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Abstract. Probabilistic recurrence relations (PRRs) are a standard for-
malism for describing the runtime of a randomized algorithm. Given a
PRR and a time limit κ, we consider the tail probability Pr[T ≥ κ], i.e.,
the probability that the randomized runtime T of the PRR exceeds κ.
Our focus is the formal analysis of tail bounds that aims at finding a
tight asymptotic upper bound u ≥ Pr[T ≥ κ]. To address this problem,
the classical and most well-known approach is the cookbook method by
Karp (JACM 1994), while other approaches are mostly limited to deriv-
ing tail bounds of specific PRRs via involved custom analysis.

In this work, we propose a novel approach for deriving the com-
mon exponentially-decreasing tail bounds for PRRs whose preprocess-
ing time and random passed sizes observe discrete or (piecewise) uni-
form distribution and whose recursive call is either a single procedure
call or a divide-and-conquer. We first establish a theoretical approach
via Markov’s inequality, and then instantiate the theoretical approach
with a template-based algorithmic approach via a refined treatment of
exponentiation. Experimental evaluation shows that our algorithmic app-
roach is capable of deriving tail bounds that are (i) asymptotically tighter
than Karp’s method, (ii) match the best-known manually-derived asymp-
totic tail bound for QuickSelect, and (iii) is only slightly worse (with a
log log n factor) than the manually-proven optimal asymptotic tail bound
for QuickSort. Moreover, our algorithmic approach handles all examples
(including realistic PRRs such as QuickSort, QuickSelect, DiameterCom-
putation, etc.) in less than 0.1 s, showing that our approach is efficient
in practice.
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code and benchmarks are available at https://github.com/boyvolcano/PRR.
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1 Introduction

Probabilistic program verification is a fundamental area in formal verification [3].
It extends the classical (non-probabilistic) program verification by considering
randomized computation in a program and hence can be applied to the formal
analysis of probabilistic computations such as probabilistic models [14], ran-
domized algorithms [2,9,28,30], etc. In this line of research, verifying the time
complexity of probabilistic recurrence relations (PRRs) is an important sub-
ject [9,30]. PRRs are a simplified form of recursive probabilistic programs and
extend recurrence relations by incorporating randomization such as randomized
preprocessing and divide-and-conquer. They are widely used in analyzing the
time complexity of randomized algorithms (e.g., QuickSort [16], QuickSelect [17],
and DiameterComputation [26, Chapter 9]). Compared with probabilistic pro-
grams, PRRs abstract away detailed computational aspects, such as problem-
specific divide-and-conquer and data-structure manipulations, and include only
key information on the runtime of the underlying randomized algorithm. Hence,
PRRs provide a clean model for time-complexity analysis of randomized algo-
rithms and randomized computations in a general sense.

In this work, we focus on the formal analysis of PRRs and consider the
fundamental problem of tail bound analysis that aims at bounding the proba-
bility that a given PRR does not terminate within a prescribed time limit. In
the literature, prominent works on tail bound analysis include the following.
First, Karp proposed a classic “cookbook” formula [21] similar to Master The-
orem. This method is further improved, extended, and mechanized by follow-
up works [5,13,30]. While Karp’s method has a clean form and is easy to use
and automate, the bounds from the method are known to be not tight (see
e.g. [15,25]). Second, the works [25] and resp. [15] performed ad-hoc custom
analysis to derive asymptotically tight tail bounds for the PRRs of QuickSort
and resp. QuickSelect, respectively. These methods require manual effort and do
not have the generality to handle a wide class of PRRs.

From the literature, an algorithmic approach capable of deriving tight tail
bounds over a wide class of PRRs is a major unresolved problem. Motivated by
this challenge, we have the following contributions to this work:

– Based on Markov’s inequality, we propose a novel theoretical approach to
derive exponentially-decreasing tail bounds, a common type for many ran-
domized algorithms. We further show that our theoretical approach can
always derive an exponentially-decreasing tail bound at least as tight as
Karp’s method under mild assumptions.

– From our theoretical approach, we propose a template-based algorithmic app-
roach for a wide class of PRRs that have (i) common probability distributions
such as (piecewise) uniform distribution and discrete probability distributions
and (ii) either a single call or a divide-and-conquer for the form of the recur-
sive call. The technical novelties in our algorithm lie in a refined treatment
of the estimation of the exponential term arising from our theoretical app-
roach via integrals, suitable over-approximation, and the monotonicity of the
template function.
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– Experiments show that our algorithmic approach derives asymptotically
tighter tail bounds when compared with Karp’s method. Furthermore, the tail
bounds derived from our approach match the best-known bound for QuickS-
elect [15], and are only slightly worse by a log log n factor against the optimal
manually-derived bound for QuickSort [25]. Moreover, our algorithm synthe-
sizes each of these tail bounds in less than 0.1 s and is efficient in practice.

A limitation of our approach is that we do not consider the transformation
from a realistic implementation of a randomized algorithm into its PRR repre-
sentation. However, such a transformation would require examining a diversified
number of randomization patterns (e.g., randomized divide-and-conquer) in ran-
domized algorithms and thus is an orthogonal direction. In this work, we focus
on the tail bound analysis and present a novel approach to address this problem.
Due to space limitations, we relegate some details in the extended version [29].

2 Preliminaries

Below we present necessary background in probability theory and the tail bound
analysis problem we consider.

A probability space is a triple (Ω,F ,Pr) such that Ω is a non-empty set termed
as the sample space, F is a σ-algebra over Ω (i.e., a collection of subsets of Ω
that contains the empty set ∅ and is closed under complement and countable
union), and Pr(·) is a probability measure on F (i.e., a function F → [0, 1] such
that Pr(Ω) = 1 and for every pairwise disjoint set-sequence A1, A2, . . . in F , we
have that

∑
i≥1 Pr(Ai) = Pr

(⋃
i≥1 Ai

)
.

A random variable X from a probability space (Ω,F ,Pr) is an F-measurable
function X : Ω → R, i.e., for every d ∈ R, we have that {ω ∈ Ω | X(ω) < d} ∈ F .
We denote E[X] as its expected value; formally, we have E[X] :=

∫
X dPr.

A discrete probability distribution (DPD) over a countable set U is a function
η : U → [0, 1], such that

∑
u∈U η(u) = 1. The support of the DPD is defined as

supp(η) := {u ∈ U | η(u) > 0}. We abbreviate finite-support DPD as FSDPD.
A filtration of probability space (Ω,F ,Pr) is an infinite sequence of {Fn}n≥0

of σ-algebra over Ω such that Fn ⊆ Fn+1 ⊆ F for every n ≥ 0. Intuitively, it
models the information at the n-th step. A discrete-time stochastic process is an
infinite sequence Γ = {Xn}n≥0 of random variables from the probability space
(Ω,F ,Pr). The process Γ is adapted to a filtration {Fn}n≥0 if for all n ≥ 0,
Xn is Fn-measurable. Given a filtration {Fn}n≥0, a stopping time is a random
variable τ : Ω → N, such that for every n ≥ 0, {ω ∈ Ω | τ(ω) ≤ n} ∈ Fn.

A discrete-time stochastic process Γ = {Xn}n∈N adapted to a filtration
{Fn}n∈N is a martingale (resp. supermartingale) if for every n ∈ N, E[|Xn|] < ∞
and it holds a.s. that E [Xn+1 | Fn] = Xn (resp. E [Xn+1 | Fn] ≤ Xn). Intu-
itively, a martingale (resp. supermartingale) is a discrete-time stochastic process
in which for an observer who has seen the values of X0, . . . , Xn, the expected
value at the next step, i.e. E [Xn+1 | Fn], is equal to (resp. no more than) the
last observed value Xn. Also, note that in a martingale, the observed values for



Automated Tail Bound Analysis for Probabilistic Recurrence Relations 19

X0, . . . , Xn−1 do not matter given that E [Xn+1 | Fn] = Xn. In contrast, in a
supermartingale, the only requirement is that E [Xn+1 | Fn] ≤ Xn and hence
E [Xn+1 | Fn] may depend on X0, . . . , Xn−1. Also, note that Fn might contain
more information than just the observations of Xi’s.

Example 1. Consider the classical gambler’s ruin: a gambler starts with Y0 dol-
lars of money and bets continuously until he loses all of his money. If the bets are
unfair, i.e. the expected value of his money after a bet is less than its expected
value before the bet, then the sequence {Yn}n∈N0 is a supermartingale. In this
case, Yn is the gambler’s total money after n bets. On the other hand, if the bets
are fair, then {Yn}n∈N0 is a martingale. 	

We refer to standard textbooks (such as [6,34]) for a detailed treatment of all
the concepts illustrated above.

2.1 Probabilistic Recurrence Relations

In this work, we focus on probabilistic recurrence relations (PRRs) that describe
the runtime behaviour of a single recursive procedure. Instead of having a direct
syntax for a PRR, we propose a mini programming language LRec that cap-
tures a wide class of PRRs that have common probability distributions such
as (piecewise) uniform distributions and discrete probability distributions, and
whose recursive call consists of either a procedure call or two procedure calls in
a divide-and-conquer style. We present the grammar of LRec in Fig. 1.

Fig. 1. The Grammar of LRec

In the grammar, we have two positive-integer valued variables n, v which
stand for the input size and the sampled value in the randomization of the passed
size to the recursive calls of a procedure, respectively. We use b > 0, c, cp to denote
integer constants, and use p to denote the name of the single procedure in the
PRR. We consider arithmetic expressions expr as polynomials over v, v−1, ln v
and n, n−1, ln n (which we call pseudo-polynomials in this work) and common
probability distributions, including (i) the uniform distribution uniform(n) over
{0, 1, . . . , n−1}, (ii) the piecewise uniform distribution muniform(n) that returns
max{i, n− i−1} where i observes the uniform distribution uniform(n), and (iii)
any FSDPD (indicated by discrete) whose probabilities and values are constants
and pseudo-polynomials, respectively. We also support other piecewise uniform
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distribution, e.g., the distribution that each v ∈ {0, . . . , n/2} has probability 2
3n

and each v ∈ {n/2 + 1, . . . , n − 1} has probability 4
3n .

The nonterminal proc generates the PRR in the form def p(n; cp) = {comm},
for which cp is an integer constant as the threshold of recursion, meaning that
the procedure halts immediately when n < cp, and comm is the function body
of the procedure. The nonterminal comm generates all statements with one of
the two forms as follows.

– A sampling statement (indicated by sample) followed by first a special expres-
sion pre(expr) that stands for the preprocessing time of expr amount, then
the recursive calls generated by the nonterminal call.

– A probabilistic choice in the form
⊕k

i=1 ci:commi where each statement
commi is executed with probability ci.

We restrict the recursive calls to be either a single recursive call p(v) or
p(size− v), or a divide-and-conquer composed of two consecutive recursive calls
p(v) and p(size − v), for which we consider a general setting that the relevant
overall size size is in the form of the input size n divided by some positive integer
b with possibly an offset c. Choosing b = 1, c = −1 means the normal situation
that the overall size is n − 1, i.e., removing one element from the original input.

Given a PRR p, we use func(p) to represent its function body.
We always assume that the given PRR is well-formed, i.e., every ci in a

probabilistic choice is within [0, 1] and every random passed size (e.g. v, size−v)
falls in [0, n]. Below, we present two examples for PRRs.

Example 2 (QuickSelect). Consider the problem of finding the d-th smallest
element in an unordered array of n distinct elements. A classical randomized
algorithm for solving this problem is QuickSelect [17] with O(n) expected run-
ning time. We model the algorithm as the following PRR:

def p(n; 2) = {sample v ← muniform(n) in {pre(n); invoke p(v); }}

Here, we use p(n; 2) to represent the number of comparisons performed by Quick-
Select over an input of size n, and v is the variable that captures the size of the
remaining array that has to be searched recursively. It observes as the value
max{i, n− 1− i} where the value of i is sampled uniformly from {0, . . . , n−1},
we use muniform(n) to represent this distribution. 	

Example 3 (QuickSort). Consider the classical problem of sorting an array of n
distinct elements. A well-known randomized algorithm for solving this problem
is QuickSort [16]. We model the algorithm as the following PRR.

def p(n; 2) = {sample v ← uniform(n) in {pre(n); invoke p(v); p(n − 1 − v); }}

Here, v and n − 1 − v capture the sizes of the two sub-arrays. 	

Below we present the semantics of a PRR in a nutshell. Consider a PRR

generated by LRec with the procedure name p, a configuration σ is a pair σ =
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(comm, n̂) where comm represents the current statement to be executed and
n̂ ≥ cp is the current value for the variable n. A PRR state μ is a triple 〈σ,C,K〉
for which:

– σ is either a configuration, or halt for the termination of the whole PRR.
– C ≥ 0 records the cumulative preprocessing time so far.
– K is a stack of configurations that remain to be executed.

We use emp to denote an empty stack, and say that a PRR state 〈σ,C,K〉 is final
if K = emp and σ = halt. Note that in a final PRR state 〈halt, C, emp〉, the value
C represents the total execution runtime of the PRR. The semantics of the PRR
is defined as a discrete-time Markov chain whose state space is the set of all PRR
states and whose transition function P, where P(μ, μ′) is the probability that
the next PRR state is μ′ given the current PRR state is μ = ((comm, n̂), C,K).
The probability is determined by the following cases.

– For final PRR states μ, P(μ, μ) := 1 and P(μ, μ′) := 0 for other μ′ 
= μ. This
means that the PRR stays at termination once it terminates.

– In the divide-and-conquer case comm = sample v ← dist in {pre(e);
invoke p(v); p(s−v)}, we first sample v from the distribution dist. Then, with
probability dist(v), we accumulate the preprocessing time e into the cumula-
tive processing time C. We recursively invoke p(v) and push the remaining
task p(s − v) into the stack. The probability for the single recursion case is
defined analogously. The only difference is that there is no need to push some
recursive call into the stack in the single recursion case.

– In the case comm =
⊕k

i=1 ci : commi, we have that P(μ, μi) = ci for each
1 ≤ i ≤ k for which we have μi := ((commi, n̂), C,K).

With an initial PRR state ((func(p), n∗), 0, emp) where n∗ ≥ cp is the input
size, the Markov chain induces a probability space where the sample space is
the set of all infinite sequences of PRR states, the σ-algebra is generated by all
cylinder sets over infinite sequences of PRR states, and the probability measure
is uniquely determined by the transition function P. We refer to [3] for details.
We use Prn∗ for the probability measure where n∗ ≥ cp is the input size.

We further define the random variable τ such that for any infinite sequence
of PRR states ρ = μ0, μ1, . . . , μt, . . . with each μt = ((commt, n̂t), Ct,Kt),
τ(ρ) equals the first moment that the sequence reaches a final PRR state, i.e.,
τ(ρ) = inf{t | the PRR state μt is final}, for which inf ∅ = ∞. We will always
ensure that τ is almost-surely finite, i.e., Prn∗(τ < ∞) = 1). Note that the
random cumulative processing time Cτ in the PRR state μτ ∈ ρ is the total
execution time of the given PRR.

We formulate the tail bound analysis over PRRs as follows. Given a time
limit α · κ(n∗) symbolic in the initial input n∗ and the coefficient α, the goal of
tail bound analysis is to infer an upper bound u(α, n∗) symbolic in n∗ and α
such that for every input size n∗ and plausible value for α, we have that

Prn∗ [Cτ ≥ α · κ(n∗)] ≤ u(α, n∗). (1)
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As tails bounds are often evaluated asymptotically, we focus on deriving tight
u(α, n∗) when α, n∗ are sufficiently large. To compare the magnitude of two tail
bounds, we follow the straightforward way that first treats α as a fixed constant
and compares the bounds over n∗, and then if the magnitude over n∗ is identical,
we take a further comparison over the magnitude on the coefficient α.

Example 4 (Our result on QuickSelect). Continue with Example 2, suppose the
user is interested in the tail bound Pr[Cτ ≥ α · n∗], where Cτ is the running
time of the QuickSelect algorithm over an array with length n∗. Then, Karp’s
method produces the symbolic tail bound as follows.

Pr[Cτ ≥ α · n∗] ≤ exp(1.15 − 0.28 · α)

However, our method can produce the following tail bound.

Pr[Cτ ≥ α · n∗] ≤ exp(2 · α − α · ln α)

Note that our method produces tail bounds with a better magnitude on α. 	

Example 5 (Our result on QuickSort). Continue with Example 3, consider the
tail bound Pr[Cτ ≥ α ·n∗ · ln n∗], where Cτ is the running time of QuickSort over
a length-n∗ array. Then, Karp’s method produces the symbolic tail bound as:

Pr[Cτ ≥ α · n∗ · ln n∗] ≤ exp(0.5 − 0.5 · α),

while our method can produce the bound as:

Pr[Cτ ≥ α · n∗ · ln n∗] ≤ exp((4 − α) · ln n∗)

Note that our method produces tail bounds with a better magnitude on n∗. 	


3 Exponential Tail Bounds via Markov’s Inequality

In this section, we demonstrate our theoretical approach for deriving exponen-
tially decreasing tail bounds based on Markov’s inequality.

Before illustrating our approach, we first translate a PRR in the language
LRec with the single procedure p into the canonical form as follows.

p(n; cp) = pre(S(n)); invoke p(size1(n)); . . . ; p(sizer(n)) (2)

where (i) S(n) is a random variable related to the input size n that represents the
randomized pre-processing time and observes a probability distribution result-
ing from a discrete probability choice of piecewise uniform distributions, and (ii)
invoke p(size1(n)); . . . ; p(sizer(n)) is a statement that is either a single recursive
call p(size1(n)) or a divide-and-conquer p(size1(n)); p(size2(n)) upon the resolu-
tion of the randomization. For the latter, we use a random variable r (which is
either 1 or 2) to represent the number of recursive calls.
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The translation can be implemented by a straightforward recursive procedure
Tf(n, Prog) that takes on input a positive integer n (as the input size) and a
statement Prog (generated by the nonterminal comm) to be processed, Note that
the procedure Tf(n, Prog) outputs the joint distribution of the random value
S(n) and the recursive call p(size1(n)); . . . ; p(sizer(n)) with randomized input
size. These random variables may be dependent.

Our theoretical approach then works directly on the canonical form (2). It
consists of two major steps to derive an exponentially-decreasing tail bound. In
the first step, we apply Markov’s inequality and reduce the tail bound analysis
problem to the over-approximation of the moment generating function E[exp(t ·
Cτ )] where Cτ is the cumulative pre-processing time defined previously and t > 0
is a scaling factor that aids the derivation of the tail bound. In the second step,
we apply Optional Stopping Theorem (a classical theorem in martingale theory)
to over-approximate the expected value E[exp(t ·Cτ )]. Below we fix an PRR with
procedure p in the canonical form (2), and a time limit α · κ(n∗).

Our first step applies Markov’s inequality. Our approach relies on the well-
known exponential form of Markov’s inequality below.

Theorem 1. For every random variable X and any scaling factor t > 0, we
have that Pr[X ≥ d] ≤ E[exp(t · X)]/ exp(t · d).

The detailed application of Markov’s inequality to tail bound analysis
requires to choose a scaling factor t := t(α, n) symbolic in α and n. After choos-
ing the scaling factor, Markov’s inequality gives the following tail bound:

Pr[Cτ ≥ α · κ(n∗)] ≤ E[exp(t(α, n∗) · Cτ )]/ exp(t(α, n∗) · α · κ(n∗)). (3)

The role of the scaling factor t(α, n∗) is to scale the exponent in the term
exp(κ(α, n∗)), and this is in many cases necessary as a tail bound may not be
exponentially decreasing directly in the time limit α · κ(n∗).

An unsolved part in the tail bound above is the estimation of the expected
value E[exp(t(α, n∗)·Cτ )]. Our second step over-approximates the expected value
E[exp(t(α, n∗) · Cτ )]. To achieve this goal, we impose a constraint on the scaling
factor t(α, n) and an extra function f(α, n) and show that once the constraint
is fulfilled, then one can derive an upper bound for E[exp(t(α, n∗) · Cτ )] from
t(α, n) and f(α, n). The theorem is proved via Optional Stopping Theorem.
The theorem requires the almost-sure termination of the given PRR, a natural
prerequisite of exponential tail bound. In this work, we consider PRRs with finite
termination time that implies the almost-sure termination.

Theorem 2. Suppose we have functions t, f : [0,∞) × N → [0,∞) such that

E[exp(t(α, n) · Ex(n | f))] ≤ exp(t(α, n) · f(α, n)) (4)

for all sufficiently large α, n∗ > 0 and all cp ≤ n ≤ n∗, where

Ex(n | f) := S(n) +
∑r

i=1 f(α, sizei(n)).
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Then for t∗(α, n∗) := mincp≤n≤n∗ t(α, n), we have that

E[exp(t∗(α, n∗) · Cτ )] ≤ E[exp(t∗(α, n∗) · f(α, n∗))].

Thus, we obtain the upper bound u(α, n∗) := exp(t∗(α, n∗) ·(f(α, n∗)−α ·κ(n∗)))
for the tail bound in (1).

Proof Sketch. We fix a procedure p, and some sufficiently large α and n∗. In
general, we apply the martingale theory to prove this theorem. To construct a
martingale, we need to make two preparations.

First, by the convexity of exp(·), substituting t(α, n) with t∗(α, n∗) in (4)
does not affect the validity of (4).

Second, given an infinite sequence of the PRR states ρ = μ0, μ1, . . . in the
sample space, we consider the subsequence ρ′ = μ′

0, μ
′
1, . . . as follows, where we

represent μ′
i as ((func(p), n̂′

i), C
′
i,K

′
i). It only contains states that are either final

or at the entry of p, i.e., comm = func(p). We define τ ′ := inf{t : μ′
t is final}, then

it is straightforward that C ′
τ ′ = Cτ . We observe that μ′

i+1 represents the recursive
calls of μ′

i. Thus, we can characterize the conditional distribution μ′
i+1 | μi by

the transformation function Tf(n̂, func(p)) as follows.

– We first draw (S, size1, size2, r) from Tf(n̂′
i, func(p)).

– We accumulate S into the global cost. If there is a single recursion (r = 1),
we invoke this sub-procedure. If there are two recursive calls, we push the
second call p(size2) into the stack and invoke the first one p(size1).

Now we construct the super-martingale as follows. For each i ≥ 0, we denote
the stack as K′

i for μ′
i as (func(p), si,1) · · · (func(p), si,qi), where qi is the stack

size. We prove that another process y0, y1, . . . that forms a super-martingale,
where yi := exp

(
t∗(α, n∗) ·

(
C ′

i + f(α, n̂′
i) +

∑qi
j=1 f(α, si,j)

))
. Note that y0 =

exp(t∗(α, n∗) · f(α, n∗)), and yτ ′ = exp(t∗(α, n∗) · C ′
τ ′) = exp (t∗(α, n∗) · Cτ ).

Thus we informally have that E [exp (t∗(α, n∗) · Cτ )] = E [yτ ′ ] ≤ E[y0] =
exp (t∗(α, n∗) · f(α, n∗)) and the theorem follows. 	


It is natural to ask whether our theoretical approach can always find an
exponential-decreasing tail bound over PRRs. We answer this question by show-
ing that under a difference boundedness and a monotone condition, the answer
is yes. We first present the difference boundedness condition (A1) and the mono-
tone condition (A2) for a PRR Δ in the canonical form (2) as follows.

(A1) Δ is difference-bounded if there exist two real constants M ′ ≤ M , such that
for every n ≥ cp, and every possible value (V, s1, . . . , sk) in the support of the
probability distribution Tf(n, func(p)), we have that

M ′ · E[S(n)] ≤ V + (
k∑

i=1

E[p(si)]) − E[p(n)] ≤ M · E[S(n)].

(A2) Δ is expected non-decreasing if E[S(n)] does not decrease as n increases.
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In other words, (A1) says that for any possible concrete pre-processing time V
and passed sizes s1, . . . , sk, the difference between the expected runtime before
and after the recursive call is bounded by the magnitude of the expected pre-
processing time. (A2) simply specifies that the expected pre-processing time be
monotonically non-decreasing.

With the conditions (A1) and (A2), our theoretical approach guarantees a
tail bound that is exponentially decreasing in the coefficient α and the ratio
E[p(n∗)]/E[S(n∗)]. The theorem statement is as follows.

Theorem 3. Let Δ be a PRR in the canonical form (2). If Δ satisfies (A1) and
(A2), then for any function w : [1,∞) → (1,∞), the functions f, t given by

f(α, n) := w(α) · E[p(n)] and t(α, n) :=
λ(α)

E[S(n)]

with λ(α) :=
8(w(α) − 1)

w(α)2(M2 − M1)2

fulfill the constraint (4) in Theorem 2. Furthermore, by choosing w(α) := 2α
1+α in

the functions f, t above and κ(α, n∗) := α · E[p(n∗)], one obtains the tail bound

Pr[Cτ ≥ αE[p(n∗)]] ≤ exp
(

− 2(α − 1)2

α(M2 − M1)2
· E[p(n∗)]
E[S(n∗)]

)

.

Proof Sketch. We first rephrase the constraint (4) as

E

[
exp

(
t(α, n) · (S(n) +

∑r

i=1
f(α, sizei(n)) − f(α, n))

)]
≤ 1

Then we focus on the exponent in the exp(·), by (A1), the exponent is a bounded
random variable. By further calculating its expectation and applying Hoeffiding’s
Lemma [18], we obtain the theorem above. 	


Note that since E[p(n)] ≥ E[S(n)] when n ≥ cp, the tail bound is at least
exponentially-decreasing with respect to the coefficient α. This implies that our
theoretical approach derives tail bounds that are at least as tight as Karp’s
method when (A1) and (A2) holds. When E[p(n)] is of a strictly greater magni-
tude than E[S(n)], our approach derives asymptotically tighter bounds.

Below, we apply the theorem above to prove tail bounds for Quickse-
lect (Example 2) and Quicksort (Example 3).

Example 6. For QuickSelect, its canonical form is p(n; 2) = n+p(size1(n)), where
size1(n) observes as muniform(n). Solving the recurrence relation, we obtain that
E[p(n)] = 4 · n. We further find that this PRR satisfies (A1) with two constants
M ′ = −1,M = 1. Note that the PRR satisfies (A2) obviously. Hence, we apply
Theorem 3 and derive the tail bound for every sufficiently large α:

Pr[Cτ ≥ 4 · α · n∗] ≤ exp
(

−2(α − 1)2

α

)

.
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On the other hand, Karp’s cookbook has the tail bound

Pr[Cτ ≥ 4 · α · n∗] ≤ exp (1.15 − 1.12 · α) .

Our bound is asymptotically the same as Karp’s but has a better coefficient. 	

Example 7. For QuickSort, its canonical form is p(n; 2) = n + p(size1(n)) +
p(size2(n)), where size1(n) observes as muniform(n) and size2(n)=n−1−size1(n).
Similar to the example above, we first calculate E[p(n)] = 2 · n · ln n. Note
that this PRR also satisfies two assumptions above with two constants M ′ =
−2 log 2,M = 1. Hence, for every sufficiently large α, we can derive the tail
bound as follows:

Pr[Cτ ≥ 2 · α · n∗ · ln n∗] ≤ exp
(

−0.7(α − 1)2

α
· ln n∗

)

.

On the other hand, Karp’s cookbook has the tail bound

Pr[Cτ ≥ 2 · α · n∗ · ln n∗] ≤ exp (−α + 0.5) .

Note that our tail bound is tighter than Karp’s with a ln n factor. 	

From the generality of Markov’s inequality, our theoretical approach can

handle to general PRRs with three or more sub-procedure calls. However, the tail
bounds derived from Theorem 3 is still not tight since the theorem only uses the
expectation and bound of the given distribution. For example, for QuickSelect,
the tightest known bound exp(−Θ(α · ln α)) [15], is tighter than that derived
from Theorem 3. Below, we present an algorithmic approach that fully utilizes
the distribution information and derives tight tail bounds that can match [15].

4 An Algorithmic Approach

In this section, we demonstrate an algorithmic implementation for our theoretical
approach (Theorem 2). Our algorithm synthesizes the functions t, f through
template and a refined estimation on the exponential terms from the inequality
(4). The estimation is via integration and the monotonicity of the template.
Below we fix a PRR p(n; cp) in the canonical form (2) and a time limit α ·κ(n∗).

Recall that to apply Theorem 2, one needs to find functions t, f that sat-
isfy the constraint (4). Thus, the first step of our algorithm is to have pseudo-
monomial template for f(α, n) and t(α, n) in the following form:

f(α, n) := cf · αpf · lnqf α · nuf · lnvf n (5)
t(α, n) := ct · αpt · lnqt α · nut · lnvt n (6)

In the template, we have pf , qf , uf , vf , pt, qt, ut, vt are given integers, and
cf , ct > 0 are unknown positive coefficients to be solved. For several compatibility
reasons (see Proposition 1 and 2 in the following), we require that uf , vf ≥ 0 and



Automated Tail Bound Analysis for Probabilistic Recurrence Relations 27

ut, vt ≤ 0. We say that the concrete values cf , ct for the unknown coefficients
cf , ct > 0 are valid if the concrete functions f, t obtained by substituting cf , ct for
cf , ct in the template (5) and (6) satisfy the constraint (4) for every sufficiently
large α, n∗ ≥ 0 and all cp ≤ n ≤ n∗.

We consider the pseudo-polynomial template since the runtime behavior
of randomized algorithms can be mostly captured by pseudo-polynomials. We
choose monomial templates since our interest is the asymptotic magnitude of
the tail bound. Thus, only the monomial with the highest degrees matter.

Our algorithm searches the values for pf , qf , uf , vf , pt, qt, ut, vt by an enu-
meration within a bounded range {−B, . . . , B}, where B is a manually specified
positive integer. To avoid exhaustive enumeration, we use the following propo-
sition to prune the search space.

Proposition 1. Suppose that we have functions t, f : [0,∞) × N → [0,∞) that
fulfill the constraint (4). Then it holds that (i)

(pf , qf ) ≤ (1, 0) and (pt, qt) ≥ (−1, 0), and (ii)
f(α, n) = Ω(E[p(n)]), f(α, n) = O(κ(n)) and t(α, n) = Ω(κ(n)−1) for any

fixed α > 0, where we write (a, b) ≤ (c, d) for the lexicographic order, i.e.,
(a ≤ c) ∧ (a = c → b ≤ d).

Proof. Except for the constraint that f(α, n) = Ω(E[p(n)]), the other con-
straints simply ensure that the tail bound is exponentially-decreasing. To see
why f(α, n) = Ω(E[p(n)]), we apply Jensen’s inequality [27] to (4) and obtain
f(n) ≥ E[Ex(n|f)] = E[S(n) +

∑r
i=1 f(sizei(n))]. Then we imitate the proof of

Theorem 2 and derive that f(n) ≥ E[p(n)]. 	

Proposition 1 shows that it suffices to consider (i) the choice of uf , vf that

makes the magnitude of f to be within E[p(n)] and κ(n), (ii) the choice of
ut, vt that makes the magnitude of t−1 within κ(n), and (iii) the choice of
pf , qf , pt, qt that fulfills (pf , qf ) ≤ (1, 0), (pt, qt) ≥ (−1, 0). Note that an over-
approximation of E[p(n)] can be either obtained manually or derived from auto-
mated approaches [9].

Example 8. Consider the quickselect example (Example 2), suppose we are inter-
ested in the tail bound Pr[Cτ ≥ α ·n], and we enumerate the eight integers in the
template from −1 to 1. Since E[p(n)] = 4 · n, by the proposition above, we must
have that (uf , vf ) = (1, 0), (ut, vt) ≥ (−1, 0), (pt, qt) ≥ (−1, 0), (pf , qf ) ≤ (1, 0).
This reduces the number of choices for the template from 1296 to 128, where
these numbers are automatically generated by our implementation. A choice is
f(α, n) := cf · α · (ln α)−1 · n and t(α, n) := ct · ln α · n−1. 	


In the second step, our algorithm solves the unknown coefficients ct, cf in
the template. Once they are solved, our algorithm applies Theorem 2 to obtain
the tail bound. In detail, our algorithm computes t∗(α, n∗) as the minimum of
t(α, n) over cp ≤ n ≤ n∗, and by ut, vt ≤ 0, t∗(α, n∗) is simply t(α, n∗), so that
we obtain the tail bound u(α, n∗) = exp(t(α, n∗) · (f(α, n∗) − α · κ(n∗))).

Example 9. Continue with Example 8. Suppose we have successfully found that
cf = 2, ct = 1 is a valid concrete choice for the unknown coefficients in the
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template. Then t∗(α, n∗) is t(α, n∗) = lnα · (n∗)−1, and we have the tail bound
u(α, n∗) = exp(2 · α − α · ln α), which has better magnitude than the tail bound
by Karp’s method and our Theorem 3 (See Example 6). 	


Our algorithm follows the guess-and-check paradigm. The guess procedure
explores possible values cf , ct for cf , ct and invokes the check procedure to verify
whether the current choice is valid. Below we present the guess procedure in
Sect. 4.1, and the check procedure in Sect. 4.2.

4.1 The Guess Procedure Guess(f, t)

The pseudocode for our guess procedure Guess(f, t) is given in Algorithm 1. In
detail, it first receives a positive integer M as the doubling and halving number
(Line 1), then iteratively enumerates possible values for the unknown coefficients
cf and ct by doubling and halving for M times (Line 3 – Line 4), and finally
calls the check procedure (Line 5). It is justified by the following theorem.

Theorem 4. Given the template for f(α, n) and t(α, n) as in (5) and (6), if
cf , ct are valid choices, then (i) for every k > 1, k · cf , ct remains to be valid,
and (ii) for every 0 < k < 1, cf , k · ct remains to be valid.

Algorithm 1: Guess Procedure
Input : Template for f(α, n) and

t(α, n) as in (5) and (6)
Output: cf , ct > 0 for (5) and (6)

1 Parameter: M for the maximum steps
of doubling and halving.

2 Procedure Guess(f, t):
3 for ct := 1, 2−1, . . . , 2−M do
4 for cf := 1

2 , 1, 2, . . . , 2M−1 do
5 if CheckCond(cf , ct) then
6 Return (cf , ct)

By Theorem 4, if the check pro-
cedure is sound and complete (i.e.,
CheckCond always terminates and
cf , ct fulfills the constraint (4) iff
CheckCond(cf , ct) returns true), then
the guess procedure guarantees to find
a solution cf , ct (if it exists) when the
parameter M is large enough.

Example 10. Continued with Example 8, suppose M = 2, we enumerate cf

from { 1
2 , 1, 2}, and ct from {1, 1

2 , 1
4}. We try every possible combination, and we

find that CheckCond(2, 1) returns true. Thus, we return (2, 1) as the result. In
Sect. 4.2, we will show how to conclude that CheckCond(2, 1) is true. 	


4.2 The Check Procedure CheckCond(cf , ct)

The check procedure takes as input the concrete values cf , ct for the unknown
coefficients in the template, and outputs whether they are valid. It is the most
involved part in our algorithm due to the difficulty to tackle the validity of the
constraint (4) that involves the composition of polynomials, exponentiation and
logarithms. The existence of a sound and complete decision procedure for such
validity is extremely difficult and is a long-standing open problem [1,33].
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To circumvent this difficulty, the check procedure first strengthens the orig-
inal constraint (4) into a canonical constraint with a specific form, so that a
decision algorithm that is sound and complete up to any additive error applies.
Below we fix a PRR with procedure p in the canonical form (2). We also discuss
possible extensions for the check procedure in Remark 1.

The Canonical Constraint. We first present the canonical constraint Q(α, n)
and how to decide the canonical constraint. The constraint is given by (where
∀∞ means “for all sufficiently large α” or formally ∃α0.∀α ≥ α0)

Q(α, n) := ∀∞α.∀n ≥ cp.

[
k∑

i=1

γi · exp(fi(α) + gi(n)) ≤ 1

]
(7)

subject to:

(C1) For each 1 ≤ i ≤ k, we have γi > 0 is a positive constant, fi(α) is a
pseudo-polynomial in α, and gi(n) is a pseudo-polynomial in n.

(C2) For each 1 ≤ i ≤ k, the exponents for n and ln n in gi(n) are non-negative.

We use QL(α, n) to represent the summation term
∑k

i=1 γi · exp(fi(α) + gi(n))
in (7). Below we show that this can be checked by the algorithm Decide up to
any additive error. We present an overview of this algorithm. We also present
its pseudo-code in Algorithm 2.

The algorithm Decide requires an external function NegativeLB(P (n)) that
takes on input a pseudo-polynomial P (n) and outputs an integer T ∗

n such that
P (n) ≤ 0 for every n ≥ T ∗

n , or output +∞ for the absence of T ∗
n . The idea of this

function is to apply the monotonicity of pseudo-polynomials. With the function
NegativeLB(P (n)), the algorithm Decide consists of two steps as follows.

First, we can change the bound of n from [cp,∞) into [cp, Tn], where Tn is
a constant, without affecting the soundness and completeness. This is achieved
by the observation that either: (i) we can conclude Q(α, n) does not hold, or (ii)
there is an integer Tn such that QL(α, n) is non-increasing when n ≥ Tn. Hence,
it suffices only to consider cp ≤ n ≤ Tn. Below we show how to compute Tn by
case analysis of the limit Mi of gi(n) as n → ∞, for each 1 ≤ i ≤ k.

– If Mi =+∞, then exp(gi(n) + fi(α)) could be arbitrarily large when n → ∞.
As a result, we can conclude that Q(α, n) does not hold.

– Otherwise, by (C2), either gi(n) is a constant function, or Mi =−∞. In both
cases, gi(n) is non-increasing for every sufficiently large n. More precisely,
there exists Li such that g′

i(n) ≤ 0 for every n ≥ Li, where g′
i(n) is the

derivative of gi(n). Moreover, we can invoke NegativeLB(g′
i(n)) to get Li.

Finally, we set Tn as the maximum of Li’s and cp.
Second, for every integer cp ≤ n ≤ Tn, we substitute n with n to eliminate

n in Q(α, n). Then, each exponent fi(α) + gi(n) becomes a pseudo-polynomial
solely over α. Since we only concern sufficiently large α, we can compute the
limit Rn for QL(α, n) as α → ∞. We decide based on the limit Rn as follows.
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– If Rn < 1 for every cp ≤n≤L, we conclude that Q(α, n) holds.
– If Rn ≥ 1 for some cp ≤ n ≤ L, we conclude that Q(α, n) does not hold to

ensure soundness.

Algorithm 2: The Decision procedure for canonical constraints
Input : A canonical constraint Q(α, n) in the form of (7)
Output: Decide whether Q(α, n) holds.

1 Procedure Decide(Q(α, n)):
2 Tn := cp; // � The first step
3 for i := 1, 2, . . . , k do
4 Mi := The limit of gi(n) as n → ∞.
5 if Mi = +∞ then
6 Return False
7 else
8 g′

i(n) := the derivative of gi(n)

9 Tn := max{Tn,NegativeLB(g′
i(n))}

10 for n := cp, . . . , Tn do // � The second step
11 R := 0
12 for i := 1, 2, . . . , k do
13 Δ := the limit of fi(α) + gi(n) as α → ∞.
14 if Δ = +∞ then
15 Return False
16 else
17 R := R + γi · exp(Δ)
18 if R ≥ 1 then Return False
19 Return True

Algorithm Decide is sound, and complete up to any additive error, as is
illustrated by the following theorem.

Theorem 5. Algorithm Decide has the following properties:

– (Completeness) If Q(α, n) does not hold for infinitely many α and some n ≥
cp, then the algorithm returns false.

– (Soundness) For every ε > 0, we have that if QL(α, n) ≤ 1 − ε for all suffi-
ciently large α and all n ≥ cp, then the algorithm returns true.

The Strengthening Procedure. Then we show how to strengthen the con-
straint (4) into the canonical constraint (7), so that Algorithm Decide applies.
We rephrase (4) as

E

[
exp(t(α, n) ·

(
S(n) +

∑r

i=1
f(α, sizei(n)) − f(α, n)

)]
≤ 1 (8)

and consider two functions f, t obtained by substituting the concrete values cf , ct

for unknown coefficients into the template (5) and (6). We observe that the joint-
distribution of the random quantities S(n), r ∈ {1, 2} and size1(n), . . . , sizer(n)
in the canonical form (2) over PRRs can be described by several probabilistic
branches {c1 : B1, . . . , ck : Bk}, which corresponds to the probabilistic choice
commands in the PRR. Each probabilistic branch Bi has a constant probability
ci, a deterministic pre-processing time Si(n), a fixed number of subprocedure
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calls ri, and a probability distribution for the variable v. The strengthening first
handles each probabilistic branch, and then combines the strengthening results
of every branch into a single canonical constraint.

The strengthening of each branch is an application of a set of rewriting rules.
Intuitively, each rewriting step over-approximates and simplifies the expectation
term in the LHS of (8). Through multiple steps of rewriting, we eventually obtain
the final canonical constraint. Below we present the details of the strengthening
for a single probabilistic branch with the single recursion case. The divide-and-
conquer case follows a similar treatment, see the extended version for details.

Consider the single recursion case r = 1 where a probabilistic branch has
deterministic pre-processing time S(n), distribution dist for the variable v and
passed size H(v, n) for the recursive call. We have a case analysis on the distri-
bution dist as follows.

— Case I : dist is a FSDPD discrete{c′
1 : expr1, . . . , c′

k : exprk}, where v observes
as expri with probability c′

i. Then the expectation in (8) is exactly:

∑k

i=1
c′
i · exp (t(α, n) · S(n) + t(α, n) · f(α,H(expri, n)) − t(α, n) · f(α, n))

Thus it suffices to over-approximate the exponent Xi(α, n) := t(α, n) · S(n) +
t(α, n) ·f(α,H(expri, n))− t(α, n) ·f(n) into the form subject to (C1)–(C2). For
this purpose, our strengthening repeatedly applies the following rewriting rules
(R1)–(R4) for which 0 < a < 1 and b > 0:

(R1) f(α, H(expri, n)) ≤ f(α, n)

(R2) ln(an − b) ≤ lnn + ln a ln(an + b) ≤ lnn + ln(min{1, a +
b

cp
})

(R3) 0 ≤ n−1 ≤ c−1
p 0 ≤ ln−1 n ≤ ln−1 cp (R4) �n

b
� ≤ n

b
�n

b
	 ≤ n

b
+

b − 1

b

(R1) follows from the well-formedness 0 ≤ H(sizei, n) ≤ n and the monotonicity
of f(α, n) with respect to n. (R2)–(R4) are straightforward. Intuitively, (R1) can
be used to cancel the term f(α,H(sizei, n)) − f(α, n), (R2) simplifies the sub-
expression in ln, (R3) is used to remove floors and ceils, and (R4) to remove n−c

and ln−c n to satisfy the restriction (C2) of the canonical constraint. To apply
these rules, we consider two strategies below.

(S1-D) Apply (R1) and over-approximate Xi(α, n) as t(α, n) · S(n). Then, we
repeatedly apply (R3) to remove terms n−c and ln−c n.

(S2-D) Substitute f and t with the concrete functions f, t and expand
H(expri, n). Then we first apply (R4) to remove all floors and ceils, and
repeatedly apply (R2) to replace all occurrences of ln(an+b) with ln n+lnC
for some constant C. By the previous replacement, the whole term Xi(α, n)
will be over-approximated as a pseudo-polynomial over α and n. Finally, we
eagerly apply (R3) to remove all terms n−c and ln−c n.
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Our algorithm first tries to apply (S2-D), if it fails to derive a canonical con-
straint, then we apply the alternative (S1-D) to the original constraint. If both
the strategies fails, we report failure and exit the check procedure.

Example 11. Suppose v observes as {0.5 : n − 1, 0.5 : n − 2}, S(n) :=
ln n, t(α, n) := lnα

lnn , f(α, n) := 4 · α
lnα · n · ln n,H(v, n) := v. We consider

applying both strategies to the first term expr1 := n − 1 and X1(α, n) :=
t(α, n) ·(S(n)+f(α, n−1)−f(α, n)). If we apply (S1-D) to X1, it will be approx-
imated as exp(ln α). If we apply (S2-D) to X1, it will be first over-approximated
as lnα

lnn · (ln n + 4 · α
lnα · v · ln n − 4 · α

lnα · n · ln n), then we substitute v = n − 1
and derive the final result exp(ln α − 4 · α). Hence, both the strategies succeed.

	

— Case II : dist is uniform(n) or muniform(n). Note that H(v, n) is linear with
respect to v, thus H(v, n) is a bijection over v for every fixed n. Hence, if v
observes as uniform(n), then

E[exp(t(α, n) · f(α, H(v, n)))] ≤ 1

n

∑n−1

v=0
exp(t(α, n) · f(α, v)) (9)

If v observes as muniform(n), a similar inequality holds by replacing 1
n with 2

n .
Since f(α, v) is a non-decreasing function with respect to v, we further over-
approximate the summation in (9) by the integral

∫ n

0
exp(t(α, n) · f(α, v))dv.

Example 12. Continue with Example 10, we need to check
t(α, n) = lnα

n and f(α, n) = 2·α
lnα · n. By the inequality (9), we expand the

constraint (8) into 2
n · exp(lnα − 2 · α) · ∑n−1

v=0 exp( 2·α·i
n ). By integration, it is

further over-approximated as 2
n · exp(ln α − 2 · α) · ∫ n

0
exp( 2·α·v

n )dv. 	

Note that we still need to resolve the integration of an exponential function
whose exponent is a pseudo-monomial over α, n, v. Below we denote by dv the
degree on the variable v and by �v the degree of ln v. We first list the situations
where the integral can be computed exactly.

– If (dv, �v) = (1, 0), then the exponent could be expressed as W (α, n) ·v,where
W (α, n) is a pseudo-monomial over α and n. We can compute the integral as
exp(n·W (α,n))−1

W (α,n) and over-approximate it as exp(n·W (α,n))
W (α,n) by removing −1 in

the numerator.
– If (dv, �v) = (0, 1), then the exponent is of the form W (α, n) · ln v. We follow

a similar procedure with the case above and obtain the over-approximation
n·exp(lnn·W (α,n))

W (α,n) .
– If (dv, �v) = (0, 0), then the result is trivially n · exp(W (α, n)).

Then we handle the situation where the exact computation of the integral is
infeasible. In this situation, the strengthening further over-approximates the
integral into simpler forms by first replacing ln v with lnn, and then replac-
ing v with n to reduce the degrees �v and dv. Eventually, the exponent in the
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integral bows down to one of the three situations (where the integral can be
computed exactly) above, and the strengthening returns the exact value of the
integral.

Example 13. Continue with Example 12. We express the exponent as 2·α
n · v.

Thus, we can plug 2·α
n into W (α, n) and obtain the integration result exp(2·α)

2·α/n .

Furthermore, we can simplify the formula in Example 12 as exp(lnα)
α . 	


In the end, we move the term 1
n (or 2

n ) that comes from the uniform (or
muniform) distribution and the coefficient term W (α, n) into the exponent. If
we move these terms directly, it may produce ln lnn and ln lnα that comes from
taking the logarithm of ln n and ln α. Hence, we first apply ln cp ≤ ln n ≤ n and
1 ≤ ln α ≤ α to remove all terms ln n and ln α outside the exponent (e.g., lnα

lnn
is over-approximated as α

ln cp
). After the over-approximation, the terms outside

the exponentiation form a polynomial over α and n, we can trivially move these
terms into the exponent by taking the logarithm. Finally, we apply (R4) in Case
I to remove n−c and ln−c n. If we fail to obtain the canonical constraint, the
strengthening reports failure.

Example 14. Continue with Example 13, we move the term α into the expo-
nentiation and simplify the over-approximation result as exp(ln α − ln α) = 1.
As a result, we over-approximate the LHS of (8) as 1 and we conclude that
CheckCond(2, 1) holds. 	


The details of the divide-and-conquer case are similar and omitted. Further-
more, we present how to combine the strengthening results for different branches
into a single canonical constraint. Suppose for every probabilistic branch Bi,
we have successfully obtained the canonical constraint QL,i(α, n) ≤ 1 as the
strengthening of the original constraint (8). Then, the canonical constraint for
the whole distribution is

∑k
i=1 ci · QL,i(α, n) ≤ 1. Intuitively, there is probabil-

ity ci for the branch Bi, thus the combination follows by simply expanding the
expectation term.

A natural question is to ask whether our algorithm can always succeed to
obtain the canonical constraint. We have the proposition as follows.

Proposition 2. If the template for t has a lower magnitude than S(n)−1 for
every branch, then the rewriting always succeeds.

Proof. We first consider the single recursion case. When dist is FSDPD, we can
apply (S1-D) to over-approximate the exponent as t(α, n) · S(n). Since t(α, n)
has a lower magnitude than S(n)−1, by further applying (R3) to eliminate
n−c and ln−c n, we obtain the canonical constraint. If dist is uniform(n) or
muniform(n) , we observe that the over-approximation result for the integral is
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either exp(f(α,n))
f(α,n)·t(α,n) (when dv > 0) or lnn·exp(f(α,n))

f(α,n)·t(α,n) (when dv = 0). Thus, we can
cancel the term f(α, n) in the exponent and obtain the canonical constraint by
the subsequent steps. The proof is the same for the divide-and-conquer case. 	

By Proposition 2, we restrict ut, vt ≤ 0 in the template to ensure our algorithm
never fails.

Remark 1. Our algorithm can be extended to support piecewise uniform distri-
butions (e.g. each of 0, . . . , n/2 with probability 2

3n and each of n/2+1, . . . , n−1
with probability 4

3n ) by handling each piece separately.

5 Experimental Results

In this section, we evaluated our algorithm over classical randomized algorithms
such as QuickSort (Example 3), QuickSelect (Example 2), DiameterComputa-
tion [26, Chapter 9], RandomizedSearch [24, Chapter 9], ChannelConflictResolu-
tion [22, Chapter 13], examples such as Rdwalk and Rdadder in the literature [7],
and four manually-crafted examples (MC1 – MC4). For each example, we man-
ually compute its expected running time for the prunning.

Fig. 2. Plot for QuickSelect

We implemented our algorithm in C++.
We choose B = 2 (as the bounded range for
the template), M = 4 (in the guess proce-
dure), Q = 8 (for the number of parts in
the integral), and prune the search space by
Theorem 1. All results were obtained on an
Ubuntu 18.04 machine with an 8-Core Intel
i7-7900x Processor (4.30GHz) and 40 GB of
RAM.

We report the tail bound derived by
our algorithm in Table 1, where “Benchmark”
lists the benchmarks, “α·κ(n∗)” lists the time
limit of interest, “Our bound” lists the tail bound by our approach, “Time(s)” lists
the runtime (in seconds) of our approach, and “Karp’s bound” lists the bounds by
Karp’s method. From the table, our algorithm constantly derives asymtotically
tighter tail bounds than Karp’s method. Moreover, all these bounds are obtained
in a few seconds, demonstrating the efficiency of our algorithm. Furthermore, our
algorithm obtains bounds with tighter magnitude than our completeness theo-
rem (Theorem 3) in 9 benchmarks, and bounds with the same magnitude as the
others.

For an intuitive comparison, we also report the concrete bounds and their
plots of our method and Karp’s method. We choose three concrete choices of α
and n∗ and plot the concrete bounds over 10 ≤ α ≤ 15, n∗ = 17. For concrete
bounds, we also report the ratio Karp’s Bound

Our Bound to show the strength of our method.
Due to space limitations, we only report the results for QuickSelect (Example 2)
in Table 2 and Fig. 2.
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Table 1. Experimental Result

Benchmark α · κ(n∗) in (1) Our bound Time(s) Karp’s bound

QuickSelect α · n∗ exp(2 · α − α · ln α) 0.03 exp(1.15 − 0.28 · α)

QuickSort α · n∗ · ln n∗ exp((4 − α) · ln n∗) 0.02 exp(0.5 − 0.5 · α)

L1Diameter α · n∗ exp(α − α · ln α) 0.03 exp(1.39 − 0.69 · α)

L2Diameter α · n∗ · ln n∗ exp(α − α · ln α) 0.03 exp(1.39 − 0.69 · α)

RandSearch α · ln n∗ exp((2 · α − α · ln α) · ln n∗) 0.03 exp(−0.29 · α · ln n∗)

Channel α · n∗ exp((8 − α) · n∗) 0.05 exp(1 − 0.37 · α)

Rdwalk α · n∗ exp((0.5 − α) · n∗) 0.05 exp(0.60 − 0.41 · α)

Rdadder α · n∗ exp((4 − 0.5 · α) · n∗) 0.04 Not applicable

MC1 α · ln n∗ exp((α − α · ln α) · ln n∗) 0.03 exp(−0.69 · α · ln n∗)

MC2 α · ln2 n∗ exp((α − α · ln α) · ln n∗) 0.03 exp(−0.69 · α · ln n∗)

MC3 α · n∗ · ln2 n∗ exp(α − α · ln α) 0.03 exp(1.15 − 0.28 · α)

MC4 α · n∗ exp(2 · α − α · ln α) 0.04 Not applicable

Table 2. Concrete Bounds for QuickSelect

Concrete choice Our bound Karp’s Bound Ratio

α = 10; n∗ = 13 0.0485 0.192 3.96

α = 11; n∗ = 15 0.0126 0.145 11.6

α = 12; n∗ = 17 0.00297 0.110 36.9

6 Related Work

Karp’s Cookbook. Our approach is orthogonal to Karp’s cookbook method [21]
since we base our approach on Markov’s inequality, and the core of Karp’s
method is a dedicated proof for establishing that an intricate tail bound function
is a prefixed point of the higher order operator derived from the given PRR. Fur-
thermore, our automated approach can derive asymptotically tighter tail bounds
than Karp’s method over all 12 PRRs in our benchmark. Our approach could
also handle randomized preprocessing times, which is beyond the reach of Karp’s
method. Since Karp’s proof of prefixed point is ad-hoc, it is non-trivial to extend
his method to handle the randomized cost. Nevertheless, there are PRRs (e.g.,
Coupon-Collector) that can be handled by Karp’s method but not by ours. Thus,
our approach provides a novel way to obtain asymptotically tighter tail bounds
than Karp’s method.

The recent work [30] extends Karp’s method for deriving tail bounds for
parallel randomized algorithms. This method derives the same tail bounds as
Karp’s method over PRRs with a single recursive call (such as QuickSelect) and
cannot handle randomized pre-processing time. Compared with this approach,
our approach derives tail bounds with tighter magnitude on 11/12 benchmarks.

Custom Analysis. Custom analysis of PRRs [15,25] has successfully derived
tight tail bounds for QuickSelect and QuickSort. Compared with the custom
analysis that requires ad-hoc proofs, our approach is automated, has the gen-
erality from Markov’s inequality, and is capable of deriving bounds identical or
very close to the tail bounds from the custom analysis.
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Probabilistic Programs. There are also relevant approaches in probabilistic
program verification. These approaches are either based on martingale con-
centration inequalities (for exponentially-decreasing tail bounds) [7,10–12,19],
Markov’s inequality (for polynomially-decreasing tail bounds) [8,23,31], fixed-
point synthesis [32], or weakest precondition reasoning [4,20]. Compared with
these approaches, our approach is dedicated to PRRs (a light-weight representa-
tion of recursive probabilistic programs) and involves specific treatment of com-
mon recursive patterns (such as randomized pivoting and divide-and-conquer) in
randomized algorithms, while these approaches usually do not consider common
recursion patterns in randomized algorithms. Below we have detailed technical
comparisons with these approaches.

– Compared with the approaches based on martingale concentration inequali-
ties [7,10–12,19], our approach has the same root as them, since martingale
concentration inequalities are often proved via Markov’s inequality. However,
those approaches have more accuracy loss since these martingale concentra-
tion inequalities usually make further relaxations after applying Markov’s
inequality. In contrast, our automated approach directly handles the con-
straint after applying Markov’s inequality by having a refined treatment of
exponentiation and hence has better accuracy in deriving tail bounds.

– Compared with the approaches [8,23,31] that derive polynomially-decreasing
tail bounds, our approach targets the sharper exponentially-decreasing tail
bounds and hence is orthogonal.

– Compared with the fixed-point synthesis approach [32], our approach is
orthogonal as it is based on Markov’s inequality. Note that the approach [32]
can only handle 3/12 benchmarks.

– Compared with weakest precondition reasoning [4,20] that requires first spec-
ifying the bound functions and then verifying the bound functions by proof
rules related to fixed-point conditions, mainly with manual efforts, our app-
roach can be automated and is based on Markov’s inequality rather than
fixed point theorems. Although Karp’s method is also based on a particular
tail bound function as a prefixed point and can thus be embedded into the
weakest precondition framework, Karp’s proof of prefixed point requires deep
insight, which is beyond existing proof rules. Moreover, even a slight relax-
ation of the tail bound function into a simpler form in Karp’s method no
longer keeps the bound function to be a prefixed point. Hence, the approach
of the weakest precondition may not be suitable for deriving tail bounds.
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