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Flows through pipes and channels are in practice almost always turbulent, and the multi-

scale eddying motion is responsible for the major part of the encountered friction losses and

pumping costs1. Conversely, for pulsatile flows, in particular for aortic blood flow, turbu-

lence levels remain surprisingly low despite relatively large peak velocities. Indeed, in this

latter case, high turbulence levels are intolerable as they would damage the shear sensitive

endothelial cell layer2–5. We here show that turbulence in ordinary pipe flow is diminished

if the flow is driven in a pulsatile mode that incorporates all the key features of the cardiac

waveform. At Reynolds numbers comparable to aortic blood flow, turbulence is largely in-

hibited, whereas, at much higher speeds, the turbulent drag is reduced by more than 25%.

This specific operation mode is more efficient when compared to steady driving, which is the

status quo for virtually all fluid transport processes ranging from heating circuits to water,

gas and oil pipelines.

Turbulent flows are ubiquitous in nature and applications and are associated with large fric-
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tion levels and high pumping costs when compared to laminar conditions. Available estimates

show that around 10% of global electric power is consumed for pumping fluids 6. In this context,

turbulence is not only encountered at large scales, such as in oil or gas pipelines, but equally domi-

nates flows in domestic settings (e.g. in heating pipes or the flow from a faucet). Even aortic blood

flow in humans and large mammals periodically exceeds transition thresholds. Compared to a tran-

sition Reynolds number of Rec ≈ 2 040 7, aortic peak Reynolds numbers in humans reach more

than twice8, 9 this value, while in equine aortas peak values of 10 000 are common10. In the cardio-

vascular context, high turbulence levels constitute a severe health hazard, as intense fluctuations

and varying shear stresses are attributed to endothelial cell dysfunction and arteriosclerosis2–5.

In engineering applications, in addition to the excessive drag levels, fluctuations and alternat-

ing shear stresses can equally have adverse effects, and much effort has been dedicated to develop-

ing means to control turbulence. However, despite many novel and innovative approaches11, so far,

a broadly applicable method remains elusive. Active control techniques12–14 require complex ac-

tuation devices15, 16, and in experimental realisations, the costs often far exceed the gains. Passive

approaches equally suffer from high implementation costs and typically have a limited operation

range1, 17. Additives, such as long chain polymers, degrade over time18, 19 and contaminate liquids.

Available control techniques are hence problem specific and intrusive, requiring either manipula-

tion of fluid properties or costly and often impractical implementations. Conversely, aortic flow

provides an example where a specific propulsion scheme, consisting of impulsive bursts separated

by quiescent intervals, appears to hold turbulence at bay despite relatively large peak velocities.
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The effect of unsteady, pulsatile driving on turbulence has been extensively investigated in

experiments and numerical simulations20–26. In these studies, an initially steady turbulent flow

undergoes a periodic change in fluid speed, and the statistical properties of the evolving flow are

investigated. Flow acceleration typically delays turbulent kinetic energy production and decreases

the wall shear stress with respect to the quasi-steady value. Deceleration, on the other hand, en-

hances friction, although at higher deceleration rates, there is evidence of friction reduction27.

Recent numerical studies28, 29 identified unsteady driving conditions that can result in considerable

drag reduction, although the proposed numerical strategies are not necessarily straightforward to

implement in experiments in practice.

In this present study, we present an alternative approach to turbulence control, where drag

reduction is achieved by means of unsteady, pulsatile driving, specifically mimicking the cardiac

cycle and extending this method to large Reynolds numbers.

Experiments are carried out in a 1.2 m long pipe (inner diameter D = 10 mm), and water

is driven through the setup by a piston. The piston speed is accurately controlled by a servo

motor and allows us to alter the flow rate in time, and in particular, to realise a pulsatile flow of

the desired waveform. For further details of the experimental setup, we refer the reader to the

methods section . Initial experiments were carried out at moderate Reynolds numbers, values

which are comparable to those in aortic blood flow. We compare three flows in the same pipe set

up at identical instantaneous Reynolds number (Re = UmD/ν, where Um is the instantaneous bulk

speed in the pipe). In the first case, the flow is driven steadily atRe = 2 800 and as shown in Fig. 1a
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the fluid motion is turbulent throughout. In the second experiment, the flow is driven periodically

using the waveform (see Fig. 1d) reported for cardiovascular flow in the descending part of a

human aorta 30, choosing a peak value close to the maximum values reported in literature31. Even

though the pipe set up is unchanged (including the inlet condition) the flow is fully laminar despite

instantaneous Reynolds numbers larger than 5000 (Fig. 1b) . We next tested a cycle in which the

diastolic rest phase was removed, as shown in Fig. 1 e. Compared to the cardiovascular case d,

we down-scaled the peak velocity by a factor of 1.5 so that the average Reynolds numbers of the

two cycles remain comparable. In this case, the flow indeed remains by and large turbulent, which

hints at the relevance of the diastolic rest phase for turbulence suppression.

From the above experiments, it is apparent that unlike for steady driving, the state of the

flow, i.e. laminar or turbulent, is not solely determined by the instantaneous Reynolds number

and that the waveform plays a decisive role. If turbulence develops during a cycle also depends

on the initial fluctuation level at the beginning of the cycle, and hence on the flow’s history. In

this respect, the diastole plays a central role, as it effectively decouples the acceleration from the

prior deceleration, allowing turbulence and fluctuations to decay before Re increases again. In

the following, we investigate the effect of the pulsatile operation mode on a fully turbulent flow

at significantly larger time averaged Reynolds numbers Re = UD/ν (where U is the bulk speed

averaged over one pulsation period, D the pipe diameter and ν the fluids kinematic viscosity) in

order to investigate the impact of pulsation on drag. To this end, we pump water through a 7 m

long pipe (inner diameter D = 30 mm) by means of the same syringe setup described above. The

pressure drop ∆p is measured across a length L = 120D after a development length of 60D from
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the pipe inlet. Subsequently, the wall shear stress τw is reconstructed by using the force balance in

the streamwise direction

ρ
dUm
dt

= −∆p

L
− 4τw

D
, (1)

where ρ is the water density and Um is the instantaneous bulk flow velocity. Experiments are

accompanied by direct numerical simulations (DNS) of the Navier–Stokes equations where the

identical time variation of the Reynolds number is imposed. The DNS are performed for a 5D

long pipe with periodic boundary conditions using a parallel solver32 (NSPipeFlow, see methods

for further details).

In initial experiments and simulations, we tested a cycle consisting of a series of linear flow

rate ramps smoothly joined together, corresponding to Re oscillating between Remin = 3 200 and

Remax = 18 800 with a period T = 4.5 s, see Fig. 2 a. Note that, even for the minimum Re value,

steady flows are fully turbulent in our pipe set-up.

From measurements of the pressure drop ∆p(t) and the imposed bulk velocity Um(t) we can

determine the wall shear stress using equation (1). To ease comparison between different cycles, τw

is nondimensionalized by the dynamic pressure at the cycles’ minima, corresponding to (0.5ρU2
min),

where Umin is the bulk velocity at Re = 3 200. We hence define τ ∗ = 2τw/(ρU
2
min) and in Fig. 2

d the instantaneous experimental values (blue circles) are compared to the quasi–steady reference

case, τ ∗qs (black dotted line), i.e. the wall shear stress expected if turbulence would instantaneously

adjust to changes in Re. At the beginning of each cycle τ ∗, although low, is considerably larger

than τ ∗qs. Only as the flow acceleration proceeds measured values eventually fall below τ ∗qs, in line
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with previous observations of drag reduction during flow acceleration.

While the instantaneous wall shear stress values indicate an overall drag reduction compared

to the quasi–steady case, this does not necessarily imply drag reduction compared to a steadily

driven flow of identical average Reynolds number. The drag change with respect to the steadily

driven flow is

R =
τ ∗steady − τ ∗

τ ∗steady
, (2)

where the overline denotes an average over several cycles, and the steady flow wall shear stress

τ ∗steady is obtained from the Blasius33 friction factor relation and normalised in the same manner as

the cyclic flow. For the cycle of Fig. 2 a, the drag in experiments turns out to be 4.4% larger (R =

−0.044) than the steady flow. It is noteworthy that the quasi–steady case τ ∗qs generally has a drag

considerably larger than the actual steady flow. In the present case it results in a 14% drag increase

compared to τ ∗steady. Pulsation hence does not necessarily lead to drag reduction let alone energy

saving. Inspired by the diastolic phase found in the aortic flow and the transition delay obtained

for the cardiac waveform, we designed a new cycle where a region of constant Re (rest phase) is

inserted that effectively decouples the deceleration from the consecutive acceleration phase (Fig. 2

b). Remarkably, the flow now responds with considerably lower values of τ ∗ during acceleration,

as well as during part of the deceleration phase ( Fig. 2 e). The peak value of τ ∗ is reduced by a

factor of two, and in this case, we obtain a net drag reduction of 23% (R = 0.23). The central role

of the rest phase can be understood as follows. During acceleration, turbulence remains initially

frozen, i.e. variations in the mean velocity have a minimal impact on the turbulent stresses, leading

to significant drag reduction. The amount of drag reduction achievable sensitively depends on the
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turbulence level at the beginning of this acceleration phase. Conversely, during deceleration, an

inflection point emerges in the velocity profile, causing turbulence levels that typically exceed those

expected for the instantaneous Re value, especially by the end of this phase. The subsequent rest

phase crucially allows turbulence levels to die down and hence sets a favourable initial condition

for the next acceleration phase.

From an energetic point of view, in unsteady flows a reduction of the mean friction τ ∗ is

not sufficient to ensure that the power dissipation per unit length (P = Q∆p/L, where Q is the

volume flow rate) is lower with respect to steady conditions. To quantify this aspect, we introduce

the power saving

S =
Psteady − P
Psteady

, (3)

where Psteady is the power dissipated by the steadily driven, i.e. constant Re reference flow and P

is the time averaged power dissipation of the pulsatile flow. The instantaneous values of the power

dissipation are given by P (t) = ∆p(t)Q(t), where Q(t) is the volume flow rate, determined from

the measured instantaneous piston speed. Computing the power savings for the cycle of Fig. 2 b

yields a loss (S = −0.03), notwithstanding the large drag reduction. The power loss is caused by

the additional energy input required to accelerate the flow, since an increase of flow rate requires

the pressure gradient and hence the power to grow (cf. Eq. (1)). The waveform of Fig. 2b is hence

advantageous (compared to steady driving) in situations where high shear stresses are detrimental,

as is the case for the endothelium, but counterproductive if energy efficiency is the main incentive.

While so far we have considered waveforms with lower acceleration and higher deceleration rates

(Figs. 2 a and b), the opposite holds for velocity waveforms in the aorta 30. Correcting for this,
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we chose the waveform displayed in Fig. 2 c, with a higher acceleration rate, while the rest phase

is left unchanged. During the more rapid Re increase, friction initially increases somewhat faster

than for waveform b, subsequently however, the friction drops at the beginning of the deceleration

phase (Fig. 2 f). Here, friction reaches levels comparable to the ones assumed during the rest

phase, albeit at very high Re. This effect further improves drag reduction, which now reaches 27%

(R = 0.27). Computing the power balance, we in this case obtain a net saving of 9% (S = 0.09)

compared to steadily driven pipe flow. Equally for the DNS, cycle Fig. 2 c is the only one that

results in drag reduction as well as energy saving. While the amount of drag reduction in the DNS

(R = 0.28) almost precisely matches experiments, the energy saving (S = 0.07) is slightly smaller.

Taking into account that due to computational cost, the DNS results were averaged over a much

smaller number of cycles, the agreement is nevertheless very good (see table Extended Data 2 and

Fig. Extended Data 3 for a comparison of experiments and DNS).

Finally, we investigate how changing the acceleration and rest phase affects drag reduction

and power savings. To this end, we carried out a total of 225 experiments spanning different rest

phase and acceleration durations (denoted respectively by Tr and Ta), while keeping minimum

and maximum Re and the combined duration of the acceleration and deceleration phases (T =

0.02 · 4ν/D2) constant (cf. Fig. Extended Data 4 ). The resulting map of power saving S is shown

in Fig. 3 a.

The white, dashed line separates the regions of positive and negative S and the cycles of Fig.

2 a, b and c are denoted respectively by a circle, star and square. Interestingly, shorter acceleration
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times consistently lead to higher power savings, hence suggesting the importance of a brief, intense

acceleration followed up by a longer, more gentle deceleration. Specifically for power saving we

find that the acceleration phase has to be much shorter (. 1%) than the viscous time scales of

the flow. This abrupt change prohibits the flow profile’s adjustment to its (high drag) quasi steady

shape. Strictly, for the parameter regime investigated, a non zero rest phase is required to save

power. However, there is an optimal rest phase and longer rest phases are counterproductive. The

optimal value of Tr depends weakly on Ta and it is approximately equal to half the duration of the

unsteady part of the cycle (t · 4ν/D2 ≈ 0.01). Remarkably, with T heart
r · 4ν/D2 ≈ 0.012, the rest

phase observed for the aortic cycle in humans is close to this value.

The same parameter space can be mapped to the usual f–Re plane, where f = 2D∆p/
(
ρŪ2L

)
is the Darcy friction factor (Fig. 3 b), to highlight the effect of the cycles on the drag reduction R

and the dependence on Re. For comparison, we plot the Blasius relation for turbulent friction. The

largest reduction in f (27% drag reduction) is found for Re ≈ 8 600 and it is close to the region of

maximum S.

The circulatory system manages to combine flow speeds, significantly exceeding onset val-

ues of turbulence, with low shear stress levels. Sufficient flow rates are crucial for a functioning

organism, while at the same time, the stress levels have to remain tolerable for the blood vessels’

endothelial cell layer. As we have shown, the waveform of the cardiac cycle is close to optimal

to achieve both of these objectives. A rest phase during the cycle is crucial to diminish wall shear

stress and, at the same time, this rest phase has to be optimally timed and combined with a sub-
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sequent rapid flow acceleration to not only reduce the flow drag but to also optimize its efficiency

and minimize power consumption.

Fluid transport is one of the largest sources of energy consumption in present day societies

and a major part of pumping costs can be attributed to turbulence. While pipeline flows are com-

monly run at a steady flow rate, our study demonstrates that, from an energetic point of view, this

is not necessarily the optimal operation mode.
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Über Forschungsarbeiten Auf Dem Geb. Ingenieurwesens 131 (1913).

14



0 0.5 1 1.5 2
0

1000
2000
3000
4000
5000
6000

0 0.2 0.4 0.6 0.8 1

R
e

t (s) t (s)

30 D

d

c

b

a

e

Re=2800

Re=2800

Re=2800

Figure 1: Decay of turbulence in aortic flow. Panel a to c show three instantaneous snapshots of

flows at Re = 2 800. Images capture flow structures in a 30D long area located 60D downstream

of the pipe inlet. In a the flow is driven steadily and Re is hence constant. In b and c flows

are driven periodically respectively with (b, d) and without (c, e) a diastolic rest phase. For the

periodic waveforms, the minimum Reynolds number is Remin = 270 in d and Remin = 180 in e,

while the maximum value is Remax = 5 300 in d and Remax = 3 500 in e. The cycle averaged

values correspondingly are Re = 1730 for d and Re = 1 890 for e.
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Figure 2: Friction reduction in pulsating flow. Effect of three different cycles on the wall shear

stress. In all cases Remin = 3 200 and Remax = 18 800 . In a Re = 11 000 , in b and c Re =

8 600. The corresponding Reynolds number modulation is imposed in experiments and in direct

numerical simulations. Panels d, e and f, display the measured dimensionless wall shear stress τ ∗

for experiments (blue circles) and DNS (red line). For comparison, the friction associated with

the quasi–steady flow is provided by the black dotted line. The quasi–steady values are given by

τqs(t) = 0.079Re(t)−0.25Um(t)2/U2
min (where the Blasius friction scaling is assumed).
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Methods

Direct numerical simulations We solve the incompressible Navier–Stokes equations in cylindri-

cal coordinates in a pipe of length 5D with periodic boundary conditions at the extremities. The

equations are written in non–dimensional units by using the pipe radius, D/2, as the length scale,

the viscous time, (D)2/(4ν), as the time scale, and 2ν/D as the velocity scale. They take the

following form:

∂tu + (u ·∇u) = −∇p+∇2u, (4)

∇ · u = 0, (5)

To impose a time–varying Reynolds number, the mean velocity is updated at every time step,

namely

Um,new = Um,old + α(t)δt, (6)

where δt is the time step and α(t) is a prescribed acceleration rate. An axial forcing term is then

added to the Eq. (4) to enforce that the integral of the instantaneous velocity profile yields the

mean flow, i.e.

Um =

∫ 1

0

2u(r)rdr. (7)

Simulations were carried out by using the custom, highly–scalable, pseudo–spectral solver

NSPipeFlow. The codes employs Fourier–Galerkin expansions along the axial and azimuthal

directions, and eighth–order, finite central differences for the radial dimension, collocated on a

Gauss–Lobatto–Chebyshev grid. The equations evolve in time with a second–order, predictor–

18



corrector algorithm and a time step dynamically adjusted to satisfy the Courant–Friedrich–Lewy

condition. Typical values of the time step size in our simulations range from 10−8 to 10−10 viscous

units. For further details about the code implementation, we refer the reader to Lopez et al. 32.

As the Reynolds number changes over time by more than an order of magnitude, the code can

adaptively change the grid spacing to match the required spatial resolution needs. More specifi-

cally, the adaptive grid method we have implemented ensures that the spatial resolution in the axial

and azimuthal directions is consistently below 7.5 wall units, whereas the maximum and minimum

spacing in the radial direction is below 3 and 0.1 wall units, respectively. This spatial resolution

is more stringent than that customarily used in DNS studies of pipe flow at steady Reynolds num-

bers. Typical values found at the minimum and maximum Reynolds numbers are given in Table

Extended Data 1.

The number of cycles needed to achieve statistical convergence depends on the pulsation

waveform. For the case shown in Fig 2d, cycles have little variation, and convergence occurs fast.

Statistics were computed in this case using four cycles. For the cases shown in figures 2e y f,

there is more variability among cycles, and it is necessary to average over more cycles to obtain

converged statistics. For the waveform shown in Fig 2e, statistics were obtained averaging over

nine cycles, whereas, for the waveform shown in Fig 2f, 14 cycles were used.

Experimental set–up We employ a large scale, customized syringe pump (sketched in Fig. Ex-

tended Data 1) to control precisely the flow rate and hence impose an arbitrary modulation of

the Reynolds number. The test section consists of a 7 m long, precision bore glass pipe (Duran,
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KPG, internal diameter D = 30 ± 0.01 mm) made by joining 1 m long segments with custom

PMMA flanges (in the experiments of Fig. 1 the test section consists of a single pipe segment with

D = 10± 0.01 mm and length 1.2 m). Water flows through the pipe into a reservoir as the syringe

pump is displaced by a linear actuator driven by a servomotor (Festo, ESBF-BS-80-1500-15P and

Festo, EMMS-AS-70-M-LS-RS, not shown in Fig. Extended Data 1). A PC is used to control the

motor and thus the plunger speed within an accuracy of ±0.01 mm/s. The syringe has an inter-

nal diameter of Dc = 125 ± 0.11 mm and total length Lc = 1500 ± 0.1 mm, corresponding to a

maximum run time of≈ 870 advective time units (D/U ) for the chosen pipe diameter. Turbulence

development is ensured by perturbing the flow at the pipe inlet with a pin and letting the flow

develop for 60D. Differential pressure is measured over the subsequent 120D with a carefully

calibrated pressure transducer, full scale 2.5 kPa. The wall taps (diameter d = 0.5 mm) are drilled

through the PMMA flanges and have been polished to remove any burr. Water temperature is mon-

itored at the outlet of the pipe with a Pt–100 probe (indicated as T in Fig. Extended Data 1) and

typically is held constant within±0.05 ◦C. In a typical measurement run the desired flow rate wave

form is repeated cyclically while traversing the available stroke length. Temperature is measured

in real–time in order to compute the correct motor speed and hence imposing the correct Reynolds

number. The control and acquisition frequency are set to 50 Hz. Depending on the period duration

single runs consists of between 10 and 12 cycles. To ensure a proper statistical representation of

the unsteady friction each run is then repeated several times (100 times for the results of Fig.2 and

50 times for the parametric study of Fig.3). The pressure signal has been filtered to attenuate os-

cillations due to setup vibrations by using a cutoff frequency of 5Hz. The first cycle is found to be
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systematically different from the others it has been excluded from the averaging process. Overall,

the drag reduction R and the power savings S are estimated with a 2–σ accuracy of ±1.8% and

±2.2%, respectively.

Calibration In order to ensure repeatable and accurate differential pressure measurements we

calibrate the pressure sensor immediately before starting a batch of measurements (a typical batch

consists of 10 runs with a minimum of 10 cycles each). For the calibration we measure the pressure

drop along the test section ∆p for five values of the Reynolds number Re. Each steady measure-

ment is repeated five times and the values of ∆p, the piston speed in the cylinder Uc and water

temperature T are recorded. The reference value of ∆p is computed for each Re by using the

Blasius formula,

∆p = 0.316Re−0.251

2
ρU2 L

D
, (8)

where U = UcD
2
c/D

2 is the flow mean velocity in the pipe, Dc is the diameter of the cylinder, L

is the length of the test section and ρ is the density of water derived from the temperature T by

following the procedure described in ?. As a result, a calibration curve is obtained to convert the

sensor output (in Volts) to a differential pressure in Pascal. To assess the validity of the calibration

we compute the residuals of the linear fit and take the maximum value. In the case of the optimal

cycle (Fig. 2, c and f) we find a maximum deviation of ≈ 10 Pa, which is well representative of

the values found throughout the experimental campaign.
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Standard deviation of mean pressure and flow rate measurements. The mean pressure drop

during a cycle is estimated by taking the sample average of the signal ∆p(t), namely

∆p =
1

N

N∑
i=1

∆pi, (9)

where ∆pi is the i-th sample ∆p(ti) and N is the number of samples per cycle. The pressure

signal recorded for the optimal waveform is reported in Fig.Extended Data 2 b. The blue curves

correspond to 100 instantaneous cycles and the phase average is shown in red. For comparison we

superimpose the computed pressure drop from DNS (dotted line). (Fig.Extended Data 2 a shows

the corresponding time dependence of the Reynolds number based on the recording of the piston

position).

Using Eq.(9) we determined the mean pressure for all 100 cycles and found that the standard

deviation between cycles amounts to 2.9% of the mean. This value provides an upper bound on

the measurement error involved. Here it has to be taken into account that, due to the unsteady,

chaotic nature of the flow consecutive cycles start from different initial conditions, which leads

to a natural variation of cycle averaged quantities such as mean pressure. Hence the standard

deviation between cycles would be expected to be non-zero even in the absence of measurement

error. The error of the mean flow rate Q can be estimated from positioning measurements of the

piston and the manufacturing accuracy of the piston cylinder, to be 0.6%. For the power input

curves, Fig.Extended Data 2 c, the standard deviation surmounts to 3.1% .

Computing drag reduction from experimental measurement The drag reduction rate R can be

computed by integrating Eq. (1) integer multiples of the period T of the waveform.
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∫ mT

0

ρ
dU(t)

dt
dt = −

∫ mT

0

(
∆p(t)

L
+

4τw(t)

D

)
dt, (10)

where we assume incompressible flow and make use of the fact that the integral of the bulk flow

over a period is zero

∫ mT

0

∆p(t)

L
dt = −

∫ mT

0

4τw(t)

D
dt, (11)

We can therefore rewrite Eq. (2) to express the drag reduction rate R in terms of the time averaged

pressure and hence

R =
∆psteady −∆p

∆psteady
, (12)

where ∆psteady is computed for the mean Reynolds number Re of the cycle by using the Eq. (8).

As a consequence, the standard deviation in ∆p (2.9% in case of the optimal cycle) provides

an upper bound for the uncertainty in R.

Estimation of the power saving Estimating S is also quite straightforward, as it requires taking

time averages of the power P (t) = ∆p(t)Q(t), whereQ(t) is the volume flow rate and using Eq.(3,

main text), reported here for clarity:

S =
Psteady − P
Psteady

. (13)
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The accuracy of S can be estimated in the same way we described for R. We compute the mean

power P for each of the 100 cycles and then estimate the standard deviation between the cycles.

We find a value of 3.2%, which also represents of the accuracy of S since in Eq.(13) P is the only

uncertain quantity.

Comparison with DNS Selecting the optimal waveform (Fig. 2c) we compare the values of R

and S obtained from experiment to those observed in direct numerical simulations. The histograms

of the 100 cycles measured experimentally are shown in Fig. Extended Data 3 (a) and (b). Since

(due to computational costs) a much smaller number of cycles have been simulated, instead of

histograms, we computed the mean values for the DNS for R and S (orange dashed lines).

Finally, we report in table Extended Data 2 the average values for R and S for all three

waveforms of Fig. 2 for experiments and DNS and they turn out to be in close agreement.

Waveforms The waveforms considered are composed of linear ramps in Re and periods of con-

stant flow rate. Throughout the experiments the minimum and maximum Re are held constant and

equal to Remin = 3 200 and Remax = 18 800, respectively. The combined duration of acceleration

and deceleration T is always fixed to 4.5 s, while the duration of the acceleration and rest phase are

respectively varied in the intervals Ta ∈ [1.35, 3.15] s and Tr ∈ [0, 4] s. To avoid abrupt changes

in the piston acceleration, the sudden slope changes, that occur at the transition points from accel-

eration to deceleration to rest phase, have been locally smoothed with a moving average filter of

width 0.8 s (cf. Fig. 2 (a), (b) and (c)).
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Data availability

The datasets generated and analyzed during the current study are freely available in the Zenodo

repository, https://doi.org/10.5281/zenodo.7828996.

Code availability

The numerical simulations were conducted with the open source code nsPipeFlow, distributed un-

der the terms of the GNU General Public License version 3. A detailed description of the code and

user guide is provided in reference 30. The code version used in this study and an initial condition

to start the simulations are openly available in the Zenodo repository, https://doi.org/10.5281/zenodo.7828996.
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Perturbation pin 
D = 30 ± 0.01 mm 

120 D 60 D 

Dp = 125 ± 0.11 mm

Lp = 1500 mm

Pressure tap

Figure Extended Data 1: Sketch of the experimental setup. Drawing not to scale.

Re min ∆+
r max ∆+

r ∆+
(Rθ) ∆+

z δt

3 200 0.053 2.44 7.06 5.62 4.80 · 10−8

18 800 0.016 2.70 7.23 7.20 1.91 · 10−8

Table Extended Data 1: Parameters used in the direct numerical simulations. From left to right:

Reynolds number Re based on the mean velocity, minimum and maximum radial resolution (in

inner units), azimuthal resolution (in inner units), axial resolution (in inner units) and average time

step size δt.

Cycle Rexp Rdns Sexp Sdns

(a) -4.4 0.6 -30.4 -29.0

(b) 22.5 22.4 -3.0 -3.1

(c) 27.4 27.9 9.0 6.9

Table Extended Data 2: Comparison between the values of R and S in percentage for the wave-

forms of Fig.2 obtained from experiments and DNS.
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Figure Extended Data 2: Waveform, pressure and power signal. Signals from the optimal cycle

(Fig. 2c) measured in experiments. (a) Waveform based on the linear piston speed and (b) pressure

drop ∆p measured over the test section. The signal from all the 100 cycles measured is shown

in blue, while the phase average is represented in orange. The number of samples per cycles is

N = 325. For comparison, we report also the pressure drop computed with the DNS for the same

cycle (gray dotted line). In this case the signal is obtained by phase-averaging the available 8

cycles. (c) The power input for the same waveform. The values for the 100 cycles in experiments

are shown in blue, the ensemble average in red and the power input in DNS is given by the grey

doted line. 27
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Figure Extended Data 3: Comparison of the values of (a) R and (b) S between experiments (blue

histogram) and DNS. For the optimal cycle (Fig. 2c, main text) the histogram shows the distribu-

tion of the values obtained from 100 runs. The orange, dashed line shows the mean of the available

corresponding DNS cycles.
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Figure Extended Data 4: Definition of the flow cycle used in the experiments of Fig.2 and Fig.3.
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