Splitting Matchings and the Ryser-Brualdi-Stein Conjecture for Multisets

Michael Anastos ${ }^{a} \quad$ David Fabian $^{b} \quad$ Alp Müyesser ${ }^{c}$ Tibor Szabó ${ }^{b}$

Submitted: Dec 6, 2022; Accepted: May 4, 2023; Published: Jul 28, 2023
(C) The authors. Released under the CC BY-ND license (International 4.0).

Abstract

We study multigraphs whose edge-sets are the union of three perfect matchings, M_{1}, M_{2}, and M_{3}. Given such a graph G and any $a_{1}, a_{2}, a_{3} \in \mathbb{N}$ with $a_{1}+a_{2}+a_{3} \leqslant$ $n-2$, we show there exists a matching M of G with $\left|M \cap M_{i}\right|=a_{i}$ for each $i \in\{1,2,3\}$. The bound $n-2$ in the theorem is best possible in general. We conjecture however that if G is bipartite, the same result holds with $n-2$ replaced by $n-1$. We give a construction that shows such a result would be tight. We also make a conjecture generalising the Ryser-Brualdi-Stein conjecture with colour multiplicities.

Mathematics Subject Classifications: 05C35, 05B15

1 Introduction

Let G be a graph on $2 n$ vertices whose edge-set is the union of k edge-disjoint perfect matchings. Alternatively, one can also imagine a properly k-edge-coloured k-regular graph, where the matchings are the colour classes. For which sequences a_{1}, \ldots, a_{k} with $\sum_{i \in[k]} a_{i} \leqslant n$ does there exist a "colourful" matching M of G with the property that $\left|M \cap M_{i}\right| \geqslant a_{i}$ for each $i \in[k]$? This question was introduced by Arman, Rödl, and Sales [3, Question 1.1]. In their main result they obtained a couple of sufficient conditions for a relaxed version of the problem, where the base graph is ℓ-regular and ℓ-edge-coloured with a slightly larger $\ell \sim(1+\varepsilon) k$.

In our paper we are mostly concerned with the original problem for three colours. Arguably, the first natural question is whether there exists a "fairly split" perfect matching M, i.e. one with $\left|M \cap M_{i}\right|=n / 3$ for every $i=1,2,3$. Of course n has to be divisible by 3 for this to have a chance of happening. It turns out that even if 3 divides n, a fairly split perfect matching is only guaranteed to exist if $n=3$. Even more generally, for any $k \leqslant n-1$ or $k=n$ even, the only colour-multiplicity tuples $\left(a_{1}, \ldots, a_{k}\right)$ with

[^0]$n=a_{1}+\cdots+a_{k}$ which can be realised by a colorful perfect matching in any properly k-edge-coloured k-regular graph on $2 n$ vertices are the trivial ones, namely those having a coordinate n.

Proposition 1. Let $a_{1}, \ldots a_{k} \in\{0,1, \ldots, n-1\}$ and $n=a_{1}+\cdots+a_{k}$. For every $n>k$ or $n=k$ even, there exists a bipartite graph $G=(V, E)$ with n vertices in each side whose edge set is the disjoint union of k perfect matchings M_{1}, \ldots, M_{k}, and there is no perfect matching M of G with $\left|M \cap M_{i}\right|=a_{i}$ for each $i \in[k]$.

The existence of a fairly split perfect matching for odd $k=n$ in bipartite graphs is known as Ryser's Conjecture, a famous and tantalising open problem.

As to the question of Arman, Rödl, and Sales for three colours, we show that a colourful matching of size as large as $n-2$ can always be found for any colour-multiplicity vector $\left(a_{1}, a_{2}, a_{3}\right)$. In fact, this can be guaranteed even when the matchings we start with are not necessarily disjoint.

Theorem 2. Let G be a (multi-) graph on $2 n$ vertices whose edge set is the disjoint union of three perfect matchings M_{1}, M_{2}, M_{3}. Then for any $a_{1}, a_{2}, a_{3} \in \mathbb{N}$ with $a_{1}+a_{2}+a_{3} \leqslant$ $n-2$ there exists a matching M in G such that $\left|M \cap M_{1}\right|=a_{1},\left|M \cap M_{2}\right|=a_{2}$, and $\left|M \cap M_{3}\right|=a_{3}$.

The proofs of the above theorem and Proposition 1 are given in Section 2.
Remark 1. In light of Proposition 1, it is natural to ask how close to a fairly split perfect matching we can get for $k \geqslant 3$. Arman et al. [3] note that their results imply that one can always choose a matching M with $\left|M \cap M_{i}\right| \geqslant n / k-\varepsilon n$ for every $i \in\{1, \ldots, k\}$. In their concluding remarks they also mention that their proof could be modified to establish the existence of a (smallest) constant C_{k}, depending only on k, such that a matching M with $\left|M \cap M_{i}\right| \geqslant n / k-C_{k}$ for each $i \in\{1, \ldots, k\}$ can always be found. Proposition 1 shows that $C_{k} \geqslant 1$ for every k and Theorem 2 shows that $C_{3}=1$. Using Alon's Necklace Theorem, as in [3], in combination with some extra combinatorial ideas, one can obtain a linear bound $C_{k} \leqslant 4 k-6$ for all k. Since we believe that $C_{k}=1$ (cf Conjecture 4), we chose not to include the proof of that bound.

Remark 2. We note that the bound $n-2$ in Theorem 2 cannot be improved for general graphs without extra assumptions. To see this, for any even $n>2$ one can consider the (unique) decomposition of $n / 2$ disjoint copies of K_{4} into three perfect matchings M_{1}, M_{2}, M_{3}. Then the intersection of any matching M of G with any K_{4} is a subset of some M_{i}, consequently the size of M is at most n minus the number of indices $i \in\{1,2,3\}$ for which $\left|M \cap M_{i}\right|$ is odd. Hence a matching M of size $n-1=a_{1}+a_{2}+a_{3}$ with colourmultiplicity triple (a_{1}, a_{2}, a_{3}) does not exist if a_{1}, a_{2}, a_{3} are all odd.

We conjecture that the construction from the previous remark is the only exception, i.e., a split with $a_{1}+a_{2}+a_{3}=n-1$ should always possible if at least one component of G is not a K_{4}.

Conjecture 3. Let G be a graph on $2 n$ vertices whose edge set is decomposed into perfect matchings M_{1}, M_{2} and M_{3} and let a_{1}, a_{2}, a_{3} be non-negative integers such that
$a_{1}+a_{2}+a_{3}=n-1$. If G has a component that is not isomorphic to a K_{4}, then there exists a matching M in G such that $\left|M \cap M_{i}\right|=a_{i}$ for each $i \in\{1,2,3\}$.

A positive answer to this conjecture would in particular complete the resolution of the question of Arman et al. for three colours, as it implies that for a colour-multiplicity triple (a_{1}, a_{2}, a_{3}) with $a_{1}+a_{2}+a_{3}=n-1$ a colourful matching is guaranteed to exist if and only if at least one of the a_{i} is even. This would also imply that such a matching always exists if n is odd.

The construction in Proposition 1 is bipartite. We conjecture that the $n-2$ in Theorem 2 can be replaced with $n-1$ if G is assumed to be bipartite. (This is actually a special case of Conjecture 3.) Even more generally, we suspect that for bipartite graphs the condition of Proposition 1 on the colour-multiplicities is best possible. More precisely, we conjecture that the following multiplicity version of the Ryser-Brualdi-Stein conjecture is true ${ }^{1}$.

Conjecture 4. Let G be a complete bipartite graph on $2 n$ vertices whose edge set is decomposed into perfect matchings $M_{i}, i=1, \ldots, n$. Let $a_{i}, i \in\{1, \ldots, n\}$ be a sequence of non-negative integers such that $\sum_{i} a_{i}=n-1$. Then, there exists a matching M in G such that $\left|M \cap M_{i}\right|=a_{i}$ for each $i \in\{1, \ldots, n\}$.

Note that by König's Theorem any collection of k pairwise disjoint perfect matchings of $K_{n, n}$ can be extended to a collection of n pairwise disjoint perfect matchings. Therefore, if G is bipartite the question of Arman et al for the colour multiplicity-tuple (a_{1}, \ldots, a_{k}) is equivalent to the same question for the n-tuple ($a_{1}, \ldots, a_{k}, 0, \ldots, 0$). Conjecture 4 is easy to show when there are at most two non-zero colour-multiplicities. The case of three non-zero colour-multiplicities, that is the strengthening of Theorem 2 for bipartite graphs, is already open. As in Theorem 2, Conjecture 4 could also be true for multigraphs, but for simplicity we restrict ourselves to simple graphs.

Conjecture 4 is quite optimistic, as it implies the Ryser-Brualdi-Stein conjecture (see [6] and the citations therein) by setting $a_{i}=1$ for all $i \in\{1, \ldots, n-1\}$ and $a_{n}=0$. In fact, Conjecture 4 is also related to the stronger Aharoni-Berger conjecture (see [7]). Several other related generalisations of the Ryser-Brualdi-Stein conjecture have been previously proposed. See for example Conjecture 1.9 in [1], see also [4].

Remark 3. An old result of Hall [5] which was independently discovered by Salzborn and Szekeres [8] (see also [9] for a modern exposition) shows that there can be no counterexample to Conjecture 4 coming from addition tables of abelian groups (as in the proof of Proposition 1). It seems to be a problem of independent interest to generalise such results to non-abelian groups, which would give further evidence for Conjecture 4.

2 Proofs

Proof of Proposition 1. First we show that if $k<n$ or $k=n$ is even then there exist pairwise distinct x_{1}, x_{2}, \ldots or $x_{k} \in \mathbb{Z}_{n}$ such that $a_{1} x_{1}+\cdots+a_{k} x_{k} \not \equiv 0(\bmod n)$. If

[^1]$\sum_{i=1}^{k} i a_{\pi(i)} \not \equiv 0(\bmod n)$ for some $\pi \in S_{k}$, then the choice $x_{\pi(i)}=i$ for every $i \in[k]$ works. This is certainly the case unless $a_{1}=\cdots=a_{k}=n / k$. In that case, if $n=k$ is even, then $\sum_{i=1}^{n} i \cdot 1 \equiv n / 2 \not \equiv 0(\bmod n)$. If $n>k$ then, since none of the colour-multiplicities is n, we can assume without loss of generality that $a_{k} \not \equiv 0(\bmod n)$. Then the choice $x_{k}=k+1$ and $x_{i}=i$ for every $i<k$ works, as then $\sum_{i=1}^{k} x_{i} a_{i} \equiv 0+a_{k} \not \equiv 0(\bmod n)$. Here note that since k divides n and $k<n$ we have $k \leqslant n / 2$, so $k+1<n$.

Let G be a bipartite graph between two copies of the cyclic group \mathbb{Z}_{n} consisting of the edges whose endpoints sum to x_{1}, x_{2}, \ldots, or x_{k}. The edges whose endpoints sum to x_{i} form a perfect matching M_{i}, and these matchings are pairwise disjoint. Suppose there exists a perfect matching M of G with $\left|M \cap M_{i}\right|=a_{i}$ for each $i \in[k]$. Summing up the endpoints of M in two different ways, we obtain

$$
a_{1} \cdot x_{1}+a_{2} \cdot x_{2}+\cdots+a_{k} \cdot x_{k}=\sum_{i \in \mathbb{Z}_{n}} i+\sum_{i \in \mathbb{Z}_{n}} i .
$$

Observe that the right hand side of the above equality is 0 (for example, by pairing up inverses), which contradicts the choice of $x_{1}, x_{2}, \ldots, x_{k}$.

Proof of Theorem 2. We say that a matching $M \subset E(G)$ is distributed as $\left(a_{1}, a_{2}, a_{3}\right)$ if it satisfies $\left|M \cap M_{1}\right|=a_{1},\left|M \cap M_{2}\right|=a_{2}$, and $\left|M \cap M_{3}\right|=a_{3}$. It suffices to prove the claim for triples $\left(a_{1}, a_{2}, a_{3}\right)$ with $a_{1}=\max \left\{a_{1}, a_{2}, a_{3}\right\}$ as the roles of the matchings are interchangeable. We will show that given an M that is distributed as $\left(a_{1}, a_{2}, a_{3}\right)$ with $a_{1}+a_{2}+a_{3}=n-2$ we can find a matching M^{\prime} that is distributed as $\left(a_{1}-1, a_{2}+1, a_{3}\right)$. This also implies the existence of matching distributed as ($a_{1}-1, a_{2}, a_{3}+1$). Starting from M_{1} minus two arbitrary edges we can then find a matching distributed as (a_{1}, a_{2}, a_{3}) for any such triple satisfying $a_{1}+a_{2}+a_{3}=n-2$.

For any matching $M \subset E(G)$ of size $n-2$ and any vertex x that is unmatched by M, let $P_{23}(M, x)$ be the maximum $\left(M_{2} \backslash M\right)-\left(M_{3} \cap M\right)$-alternating path starting at x, and let $\ell_{23}(M, x)$ be its length. Let

$$
\ell_{23}(M):=\min _{x \text { unmatched by } M} \ell_{23}(M, x) .
$$

For a matching M of G and $v \in V(G)$ denote by $M(v)$ the vertex u that is matched by M to v i.e. $M(v)=u$ if and only if $\{v, u\} \in M$. Choose M such that $\ell_{23}(M)$ is minimised over all matchings that are distributed as $\left(a_{1}, a_{2}, a_{3}\right)$. Pick an unmatched vertex x with $\ell_{23}(M, x)=\ell_{23}(M)$ and an unmatched vertex z that is distinct from the endpoints of $P_{23}(M, x)$ and from $M_{3}(x)$. We can choose such vertices because there are four unmatched vertices in total. If $M_{2}(x)$ is incident to an edge of $M \cap M_{1}$ or unmatched we are done since in the former case the matching

$$
M \backslash\left\{M_{2}(x) M_{1}\left(M_{2}(x)\right)\right\} \cup\left\{x M_{2}(x)\right\}
$$

is distributed as $\left(a_{1}-1, a_{2}+1, a_{3}\right)$ while in the latter we can pick

$$
M \backslash\{e\} \cup\left\{x M_{2}(x)\right\}
$$

for any $e \in M \cap M_{1}$. Hence we assume that $M_{2}(x)$ is incident to an edge of $M \cap M_{3}$. Now $M_{3}(z)$ cannot be incident to an edge of $M \cap M_{2}$ because

$$
M^{\prime}:=M \backslash\left\{M_{2}(x) M_{3}\left(M_{2}(x)\right), M_{3}(z) M_{2}\left(M_{3}(z)\right)\right\} \cup\left\{x M_{2}(x), z M_{3}(z)\right\}
$$

would be a matching that is distributed as $\left(a_{1}, a_{2}, a_{3}\right)$ and in which $P_{23}\left(M^{\prime}, M_{3}\left(M_{2}(x)\right)\right)$ would be a path of length $\ell_{23}(M, x)-2$, which contradicts our choice of M. Here it was important that z is different from the endpoints of $P_{23}(M, x)$ so $P_{23}\left(M^{\prime}, M_{3}\left(M_{2}(x)\right)\right)$ is a subpath of $P_{23}(M, x)$ not containing x and therefore $P_{23}\left(M^{\prime}, M_{3}\left(M_{2}(x)\right)\right)$ has smaller length than $P_{23}(M, x)$. Therefore $M_{3}(z)$ is unmatched or incident to an edge of $M \cap M_{1}$. If $M_{3}(z)$ is incident to $M \cap M_{1}$ then

$$
M^{\prime \prime}:=M \backslash\left\{M_{2}(x) M_{3}\left(M_{2}(x)\right), M_{3}(z) M_{1}\left(M_{3}(z)\right)\right\} \cup\left\{x M_{2}(x), z M_{3}(z)\right\}
$$

is the desired matching. Should $M_{3}(z)$ be unmatched then for any $e \in M \cap M_{1}$,

$$
M^{\prime \prime \prime}:=M \backslash\left\{M_{2}(x) M_{3}\left(M_{2}(x)\right), e\right\} \cup\left\{x M_{2}(x), z M_{3}(z)\right\}
$$

is distributed as $\left(a_{1}-1, a_{2}+1, a_{3}\right)$. Here we used that $M_{3}(x) \neq z$, or equivalently that $M_{3}(z) \neq x$. So under the previous that assumption $M_{2}(x)$ is incident to an edge in $M \cap M_{3}$, we have that the edges $x M_{2}(x), z M_{3}(z)$ are disjoint. Hence $M^{\prime \prime}$ and $M^{\prime \prime \prime}$ are indeed matchings of G.

Acknowledgments

Anastos has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101034413. Fabian's research is supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Graduiertenkolleg "Facets of Complexity" (GRK 2434).

References

[1] Ron Aharoni, Noga Alon, Eli Berger, Maria Chudnovsky, Dani Kotlar, Martin Loebl, and Ran Ziv. Fair representation by independent sets. A Journey Through Discrete Mathematics: A Tribute to Jiř̌ Matoušek, pages 31-58, 2017.
[2] Noga Alon. Personal communication.
[3] Andrii Arman, Vojtěch Rödl, and Marcelo Tadeu Sales. Colourful matchings. arXiv:2102.09633, 2021.
[4] Alexander Black, Umur Cetin, Florian Frick, Alexander Pacun, and Linus Setiabrata. Fair splittings by independent sets in sparse graphs. Israel Journal of Mathematics, 236:603-627, 2020.
[5] Marshall Hall. A combinatorial problem on abelian groups. Proceedings of the American Mathematical Society, 3:584-587, 1952.
[6] Peter Keevash, Alexey Pokrovskiy, Benny Sudakov, and Liana Yepremyan. New bounds for Ryser's conjecture and related problems. Transactions of the American Mathematical Society, Series B, 9(08):288-321, 2022.
[7] Alexey Pokrovskiy. An approximate version of a conjecture of Aharoni and Berger. Advances in Mathematics, 333:1197-1241, 2018.
[8] Franz Salzborn and George Szekeres. A problem in combinatorial group theory. Ars Combin., 7:3-5, 1979.
[9] Daniel H Ullman and Daniel J Velleman. Differences of bijections. The American Mathematical Monthly, 126(3):199-216, 2019.

[^0]: ${ }^{a}$ Institute of Science and Technology Austria, Klosterneuburg, Austria
 ${ }^{b}$ Freie Universität Berlin, Department of Mathematics and Computer Science, Berlin, Germany ${ }^{c}$ University College London, London, U.K.

[^1]: ${ }^{1}$ Noga Alon independently also asked this as a question [2].

