta cycle. While

the theta spike timing of CA1 cells can code for place because

of theta-phase precession,29 or they can express out-of-place

theta sequences,52,53 mPFC theta phases did not follow the

same pattern during periods of interactions. Similar interaction

schemes may apply to other brain areas as well, considering

that theta oscillations are seen in widespread brain regions

beyond the hippocampal formation.54 Theta-related assembly

synchronization can enable multiple regions to function and

interact with each other in the limbic system and beyond. Our

data also indicate that assembly interactions through theta syn-

chronization can allow each region to use its own unique tem-

poral coding scheme during the time of interactions. Temporal

coding may not be simply transferred but often transformed

across different cortical processing stages, necessitating

further experimental and theoretical work to understand how

temporal codes in one region are decoded and transformed

downstream. Overall, our work suggests that theta oscillations

play crucial roles in organizing interregional assemblies.

Limitations of the study
The work relied on a GLM model to account for possible com-

mon factors that may cause the correlated firing of the CA1-

mPFC cell pairs. Of course, we could not account for possible

common factors that are currently unknown. That said, we

were able to show that the excess correlation (i.e., functional

coupling that cannot be explained by the GLM) we observed

was largely due to the increased theta phase locking of the

mPFC cells when they fired together with their CA1 counter-

parts. We could not specify a physiological mechanism that

underlies such synchronization-dependent oscillatory phase-

locking enhancement, and we could only speculate about

the anatomical pathways that are involved in it. Finally, we

have limited data investigating the possible behavioral role

of the activity of CA1-mPFC assemblies. Nonetheless, we

show that FnC CA1-mPFC graph assemblies were activated

more strongly at error trials; thus, in the current behavioral

context, they may signal the need for changing the rule of

the task.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and fulfilled by the lead contact, Jozsef Csicsvari

(jozsef.csicsvari@ist.ac.at).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d Data used in this study will be made available upon request by contacting the lead contact, Jozsef Csicsvari (jozsef.csicsvari@

ist.ac.at).

d All original code is available in a GitHub repository: https://doi.org/10.5281/zenodo.8193614

d Any additional information required to reanalyze the data reported in this work paper is available from the corresponding au-

thors upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Four male Long-Evans rats (300–350 g, 2–4 months of age; Janvier, France) were used in the study. The animals were housed in a

separate room on a 12 h light/dark cycle and were taken to the recording room each day prior to the experiments. Animals shared a

cage with littermates before surgery. All procedures involving experimental animals were carried out in accordance with Austrian an-

imal law (Austrian federal law for experiments with live animals) under a project license approved by the Austrian Federal Science

Ministry (License number: BMWFW-66.018/0015-WF/V3b/2014).

METHOD DETAILS

The data used in this study is the same as used in.15 We will report the experimental methods here for completeness.

Subjects and surgery
Rats were implanted with microdrives housing 32 individually-movable tetrodes, arranged into three bundles targeting the right dor-

sal hippocampus (specifically dorsal CA1, hippocampus) and left and right medial prefrontal cortex (specifically prelimbic area,

mPFC). The CA1 bundle consisted of 16 tetrodes and the two mPFC bundles of 8 tetrodes each. Tetrodes were fabricated out of

four 12 mm tungsten wires (California Fine Wire Company, Grover Beach, CA) that were twisted and then heated to bind into a single

bundle. Tetrode bundle lengths were cut so that the two mPFC bundles were 1–1.5 mm longer than the CA1 bundle. The tips of the

tetrodes were gold-plated to reduce the impedance to around 300 kU. Before surgery, the animal was put under deep anesthesia

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Long Evans Rats Janvier, France RjOrl:LE

Software and algorithms

KlustaKwik (Harris et al., 2000)56 https://github.com/klusta-team/

klustakwik/

Python Python Software Foundation https://www.python.org

R R Foundation https://www.r-project.org/

Original code This paper https://doi.org/10.5281/zenodo.8193614

Other

12mm tungsten wires California Fine Wire M294520

Headstage amplifier Axona, St. Albans, UK http://www.axona.com/
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using isoflurane (0.5\%–3\%), oxygen (1–2 L/min), and an initial injection of buprenorphine (0.1 mg/kg) and ketamine/xylazine (7:3 ke-

tamine (10\%) and xylazine (2\%), 0.05mL/100 g). Craniotomies were drilled above the hippocampus (AP: 2.50 to 4.50, ML: 1.2 to 3.6)

and above themPFC across the sinus (AP: 4.60 to 2.50, ML: 0 to ±0.8). Six anchoring screwswere fixed onto the skull and two ground

screws were positioned above the cerebellum. After dura removal, the tetrode bundles were centered above their respective crani-

otomies and lowered into the brain at a depth of 2mm for themPFC and 1mm for the hippocampus. The exact depth ofmPFC tetrode

implantation was noted to ensure later lowering into the target area. Tetrodes and craniotomies were coated in paraffin wax and the

microdrive was anchored to the skull and screws with dental cement. The analgesic meloxicam (5 mg/kg) was given up to three days

after surgery and the animal was allowed one week of recovery. Thereafter, tetrodes were gradually moved in 50–200 mm steps into

the CA1 pyramidal cell layer and mPFC.

Plus maze apparatus and task
Following the recovery period, animals were food-restricted with ad libitum access to water and accustomed to the plus maze and

rest box. The plus maze was elevated (80 cm) and consisted of four arms (85 cm long and 12 cm wide), referred to as north, east,

south, and west, and a connecting center. The animal was placed in one of the two start arms (north or south) and had to collect

a food reward (MLab rodent tablet 20mg, TestDiet, Richmod, USA) in one of the two goal arms (east or west), depending on the

rule employed. Access to the arm not chosen as the start was restricted so that the maze became T-shaped. A small light at the

end of one of the two goal arms was switched on. Which arm was chosen as the start and the light-on arm was chosen pseudoran-

domly for every trial, ensuring that an arm was not chosen more than three consecutive times. Once the animal reached a goal arm

and 5s passed, the animal was manually picked up and placed in the rest box before commencing the next trial after a delay of 10s.

The animal had to retrieve the reward based on a spatial or response (light) rule. During the spatial rule, the reward was always placed

in either the east or west arm, while during the response rule the reward was placed in the light-on arm. Importantly, also during the

spatial rule, one of the two armswas lit but did not necessarily indicate the location of the reward. To prevent an odor-guided strategy,

pellet dust was scattered along the maze and pellet-filled cups were invisible to the animal that was placed under both goal arms. On

each recording day, the animal underwent behavioral blocks as follows: rest, rule 1 (previous day’s old rule), rest, pre-switch, rule

switching, post-switch, rest, rule 2 (new rule), rest.

After the first rest, the animal started by performing trials based on the previous day’s old rule. After reaching the performance cri-

terion (see below), the animal rested again and afterward, the rule-switching phase began.

During the pre-switch block, the animal had to collect a reward based on the last rule of the previous day until reaching the per-

formance criterion (see below). Then the rule was changed and the reward had to be collected based on the new rule. The change in

the rule was not announced to the animal, which had to switch to the new rule through trial-and-error until performing to criterion.

Trials performed after the rule change but before the animal reached good performance comprised the rule-switching block, while

the post-switch block comprised all trials from the beginning of good performance (defined in the next sub-subsection). The animal

had to perform cross-modal switches, i.e., switches from spatial to light or light to spatial rule, never between the two spatial rules.

While the correct performance of a spatial rule involves two trajectories (e.g., go-east rule: north to east and south to east), the correct

performance of the light rule can involve any of the four trajectories. Therefore, the performance criterion for the spatial rule was set to

12/15 and for the light rule to 24/30 correct trials, ensuring a similar number of light rule trials where the animal performed trajectories

that matched those of the spatial rule.

After another rest session, the animal performed a final 20 trials of the newly acquired rule.

Beginning of good performance
All trials before the rule change comprised the pre-switch block. Trials performed after the rule change, but before the animal reached

good performance comprised the switching block. The beginning of good performance (bgp) was defined as the center index after

rule change where the error rate over five consecutive trials dropped to zero.

bgp = arg min
t˛ ftrials > switchg

( X2
k = � 2

errorðt + kÞ
!

= 0

)

Histology and reconstruction of recording positions
After the final recording day, tetrodes were not moved. Animals were administered ketamine/xylazine (7:3 ketamine (10\%) and xy-

lazine (2\%), 0.1mL/100 g) and overdosed with pentobarbital (300 mg/ml) before being transcardially perfused with 0.9\% saline fol-

lowed by 4\% formaldehyde. Brains were extracted and stored in 4\% formaldehyde. On the same day, brains were transferred into

30\% sucrose solution until sinking for cryoprotection. Finally, brains were quickly frozen, cut into coronal subsections with a cryostat

(50–60 mm), mounted on glass slides and stained with cresyl violet. The positions of tetrode tips were determined from stained sub-

sections and cells recorded from tetrodes outside mPFC were excluded from analysis. For cells recorded from CA1 tetrodes the

presence of SWRs in the field recordings served as inclusion criteria.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Data acquisition
The extracellular electric signals from tetrodes were pre-amplified using a headstage (4 x 32 channels, Axona Ltd, St. Albans, Hert-

fordshire, UK). The amplified local field potential and multiple-unit activity were continuously digitized at 24 kHz using a 128-channel

data acquisition system (Axona Ltd). Two red LED bundles mounted on the preamplifier head-stage were used to track the x,y loca-

tion of the animal. Every day before recording, CA1 tetrodes were moved to optimize the yield of recorded cells. Additionally, mPFC

tetrodes were lowered every day by 30–50 mm to ensure the recording of a new population of cells.

Spike sorting and unit classification
Clustering of spikes and unit isolation procedures were described previously.55 The raw data were resampled to 20 kHz and the po-

wer in the 800–9000 Hz range was computed for sliding windows (12.8 ms). Action potentials with a power of >5 standard deviations

(SD) from the baseline mean were selected and their spike features extracted with principal components analysis. Action potentials

were then grouped intomultiple putative units based on their spike features using an automatic clustering software (http://klustakwik.

sourceforge.net.56 The generated clusters were then manually refined using a graphical cluster-cutting program and only units with

clear refractory periods in their autocorrelation, well-defined cluster boundaries and stability over time were used for further analysis.

An isolation distance (based on Mahalanobis distance) was calculated to ensure that spike clusters did not overlap.56 Putative excit-

atory principal cells and inhibitory interneurons were discriminated using their auto-correlograms, firing rates and waveforms.57

Dataset details
Across the four animals, we recorded, processed, and analyzed data from a total of 13 experimental recording days (4,4,3,2

respectively).

In all our analysis we included only cells with an average firing rate >0.25 spikes per second in each of the three experimental

phases. This comprised a total of 530 hippocampal (putative) principal cells and 160 interneurons, and 477 prefrontal (putative) prin-

cipal cells and 105 interneurons.

Statistical analysis
Linearized position

To linearize the behavior of the animal, we calculated the distance to the center from the 2D spatial position of the animal.15 This way a

‘‘V-shaped’’ positive function for each trial was obtained. For each position before the center (i.e., before the global minimum) we

subtracted the minimum and then changed the sign. Then, 100 was added to every position to obtain a positive measure of the rela-

tive position of the animal between start (0 cm) and goal (200 cm). The center corresponded to 100 cm.

Firing rate maps

We inferred the average firing of each cell at each given location of the environment separately for three cases: 2Dmaps, 1D trajectory

dependent, and 1D trajectory independent. In every case, we utilized data from periods when the animal was moving faster than

7 cm/s to avoid potential nonlocal population activity.15

- 2D maps: We binned the x; y locations of the animal in 5cm square bins. As explained in the experimental setup, spatial coordi-

nates were acquired every dt = 25:6ms.

We counted how much time (in seconds) the animal spent in each location, which corresponded to the occupancy map.

Denoting with bxðtÞ; byðtÞ the coordinates of the animal at time t, we have

occðx; yÞ =
XT
t = 1

ðbxðtÞ = = xÞ$ðbyðtÞ = = yÞ
dt

where a = = b is 1 if and only if a = b, and is 0 otherwise.

Afterward, for each cell i, we counted the number of spikes emitted in each location, and divided by the time spent there. In for-

mulas, denoting by ti1;.; tiK the times at which K spikes were emitted, we define the rate

blðx; yÞ =
XtiK
t = ti

1

ðbxðtÞ = = xÞ$ðbyðtÞ = = yÞ
occðx; yÞ

Finally, we regularized blðx; yÞ by convolving with a symmetric 2D Gaussian kernel kðh; kÞ with s = 2 bins and truncated at a

maximum width w = 10 bins:

lðx; yÞ =
Xw

h = �w

Xw
k = �w

bl ðx + h; y + kÞ kðh; kÞ

Locations x,y with zero occupancy were excluded from the convolution. Locations near the border used only the portion of the

kernel that would not exceed the edges (portion appropriately rescaled so as to sum up to 1).
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- Trajectory-dependent 1D maps: Since the arms of the maze are relatively narrow, we computed a linearized version of the firing

rate maps, effectively yielding an average firing as a function of the distance to the goal, separately for the 4 trajectories: North to

East(NE), North to West (NW), South to East (SE), South to West (SW) (Figure 1A). In words, we selected the trials where the animal

followed one trajectory, and with that data binned the linearized position in 10 cm bins and counted the time spent at each discrete

location. Afterward, for each cell and each trajectory, we counted the number of spikes emitted in each binned location and divided it

by the time spent there. Finally, we convolved the rate maps of each cell for each trajectory with a 1D Gaussian kernel with s = 1 bin.

- Trajectory independent 1Dmaps:We computed the same quantity as above, without separating the trials into 4 trajectory groups.

Population vector similarity

Population vector (PV) similarity is a measure that allows us to quantify the change in average population activity at any given location

across contexts.

The PV at a particular location x represents the vector of the average activities of all the cells in the population under study:

PVðxÞ = fl1ðxÞ;.; lNðxÞg
We constructed them starting from the previously computed firing rate maps, separately for the two populations and the two rules.

We employed a Pearson correlation to quantify the similarity of the PV for each location across rules.

Symmetry of firing rate maps

Wemeasured the ‘‘mirrordness’’ of firing rates to check whether single cells fire similarly at opposite sides of the track. To do that, we

measured the Pearson correlation of the linearized firing rate maps of opposite arms (S vs. N and E vs. W) and computed the average

of the two measures.

Afterward, we computed a null-distribution of symmetry measures obtained from 200 randomwrapping of the linearized ratemaps

(for each cell individually). We deemed a rate map symmetric if its symmetry score was higher than the 95th percentile of the corre-

sponding null-distribution.

The randomwrapping of ratemapsworked as follows. Consider a ratemap l = flð0Þ;.;lðMÞg, ordered as usual from location 0 to

location M. We randomly selected an integer k˛ f1;.;M � 1g, and considered the shuffled rate map lshuf = flðkÞ;.;lðMÞ;lð0Þ;.;

lðM � kÞg
Decoding of distance to the goal

For each decoding scheme, we randomly selected 75\%of the trials for computing the firing ratemaps, and used the remaining 25\%

for decoding and assessing decoding quality. We employed amaximum a posteriori (MAP) Bayesian decoding under the assumption

that cells are independent and fire according to a Poisson distribution.58

Denoting the firing rate (measured in spikes per second) of cell i at location x with liðxÞ, and the same cell emitted ni spikes in a

period dt of time (measured in seconds), the probability that the animal is at location x given the spiking activity is:

Pðx j niÞfPðxÞ PðnijxÞ = PðxÞ e�dt liðxÞðdt liðxÞÞ
ni

ni!

Combining the information from multiple cells i = 1;.;N, and assuming independence:

Pðx jfn1;.; nNgÞf
YN
i = 1

Pðx jniÞ

Assuming a uniform prior PðxÞ, we defined our decoded location xMAP as

xMAP = argmax
x

Pðx j fn1;.; nNgÞ

Correlation of decoding errors

To check whether the errors of one area agree with the errors of the other area and whether this effect increases at a delay, we em-

ployed a delayed version of an analysis proposed by Zielinski and colleagues.23

If the spatial encoding of PFC is delayed compared to CA1, in that either PFC receives information from CA1, or that information

takes longer to reach PFC, then spikes in PFC should represent spatial information that is older than CA1’s. Hence, we took all mPFC

spiking times and added a time lag t˛ ½� 500;500� ms, and for each lag we computed 1D firing rate maps on a fraction of data

(random 75%) and decoded the position from the remaining part of the data. Afterward, for each delay, we computed the Spearman

correlation between 1D decoding errors from CA1 (without lag) and the lagged PFC activity.

Transfer entropy

Transfer entropy is a non-parametric measure of directed (time-asymmetric) transfer of information between two random pro-

cesses.59 Transfer entropy from a process X to another process Y is the amount of uncertainty reduced in future values of Y by

knowing the past values of X, conditioned on past values of Y.

More specifically, if Xt;Yt denote two random processes, transfer entropy from Xt to Yt is defined as the conditional mutual infor-

mation between Yt and the history of Xt, denoted by Xt� 1;t� 2;., conditioned on the history of the influenced variable Yt� 1;t� 2;. :

TX /Y = MIðYt;Xt� 1;t� 2;.

�� Yt� 1;t� 2;.Þ
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We used the JIDT package60 to estimate this quantity, which was measured across binned (25.6ms) and binarized spike trains of

each pair of CA1-PFC cells. Significance was measured by comparing the actual value against 1000 values obtained by randomly

shifting the spike trains (uniform random from 1 to 100 s).61

Detection of cross-area couplings

We employed a statistical modeling approach to detect pairs of CA1-PFC cells that are significantly functionally correlated. With

‘‘functionally correlated’’ we denote cell pairs across brain areas whose noise correlation5 is much higher than expected from our

null-models. For each cell, we fitted a generalized linear model (GLM62 that included all possible covariates measured which could

influence and explain the cross-area correlations. These covariates were: linearized spatial position, trajectory, theta selectivity,

speed selectivity, spiking history, and within-area spiking of other cells (i.e., PFC cells were fitted with the spiking of other PFC cells

only and, separately, CA1 cells with the spiking of the other CA1 cells only; for further details see subsection ‘‘Modelling’’ below).

These models were used to compute a statistical test, the null hypothesis being that the cross-correlogram among cell pairs is

completely explained by external covariates. The alternative hypothesis is that external covariates cannot explain the amount of

co-variability; in this case, we considered the correlation as being functional. This approach is similar to the one introduced in.63

With these GLM null-models, we simulated the activity of each cell 10000 times and, for each CA1-PFC cell pair, a cross-correlo-

gram of the responses was computed. Those surrogate cross-correlograms were used to measure how much the actual pairwise

cross-correlation measured on real data differed from the simulated ones. We did this for each possible PFC delay in the range

of + -1 s.

We considered a cell pair significantly coupled if the peak within �125,.,+125 ms of the actual cross-correlogram exceeded the

mean plus 4.5 standard deviations of the peaks of the 10000 surrogate cross-correlograms for that pair. This threshold is very con-

servative and was chosen to compensate for multiple comparisons, representing a Bonferroni correction.

Cells in one area that showed significant functional correlation to at least one cell in the other area were termed functionally

coupled, often abbreviated to F.C. or FnC in our figures.

Complementarity measure

Tomeasure if two cells are complementary, i.e., if their joint activity could help to form a symmetric pattern, we computed the Pearson

correlation of the linearized firing rate maps for opposite trajectories (for example, SW for cell 1 vs. NE for cell 2) and then reported the

average across the possible comparisons (SW vs. NE and SE vs. NW).

mPFC rate map prediction

Wepredicted the firing ratemaps of mPFC cells starting from the firing ratemaps of (simultaneously recorded) CA1 cells. To do sowe

utilized only functionally coupled cell pairs (see definition above). We summed CA1maps and weighted them by using the strength of

their peak functional correlation (i.e., peak cross-correlation z-scored against GLM simulation).

In formulas, denoting with i the mPFC cell for which the prediction has to bemade, andwith l1;.; lN the firing rate of N functionally

coupled CA1 rate maps, and wij their functional correlation strength, then we defined the predicted mPFC map as

l
pred
i =

XN
j = 1

wij lj

We then reported the Pearson correlation between real li and predicted firing rate map l
pred
i .

Spatial information measure

We computed the spatial information per spike.64,65 In a nuthshell, this corresponds to the first order approximation of the mutual

information between position-dependent spiking probability and location, divided by the average firing rate. Denoting with x�x the

location, and lðxÞ the average firing of a cell at location x, and with l = < lðxÞ>x its average firing rate across locations, the spatial

information is defined as

<
lðxÞ
l

log
lðxÞ
l

>x

where < $>x denotes an average over positions.

CA1 theta oscillations

We averaged the downsampled (5KHz) LFP signal for each tetrode that was implanted in CA1. We then extracted the theta signal

(5–15 Hz) by means of a 3rd-order Butterworth filter. We detected the local minima of the theta oscillation, and linearly interpolated

between each consecutive pair of local minima from 0 to 360�.
Theta locking strength

We computed the theta (q) phase of each spike by detecting the angle (0–360) of the underlying theta oscillation at the time of activity.

We computed phase histograms by binning angles into 30� bins. We quantified theta locking strength by means of the mean vector

length (MVL): this is defined as the absolute value of the average angle (appropriately converted in radians) in the complex plane:

MVL = abs

 
1

N

XK
x = 1

expði qxÞ
!
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Theta locking and optimal delay

We employed ameasure introduced by Siapas and colleagues in28 to obtain the optimal delay of mPFC cells theta-locking relative to

hippocampal theta. We employed a Rayleigh test for circular uniformity and selected all mPFC cells that yielded a < 0:05 . For each

one of those cells, we introduced a delay t˛ f� 125; � 124;.;124; 125g ms to all spikes, again computed the phase as described

above and computed the MVL of these angles. We then selected the delay that yielded the highest MVL for each cell.

Z-scored theta locking strength of paired vs. independent spikes

Consider a mPFC-CA1 functionally correlated cell pair. We defined a mPFC spike as being ‘‘paired’’ if it happened in a theta cycle

when also the functionally correlated CA1 emitted at least one spike.

We tested whether paired spikes had better theta phase locking than independent spikes. To do so, we measured the MVL of the

theta-phases of paired spikes, and z-scored it against 200 MVLs measured on randomly subsampled independent spikes. In the

(rare) case where paired spikes were more than independent ones, we randomly subsampled paired spikes instead, and reported

the Z score with sign flipped. Excluding these rare cases did not alter the results.

Theta-dependent functional correlation

We employed the samemethod described above, with the difference that we considered across area cross-correlations only for CA1

spikes that happened at a particular theta phase. In detail, we binned angles into 12 equally sized bins (36�). For each bin ½qm; qM� , we

set to zero all the CA1 activity that happened outside ½qm;qM�. We then proceeded with the quantification of functional correlations as

described above.

Average theta distance between pairs of cells

For each pair of functionally correlated CA1-mPFC cells, we measured the difference in theta phase among each pair of spikes that

happened within the same theta cycles. We then measured the average angular difference as a function of CA1 phase, and reported

angular standard error of the mean in the figure.

The difference between radian angles q1 and q2 is defined as:

q1 � q2 = argðexpði q1 � i q2ÞÞ
The average of a set of k radian angles q1;.;qK

q = arg

 XK
j = 1

expði qjÞ
!

The circular variance (for radian angles) is defined as Varðq1;.;qNÞ = 1 � MVLðq1;.;qNÞ, and the standard deviation of the circular

mean as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� 2 log MVLðq1;.; qNÞ

p
. In the figures, we reported all angles in degrees (0.360), transformed from radians to degrees by

using: ðq+pÞ
pi $360

Randomization of theta phase and drop of correlations

To test whether precise theta timing was required for mPFC cells to be functionally correlated with CA1 cells, we randomized the

theta locking. To do so, for each mPFC cell independently we considered different levels of random spike jittering. In detail, to

each spike we added a random time uniformly distributed within ½�M;M� , where M is the maximum jitter allowed. Afterward, we

computed CA1-mPFC functional correlations using mPFC-jittered spike trains, while leaving CA1 untouched. We then measured

the reduction of functional correlation strength by considering the relative decrease in magnitude of the peak:
peakorig �peakjitter

peakorig

Within theta-cycle shuffling

We employed a shuffling method that preserves the measured theta-phase histogram of each cell.

For each cell, during each theta cycle, we used Inverse transform sampling (based on the empirical theta-phase histogram) to sam-

ple the same number of spikes that were originally fired.

This shuffling procedure is very conservative in that it preserves every aspect of neuronal firing (e.g., spatial, speed, head direction,

etc.) that is slower than theta rhythm (5–15 Hz).

Power spectral density

We employedWelch’s method to compute averaged power spectral density.66 In a nutshell, this method works by dividing the signal

into overlapping segments and averaging the periodograms obtained in each. In detail, we performed short-time Fourier transform

centered at each theta cycle, with a Hann window of 400ms, separately for all CA1 and PFC tetrodes. For each CA1-mPFC cell pair,

we computed the power spectrum for theta cycles where both cells are active (paired) vs. theta cycles where either or both cells are

silent (independent). Finally, we averaged the periodograms across cells, separately for CA1 and mPFC.

Sensitivity of cells to gamma and sharp-wave ripple oscillations

Wemeasured the average firing rate of mPFC cells during periods of when gamma (40�120Hz) or SWR oscillations (150–250 Hz) had

high power (>95th percentile) and compared to the average firing rate. Gamma and SWR power wasmeasured as the average power

spectrum computed from short-time Fourier transform of the CA1 LFP during time windows of 500 ms and Tukey windows with

shape parameter of 0.25.
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Bipartite spectral clustering

We considered a graph where each node represents a cell, and edges are present only among CA1-mPFC cell pairs that were func-

tionally correlated. We then asked if it was possible to subdivide this (bipartite) graph into smaller clusters, containing both CA1 and

mPFC cells, so as to maximize the across-area connections within each cluster and minimize the ones outside. We employed a

method based on the spectral optimization of modularity (SOM) algorithm, first proposed in.32The algorithm iteratively finds the

best split by considering the eigenspectrum of the modularity matrixM of the bipartite graph. The extension of this work to biaprtite

graphs was provided in.67 Intuitively, the modularity of a graph measures the tendency of vertices to cluster into modules, or, in our

case, neurons into assemblies. The eigenspectrum of B holds properties that allow for an easy implementation of an iterative algo-

rithm for identifying modules in bipartite networks.

Details: consider a graph with n vertices andm edges, and adjacency matrix A. Each vertex is assigned to a module gi. The mea-

sure that one aims to minimize is the modularity Q, defined as

Q =
1

2m

Xn
i;j

ðAij � PijÞ d
�
gi; gj

�
where dðgi;gjÞ = 1 if and only if i = j, and zero otherwise. Pij represents the probability of a null model of finding an edge between i

and j.

An alternative definition of modularity, in matrix form, can be defined as follows

M =
1

2m
Tr
�
STB S

�
where Bij = Aij � Pij and S = ½s1;.;sc�, for modules, is an n-by-c matrix determining the belonging of each node to each cluster.

Barber (2008) derived the proper choice ofPij for the bipartite cluster, which isPij =
kihj
m , where ki;hj represent the number of incoming

edges to nodes i and j, respectively. The algorithm then iteratively finds the best split of the graph into two subgraphs by finding the

largest positive eigenvlaue ofM and the corresponding eigenvector v; the sign of each entry i of v determine the belonging of node i to

the first or the second module. The iterative algorithm stops after the modularity measure stops growing, or when modules sizes get

too small (<3), or when the number of iterations goes beyond a certain number (>6).

Cleanliness of assemblies

For each assembly, we measured the average proportion of connections within assembly (0–1) and subtracted the average propor-

tion of connections outside the assembly (0–1). The resulting measure can range from�1 (very bad) to 0 (same connectivity within vs.

outside) to 1 (perfect connectivity within and no connectivity across assemblies).

Assembly firing rate map

We deemed an assembly active whenever at least 2 CA1 and 2 mPFC cells were active in the same theta cycle. Afterward, we fol-

lowed the same prescription described above for computing firing rate maps, with the difference that instead of using spike numbers

we considered only 1 (active) or 0 (not active) during a given theta time window.

Within area functional correlations

We employed the same statistical procedure presented above for within-area functional correlations.

Bootstrapped theta locking difference

For each pair of mPFC cells belonging to the same assembly, we randomly selected 50 spikes from each cell and measured their

average phase. We did so 200 times for each cell pair. Afterward, we counted how many times the average phase of the first cell

was later than the average phase of the second cell (i.e., the difference of the two cell was <180�). If the two cells had no phase rela-

tionship among each other, the probability of one phase being larger than the other would be p = 0.5. If that were the case, 99%of the

cases one would have a count between �75 and �125. We quantified the percentage of cell pairs that were outside this confidence

interval, and reported the Binomial test with p = 0.01 baseline.

Activity of assemblies beyond expected by GLM model

We summed the co-activity of all CA1-PFC pairs of cells belonging to the same assembly in consecutive 25ms time windows and

compared this co-activity against what we expected from 1000 GLM simulations. We deem an assembly significantly active at a

time window when its coactivity was larger than MEAN+3STD of the simulated GLM co-activity. Using this result we calculated the

proportion of (significantly) active assemblies for each time window, which was then summarized in 5 macro-regions of the linearized

arena (0-40cm, 40-80cm, 80-120cm, 120-160cm, 160-200cm). In Figures 7A and 7B,we compared the average co-activity during cor-

rect and error trials. In Figures 7D and 7E, we compared the average co-activity during the one trial preceding, corresponding to, and

succeeding a strategy change. The trial of strategy changewas defined as the first trial when the animal stopped following the previous

rule and kept a consistent behavior afterward (e.g., stop following the light and consistently choose to go west, Figure 7C).

Modeling
GLM model of cells responses

Weutilized aGLMmodel to describe each cell’s response propensity as a function of all measured covariates during foraging activity.

These detailed models served as null models for the statistical test we employed to detect functional correlations among cells (see
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section ‘‘Detection of across-area couplings’’). Wewill describe in detail here the covariates used to fit themodel and the parameters

used in fitting and simulation routines, and refer the reader to other references for the details regarding the theoretical background of

GLMs.62

The model described the inhomogeneus Poisson activation rate lt of cells in 25.6ms time windows

Pðxt = n j ltÞ = e� lt
lnt
n!

The expected firing rate lt takes the form lt = expðb $ctÞwhere b represents the model coefficients, found by maximum likelihood

(below) and ct represents the vector of covariates, which is a concatenation of the following:

- trajectory-dependent spatial position: we binned the linearized position in 10cm bins, as described above, in 25.6ms time bins.

We allowed each cell to have a different encoding for each trajectory separately to allow for maximum flexibility: this resulted in a

80-dim vector, i.e., 20 location bins for each possible trajectory. At each time point, only the entry of this 80-dim vector that repre-

sented the location of the animal, and the trajectory taken, was set to 1, and all the others to 0 (one-hot encoding variable)

- speed: we binned the speed, which was measured from the behavioral recording in 25.6ms time bins, in 7 non-overlapping and

equally populated speed bins, starting from 7 cm/s (one hot variable)

- theta phase: we computed the theta phase at the center of each 25.6ms time bin. The computation of the theta phase is detailed in

a previous section. We binned the angles in 10 non-overlapping angular bins, and encoded it as a one-hot variable.

- spiking history: the spiking of the last three time bins was used.

- whithin-area spiking activity: the spiking activity of all the other cells in the same area, together with the spiking history of each of

those cells in the previous time bins were used as additional covariates.

The number of parameters of such models ranged from 100 to 400, depending on the number of cells recorded simultaneously in

the same area. We utilized the routine GLM offered by the package statsmodels v0.12.2 in Python 3.7. We fitted the models by using

an L2 regularization, whose parameter was found by grid search on ð10� 10;10� 9;.; 100Þ and cross-validation (train = 75%, test =

25% of data) independently for each cell.

Deviance explained

Using the same notation as above for the expected firing rate lt, and denoting with yt the actual number of spikes observed, the devi-

ance of a Poisson GLM is defined as

D = 2
XT
t = 1

�
yt log

yt
lt

� ðyt � ltÞ
	

This measure captures the deviation of the data from a Poisson GLM model68(McCullagh and Nelder 1989). This measure can be

compared to the deviance explained by a simple null model that always predicts the mean firing, denoted here by l:

D = 2
XT
t = 1

h
yt log

yt

l
� ðyt � lÞ

i
The deviance explained by the full GLM model is the defined as

ED = 1 � D

D

Finally, to measure the relative contribution of the various covariates (e.g., position, speed) we divided the ED of the partial model

by the ED of the full model.

Normative model of (spatial) information transfer and generalization

Consider two populations of neurons, exemplifyingN PFC cells andMCA1 hippocampal cells. Wewill denote with x = ðx1;.; xNÞ the
stochastic (binary) activation of PFC cells, andwith y = ðy1;.; yNÞ the stochastic (binary) activity of CA1 cells. Let us denote with s the

distance to the goal, and with k the trajectory. We consider s to be a random variable that takes values in f1;.;10g, each with equal

probability, and k a uniform Bernoulli ˛ f0;1g independent of s.

We assume that x is driven by hippocampal inputs and internal connectivity. We formalize this with a stochastic model, which is

similar in its formalization to a restricted Boltzmann machine:69

Pðx j yÞfexp

 XN
i = 1

XM
h = 1

Cih xi yh +
XN
i;j = 1

Wij xi xj

!

Where C˛RN3M is the feedforward hippocampus to mPFC connectivity, and W ˛RN3N the internal mPFC recurrent connectivity.

We assume that the activity of CA1 cells is both trajectory and position dependent, and we find the trajectory-independent firing by

marginalization: Pðy j sÞ =
P1

k = 0 Pðy j s;kÞ PðkÞ
The mPFC population activity x inherits position dependency through activity y, i.e.,: Pðx jsÞ =

P
y

Pðx j yÞ Pðy j sÞ
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For fixed W and given Pðy j s;kÞ, we want to find the best C that maximizes the mutual information between x and s: MIðx;sÞ =P
x;s
Pðx;sÞ log Pðx;sÞ

PðxÞ PðsÞf
P
x;s

Pðx jsÞ log
�
Pðx jsÞ
PðxÞ

�
We maximize this quantity via Sequential Least SQuares Programming (SLSQP) routine in SciPy. We constrain each Cij to lay in

[-1,1]. Our simulations use N = M = 10 neurons, which allows the mutual information to be computed without the need for approx-

imations (by enumerating all possible patterns).

Reported estimates are obtained by averaging across 100 randomly initialized networks; for each simulation, is a symmetric

matrix with entries randomly sampled from a distribution, and P



/
y

����s;k�Gaussian place field per trajectory and simulated

in such a way to resemble CA1 single-cell statistics measured in the data.

Programming languages and packages used
All scripts were written in Python 3.7. We used the packages NumPy, SciPy, StatsModels, and AstroPy.
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