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Abstract
For a locally finite set in R

2, the order-k Brillouin tessellations form an infinite
sequence of convex face-to-face tilings of the plane. If the set is coarsely dense and
generic, then the corresponding infinite sequences of minimum and maximum angles
are both monotonic in k. As an example, a stationary Poisson point process in R

2 is
locally finite, coarsely dense, and generic with probability one. For such a set, the
distributions of angles in the Voronoi tessellations, Delaunay mosaics, and Brillouin
tessellations are independent of the order and can be derived from the formula for
angles in order-1 Delaunay mosaics given by Miles (Math. Biosci. 6, 85–127 (1970)).

Keywords Delaunay and Iglesias mosaics · Voronoi and Brillouin tessellations ·
Higher order · Orthogonal dual · Poisson point processes · Angles · Computational
experiments

Mathematics Subject Classification 52C20

1 Introduction

The starting point for the work reported in this paper is a computational experiment
conducted as part of a general geometric study of Brillouin zones [4]. Computing the
minimum angles in the kth Brillouin zones of a point in a 2-dimensional lattice, we
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noticed that these angles vary monotonically with k. The goal of this paper is to shed
additional light on this phenomenon: to generalize, to prove, and to relate to prior
knowledge.

The most famous result on angles in Delaunay mosaics is Sibson’s Maxmin Angle
Theorem [13], which asserts that among all triangulations of a (generic) finite set
in R

2, the Delaunay mosaic maximizes the vector of angles sorted in the increasing
order lexicographically. The theorem compares the Delaunay mosaic with other ways
to connect the points to form a triangulation. In contrast, our main result compares
the Delaunay mosaic of a set with the higher-order Delaunay mosaics of the same set.
To be specific, we write Delk(A) for the order-k Delaunay mosaic of a set A ⊆ R

2,
noting that it is dual to the perhaps better known order-k Voronoi tessellation of A.
Writing α(Delk(A)) for the infimum angle in the order-k Delaunay mosaic, we prove
that α(Delk(A)) � α(Delk+1(A)) for k � 1. This inequality holds when A is locally
finite, coarsely dense, and generic; see Sect. 2 for the definitions. Importantly, the
inequality is not necessarily true if A is finite.

The inequality for the infimum angles generalizes to order-k Brillouin tessellations
(introduced as degree-k Voronoi diagrams in [7]) and to order-k Iglesias mosaics
(duals of the order-k Brillouin tessellations), but not to order-k Voronoi tessellations.
Most interesting is however that it holds for the order-k Brillouin tessellations even
for points in non-generic position, while this is not true for the order-k Delaunay and
Iglesias mosaics.

Examples of locally finite and coarsely dense sets are lattices as well as Delaunay
sets, which have packing radius bounded away from zero and covering radius bounded
away from infinity.Another example is a stationaryPoisson point process,which is also
generic with probability one. The angle distribution of the (order-1) Delaunay mosaic
of such a process inR2 has been determined byMiles [10]. By the independence of the
shape and size of triangles in such a process [6], the angles of order-kDelaunaymosaics
follow the same distribution. Since order-k Voronoi tessellations are orthogonally dual
to these mosaics, their angles follow the symmetric distribution. The sum (or rather
average) of the two distributions is concave and governs the angles of the order-k
Brillouin tessellations and Iglesias mosaics.

Outline. Section 2 introduces background on Voronoi tessellations and Delaunay
mosaics, which includes weighted and higher-order versions as well as the related
Brillouin tessellations and Iglesias mosaics. Section 3 studies the angles of these tes-
sellations and mosaics and proves their monotonicity for locally finite and coarsely
dense sets in R

2. Section 4 considers the special case of stationary Poisson point
processes and characterizes the angle distributions of the tessellations and mosaics.
Section 5 concludes the paper with a short discussion.

2 Mosaics and Tessellations

Given a locally finite set in Euclidean space, its Voronoi tessellation and Delaunay
mosaic are dual tilings. Moving the focus from individual points to subsets of fixed
size, k, we get the order-k Voronoi tessellation and order-k Delaunay mosaic, which

123



Discrete & Computational Geometry (2024) 72:29–48 31

are again dual tilings of the space. Using a duality introduced in [1], these generalized
tilings are, at the same time, Voronoi tessellations and Delaunay mosaics of weighted
point sets. In this section, we discuss these concepts in the planar case.

2.1 Orthogonal Dual

We consider convex face-to-face tilings of the plane, by which we mean countable
and locally finite collections of closed convex polygons (tiles) that cover R2 in such a
way that any two tiles are either disjoint or overlap in a common edge or vertex. More
formally, a convex face-to-face tiling is a complex consisting of convex polygons,
edges, and vertices, whose underlying space is R2.

Definition 2.1 (orthogonal dual) Let V be a convex face-to-face tiling ofR2. Another
such tiling, D, is an orthogonal dual of V if there is an incidence-preserving and
dimension-reversing bijection β : V → D such that

(i) e is orthogonal to β(e) for every edge e ∈ V ,
(ii) if e is shared by tiles t1 on the left and t2 on the right of e, then β(t1) is the left

and β(t2) is the right endpoint of β(e).

To unpack this definition, we note that β maps tiles to vertices, edges to edges, and
vertices to tiles, such that c ⊆ d in V iff β(d) ⊆ β(c) in D. Condition (i) requires that
the lines that contain e ∈ V and β(e) ∈ D intersect at a right angle. Orient the line of
e arbitrarily and let t1 and t2 be the tiles that share e and lie to the left and the right
of this line, respectively. Then condition (ii) requires that the line of β(e), which we
orient from β(t1) to β(t2), crosses the line of e from left to right.

Note that being an orthogonal dual is a symmetric relation: if D is an orthogonal dual
of V , then V is an orthogonal dual of D. To introduce a concrete example, call A ⊆ R

2

locally finite if every disk contains only finitely many points of A, and coarsely dense
if every half-plane contains infinitely many points of A. For each a ∈ A, write dom(a)

for the points x ∈ R
2 that satisfy ‖x − a‖ � ‖x − b‖ for all b ∈ A, and note that

dom(a) is a closed convex polygon. The (order-1) Voronoi tessellation of A—named
after Voronoi [14–16] and denoted Vor(A) = Vor1(A)—consists of the tiles dom(a),
a ∈ A, and their edges and vertices. The (order-1) Delaunay mosaic of A—named
after Boris Delaunay or Delone [2] and denoted Del(A) = Del1(A)—is obtained by
drawing an edge connecting a, b ∈ A whenever dom(a) and dom(b) share an edge.
These edges decompose the plane into convex polygons, which are the tiles of Del(A).
It is well known, and also not difficult to prove that Del(A) is an orthogonal dual of
Vor(A). If A is not only locally finite and coarsely dense but also generic, by which
we mean that no four points lie on a common circle, then every vertex of Vor(A) has
degree 3 and every tile of Del(A) is a triangle. Note that while usually generic sets
require that no three points are collinear, we do not impose such a restriction as triples
of collinear points do not affect our arguments as long as the point sets are locally
finite and coarsely dense.
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2.2 Weighted Points

We generalize the Voronoi tessellation and Delaunay mosaic to points with real
weights. For a more comprehensive treatment of this subject see [3]. To begin, let
A ⊆ R

2 be a set of unweighted points, locally finite and coarsely dense, as before. For
each a ∈ A, let ā : R2 → R defined by ā(x) = 2〈a, x〉 − ‖a‖2 be the corresponding
affine map, and a = (a, ‖a‖2) ∈ R

2 × R the corresponding lifted point. Let PV (A)

be the intersection of the half-spaces bounded from below by the graphs of the affine
maps, and letPD(A) be the convex hull of the lifted points inR3. Because A is locally
finite, bothPV (A) andPD(A) are convex polyhedra, and because A is coarsely dense,
they are both unbounded, with the interior above the boundary complex, which is the
graph of a piecewise linear function from R

2 to R. The following result was at least
partially known already to Voronoi [14–16]:

Proposition 2.2 (vertical projection) Let A ⊆ R
2 be locally finite and coarsely dense.

– Vor(A) is the vertical projection of the boundary complex of PV (A) to R2;
– Del(A) is the vertical projection of the boundary complex of PD(A) to R2.

It is now easy to generalize the two tilings to points with weights. Let w : A →
R map each point to its weight, and define āw(x) = 2〈a, x〉 − ‖a‖2 + w(a) and
aw = (a, ‖a‖2 − w(a)). Correspondingly, PV (A, w) is the intersection of the closed
half-spaces bounded from below by the graphs of the āw, and PD(A, w) is the convex
hull of the aw in R

3. We call the vertical projection of the boundary complex of
PV (A, w) to R

2 the weighted Voronoi tessellation of A and w, denoted Vor(A, w),
and the vertical projection of the boundary complex of PD(A, w) to R2 the weighted
Delaunay mosaic of A and w, denoted Del(A, w). An important difference to the
unweighted case is that not every point in A is necessarily associated with a tile in
Vor(A, w). Correspondingly, not every point in A is also a vertex in Del(A, w).

These two tilings are known in the literature under a variety of names, including
Dirichlet tessellations and power diagrams for Vor (A, w), and Laguerre triangula-
tions and regular triangulations for Del(A, w). Note that Vor(A, w) = Vor(A) and
Del(A, w) = Del(A) if w(a) = 0 for every a ∈ A. It is not difficult to see that
Del(A, w) is an orthogonal dual of Vor(A, w) for every w : A → R.

2.3 Tessellations

Let A ⊆ R
2 be locally finite and coarsely dense. For every finite B ⊆ A, we write

dom(B) for the points x ∈ R
2 that satisfy ‖x − b‖ � ‖x − a‖ for all b ∈ B and

all a ∈ A\B. Observe that dom(B) is a closed convex polygon, and if we drop the
requirement that A be coarsely dense, then the polygon may be unbounded. Whenever
B\B ′ and B ′\B are both non-empty, dom(B) and dom(B ′) have disjoint interiors but
may overlap along a shared edge or vertex.

For every k � 1, the order-k Voronoi tessellation, denoted Vork(A), consists of
all polygons dom(B) with cardinality # B = k. Two such tessellations are shown in
Fig. 1, namely Vor5(Z2) in the upper left panel and Vor6(Z2) in the upper right panel.
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Fig. 1 Top row: three tessellations of the integer lattice: Vor5(Z
2) on the left, Vor6(Z2) on the right, and

their overlay, Bri6(Z2), in the middle. For every point in the dark blue region, the point in the center is
among the five closest on the left, the sixth closest in the middle, and among the six closest on the right.
Bottom row: the corresponding mosaics: Del5(Z

2) on the left, Del6(Z2) on the right, and Igl6(Z
2) in the

middle. Observe that the mosaics are indeed orthogonal duals of the tessellations
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For contiguous orders, k−1 and k, the twoVoronoi tessellations have pairwise non-
crossing edges. Indeed, Vork−1(A) and Vork(A) share some of their vertices, which
is where the paths of edges in the two tessellations cross. We can therefore overlay
Vork−1(A) and Vork(A), by which we mean the tessellation formed by drawing all
their vertices and edges. Each tile in the overlay is the intersection of a tile, dom(B ′)
in Vork−1(A) and another, dom(B) in Vork(A), with B ′ ⊆ B. Note that for every
point in this intersection, the points in B ′ are the k − 1 closest, and the unique point
in B \ B ′ is the k-closest. The collection of tiles for which a point a ∈ A is the kth
closest is also known as the k-th Brillouin zone of a. To construct it, we draw every
bisector of a and another point in A. This gives a line arrangement, and we select all
regions that are separated from a by exactly k − 1 bisectors. In summary, the overlay
of Vork−1(A) and Vork(A) is the decomposition of the plane into the kth Brillouin
zones of the points. This overlay was introduced in [7], where it is referred to as the
degree-k Voronoi tessellation. Because of its connection to the kth Brillouin zones, we
prefer to call it the order-k Brillouin tessellation, denoted Brik(A). As an example,
consider Bri6(Z2) in the upper middle panel of Fig. 1.

Three non-collinear points, a, b, c, define a unique circle that passes through them.
We call it the circumcircle and denote it σ = σ (a, b, c). It encloses the points in the
open disk bounded by σ , and we write In(σ ) ⊆ A for the points enclosed by σ , and
On(σ ) ⊆ A for the points on σ .

Lemma 2.3 (vertex characterization) Let A ⊆ R
2 be locally finite, σ the circumcircle

of three points in A, and k � 1.

– The center ofσ is a vertex ofVork(A) for # In(σ )+1 � k � # In(σ )+# On(σ )−1,
and the degree of this vertex in Vork(A) is # On(σ ).

– The center of σ is a vertex of Brik(A) for # In(σ ) + 1 � k � # In(σ ) + # On(σ ),
and the degree of this vertex in Brik(A) is # On(σ ) whenever there is equality on
the left or the right, and it is 2# On(σ ) if both inequalities are strict.

The conditions exhaust the vertices of the order-k Voronoi and Brillouin tessellations
of A.

Proof For x ∈ R
2 and k � 1, there exists at least one set B ⊆ A with # B = k

and x ∈ dom(B). Consider the smallest closed disk centered at x that contains B
and call the boundary of the disk σ . The set B may not be unique, but the circle σ

is. Consider a perturbation y of x , such that there exists a unique B ′ with # B ′ = k
and y ∈ dom(B ′). Assuming the perturbation is sufficiently small, B consists of the
points of In(σ )with additional k−# In(σ ) consecutive points fromOn(σ ). For a circle
with n = # On(σ ) points, there are n different sets of consecutive points of a fixed
cardinality 1 � m � n−1. Thus, for 1 � k−# In(σ ) � # On(σ )−1, there are # On(σ )

different sets B ′ and thus # On(σ )Voronoi domains of order k thatmeet at x .Hence, x is
a vertex of Vork(A)with degree # On(σ ) for # In(σ )+1 � k � # In(σ )+# On(σ )−1
iff # On(σ ) � 3. The second claim follows from the first becauseBrik(A) is the overlay
of Vork−1(A) and Vork(A) with pairwise non-crossing edges. 	


For generic sets, the degrees of the vertices in theVoronoi andBrillouin tessellations
are 3 and 6. The integer lattice,Z2, is not generic, which explains why some vertices in
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its tessellations have degree different from 3 and from 6; see the top row of Fig. 1. For
example, Vor5(Z2) andVor6(Z2) share vertices that have degree 8 in both tessellations
and therefore degree 16 in Bri6(Z2), which is shown in the middle panel.

2.4 Mosaics

There is a relation between (unweighted) order-k Voronoi tessellations and weighted
(order-1)Voronoi tessellations introduced byAurenhammer [1]. Specifically, for every
locally finite set A and every finite k � 1, there is another locally finite set Ak and
function wk : Ak → R such that Vork(A) = Vor(Ak, wk). Using this relation, we
construct orthogonal duals of the order-k Voronoi tessellations. To describe the relation
in detail, define for all B ⊆ A of cardinality k

pt(B) = 1

k

∑

a∈B
a, (1)

ht(B) = 1

k

∑

a∈B
‖a‖2. (2)

Let Ak be the set of points pt(B), for all B ⊆ A of size k, and let wk : Ak → R

be defined by wk(pt(B)) = ‖pt(B)‖2 − ht(B). We have Vork(A) = Vor(Ak, wk),
as proved for finite sets in [1]. For locally finite and coarsely dense sets A, the set
Ak is coarsely dense but not necessarily locally finite. It is however easy to prove
that there is a locally finite subset of Ak such that all points not in this subset have
empty tiles in the Voronoi tessellation and are therefore irrelevant. This suffices to
show that Vor(Ak, wk) is well defined. Furthermore, Del(Ak, wk) is well defined and
is an orthogonal dual of Vork(A); see the lower left and right panels in Fig. 1. A similar
construction can be done for the order-k Brillouin tessellation. Write

pt(B, b) = k

2k − 1
pt(B) + k − 1

2k − 1
pt(B \{b})

= 1

2k − 1
b + 2

2k − 1

∑

a∈B\{b}
a,

(3)

ht(B, b) = k

2k − 1
ht(B) + k − 1

2k − 1
ht(B \{b})

= 1

2k − 1
‖b‖2 + 2

2k − 1

∑

a∈B\{b}
‖a‖2,

(4)

in which k is again the cardinality of B ⊆ A, which we assume is finite. Observe that
the coefficients are positive and add up to one. Let Ak,1 be the set of points pt(B, b),
for all subsets B ⊆ A of size k and b ∈ B, and let wk,1 : Ak,1 → R be defined by
wk,1(pt(B, b)) = ‖pt(B, b)‖2 − ht(B, b). We have Brik(A) = Vor(Ak,1, wk,1), as
proved in [5], which implies that Del(Ak,1, wk,1) is an orthogonal dual of Brik(A);
see the lower middle panel in Fig. 1.
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Definition 2.4 (orthogonal dual mosaics) Noting that they are orthogonal duals of
Vork(A) and Brik(A), we call Delk(A) := Del(Ak, wk) the order-k Delaunay mosaic
and Iglk(A) := Del(Ak,1, wk,1) the order-k Iglesias mosaic of A; see [5].

We remark that [5] describes a 1-parameter family of coefficients that generate
points with real weights whose weighted order-1 Voronoi tessellations are the order-k
Brillouin tessellation of A. In particular, there are two positive coefficients, w1 < w0,
that satisfy (k − 1)w0 + w1 = 1, and for every B ⊆ A of size k and b ∈ B, we use
w1 for b and w0 for every other point in B. The coefficients used in (3) and (4) satisfy
these conditions, and they are special as they imply centrally symmetric hexagons in
the order-k Iglesias mosaic for generic A (see Sect. 3.1), which the other choices do
not. In other words, up to scaling and translation, Iglk(A) is the unique member in a 1-
parameter family of orthogonal duals of Brik(A) that guarantees centrally symmetric
hexagons in the generic case.

3 Monotonicity of Angles

In preparation of the main theorem, we take a detailed look at the angles we find in
the mosaics and tessellations.

3.1 Angle Types

Assuming A is generic, all vertices in Vork(A) have degree 3, and we distinguish
between old vertices, which it shares with Vork−1(A), and new vertices, which it
shares with Vork+1(A). Similarly, Brik(A) has three age-groups of vertices depending
on the Voronoi tessellations it shares the vertex with: old for orders k − 2, k − 1,
mid for orders k − 1, k, and new for orders k, k + 1. Since Brik(A) is the overlay of
Vork−1(A) and Vork(A), its old and new vertices have degree 3 and its mid vertices
have degree 6. Correspondingly, we have old and new tiles in Delk(A) and old, mid,
new tiles in Iglk(A). In the generic case, the old and new tiles are triangles, and the
mid tiles are hexagons.

To be specific about the tiles, let a, b, c ∈ A with # In(σ ) = �, in which σ is the
circumcircle of the three points. According to Lemma 2.3, the center of σ is new,
old in Vor�+1(A),Vor�+2(A), and new, mid, old in Bri�+1(A),Bri�+2(A), Bri�+3(A),
respectively. In the dual Delaunay and Iglesias mosaics, a, b, c define triangles and
hexagons whose vertices are specified in (1) and (3). Write u for the sum of points in
In(σ ), let x ∈ {a, b, c}, let y ∈ {a, b, c}\{x}, and let z ∈ {a, b, c}\{x, y}. Then the
tiles defined by a, b, c are

– in Del�+1(A): the new triangle with vertices

1

� + 1
(u + x);
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Fig. 2 For zero enclosed points, we get the triangle abc in Igl1(A), the hexagon constructed by equal
tri-sections of the edges of abc in Igl2(A), and a translate of abc scaled by −1/5 in Igl3(A)

– in Del�+2(A): the old triangle with vertices

1

� + 2
(u + x + y);

– in Igl�+1(A): the new triangle with vertices

1

2� + 1
(2u + x);

– in Igl�+2(A): the mid hexagon with vertices

1

2� + 3
(2u + 2x + y);

– in Igl�+3(A): the old triangle with vertices

1

2� + 5
(2u + 2x + 2y + z);

see Fig. 2 for the case in which a, b, c are the vertices of an equilateral
triangle. Observe that

1

2� + 3
(2u + a + b + c)

is the center with respect to which the hexagon is centrally symmetric. Indeed, we can
pair up the six vertices so that the average of each pair is the center. To illustrate the
constructions, assume first that In(σ ) = ∅, which implies u = 0. The corresponding
triangle in Del1(A) has vertices a, b, c, the triangle in Del2(A) has vertices

1

2
(a + b),

1

2
(a + c),

1

2
(b + c),
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the triangle in Igl1(A) has vertices a, b, c, the hexagon in Igl2(A) has vertices

2

3
a + 1

3
b,

2

3
a + 1

3
c,

2

3
b + 1

3
a,

2

3
b + 1

3
c,

2

3
c + 1

3
a,

2

3
c + 1

3
b,

and the triangle in Igl3(A) has vertices

2

5
(a + b) + 1

5
c,

2

5
(a + c) + 1

5
b,

2

5
(b + c) + 1

5
a;

see Fig. 2. Importantly, the two triangles are similar and thus have the same three
angles, and the six angles of the hexagon are supplementary to the angles of the two
triangles. In the more general case, when In(σ ) is not necessarily empty, the triangles
and hexagons are scaled and translated copies of the shapes we see for In(σ ) = ∅.
Everything we said about angles thus still applies.

An angle at a vertex inside a convex polygon is a real number between 0 and π . The
supplementary angle is ϕ̄ = π −ϕ. We use Lemma 2.3 to decide in which tessellations
and mosaics an angle or its supplement appear.

Lemma 3.1 (angles and supplementary angles) Let A ⊆ R
2 be locally finite and

generic, and let σ be the circumcircle of a, b, c ∈ A with # In(σ ) = � and ϕ = ∠acb.
Then

– ϕ is an angle in Del�+1(A), Del�+2(A), Igl�+1(A), Igl�+3(A), and Bri�+2(A),
– ϕ̄ is an angle in Vor�+1(A), Vor�+2(A), Bri�+1(A), Bri�+3(A), and Igl�+2(A).

The conditions exhaust the angles appearing in the mosaics and tessellations of A.

Proof The above considerations show that translated and scaled copies of the triangle
abc belong to Del�+1(A) and Igl�+1(A), centrally reflected and scaled copies belong
to Del�+2(A) and Igl�+3(A), and a hexagon containing two copies of each of the
triangle’s supplementary angles belongs to Igl�+2(A). This implies the claims about
Delaunay and Iglesiasmosaics.Orthogonal duality yields supplementary angles for the
Voronoi and Brillouin tessellations and thus the remaining claims. Due to Lemma 2.3,
the above conditions exhaust the angles appearing in the mosaics and tessellations
of A. 	


3.2 Monotonicity Theorem

We prepare the proof of the main theorem with a technical lemma. For any three non-
collinear points, a, b, c ∈ A, write σ = σ(a, b, c) for the unique circle that passes
through the points, and∠acb for the angle at c inside the triangle with vertices a, b, c.
Recall that In(σ ) are the points of A that lie in the open disk bounded by σ . Assuming
a generic set, we define

α�(A) = inf {∠acb | a, b, c ∈ A, # In(σ (a, b, c)) = �}; (5)

β�(A) = inf {π − ∠acb | a, b, c ∈ A, # In(σ (a, b, c)) = �}. (6)
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We define α�(A) and β�(A) also for possibly non-generic sets, but here we count an
angle whenever there is an arbitrarily small perturbation such that the angle is counted
for the now generic set. For example, if σ = σ (a, b, c) passes through n + 1 points
and encloses p points, then ∠abc is counted for p � � � p + (n − 2). Indeed, after
fixing the three points that define the angle, � − p of the n − 2 remaining points on
the circle may join the p points inside the circle.

Lemma 3.2 (angle inequalities) Let A ⊆ R
2 be locally finite and coarsely dense.

Then β�(A) � α�(A) � α�+1(A), for all � � 0.

Proof The supplement of the largest angle in a triangle is the sum of the other two
angles and therefore necessarily larger than the smallest angle. We thus get β�(A) �
α�(A).

We prove the second inequality first in the generic case. Let σ0 be the circle passing
through a, b, c ∈ A, with # In(σ0) = � and ∠acb � π/3. Consider the pencil of
circles that pass through a and b, of which σ0 is one member. The circles in this pencil
that enclose c are necessarily larger than σ0. Among these, let σ1, σ2, . . . be the circles
that pass through a third point, which we list in the order of increasing radius. The
points a, b decompose each σi into two arcs, of which the short arc lies inside σ0 and
the long arc lies outside σ0. Let ci ∈ A be the third point on σi , after a and b. We
say σi decrements if ci lies on the short arc: # In(σi ) is one less than the count for
the circles between σi−1 and σi . Symmetrically, we say σi increments if ci lies on the
long arc: the count for the circles between σi and σi+1 is one greater than # In(σi ).
Since A is locally finite, there are only finitely many decrementing circles, and since
A is coarsely dense, there are infinitely many incrementing circles. This implies that
there exists an index j � 1 such that σ j increments and # In(σ j ) = � + 1. By the
Inscribed Angle Theorem, ∠ac jb < ∠acb. Since we find a smaller angle for every
triplet a, b, c ∈ A with # In(σ0) = � and ∠acb � π/3, we conclude that α�+1 � α�.

We prove the remaining non-generic case by contradiction. Suppose α�(A) <

α�+1(A) for some � � 0. Then there exist points a, b, c ∈ A with ∠acb < α�+1(A)

such that p+(n−2) = �, inwhich p = # In(σ ), n+1 = # On(σ ), and σ = σ(a, b, c).
Note that p + (n − 2) > � is not possible, else a perturbation could have � + 1 points
inside the circle, which contradicts that ∠acb is strictly smaller than α�+1(A). There
exists an arbitrarily small perturbation A′ of A such that a, b, c ∈ A′ and σ encloses
� points, namely the perturbed images of the p points in In(σ ) and � − p of the n − 2
points in On(σ ) \ {a, b, c}. The perturbation can be chosen arbitrarily small so that
A′ is generic and α�+1(A′) is arbitrarily close to α�+1(A) and therefore strictly larger
than ∠acb. To see the latter property, consider the straight-line homotopy from A
to A′ and observe that α�+1 depends continuously on the parameter that controls the
homotopy. Indeed, the Inscribed Angle Theorem guarantees that every angle, ∠ xzy,
that contributes to α�+1 appears at least # On(σ (x, y, z)) − 2 times. After a small
perturbation, at least one of these angles still contributes to α�+1. 	


We note that Lemma 3.2 does not generalize to finite sets. To see this, let A be the
vertices of an equilateral triangle, a, b, c, together with the barycenter,

d = 1

3
(a + b + c).
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The four points define four circles of which three enclose no point and the circle that
passes through a, b, c encloses one point. Hence, π/6 = α0 < α1 = π/3, which
contradicts the second inequality in Lemma 3.2 for finite sets. To generalize, we place
an additional k points near d, which gives αk+1 = π/3 and αk as close to π/6 as we
like.

Write α(Delk(A)) and ω(Delk(A)) for the infimum and supremum angles in the
order-k Delaunay mosaic, and similarly for the other mosaics and the tessellations in
this paper. We prove that α and ω behave mostly monotonically, but of course not for
finite sets for which even Lemma 3.2 does not hold.

Theorem 3.3 (monotonicity of extreme angles) Let A ⊆ R
2 be locally finite, coarsely

dense, and generic, and let k � 1. Then

– α(Mk(A)) � α(Mk+1(A)), with M ∈ {Del, Igl,Bri},
– ω(Mk(A)) � ω(Mk+1(A)), with M ∈ {Vor,Bri, Igl}.

Furthermore, α(Brik(A)) � α(Brik+1(A)) and ω(Iglk(A)) � ω(Iglk+1(A)) even if
we drop the requirement that A be generic.

Proof We have π − ω(Vork(A)) = α(Delk(A)) since the Voronoi tessellation is an
orthogonal dual of the Delaunay mosaic. Similarly, π − ω(Brik(A)) = α(Iglk(A))

and π − ω(Iglk(A)) = α(Brik(A)). It thus suffices to prove the three inequalities for
the infimum angles. In the generic case, we have

α(Delk(A)) = min {αk−2, αk−1} � min {αk−1, αk} = α(Delk+1(A)), (7)

α(Iglk(A)) = min {αk−3, βk−2, αk−1}
� min {αk−2, βk−1, αk} = α(Iglk+1(A)),

(8)

α(Brik(A)) = min {βk−3, αk−2, βk−1}
� min {βk−2, αk−1, βk} = α(Brik+1(A)),

(9)

in which we use Lemma 3.2 to get the inequality in each of the three cases. For
example, we use αk−3 � αk−2, βk−2 � αk−2, and αk−1 � αk to establish (8). No
angle is compared with βk−1, but this is not necessary.

In the non-generic case, (7) and (8) fail fatally, while (9) can be rescued in a weaker
form that is still sufficient to prove the claimed inequalities. Specifically,

α(Brik(A)) � min {βk−3, αk−2, βk−1} � αk−1 � α(Brik+1(A)), (10)

as we are about to prove. Recall that Brik(A) consists of the kth Brillouin zones of the
points in A. To construct the kth Brillouin zone of a ∈ A, we draw all bisectors defined
by a, b, with b ∈ A\{a}, and we collect all chambers in the resulting line arrangement
that are separated from a by exactly k − 1 bisectors. For a vertex u of this zone, write
σ for the circle with center u and radius ‖u − a‖. For each b ∈ In(σ ), the bisector
of a, b separates a from u, and for each b ∈ On(σ ) \ {a}, the bisector of a, b passes
through u. Let p = # In(σ ) and n + 1 = # On(σ ), and write a = a0, a1, . . . , an for
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the points in On(σ ), listed in a counterclockwise order around σ . The n bisectors that
pass through u form 2n angles, which we enumerate in a clockwise order as

π − ∠anaa1, ∠a1aa2, . . . , ∠an−1aan,

π − ∠anaa1, ∠a1aa2, . . . , ∠an−1aan .

These are angles inside the kth Brillouin zone of a, for k = p+1, p+2, . . . , p+n, p+
n+1, p+n, . . . , p+2, in this order. Consider the n+1 cyclic rotations of the ordered
list of points in On(σ ). By the Inscribed Angle Theorem, any two contiguous points
form the same angle at every third point. We have n+1 such angles, and each appears
in Brik(A) for p + 2 � k � p + n. Furthermore, each of these angles contributes
to the definition of α� for p � � � p + n − 2. This implies αk−2 � α(Brik(A)) for
all k � 2, which is the third inequality in (10). In fact, we have equality, unless the
supplementary angles defined by three consecutive points along the circle are smaller.
Here we observe a different pattern: π − ∠aiai+1ai+2 belongs to Brik(A) only for
k = p + 1 and for k = p + n + 1 (writing indices modulo n + 1). However, it
contributes to the definition of β� for p � � � p + n − 2.

In summary, every angle that appears in Brik(A) belongs to one of three cases.
Writing σ for the circle that passes through the three points that define the angle,
a0, a1, . . . , an for the ordered list of points on σ , and p = # In(σ ), as before, the
cases are:

– an angle of the form ∠aiai+1a j , with p + 2 � k � p + n, which contributes
to αk−2;

– an angle of the form π −∠aiai+1ai+2, with k = p+1, which contributes to βk−1;
– an angle of the form π − ∠aiai+1ai+2, with k = p + n + 1, which contributes
to βk−3.

Therefore α(Brik(A)) � min {βk−3, αk−2, βk−1}, which is the first inequality in (10).
We get min {βk−3, αk−2, βk−1} � αk−1 fromLemma 3.2, which is themiddle inequal-
ity in (10). This implies the claimed inequalities in the non-generic case. 	


If we drop the genericity requirement for A, then the first inequality in Theorem 3.3
fails for the Delaunay and Iglesias mosaics. See for example the Delaunay mosaics in
Fig. 1, where the minimum angle in Del5(Z2) is less than in Del6(Z2). Equivalently,
the second inequality fails for the Voronoi and the Brillouin tessellations; see again
Fig. 1. Even with genericity assumption, the first inequality does not hold for the
Voronoi tessellations and, equivalently, the second inequality does not hold for the
Delaunay mosaics; see Appendix A.

3.3 Angle Monotonicity Experimentally

Figure 3 shows the sequences of min and max angles in the order-k Delaunay mosaics
andBrillouin tessellations of a lattice and a random periodic set. The lattice is designed
so that any circle that passes through more than three points encloses more points
than the values of k considered in our experiment. The periodic set is constructed as
A = A0 + Z

2, in which A0 is a finite set of points chosen uniformly at random in the

123



42 Discrete & Computational Geometry (2024) 72:29–48

Fig. 3 Top: the sequences of min angles (in blue) and of max angles (in orange) in the order-k Delaunay
mosaics of a lattice without four cocircular points on the left and of a random periodic set on the right. We
draw the vertical axes for the minima and maxima on opposite sides of each panel. Note that the min angles
decrease monotonically with increasing k, but the max angles are not monotonic. Bottom: the sequences of
min and max angles in the order-k Brillouin tessellations of the lattice on the left and the random periodic
set on the right. Both the min and the max angles are monotonic in k

unit square. For the purpose of our computational experiments, it suffices to copy A0
into the eight squares surrounding the unit square. We then collect angles spanned by
three points whose circumcenter lies in the middle square, making sure that k is small
enough so that the circumcircles are contained in the union of the nine squares.

We note that a random periodic set is a grossly deficient approximation of a Poisson
point process in R2 if we are interested in infimum and supremum angles. Indeed, for
every k � 1, the expected infimum angle of a Poisson point process is 0 just because
the probability that three points form an angle smaller than ε is non-zero for every
ε > 0; see also Sect. 4. Symmetrically, the expected supremum angle is π . The
sequences of infimum and supremum angles for a Poisson point process are thus very
non-interesting. They are however interesting forDelaunay sets, which are defined by
having positive packing radius and bounded covering radius. These two radii guarantee
that the angles are bounded away from 0 and from π .

4 Distribution of Angles

A stationary Poisson point process in R
2 satisfies the requirements of Theorem 3.3

with probability 1.Among other things, this implies thatwith probability 1 the infimum
angle in the order-k Delaunay mosaic is non-increasing for increasing k. On the other
hand, we will see that the angle distributions for different values of k are the same.
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This distribution is positive over the entire open interval of angles, which suggests that
the infimum angle vanishes with probability 1 for all finite orders.

4.1 Angles in Poisson–DelaunayMosaics

We recall that a stationary Poisson point process with intensity ρ > 0 is characterized
by the expected number of sampled points in a Borel set of given measure, and the
independence of these numbers for disjoint Borel sets. Let A ⊆ R

2 be such a process.
With probability 1, A is locally finite, coarsely dense, and generic. Because A is
locally finite, its order-k Delaunay mosaics are defined, because A is coarsely dense,
they cover the entire R2, and because A is generic, they are simplicial. Assuming A is
a Poisson point process, we call Delk(A) an order-k Poisson–Delaunay mosaic, and
similarly for Vork(A), Iglk(A), and Brik(A).

An old result of Miles [10] asserts that the distribution of angles in the (order-1)
Delaunay mosaic of a stationary Poisson point process in R

2 is

f (t) = 4

3
[(π − t) cos t + sin t] sin t, (11)

in which all angles are equally likely; see Schneider and Weil [12] or Møller [11]
for background on random point process in stochastic geometry. In Sect. 4.3, we will
approximate this distribution by the histogram of all angles inside triangles whose
circumcenters lie inside a sufficiently large region of the plane. Similarly, the distri-
bution of supplementary angles is g(t) = f (π − t), and the distribution of angles or
supplementary angles is

h(t) = f (t) + g(t)

2
= 2

3
[(π − 2t) cos t + 2 sin t] sin t; (12)

see Fig. 4. The second derivative of the latter is

h′′(t) = −8

3
(π − 2t) sin t cos t,

which is zero at t = 0, π/2, π and negative everywhere else in [0, π ]. It follows that
h is concave.

4.2 Angles and Supplements

The main result in this section is that the three distributions displayed in Fig. 4 cover
all mosaics and tessellations of a stationary Poisson point process considered in this
paper.

Theorem 4.1 (angle distributions) Let A ⊆ R
2 be a stationary Poisson point process

and k � 1. Then

– f is the distribution of angles in Delk(A),
– g is the distribution of angles in Vork(A),
– h is the distribution of angles in Iglk(A) as well as of angles in Brik(A).
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Fig. 4 The graphs of f , g, and h in solid black, dotted black, and blue

Proof ByMiles’ result [10], f is the distribution of angles in Del1(A), and because the
order-1 Voronoi tessellation is an orthogonal dual of the order-1 Delaunay mosaic, g is
the distribution of angles in Vor1(A). As proved in [6], the shape of a triangle spanned
by three points in a stationary Poisson point process is independent of the number
of points its circumcircle encloses. This implies that f and g are the distributions of
angles in Delk(A) and Vork(A), respectively, for all positive k.

Assuming the intensity of the Poisson point process is ρ > 0, the densities of old
and new vertices in Vork(A) are (2k − 1)ρ and 2kρ, respectively (see the inductive
counting argument for finite sets in [9], which can be adapted to the Poisson point
process case). The degree-3 vertices in Brik(A) are the old vertices in Vork−1(A) plus
the new vertices in Vork(A), so their density is (4k − 2)ρ. The degree-6 vertices in
Brik(A) are the new vertices in Vork−1(A), which are also the old vertices in Vork(A),
so their density is (2k − 1)ρ. It follows that the density of angles around degree-3
vertices is the same as around degree-6 vertices, namely (12k − 6)ρ. The distribution
of these angles is therefore the average of the distributions in the Delaunay mosaics
and Voronoi tessellations; that is, h = (1/2)( f + g).

Finally, Iglk(A) is an orthogonal dual of Brik(A), so its angles are supplementary
to the angles in Brik(A). Since h is symmetric, h(t) = h(π − t), this implies that h is
also the distribution of angles in Iglk(A). 	


4.3 Angle Distributions Experimentally

To get some perspective on Theorem 3.3, we collect the angles in the Brillouin zones
of 0 in Z

2 and in a perturbation of Z2. Recall that the order-k Brillouin tessellation
of Z2 consists of a copy of the kth Brillouin zone of 0 for each point in the lattice,
so we get the same angles either way. In Fig. 5, we see the empirical distribution
of the angles in the first 57 Brillouin zones of 0 ∈ Z

2 in the left panel. While the
distribution for a generic point set is necessarily symmetric, we see a significant bias
toward small angles. The reason for the asymmetry are the many cocircular points,
which give rise to high-degree vertices in the bisector arrangement. If � � 3 lines pass
through a common vertex, we get only the 2� angles between lines that are contiguous
in the ordering by slope. The other 2

(
�
2

) − 2� angles, which are necessarily larger, are
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Fig. 5 The distribution of the angles in the first 57 Brillouin zones of 0 inZ2 on the left, and in a perturbation
of Z2 on the right. The orange curves smooth out the histogram skylines

2.5

2.0

1.5

1.0

0.5

0.0
0 25 50 75 100 125 150 175

2.5

2.0

1.5

1.0

0.5

0.0
0 25 50 75 100 125 150 175

2.5

2.0

1.5

1.0

0.5

0.0
0 25 50 75 100 125 150 175

2.5

2.0

1.5

1.0

0.5

0.0
0 25 50 75 100 125 150 175

Fig. 6 The empirical angle distributions for the Delaunay mosaics, Voronoi tessellations, and Brillouin
tessellations of a Poisson point process in R

2. For the Delaunay mosaic, we collected the angles inside
triangles whose circumcenters lie inside the middle square of our experimental set-up. The other two curves
were computed from the Delaunay mosaics using duality results. Top: orders k = 2 and k = 6. Bottom:
orders k = 15 and k = 30

suppressed by the degeneracy. Compare this with the symmetric empirical distribution
of angles on the right in Fig. 5, which collects the first 57 Brillouin zones of 0 in a
perturbation of Z2.

Figure 6 shows empirical angle distributions for a stationary Poisson point process
in R

2, which we approximate by sampling 400 points uniformly at random in the
unit square and copying this square eight times around it to avoid boundary effects.
According to Theorem 4.1, we get the same distributions for each order, and these
distributions are f for the Delaunay mosaics, g for the Voronoi tessellations, and h
for the Brillouin tessellations. Indeed, the distributions for the four orders displayed
in Fig. 6 have an unmistaken similarity to the distributions in Fig. 4.

5 Discussion

The main contribution of this paper is a theorem about the infimum angles in order-k
Brillouin tessellations and the supremum angles in their dual order-k Iglesias mosaics
in R

2. In particular, these angles are monotonic in k provided the point set that gen-
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erates the tessellations and mosaics is locally finite and coarsely dense. Without local
finiteness, the concepts are not defined, and without coarse density, the angles fail to
be monotonic. Example sets that satisfy the requirements are lattices, periodic sets,
Delaunay sets, and Poisson point processes, and they are used to illustrate the result
with computational experiments.

If in addition to local finiteness and coarse density, we require that the point sets be
generic, the infimum angles are also monotonic for the order-k Delaunay and Iglesias
mosaics, and the supremum angles are also monotonic for the order-k Voronoi and
Brillouin tessellations. Without genericity, these angles fail to be monotonic. We close
this paper with two questions related to this work:

– Is there a maxmin theorem for angles in order-k Delaunay mosaics that extends
Sibson’s theorem [13] beyond k = 1?

– Is there an extension of Lawson’s flip algorithm [8] to Delaunay mosaics beyond
order 1?
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Appendix A: Counterexample

In this appendix, we prove that the omission of the Voronoi tessellations in the first
family of inequalities in Theorem 3.3 is not accidental. Equivalently, the omission of
the Delaunay mosaics in the second family of inequalities in the same theorem is not
accidental.

Lemma A.1 (counterexample to monotonicity) For every sufficiently large k, there
exist locally finite, coarsely dense, and generic sets A ⊆ R

2 such that α(Vork(A)) <

α(Vork+1(A)) as well as ω(Delk(A)) > ω(Delk+1(A)).

Proof The two claimed inequalities are equivalent, so it suffices to prove the second.
We do this by constructing a set that satisfies all claimed properties. Let P ⊆ R

2 be a
perturbation of the integer lattice for which there exists a bijection γ : Z2 → P with
‖a − γ (a)‖ � τ , for some 0 < τ < 1/4. This perturbation is clearly locally finite
and coarsely dense. It can also be chosen to be generic.

Using a straightforward area argument, we see that a disk with radius R contains at
least (R−√

2/2)2π and at most (R+√
2/2)2π integer points. Similarly, it contains at

least (R−√
2/2−τ)2π and at most (R+√

2/2+τ)2π points of P . It follows that the
radius of a circle enclosing k points of P satisfies

√
k/π −√

2/2−τ � R �
√
k/π +
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√
2/2+ τ . Letting a, b, c ∈ P lie on such a circle, we have ∠acb < π − (1 − 2τ)/R

because the arcs connecting a to c and c to b each have length greater than 1−2τ . The
circumcircles of the triangles in the order-(k + 1) Delaunay mosaic enclose k or k − 1
points. We thus get an upper bound on the supremum angle from an upper bound on
the possible radii:

ω(Delk+1(P)) < π − 1 − 2τ√
k/π + √

2/2 + τ
. (13)

Let A be the set P with two extra points: a′ and a′′ at distance at most ε > 0 from
some point a ∈ P . Choose a′ and a′′ generically so that the circle passing through
a′, a, a′′ encloses k − 2 points of A, and such that a lies between a′ and a′′ on the
shorter of the two arcs connecting a′ to a′′. For sufficiently small ε, the lengths of the
arcs from a′ to a and from a to a′′ are less than 2ε each. Write R′ for the radius of this
circle, and observe that in this case ∠a′aa′′ > π − 2ε/R′. We get a lower bound on
the supremum angle using a lower bound on the possible radii:

ω(Delk(A)) > π − 2ε√
(k − 2)/π − √

2/2 − τ
. (14)

For k � 6 the denominator is positive, which is the range of orders for which our
construction works. Most of the circles that enclose k or k − 1 points are the same for
A and for P . Since P ⊆ A, the upper bound on the possible radii used in (13) is still
valid. Nevertheless, the upper bound on the supremum angle is somewhat smaller:

ω(Delk+1(A)) < π − (1 − 2τ − ε)/2√
k/π + √

2/2 + τ
. (15)

because we may have circles that pass through two of a′, a, a′′ and some other third
point. In this case, one arc can be very short while the other arc has length at least
1 − 2τ − ε, which implies the bound in (15). Choosing ε sufficiently small, we can
make the lower bound in (14) arbitrarily close to π while bounding the upper bound
in (15) away from π . The claimed inequality follows. 	
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