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ABSTRACT

We propose a simple method to measure nonlinear Kerr refractive index in mid-infrared frequency range that avoids using sophisticated
infrared detectors. Our approach is based on using a near-infrared probe beam which interacts with a mid-IR beam via wavelength-non-
degenerate cross-phase modulation (XPM). By carefully measuring XPM-induced spectral modifications in the probe beam and comparing
the experimental data with simulation results, we extract the value for the non-degenerate Kerr index. Finally, in order to obtain the value of
degenerate mid-IR Kerr index, we use the well-established two-band formalism of Sheik-Bahae et al., which is shown to become particularly
simple in the limit of low frequencies. The proposed technique is complementary to the conventional techniques, such as z-scan, and has the
advantage of not requiring any mid-infrared detectors.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0161713

Nonlinear optical frequency conversion has gone a long way in
the past decades from the initial observation of faint second-harmonic
generation in the 1960s1 to the present day when nonlinear-optics-
based sources of coherent broadband radiation have become a staple
of a modern optics lab.2 Given the importance, there is a continual
effort to improve the efficiency of such devices and, as one possible
direction, it was demonstrated that many of the relevant nonlinear
frequency-conversion phenomena—be it high-harmonic generation3,4

or the production of strong THz-range pulses through optical rectifi-
cation5—become particularly efficient when the frequencies of the pri-
mary (fundamental) pumping beams happen to lie in the mid-infrared
domain. Naturally, the progress within this approach is contingent
upon detailed characterization of the optical properties of nonlinear
materials in the infrared range.

Kerr effect (KE) is a nonlinear optical phenomenon, wherein the
refractive index of a material is changing as a response to the applica-
tion of an external electric field. Unlike the closely related Pockels
effect, KE is proportional to the square of the field and hence does not
require broken inversion symmetry in the host medium.6 In fact, it is
virtually ubiquitous and manifests itself prominently in many different
contexts, being responsible for a great number of phenomena, such
as self- and cross-phase modulation of the beams, Kerr lensing,
self-focusing, optical soliton formation, optical switching, passive

mode-locking,6 etc., and as such has to be taken into account when
designing any practical nonlinear optical application.

The magnitude of KE is determined by the so-called nonlinear
Kerr index n2. On the conceptual level, the problem of measuring n2 is
long solved, thanks to advent of techniques such as z-scan,7 I-scan,8

four-wave mixing,9,10 nearly degenerate three wave mixing,11 two-
beam coupling,12 and a number of interferometric techniques (e.g.,
Ref. 13) However, in practice, it may still pose considerable challenges,
especially when it comes to the mid- and deep-IR wavelengths where
experiments require specialized components (most notably detectors)
and often are not as straightforward as they are with visible or near-IR
radiation. As a result, the amount of information on mid-IR Kerr
refractive indices is comparatively scarce and even in the case of some
standard materials, mid-IR Kerr index has been characterized only
recently for a limited number of wavelength values.13–15

In this Letter, we propose to go around this issue by dropping the
challenging part of mid-IR detection altogether and use a near-IR
probe to gauge the changes to optical properties of a material as a
response to mid-IR radiation. To this end, we study the non-
degenerate Kerr effect-mediated interaction16 between near- and mid-
IR pulses manifested as cross-phase modulation (XPM)6 between the
two. Specifically, we observe the mid-IR pump-induced spectral
changes in the probe pulse from which we extract the value for
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non-degenerate Kerr index n2ðX;xÞ. We, then, use the well-
established two band theory of Sheik-Bahae et al17 to reconstruct from
n2ðX;xÞ the mid-IR Kerr index. The convenience of the proposed
methods is especially apparent in the limit where both pump and
probe photon energies are significantly less than the bandgap. In this
regime, the two-band model predicts that relationship between the
degenerate and non-degenerate Kerr indices becomes particularly sim-
ple and universal, the only material-specific property being the
bandgap width that enters as a simple scaling factor for frequencies.

Thanks to its ubiquitous nature, Kerr effect can, in principle, be
observed in any medium, provided it is transparent in the relevant
wavelength range; in the case of mid-IR, one can mention ZnSe, CaF2,
MgF2, and KBr as being among the most popular optical materials. In
our study, we take ZnSe as a model system due to its relatively large
bandgap, well-studied linear- and nonlinear optical properties,15,18

and low absorption in both near-IR and mid-IR spectral ranges. The
sketch of the experimental setup is shown in Fig. 1(a). Tunable-
frequency mid-IR pulses are generated by an optical parametric ampli-
fier (OPA; Light Conversion Orpheus-HE) pumped by a femtosecond
laser system (Light Conversion Pharos) producing a train of pulses
with a repetition rate of 3 kHz; central wavelength k0¼ 1028nm; pulse
duration of sFWHM¼ 270 fs and 2 mJ/pulse. A small fraction (5%) of
the main beam from the amplifier is split off and used as a near-IR
probe, while the main part pumps the OPA to produce k¼ 4.5lm
pulses used as a mid-IR pump. Pump and probe pulses are spatially
and temporally overlapped inside a d¼ 1.25mm-thick, polycrystalline
ZnSe sample (Crystran Ltd). After the sample, the XPM-affected probe
beam is spectrally analyzed with a monochromator (HoribaH10) con-
nected to an avalanche photo-diode (Becker-Hickl APM-400-P-078).
To increase the signal-to-noise ratio, the signal from the detector is

first passed through a boxcar integrator (SRS SR250) before being ana-
lyzed in a lock-in amplifier (SRS SR830).

In the experiment, we record the spectrum of the probe beam at
the exit from the sample for every value of pump-probe delay as
shown in Fig. 1(c). In the range where pump and probe overlap tem-
porally, the spectrum of the probe is visibly perturbed by the pump.
As can be seen in Figs. 1(c) and Fig. 2, the spectral shift is changing
sign depending on time delay between pump and probe pulses.
Qualitatively, the character of the spectral change is in line with what
one expects from XPM, which can be intuitively understood as shown
in Fig. 1(b). As a result of Kerr effect, the refractive index n0 of a
medium acquires a nonlinear correction dn proportional to the inten-
sity I of the pump: dn ¼ n2I, where n2 is the nonlinear (Kerr) refrac-
tive index. Now, on the one hand, the total refractive index
n ¼ n0 þ dn determines the total optical phase accumulated by the
probe pulse with wavelength k ¼ 2pc=x as it propagates through the
sample of thickness L: / ¼ 2pnL=k. On the other, time derivative of
the phase determines the probe frequency x ¼ _/. It is then clear that
since time-dependent pump intensity I(t) modifies /ðtÞ, the frequency
dx acquires a correction proportional to the following derivative:

dx ¼ 2p
L
k
n2

dIðtÞ
dt

:

Therefore, analyzing the value of XPM-induced spectral shift and
knowing the properties of the pump pulse, such as its duration and
peak intensity, one can, in principle, expect to be able to extract the
value for nonlinear Kerr index n2 of the medium.

Needless to say, this simple analysis is only valid for the artificial
case of a monochromatic probe and a steadily growing pump intensity
I(t). In the more realistic case of pulsed pump and probe, a more

FIG. 1. (a) The setup to investigate XPM-induced spectral shift. Intensity of the probe is controlled via a half-wave plate (HWP) and Glan–Taylor polarizer (GT); the intensity of
the mid-IR pump coming from an OPA is tuned by a pair of wire-grid polarizers (WP). Pump and probe beams are joined by a beam splitter (BS) and focused onto the sample
with f¼ 100mm lens. After the sample, the probe beam is re-collimated with f¼ 30 mm lens and after passing through monochromator detected by an avalanche photodiode
detector. (b) A cartoon demonstrating cross-phase modulation (XPM) in the ideal case of no walk-off between pulses. The probe beam frequency is red- or blue-shifted
depending on the sign of the Kerr index and instantaneous time derivative of pump intensity (black) (difference in pump- and probe pulse durations is exaggerated for the pur-
pose of illustration). (c) Experimental XPM-induced spectral shift of a k0 ¼ 1028 nm probe by a kpump ¼ 4500 nm pump in a polycrystalline ZnSe sample as a function of
pump-probe delay at peak pump intensity I0 ¼ 2:2� 1014 W/cm2. (d) XPM with non-matching pump and probe pulse group velocities vMIRg and vNIRg , respectively
(vMIRg < vNIRg ). (e) XPM-induced spectral changes for the situation laid out in (d). Evidently, in the limit of large group velocity mismatch Dvg, the temporal separation between
extremal shifts (blue and red) is determined by Dvg rather than original pump pulse width.
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involved analysis is necessary. The most important issue in a real
experiment is that unlike the situation depicted in Fig. 1(b), the dura-
tion of pump and probe pulses are similar, which means that different
parts of the latter experience different spectral shifts. Another problem
can be seen upon inspecting Fig. 1(c) or Fig. 2. Here, one can see that
the points of maximum spectral shifts are separated by about ds � 0:7
ps. This is considerably more than the pulse width of both the pump
and probe pulses (spr � spu � 270 fs), which according to the naive
cartoon in Fig. 1(b) should set the value for ds. This discrepancy
comes from the fact that due to large wavelength difference, the mid-
IR pump and near-IR probe pulses propagate through the sample with
significantly different group velocities. Then, the interaction between
the pulses occurs more like Fig. 1(d) (vNIRg > vMIR

g ). Here, in the
generic situation when the two pulses meet in the middle of a suffi-
ciently thick sample, each temporal segment of the probe (gray) expe-
riences the entire pump (red-blue) pulse; therefore, a net spectral shift
in the former integrates to zero. The spectral shift becomes non-zero
only when the delay between the pulses is such that they overlap near
one of the sample edges. The maximum spectral shifts then are
achieved when the probe pulse center coincides with one of the slopes
of the pump pulse. The separation between these points is conse-
quently ds � L=jvNIRg � vMIR

g j (for ds� spu).
To accurately take these effects into account, we simulate the

interaction between pulses by means of solving a system of coupled
generalized nonlinear Schroedinger equations (CGNLSE) for
frequency-nondegenerate fields19 (see the supplementary material for
details). In order to simplify the calculation, we ignore all absorption
effects, which is justified since �hðxþ XÞ < Dgap, where Dgap is the
bandgap of ZnSe and x and X are probe and pump frequencies,
respectively.

In Fig. 2, we plot the central wavelength of the probe as a func-
tion of delay between the pump and probe pulses (blue dots) taken
with a peak pump pulse intensity of I0 ¼ 2:1� 1013 W/cm2. This
relatively moderate value was chosen to avoid various heating- and

multi-photon-absorption-related phenomena not accounted for in our
calculation. The solid red line in Fig. 2 is the result of a CGNLSE simu-
lation with n2 � 0:65� 10�18 m2/W. Given the excellent agreement,
we take it as the measured value for the non-degenerate nonlinear
Kerr index of (polycrystalline) ZnSe.

In the last step, we need to relate the value for the non-
degenerate mid-IR/near-IR Kerr index n2ðx;XÞ to the degenerate
mid-IR value n2ðX;XÞ. To this end, we note that generally speaking,
in the limit x2;X2 � D2

gap Kerr index must have the following form:

n2ðx;XÞ / 1þ C� x2 þ X2

D2
gap

 !
(1)

with C being some numeric factor on the order of unity whose exact
value depends on the microscopic details of a given material. The form
of Eq. (1) is dictated by the fact that on the one hand, n2ðx;XÞ—being
an observable quantity—must be an even function of both x and X,
and on the other hand, it must be symmetric against x$ X owing to
Kleinman symmetry, which holds in the low-frequency limit.20

Having said that C is not expected to differ significantly from unity,
we can also calculate its value for the specific case of two-band
model,21 which is known to adequately capture nonlinear properties
of ZnSe.17 Fitting the expression for n2ðx;XÞ (see the supplementary
material) around the origin with Eq. (1) gives C ¼ 1:35. The accuracy
of the low-frequency expansion in Eq. (1) can be seen in Fig. 3, where
we plot n2ðx;XÞ, as calculated according to the two band model, and
mark the experimental conditions of the present work with a red
spot. As seen, the quadratic approximation provides a satisfactory
agreement in a broad region around the origin which includes the
wavelengths used in the present work. Using Eq. (1) and the value for
non-degenerate n2, we obtain a value for degenerate nonlinear Kerr

FIG. 2. Blue dots: XPM-induced spectral shift of the central wavelength of the probe
pulse as a function of pump-probe delay at a peak pump intensity
I0 ¼ 2:1� 1013 W/cm2; solid red curve: the result of the corresponding CGNLSE
simulation.

FIG. 3. Real part of nondegenerate Kerr index n2(x;X) calculated for two-band
model through dispersive analysis of Sheik-Bahae et al. In the shaded regions, the
relative error of the approximate expression in Eq. (1) does not exceed 2% (darker
green) and 10% (light green). The red spot marks the point that corresponds to the
conditions of the present experiment (x=D � 0:45; X=D � 0:10 with D ¼ 2:82
eV for ZnSe).
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index of polycrystalline ZnSe npoly2 � ð0:56 0:1Þ � 10�18 m2/W at
k¼ 4.5lm; the main source of error here comes from the determination
of the pump beam intensity (see the supplementary material). This num-
ber is similar in magnitude, albeit slightly less than the values obtained
previously for single-15 and poly-crystalline ZnSe samples.13,14,22

Finally, one might be interested in the dependence of the magni-
tude of cross-phase modulation on the polarizations of pump and
probe beams. The brute force approach would be to redo the spectral
analysis above for all possible polarization configurations. Such an
experiment is certainly doable, albeit time consuming. However, as we
show below, it is in fact not necessary when one is not after absolute
values for susceptibilities but is only interested in the ratios between
the different components of the nonlinear susceptibility tensor vð3Þabcd.
Since XPM was established above as the main interaction channel
between pump and probe pulses, one can take it for granted. Then, we
note that the wavelength of the probe k¼ 1028nm lies in the range
where the sensitivity of a Si photodiode-based detector has a strong
wavelength dependence [see inset in Fig. 4(a) for the responsivity of a
Thorlabs PDA100A2 detector used here]. Therefore, any pump-
induced changes in the probe spectrum will be detected by it.

In Fig. 4(a), we show the transient signal at 1028nm obtained in
the standard transmission-geometry pump-probe configuration with
collinear pulses having collinear polarizations (see the supplementary
material for details). As expected for XPM, the transient has a bi-polar
character, qualitatively similar to Fig. 2. The peak-to-peak amplitude
of the signal App in Fig. 4(a) can, therefore, be used as a measure of
XPM, and consequently Kerr index n2. In Fig. 4(b), we plot this quan-
tity as a function of the angle h between pump and probe polarizations
(blue dots). This simple angular dependence of the Kerr index n2ðhÞ
in a polycrystalline sample is natural and can be used to find relations
between the various components of the susceptibility tensor. Indeed,
when expressed in terms of crystalline nonlinear susceptibility vabcd,
the effective nonlinear susceptibility of a polycrystalline sample veff ðhÞ
must have the following form (see the supplementary material):

n2ðhÞ / veff ðhÞ ¼
1
2

vxxxx þ vxxyyð Þ

þ cos ð2hÞ
4

vxxxx � vxxyy þ vxyyx þ vxyxyð Þ: (2)

The red solid curve in Fig. 4(b) is a fit veff ðhÞ ¼ aþ b cos ð2hÞ
producing an experimental value for b=a � 1=3 that can be used to
obtain the ratio between the quantities in the parentheses. For this, we
note that for a cubic crystal structure of ZnSe vxxxx � vxxyy
þ vxyyx þ vxyxy ,

24 and find that for ZnSe at 4.5lm pump and 1.03lm
probe, vxxyy � vxxxx=2 and vxyxy ¼ vxyyx � vxxxx=4.

In conclusion, we introduced an alternative technique to measure
the nonlinear Kerr index in the mid-infrared range by studying the
effects of cross-phase modulation on a secondary near-infrared probe
beam. Employing this near-IR beam as a probe allowed circumventing
the necessity for sophisticated IR detectors necessary for conventional
methods such as z-scan. In order to relate the measured non-
degenerate and the sought-after degenerate mid-IR Kerr indices, we
analyzed the frequency dependence of nonlinear refractive index and
with the help of nonlinear dispersive analysis of Sheik-Bahae et al., we
established a general expression for the frequency dependence of non-
degenerate n2ðx;XÞ that was not limited to a specific material. In the
proof-of-principle experiment, we measured the Kerr index for a poly-
crystalline ZnSe sample to find n2 � ð0:560:1Þ � 10�18 m2/W at
4.5lm.

See the supplementary material for the supporting content.
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