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Abstract

Superconductivity has many important applications ranging from levitating trains over qubits
to MRI scanners. The phenomenon is successfully modeled by Bardeen-Cooper-Schrieffer
(BCS) theory. From a mathematical perspective, BCS theory has been studied extensively for
systems without boundary. However, little is known in the presence of boundaries. With the
help of numerical methods physicists observed that the critical temperature may increase in
the presence of a boundary. The goal of this thesis is to understand the influence of boundaries
on the critical temperature in BCS theory and to give a first rigorous justification of these
observations. On the way, we also study two-body Schrödinger operators on domains with
boundaries and prove additional results for superconductors without boundary.
BCS theory is based on a non-linear functional, where the minimizer indicates whether the
system is superconducting or in the normal, non-superconducting state. By considering the
Hessian of the BCS functional at the normal state, one can analyze whether the normal state
is possibly a minimum of the BCS functional and estimate the critical temperature. The
Hessian turns out to be a linear operator resembling a Schrödinger operator for two interacting
particles, but with more complicated kinetic energy. As a first step, we study the two-body
Schrödinger operator in the presence of boundaries. For Neumann boundary conditions, we
prove that the addition of a boundary can create new eigenvalues, which correspond to the
two particles forming a bound state close to the boundary.
Second, we need to understand superconductivity in the translation invariant setting. While in
three dimensions this has been extensively studied, there is no mathematical literature for the
one and two dimensional cases. In dimensions one and two, we compute the weak coupling
asymptotics of the critical temperature and the energy gap in the translation invariant setting.
We also prove that their ratio is independent of the microscopic details of the model in the
weak coupling limit; this property is referred to as universality.
In the third part, we study the critical temperature of superconductors in the presence of
boundaries. We start by considering the one-dimensional case of a half-line with contact
interaction. Then, we generalize the results to generic interactions and half-spaces in one, two
and three dimensions. Finally, we compare the critical temperature of a quarter space in two
dimensions to the critical temperatures of a half-space and of the full space.
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CHAPTER 1
Introduction

Superconductivity has many important applications ranging from levitating trains over qubits
to MRI scanners. However, there are still gaps in its theoretical understanding. In particular,
superconducting properties at the edge of a sample are an active field of research and the
focus of this PhD thesis.

For a large class of materials, Bardeen-Cooper-Schrieffer (BCS) theory successfully describes
superconductivity [28]. BCS theory is derived from the microscopic laws governing the electrons
in a metal. The key observation in BCS theory is that, under suitable conditions, there is an
effective attraction between the electrons in the metal. This attraction can arise due to the
interaction of the electrons with the vibrations of the lattice of ions in the metal, known as
electron-phonon interaction. According to BCS theory, a system is superconducting when the
so-called gap function does not vanish. The gap function is related to the energy gap of the
system, which is the amount of energy needed to excite the system out of its ground state.
Typically, a material becomes superconducting below a certain critical temperature. In the
superconducting regime, the resistivity of the material vanishes and there is a jump in the
electronic heat capacity at the critical temperature. Superconductivity is sensitive to currents
and magnetic fields. For instance, application of strong currents or magnetic fields destroys
the superconducting state.

Based on the work of Caroli, de Gennes, and Matricon [12] it was believed for a long time that
in BCS theory the gap function can be approximated by a constant function at the edge of a
sample, and that the boundary does not affect the critical temperature. There are, however,
experimental observations showing that close to the edge of a sample superconductivity persists
at higher temperatures than in the bulk [20, 42, 43, 44, 45, 52], see the sketch in Figure 1.1.
In [52] the authors measured the resistivity and the heat capacity of a sample and found that
the drop in resistivity occurs at a higher temperature than the transition in heat capacity. The
heat capacity measurement determines the bulk critical temperature, since the bulk has a much
larger volume than the surface. On the other hand, the resistivity measurement gives the critical
temperature of surface superconductivity. This observed boundary superconductivity was often
attributed to inhomogeneities at the surface. It was recently found by Samoilenka and Babaev
[6, 7, 62, 63, 68], however, that already BCS theory predicts boundary superconductivity.
They observed localization of the gap function at the boundary and an increased critical
temperature in the presence of a boundary. The shape dependence of the critical temperature
has also been observed in [64]. Older works [30, 67], which studied the gap function at a
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1. Introduction

T

Figure 1.1: Schematic of boundary superconductivity in a two dimensional sample. For a
sequence of temperatures increasing from left to right, the shaded regions indicate where the
superconducting gap function is large.

boundary, observed only relatively small boundary effects. To our knowledge, there is currently
no intuitive explanation for the enhancement of the critical temperature at boundaries.

The effect of the boundary depends on the regime considered. While for thick samples, the
critical temperature seems to increase as the thickness is decreased, in very thin samples the
critical temperature appears to decrease together with the sample thickness [58, 70].

In this thesis, we prove in a mathematically rigorous way that within the framework of BCS
theory, the critical temperature increases in the presence of a boundary, at least in certain
regimes. This provides a first step towards justifying the results by Samoilenka and Babaev
[62].

There is another manifestation of boundary superconductivity in the context of magnetic
fields [28]. Superconductivity may survive at higher magnetic fields close to the surface than
in the bulk. This phenomenon is modelled using Ginzburg-Landau (GL) theory, which is a
phenomenological theory. In 1959, Gorkov [31] established that close to the critical temperature
GL theory can be derived from BCS theory. The first rigorous proof connecting these two
theories was given by Frank, Hainzl, Seiringer and Solovej [23] for periodic systems with weak
external fields. Their results have been extended in [16, 17] to a larger class of weak external
fields. It would be interesting to rigorously derive such an effective GL theory also in the
presence of a boundary. Understanding the influence of a boundary on the critical temperature
is a crucial first step.

For the mathematical description of the BCS model and to sketch the physical motivation
behind it, we follow [32]. We consider a fermionic system confined to a subset Ω ⊂ Rd with
one-particle Hilbert-space L2(Ω) ⊗ C2. The one particle part of the Hamiltonian is of the
form h = ([−i∇ + A(x)]2 +W (x)) ⊗ I, where A and W denote the external magnetic and
electric potential, respectively, and I is the identity operator on C2. The fermions interact
through a two particle interaction −2V . Let µ ∈ R be the chemical potential and T the
temperature. For a statistical state with density matrix ρ the pressure functional is given by
F(ρ) = Tr (H − µN)ρ − TS(ρ), where H and N denote the Hamiltonian and the number
operator on Fock space and S(ρ) = −Tr ρ ln ρ is the entropy. In statistical equilibrium, the
system is in the Gibbs state which minimizes the pressure functional over all states ρ ≥ 0
with Tr ρ = 1. However, it is challenging to compute expectation values of observables in the
Gibbs state. This also makes it difficult to study superconductivity since this phenomenon is
related to a positive expectation for annihilating a pair of particles in one place and creating a
pair in a different spot.

To simplify the problem, one can minimize the pressure functional over a smaller set of
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particularly nice states, the quasi-free states. Every quasi-free state is determined by two
operators α̃ and γ̃ on L2(Ω) ⊗ C2. The operator γ̃ is the one-particle density matrix given
by ⟨ϕ|γ̃ψ⟩ = Tr a†(ψ)a(ϕ)ρ, where a†, a are the creation and annihilation operators on Fock
space. The operator α̃ is the pairing expectation ⟨ϕ|α̃ψ⟩ = Tr a(ψ)a(ϕ)ρ. For quasi-free
states Wick’s theorem holds, implying that the expectation of a product of annihilation and
creation operators can always be expressed in terms of γ̃ and α̃. One further restricts to
SU(2)-invariant states, for which γ̃ and α̃ can be written as γ̃ = γ⊗ I and α̃ = α⊗σ2, where
σ2 is the second Pauli matrix and α and γ are operators on L2(Ω). This effectively removes
the spin degrees of freedom. Since ρ is self-adjoint, it turns out that γ is self-adjoint and α is
symmetric.
For SU(2)-invariant, quasi-free states ρ it is possible to express the pressure functional F(ρ)
in terms of γ and α. Due to Wick’s theorem, the trace over the interaction term in the
Hamiltonian splits into three summands. Two of these summands, the so-called direct and
exchange terms, are omitted for simplicity. At least for short ranged V , this is expected to be
a good approximation. These two terms have little influence apart from an effective change
in chemical potential. For translation invariant systems, this was justified in [9]. With the
notation

Γ =
(
γ α
α 1 − γ

)
the remaining terms in the pressure functional give the BCS energy functional

F(Γ) = Tr ([−i∇ + A(x)]2 +W (x) − µ)γ − TS(Γ) −
∫ ∫

Ω×Ω
|α(x, y)|2V (x− y)dxdy,

up to a factor of 2 coming from the trace over spin. Here, α(x, y) is the integral kernel of α
and S(Γ) = −Tr Γ ln Γ where the trace is over L2(Ω) ⊕ L2(Ω). The BCS energy is obtained
by minimizing F over all admissible pairs γ and α giving

F (T, µ) = inf
Γ,0≤Γ≤1

F(Γ).

The interpretation is that superconductivity occurs if and only if for the minimizer α does not
vanish identically. The integral kernel of α can be interpreted as two-particle wave function
and is referred to as Cooper pair wave function. A minimizer of the BCS energy functional
has to satisfy the Euler-Lagrange equation

0 =
(
h ∆
∆ −h

)
+ T ln

(
Γ

1 − Γ

)
, (1.1)

where ∆ denotes the operator given by (∆ψ)(y) = −
∫

Ω 2V (x − y)α(x, y)ψ(x)dx for ψ ∈
L2(Ω). The integral kernel of ∆ is the gap function. There is one solution of the Euler-Lagrange
equation (1.1) with α = 0, the so-called normal state Γ0 with γ = (1 + exp((h− µ)/T ))−1.
The normal state minimizes F(Γ) among all states with α = 0 [24]. To determine whether
the system is superconducting or not, one therefore has to check whether F (T, µ) is smaller
or bigger than F(Γ0).
For translation invariant systems, it turns out that there is a unique critical temperature that
separates the superconducting from the normal phase [32, 33]. In general, however, when the
temperature is raised it is conceivable that the system could change between superconducting
and normal states several times. One can define two critical temperatures, the temperature
TBCS, above which there is no superconductivity, and TBCS, below which there is always

3



1. Introduction

0
T

inf σ(HT )

Tc

sc ? sc ?

Figure 1.2: Sketch of inf σ(HT ) and the
(local) critical temperature Tc for a generic
system. The system is superconduct-
ing (sc) whenever inf σ(HT ) < 0. If
inf σ(HT ) ≥ 0, the state of the system
is unknown in general.

0
T

inf σ(HT )

Tc

sc normal

Figure 1.3: Sketch of inf σ(HT ) and the
critical temperature Tc for a translation
invariant system. For T < Tc the system
is superconducting. For T > Tc the system
is in the normal state.

superconductivity. For systems without boundary, but where the translation invariance is
broken by external fields, these critical temperatures were computed in [16, 17, 24] for weak
macroscopic external fields.
In contrast to introducing weak external fields, introducing a boundary is not a small pertur-
bation and computing TBCS is currently beyond our reach. Nevertheless, there is a simpler
approach which allows to estimate TBCS. This simpler approach is based on the observation
that it is possible to obtain information on the state of the system by analyzing the stability of
the normal state. If the normal state is not a (local) minimum, there is a different minimizer
with α ̸= 0, which corresponds to superconductivity. To check the local stability, one can com-
pute the Hessian of F at the normal state. Positivity of the Hessian indicates that the normal
state is a local minimizer, i.e. small perturbations increase F . If the spectrum contains a nega-
tive number, the system is superconducting. Since the normal state is optimal in γ, it suffices
to consider the Hessian for variations in α only. In [21], this linear operator is computed to be
2(KT − V ) acting on L2

symm(Ω × Ω) = {ψ ∈ L2(Ω × Ω)|ψ(x, y) = ψ(y, x) for all x, y ∈ Ω}
with appropriate boundary conditions, where V acts as (V α)(x, y) = V (x− y)α(x, y) and

KT = hx + hy − 2µ
tanh

(
hx−µ

2T

)
+ tanh

(
hy−µ

2T

) . (1.2)

Here, hx and hy denote h acting on the x or y variable, respectively. Since hx and hy commute,
the operator KT is well-defined through functional calculus. Let

HT = KT − V.

If the infimum of the spectrum inf σ(HT ) < 0, the normal state is unstable, and therefore the
system is superconducting. For inf σ(HT ) > 0, the normal state is a local minimum, but it
is unclear whether it is also a global minimum of F . Hence, it remains unclear whether the
system is superconducting in this case. The situation in sketched in Figure 1.2.
For translation invariant systems it was shown that the normal state is a global minimum
if inf σ(HT ) > 0 [32, 33]. The argument involves proving that the minimizer of the BCS
functional is translation invariant [32, Section IV.F] and using a monotonicity argument for the
gap equation (1.1) [32, Section III.A], which is specific to the translation invariant case. In
particular, it suffices to compute inf σ(HT ) to determine whether the system is superconducting

4



1.1. Two-Particle Schrödinger Operator

or not. Moreover, in the translation invariant case KT is strictly monotone in T . Hence, there
is a unique critical temperature Tc defined by inf σ(HTc) = 0 which separates the normal and
the superconducting phase, as visualized in Figure 1.3. For a general system, we define the
(local) critical temperature as sketched in Figure 1.2 through

Tc := inf{T ∈ (0,∞)| inf σ(HT ) ≥ 0}.

This critical temperature satisfies Tc ≤ TBCS in general and Tc = TBCS = TBCS for
translation invariant systems.
In this setting, we shall ask two types of questions. Given a system with boundary,

• is the corresponding critical temperature Tc larger than the critical temperature for the
system without boundary?

• does the critical temperature Tc increase upon adding another boundary?

In this thesis we focus on domains of the form Ωk = (0,∞)k ×Rd−k, where d is the dimension
of the system and k denotes how many times we cut full space in half. We shall assume either
Dirichlet or Neumann boundary conditions and that there are no external fields. If T kc denotes
the critical temperature on Ωk, we want to find out

• under which conditions T 0
c < T kc for 1 ≤ k ≤ d,

• and whether for d = 2, 3 the critical temperatures form an increasing sequence T 0
c <

T 1
c < T 2

c (< T 3
c ).

In terms of the critical temperatures of the BCS functional, since the system on Ω0 is translation
invariant, the first point corresponds to T 0

c = TBCS,0 = TBCS,0 < T kc ≤ TBCS,k. This means
whenever T 0

c < T kc , there is a temperature range, where the system without boundary is in
the normal state, whereas the system with boundary is superconducting. The second point
corresponds to the surface and corner superconductivity sketched in Figure 1.1 within the
framework of local critical temperatures.

1.1 Two-Particle Schrödinger Operator
The critical temperature Tc is determined by the spectrum of HT = KT − V , where KT

is defined in (1.2). Since the operator KT is rather complicated, we start by considering a
simpler problem. We replace KT by a Laplacian operator and study the spectrum of the
resulting operator.
More precisely, we study the operator

H = − 1
2ma

∆xa − 1
2mb

∆xb + V (xa − xb),

which is the Schrödinger operator for two interacting particles with masses ma and mb.
The Hamiltonian H specifies the energy of the system. We assume the interaction to be
regular enough for the Hamiltonian to be bounded from below and that it decays at infinity.
Furthermore, we assume that the interaction is sufficiently attractive such that in free space
the particles form a bound state with energy inf σ(H) < 0. We sequentially constrain the
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particles to the smaller spaces Ωk. The goal is to understand how adding a boundary affects
the spectrum and the ground state. Of course, this depends on the boundary conditions.
Dirichlet boundaries tend to repel states and to increase the ground state energy. In our
setting all particle domains are infinite and adding a Dirichlet boundary does not affect the
spectrum. Hence, we impose Neumann boundary conditions. The general picture is that a
Neumann boundary “attracts” the particles. We show that introducing Neumann boundaries
creates new bound states with lower energies.
We remove the free center of mass kinetic energy from the Hamiltonian H to work with
operators that have eigenvalues; this gives modified Hamiltonians Hk. We show that the
ground state energy strictly decreases when cutting space in half, i.e. when going from k to
k + 1. Moreover, the essential spectrum after dividing space starts at the previous ground
state energy. Finally, there is only a finite number of eigenvalues. This is the content of our
main theorem.

Theorem 1.1.1. For every k ∈ {1, ..., d}, the bottom of the spectrum of the operator Hk is
an isolated eigenvalue Ek. The essential spectrum of Hk is σess(Hk) = [Ek−1,∞). Thus, the
ground state energies form a decreasing sequence Ed < Ed−1 < ... < E0 < 0. Moreover, the
operator Hk has only a finite number of eigenvalues below the essential spectrum.

In one dimension with equal masses ma = mb, the same properties were already proved in [18].
The proof of Theorem 1.1.1 is provided in Chapter 2 and is the content of the publication

• B. Roos and R. Seiringer. “Two-particle bound states at interfaces and corners”. Journal
of functional analysis 282.12 (2022), p. 109455. doi: 10.1016/j.jfa.2022.
109455.

Here, we briefly sketch the main methods used in the proof. Assuming that Hk−1 has an
eigenvalue Ek−1 at the bottom of its spectrum, we first compute that σess(Hk) = [Ek−1,∞).
Second, we show that the operator Hk has an eigenvalue below the essential spectrum. Since
the operator H0 has an eigenvalue at the bottom of its spectrum by assumption, we inductively
obtain the decreasing sequence of ground state energies. Third, we show that the number of
eigenvalues is finite.
To compute the essential spectrum, we construct Weyl sequences which show [Ek−1,∞) ⊂
σess(Hk). For the opposite inclusion, we bound the essential spectrum of Hk from below by
introducing additional Neumann boundaries. They split the particle domain into three regions.
One of them is bounded, so it does not contribute to the essential spectrum. In the second
region, the Hamiltonian approximately becomes Hk−1 ⊗ I − 1

2µI ⊗ ∆zk
, where zk denotes the

kth component of the center of mass variable and µ = mamb

ma+mb
is the reduced mass. For this

operator the essential spectrum starts at Ek−1. In the third region, the interaction potential is
larger than Ek−1. Thus, there is no essential spectrum below Ek−1.
To show that there is an eigenvalue below the essential spectrum, we use the variational
principle. The operator Hk−1 has a non-degenerate ground state ψk−1 which can be chosen
positive almost everywhere [29]. We choose the trial function ψ = ψk−1e

−γzk , which decays
exponentially away from the new boundary. Using the positivity and uniqueness of ψk−1, we
obtain hk[ψ] < Ek−1∥ψ∥2 for γ > 0 small enough.
To prove the finiteness of the discrete spectrum, we use the standard technique of localization.
Using the min-max principle one can bound the number of eigenvalues of Hk below Ek
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through the number of eigenvalues below Ek of the localized operators. The localization is
conducted in such a way that the localized operators fall into three categories. First, the
operator can be compact or second, the potential is larger than Ek. In these cases the number
of eigenvalues below Ek is certainly finite or zero. In the third category, the operator is of the
form Hk−1 ⊗ I − 1

2µI ⊗ ∆zk
−G, where G is a well behaved error term. One estimates this

operator by projecting onto ψk−1 ⊗ L2(R) and its orthogonal complement. This reduces the
problem to a one dimensional operator. Then the Agmon [3] and Bargman estimate [8] imply
that the number of eigenvalues is finite.

1.2 Universality in Low Dimensions
Before being able to investigate boundary superconductivity, one needs to compute the critical
temperature for translation invariant systems. We are particularly interested in the weak
coupling limit, where we replace V by λV and send λ → 0, as this is the regime where
boundary superconductivity was observed in [62]. In three dimensions, the asymptotics are
well-known and summarized in [32]. We compute the asymptotics for one and two dimensional
systems in

• J. Henheik, A. B. Lauritsen, and B. Roos. “Universality in low-dimensional BCS theory”.
Preprint of an article accepted for publication in Reviews in Mathematical Physics.
arXiv:2301.05621 [cond-mat, physics:math-ph]. 2023. url: http://arxiv.org/
abs/2301.05621,

which is the content of Chapter 3. Apart from the asymptotics of the critical temperature
T 0
c (λ), we also compute the asymptotics of the energy gap Ξ(λ) at zero temperature. This

allows us to prove that the ratio converges to a number independent of V ,

lim
λ→0

Ξ(λ)
T 0
c (λ) = π

eγ
(1.3)

in dimensions one and two, where γ is the Euler-Mascheroni constant. The property that the
ratio is independent of the microscopic details of the interaction is called universality. The
same universal behavior is well known to occur in three dimensions [5, 46], with rigorous proofs
in different limits (λ → 0, µ → 0, µ → ∞) in [22, 35, 36, 38, 39, 49].

In the translation invariant setting, the gap function ∆ only depends on the relative coordinate.
In [33, Appendix A] it is explained that the energy gap is given by

Ξ = inf
p∈Rd

√
(p2 − µ)2 + |∆(p)|2,

where ∆(p) is the Fourier transform of the gap function with p the momentum in the
relative coordinate. The asymptotics of T 0

c and ∆ are determined by self-adjoint operators
Vµ,Wµ : L2(Sd−1) → L2(Sd−1) to leading and next to leading order, respectively. The integral
kernel of Vµ is

Vµ(p, q) = 1
(2π)d/2 V̂ (√µ(p− q)).
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This operator can be interpreted as restriction of V to the Fermi sphere. The operator Wµ is
defined via the quadratic form

⟨u,Wµu⟩ = µd/2−1
[ ∫

|p|<
√

2

1
|p2 − 1|

(
|ψ(√µp)|2 − |ψ(√µp/|p|)|2

)
dp

+
∫

|p|>
√

2

1
|p2 − 1|

|ψ(√µp)|2dp
]
,

where ψ(p) = 1
(2π)d/2

∫
Sd−1 V̂ (p− √

µω)u(ω)dω and u ∈ L2(Sd−1). Let bµ(λ) be given by

bµ(λ) = sup σ(λVµ + λ2Wµ).

We consider d ∈ {1, 2, 3}, µ > 0 and V regular enough with eµ = sup σ(Vµ) > 0 (the precise
assumptions can be found in Theorems 3.2.5 and 3.2.7 for d = 1, 2 and [32, Theorem 3.3] for
d = 3). The critical temperature T 0

c and the energy gap Ξ satisfy

lim
λ→0

(
ln
(

µ

T 0
c (λ)

)
− 1
µd/2−1bµ(λ)

)
= −γ − ln

(2cd
π

)
, (1.4)

lim
λ→0

(
ln
(

µ

Ξ(λ)

)
− 1
µd/2−1bµ(λ)

)
= − ln(2cd),

where cd is a dimension-dependent constant. In particular,

T 0
c (λ) = 2cd

eγ

π
(1 + o(1))µe1/(µd/2−1bµ),

Ξ(λ) = 2cd(1 + o(1))µe1/(µd/2−1bµ),

and (1.3) holds.
The proof in one and two dimensions provided in Chapter 3 is similar to the three dimensional
case in [35]. Here, we briefly sketch the main ingredients. For the asymptotics of T 0

c one uses
the Birman Schwinger principle. The Birman-Schwinger operator is defined as

AT = V 1/2K−1
T |V |1/2, (1.5)

where V 1/2 denotes multiplication by sgn(V (r))|V (r)|1/2. The condition inf σ(KT 0
c

−λV ) = 0
is equivalent to 1 = sup σ(λAT 0

c
). It turns out that V 1/2K−1

T |V |1/2 has a logarithmic divergence
at the Fermi surface as T → 0 and is bounded otherwise. The divergence is captured by
mµ(T )Oµ, where mµ(T ) is a function with asymptotics mµ(T ) = µd/2−1 ln(µ/T ) +O(1) for
T → 0 and Oµ is the operator Oµ = V 1/2F †F|V |1/2, where F : L1(Rd) → L2(Sd−1) is the
Fourier transform restricted to the Fermi sphere Fψ(ω) = ψ̂(√µω). For suitable radial V , for
instance when V̂ ≥ 0, this asymptotic operator Oµ has a non-degenerate eigenvalue at the
top of its spectrum. It turns out that Oµ is isospectral to Vµ and hence eµ = sup σ(Oµ). The
corresponding eigenfunction of Oµ is given by V 1/2jd, where

jd(r) = 1
(2π)d/2

∫
Sd−1

ei
√
µω·rdω. (1.6)

One obtains that λµd/2−1eµ ln µ
T 0

c (λ) → 1 and in particular T 0
c (λ) → 0 as λ → 0. In order to

arrive at the asymptotics of ln µ
T 0

c (λ) stated in (1.4), one then needs to compute the second
order correction.
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For the energy gap, the first step is to prove that under suitable conditions on V , involving
that V is radial, the gap function ∆ is unique, which makes Ξ well-defined. Under these
conditions, ∆ is also radial and positive. Then one uses the Euler Lagrange equation of
the BCS functional to argue that the operator

√
(p2 − µ)2 + |∆(p)|2 − λV has the Cooper

pair wave function α as ground state with energy zero. Similarly as for Tc, one applies the
Birman Schwinger principle to compute an asymptotic expression for ∆. It turns out that
∆(p) vanishes for all p as λ → 0. Hence,

√
(p2 − µ)2 + |∆(p)|2 is minimal close to the Fermi

sphere and Ξ = ∆(√µ)(1 + o(1)), where we use radiality to write ∆(√µ) instead of ∆(√µp̂)
for some p̂ ∈ Sd−1. Now ∆(√µ) takes the role of a vanishing parameter similar to T 0

c before,
and one computes the asymptotics of ln µ

∆(√µ) to second order in a similar way as for ln µ
T 0

c (λ) .

1.3 Boundary Superconductivity
We are now ready to study superconductors with boundaries. We consider superconductors
of the shape Ωk = (0,∞)k × Rd−k, with either Dirichlet or Neumann boundary conditions
and no external fields. In this setting, we want to understand the relationship between the
corresponding critical temperatures T kc .
In [62] the authors consider the one dimensional case of a half-line versus full line with
interaction λδ, where λ is the coupling parameter and δ the Dirac delta. They assume Dirichlet
boundary conditions and compute the minimizer of the Hessian HT on half-space numerically.
They report that in the center of mass coordinate it decays exponentially away from the
boundary with some oscillation near the boundary. In momentum space, this corresponds to a
peak at zero and a dip at √

µ. Their results indicate that T 1
c (λ) > T 0

c (λ) for some values of
λ, and that the relative difference T 1

c (λ)−T 0
c (λ)

T 0
c (λ) vanishes as λ → 0 and for large enough λ. In

Chapter 4, which contains the following publication

• C. Hainzl, B. Roos, and R. Seiringer. “Boundary superconductivity in the BCS Model”.
Journal of spectral theory 12.4 (2022), pp. 1507–1540. doi: 10.4171/JST/439

we study this system rigorously and confirm some of the predictions from [62]. Our main
result for Dirichlet boundary conditions is
Theorem 1.3.1. Let µ > 0.

1. There is a λ1 > 0 such that T 1
c (λ) > T 0

c (λ) for 0 < λ < λ1.

2. In the weak coupling limit

lim
λ→0

T 1
c (λ) − T 0

c (λ)
T 0
c (λ) = 0. (1.7)

3. In the strong coupling limit

lim
λ→∞

T 1
c (λ) − T 0

c (λ)
T 0
c (λ) = 0.

This proves that a boundary can increase the critical temperature of a superconductor.
Furthermore, it confirms the behavior of the relative temperature difference in the strong and
weak coupling limit. However, it is unclear whether the difference vanishes at large enough
finite λ already. We extend this result to Neumann boundary conditions, where we obtain that
boundary superconductivity exists at all coupling strengths.
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Theorem 1.3.2. Let µ > 0.

1. Then T 1
c (λ) > T 0

c (λ) for all λ > 0.

2. In the weak coupling limit

lim
λ→0

T 1
c (λ) − T 0

c (λ)
T 0
c (λ) = 0. (1.8)

3. In the strong coupling limit

0 < lim
λ→∞

T 1
c (λ) − T 0

c (λ)
T 0
c (λ) < ∞.

To look at higher dimensional systems, the numerical works [6, 7, 62, 63, 68] focus on tight
binding models on lattices. Our analytic analytic approach allows us to study continuum
models in higher dimensions and with generic interactions. In Chapter 5, we consider the case
of a half-space in dimensions d ∈ {1, 2, 3}. This chapter contains the preprint

• B. Roos and R. Seiringer. “BCS Critical Temperature on Half-Spaces”. arXiv:2306.05824
[cond-mat, physics:math-ph]. 2023. url: http://arxiv.org/abs/2306.
05824.

Again, we prove that an increase in critical temperature occurs in the weak coupling limit,
meaning we take the interaction λV and look at small λ. As we saw in Section 1.2, the
function jd defined in (1.6) determines the asymptotics of the minimizer of HT on Rd in the
Birman-Schwinger picture. For d = 3, we define

m̃
D/N
3 (r;µ) :=

∫
R

(
j3(z1, r2, r3)2 − |j3(z1, r2, r3) ∓ j3(r)|2χ|z1|<|r1|

)
dz1 ∓ π

µ1/2 j3(r)2, (1.9)

where the indices D and N as well as the upper/lower signs correspond to Dirichlet/Neumann
boundary conditions, respectively. For radial and regular enough V with V̂ (0) > 0 and such
that eµ is a non-degenerate eigenvalue of Vµ, we obtain the following result (the precise
assumptions are stated in 5.1.1).

Theorem 1.3.3. Let d ∈ {1, 2, 3}, µ > 0. Assume either Dirichlet or Neumann boundary
conditions. For d = 3 additionally assume that∫

R3
V (r)m̃D/N

3 (r;µ)dr > 0. (1.10)

Then, there is a λ1 > 0, such that for all 0 < λ < λ1, T 1
c (λ) > T 0

c (λ).

Note that for general interactions in one dimension with Neumann boundary conditions, we
do not necessarily observe T 1

c (λ) > T 0
c (λ) for all λ as in Theorem 1.3.2. For d = 3 we further

prove that (1.10) is satisfied for small enough chemical potential. Numerical evaluation of m̃D
3

suggests that m̃D
3 ≥ 0 (see Section 5.5, in particular Figure 5.1), whereas m̃N

3 changes sign
(Figure 5.2). For Dirichlet boundary conditions (1.10) thus seems to hold under the additional
assumption that V ≥ 0. Hence we expect boundary superconductivity to occur for all µ > 0
also in three dimensions. One may wonder why in lower dimensions no condition like (1.10) is
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needed. For d ∈ {1, 2}, if one defines m̃D/N
d (r;µ) by replacing j3 by jd in (1.9), the first term

diverges and m̃D/N
d (r;µ) = +∞. The analogue of (1.10) is then always satisfied if V̂ (0) > 0.

The second main result in Chapter 5 is that the relative shift in critical temperature vanishes as
λ → 0 for both Dirichlet and Neumann boundary conditions. This generalizes the corresponding
results (1.7) and (1.8) to dimensions d ∈ {1, 2, 3} and generic interactions.
In Chapter 6 we focus on two dimensions and compare critical temperatures T 1

c and T 2
c of the

half-space Ω1 and the quarter space Ω2, respectively. This chapter contains the preprint

• B. Roos and R. Seiringer. “Enhanced BCS Superconductivity at a Corner”. arXiv:2308.07115
[cond-mat, physics:math-ph]. 2023. url: http://arxiv.org/abs/2308.
07115

For µ > 0 and interactions V satisfying essentially the same assumptions as for Theorem 1.3.3
(see 6.1.2 for the precise statement), we prove that there is a λ1 > 0, such that for all
0 < λ < λ1, T 2

c (λ) > T 1
c (λ) > T 0

c (λ) for Dirichlet and Neumann boundary conditions.
Furthermore, we prove that the relative difference between T 2

c (λ) and T 0
c (λ) vanishes in the

weak coupling limit.
The proofs of T 1

c (λ) > T 0
c (λ) and T 2

c (λ) > T 1
c (λ) follow the same strategy, which we will

illustrate here in the example of dimension d = 1. Comparing the Birman-Schwinger operators
for Ω0 and Ω1, it turns out that the boundary induces a compact perturbation. One can
conclude that the Hessian on the half-line always contains the spectrum of the Hessian on the
full line, and therefore T 1

c (λ) ≥ T 0
c (λ). To show the strict inequality T 1

c (λ) > T 0
c (λ), the idea

is to use the variational principle. We build a trial state which contains the ground state Φλ

of HT 0
c (λ) on Ω0. Due to the translation invariance of HT 0

c (λ) in the center of mass direction
z = x+ y, Φλ is a function of r = x− y. We want the trial state to look like Φλ(r)e−ϵ|z|, but
we symmetrize it to meet the boundary conditions, which leads to the choice

ψϵ(r, z) = Φλ(r)e−ϵ|z| ∓ Φλ(z)e−ϵ|r|

where the signs − and + correspond to Dirichlet and Neumann boundary conditions, respectively.
From the asymptotics of the Birman-Schwinger operator (1.5) described in Section 1.2, it
follows that V 1/2Φλ converges to V 1/2j1. Hence, we expect Φλ to localize on the Fermi
sphere. In particular, the two summands in ψϵ localize at momentum zero and momentum√
µ in z-direction. This agrees with the qualitative behavior of the minimizer for the half-line

with delta interaction numerically obtained in [62]. The strategy is to show that for HT on
the half-line

lim
λ→0

lim
ϵ→0

⟨ψϵ, HT 0
c (λ)ψϵ⟩ < 0. (1.11)

By continuity, and since we already know that inf σ(HT ) < 0 for T < T 0
c (λ) we then have

that inf σ(HT ) < 0 for all 0 < T < T 0
c + δ for a small δ > 0, proving that T 1

c (λ) > T 0
c (λ)

for small λ. Taking the limit ϵ → 0 in (1.11) gives some expression involving V and Φλ.
To compute the asymptotics of this expression for λ → 0, we use the asymptotics in the
Birman-Schwinger picture to effectively replace Φλ by j1. It turns out that the leading order
term is negative, giving (1.11). In three dimensions, the term that defines the leading order in
one and two dimensions has the same order as the other terms. This is where the condition
(1.10) originates.
To prove that the relative difference in critical temperature vanishes in the weak coupling limit,
one uses the fact that the boundary causes a bounded perturbation in the Birman-Schwinger
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picture, while the unperturbed part diverges logarithmically as T → 0. This also allows to
compute the asymptotics of the Birman-Schwinger maximizer V 1/2Φλ on half-space, which is
used in the trial state to prove that T 2

c (λ) > T 1
c (λ).

To sum up, the results in this thesis confirm that a boundary can increase the BCS critical
temperature. There are many topics left for future research, including

• the extension of our results to domains of other shapes, different boundary conditions
and external fields,

• the investigation of the relationship of Tc defined through the linear criterion, and the
critical temperatures TBCS, TBCS of the full BCS functional,

• the study of the gap function ∆, and the proof of its localization at the boundary,
justifying Figure 1.1.

The last two points involve studying the non-linear BCS functional, which we expect to
be much more difficult than working with the linear criterion that defines the local critical
temperature Tc.
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CHAPTER 2
Two-particle Bound States at Interfaces

and Corners

Abstract We study two interacting quantum particles forming a bound state in d-dimensional
free space, and constrain the particles in k directions to (0,∞)k × Rd−k, with Neumann
boundary conditions. First, we prove that the ground state energy strictly decreases upon
going from k to k + 1. This shows that the particles stick to the corner where all boundary
planes intersect. Second, we show that for all k the resulting Hamiltonian, after removing
the free part of the kinetic energy, has only finitely many eigenvalues below the essential
spectrum. This paper generalizes the work of Egger, Kerner and Pankrashkin (J. Spectr.
Theory 10(4):1413–1444, 2020) to dimensions d > 1.

2.1 Introduction and Main Results
We consider two interacting quantum particles in d-dimensional space that form a bound
state in free space. We constrain the particles in k directions to (0,∞)k × Rd−k for some
k ∈ {1, ..., d} and impose Neumann boundary conditions. The goal of this paper is to show
that at low energy the particles will stick to the boundary of the domain. In fact, the particles
want to be close to as many boundary planes as possible. In particular, they stick to the
corner where all boundary planes intersect. Neumann boundary conditions can be interpreted
as representing perfect mirrors. It is remarkable that while such boundary conditions are not
sufficiently attractive to capture single particles, mutually bound pairs are always attracted to
the boundary.
In order to justify the picture of particles sticking to the boundary, we show that introducing
a boundary plane lowers the ground state energy. Then it is energetically favorable for the
particles to localize at a finite distance to the new boundary plane. Moving the particles away
from that boundary plane would reduce the boundary effects and raise the energy to reach the
previous ground state energy, which is strictly higher. Since moving just one of the particles to
infinity would increase the potential energy between them, both particles stick to the boundary.
This problem was already studied (for particles with equal masses) in the case d = k = 1.
Kerner and Mühlenbruch [41] considered a hard-wall interaction between the particles. (For a
higher-dimensional version of this problem, which is different from the one we consider here,
however, see [4].) More general interactions were studied by Egger, Kerner and Pankrashkin in
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[18]. Additionally, they showed that the Hamiltonian has only finitely many eigenvalues below
the essential spectrum. We show here that this also holds true for particles with different
masses and all dimensions d and numbers of boundary planes k. The finiteness of the number
of bound states is a consequence of the fact that the effective attractive interaction with the
boundary decays exponentially with distance, a decay that is inherited from the corresponding
one of the ground state wave function in free space.
Let xa and xb be the coordinates of the particles. The Hamiltonian of the system is

H = − 1
2ma

∆xa − 1
2mb

∆xb + V (xa − xb) (2.1)

acting in L2
(
(0,∞)k × Rd−k

)
⊗ L2

(
(0,∞)k × Rd−k

)
, where V : Rd → R is the interaction

potential. We change to relative and center-of-mass coordinates y = xa − xb and z =
maxa+mbx

b

M
, where M = ma + mb is the total mass. The conditions xaj > 0 and xbj > 0 for

1 ≤ j ≤ k result in the coordinates (z1, ..., zk, y1, ..., yk) lying in the domain

Qk =
{

(z1, ..., zk, y1, ..., yk) ∈ R2k | ∀j ∈ {1, ..., k} : zj > 0 and − M

mb

zj < yj <
M

ma

zj

}
,

(2.2)
while (zk+1, ..., zd) and (yk+1, ..., yd) lie in Rd−k. In these coordinates, the Hamiltonian
becomes H = − 1

2µ∆y − 1
2M∆z + V (y), where µ = mamb

M
is the reduced mass. Separating the

variables (zk+1, ..., zd) from the rest, we write the Hamiltonian as H = Hk ⊗ I + I ⊗ q, where
q = − 1

2M∆ on H2(Rd−k) and

Hk = − 1
2µ∆y − 1

2M

k∑
j=1

∂2

∂z2
j

+ V (y) (2.3)

acting in L2(Qk ×Rd−k). To be precise, we define the Hamiltonian Hk via the quadratic form

hk[ψ] =
∫
Qk×Rd−k

 1
2µ |∇yψ|2 + 1

2M

k∑
j=1

∣∣∣∣∣ ∂ψ∂zj
∣∣∣∣∣
2

+ V (y)|ψ|2
 dz1...dzkdy1...dyd (2.4)

with domain D[hk] = H1(Qk × Rd−k). Due to the free part of the kinetic energy q, the
Hamiltonian H has no discrete spectrum if k < d. We remove this free part and work with
Hk instead of H.
We impose the following conditions on the interaction potential V .

Assumption 2.1.1. We assume that

1. V = v + w for some v ∈ Lr(Rd) and w ∈ L∞(Rd), where

r = 1 if d = 1, (2.5)
r > 1 if d = 2, (2.6)

r ≥ d

2 if d ≥ 3, (2.7)

2. the operator H0 = − 1
2µ∆y +V (y) in L2(Rd) has a ground state ψ0 with energy E0 < 0,

14



2.1. Introduction and Main Results

3. lim inf |y|→∞ V (y) ≥ 0,

4. V is invariant under permutation of the d coordinates (y1, ..., yd) ∈ Rd.

Remark 2.1.2. Condition 1 implies that in the quadratic form hk the interaction term is
infinitesimally form bounded with respect to the kinetic energy, see Proposition 2.A.3 in
the Appendix. The KLMN theorem (see e.g. Theorem 6.24 in [69]) then guarantees that
there is a unique self-adjoint operator Hk corresponding to hk, which is bounded from below.
Assumption 2 means that the particles form a bound state in free space. Condition 3 is a rather
strong form of decay of the negative part at infinity. Presumably some weaker assumptions
would be sufficient, but in our proofs this version is convenient. Also the assumptions on the
positive part of V can probably be relaxed. Assumption 4 is imposed for convenience as it
implies that it is irrelevant which coordinates are restricted, and without loss of generality we
pick the first k. However, our methods easily extend to the general case.

Our first result is that the ground state energy strictly decreases upon adding a Neumann
boundary that cuts space in half, i.e. when going from k → k + 1. Moreover, the essential
spectrum after dividing space starts at the previous ground state energy.

Theorem 2.1.3. Let V satisfy Assumptions 2.1.1. Then for every k ∈ {1, ..., d}, the bottom
of the spectrum of the operator Hk is an isolated eigenvalue Ek = inf σ(Hk). Moreover, the
essential spectrum of Hk is σess(Hk) = [Ek−1,∞). In particular, the ground state energies
form a decreasing sequence Ed < Ed−1 < ... < E0 < 0.

Our second result is that the operators Hk have only finitely many bound states.

Theorem 2.1.4. Let 1 ≤ k ≤ d. Then Hk has a finite number of eigenvalues below the
essential spectrum.

In the one-dimensional case d = k = 1 with equal masses ma = mb, Theorems 2.1.3 and
2.1.4 were proved in [18]. While we follow their main ideas, several new ingredients are needed
to extend the results to general d and k. In particular, the localization procedure in the proofs
is more complicated and requires several additional steps.

Remark 2.1.5. At various places it will be convenient to switch back to the particle coordinates
in the first k components, while keeping the relative coordinate in the last d− k components.
We shall from now on use the notation xa = (xa1, ..., xak), xb = (xb1, ..., xbk) for the first k
components of the particle coordinates and ỹ = (yk+1, ..., yd) for the remaining components
of the relative coordinate. In this notation, y = (xa − xb, ỹ) and

hk[ψ] =
∫

[0,∞)2k×Rd−k

(
1

2ma

|∇xaψ|2 + 1
2mb

|∇xbψ|2 + 1
2µ |∇ỹψ|2

+ V (xa − xb, ỹ)|ψ|2
)

dxadxbdỹ (2.8)

with domain D[hk] = H1((0,∞)2k × Rd−k).

Remark 2.1.6. By Corollary 5.1 in [19], if Hk has a ground state, it is non-degenerate and
we can choose the corresponding wave function to be positive almost everywhere.
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2. Two-particle Bound States at Interfaces and Corners

The remainder of this paper is structured as follows. Section 2.2 contains the proof of
Theorem 2.1.3. In Section 2.3, we prove Theorem 2.1.4. The Appendix contains an explicit
example for d = 1 in 2.A.1, the proof of Lemma 2.2.3 in 2.A.2, as well as technical details of
the proofs in 2.A.3. The exponential decay of Schrödinger eigenfunctions needed in the proof
is discussed in Appendix 2.B by Rupert L. Frank.

2.2 Proof of Theorem 2.1.3
We shall prove the following two statements.

Proposition 2.2.1. Let k ∈ {1, ..., d}. If Hk−1 has a ground state with energy Ek−1 ≤ ... ≤
E0 the essential spectrum of Hk is [Ek−1,∞).

Proposition 2.2.2. Let k ∈ {1, ..., d}. If Hk−1 has a ground state ψk−1 with energy Ek−1

the spectrum of Hk satisfies

Ek = inf σ(Hk) ≤ Ek−1 − J2M

8µ2

(
1 + 2 max

{
ma

mb

,
mb

ma

})−1
< Ek−1, (2.9)

where J =
∫
Qk−1×Rd−k+1 δ(yk)|ψk−1|2dzdy > 0 with δ the Dirac delta-function.

The assumption Ek−1 ≤ ... ≤ E0 in the first Proposition holds as a consequence of the second
Proposition. These two propositions combined yield Theorem 2.1.3.

Proof of Theorem 2.1.3. We proceed by induction. The claim is that Hk has a ground state,
and that the ground state energies form a strictly decreasing sequence Ed < ... < E0. For k = 0
the former is true by Assumption 2.1.12. For the induction step we apply Propositions 2.2.1
and 2.2.2. Assuming that the claim is true for k − 1, Proposition 2.2.2 implies that Hk

has spectrum below Ek−1. By Proposition 2.2.1 this part of the spectrum must consist of
eigenvalues. Since Hk is bounded from below by Proposition 2.A.3, it must have a ground
state. The ground state energy Ek is strictly smaller than Ek−1 by Proposition 2.2.2.

2.2.1 Proof of Proposition 2.2.1
In order to compute the essential spectrum of Hk, we follow the proof of Proposition 2.1 in
[18]. For the inclusion [Ek−1,∞) ⊂ σess(Hk) we use Weyl’s criterion (see Section 6.4 in [69]).
For the opposite inclusion, we bound the essential spectrum of Hk from below by introducing
additional Neumann boundaries. They split the particle domain into several regions. One
of them is bounded, so it does not contribute to the essential spectrum. In another, the
interaction potential is larger than Ek−1, and hence there is no essential spectrum below
Ek−1. In the remaining regions, the Hamiltonian can be bounded from below by approximately
Hk−1 ⊗ I. For this operator the essential spectrum starts at Ek−1.

Proof of Proposition 2.2.1. For the inclusion [Ek−1,∞) ⊂ σess(Hk) we construct a Weyl
sequence. Remark 2.1.6 allows us to choose the ground state wave function ψk−1 of Hk−1
to be normalized and positive almost everywhere. Let l ∈ [0,∞) and let τ : R → R be a
smooth function satisfying 0 ≤ τ ≤ 1 with τ(x) = 0 for x ≤ 1 and τ(x) = 1 for x ≥ 2.
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2.2. Proof of Theorem 2.1.3

Let us write δ = M/max{ma,mb}. For integers n ≥ 5, choose φn(z1, ..., zk, y1, ..., yd) =
fn(z1, ..., zk−1, y1, ..., yd)gn(zk) for (z, y) ∈ Qk × Rd−k with

fn(z1, ..., zk−1, y1, ..., yd) = ψk−1(z1, ..., zk−1, y1, ..., yd)τ(n− |yk|/δ) (2.10)
and

gn(zk) = cos(lzk)τ(zk − n)τ(2n− zk). (2.11)
Using the properties of τ , we observe that gn(zk) = cos(lzk) for zk ∈ [n+2, 2n−2]. Moreover,
for |yk| < δ(n− 2) we have fn = ψk−1. Note that for (z, y) ∈ Qk × Rd−k with zk ≥ n+ 2,
the variable yk can take all values satisfying |yk| ≤ δ(n+ 2). Therefore,

∥φn∥2
L2(Qk×Rd−k) ≥

(∫
Qk−1×[δ(−n+2),δ(n−2)]×Rd−k

ψ2
k−1

)(∫ 2n−2

n+2
cos2(lzk)dzk

)
. (2.12)

Since ψk−1 is normalized, the first integral converges to 1 as n → ∞. The second integral
is greater than some constant times n. Thus, ∥φn∥2

L2(Qk×Rd−k) ≥ C1n for some constant
C1 > 0.
Using the eigenvalue equation for ψk−1, we have(

Hk − Ek−1 − l2

2M

)
φn = fnΨn + Φngn (2.13)

with

Ψn(zk) = 1
M
l sin(lzk) [τ ′(zk − n)τ(2n− zk) − τ(zk − n)τ ′(2n− zk)]

− 1
2M cos(lzk) [τ ′′(zk − n)τ(2n− zk) − 2τ ′(zk − n)τ ′(2n− zk) + τ(zk − n)τ ′′(2n− zk)]

(2.14)
and

Φn(z1, ..., zk−1, y1, ..., yd) = 1
δµ
∂yk

ψk−1sgn(yk)τ ′(n− |yk|/δ) − 1
2δ2µ

ψk−1τ
′′(n− |yk|/δ).

(2.15)
By choice of the function τ , we have supp Ψn ⊂ [n + 1, n + 2] ∪ [2n − 2, 2n − 1] and
supp Φn ⊂ Qk−1×[δ(−n+1), δ(−n+2)]∪[δ(n−2), δ(n−1)]×Rd−k. Since both τ ′ and τ ′′ are
bounded, there is a constant C2 > 0 independent of n such that |Φn| ≤ C2 (|∂yk

ψk−1| + |ψk−1|)
and ∥Ψn∥∞ ≤ C2. We the aid of the Schwarz inequality, we therefore have∥∥∥∥∥

(
Hk − Ek−1 − l2

2M

)
φn

∥∥∥∥∥
2

L2(Qk×Rd−k)

≤ 2
∫
Qk−1×Rd−k+1

f 2
n

∫
[n+1,n+2]∪[2n−2,2n−1]

Ψ2
n + 2

∫
Qk−1×Rd−k+1

Φ2
n

∫ 2n−1

n+1
g2
n

≤ 4C2
2

(
1 + (n− 2)

∫
Qk−1×[δ(−n+1),δ(−n+2)]∪[δ(n−2),δ(n−1)]×Rd−k

(
(∂yk

ψk−1)2 + ψ2
k−1

))
(2.16)

where we used ∥ψk−1∥L2 = 1 in the last step. Since ψk−1 ∈ H1(Qk−1 × Rd−k+1) we obtain

lim
n→∞

∥(Hk − Ek−1 − l2

2M )φn∥2
L2(Qk×Rd−k)

∥φn∥2
L2(Qk×Rd−k)

≤ 4C2
2

C1
lim
n→∞

∫
Qk−1×[δ(−n+1),δ(−n+2)]∪[δ(n−2),δ(n−1)]×Rd−k

(
(∂yk

ψk−1)2 + ψ2
k−1

)
= 0. (2.17)
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2. Two-particle Bound States at Interfaces and Corners

0

L

xbl

L xal

zl

yl

−L

L

1

2

3

3

Figure 2.1: In the case d = k = 1, the areas labeled 1, 2, and 3 are precisely Ω1,Ω2,Ω3,
respectively. In higher dimensions, region 1 (blue) is the domain of the lth component of z
and y for (z, y) ∈ Ωl, l ≤ k. In particular, the domain of yl is independent of zl. The (red)
triangular area 2 corresponds to the domain of zj and yj for (z, y) ∈ Ωl and j < l ≤ k + 1.

By Weyl’s criterion, we obtain Ek−1 + l2

2M ∈ σ(Hk) for all l ≥ 0. Since the interval [Ek−1,∞)
has no isolated points, it belongs to the essential spectrum of Hk.

For the opposite inclusion σess(Hk) ⊂ [Ek−1,∞), we partition the domain Qk × Rd−k into
k + 2 subsets. By Assumption 2.1.13 there is a number L0 such that for all y ∈ Rd with
|y| > L0 the potential satisfies V (y) > E0. For L > L0 and 1 ≤ l ≤ k let

Ωl :=
{

(z, y) ∈ Qk × Rd−k
∣∣∣∣ zl > L

δ
, |yl| < L, ∀1 ≤ j < l : zj <

L

δ

}
, (2.18)

Ωk+1 :=
{

(z, y) ∈ Qk × Rd−k
∣∣∣∣ ∀1 ≤ j ≤ k : zj <

L

δ
, ∀j > k : |yj| < L

}
, (2.19)

Ωk+2 := Ω0 \
k+1⋃
l=1

Ωl. (2.20)

These sets are sketched in Figure 2.1. The set Ωk+1 is bounded. For (z, y) ∈ Ωk+2, we always
have |y| > L. Moreover, in Ωl the range of yl is independent of zl.

For 1 ≤ l ≤ k + 2 we define the quadratic forms al : H1(Ωl) → R as

al[ψ] :=
∫

Ωl

(
1

2M |∇zψ|2 + 1
2µ |∇yψ|2 + V (y)|ψ|2

)
dzdy. (2.21)

For 1 ≤ l ≤ k + 1, the potential term in al is infinitesimally bounded with respect to the
kinetic energy term, as will be shown in Lemma 2.A.4. For ak+2 the potential is bounded from
below. Thus, by the KLMN theorem there is a corresponding self-adjoint operator Al for all
1 ≤ l ≤ k+2. Let A = ⊕k+2

l=1 Al. There is an isometry ι : H1(Ω0) → ⊕
lH

1(Ωl), φ 7→ {φ|Ωl
}.

Let {φn} be a normalized Weyl sequence such that limn→∞∥(Hk − inf σess(Hk))φn∥ = 0.
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2.2. Proof of Theorem 2.1.3

Then {ι(φn)} is an orthonormal sequence with limn→∞⟨ι(φn)|Aι(φn)⟩ = inf σess(Hk). By
the min-max principle,

inf σess(Hk) ≥ inf σess (A) = min
l

inf σess(Al). (2.22)

We shall now analyze inf σess(Al) for all 1 ≤ l ≤ k + 2. Since Ωk+1 is a bounded Lipschitz
domain, H1(Ωk+1) is compactly embedded in L2(Ωk+1) by the Rellich–Kondrachov theorem
[2]. Therefore, Ak+1 has compact resolvent and the spectrum of Ak+1 is discrete. In Ωk+2,
always at least one of the yj is larger than L. Therefore, inf σ(Ak+2) ≥ inf |y|>L V (y) ≥ E0.
Consider now Al with l ≤ k. In order to separate the variable zl from the rest, let q be
the quadratic form q[φ] = 1

2M
∫∞
L/δ |φ′(zl)|2 dzl with domain H1((L/δ,∞)). The remaining

variables lie in

ΩL,l
k−1 :=

{
(z1, ..., ẑl, ..., zk, y1, ..., yd) ∈ Rd+k−1

∣∣∣∣ ∀1 ≤ j < l : 0 < zj <
L

δ
, ∀j > l : zj > 0,

∀1 ≤ j ̸= l ≤ k : −M

mb

zj < yj <
M

ma

zj, |yl| < L
}

(2.23)

where the hat means that the zl variable is omitted. Note that for L → ∞ the set ΩL,l
k−1

becomes Qk−1 × Rd−k+1 with l and k components swapped. Define the quadratic form

hL,lk−1[ψ] =
∫

ΩL,l
k−1

 1
2M

k∑
j=1
j ̸=l

∣∣∣∣∣ ∂ψ∂zj
∣∣∣∣∣
2

+ 1
2µ |∇yψ|2 + V (y)|ψ|2

 dz1...d̂zl...dzkdy (2.24)

with domain D[hL,lk−1] = H1(ΩL,l
k−1). In Lemma 2.A.4 we show that there is a self-adjoint

operator HL,l
k−1 corresponding to the quadratic form hL,lk−1. By Assumption 2.1.14, the quadratic

form hL,lk−1 resembles hk−1 with l and k components swapped, up to the constraints imposed
by the finite number L.
We can decompose

al = hL,lk−1 ⊗ I + I ⊗ q. (2.25)
It is well-known that the self-adjoint operator corresponding to q has purely essential spectrum
[0,∞). Therefore, we obtain inf σess(Al) = inf σ(HL,l

k−1). Using localization arguments, one
can easily prove the following.
Lemma 2.2.3. Let 1 ≤ l ≤ k ≤ d and assume that Ek−1 ≤ ... ≤ E0. The self-adjoint
operator HL,l

k−1 defined through the quadratic form (2.24) satisfies lim infL→∞ inf σ(HL,l
k−1) ≥

Ek−1.

The proof of Lemma 2.2.3 is rather straightforward and follows similar arguments as in
the one-dimensional case in Proposition A.5 in [18]. For completeness, we carry it out in
Appendix 2.A.2.
Collecting all estimates and applying (2.22), we see that

inf σess(Hk) ≥ min{E0, inf σ(HL,l
k−1)} (2.26)

for all L > L0. With Lemma 2.2.3 and since E0 ≥ Ek−1, it follows that σess(Hk) ⊂
[Ek−1,∞).
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2. Two-particle Bound States at Interfaces and Corners

2.2.2 Proof of Proposition 2.2.2
The goal is to find a trial function ψ such that (ψ,Hkψ) < Ek−1∥ψ∥2

2. Then inf σ(Hk) < Ek−1

by the min-max principle.

We denote the ground state of Hk−1 by ψk−1 and choose it normalized and positive a.e. (see
Remark 2.1.6). Since we expect the ground state of Hk to stick to the boundary, we pick the
trial function

ψ(z1, ..., zk, y1, ..., yd) = ψk−1(z1, ..., zk−1, y1, ..., yd)e−γzk (2.27)

for γ > 0. We start with a preliminary computation.

Lemma 2.2.4. Let f(yk) = χ(−∞,0)(yk)e−2γmb|yk|/M + χ(0,∞)(yk)e−2γma|yk|/M , where χ de-
notes the characteristic function. We have

A := 1
2(fψk−1, ψk−1) = γ∥ψ∥2

2. (2.28)

Proof. Carrying out the integration over zk, we have

∥ψ∥2
2 =

∫
Qk−1×Rd−k+1

dz1...dzk−1dy
∫ ∞

0
dzk χ{− M

mb
zk<yk<

M
ma

zk}ψ
2
k−1(z1, ..., zk−1, y1, ..., yd)e−2γzk

= 1
2γ

∫
Qk−1×Rd−k+1

dz1...dzk−1dy ψ2
k−1(z1, ..., zk−1, y1, ..., yd)f(yk)

= 1
2γ (fψk−1, ψk−1) = 1

γ
A. (2.29)

Proof of Proposition 2.2.2. We have

hk[ψ] =
∫
Qk×Rd−k

dz1...dzkdy1...dyd
(

1
2M |∇zψk−1|2 + 1

2µ |∇yψk−1|2

+ γ2

2Mψ2
k−1 + V (y)ψ2

k−1

)
e−2γzk . (2.30)

We rewrite this as

hk[ψ] = γ2∥ψ∥2
2

2M +
∫
Qk−1×Rd−k+1

dz1...dzk−1dy1...dyd∫ ∞

0
dzkχ{− M

mb
zk<yk<

M
ma

zk}

(
1

2M |∇zψk−1|2 + 1
2µ |∇yψk−1|2 + V (y)ψ2

k−1

)
e−2γzk . (2.31)

Integrating over zk as in the proof of Lemma 2.2.4, we obtain

hk[ψ] = γ2∥ψ∥2
2

2M + 1
2γ

∫
Qk−1×Rd−k+1

dz1...dzk−1dy1...dyd
( 1

2M |∇zψk−1|2

+ 1
2µ |∇yψk−1|2 + V (y)ψ2

k−1

)
f(yk). (2.32)
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2.2. Proof of Theorem 2.1.3

We pull the function f into the gradients and write

hk[ψ] = γ2∥ψ∥2
2

2M + 1
2γ

∫
Qk−1×Rd−k+1

(
1

2M∇z(fψk−1)∇zψk−1 + 1
2µ∇y(fψk−1)∇yψk−1

+ γ

µM

(
−mbχ(−∞,0)e

−2γmb
M

|yk| +maχ(0,∞)e
−2γma

M
|yk|
)
ψk−1∂yk

ψk−1 + V (y)fψ2
k−1

)
. (2.33)

Let us write hk[·, ·] for the sesquilinear form associated to the quadratic form hk. The previous
equation reads

hk[ψ] = γ2∥ψ∥2
2

2M + 1
2γhk−1[fψk−1, ψk−1] + B, (2.34)

where

B = 1
2µM

∫
Qk−1×Rd−k+1

(
−mbχ(−∞,0)e

−2γmb
M

|yk| +maχ(0,∞)e
−2γma

M
|yk|
)
ψk−1∂yk

ψk−1.

(2.35)
Since ψk−1 is the minimizer of the functional hk−1[ϕ]

∥ϕ∥2
2

, for all functions g ∈ H1(Qk−1 ×Rd−k+1)
it holds that hk−1[g, ψk−1] = Ek−1(g, ψk−1). With g = fψk−1 and Lemma 2.2.4, we obtain

hk[ψ] =
(
γ2

2M + Ek−1
)

∥ψ∥2
2 +B. (2.36)

We now simplify the integral in B. By the Sobolev embedding theorem (Theorem 4.12 in
[2]), the restriction of an H1-function to a hyperplane is an L2-function. Therefore, one can
restrict the function ψk−1 to yk = 0 and obtain a finite number J :=

∫
Qk−1×Rd−k

(
ψk−1|yk=0

)2
.

Integration by parts with respect to yk gives

2µMB = −mb

∫
Qk−1×(−∞,0)×Rd−k

e−2γmb
M

|yk|ψk−1∂yk
ψk−1

+ma

∫
Qk−1×(0,∞)×Rd−k

e−2γma
M

|yk|ψk−1∂yk
ψk−1

= − mb

2

∫
Qk−1×Rd−k

(
ψk−1|yk=0

)2
+ γ

m2
b

M

∫
Qk−1×(−∞,0)×Rd−k

e−2γmb
M

|yk|ψ2
k−1

− ma

2

∫
Qk−1×Rd−k

(
ψk−1|yk=0

)2
+ γ

m2
a

M

∫
Qk−1×(0,∞)×Rd−k

e−2γma
M

|yk|ψ2
k−1

= − M

2 J

+ γ

M

∫
Qk−1×Rd−k+1

(
m2
bχ(−∞,0)(yk)e−2γmb

M
|yk| +m2

aχ(0,∞)(yk)e−2γma
M

|yk|
)
ψ2
k−1.

(2.37)

The last integral is bounded from above by 2 max{m2
a,m

2
b}A. With (2.36), Lemma 2.2.4 and

the min-max principle we obtain

inf σ(Hk) ≤ hk[ψ]
∥ψ∥2

2
≤ Ek−1 + γ

A

((1
2 + max

{
ma

mb

,
mb

ma

})
γA

M
− J

4µ

)
. (2.38)

This holds for all γ > 0. Minimizing with respect to γ yields

inf σ(Hk) ≤ Ek−1 − J2M

32µ2A2

(
1 + 2 max

{
ma

mb

,
mb

ma

})−1
. (2.39)
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2. Two-particle Bound States at Interfaces and Corners

Moreover, since ψk−1 is normalized we have

A = 1
2

∫
Qk−1×Rd−k+1

fψ2
k−1 ≤ 1

2

∫
Qk−1×Rd−k+1

ψ2
k−1 = 1

2 . (2.40)

This yields (2.9).
We are left with showing that J > 0. Suppose that J = 0. Define a new function
ψ̃k−1 = ψk−1 (χyk<0 − χyk>0). Since J = 0, the function ψ̃k−1 ∈ H1(Qk−1 × Rd−k+1).
Moreover, ψ̃k−1 is a ground state of Hk−1 because hk−1[ψ̃k−1]

∥ψ̃k−1∥2
2

= hk−1[ψk−1]
∥ψk−1∥2

2
. Since ψk−1 and ψ̃k−1

are linearly independent, this contradicts the uniqueness of the ground state (Remark 2.1.6).
Hence, J > 0 and inf σ(Hk) < Ek−1.

2.3 Finiteness of the Discrete Spectrum
In this section we shall give the proof of Theorem 2.1.4. An important ingredient will be the
exponential decay of the ground state wave function ψk of Hk. In fact, the Agmon estimate
(Corollary 4.2. in [3]) implies that for any a <

√
inf σess(Hk) − Ek we have∫

Qk×Rd−k
|ψk|2e2a

√
2M |z|2+2µ|y|2dzdy < ∞. (2.41)

Strictly speaking, the assumptions on the interaction potential stated in [3] are slightly stronger
than ours. However, the Agmon estimate only requires V to be form-bounded with respect to
the kinetic energy with form bound less than 1, as shown in Theorem 2.B.1 in Appendix 2.B
by Rupert Frank. As we argue in Proposition 2.A.3, this is the case given Assumptions 2.1.1.
In order to derive (2.41) from Theorem 2.B.1, we remove the boundaries in the particle domain
via mirroring and consider the operator H̃k acting on H1(Rd+k) (see Proposition 2.A.1). It
suffices to prove the exponential decay for the ground state ψ̃k of H̃k. We rescale the variables
to remove the masses in front of the Laplacians using the unitary transform Uφ(z, y) =√

2Mk√2µdφ(
√

2Mz,
√

2µy) on H1(Rd+k) . Switching to relative and center of mass
coordinates and writing Ṽ (z, y) = V ((|xaj | − |xbj|)kj=1, ỹ) and ṼU (z, y) = Ṽ (z/

√
2M, y/

√
2µ)

we have
H̃k = − 1

2M∆z − 1
2µ∆y + Ṽ = U

(
−∆z − ∆y + ṼU

)
U †. (2.42)

The ground state φk of −∆z−∆y+ṼU satisfies ψ̃k = Uφk. For any a <
√

inf σess(Hk) − Ek =√
inf σess(H̃k) − Ek we thus have∫

Rd+k
|ψ̃k|2e2a

√
2M |z|2+2µ|y|2dzdy =

∫
Rd+k

|φk|2e2a
√

|z|2+|y|2dzdy < ∞ (2.43)

by Theorem 2.B.1. Hence (2.41) holds.

Definition 2.3.1. Let n ∈ Z≥0 and A be a self-adjoint operator with corresponding quadratic
form a. We define

En(A) := inf
V ⊂D[a]

dim V =n+1

sup
φ∈V
φ ̸=0

a[φ]
∥φ∥2 . (2.44)

By the min-max principle, if n is larger than the number of eigenvalues below the essential
spectrum, we have En(A) = inf σess(A). Otherwise, En−1 is the n-th eigenvalue of A below
the essential spectrum counted with multiplicities.
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2.3. Finiteness of the Discrete Spectrum

Definition 2.3.2. For a self-adjoint operator A and a number λ ∈ R, let N(A, λ) denote the
number of eigenvalues in (−∞, λ) if σess(A) ∩ (−∞, λ) = ∅. Otherwise, set N(A, λ) = ∞.
When N(A, λ) ̸= 0, one can write

N(A, λ) = sup
{
n ∈ Z≥1|En−1(A) < λ

}
. (2.45)

In the case k = d = 1, Theorem 2.1.4 was already shown in [18]. We generalize the proof
using similar ideas. The overall strategy is to construct localized operators A and bound
N(Hk, E

k−1) using N(A,Ek−1). The localized operators fall into three categories. First, they
can have compact resolvent or second, the corresponding potential is larger than Ek−1. In
these cases, the number of eigenvalues below Ek−1 is certainly finite (or even zero). In the
third category, the operator is of the form I ⊗ Hk−1 − 1

2M∆zj
⊗ I − K, where K is a well

behaved error term. One estimates this operator by projecting onto L2(R) ⊗ ψk−1 and its
orthogonal complement. This reduces the problem to a one-dimensional operator. Then,
(2.41) and the Bargmann estimate [8] imply that the number of eigenvalues is finite.

Proof of Theorem 2.1.4. Let χ1, χ2 : R → [0, 1] and χ3 : R2 → [0, 1] be continuously
differentiable functions satisfying χ1(t) = 0 for t ≥ 2, χ1(t) = 1 for t ≤ 1, χ1(t)2 +χ2(t)2 = 1
for all t and χ3(s, t)2 + χ2(s)2χ2(t)2 = 1 for all t and s. Note that for j = 1, 2, 3 we have
∥(∇χj)2∥∞ < ∞.

Let Ω0 = (0,∞)2k × Rd−k. The boundary of the particle domain consists of k orthogonal
d− 1-dimensional hyperplanes. We start by localizing into two separate regions, distinguishing
whether there is a particle close to all the hyperplanes, or whether both particles are far from
some hyperplane. For R > 0, let

Ω1 =
{
(xa, xb, ỹ) ∈ Ω0|xa ∈ (0, 2R)k or xb ∈ (0, 2R)k

}
=
{
(xa, xb, ỹ) ∈ Ω0| max{xa1, ..., xak} < 2R or max{xb1, ..., xbk} < 2R

}
, (2.46)

Ω2 =
{
(xa, xb, ỹ) ∈ Ω0|xa ̸∈ [0, R]k and xb ̸∈ [0, R]k

}
=
{
(xa, xb, ỹ) ∈ Ω0| max{xa1, ..., xak} > R and max{xb1, ..., xbk} > R

}
. (2.47)

We define the functions

fR1 (xa, xb) = χ3

(
max{xa1, ..., xak}

R
,
max{xb1, ..., xbk}

R

)
, (2.48)

fR2 (xa, xb) = χ2

(
max{xa1, ..., xak}

R

)
χ2

(
max{xb1, ..., xbk}

R

)
. (2.49)

Note that for all functions φ ∈ L2(Ω0) we have support supp fRj φ ⊂ Ωj . By the IMS
localization formula we have for all φ ∈ H1(Ω0) that

hk[fR1 φ] + hk[fR2 φ] = hk[φ] +
∫

(0,∞)2k×Rd−k
WR|φ|2 dxadxbdỹ , (2.50)
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2. Two-particle Bound States at Interfaces and Corners

where

WR(xa, xb, ỹ) = 1
R2

 1
2ma

(∇xaχ3)
(

max{xa1, ..., xak}
R

,
max{xb1, ..., xbk}

R

)2

+ 1
2mb

(∇xbχ3)
(

max{xa1, ..., xak}
R

,
max{xb1, ..., xbk}

R

)2

+ 1
2ma

χ′
2

(
max{xa1, ..., xak}

R

)2

χ2

(
max{xb1, ..., xbk}

R

)2

+ 1
2mb

χ2

(
max{xa1, ..., xak}

R

)2

χ′
2

(
max{xb1, ..., xbk}

R

)2
 . (2.51)

Note that there is a constant c1 > 0 such that ∥WR∥∞ ≤ c1
R2 . For j = 1, 2, define the

quadratic forms

aj[φ] =
∫

Ωj

(
1

2ma

|∇xaφ|2 + 1
2mb

|∇xbφ|2 + 1
2µ |∇ỹφ|2

+
(
V (xa − xb, ỹ) −WR(xa, xb, ỹ)

)
|φ|2

)
dxadxbdỹ (2.52)

with domains

D[a1] =
{
φ ∈ H1(Ω0)|φ(xa, xb, ỹ) = 0 if max{xa1, ..., xak} ≥ 2R and max{xb1, ..., xbk} ≥ 2R

}
,

(2.53)
D[a2] =

{
φ ∈ H1(Ω0)|φ(xa, xb, ỹ) = 0 if max{xa1, ..., xak} ≤ R or max{xb1, ..., xbk} ≤ R

}
.

(2.54)

For all quadratic forms aj in this proof, let Aj denote the corresponding self-adjoint operator.
In Lemma 2.A.5, we verify that these operators exist. For φ ∈ D[hk], the restriction
of the function fRj φ to Ωj belongs to D[aj]. With (fR1 )2 + (fR2 )2 = 1, it follows that
hk[φ] = a1[fR1 φ] + a2[fR2 φ]. Let Â denote the operator Â = A1 ⊕ A2. The map J :
H1(Ω0) → H1(Ω0) ⊕H1(Ω0), φ 7→ (fR1 φ, fR2 φ) is an L2-isometry and thus injective. By the
min-max principle, we have

En(Hk) = inf
V ⊂D[hk]

dim V =n+1

sup
φ∈V
φ ̸=0

hk[φ]
∥φ∥2

L2(Ω0)
= inf

V ⊂D[hk]
dim V =n+1

sup
φ∈V
φ ̸=0

â[Jφ]
∥Jφ∥2

L2(Ω0)⊕L2(Ω0)

= inf
V ⊂JD[hk]
dim V =n+1

sup
φ∈V
φ ̸=0

â[φ]
∥φ∥2

L2(Ω0)⊕L2(Ω0)
≥ inf

V ⊂D[â]
dim V =n+1

sup
φ∈V
φ ̸=0

â[φ]
∥φ∥2

L2(Ω0)⊕L2(Ω0)
= En(Â) (2.55)

for all n ∈ Z≥0. Thus, N(Hk, E
k−1) ≤ N(Â, Ek−1) = N(A1, E

k−1) +N(A2, E
k−1).

Let

Ω̃1,int =
{
(xa, xb, ỹ) ∈ Ω0|(xa − xb, ỹ) ∈ (−R,R)d

}
and (2.56)

Ω̃1,ext =
{
(xa, xb, ỹ) ∈ Ω0|(xa − xb, ỹ) ̸∈ [−R,R]d

}
. (2.57)

24



2.3. Finiteness of the Discrete Spectrum
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Figure 2.2: Let k = 2. In Ω2 both xa and xb lie outside the square (0, R)2. If xa lies below
the upper diagonal, the configuration belongs to Ω3,1. If xa lies above the lower diagonal, the
configuration belongs to Ω3,2.

Moreover, let Ω1,• = Ω̃1,• ∩ Ω1 for • ∈ {int, ext}. Define quadratic forms a1,int, a1,ext through
expression (2.52) with domain

D[a1,•] ={
φ ∈ H1(Ω̃1,•)|φ(xa, xb, ỹ) = 0 if max{xa1, ..., xak} ≥ 2R and max{xb1, ..., xbk} ≥ 2R

}
,

(2.58)

for • ∈ {int, ext}. Again, there is an isometry

D[a1] → D[a1,int] ⊕D[a1,ext], φ 7→ (φ|Ω̃1,int
, φ|Ω̃1,ext

), (2.59)

and therefore, N(A1, E
k−1) ≤ N(A1,int, E

k−1)+N(A1,ext, E
k−1). Since the negative part of V

vanishes at infinity by Assumption 2.1.13 and since ∥WR∥∞ ≤ c1
R2 , there is a R0 > 0 such that

for R ≥ R0 and |(xa−xb, ỹ)| ≥ R0 we have V (xa−xb, ỹ)−WR(xa, xb, ỹ) > Ek−1. Choosing
R ≥ R0, we have N(A1,ext, E

k−1) = 0. Since Ω1,int is a bounded Lipschitz domain, A1,int has
purely discrete spectrum. As A1,int is bounded from below, we have N(A1,int, E

k−1) < ∞.
We are left with showing that N(A2, E

k−1) < ∞. For k = 1, wave functions in the support
of A2 are localized away from the boundary. Effectively, the boundary has thus disappeared
and one can directly make a comparison with Hk−1 = H0. For k > 1, the domain Ω2 is more
complicated and we need to continue localizing in order to effectively eliminate one of the
boundary planes. For now, assume k > 1 and let r = R/8. We localize xa in the k sectors

Ω3,j = {(xa, xb, ỹ) ∈ Ω2|xaj > max{xa1, ..., xak} − r} for 1 ≤ j ≤ k. (2.60)

In the sector Ω3,j, the largest component of xa is xaj up to the constant r. The domains are
sketched in Figure 2.2 for the case k = 2. For the localization, we need functions f r3,j on Ω2

which are supported in Ω3,j, satisfy ∑k
j=1(f r3,j)2 = 1, and their derivatives scale as 1/r. We

construct auxiliary functions f3,j corresponding to the case r = 1 and set

f r3,j(xa, xb, ỹ) = f3,j(xa/r). (2.61)

The idea behind the construction of the auxiliary functions is as follows. We want that f3,1
equals 1 on Ω3,1 apart from the boundary region which overlaps with other Ω3,j . The expression
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2. Two-particle Bound States at Interfaces and Corners

max{xa2, ..., xak} − xa1 measures the distance to the boundary of Ω3,1 and is large outside Ω3,1.
Hence, to define f3,1, we apply χ1 to this expression (up to some constants). For the sum
condition to hold, the remaining f3,j will contain the corresponding factor χ2. This χ2 factor
takes care of the behavior at the boundary towards large xa1. For the next function f3,2, we
proceed analogously to before, but ignoring the xa1 direction. Inductively, for xa ∈ (0,∞)k
and 1 ≤ j ≤ k − 1 we define

f3,j(xa) = χ1

(
k

2
(
max{xaj+1, ..., x

a
k} − xaj

)
+ 3

2

) j−1∏
l=1

χ2

(
k

2
(
max{xal+1, ..., x

a
k} − xal

)
+ 3

2

)
,

f3,k(xa) =
k−1∏
l=1

χ2

(
k

2
(
max{xal+1, ..., x

a
k} − xal

)
+ 3

2

)
, (2.62)

where the product in the first line has to be understood as 1 for j = 1. Note that for all
1 ≤ j ≤ k the derivatives are bounded, i.e. ∥(∇f3,j)2∥∞ < ∞. By construction, we have∑k

j=1(f3,j)2 = 1. That the functions f r3,j indeed have the correct support is the content of
the following Lemma, which is proved at the end of this section.
Lemma 2.3.3. For 1 ≤ j ≤ k, the functions f r3,j defined through (2.61) and (2.62) satisfy

supp f r3,j ∩ Ω2 ⊂ Ω3,j. (2.63)

Moreover,

supp ∇f r3,j ∩ Ω2 ⊂
{(xa, xb, ỹ) ∈ Ω2| max{xa1, ..., x̂aj , ..., xak} − r ≤ xaj ≤ max{xa1, ..., x̂aj , ..., xak} + r}, (2.64)

where x̂aj means that this variable is omitted.

By the IMS formula, we have for all φ ∈ D[a2]

k∑
j=1

a2[f r3,jφ] = a2[φ] +
∫

Ω2
Fr(xa, xb, ỹ)|φ|2dxadxbdỹ, (2.65)

where
Fr(xa, xb, ỹ) = 1

r2

k∑
j=1

1
2ma

(∇f3,j)2 (xa/r) . (2.66)

For 1 ≤ j ≤ k, define the quadratic forms

a3,j[φ] =
∫

Ω3,j

(
1

2ma

|∇xaφ|2 + 1
2mb

|∇xbφ|2 + 1
2µ |∇ỹφ|2

+
(
V (xa − xb, ỹ) −WR(xa, xb, ỹ) − Fr(xa, xb, ỹ)

)
|φ|2

)
dxadxbdỹ (2.67)

with domains

D[a3,j] =
{
φ ∈ H1(Ω0)|φ(xa, xb, ỹ) = 0 if max{xa1, ..., xak} ≤ R or max{xb1, ..., xbk} ≤ R

or xaj ≤ max{xa1, ..., xak} − r
}
. (2.68)
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Figure 2.3: In Ω3,2, the first particle’s coordinate xa lies in the shaded area, while the second
particle at xb lies outside the square (0, R)2. If xb lies above the lowest diagonal (blue), the
configuration belongs to Ω4. If xb lies below the middle diagonal (red), the configuration
belongs to Ω5. Note that for any configuration in Ω5, the particles are separated by at least
distance r/

√
2.

Again we have N(A2, E
k−1) ≤ ∑k

j=1 N(A3,j, E
k−1). We will show that N(A3,k, E

k−1) < ∞.
For 1 ≤ j < k, by Assumption 2.1.14 the same argument with vector components k ↔ j
swapped gives N(A3,j, E

k−1) < ∞.
We localize xb close and far from the domain of xa. Define the sets

Ω4 =
{
(xa, xb, ỹ) ∈ Ω3,k|xbk > max{xb1, ..., xbk−1} − 4r

}
and (2.69)

Ω5 =
{
(xa, xb, ỹ) ∈ Ω3,k|xbk < max{xb1, ..., xbk−1} − 2r

}
. (2.70)

For k = 2, they are sketched in Figure 2.3. Let f r4 (xb) = χ1

(
max{xb

1,...,x
b
k−1}−xb

k

2r

)
and

f r5 (xb) = χ2

(
max{xb

1,...,x
b
k−1}−xb

k

2r

)
. By the IMS formula, we have for all φ ∈ D[a3,k]

a3,k[f r4φ] + a3,k[f r5φ] = a3,k[φ] +
∫

Ω3,k

Gr(xa, xb, ỹ)|φ|2dxadxbdỹ, (2.71)

where

Gr(xa, xb, ỹ) = 1
4r2mb

χ′
1

(
max{xb1, ..., xbk−1} − xbk

2r

)2

+ χ′
2

(
max{xb1, ..., xbk−1} − xbk

2r

)2
 .

(2.72)
For j = 4, 5, define the quadratic forms

aj[φ] =
∫

Ωj

(
1

2ma

|∇xaφ|2 + 1
2mb

|∇xbφ|2 + 1
2µ |∇ỹφ|2

+
(
V (xa − xb, ỹ) −WR(xa, xb, ỹ) − Fr(xa, xb, ỹ) −Gr(xa, xb, ỹ)

)
|φ|2

)
dxadxbdỹ (2.73)

with domains

D[a4] =
{
φ ∈ H1(Ω0)|φ(xa, xb, ỹ) = 0 if max{xa1, ..., xak} ≤ R or max{xb1, ..., xbk} ≤ R

or xak ≤ max{xa1, ..., xak−1} − r or xbk ≤ max{xb1, ..., xbk−1} − 4r
}
, (2.74)
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2. Two-particle Bound States at Interfaces and Corners

D[a5] =
{
φ ∈ H1(Ω0)|φ(xa, xb, ỹ) = 0 if max{xa1, ..., xak} ≤ R or max{xb1, ..., xbk} ≤ R

or xak ≤ max{xa1, ..., xak−1} − r or xbk ≥ max{xb1, ..., xbk−1} − 2r
}
. (2.75)

Again, we have N(A3,k, E
k−1) ≤ N(A4, E

k−1) +N(A5, E
k−1).

For (xa, xb, ỹ) ∈ Ω5, we claim that

|(xa − xb, ỹ)| ≥ r/
√

2 = R/(8
√

2). (2.76)

Let l be the index such that xbl = max{xb1, ..., xbk−1}. We estimate

|(xa − xb, ỹ)|2 ≥ (xal − xbl )2 + (xak − xbk)2 ≥ 1
2
(
xal − xak − xbl + xbk

)2
. (2.77)

Since max{xa1, ..., xak−1} ≥ xal we have in the set Ω5 (see (2.70) and (2.60))

xak > xal − r and xbk < xbl − 2r ⇔ xal − xak < r and xbl − xbk > 2r. (2.78)

Combining this with (2.77) yields (2.76). Moreover, we have ∥WR∥∞ +∥Fr∥∞ +∥Gr∥∞ ≤ c2
R2 .

By Assumption 2.1.13, there is R1 > 0 such that for R > R1 we have a5 > Ek−1. Choosing
R large enough, we thus have N(A5, E

k−1) = 0.
For k = 1, we set Fr = Gr = 0 and a4 = a2. For any choice of k ≥ 1, we now just need to
show N(A4, E

k−1) < ∞. At the boundaries which constrain the kth component of xa and xb,
the operator A4 has Dirichlet boundary conditions. The idea is to extend the domain of xak and
xbk to R, which leads to the new operator Â4 defined below. In Â4, the boundary hyperplane
in the kth direction has disappeared. This makes it possible to compare the operator Â4
to the Hamiltonian Hk−1 of the problem with k − 1 boundary hyperplanes. Let us write
KR = (WR + Fr + Gr)χ(0,∞)2k×Rd−k . Let Ω̂4 =

(
(0,∞)k−1 × R

)2
× Rd−k and define the

quadratic form

â4[φ] =
∫

Ω̂4

(
1

2ma

|∇xaφ|2 + 1
2mb

|∇xbφ|2 + 1
2µ |∇ỹφ|2

+
(
V (xa − xb, ỹ) −KR(xa, xb, ỹ)

)
|φ|2

)
dxadxbdỹ (2.79)

with domain D[â4] = H1(Ω̂4). We have N(A4, E
k−1) ≤ N(Â4, E

k−1).

Let us change to relative and center-of-mass coordinates y = (xa − xb, ỹ) and z = maxa+mbx
b

M
.

Then

â4[φ] =
∫
R

dzk
∫
Qk−1×Rd−k+1

dz1..dzk−1dy
(

1
2µ |∇yφ|2 + 1

2M |∇zφ|2

+
[
V (y) −KR

(
z + mb

M
(y1, ..., yk), z − ma

M
(y1, ..., yk), ỹ

)]
|φ|2

)
(2.80)

with D[â4] = H1(R×Qk−1 ×Rd−k+1). Note that we can separate zk from the other variables
and write the corresponding operator as Â4 = I⊗Hk−1 − 1

2M∆zk
⊗ I−KR. Recall that Hk−1

has the ground state ψk−1 with energy Ek−1. Let Π denote the orthogonal projection onto
L2(R)⊗ψk−1 in L2(R×Qk−1 ×Rd−k+1), and Π⊥ := I−Π. For φ ∈ H1(R×Qk−1 ×Rd−k+1)
both Πφ and Π⊥φ belong to H1(R ×Qk−1 × Rd−k+1). We have

â4[φ] = â4[Πφ] + â4[Π⊥φ] − 2KR[Π⊥φ,Πφ], (2.81)
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where

KR[φ, ψ] =
∫
R×Qk−1×Rd−k+1

φ(z, y)KR

(
z + mb

M
(y1, ..., yk), z − ma

M
(y1, ..., yk), ỹ

)
ψ(z, y)

dzkdz1...dzk−1dy. (2.82)

Using the Schwarz inequality, we estimate

|2KR[Π⊥φ,Πφ]| ≤ R∥KRΠφ∥2
L2(R×Qk−1×Rd−k+1) + 1

R
∥Π⊥φ∥2

L2(R×Qk−1×Rd−k+1). (2.83)

Since Ek−1 is a discrete and non-degenerate eigenvalue of Hk−1, we have Ek−1
1 = inf(σ(Hk−1)\

{Ek−1}) > Ek−1, and (I ⊗ hk−1)[Π⊥φ] ≥ Ek−1
1 ∥Π⊥φ∥2

L2(R×Qk−1×Rd−k+1). Together with the
positivity of −∆zk

⊗ I and ∥KR∥∞ ≤ c2
R2 it follows that

â4[Π⊥φ] ≥
(
Ek−1

1 − c2

R2

)
∥Π⊥φ∥2

L2(R×Qk−1×Rd−k+1). (2.84)

In total, we have

â4[φ] ≥ â4[Πφ]−R∥KRΠφ∥2
L2(R×Qk−1×Rd−k+1)+

(
Ek−1

1 − 1
R

− c2

R2

)
∥Π⊥φ∥2

L2(R×Qk−1×Rd−k+1).

(2.85)
We choose R large enough such that Ek−1

1 − Ek−1 > 1
R

+ c2
R2 . Let B1 be the self-adjoint

operator corresponding to

b1[φ] = â4[φ] −R∥KRφ∥2
L2(R×Qk−1×Rd−k+1) (2.86)

in ran Π. Then N(Â4, E
k−1) ≤ N(B1, E

k−1) by the min-max principle.
We can write any function φ ∈ ran Π as φ(z, y) = f(zk)ψk−1(z1, ..., zk−1, y) for some
f ∈ H1(R). Integrating over z1, ..., zk−1, y, we have

â4[f ⊗ ψk−1] =
∫
R

( 1
2M |f ′(zk)|2 + (Ek−1 − UR(zk))f(zk)2

)
dzk, (2.87)

where

UR(zk) =
∫
Qk−1×Rd−k+1

KR

(
z + mb

M
(y1, ..., yk), z − ma

M
(y1, ..., yk), ỹ

)
ψk−1(z1, ...zk−1, y)2

dz1...dzk−1dy. (2.88)

Moreover,
∥KR(f ⊗ ψk−1)∥2

L2(R×Qk−1×Rd−k+1) =
∫
R
VR(zk)f(zk)2dzk (2.89)

with

VR(zk) =
∫
Qk−1×Rd−k+1

KR

(
z + mb

M
(y1, ..., yk), z − ma

M
(y1, ..., yk), ỹ

)2
ψk−1(z1, ..., zk−1, y)2

dz1...dzk−1dy. (2.90)

Let ZR = UR +RVR. With

b2[f ] =
∫
R

( 1
2M |f ′(z)|2 − ZR(z)f(z)2

)
dz, (2.91)
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we can write b1[f ⊗ ψk−1] = Ek−1∥f∥2
L2(R) + b2[f ]. Therefore, N(B1, E

k−1) = N(B2, 0).
In the following, we bound the function ZR from above by an exponentially decaying function.
With this bound it is easy to see that N(B2, 0) < ∞ using e.g. the Bargmann estimate (see
Chapter 2, Theorem 5.3 in [8]). This concludes the proof of N(Hk, E

k−1) < ∞.
To bound ZR, first use that KR is bounded to obtain

ZR(zk) ≤
(
∥K∥∞ +R∥K∥2

∞

)
I(zk), (2.92)

where
I(zk) =

∫
Qk−1×Rd−k+1

χsupp KR
(z, y)ψ2

k−1dz1...dzk−1dy. (2.93)

By construction, I(zk) = 0 for zk < 0. We shall show that I(zk) decays exponentially for
zk ≥ 0. In fact, if zk is large and KR(z, y) ̸= 0, then necessarily one of the remaining
coordinates z1, ..., zk−1, y1, ..., yd has to be large as well. This is essentially the content of the
following Lemma.
Lemma 2.3.4. Let a > 0. For zk ≥ 2R the function

α(z, y) = ea
√

2M |z1|2+..+2M |zk−1|2+2µ|y|2χsupp KR
(z, y) (2.94)

satisfies α(z, y) ≥ eac(zk−2R)χsupp KR
(z, y) with c =

√
2M(1 + 2 max{ma

mb
, mb

ma
})−1/2.

The Agmon estimate (2.41) tells us that there is a constant a > 0 such that

c3 :=
∫
Qk−1×Rd−k+1

ψ2
k−1e

a
√

2M |z1|2+...+2M |zk−1|2+2µ|y|2dz1...dzk−1dy < ∞. (2.95)

We apply Lemma 2.3.4 with this constant a and conclude that

χsupp KR
(z, y) ≤ e−c4(zk−2R)α(z, y) (2.96)

for zk ≥ 2R and suitable constant c4 > 0. In particular,

I(zk) ≤ e−c4(zk−2R)
∫
Qk−1×Rd−k+1

α(z, y)ψk−1(z1, ..., zk−1, y)2dz1...dzk−1dy

≤ c3e
−c4(zk−2R). (2.97)

for zk ≥ 2R. Recall that ZR vanishes on (−∞, 0) and ∥ZR∥∞ < ∞. With (2.92) we thus
conclude the desired exponentially decaying bound.

It remains to give the proof of Lemmas 2.3.3 and 2.3.4.

Proof of Lemma 2.3.4. Recall the definitions of WR, Fr and Gr in (2.51), (2.66) and (2.72),
respectively. Since supp KR ⊂ supp WR ∪ supp Fr ∪ supp Gr, we estimate α on each of
these three sets. In supp WR, at least one particle is close to the corner, i.e. in the hypercube
(0, 2R)k. If zk is large, this means that the two particles are far apart and yk is large. To be
precise, using xaj = zj + mb

M
yj and xbj = zj − ma

M
yj we have

supp WR ⊂
{

(z, y) ∈ Qk × Rd−k|0 ≤
zk + mb

M
yk

R
≤ 2 or 0 ≤

zk − ma

M
yk

R
≤ 2

}

⊂
{

(z, y) ∈ Qk × Rd−k|zk − 2R ≤ max{ma,mb}
M

|yk|
}
. (2.98)
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For (z, y) ∈ supp WR with zk ≥ 2R, we therefore have

M
k−1∑
j=1

|zj|2 + µ
k∑
j=1

|yk|2 ≥ µM2(zk − 2R)2

max{m2
a,m

2
b}

= M(zk − 2R)2

max{ma

mb
, mb

ma
}
, (2.99)

which implies the desired bound on α.
For k = 1, both Fr and Gr are identically zero, hence to estimate α on their support we can
restrict our attention to the case k > 1. Observe that in supp Fr every coordinate xaj for
1 ≤ j ≤ k is smaller than or similar in magnitude to the largest of the other coordinates xai ,
i ̸= j; in particular, this applies to j = k. Intuitively, for large zk either xak or |yk| needs to
be large. If xak is large, also some other xaj with j < k has to be large. Phrased precisely, by
Lemma 2.3.3 we have

supp Fr ⊂
k⋃
j=1

(z, y) ∈ Qk × Rd−k| max
1≤l≤k,
l ̸=j

{zl + mb

M
yl} − r ≤ zj + mb

M
yj ≤ max

1≤l≤k,
l ̸=j

{zl + mb

M
yl} + r


⊂
{

(z, y) ∈ Qk × Rd−k|zk − r ≤ −mb

M
yk + max

1≤j≤k−1
{mb

M
yj + zj}

}
=: SF . (2.100)

The constraint in SF can be written as zk − r ≤ (
√
Mz,

√
µy) · e for a vector e ∈ Rk+d. A

simple Schwarz inequality therefore shows that on the set SF we have

M
k−1∑
j=1

|zj|2 + µ
k∑
j=1

|yk|2 ≥ (zk − r)2

∥e∥2 = M(zk − r)2

1 + 2mb

ma

(2.101)

as long as zk ≥ r, which yields the desired bound on α.
Similarly to the previous case, in supp Gr the coordinate xbk is of similar magnitude as the
largest of the other coordinates xbj. We have

supp Gr ⊂
{

(z, y) ∈ Qk × Rd−k|2r ≤ max
1≤j≤k−1

{zj − ma

M
yj} + ma

M
yk − zk ≤ 4r

}
⊂
{

(z, y) ∈ Qk × Rd−k|zk + 2r ≤ max
1≤j≤k−1

{zj − ma

M
yj} + ma

M
yk

}
=: SG. (2.102)

Analogously to before, on the set SG we have

M
k−1∑
j=1

|zj|2 + µ
k∑
j=1

|yk|2 ≥ M(zk + 2r)2

1 + 2ma

mb

. (2.103)

This concludes the proof.

Proof of Lemma 2.3.3. Suppose (xa, xb, ỹ) ∈ supp f r3,j. If j < k, we need

k
max{xaj+1, ..., x

a
k} − xaj

2r + 3
2 ≤ 2 (2.104)

for the factor χ1 to be non-zero. This is equivalent to max{xaj+1, ..., x
a
k} ≤ xaj + r

k
. Thus,

for any 1 ≤ j ≤ k we have max{xaj , ..., xak} ≤ xaj + r
k

on the support of f r3,j. Let us
argue inductively why max{xa1, ..., xak} ≤ xaj + r. Suppose we know for some 1 < l ≤ j
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that max{xal , ..., xak} ≤ xaj + (j + 1 − l) r
k
. If xal−1 ≤ max{xal , ..., xak}, we trivially have

max{xal−1, ..., x
a
k} ≤ xaj + (j + 1 − (l − 1)) r

k
. If xal−1 > max{xal , ..., xak}, for the factor

χ2

(
k

max{xa
l ,...,x

a
k}−xa

l−1
2r + 3

2

)
not to vanish we have max{xal , ..., xak} + r

k
≥ xal−1. Thus,

max{xal−1, ..., x
a
k} = xal−1 ≤ max{xal , ..., xak} + r

k
≤ xaj + (j + 1 − (l − 1)) r

k
. (2.105)

Inductively, we see that for every j we have max{xa1, ..., xak} ≤ xaj + j r
k

≤ xaj + r. Thus,
supp f3,j ∩ Ω2 ⊂ Ω3,j.
For the support of ∇f3,j, we have

supp ∇f r3,j∩Ω2 ⊂ supp f r3,j∩Ω2 ⊂ Ω3,j = {(xa, xb, ỹ) ∈ Ω2|xaj ≥ max{xa1, ..., x̂aj , ..., xak}−r}.
(2.106)

Now, suppose xaj > max{xa1, ..., x̂aj , ..., xak} + r. It is sufficient to show that f r3,j ≡ 1 in this
region. For j < k, we have

k
max{xaj+1, ..., x

a
k} − xaj

2r + 3
2 ≤ k

max{xa1, ..., x̂aj , ..., xak} − xaj
2r + 3

2 < −k

2 + 3
2 ≤ 1. (2.107)

Thus, χ1

(
k

max{xa
j+1,...,x

a
k}−xa

j

2r + 3
2

)
= 1. For l < j ≤ k, we have

k
max{xal+1, ..., x

a
k} − xal

2r +3
2 = k

xaj − xal
2r +3

2 ≥ k
xaj − max{xa1, ..., x̂aj , ..., xak}

2r +3
2 >

k

2+3
2 ≥ 2.

(2.108)
Thus, χ2

(
k

max{xa
l+1,...,x

a
k}−xa

l

2r + 3
2

)
= 1. In total, f3,j ≡ 1 for xaj > max{xa1, ..., x̂aj , ..., xak} +

r.
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Appendix

2.A Appendix
2.A.1 Explicit example in one dimension
To illustrate the effect of a boundary on two-particle bound states, we present an explicit
example in one dimension. We consider particles with equal masses ma = mb = 1

2 and with
delta-interaction V (y) = −αδ(y) for α > 0. The full Hamiltonian is

H = −
(
∂

∂xa

)2

−
(
∂

∂xb

)2

− αδ(xa − xb), (2.109)

either on L2(R2) or on L2((0,∞)2) with Neumann boundary conditions. In the first case,
corresponding to k = 0, we look at the operator H0 = −2 ∂2

∂y2 − αδ(y) on L2(R). It has the
ground state ψ0(y) = e− α

4 |y| with corresponding energy E0 = −α2

8 .
The second case corresponds to k = 1. To compute the ground state of H = H1 on
L2((0,∞)2), we mirror the problem along the xa = 0 and xb = 0 boundaries, and look for the
ground state of the modified Hamiltonian

H̃1 = −
(
∂

∂xa

)2

−
(
∂

∂xb

)2

− αδ(xa − xb) − αδ(xa + xb) (2.110)

on L2(R2). This is exactly the operator considered in Proposition 2.A.1. Switching to relative
and center of mass coordinates y = xa − xb and z = xa+xb

2 , we obtain

H̃1 =
(

−2 ∂
2

∂y2 − αδ(y)
)

+ 1
2

(
− ∂2

∂z2 − αδ(z)
)
. (2.111)

The ground state of H̃1 is ψ̃1(y, z) = ψ0(y)e− α
2 |z|, which decays exponentially away from the

Neumann boundary. The ground state energy E1 = −α2

4 is strictly lower than E0.

2.A.2 Proof of Lemma 2.2.3
Let 1 ≤ k ≤ d. First, we shall prove that the claim is true for l = 1, i.e.

lim
L→∞

inf σ(HL,1
k−1) ≥ Ek−1. (2.112)

In ΩL,1
k−1, the first component of y is constrained to |y1| < L. Apart from that, ΩL,1

k−1 is the
same as Qk−1 × Rd−k+1 with components 1 and k swapped. We localize in the y1 direction,
analogously to the one-dimensional case in Proposition A.5 in [18]. For this, let χ1, χ2 : R →
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2. Two-particle Bound States at Interfaces and Corners

[0, 1] be continuously differentiable functions satisfying χ1(t) = 0 for t ≥ 1, χ1(t) = 1 for
t ≤ 1

2 , and χ1(t)2 + χ2(t)2 = 1 for all t. Note that c := max{∥(χ′
1)2∥∞, ∥(χ′

2)2∥∞} < ∞.
We choose the localizing functions fj on ΩL,1

k−1 as fj(z2, . . . zk, y) = χj(|y1|/L). By the IMS
localization formula, we have for all ψ ∈ H1(ΩL,1

k−1)

hL,1k−1[ψ] = hL,1k−1[f1ψ] + hL,1k−1[f2ψ] − 1
2µ

∫
ΩL,1

k−1

(
(∇f1)2 + (∇f2)2

)
|ψ|2. (2.113)

Note that (∇fj)2 = 1
L2 (χ′

j(|y1|/L))2 ≤ c
L2 . Since f2ψ is nonzero only for |y1| > L/2, for

large enough L, we have hL,1k−1[f2ψ] ≥ Ek−1∥f2ψ∥2
2 by Assumption 2.1.13. Furthermore, since

f1ψ satisfies Dirichlet boundary conditions at |y1| = L, we can extend the function by zero
to y1 ∈ R. Additionally, let us swap the first and the kth components and call the function
obtained this way ι(f1ψ). Note that ι(f1ψ) ∈ H1(Qk−1 × Rd−k+1) and ∥ι(f1ψ)∥2

2 = ∥f1ψ∥2
2.

Therefore,
hL,1k−1[f1ψ]
∥f1ψ∥2

2
= hk−1[ι(f1ψ)]

∥ι(f1ψ)∥2
2

≥ Ek−1. (2.114)

Combining the estimates, we obtain for large L that

hL,1k−1[ψ]
∥ψ∥2 ≥ Ek−1 ∥f1ψ∥2 + ∥f2ψ∥2

∥ψ∥2
2

− c

µL2 = Ek−1 − c

µL2 . (2.115)

Hence, inf σ(HL,1
k−1) ≥ Ek−1 − c

µL2 and the claim follows.
Note that for k = 1, l = 1 was the only possible case. Consider k ≥ 2. We proceed by
induction. For l ≥ 2, assume the claim holds for l − 1. The strategy is to bound hL,lk−1 using
hL,l−1
k−1 and hL,l−1

k−2 . In ΩL,l
k−1, each of the first l − 1 components are restricted to the (red)

triangular domain 2 in Figure 2.1. Furthermore, yl ∈ (−L,L) while in the z-coordinate the
lth component is omitted. In the components l + 1 to k we have the full quadrant. Recall
that δ = M/max{ma,mb}. In the (l − 1)th component, we localize such that one function
has Dirichlet boundary conditions along the (red) line zl−1 = L/δ in Figure 2.1 and the other
is localized at L/2δ < zl−1 < L/δ, with a Dirichlet boundary at zl−1 = L/2δ. For this, we
use the functions fj(z1, . . . , ẑl, . . . , zk, y) = χj(δzl−1/L). By the IMS localization formula,
we have for all ψ ∈ H1(ΩL,l

k−1)

hL,lk−1[ψ] = hL,lk−1[f1ψ] + hL,lk−1[f2ψ] − 1
2M

∫
ΩL,l

k−1

(
(∇f1)2 + (∇f2)2

)
|ψ|2. (2.116)

Note that (∇fj)2 = δ2

L2 (χ′
j(δzl−1/L))2 ≤ δ2c

L2 . Since f1ψ satisfies Dirichlet boundary conditions
along zl−1 = L/δ, one can extend the function by zero to the quadrant Q1 in the (l − 1)th
component. Additionally swap yl−1 and yl to define ι1(f1ψ) ∈ H1(ΩL,l−1

k−1 ). Then ∥ι1(f1ψ)∥2
2 =

∥f1ψ∥2
2 and hence

hL,lk−1[f1ψ]
∥f1ψ∥2

2
= hL,l−1

k−1 [ι1(f1ψ)]
∥ι1(f1ψ)∥2

2
≥ inf σ(HL,l−1

k−1 ). (2.117)

To estimate hL,lk−1[f2ψ], we localize in the yl−1-direction, such that the first function satisfies
Dirichlet boundary conditions at yl−1 = L/2 and the second function is nonzero only for
yl−1 > L/4. For this, we use the functions gj(z1, . . . , ẑl, . . . , zk, y) = χj(2yl−1/L). The IMS
localization formula gives

hL,lk−1[f2ψ] = hL,lk−1[g1f2ψ] + hL,lk−1[g2f2ψ] − 1
2µ

∫
ΩL,l

k−1

(
(∇g1)2 + (∇g2)2

)
|f1ψ|2, (2.118)
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where (∇gj)2 = 4
L2 (χ′

j(2|yl−1|/L))2 ≤ 4c
L2 . For L large enough, by Assumption 2.1.13, we have

hL,lk−1[g2f2ψ] ≥ Ek−1∥g2f2ψ∥2
2. In the (l−1)th component, the function g1f2ψ is supported in

the parallelogram (zl−1, yl−1) ∈ (L/2δ, L/δ) × (−L/2, L/2) and satisfies Dirichlet boundary
conditions at |yl−1| = L/2 and zl−1 = L/2δ. We extend the function g1f2ψ by zero to
yl−1 ∈ R. Then we define ι2(g1f2ψ) on ΩL,l−1

k−2 × (L/2δ, L/δ) as

ι2(g1f2ψ)(z1 . . . , ẑl−1, . . . zk−1, y, x)
= g1f2ψ(z1, . . . , zl−2, x, zl, . . . , zk−1, y1, . . . , yl−2, yk, yl−1, . . . , yk−1, yk+1, . . . yd). (2.119)

Observe that hL,lk−1 now can effectively be decomposed into hL,l−1
k−2 plus a Laplacian in the

x-direction
hL,lk−1[g1f2ψ]
∥g1f2ψ∥2

2
= (hL,l−1

k−2 ⊗ I + I ⊗ q)[ι2(g1f2ψ)]
∥ι2(g1f2ψ)∥2

2
, (2.120)

where q is defined on H1((L/2δ, L/δ)) through

q[φ] =
∫ L/δ

L/2δ

1
2M |φ′(x)|2dx. (2.121)

Since inf σ(HL,l−1
k−2 ⊗ I − 1

2M I ⊗ ∆x) ≥ inf σ(HL,l−1
k−2 ), we obtain

hL,lk−1[g1f2ψ]
∥g1f2ψ∥2

2
≥ inf σ(HL,l−1

k−2 ). (2.122)

Combining all the estimates, we obtain that for large L and all ψ ∈ H1(ΩL,l
k−1)

hL,lk−1[ψ]
∥ψ∥2 ≥ min{inf σ(HL,l−1

k−1 ), inf σ(HL,l−1
k−2 ), Ek−1} − δ2c

ML2 − 4c
µL2 . (2.123)

Taking L → ∞ the claim now follows from the induction hypothesis.

2.A.3 Technical details
By mirroring along the xaj = 0 and xbj = 0 hyperplanes, we can relate Hk to an operator H̃k

defined in L2(Rd+k).

Proposition 2.A.1. Let H̃k be the operator defined by the quadratic form

h̃k[ψ] =
∫
Rd+k

(
1

2ma

|∇xaψ|2 + 1
2mb

|∇xbψ|2 + 1
2µ |∇ỹψ|2

+ V ((|xaj | − |xbj|)kj=1, ỹ)|ψ|2
)

dxadxbdỹ (2.124)

with domainD[h̃k] = H1(Rd+k). Then inf σ(Hk) = inf σ(H̃k) and inf σess(Hk) = inf σess(H̃k).
Moreover, the function ψk is a ground state of Hk if and only if the function

ψ̃k(xa, xb, ỹ) = ψk((|xaj |)kj=1, (|xbj|)kj=1, ỹ) (2.125)

is a ground state of H̃k.
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Proof. The operator H̃k commutes with all reflections along the xaj = 0 or xbj = 0 hyperplanes.
Reflections along different hyperplanes commute as well. Therefore, the Hilbert space H =
L2(Rd+k) splits into subspaces H = ⊕

rHr characterized by the eigenvalues ±1 of these
reflections. We can write H̃k = ⊕

r H̃
r
k , where H̃r

k is the restriction of H̃k to Hr. For the
spectrum, we obtain inf σ(H̃k) = minr inf σ(H̃r

k) and inf σess(H̃k) = minr inf σess(H̃r
k).

The subspace that is symmetric under all reflections corresponds to Neumann boundary
conditions on [0,∞)2k × Rd−k. The other subspaces Hr are antisymmetric under at least
one reflection, so they have Dirichlet boundary conditions along the corresponding hyper-
plane. Thus, the domains of the quadratic forms for H̃r

k satisfy D[hrk] ⊂ D[h sym
k ]. By the

min-max principle, En(H̃r
k) ≥ En(H̃ sym

k ). Therefore, both inf σ(H̃k) = inf σ(H̃ sym
k ) and

inf σess(H̃k) = inf σess(H sym
k ).

Note that the map U : L2([0,∞)2k × Rd−k) → L2
sym(Rd+k) that maps ψ to ψ̃(xa, xb, ỹ) =

1
2kψ((|xaj |)j, (|xbj|)j, ỹ) is unitary. Since H̃ sym

k = UHkU
−1, the operators are unitarily equiva-

lent and σ(H̃ sym
k ) = σ(Hk).

The next lemma follows from the Sobolev inequality, see e.g. Sections 8.8 and 11.3 in [50].

Lemma 2.A.2. Let Ω ⊂ Rd be a domain satisfying the cone property (as defined in [50])
with radius R and opening angle θ. Let V satisfy Assumption 2.1.11. Then, for any 0 < a < 1
there is a constant b ∈ R (depending only on d,R, θ, V and a) such that∫

Ω
|V ||f |2 ≤ a∥∇f∥2

L2(Ω) + b∥f∥2
L2(Ω), (2.126)

for all f ∈ H1(Ω).

Proposition 2.A.3. Let 0 ≤ k ≤ d. Assumption 2.1.11 implies that in the quadratic form hk
in (2.4) the interaction term is infinitesimally form bounded with respect to the kinetic energy.
By the KLMN theorem, there is a unique self-adjoint operator Hk corresponding to hk, and
both hk and Hk are bounded from below.

Proof. The quadratic form qk : H1([0,∞)2k × Rd−k) → R given by

qk[ψ] =
∫

[0,∞)2k×Rd−k

(
1

2ma

|∇xaψ|2 + 1
2mb

|∇xbψ|2 + 1
2µ |∇yψ|2

)
dxadxbdỹ (2.127)

is closed and bounded from below. In order to apply the KLMN theorem, we need to show
that there are constants a < 1, b ∈ R such that for all ψ ∈ H1([0,∞)2k × Rd−k)

K[ψ] :=
∣∣∣∣∣
∫

[0,∞)2k×Rd−k
V (xa − xb, ỹ)|ψ|2dxadxbdỹ

∣∣∣∣∣ ≤ aqk[ψ] + b∥ψ∥2
2. (2.128)

Let ψ ∈ H1([0,∞)2k×Rd−k) and define ψ̃(xa, xb, ỹ) = 1
2kψ((|xaj |)j, (|xbj|)j, ỹ) for (xa, xb, ỹ) ∈

Rk × Rk × Rd−k. We have ∥ψ̃∥2
2 = ∥ψ∥2

2 and ∥∇ψ̃∥2
2 = ∥∇ψ∥2

2. Moreover, ψ and 2kψ̃ agree
on [0,∞)2k × Rd−k. Hence,

K[ψ] ≤ 4k
∫

[0,∞)2k×Rd−k
|V (xa − xb, ỹ)||ψ̃(xa, xb, ỹ)|2dxadxbdỹ. (2.129)

36



2.A. Appendix

Since the integrand is nonnegative, extending the domain of integration from [0,∞)2k ×Rd−k

to R2k × Rd−k gives the upper bound

K[ψ] ≤ 4k
∫
R2k×Rd−k

|V (xa − xb, ỹ)||ψ̃(xa, xb, ỹ)|2dxadxbdỹ

= 4k
∫
Rk×Rd

|V (y)||ψ̃(w + (y1, ..., yk)/2, w − (y1, ..., yk)/2, ỹ)|2dwdy, (2.130)

where we changed to coordinates w = xa+xb

2 and y. For almost every w ∈ Rk, the function
f(y) = ψ̃(w + (y1, ..., yk)/2, w − (y1, ..., yk)/2, ỹ) lies in H1(Rd) by Fubini’s theorem. By
Lemma 2.A.2, for any 0 < ã there is a constant b independent of f such that ∫Rd |V ||f |2 ≤
ã∥∇f∥2

2 + b∥f∥2
2. Integrating over w then gives

K[ψ] ≤ 4k
(
ã
∫
Rk×Rd

∣∣∣∇yψ̃(w + (y1, ..., yk)/2, w − (y1, ..., yk)/2, ỹ)
∣∣∣2 dwdy + b∥ψ̃∥2

2

)
.

(2.131)
For 1 ≤ j ≤ k,
∣∣∣∂yj

ψ̃(w + (y1, ..., yk)/2, w − (y1, ..., yk)/2, ỹ)
∣∣∣2 = 1

4
∣∣∣∂xa

j
ψ̃ − ∂xb

j
ψ̃
∣∣∣2 ≤ 1

2

(∣∣∣∂xa
j
ψ̃
∣∣∣2 +

∣∣∣∂xb
j
ψ̃
∣∣∣2) .

(2.132)
Therefore,

K[ψ] ≤ 4k
(
ã∥∇ψ̃∥2

2 + b∥ψ̃∥2
2

)
= 4kã∥∇ψ∥2

2 + 4kb∥ψ∥2
2. (2.133)

For any 0 < a < 1, pick ã = 2−2k−1 min (m−1
a ,m−1

b )a to obtain K[ψ] ≤ aqk[ψ]+4kb∥ψ∥2
2.

Lemma 2.A.4. The quadratic forms defined in the proof of Proposition 2.2.1 in Eqs. (2.21)
and (2.24) correspond to unique self-adjoint operators.

Proof. In all cases we prove that the potential term in the quadratic form is infinitesimally
bounded with respect to the kinetic energy term. The claim then follows from the KLMN
theorem.

Let us begin with the quadratic form hl,Lk−1 in (2.24). The idea is to use the same mirroring
argument as in Prop. 2.A.3 for the coordinate components from l + 1 to k. In the first
l − 1 components, we extend the triangular domain in Figure 2.1 via a suitable mirroring,
in order to be able to apply Lemma 2.A.2. To be precise, we define the map ϕ taking
(0, L/δ) ×

(
−ML
mbδ

, ML
maδ

)
to the triangular domain {(z, y) ∈ (0, L/δ) × R| − M

mb
z < y < M

ma
z}

as

ϕ(z, y) = (z, y) if xa = z + mb

M
y ≥ 0 and xb = z − ma

M
y ≥ 0 (2.134)

ϕ(z, y) =
(
ma

M
y,
M

ma

z
)

if xb ≤ 0 (2.135)

ϕ(z, y) =
(
mb

M
y,
M

mb

z
)

if xa ≤ 0 (2.136)

Let us use the notation ϕ = (ϕ1, ϕ2). Note that for a function f defined on the triangular
domain, we have

∥f ◦ ϕ∥2
2 = 2∥f∥2

2, (2.137)
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where one contribution of ∥f∥2
2 comes from the triangular domain, and the second ∥f∥2

2 is
the sum of the contributions with xb < 0 and xa < 0. In the region with xb < 0 we have
∫ ML

maδ

0
dy
∫ may

M

0
dz|f(ϕ(z, y))|2 =

∫ ML
maδ

0
dy
∫ may

M

0
dz|f(may/M,Mz/ma)|2

=
∫ L/δ

0
dz̃
∫ Mz̃

ma

0
dỹ|f(z̃, ỹ)|2, (2.138)

where we substituted z̃ = may/M and ỹ = Mz/ma. Similarly, for xa < 0∫ 0

− ML
mbδ

dy
∫ mby

M

0
dz|f(ϕ(z, y))|2 =

∫ L/δ

0
dz̃
∫ 0

− Mz̃
mb

dỹ|f(z̃, ỹ)|2. (2.139)

Moreover, if f ∈ H1, then f ◦ ϕ ∈ H1 by the Lipschitz continuity of ϕ.
Let us work in center of mass and relative coordinates in the first l components, and with the
xa and xb coordinates in components l + 1 to k. The kinetic part of hl,Lk−1 is then

ql,Lk−1[ψ] :=
∫

Ωl,L
k−1

 l−1∑
j=1

(
1

2M |∇zj
ψ|2 + 1

2µ |∇yj
ψ|2

)
+ 1

2µ |∇yl
ψ|2 +

k∑
j=l+1

( 1
2ma

|∇xa
j
ψ|2

+ 1
2mb

|∇xb
j
ψ|2

)
+ 1

2µ |∇ỹψ|2
 dz1 . . . dzl−1dxal+1 . . . dxakdy1 . . . dyldxbl+1 . . . dxbkdỹ.

(2.140)

For ψ ∈ H1(Ωl,L
k−1) define ψ̃ on

Ω̃l,L
k−1 :=

{
(z1, . . . zl−1, x

a
l+1, . . . x

a
k, y1, . . . , yl, x

b
l+1, . . . x

b
k, ỹ)|∀j < l : zj ∈ (0, L/δ),

yj ∈
(

−ML

mbδ
,
ML

maδ

)
, yl ∈ (−L,L), ∀l < j ≤ k : xaj ∈ R, xbj ∈ R, ỹ ∈ Rd−k

}
(2.141)

as

ψ̃(z, y) = 1
2(l−1)/2

1
2k−lψ

(
(ϕ1(zj, yj))l−1

j=1, (|xaj |)kj=l+1, (ϕ2(zj, yj))l−1
j=1, yl, (|xbj|)kj=l+1, ỹ

)
.

(2.142)
By (2.137) we have ∥ψ̃∥2

2 = ∥ψ∥2
2. Furthermore, ∥∇ψ̃∥2

2 ≤
(

M2

min{ma,mb}2 + 1
)l−1

∥∇ψ∥2
2.

Analogously to (2.129)-(2.130) we obtain

K[ψ] :=

∣∣∣∣∣∣
∫

Ωl,L
k−1

V (y1, . . . yl, x
a
l+1 − xbl+1, . . . x

a
k − xbk, ỹ)|ψ|2

dz1 . . . dzl−1dxal+1 . . . dxakdy1 . . . dyldxbl+1 . . . dxbkdỹ

∣∣∣∣∣∣
≤ 2l−14k−l

∫
Ω̃l,L

k−1

|V (y)||ψ̃(z1, ...zl−1, (wj + yj
2 )kj=l+1, y1, ..., yl, (wj − yj

2 )kj=l+1, ỹ)|2

dz1 . . . dzl−1dwl+1 . . . dwkdy, (2.143)

where we changed the coordinates xaj , xbj to wj = xa+xb

2 and yj . Let Dy =
(
−ML
mbδ

, ML
maδ

)l−1
×

(−L,L)×Rd−k. For almost every (z1, . . . zl−1, wl+1, . . . wk) ∈ (0, L/δ)l−1 ×Rk−l, the function
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f(y) = ψ̃(z1, ...zl−1, (wj + yj

2 )kj=l+1, y1, ..., yl, (wj − yj

2 )kj=l+1, ỹ) lies in H1 (Dy) by Fubini’s
theorem. Applying Lemma 2.A.2 with Ω = Dy and integrating over z and w one obtains

K[ψ] ≤ 2l−14k−la
∫

Ω̃l,L
k−1

∣∣∣∣∇yψ̃(z1, ...zl−1, (wj + yj
2 )kj=l+1, y1, ..., yl, (wj − yj

2 )kj=l+1, ỹ)
∣∣∣∣2

dz1 . . . dzl−1dwl+1 . . . dwkdy + 2l−14k−lb∥ψ̃∥2
2 (2.144)

for any a > 0 and a suitable constant b. As in (2.132) we have

K[ψ] ≤ 2l−14k−l
(
a∥∇ψ̃∥2

2 + b∥ψ̃∥2
2

)
≤ 2l−14k−l

(
M2

min{ma,mb}2 + 1
)l−1

a∥∇ψ∥2
2 + 2l−14k−lb∥ψ∥2

2. (2.145)

Since a can be arbitrarily small, the interaction term is infinitesimally bounded w.r.t. ql,Lk−1.

Let us now consider the quadratic form al in (2.21). For l = k + 2, the potential term is
bounded from below since |y| > L, and is hence infinitesimally bounded w.r.t the kinetic
energy.

The kinetic part of al is

ql[ψ] :=
∫

Ωl

 l∑
j=1

(
1

2M |∇zj
ψ|2 + 1

2µ |∇yj
ψ|2

)
+

k∑
j=l+1

( 1
2ma

|∇xa
j
ψ|2 + 1

2mb

|∇xb
j
ψ|2

)

+ 1
2µ |∇ỹψ|2

 dz1 . . . dzldxal+1 . . . dxakdy1 . . . dyldxbl+1 . . . dxbkdỹ. (2.146)

First, we consider 1 ≤ l ≤ k. Then, al is closely related to hl,Lk−1 through (2.25). Let
ψ ∈ H1(Ωl). For every zl ∈ (L/δ,∞), the function ψ(·, . . . , zl, . . . , ·) belongs to H1(Ωl,L

k−1).
In (2.143)-(2.145), we saw that for any a > 0 there is a constant b such that
∫

Ωl,L
k−1

|V (y)| |ψ(z, y)|2dydz1 . . . d̂zl . . . dzk

≤ aql,Lk−1[ψ(·, zl, ·)] + b
∫

|ψ(z, y)|2dydz1 . . . d̂zl . . . dzk. (2.147)

Integrating the inequality over zl, we obtain∫
Ωl

|V (y)||ψ(z, y)|2dydz ≤ a
∫ ∞

L/δ
ql,Lk−1[ψ(·, zl, ·)]dzl + b∥ψ∥2

2 ≤ aql[ψ] + b∥ψ∥2
2. (2.148)

Hence, the potential term is infinitesimally bounded w.r.t ql.

For l = k + 1, we use the map ϕ in the first k components. For ψ ∈ H1(Ωk+1) define ψ̃ on

Ω̃k+1 := (0, L/δ)k ×
(

−ML

mbδ
,
ML

maδ

)k
× (−L,L)d−k (2.149)

as
ψ̃(z, y) = 1

2k/2ψ
(
(ϕ1(zj, yj))kj=1, (ϕ2(zj, yj))kj=1, ỹ

)
. (2.150)
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By (2.137) we have ∥ψ̃∥2
2 = ∥ψ∥2

2. Furthermore, ∥∇ψ̃∥2
2 ≤

(
M2

min{ma,mb}2 + 1
)k

∥∇ψ∥2
2.

Analogously to (2.129)-(2.130) we obtain

K[ψ] :=
∣∣∣∣∣
∫

Ωk+1
V (y)|ψ(z, y)|2dzdy

∣∣∣∣∣ ≤ 2k
∫

Ω̃k+1
|V (y)||ψ̃(z, y)|2dzdy. (2.151)

Let Dy =
(
−ML
mbδ

, ML
maδ

)k
× (−L,L)d−k. For almost every z ∈ (0, L/δ)k, the function

f(y) = ψ̃(z, y) lies in H1 (Dy) by Fubini’s theorem. Applying Lemma 2.A.2 with Ω = Dy and
integrating over z gives

K[ψ] ≤ 2ka
∫

Ω̃k+1

∣∣∣∇yψ̃(z, y)
∣∣∣2 dzdy + 2kb∥ψ̃∥2

2 ≤ 2ka∥∇ψ̃∥2
2 + 2kb∥ψ̃∥2

2 (2.152)

for any a > 0 and a suitable constant b. Hence,

K[ψ] ≤ 2k
(

M2

min{ma,mb}2 + 1
)k
a∥∇ψ∥2

2 + 2kb∥ψ∥2
2. (2.153)

Since a can be arbitrarily close to zero, the interaction term is infinitesimally bounded w.r.t.
qk+1.

Lemma 2.A.5. The quadratic forms defined in the proof of Theorem 2.1.4 in Eqs. (2.52),
(2.58), (2.67), (2.73), (2.79), (2.86) and (2.91) correspond to unique self-adjoint operators.

Proof. The quadratic forms aj with j ∈ {1, 2, 4, 5} in Eqs. (2.52) and (2.73) and the forms
a3,j for 1 ≤ j ≤ k in (2.67) have the form

aj[φ] =
∫

Ωj

(
1

2ma

|∇xaφ|2 + 1
2mb

|∇xbφ|2 + 1
2µ |∇ỹφ|2

+
(
V (xa − xb, ỹ) + V∞(xa, xb, ỹ)

)
|φ|2

)
dxadxbdỹ (2.154)

for some bounded potential V∞. The quadratic form qj : H1(Ωj) → R given by

qj[φ] =
∫

Ωj

(
1

2ma

|∇xaφ|2 + 1
2mb

|∇xbφ|2 + 1
2µ |∇ỹφ|2

)
dxadxbdỹ (2.155)

is closed and bounded from below. Using that φ ∈ D[aj] vanishes outside Ωj and applying
Proposition 2.A.3, we obtain∣∣∣∣∣

∫
Ωj

V (xa − xb, ỹ) + V∞(xa, xb, ỹ)|φ|2
∣∣∣∣∣ ≤

∣∣∣∣∫
Qk×Rd−k

V (y)|φ|2
∣∣∣∣+ ∥V∞∥∞∥φ∥2

2

≤ aqj[φ] + (b+ ∥V∞∥∞)∥φ∥2
2 (2.156)

for some a < 1 and b ∈ R. By the KLMN theorem, there is a unique self-adjoint operator Aj
corresponding to aj.
For â4 in (2.79), note that KR is bounded. Adapting the argument in Proposition 2.A.3,
we show that the interaction term is infinitesimally bounded with respect to the kinetic part
q̂ : H1(((0,∞)k−1 × R)2 × Rd−k) → R given by

q̂[φ] =
∫

Ω̂4

(
1

2ma

|∇xaφ|2 + 1
2mb

|∇xbφ|2 + 1
2µ |∇ỹφ|2

)
dxadxbdỹ. (2.157)
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For ψ ∈ H1(Ω̂4), define ψ̃(xa, xb, ỹ) = 1
2k−1ψ((|xaj |)k−1

j=1 , x
a
k, (|xbj|)k−1

j=1 , x
b
k, ỹ) for (xa, xb, ỹ) ∈

Rk × Rk × Rd−k. We have ∥ψ̃∥2
2 = ∥ψ∥2

2 and ∥∇ψ̃∥2
2 = ∥∇ψ∥2

2. Following the same steps as
in Proposition 2.A.3 from (2.129)-(2.133) with this adapted choice of ψ̃, we obtain that for
any 0 < a there is a b such that

K[ψ] :=
∣∣∣∣∫

Ω̂4
V (xa − xb, ỹ)|ψ|2dxadxbdỹ

∣∣∣∣ ≤ 4k−1
(
a∥∇ψ̃∥2

2 + b∥ψ̃∥2
2

)
= 4k−1a∥∇ψ∥2

2 + 4kb∥ψ∥2
2. (2.158)

By the KLMN theorem, â4 corresponds to a self-adjoint operator. Since b1 in (2.86) differs
from â4 by a bounded term, it also corresponds to a self-adjoint operator. For b2 in (2.91) and
a1,ext in (2.58), the potential is bounded. Thus, these forms also correspond to self-adjoint
operators.

0

R

R

2wj

yj

xajxbj

R

Figure 2.4: In the domain of ψ for 1 ≤ j ≤ k,
the coordinates (xaj , xbj) lie in the hatched set.
We have yj = xaj − xbj and wj = xa

j +xb
j

2 .

0

R

R

2wj

yj

xajxbj

R

Figure 2.5: Mirroring ψ along xaj = 0 and
xbj = 0 defines ψ̃. For 1 ≤ j ≤ k, the
coordinates (xaj , xbj) or equivalently (wj, yj)
lie in the hatched set.

For a1,int in (2.58), we proceed similarly to Proposition 2.A.3. Let ψ ∈ D[a1,int]. The domain
of ψ is sketched in Figure 2.4. Mirroring the domain along the xaj = 0 and xbj = 0 hyperplanes,
we obtain the set Ω̃ sketched in Figure 2.5. For (xa, xb, ỹ) ∈ Ω̃ define ψ̃(xa, xb, ỹ) =
1

2kψ((|xaj |)j, (|xbj|)j, ỹ). We have ∥ψ̃∥2
2 = ∥ψ∥2

2 and ∥∇ψ̃∥2
2 = ∥∇ψ∥2

2. Using the triangle
inequality and enlarging the domain of integration to Ω̃, we have

K[ψ] :=
∣∣∣∣∣
∫

Ω1,int
V (xa − xb, ỹ)|ψ(xa, xb, ỹ)|2dxadxbdỹ

∣∣∣∣∣
≤ 4k

∫
Ω̃

|V (xa − xb, ỹ)||ψ̃(xa, xb, ỹ)|2dxadxbdỹ. (2.159)

We change to coordinates w = xa+xb

2 and y. For every w ∈ Rk, the set

Ωw = { y ∈ Rd|(w + (y1, ..., yk)/2, w − (y1, ..., yk)/2, ỹ) ∈ Ω̃} (2.160)

is equal to I1 × ...× Ik × Rd−k, where each Ij ∈ {R, (−R,R)} (Figure 2.5). Thus, there is
an angle θ and radius r such that all the sets Ωw satisfy the cone property with parameters
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θ, r. For almost every w ∈ Rk, the function f(y) = ψ̃(w+ (y1, ..., yk)/2, w− (y1, ..., yk)/2, ỹ)
lies in H1(Ωw). By Lemma 2.A.2, for any 0 < ã there is a constant b independent of fw and
w such that ∫

Ωw

|V (y)||f(y)|2dy ≤ ã∥∇f∥2
2 + b∥f∥2

2. (2.161)

Integrating inequality (2.161) over w and using (2.132) gives∫
Ω̃

|V (xa−xb, ỹ)||ψ̃(xa, xb, ỹ)|2dxadxbdỹ ≤ ã∥∇yψ̃∥2 +b∥ψ̃∥2
2 ≤ ã∥∇ψ̃∥2 +b∥ψ̃∥2

2. (2.162)

In total, we thus have
K[ψ] ≤ 4kã∥∇ψ∥2

2 + 4kb∥ψ∥2
2. (2.163)

For any 0 < a < 1, pick ã = 2−2k−1 min(m−1
a ,m−1

b )a to obtain K[ψ] ≤ aq1,int[ψ] + 4kb∥ψ∥2
2.

The KLMN theorem thus implies that there is a self-adjoint A1,int, which is bounded from
below.

2.B Exponential decay of Schrödinger eigenfunctions
(by Rupert L. Frank1)

It is a folklore theorem that eigenfunctions of Schrödinger operators corresponding to eigen-
values below the bottom of their essential spectrum decay exponentially. This was raised to
high art by Agmon [3] and others; see, for instance, the review [66]. It may be of interest to
note that the most basic one of these bounds holds under rather minimal assumptions of the
potential. This is what we record here.
Let V ∈ L1

loc(Rd) be real and set V± := max{±V, 0}. Given α ∈ [0, 1], we say that V− is
−∆-form bounded with form bound α if there is a Cα < ∞ such that∫

Rd
V−|ψ|2 dx ≤ α

∫
Rd

|∇ψ|2 dx+ Cα

∫
Rd

|ψ|2 dx for all ψ ∈ H1(Rd) .

In this case, we define a quadratic form h by

D[h] :=
{
ψ ∈ H1(Rd) :

∫
Rd
V+|ψ|2 dx < ∞

}
,

h[ψ] :=
∫
Rd

(
|∇ψ|2 + V |ψ|2

)
dx for ψ ∈ D[h] .

This quadratic form is lower semibounded in L2(Rd) and, if α < 1, closed. Thus, it corresponds
to a selfadjoint, lower semibounded operator, which we denote by −∆ + V . We abbreviate

E∞ := inf σ ess(−∆ + V ) ∈ R ∪ {+∞}.

Theorem 2.B.1. Assume that V+ ∈ L1
loc(Rd) and that V− is −∆-form bounded with

bound < 1. For every E ′ < E∞ there is a constant CE′ < ∞ such that if E ≤ E ′ and if
ψ ∈ D(−∆ + V ) satisfies (−∆ + V )ψ = Eψ, then∫

Rd
e2

√
E′−E |x|

(
|∇ψ|2 + V+|ψ|2 + (E ′ − E)|ψ|2

)
dx ≤ CE′ ∥ψ∥2 . (2.164)
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2.B. Exponential decay of Schrödinger eigenfunctions (by Rupert L. Frank)

We emphasize that E∞ may be equal to +∞, in which case E ′ may be taken arbitrarily large.
If E∞ < ∞, the decay exponent

√
E ′ − E can be any number <

√
E∞ − E.

Note that under the assumptions of the theorem, ψ is not necessarily bounded, so one cannot
expect pointwise exponential decay bounds. The bounds in the theorem control the quantities
that are natural from the definition of the operator in the form sense.
In order to prove Theorem 2.B.1, we use a geometric characterization of the bottom of the
essential spectrum due to Persson [57]. Let K ⊂ Rd be a compact set and define

E1(−∆ + V |Rd\K) = inf
{
h[ψ]
∥ψ∥2 : ψ ∈ D[h], ψ ≡ 0 on K

}
.

Clearly, E1(−∆ +V |Rd\K) is nondecreasing in K and therefore its supremum over all compact
K ⊂ Rd exists in R ∪ {+∞}.

Theorem 2.B.2. Assume that V+ ∈ L1
loc(Rd) and that V− is −∆-form bounded with bound

< 1. Then
E∞ = sup

K⊂Rd compact
E1(−∆ + V |Rd\K) .

We first assume Theorem 2.B.2 and show how it implies Theorem 2.B.1. Then we will provide
a proof of Theorem 2.B.2 under our assumptions on V .

Proof of Theorem 2.B.1. Fix E∞ > E ′′ > E ′. By Theorem 2.B.2, there is an R′ > 0 such
that

h[u] ≥ E ′′∥u∥2

for all u ∈ D[h] with u ≡ 0 in BR′/2. Next, for an R > 0 to be specified, we choose two
smooth, real-valued functions χ< and χ> on Rd such that

supp χ< ⊂ B2R and supp χ> ⊂ Rd \BR (2.165)

and such that χ2
< + χ2

> ≡ 1 on Rd. By scaling an R-independent quadratic partition of unity,
we may assume that

|∇χ<|2 + |∇χ>|2 ≤ CR−2 (2.166)
with a constant C independent of R. By increasing R′ if necessary, we can make sure that
C(R′)−2 ≤ (E ′′ − E ′)/2 =: ϵ with C from (2.166). Let f : Rd → R be a bounded Lipschitz
function and take φ = e2fψ ∈ D[h] as a trial function in the quadratic form version of the
equation (−∆ + V )ψ = Eψ to obtain, after an integration by parts,

E
∫
Rd
e2f |ψ|2 dx =

∫
Rd

(
|∇(efψ)|2 + (V − |∇f |2)|efψ|2

)
dx . (2.167)

Thus, in view of the IMS formula (see, e.g., [14, Theorem 3.2]),

E
∫
Rd

|efχ<ψ|2 dx+ E
∫
Rd

|efχ>ψ|2 dx =
∫
Rd

(
|∇(efχ<ψ)|2 + Ṽ |efχ<ψ|2

)
dx

+
∫
Rd

(
|∇(efχ>ψ)|2 + Ṽ |efχ>ψ|2

)
dx

with Ṽ := V − |∇f |2 − |∇χ<|2 − |∇χ>|2. For R ≥ R′ we bound the terms on the right side
from below by∫

Rd

(
|∇(efχ<ψ)|2 + Ṽ |efχ<ψ|2

)
dx ≥

(
E1 − ∥∇f∥2

∞ − ϵ
) ∫

Rd
|efχ<ψ|2 dx

43



2. Two-particle Bound States at Interfaces and Corners

with E1 := inf σ(−∆ + V ), and∫
Rd

(
|∇(efχ>ψ)|2 + Ṽ |efχ>ψ|2

)
dx ≥

(
E ′′ − ∥∇f∥2

∞ − ϵ
) ∫

Rd
|efχ>ψ|2 dx .

Thus,(
E ′′ − E − ∥∇f∥2

∞ − ϵ
) ∫

Rd
|efχ>ψ|2 dx ≤

(
E − E1 + ∥∇f∥2

∞ + ϵ
) ∫

Rd
|efχ<ψ|2 dx ,

and therefore(
E ′′ − E − ∥∇f∥2

∞ − ϵ
) ∫

Rd
|efψ|2 dx ≤ (E ′′ − E1)

∫
Rd

|efχ<ψ|2 dx

≤ (E ′′ − E1) ∥ψ∥2 sup
BR

e2f .

Ideally, we would want to choose f(x) = κ|x| with κ as large as possible. The wish to have
a positive constant (ϵ, say) in front of the integral on the left side then dictates our choice
κ =

√
E ′′ − E − 2ϵ =

√
E ′ − E. The problem with this ‘ideal’ choice of f is that the function

|x| is Lipschitz, but not bounded. We remedy this by taking |x|/(1 + δ|x|) instead and proving
bounds which are uniform in the parameter δ > 0, which we will let tend to zero at the end.
Thus, let us choose

f(x) :=
√
E ′ − E

|x|
1 + δ|x|

with a (small) parameter δ > 0. This is a Lipschitz function satisfying ∥∇f∥∞ =
√
E ′ − E.

Thus, the previous inequality with R = R′ becomes

ϵ
∫
Rd

|efψ|2 dx ≤ (E ′′ − E1) ∥ψ∥2 e2R′√E′−E .

Since the right side is independent of δ, we can take the limit δ → 0 and obtain by monotone
convergence

ϵ
∫
Rd

|e
√
E′−E|x|ψ|2 dx ≤ (E ′′ − E1) ∥ψ∥2 e2R′√E′−E .

This is already one of the inequalities claimed in the theorem.
To prove boundedness of the terms involving the gradient term and V+ we recall that, by form
boundedness,

h[efψ] ≥ (1 − α)
∫
Rd

|∇(efψ)|2 dx+
∫
Rd
V+|efψ|2 dx− Cα

∫
Rd

|efψ|2 dx .

This, together with identity (2.167), implies(
E + ∥∇f∥2

∞ + Cα
) ∫

Rd
|efψ|2 dx ≥ (1 − α)

∫
Rd

|∇(efψ)|2 dx+
∫
Rd
V+|efψ|2 dx .

Using
|∇(efψ)|2 = e2f |∇ψ + ψ∇f |2 = e2f

(
|∇ψ|2 + 2 Reψ∇ψ · ∇f + |ψ|2|∇f |2

)
≥ e2f

(1
2 |∇ψ|2 − |ψ|2|∇f |2

)
,

we obtain(
E + (2 − α)∥∇f∥2

∞ + Cα
) ∫

Rd
|efψ|2 dx ≥ 1 − α

2

∫
Rd

|ef∇ψ|2 dx+
∫
Rd
V+|efψ|2 dx .

Since we have already shown an upper bound on the left side, this completes the proof of the
theorem.
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2.B. Exponential decay of Schrödinger eigenfunctions (by Rupert L. Frank)

Thus, we are left with proving Theorem 2.B.2. We use the following abstract characterization
of the essential spectrum.

Lemma 2.B.3. Let a be a lower semibounded, closed quadratic form in a Hilbert space and
A the corresponding self-adjoint operator. Then

inf σ ess(A) = inf
{

lim inf
j→∞

a[ξj] : ξj ⇀ 0 , ∥ψj∥ = 1
}

(with the convention that inf ∅ = +∞). Moreover, if both sides are finite, then there is a
sequence (ξj) with ∥ξj∥ = 1, a[ξj] → inf σ ess(A) and ξj ⇀ 0 in D[a].

This lemma is classical. The proof in [25, Lemma 1.20] shows the first assertion and, in the
case of finiteness, the existence of a normalized sequence with a[ξj ] → inf σ ess(A) and ξj ⇀ 0.
Since this sequence is bounded in D[a], a subsequence converges weakly in D[a] and, since
D[a] is continuously embedded into the Hilbert space, the weak limit is necessarily zero, as
claimed.

Proof of Theorem 2.B.2. We abbreviate E ′
∞ := supK compact E1(−∆ + V |Rd\K).

We begin by proving E∞ ≥ E ′
∞. We may assume that E∞ < ∞ and we shall show that for

all R > 0,
E1(−∆ + V |Bc

R
) ≤ E∞ , (2.168)

for then the claimed inequality follows as R → ∞. Fix R > 0 and let χ< and χ> be as in the
proof of Theorem 2.B.1. By Lemma 2.B.3, there is a sequence (ξj) ⊂ D[h] with ∥ξj∥ = 1
such that ξj ⇀ 0 in D[h] and h[ξj] → E∞. Then

E1(−∆ + V |Bc
R
) ≤ h

[
χ>ξj

∥χ>ξj∥

]
(2.169)

and our goal is to estimate the right side as j → ∞.
By Rellich’s compactness theorem, ξj → 0 in L2

loc(Rd), so χ<ξj → 0 in L2(Rd) and

∥χ>ξj∥2 = ∥ξj∥2 − ∥χ<ξj∥2 → 1 as j → ∞ . (2.170)

Moreover, by the IMS formula,

h [χ>ξj] = h [ξj] − h [χ<ξj] +
∥∥∥∥(|∇χ<|2 + |∇χ>|2

)1/2
ξj

∥∥∥∥2
. (2.171)

The last term vanishes as j → ∞ again by Rellich’s theorem. Moreover,

h [χ<ξj] ≥ E1∥χ<ξj∥2

and therefore
lim inf
j→∞

h [χ<ξj] ≥ lim inf
j→∞

E1∥χ<ξj∥2 = 0 .

Putting this into (2.171), we learn that

lim sup
j→∞

h [χ>ξj] ≤ lim sup
j→∞

h [ξj] = E∞ .

This, together with (2.169) and (2.170), yields (2.168).
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2. Two-particle Bound States at Interfaces and Corners

We now prove the converse inequality E∞ ≤ E ′
∞. Let (Rj) ⊂ (0,∞) be a sequence with

Rj → ∞ and let (ψj) ⊂ D[h] be a sequence with ∥ψj∥ = 1, ψj ≡ 0 in {|x| < Rj} and
h[ψj] − E1(−∆ + V |Bc

Rj
) → 0. The support condition implies that ψj ⇀ 0 in L2(Rd) and

therefore, by Lemma 2.B.3,

E∞ ≤ lim inf
j→∞

h[ψj] = lim inf
j→∞

E1(−∆ + V |Bc
Rj

) ≤ E ′
∞ ,

which proves the theorem.
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CHAPTER 3
Universality in low-dimensional BCS

theory

Abstract It is a remarkable property of BCS theory that the ratio of the energy gap at zero
temperature Ξ and the critical temperature Tc is (approximately) given by a universal constant,
independent of the microscopic details of the fermionic interaction. This universality has
rigorously been proven quite recently in three spatial dimensions and three different limiting
regimes: weak coupling, low density, and high density. The goal of this short note is to extend
the universal behavior to lower dimensions d = 1, 2 and give an exemplary proof in the weak
coupling limit.

3.1 Introduction
The Bardeen–Cooper–Schrieffer (BCS) theory of superconductivity [5] is governed by the BCS
gap equation. For translation invariant systems without external fields the BCS gap equation
is

∆(p) = − 1
(2π)d/2

∫
Rd
V̂ (p− q) ∆(q)

E∆(p) tanh
(
E∆(p)

2T

)
dq (3.1)

with dispersion relation E∆(p) =
√

(p2 − µ)2 + |∆(p)|2. Here, T ≥ 0 denotes the temperature
and µ > 0 the chemical potential. We consider dimensions d ∈ { 1, 2, 3 }. The Fourier
transform of the potential V ∈ L1(Rd) ∩LpV (Rd) (with a d-dependent pV ≥ 1 to be specified
below), modeling their effective interaction, is denoted by V̂ (p) = (2π)−d/2 ∫

Rd V (x)e−ip·xdx.
According to BCS theory, a system is in a superconducting state, if there exists a non-zero
solution ∆ to the gap equation (3.1). The question of existence of such a non-trivial solution
∆ hinges, in particular, on the temperature T . It turns out, there exists a critical temperature
Tc ≥ 0 such that for T < Tc there exists a non-trivial solution, and for T ≥ Tc it does not [33,
Theorem 3.1.3 and Definition 3.1.4]. This critical temperature is one of the key (physically
measurable) quantities of the theory and its asymptotic behavior, in three spatial dimensions,
has been studied in three physically rather different limiting regimes: In a weak-coupling limit
(i.e. replacing V → λV and taking λ → 0) [22, 35], in a low-density limit (i.e. µ → 0) [36],
and in a high-density limit (i.e. µ → ∞) [38].
As already indicated above, at zero temperature, the function E∆ may be interpreted as the
dispersion relation of a certain ‘approximate’ Hamiltonian of the quantum many-body system,
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3. Universality in low-dimensional BCS theory

see [33, Appendix A]. In particular
Ξ := inf

p∈Rd
E∆(p) (3.2)

has the interpretation of an energy gap associated with the approximate BCS Hamiltonian and
as such represents a second key quantity of the theory. Analogously to the critical temperature,
the asymptotic behavior of this energy gap, again in three spatial dimensions, has been studied
in the same three different limiting regimes: In a weak coupling limit [35], in a low density
limit [49], and in a high density limit [39].
In this paper, we focus on a remarkable feature of BCS theory, which is well known in the
physics literature [5, 47, 55]: The ratio of the energy gap Ξ and critical temperature Tc tends
to a universal constant, independent of the microscopic details of the interaction between the
fermions, i.e. the potential V . More precisely, in three spatial dimension, it holds that

Ξ
Tc

≈ π

eγ ≈ 1.76 , (3.3)

where γ ≈ 0.577 is the Euler-Mascheroni constant, in each of the three physically very different
limits mentioned above. This result follows as a limiting equality by combining asymptotic
formulas for the critical temperature Tc (see [22, 35, 36, 38]) and the energy gap Ξ (see [35, 39,
49]) in the three different regimes. Although these scenarios (weak coupling, low density, and
high density) are physically rather different, they all have in common that ‘superconductivity is
weak’ and one can hence derive an asymptotic formula for Tc and Ξ as they depart from being
zero (in the extreme cases λ = 0, µ = 0, µ = ∞, respectively). However, all the asymptotic
expressions are not perturbative, as they depend exponentially on the natural dimensionless
small parameter in the respective limit. We refer to the above mentioned original works for
details.
The goal of this note is to prove the same universal behavior (3.3), which has already been
established in three spatial dimension, also in dimensions d = 1, 2 in the weak coupling limit
(i.e. replacing V → λV and taking λ → 0). This situation serves as a showcase for the
methods involved in the proofs of the various limits in three dimensions (see Remark 3.3.5
and Remark 3.3.8 below). Apart from the mathematical curiosity in d = 1, 2, there have been
recent studies in lower-dimensional superconductors in the physics literature, out of which we
mention one-dimensional superconducting nanowires [54] and two-dimensional ‘magic angle’
graphene [11].
In the remainder of this introduction, we briefly recall the mathematical formulation of BCS
theory, which has been developed mostly by Hainzl and Seiringer, but also other co-authors
[22, 32, 33]. Apart from the universality discussed here, also many other properties of BCS
theory have been shown using this formulation: Most prominently, Ginzburg-Landau theory,
as an effective theory describing superconductors close to the critical temperature, has been
derived from BCS theory [16, 17, 23, 26]. More recently, it has been shown that the effect
of boundary superconductivity occurs in the BCS model [34]. We refer to [32] for a more
comprehensive review of developments in the mathematical formulation of BCS theory. The
universal behavior in the weak coupling limit for lower dimensions d = 1, 2 is presented in
Section 3.2. Finally, in Section 3.3, we provide the proofs of the statements from Section 3.2.

3.1.1 Mathematical formulation of BCS theory
We will now briefly recall the mathematical formulation [32, 33] of BCS theory [5], which
is an effective theory developed for describing superconductivity of a fermionic gas. In the
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following, we consider these fermions in Rd, d = 1, 2, at temperature T ≥ 0 and chemical
potential µ ∈ R, interacting via a two-body potential V , for which we assume the following.

Assumption 3.1.1. We have that V is real-valued, reflection symmetric, i.e. V (x) = V (−x)
for all x ∈ Rd, and it satisfies V ∈ LpV (Rd), where pV = 1 if d = 1, pV ∈ (1,∞) if d = 2.

Moreover, we neglect external fields, in which case the system is translation invariant.
The central object in the mathematical formulation of the theory is the BCS functional, which
can naturally be viewed as a function of BCS states Γ. These states are given by a pair of
functions (γ, α) and can be conveniently represented as a 2×2 matrix valued Fourier multiplier
on L2(Rd) ⊕ L2(Rd) of the form

Γ̂(p) =
(
γ̂(p) α̂(p)
α̂(p) 1 − γ̂(p)

)
(3.4)

for all p ∈ Rd. In (3.4), γ̂(p) denotes the Fourier transform of the one particle density matrix
and α̂(p) is the Fourier transform of the Cooper pair wave function. We require reflection
symmetry of α̂, i.e. α̂(−p) = α̂(p), as well as 0 ≤ Γ̂(p) ≤ 1 as a matrix.
The BCS free energy functional takes the form

FT [Γ] :=
∫
Rd

(p2 − µ)γ̂(p)dp− TS[Γ] +
∫
Rd
V (x)|α(x)|2dx , Γ ∈ D, (3.5)

D :=
{

Γ̂(p) =
(
γ̂(p) α̂(p)
α̂(p) 1 − γ̂(p)

)
: 0 ≤ Γ̂ ≤ 1 , γ̂ ∈ L1(Rd, (1 + p2)dp) , α ∈ H1

sym(Rd)
}
,

where the entropy density is defined as

S[Γ] = −
∫
Rd

TrC2

[
Γ̂(p) log Γ̂(p)

]
dp .

The minimization problem associated with (3.5) is well defined. In fact, the following result has
only been proven for d = 3 and V ∈ L3/2(R3), but its extension to d = 1, 2 is straightforward.

Proposition 3.1.2 ([33], see also [32]). Under Assumption 3.1.1 on V , the BCS free energy
is bounded below on D and attains its minimum.

The BCS gap equation (3.1) arises as the Euler–Lagrange equations of this functional [33].
Namely by defining ∆ = −2V̂ α, the Euler–Lagrange equation for α takes the form of the
BCS gap equation (3.1). Additionally, one has the following linear criterion for the BCS gap
equation to have non-trivial solutions. Again, so far, a proof has only been given in spatial
dimension d = 3 and for V ∈ L3/2(R3), but its extension to d = 1, 2 is straightforward.

Theorem 3.1.3 ([33, Thm. 1]). Let V satisfy Assumption 3.1.1 and let µ ∈ R as well as
T ≥ 0. Then, writing FT [Γ] ≡ FT (γ, α), the following are equivalent.

1. The minimizer of FT is not attained with α = 0, i.e.

inf
(γ,α)∈D

FT (γ, α) < inf
(γ,0)∈D

FT (γ, 0),

2. There exists a pair (γ, α) ∈ D with α ̸= 0 such that ∆ = −2V̂ α satisfies the BCS gap
equation (3.1),
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3. Universality in low-dimensional BCS theory

3. The linear operator KT + V , where KT (p) = p2−µ
tanh((p2−µ)/(2T )) has at least one negative

eigenvalue.

The third item immediately leads to the following definition of the critical temperature Tc for
the existence of non-trivial solutions of the BCS gap equation (3.1).

Definition 3.1.4 (Critical temperature, see [22, Def. 1]). For V satisfying Assumption 3.1.1,
we define the critical temperature Tc ≥ 0 as

Tc := inf{T > 0 : KT + V ≥ 0} . (3.6)

By KT (p) ≥ 2T and the asymptotic behavior KT (p) ∼ p2 for |p| → ∞, Sobolev’s inequality
[50, Thm. 8.3] implies that the critical temperature is well defined.

The other object we study is the energy gap Ξ defined in (3.2). The energy gap depends on
the solution ∆ of the gap equation (3.1) at T = 0. A priori, ∆ may not be unique. However,
for potentials with non-positive Fourier transform, this possibility can be ruled out.

Proposition 3.1.5 (see [35, (21)-(22) and Lemma 2]). Let V satisfy Assumption 3.1.1 (and
additionally V ∈ L1(R2) in case that d = 2). Moreover, we assume that V̂ ≤ 0 and V̂ (0) < 0.
Then, there exists a unique minimizer Γ of F0 (up to a constant phase in α). One can choose
the phase such that α has strictly positive Fourier transform α̂ > 0.

In particular, we conclude that ∆ is strictly positive. Moreover, by means of the gap equation
(3.1), ∆ is continuous and thus Ξ > 0.

3.2 Main Results
As explained in the introduction, our main result in this short note is the extension of the
universality (3.3) from d = 3 to lower spatial dimensions d = 1, 2 in the limit of weak coupling
(i.e., replacing V → λV and taking λ → 0). We assume the following properties for the
interaction potential V .

Assumption 3.2.1. Let d ∈ { 1, 2 } and assume that V satisfies Assumption 3.1.1 as well as
V̂ ≤ 0, V̂ (0) < 0. Moreover, for d = 1 we assume that (1 + | · |ϵ)V ∈ L1(R1) for some ϵ > 0.
Finally, in case that d = 2, we suppose that V ∈ L1(R2) is radial.

By Proposition 3.1.5, this means that, in particular, the minimizer of F0 is unique (up to a
phase) and the associated energy gap at zero temperature (3.2) is strictly positive, Ξ > 0.
We are now ready to state our main result.

Theorem 3.2.2 (BCS Universality in one and two dimensions). Let V be as in Assump-
tion 3.2.1. Then the critical temperature Tc(λ) (defined in (3.6)) and the energy gap Ξ(λ)
(defined in (3.2)) are strictly positive for all λ > 0 and it holds that

lim
λ→0

Ξ(λ)
Tc(λ) = π

eγ ,

where γ ≈ 0.577 is the Euler-Mascheroni constant.
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To prove the universality, we separately establish asymptotic formulas for Tc (see Theorem 3.2.5)
and Ξ (see Theorem 3.2.7), valid to second order, and compare them by taking their ratio.
The asymptotic formula for Tc is valid under weaker conditions on V than Assumption 3.2.1,
because we do not need uniqueness of ∆. To obtain the asymptotic formulas, we first
introduce two self-adjoint operators V (d)

µ and W (d)
µ mapping L2(Sd−1) → L2(Sd−1) and as

such measuring the strength of the interaction V̂ on the (rescaled) Fermi surface (see [35, 38,
39]). To assure that V (d)

µ and W (d)
µ will be well-defined and compact, we assume the following.

Assumption 3.2.3. Let V satisfy Assumption 3.1.1. Additionally, assume that for d = 1,(
1 + (ln(1 + | · |))2

)
V ∈ L1(R1) and for d = 2, V ∈ L1(R2).

First, in order to capture the strength to leading order, we define V (d)
µ via

(V (d)
µ u)(p) = 1

(2π)d/2

∫
Sd−1

V̂ (√µ(p− q))u(q)dω(q) ,

where dω is the Lebesgue measure on Sd−1. Since V ∈ L1(Rd), we have that V̂ is a bounded
continuous function and hence V (d)

µ is a Hilbert-Schmidt operator (in fact, trace class with trace
being equal to (2π)−d|Sd−1|

∫
Rd V (x)dx). Therefore, its lowest eigenvalue e(d)

µ := inf spec V (d)
µ

satisfies e(d)
µ ≤ 0 and it is strictly negative if e.g. ∫ V < 0 as in Assumption 3.2.1.

Second, in order to capture the strength of V̂ to next to leading order, we define the operator
W (d)

µ via its quadratic form〈
u
∣∣∣W (d)

µ

∣∣∣u〉
= µd/2−1

[∫
|p|<

√
2

1
|p2 − 1|

(
|ψ(√µp)|2 − |ψ(√µp/|p|)|2

)
dp+

∫
|p|>

√
2

1
|p2 − 1|

|ψ(√µp)|2dp
]
,

where ψ(p) = 1
(2π)d/2

∫
Sd−1 V̂ (p − √

µq)u(q)dω(q) and u ∈ L2(Sd−1). The proof of the
following proposition shall be given in Section 3.3.3.
Proposition 3.2.4. Let d ∈ { 1, 2 } and let V satisfy Assumption 3.2.3. The operator W (d)

µ

is well-defined and Hilbert-Schmidt.

Next, we define the self-adjoint Hilbert-Schmidt operator

B(d)
µ (λ) := π

2
(
λV (d)

µ − λ2W (d)
µ

)
on L2(Sd−1) and its ground state energy

b(d)
µ (λ) := inf spec

(
B(d)
µ (λ)

)
. (3.7)

Note that if e(d)
µ < 0, then also b(d)

µ (λ) < 0 for small enough λ. After these preparatory
definitions, we are ready to state the separate asymptotic formulas for the critical temperature
and the energy gap in one and two dimensions, which immediately imply Theorem 3.2.2.
Theorem 3.2.5 (Critical Temperature for d = 1, 2). Let µ > 0. Let V satisfy Assumption 3.2.3
and additionally e(d)

µ < 0. Then the critical temperature Tc, given in Definition 3.1.4, is strictly
positive and satisfies

lim
λ→0

(
ln
(

µ

Tc(λ)

)
+ π

2µd/2−1 b
(d)
µ (λ)

)
= −γ − ln

(2cd
π

)
,

where γ denotes the Euler-Mascheroni constant and c1 = 4
1+

√
2 and c2 = 1.
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Here, the Assumptions on V are weaker than Assumption 3.2.1, since V̂ (0) < 0 implies that
e(d)
µ < 0. We thus have the asymptotic behavior

Tc(λ) = 2cd
eγ

π

(
1 + o(1)

)
µ eπ/(2µd/2−1b

(d)
µ (λ))

in the limit of small λ.

Remark 3.2.6. Theorem 3.2.5 is essentially a special case of [37, Theorem 2]. We give the
proof here for two main reasons.

1. There is still some work required to translate the statement of [37, Theorem 2] into a
form in which it is comparable to that of Theorem 3.2.7 (in order to prove Theorem 3.2.2).
The main difficulty is that the operator W (d)

µ in [37] is only defined via a limit, [37,
Equation (2.10)].

2. The goal of this paper is to give an exemplary proof of Theorem 3.2.5 in order to compare
it to the proofs of the similar statements in the literature concerning the asymptotic
behavior of the critical temperature in various limits [35, 36, 38].

Theorem 3.2.5 is complemented by the following asymptotics for the energy gap.

Theorem 3.2.7 (Energy Gap for d = 1, 2). Let V satisfy Assumption 3.2.1 and let µ > 0.
Then there exists a unique radially symmetric minimizer (up to a constant phase) of the BCS
functional (3.5) at temperature T = 0. The associated energy gap Ξ, given in (3.2), is strictly
positive and satisfies

lim
λ→0

(
ln
(
µ

Ξ

)
+ π

2µd/2−1 b
(d)
µ (λ)

)
= − ln(2cd) ,

where b(d)
µ is defined in (3.7) and c1 = 4

1+
√

2 and c2 = 1.

In other words, we have the asymptotic behavior

Ξ(λ) = 2cd
(
1 + o(1)

)
µ eπ/(2µd/2−1b

(d)
µ (λ))

in the limit of small λ. Now, Theorem 3.2.2 follows immediately from Theorems 3.2.5 and
3.2.7.

Remark 3.2.8 (Other limits in dimensions d = 1, 2). Similarly to the presented results, one
could also consider the limits of low and high density, i.e. µ → 0 and µ → ∞, respectively. We
expect that also here the universality Ξ

Tc
≈ π

eγ holds. Indeed, one would expect that the proofs
of BCS universality in dimension d = 3 should carry over to one and two dimensions with
some minor technical modifications. Note that, even for the (technically less demanding) case
of a weak coupling limit, which we consider here, there are still some technical details that are
different in dimensions d = 1, 2 compared to dimension d = 3. Hence, it is not a trivial matter
to generalize the arguments of [36, 38, 39, 49] to one and two dimensions. Moreover, for the
case of low density, there is even an issue of what exactly low density means in dimensions
one and two: In three spatial dimensions [36, 49], the asymptotic formulas for Tc and Ξ were
obtained for potentials V with negative scattering length but not creating bound states for
the Laplacian. This latter condition ensures that µ → 0 actually corresponds to the limit of
low density. However, in spatial dimensions one and two, attractive potentials, no matter how
weak, always give rise to bound states of −∇2 + V , see [65]. Thus for µ = 0 the particle
density is non-zero. We will not deal with the low- and high-density limits here.
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The rest of the paper is devoted to proving Theorem 3.2.5 and Theorem 3.2.7.

3.3 Proofs
The overall structure of our proofs is as follows: The principal idea is to derive two different
formulas for each of the two integrals

m(d)
µ (T ) := 1

|Sd−1|

∫
|p|<

√
2µ

1
KT (p)dp (3.8)

and
m(d)
µ (∆) := 1

|Sd−1|

∫
|p|<

√
2µ

1
E∆(p)dp. (3.9)

The first set of formulas is derived by studying the Birman-Schwinger operators

B
(d)
T := λV 1/2K−1

T |V |1/2 and B
(d)
∆ := λV 1/2E−1

∆ |V |1/2 ,

associated to the Schrödinger type operators KT +λV and E∆ +λV , respectively. In particular,
spectral properties of these unbounded Schrödinger type operators naturally translate to their
associated Birman-Schwinger operators, which are compact and as such much simpler to
analyze. The second set of formulas is obtained by just calculating the integrals m(d)

µ directly.

Indeed, for the critical temperature we obtain the following asymptotics, which, by combining
them, immediately prove Theorem 3.2.5.

Proposition 3.3.1. Let µ > 0. Let V satisfy Assumption 3.2.3 and additionally e(d)
µ < 0.

Then, the critical temperature Tc is positive and, as λ → 0, we have that

m(d)
µ (Tc) = − π

2b(d)
µ (λ)

+ o(1) ,

m(d)
µ (Tc) = µd/2−1

(
ln
(
µ

Tc

)
+ γ + ln

(2cd
π

)
+ o(1)

)
.

For the energy gap we obtain the following asymptotics, which, again by combining them,
immediately prove Theorem 3.2.7.

Proposition 3.3.2. Let V satisfy Assumption 3.2.1 and let µ > 0. Then (by Proposition
3.1.5) we have a strictly positive radially symmetric gap function ∆ and associated energy
gap Ξ, which, as λ → 0, satisfy the asymptotics

Ξ = ∆(√µ)
(
1 + o(1)

)
m(d)
µ (∆) = − π

2b(d)
µ (λ)

+ o(1)

m(d)
µ (∆) = µd/2−1

(
ln
(

µ

∆(√µ)

)
+ ln(2cd) + o(1)

)

With a slight abuse of notation, using radiality of ∆, we wrote ∆(√µ) instead of ∆(√µp̂) for
some p̂ ∈ Sd−1.
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3. Universality in low-dimensional BCS theory

In the remainder of this paper, where we give the proofs of Propositions 3.3.1 and 3.3.2, we
shall frequently use the notation F(d)

µ : L1(Rd) → L2(Sd−1) for the (scaled) Fourier transform
restricted to the (rescaled) Fermi sphere,

(
F(d)
µ ψ

)
(p) := 1

(2π)d/2

∫
Rd
ψ(x)e−i√µp·xdx .

Note that for an L1-function, pointwise values of its Fourier transform are well-defined by the
Riemann–Lebesgue lemma. (In particular the restriction to a co–dimension 1 manifold of a
sphere is well-defined.)

Remark 3.3.3. In [13], Cuenin and Merz use the Tomas-Stein theorem to define F(d)
µ on a

larger space than L1(Rd). With this they are able to prove a general version of Theorem 3.2.5
under slightly weaker conditions on V . However, we do not pursue this here, see Remark 3.2.6.

3.3.1 Proof of Proposition 3.3.1

Proof of Proposition 3.3.1. The argument is divided into several steps.
1. A priori spectral information on KTc + λV . First note that, due to Theorem 3.1.3
and Definition 3.1.4, the critical temperature Tc is determined by the lowest eigenvalue of
KT + λV being 0 exactly for T = Tc.
2. Birman-Schwinger principle. Next, we employ the Birman-Schwinger principle,
which says that the compact Birman-Schwinger operator B(d)

T = λV 1/2K−1
T |V |1/2 (denoting

V (x)1/2 = sgn(V (x))|V (x)|1/2) has −1 as its lowest eigenvalue exactly for T = Tc, see [22,
35].

Using the notation for the Fourier transform restricted to the rescaled Fermi sphere introduced
above, we now decompose the Birman-Schwinger operator as

B
(d)
T = λm(d)

µ (T )V 1/2(F(d)
µ )†F(d)

µ |V |1/2 + λV 1/2M
(d)
T |V |1/2,

where M (d)
T is defined through the integral kernel

M
(d)
T (x, y) = 1

(2π)d

[∫
|p|<

√
2µ

1
KT (p)

(
eip·(x−y) − ei

√
µp/|p|·(x−y)

)
dp+

∫
|p|>

√
2µ

1
KT

eip·(x−y)dp
]
.

(3.10)
We claim that V 1/2M

(d)
T |V |1/2 is uniformly bounded.

Lemma 3.3.4. Let µ > 0. Let V satisfy Assumption 3.2.3. Then we have for all T ≥ 0∥∥∥V 1/2M
(d)
T |V |1/2

∥∥∥
HS

≤ C ,

where C > 0 denotes some positive constant and ∥ · ∥ HS is the Hilbert-Schmidt norm.

Armed with this bound, we have that for sufficiently small λ that 1 + λV 1/2M
(d)
T |V |1/2 is

invertible, and hence

1 + B
(d)
T = (1 + λV 1/2M

(d)
T |V |1/2)

(
1 +

λm(d)
µ (T )

1 + λV 1/2M
(d)
T |V |1/2

V 1/2(F(d)
µ )†F(d)

µ |V |1/2
)
.
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Thus, the fact that B(d)
T has lowest eigenvalue −1 at T = Tc is equivalent to

λm(d)
µ (T )F(d)

µ |V |1/2 1
1 + λV 1/2M

(d)
T |V |1/2

V 1/2(F(d)
µ )† (3.11)

having lowest eigenvalue −1, again at T = Tc, as it is isospectral to the rightmost operator
on the right-hand-side above. (Recall that for bounded operators A,B, the operators AB and
BA have the same spectrum apart from possibly at 0. However, in our case, both operators
are compact on an infinite dimensional space and hence 0 is in both spectra.)
We now prove Lemma 3.3.4.

Proof of Lemma 3.3.4. We want to bound the integral kernel (3.10) of M (d)
T uniformly in T .

Hence, we will bound KT ≥ |p2 − µ|. The computation is slightly different in d = 1 and
d = 2, so we do them separately.
d = 1. The second integral in (3.10) is bounded by

2
∫

|p|>
√

2µ

1
|p2 − µ|

dp = 2 arcoth
√

2
√
µ

.

For the first integral, we use that |eix − eiy| ≤ min{|x− y|, 2}, |p2 −µ| ≥ √
µ||p| − √

µ|, and
increase the domain of integration to obtain the bound

2
√
µ

∫ 2√
µ

0

min
{
||p− √

µ||x− y|, 2
}

|p− √
µ|

dp = 8
√
µ

[
1 + ln

(
max

{
|x− y|√µ

2 , 1
})]

≤ 8
√
µ

(1 + ln(1 + √
µmax{|x|, |y|}).

We conclude that |M (1)
T (x, y)| ≲ 1√

µ
(1 + ln(1 + √

µmax{|x|, |y|})). Hence,

∥∥∥V 1/2M
(1)
T |V |1/2

∥∥∥2

HS
≲

1
µ

(
∥V ∥2

L1(R) + ∥V ∥L1(R)

∫
R

|V (x)|(1 + ln(1 + √
µ|x|))2dx

)
.

d = 2. We first compute the angular integral. Note that ∫S1 eipxdω(p) = 2πJ0(|x|), where
J0 is the zeroth order Bessel function. For the second integral in (3.10) we may bound
|p2 − µ| ≥ cp2. Up to some finite factor, the second integral is hence bounded by∫ ∞

√
2µ

1
p

|J0(p|x− y|)|dp ≤ C
∫ ∞

√
2µ

1
p1+λ |x− y|−λdp ≤ Cλ|x− y|−λ,

for any 0 < λ ≤ 1/2 since |J0(x)| ≤ C and √
xJ0(x) ≤ C, see e.g. [10, (9.55f), (9.57a)]. For

the first integral we get the bound∫ √
2µ

0

p

|p2 − µ|
|J0(p|x− y|) − J0(

√
µ|x− y|)| dp.

Here we use that J0 is Lipschitz, since its derivative J−1 is bounded (see e.g. [10, (9.55a),
(9.55f)]), so that

|J0(x) − J0(y)| ≤ C|x− y|1/3(|J0(x)| + |J0(y)|)2/3 ≤ C|x− y|1/3
(
x−1/3 + y−1/3

)
.
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3. Universality in low-dimensional BCS theory

That is
|J0(p|x− y|) − J0(

√
µ|x− y|)| ≤ C

|p− √
µ|1/3

p1/3 + √
µ1/3 .

This shows that the first integral is bounded. We conclude that |M (2)
T (x, y)| ≲ 1 + 1

|x−y|λ for
any 0 < λ ≤ 1/2. Then, by the Hardy–Littlewood–Sobolev inequality [50, Theorem 4.3] we
have that∥∥∥V 1/2M

(2)
T |V |1/2

∥∥∥2

HS
=
∫∫

|V (x)||M (2)
T (x, y)|2|V (y)|dxdy ≲ ∥V ∥2

L1(R2) + ∥V ∥2
Lp(R2)

for any 1 < p ≤ 4/3.

3. First order. Evaluating (3.11) at T = Tc and expanding the geometric series to first order
we get

−1 = λm(d)
µ (Tc) inf spec

F(d)
µ |V |1/2 1

1 + λV 1/2M
(d)
Tc

|V |1/2
V 1/2(F(d)

µ )†


= λm(d)

µ (Tc) inf spec V (d)
µ (1 +O(λ)) = λm(d)

µ (Tc) e(d)
µ (1 + O(λ))

where we used V (d)
µ = F(d)

µ V (F(d)
µ )†. Since by assumption e(d)

µ < 0, this shows that m(d)
µ (Tc) →

∞ as λ → 0.
4. A priori bounds on Tc. By (3.8), the divergence of m(d)

µ as λ → 0 in particular shows
that Tc/µ → 0 in the limit λ → 0.
5. Calculation of the integral m(d)

µ (Tc). This step is very similar to [35, Lemma 1] and [34,
Lemma 3.5], where the asymptotics have been computed for slightly different definitions of
m(d)
µ in three and one spatial dimension, respectively. Integrating over the angular variable

and substituting s =
∣∣∣ |p|2
µ

− 1
∣∣∣, we get

m(d)
µ (Tc) = µd/2−1

∫ 1

0
tanh

(
s

2(Tc/µ)

)
(1 + s)d/2−1 + (1 − s)d/2−1

2s ds.

According to [35, Lemma 1],

lim
Tc↓0

∫ 1

0

tanh
(

s
2(Tc/µ)

)
s

ds− ln µ

Tc

 = γ − ln π2 .

By monotone convergence, it follows that

m(d)
µ (Tc) = µd/2−1

[
ln µ

Tc
+ γ − ln π2 +

∫ 1

0

(1 − s)d/2−1 + (1 + s)d/2−1 − 2
2s ds+ o(1)

]
.

The remaining integral equals ln cd and we have thus proven the second item in Proposi-
tion 3.3.1.

Combining this with the third step, one immediately sees that the critical temperature vanishes
exponentially fast, Tc ∼ e1/λeµ , as λ → 0, recalling that e(d)

µ < 0 by assumption.
6. Second order. Now, to show the universality, we need to compute the next order correction.
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To do so, we expand the geometric series in (3.11) and employ first order perturbation theory,
yielding that

m(d)
µ (Tc) = −1

λ
〈
u
∣∣∣F(d)
µ V (F(d)

µ )†
∣∣∣u〉− λ2

〈
u
∣∣∣F(d)
µ VM

(d)
Tc
V (F(d)

µ )†
∣∣∣u〉+O(λ3)

, (3.12)

where u is the (normalized) ground state (eigenstate of lowest eigenvalue) of F(d)
µ V (F(d)

µ )†. (In
case of a degenerate ground state, u is the ground state minimizing the second order term.)

This second order term in the denominator of (3.12) is close to W (d)
µ . More precisely, it holds

that
lim
λ→0

〈
u
∣∣∣F(d)
µ VM

(d)
Tc
V (F(d)

µ )†
∣∣∣u〉 =

〈
u
∣∣∣W (d)

µ

∣∣∣u〉 , (3.13)

which easily follows from dominated convergence, noting that 1
KT

increases to 1
|p2−µ| as T → 0.

We then conclude that
lim
λ→0

(
m(d)
µ (Tc) + π

2b(d)
µ (λ)

)
= 0 ,

since
〈
u
∣∣∣λV (d)

µ − λ2W (d)
µ

∣∣∣u〉 = inf spec(λV (d)
µ − λ2W (d)

µ ) +O(λ3) = π
2 b

(d)
µ (λ) +O(λ3), again

by first-order perturbation theory. This concludes the proof of Proposition 3.3.1.

We conclude this subsection with several remarks, comparing our proof with those of similar
results from the literature.

Remark 3.3.5 (Structure here vs. in earlier papers on Tc). We compare the structure of our
proof to that of the different limits in three dimensions [35, 36, 38]:

• Weak coupling: The structure of the proof we gave here is quite similar to that of
[35], only they do Steps 5 and 6 in the opposite order. Also the leading term for Tc was
shown already in [22], where a computation somewhat similar to Steps 1–4 is given.

• High denisty: For µ → ∞, the structure of the proof in [38] is slightly different
compared to the one given here. This is basically due to the facts that (i) the necessary
a priori bound Tc = o(µ) already requires the Birman-Schwinger decomposition and
(ii) the second order requires strengthened assumptions compared to the first order.
To conclude, the order of steps in [38] can be thought of as: 1, 5, 4 (establishing
Tc = O(µ)), 2, 3, 4 (establishing Tc = o(µ)), 2 (again), 6. Here the final step is much
more involved than in the other limits considered.

• Low density: As above, for the proof of the low density limit in [36] the structure is
slightly different. One first needs the a priori bound Tc = o(µ) on the critical temperature
before one uses the Birman-Schwinger principle and decomposes the Birman-Schwinger
operator.1 Also, the decomposition of the Birman-Schwinger operator is again different.
For the full decomposition and analysis of the Birman-Schwinger operator one needs
also the first-order analysis, that is Step 2, which is done in two parts. The order of the
steps in [36] can then mostly be though of as: 1, 4, 5, 2, 3, 2 (again), 6.

1Strictly speaking, in [36], it is only proven that Tc = O(µ) (which is sufficient for applying the Birman-
Schwinger principle), while the full Tc = o(µ) itself requires the Birman-Schwinger decomposition (see [48,
Remark 4.12] for details).
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3. Universality in low-dimensional BCS theory

3.3.2 Proof of Proposition 3.3.2

Proof of Proposition 3.3.2. The structure of the proof is parallel to that of Proposition 3.3.1
for the critical temperature.
1. A priori spectral information on E∆ + λV . First, it is proven in [35, Lemma 2] that F0
has a unique minimizer α which has strictly positive Fourier transform. Using radiality of V , it
immediately follows that this minimizer is rotationally symmetric (since otherwise rotating
α would give a different minimizer) and hence also ∆ = −2λV̂ ⋆ α̂ is rotation invariant. It
directly follows from [35, (43) and Lemma 3] that that E∆ + λV has lowest eigenvalue 0, and
that the minimizer α is the corresponding eigenfunction.
2. Birman-Schwinger principle. This implies, by means of the Birman-Schwinger principle,
that the Birman-Schwinger operator B(d)

∆ = λV 1/2E−1
∆ |V |1/2 has −1 as its lowest eigenvalue.

As in the proof of Proposition 3.3.1, we decompose it as

B
(d)
∆ = λm(d)

µ (∆)V 1/2(F(d)
µ )†F(d)

µ |V |1/2 + λV 1/2M
(d)
∆ |V |1/2

and prove the second summand to be uniformly bounded.
Lemma 3.3.6. Let µ > 0. Let V satisfy Assumption 3.2.3. Then, uniformly in small λ, we
have ∥∥∥V 1/2M

(d)
∆ |V |1/2

∥∥∥
HS

≤ C .

With this one may similarly factor

1+B(d)
∆ = (1+λV 1/2M

(d)
∆ |V |1/2)

1 +
λm(d)

µ (∆)
1 + λV 1/2M

(d)
∆ |V |1/2

V 1/2(F(d)
µ )†F(d)

µ |V |1/2

 (3.14)

and conclude that

T
(d)
∆ := λm(d)

µ (∆)F(d)
µ |V |1/2 1

1 + λV 1/2M
(d)
∆ |V |1/2

V 1/2(F(d)
µ )† (3.15)

has lowest eigenvalue −1.

Proof of Lemma 3.3.6. Note that M∆ has kernel

M∆(x, y) = 1
(2π)d

[∫
|p|<

√
2µ

1
E∆(p)

(
eip·(x−y) − ei

√
µp/|p|·(x−y)

)
dp+

∫
|p|>

√
2µ

1
E∆(p)e

ip·(x−y)dp
]
.

We may bound this exactly as in the proof of Lemma 3.3.4 using that E∆(p) ≥ |p2 − µ|.

3. First order. Expanding the geometric series in (3.15) to first order, we see that

−1 = λm(d)
µ (∆) inf spec

F(d)
µ |V |1/2 1

1 + λV 1/2M
(d)
∆ |V |1/2

V 1/2(F(d)
µ )†


= λm(d)

µ (∆) inf spec V (d)
µ (1 +O(λ)) = λe(d)

µ m(d)
µ (∆)(1 + O(λ)).

Hence, in particular, m(d)
µ (∆) ∼ − 1

λe
(d)
µ

→ ∞ as λ → 0.

4. A priori bounds on ∆. We now prepare for the computation of the integral m(d)
µ (∆)
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in terms of ∆(√µ). This requires two types of bounds on ∆: One bound estimating the
gap function ∆(p) at general momentum p ∈ Rd in terms of ∆(√µ) (see (3.16)), and one
bound controlling the difference |∆(p) − ∆(q)| in some kind of Hölder-continuity estimate
(see (3.17)).
Lemma 3.3.7. Suppose that V is as in Assumption 3.2.1. Then for λ small enough

∆(p) = f(λ)
(∫

Sd−1
V̂ (p− √

µq)dω(q) + ληλ(p)
)
,

where f is some function of λ and ∥ηλ∥L∞(Rd) is bounded uniformly in λ.

Proof. Recall that α is the eigenfunction of E∆ + λV with lowest eigenvalue 0. Then, by the
Birman-Schwinger principle, ϕ = V 1/2α satisfies

B∆ϕ = λV 1/2 1
E∆

|V |1/2V 1/2α = −ϕ.

With the decomposition (3.14) then ϕ is an eigenfunction of

λm(d)
µ (∆)

1 + λV 1/2M
(d)
∆ |V |1/2

V 1/2(F(d)
µ )†F(d)

µ |V |1/2

of eigenvalue −1. Thus, F(d)
µ |V |1/2ϕ is an eigenfunction of T (d)

∆ of (lowest) eigenvalue −1.
Now u = |Sd−1|−1/2 is the unique eigenfunction corresponding to the lowest eigenvalue of V (d)

µ

by radiality of V and the assumption V̂ ≤ 0 (see e.g. [22]). Hence, for λ small enough, u is
the unique eigenfunction of T (d)

∆ of smallest eigenvalue. Thus,

ϕ = f(λ) 1
1 + λV 1/2M

(d)
∆ |V |1/2

V 1/2(F(d)
µ )†u = f(λ)

(
V 1/2(F(d)

µ )†u+ λξλ
)

for some number f(λ). The function ξλ satisfies ∥ξλ∥L2(Rd) ≤ C by Lemma 3.3.6. Noting
that ∆ = −2 ̂|V |1/2ϕ and bounding

∥∥∥∥ ̂|V |1/2ξλ

∥∥∥∥
L∞

≤ ∥V ∥1/2
L1 ∥ξλ∥L2 we get the desired.

Evaluating the formula in Lemma 3.3.7 at p = √
µ we get |f(λ)| ≤ C∆(√µ) for λ small

enough. This in turn implies that

∆(p) ≤ C∆(√µ) . (3.16)

For the Hölder-continuity, we have by rotation invariance∣∣∣∣∫ V̂ (p− √
µr) − V̂ (q − √

µr)dω(r)
∣∣∣∣ =

∣∣∣∣∫ V̂ (|p|e1 − √
µr) − V̂ (|q|e1 − √

µr)dω(r)
∣∣∣∣

=
∣∣∣∣∣ 1
(2π)d/2

∫
Rd

dx
(
V (x)

(
ei|p|x1 − ei|q|x1

) ∫
Sd−1

e−i√µx·rdω(r)
)∣∣∣∣∣

≤ Cϵµ
−ϵ/2||p| − |q||ϵ

∫
dx
(

|V (x)|(√µ|x|)ϵ
∣∣∣∣∫

Sd−1
e−i√µx·rdω(r)

∣∣∣∣) ,
for any 0 < ϵ ≤ 1. For d = 2 we have V ∈ L1(R2) and∣∣∣∣∫

Sd−1
e−i√µxrdω(r)

∣∣∣∣ = |J0(
√
µ|x|)| ≤ (√µ|x|)−1/2.
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For d = 1 we have |x|ϵV ∈ L1(R) for some ϵ > 0 and∣∣∣∣∫
Sd−1

e−i√µx·rdω(r)
∣∣∣∣ = 2| cos(√µ|x|)| ≤ 2.

We conclude that with ϵ = 1/2 for d = 2 and small enough ϵ > 0 for d = 1

|∆(p) − ∆(q)| ≤ C|f(λ)|
(
µ−ϵ/2||p| − |q||ϵ + λ

)
≤ C|∆(√µ)|

(
µ−ϵ/2||p| − |q||ϵ + λ

)
.

(3.17)
Additionally, since m(d)

µ (∆) → ∞ we have that ∆(p) → 0 at least for some p ∈ Rd by (3.9).
Then it follows from Lemma 3.3.7 that f(λ) → 0, i.e. that ∆(p) → 0 for all p.
5. Calculation of the integral m(d)

µ (∆). Armed with the apriori bounds (3.16) and
(3.17), we can now compute the integral m(d)

µ (∆). Carrying out the angular integration and
substituting s =

∣∣∣ |p|2−µ
µ

∣∣∣ we have

m(d)
µ (∆) = µd/2−1

2

∫ 1

0

(1 − s)d/2−1 − 1√
s2 + x−(s)2

+ (1 + s)d/2−1 − 1√
s2 + x+(s)2

 ds

+
∫ 1

0

 1√
s2 + x−(s)2

+ 1√
s2 + x+(s)2

 ds
 ,

where x±(s) = ∆(√µ
√

1±s)
µ

. By dominated convergence, using that x±(s) → 0, the first
integral is easily seen to converge to

∫ 1

0

(
(1 − s)d/2−1 − 1

s
+ (1 + s)d/2−1 − 1

s

)
ds = 2 ln cd

for λ → 0. For the second integral, we will now show that
∫ 1

0

 1√
s2 + x±(s)2

− 1√
s2 + x±(0)2

 ds → 0 .

In fact, the integrand is bounded by∣∣∣∣∣∣ 1√
s2 + x±(s)2

− 1√
s2 + x±(0)2

∣∣∣∣∣∣
= |x±(0)2 − x±(s)2|√

s2 + x±(s)2
√
s2 + x±(0)2(

√
s2 + x±(s)2 +

√
s2 + x±(0)2)

≤ Cx±(0)(sϵ + λ)√
s2 + x±(s)2

√
s2 + x±(0)2

,

using the Hölder continuity from (3.17). By continuity of V̂ there exists some s0 (independent
of λ) such that for s < s0 we have x±(s) ≥ cx±(0). We now split the integration into ∫ s0

0
and ∫ 1

s0
. For the first we have

∫ s0

0

∣∣∣∣∣∣ 1√
s2 + x±(s)2

− 1√
s2 + x±(0)2

∣∣∣∣∣∣ ds ≤ C
∫ s0

0

x±(0)
s2 + x±(0)2 (sϵ + λ)ds = O(x±(0)ϵ + λ) .
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For the second we have
∫ 1

s0

∣∣∣∣∣∣ 1√
s2 + x±(s)2

− 1√
s2 + x±(0)2

∣∣∣∣∣∣ ds ≤ C
∫ 1

s0
x±(0)s

ϵ + λ

s2 ds = O(x±(0)) .

Collecting all the estimates, we have thus shown that m(d)
µ (∆) equals

µd/2−1

ln cd +
∫ 1

0

1√
s2 + ∆(√µ)2/µ2

ds+ o(1)


=µd/2−1

ln cd + ln
µ+

√
µ2 + ∆(√µ)2

|∆(√µ)|

+ o(1)
 = µd/2−1 ln

(
2µcd

|∆(√µ)| + o(1)
)
.

This proves the third inequality in Proposition 3.3.2.
Combining this with the third step, one immediately sees that the gap function evaluated
on the Fermi sphere vanishes exponentially fast, ∆(√µ) ∼ e1/λeµ , as λ → 0, recalling that
e(d)
µ < 0 by assumption.

6. Second order. To obtain the next order, we recall that T (d)
∆ has lowest eigenvalue −1

(see (3.15)), and hence, by first-order perturbation theory,

m(d)
µ (∆) = −1

λ
〈
u
∣∣∣F(d)
µ V (F(d)

µ )†
∣∣∣u〉− λ2

〈
u
∣∣∣F(d)
µ VM

(d)
∆ V (F(d)

µ )†
∣∣∣u〉+O(λ3)

, (3.18)

where u(p) = |Sd−1|−1/2 is the constant function on the sphere. Recall that u is the unique
ground state of V (d)

µ .
In the second order term we have that

lim
λ→0

〈
u
∣∣∣F(d)
µ VM

(d)
∆ V (F(d)

µ )†
∣∣∣u〉 =

〈
u
∣∣∣W (d)

µ

∣∣∣u〉 ,
which follows from a simple dominated convergence argument as for Tc, noting that ∆(p) → 0
pointwise.
By again employing first–order perturbation theory, similarly to the last step in the proof of
Proposition 3.3.1, we conclude the second equality in Proposition 3.3.2.
7. Comparing ∆(√µ) to Ξ. To prove the first equality in Proposition 3.3.2 we separately
prove upper and lower bounds. The upper bound is immediate from

Ξ = inf
p∈Rd

E∆(p) = inf
p∈Rd

√
|p2 − µ| + ∆(p)2 ≤ ∆(√µ) .

Hence, for the lower bound, take p ∈ Rd with
√

|p2 − µ| ≤ Ξ ≤ ∆(√µ). Then by (3.17)

∆(p) ≥ ∆(√µ)−|∆(p)−∆(√µ)| ≥ ∆(√µ)−C∆(√µ) (||p| − √
µ|ϵ + λ) ≥ ∆(√µ)(1+o(1)).

In combination with the upper bound, we have thus shown that Ξ = ∆(√µ)(1 + o(1)) as
desired. This concludes the proof of Proposition 3.3.2.

We conclude this subsection with several remarks, comparing our proof with those of similar
results from the literature.
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Remark 3.3.8 (Structure here vs. in earlier papers on Ξ). We now compare the proof above
to the proofs of the three different limits in 3 dimensions [35, 39, 49]:

• Weak coupling: The structure of our proof here is very similar to that of [35]. Essentially,
only the technical details in Lemma 3.3.6 and the calculation of m(d)

µ (∆) in Step 5 are
different.

• High density: For the high-density limit in [39], we needed some additional a priori
bounds on ∆ before we could employ the Birman-Schwinger argument. Apart from
that, in [39] the comparison of ∆(√µ) and Ξ are done right after these a priori bounds.
Additionally, since one starts with finding a priori bounds on ∆, one does not need the
first-order analysis in Step 3. One may think of the structure in [39] as being ordered in
the above steps as follows: 4, 7, 1, 2, 4 (again), 5, 6.

• Low density: For the low-density limit in [49] the structure is quite different. Again,
one first needs some a priori bounds on ∆ before one can use the Birman-Schwinger
argument. One then improves these bounds on ∆ using the Birman-Schwinger argument,
which in turn can be used to get better bounds on the error term in the decomposition
of the Birman–Schwinger operator. In this sense, the Steps 2–4 are too interwoven to
be meaningfully separated. Also, Step 5 is done in two parts.

3.3.3 Proof of Proposition 3.2.4
Note that W (d)

µ = F(d)
µ VM

(d)
0 V (F(d)

µ )†, where M (d)
0 is defined in (3.10). By Lemma 3.3.4,

V 1/2M
(d)
0 V 1/2 is Hilbert-Schmidt. The integral kernel of W (d)

µ is bounded by

|W (d)
µ (p, q)| ≤ 1

(2π)d
∫
R2d

|V (x)||M (d)
0 (x, y)||V (y)|dxdy ≤ 1

(2π)d∥V ∥1∥V 1/2M
(d)
0 V 1/2∥ HS.

(3.19)
It follows that ∥W (d)

µ ∥ HS ≤ |Sd−1|
(2π)d ∥V ∥1∥V 1/2M

(d)
0 V 1/2∥ HS.
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CHAPTER 4
Boundary Superconductivity in the BCS

Model

Abstract We consider the linear BCS equation, determining the BCS critical temperature,
in the presence of a boundary, where Dirichlet boundary conditions are imposed. In the
one-dimensional case with point interactions, we prove that the critical temperature is strictly
larger than the bulk value, at least at weak coupling. In particular, the Cooper-pair wave
function localizes near the boundary, an effect that cannot be modeled by effective Neumann
boundary conditions on the order parameter as often imposed in Ginzburg–Landau theory. We
also show that the relative shift in critical temperature vanishes if the coupling constant either
goes to zero or to infinity.

4.1 Introduction and Main Result
We study how a boundary influences the critical temperature of a superconductor in the
Bardeen–Cooper–Schrieffer (BCS) model. At superconductor–insulator (or superconductor–
vacuum) boundaries, it is natural to impose Dirichlet boundary conditions on the Cooper-pair
wave function. In several works [1, 12, 15] it was concluded that the presence of the boundary
only affects the Cooper-pair wave function on microscopic scales; in particular, on larger scales
described by Ginzburg–Landau theory (GL), the effect of the Dirichlet boundary conditions
disappears and consequently the GL order parameter should satisfy Neumann boundary
conditions [28, Ch. 7.3], [56, Ch. 6]. This seems to implicitly assume that the effect of the
boundary on the critical temperature is negligible. Recent computations [6, 7, 62] indicate,
however, that the Cooper-pair wave function can localize near the boundary, leading to an
increase in the critical temperature compared to its bulk value. In this paper, we shall give a
rigorous proof of the occurrence of this phenomenon in the simplest setting of one dimension,
with δ-interactions among the particles. We consider a system on the half-line, where the
boundary is then just a point.

The increase of the critical temperature in the presence of a boundary has some far-reaching
implications. First of all, it implies that boundary superconductivity in the BCS model sets in
already above the bulk value of the critical temperature. Second, it questions the validity of
the often employed phenomenological GL theory in the presence of boundaries, as detailed in
[63]. Note that GL theory has so far only been rigorously derived from the BCS model for
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4. Boundary Superconductivity in the BCS Model

periodic systems without boundaries [23]. (In the low-density BEC limit at zero temperature it
was shown in [27] that the effective Gross–Pitaevskii theory inherits the microscopic Dirichlet
boundary conditions.)
In mathematical terms, the presence of a boundary manifests itself in a compact perturbation
of a translation-invariant operator, and we shall show that at weak coupling this leads to the
appearance of discrete eigenvalues outside the continuous spectrum. In particular, there is an
effective attraction to the boundary, which is strong enough to create bound states.
In the following, we shall consider a superconductor on a domain Ω, with either Ω = R or
Ω = R+ = (0,∞). The main quantity of interest is the linear two-particle operator

HΩ
T = −∆x − ∆y − 2µ

tanh
(

−∆x−µ
2T

)
+ tanh

(
−∆y−µ

2T

) − vδ(x− y) (4.1)

acting in L2
symm(Ω2) = {ψ ∈ L2(Ω2)|ψ(x, y) = ψ(y, x) for all x, y ∈ Ω}, where ∆ denotes

the Dirichlet Laplacian on Ω, and the subscripts x and y, respectively, indicate the variable on
which ∆ acts. The first term is defined through functional calculus. In the second term, δ is
the Dirac delta distribution, and v > 0 is a coupling constant. Moreover, T > 0 denotes the
temperature, and µ ∈ R is the chemical potential.
As explained in [21], HΩ

T characterizes the local stability of the normal state in BCS theory. If
HΩ
T has spectrum below zero, i.e. inf σ(HΩ

T ) < 0, the normal state is unstable and the system
in Ω is superconducting. If inf σ(HΩ

T ) ≥ 0, the normal state is locally stable. We define the
critical temperatures TΩ

c as

TΩ
c (v) := inf

{
T ∈ (0,∞)| inf σ(HΩ

T ) ≥ 0
}
. (4.2)

The sample is thus superconducting for T < TΩ
c . In the translation-invariant case, i.e.

Ω = R, it is also known that local stability of the normal state implies global stability [33]; in
particular, the sample is always in a normal state for T ≥ TR

c in this case, i.e. TR
c separates

the superconducting and the normal phases. For the point interactions considered in (4.1),
one can derive the explicit relation

1
2π

∫
R

tanh
(
q2−µ

2TR
c (v)

)
q2 − µ

dq = 1
v
. (4.3)

Because of translation invariance, HR
T has purely essential spectrum. Moreover, HR+

T has the
same essential spectrum and possibly additional eigenvalues below it. In particular, for all
v > 0 the critical temperatures satisfy

TR+
c (v) ≥ TR

c (v). (4.4)

Our main result states that this inequality is actually strict, at least for small v, proving that
the boundary increases the critical temperature. Moreover, the relative difference between the
two critical temperatures vanishes both in the weak and in the strong coupling limit.

Theorem 4.1.1. Let µ > 0.

1. There is a ṽ > 0 such that
TR+
c (v) > TR

c (v) (4.5)
for 0 < v < ṽ.
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4.1. Introduction and Main Result

2. In the weak coupling limit

lim
v→0

TR+
c (v) − TR

c (v)
TR
c (v) = 0 (4.6)

3. In the strong coupling limit

lim
v→∞

TR+
c (v) − TR

c (v)
TR
c (v) = 0 (4.7)

This result can be viewed as a rigorous justification of the observations in [62]. Numerics shows
that the ratio TR+

c (v)/TR
c (v) can be as large as 1.06, see [62, Fig. 2]. Moreover, numerics

also suggests that TR+
c (v) and TR

c (v) actually agree for v large enough, but it remains an
open problem to show this.

Part 1 of Theorem 4.1.1 follows from the existence of an eigenvalue of HR+
T below the spectrum

of HR
T . It is quite remarkable that a Dirichlet boundary can decrease the ground state energy

and create bound states. In contrast, for two-particle Schrödinger operators of the form
−∆x − ∆y + V (x− y), only Neumann boundaries can bind states [18, 59].

While we restrict our attention in this article to the one-dimensional setting with point
interactions, we expect that our methods can be generalized to a larger class of interaction
potentials, as well as to higher dimensions and the corresponding more complicated geometries
possible. We shall leave these generalizations for future investigations, however.

Remark 4.1.2. Our techniques can also be applied in case of Neumann boundary conditions
for ∆ on R+. In this case one obtains the following results instead.

1. For all v > 0
TR+
c (v) > TR

c (v) (4.8)

2. In the weak coupling limit

lim
v→0

TR+
c (v) − TR

c (v)
TR
c (v) = 0 (4.9)

3. In the strong coupling limit

0 < lim
v→∞

TR+
c (v) − TR

c (v)
TR
c (v) < ∞ (4.10)

In the remainder of this article we shall give the proof of Theorem 4.1.1. In the next Section 4.2,
we shall use the Birman–Schwinger principle to conveniently reformulate the problem in terms
of bounded operators and compact perturbations. Section 4.3 contains the proof of part 1,
the existence of boundary superconductivity. The analysis of the weak and strong coupling
limits in parts 2 and 3 is the content of Sections 4.4 and 4.5, respectively. Finally, Section 4.6
contains the proofs of some auxiliary Lemmas.
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4. Boundary Superconductivity in the BCS Model

4.2 Preliminaries
Let us fix the notation

LT,µ(p, q) :=
tanh

(
p2−µ

2T

)
+ tanh

(
q2−µ

2T

)
p2 + q2 − 2µ . (4.11)

Using the partial fraction expansion for tanh (Mittag-Leffler series), one can obtain the series
representation [21]

LT,µ(p, q) = 2T
∑
n∈Z

1
p2 − µ− iwn

1
q2 − µ+ iwn

(4.12)

for wn = π(2n+ 1)T . Moreover, let

FT,µ(p) := LT,µ(p, p) =
tanh

(
p2−µ

2T

)
p2 − µ

(4.13)

and
BT,µ(p, q) := LT,µ

(
p+ q

2 ,
p− q

2

)
(4.14)

In order to control the kinetic energy in HΩ
T the following bounds turn out to be useful. We

shall prove them in Section 4.6.1.

Lemma 4.2.1. Let T > 0. There are constants C1(T, µ), C2(T, µ) > 0 such that for all
p, q ∈ R

C1(T, µ)(1 + p2 + q2) ≤ LT,µ(p, q)−1 ≤ C2(T, µ)(1 + p2 + q2) (4.15)
Moreover, for T0 > 0 there is a C3(T0, µ) > 0 such that

C3(T0, µ)(T + p2 + q2) ≤ LT,µ(p, q)−1 (4.16)

for all T > T0 and p, q ∈ R.

Since vδ(x− y) is infinitesimally form bounded with respect to −∆x − ∆y, it follows that the
HΩ
T are self-adjoint operators defined via the KLMN theorem. Moreover, the operators HΩ

T

become positive for T large enough. In particular, the critical temperatures defined in (4.2)
are finite in both cases Ω = R and Ω = R+.
Let LΩ

T,µ denote the operator LT,µ(−i∇x,−i∇y) defined through functional calculus. Of
course, LΩ

T,µ depends on the domain Ω and on the boundary conditions imposed on ∆. Its
integral kernel is given by

LΩ
T,µ(x, y;x′, y′) =

∫
R2

dp dq tΩ(xp)tΩ(yq)LT,µ(p, q)tΩ(x′p)tΩ(y′q) , (4.17)

where for the problem on the full real line tR(x) = 1√
2πe

−ix and on the half-line with Dirichlet
boundary condition tR+(x) = 1√

π
sin(x). For Neumann boundary conditions, one would have

tR+(x) = 1√
π

cos(x) instead.
It is convenient to switch to the Birman–Schwinger formulation of the problem. For a more
regular interaction V instead of δ, the Birman-Schwinger operator would be V 1/2LΩ

T,µV
1/2.

For the δ-case, it turns out that V 1/2 has to be understood as restriction of a two-body wave
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function to its diagonal. Hence, the Birman-Schwinger operator has kernel LΩ
T,µ(x, x;x′, x′)

and acts on functions of one variable only. For the two domains under consideration, the
Birman-Schwinger operators AR+

T,µ : L2((0,∞)) → L2((0,∞)) and AR
T,µ : L2(R) → L2(R) are

explicitly given by

(AR+
T,µα)(x) = 1

π2

∫
R

dp
∫
R

dq
∫ ∞

0
dy sin(px) sin(qx)LT,µ(p, q) sin(py) sin(qy)α(y) (4.18)

and
(AR

T,µβ)(x) = 1
4π2

∫
R

dp
∫
R

dq
∫
R

dy ei(p+q)(x−y)LT,µ(p, q)β(y) (4.19)

Lemma 4.2.2. The condition inf σ(HΩ
T ) < 0 is equivalent to

sup σ(AΩ
T,µ) > 1

v
(4.20)

for either Ω = R or Ω = R+.

Proof. The quadratic form corresponding to HΩ
T is defined on the Sobolev space DΩ = H1

0 (Ω2).
Since the operator LΩ

T,µ is positive definite, one can write

HΩ
T =

(
LΩ
T,µ

)−1
− vδ = 1√

LΩ
T,µ

(
I − v

√
LΩ
T,µδ

√
LΩ
T,µ

) 1√
LΩ
T,µ

. (4.21)

Hence, inf σ(HΩ
T ) < 0 is equivalent to

sup
ψ∈(LΩ

T,µ)−1/2DΩ,∥ψ∥2=1

〈
ψ
∣∣∣∣√LΩ

T,µδ
√
LΩ
T,µ

∣∣∣∣ψ〉 > 1
v
. (4.22)

By Lemma 4.2.1,
√
LΩ
T,µ : L2(Ω2) → DΩ and its inverse are bounded. Hence, (LΩ

T,µ)−1/2DΩ =
L2(Ω2). The projection onto the diagonal H1(Ω2) → L2(Ω), ψ(x, y) 7→ ψ(x, x) defines a
bounded operator [2, Thm 4.12]. Let MΩ : L2(Ω2) → L2(Ω) be the composition of

√
LΩ
T,µ

with the projection H1(Ω2) → L2(Ω). Explicitly, MΩ is given by

MΩψ(x) =
∫
R2

dp dq
∫

Ω2
dx′dy′ tΩ(xp)tΩ(xq)

√
LT,µ(p, q)tΩ(x′p)tΩ(y′q)ψ(x′, y′) (4.23)

where tR(x) = 1√
2πe

−ix and tR+(x) = 1√
π

sin(x). Note that
√
LΩ
T,µδ

√
LΩ
T,µ = M †

ΩMΩ and
AΩ
T,µ = MΩM

†
Ω. Hence, σ(AΩ

T,µ) \ {0} = σ(
√
LΩ
T,µδ

√
LΩ
T,µ) \ {0} and the claim follows.

From now on we will work with the operators AΩ
T,µ rather than HΩ

T . In momentum space, the
operator AR

T,µ is multiplication by the function

AT,µ(p) = 1
4π

∫
R
BT,µ(p, q)dq , (4.24)

where B is defined in (4.14).

Lemma 4.2.3 (Momentum representation of AR
T,µ). With β̂(p) = 1√

2π
∫
R β(x)eipxdx we have

for all β1, β2 ∈ D(AR
T,µ)

⟨β1|AR
T,µ|β2⟩ =

∫
R
β̂1(p)AT,µ(p)β̂2(p)dp. (4.25)
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4. Boundary Superconductivity in the BCS Model

The following Lemma shows that adding the boundary to the system effectively introduces the
perturbation 1

4πBT,µ, where BT,µ is short for the operator with integral kernel BT,µ(p, q).

Lemma 4.2.4 (Momentum representation of AR+
T,µ). With α̂(p) =

∫∞
0 α(x) 1√

π
cos(px)dx we

have for all α1, α2 ∈ D(AR+
T,µ)

⟨α1|AR+
T,µ|α2⟩ =

∫
R
α̂1(p)AT,µ(p)α̂2(p)dp− 1

4π

∫
R

∫
R
α̂1(p)BT,µ (p, q) α̂2(q)dpdq. (4.26)

Note that here we work with the cosine transform and not the sine transform as might be
expected from (4.18). This is because α is the diagonal of a function which is antisymmetric
under both x → −x and y → −y and hence symmetric under (x, y) → (−x,−y).

Proof or Lemma 4.2.4. Using that sin(px) sin(qx) = 1
2 [cos((p − q)x) − cos((p + q)x)] and

substituting p′ = p− q and q′ = p+ q gives

⟨α1|AR+
T,µ|α2⟩ = 1

π2

∫
R2

dp dq
∫ ∞

0
dx
∫ ∞

0
dy α1(x) sin(px) sin(qx)LT,µ(p, q) sin(py) sin(qy)α2(y)

= 1
4π2

∫
R2

dp′dq′

2

∫ ∞

0
dx
∫ ∞

0
dy
α1(x)[cos(p′x) − cos(q′x)]LT,µ

(
p′ + q′

2 ,
p′ − q′

2

)

× [cos(p′y) − cos(q′y)]α2(y)


=
∫
R2

dp′dq′

8π
[
α̂1(p′) − α̂1(q′)

]
BT,µ(p′, q′) [α̂2(p′) − α̂2(q′)] . (4.27)

Since B(p′, q′) = B(q′, p′), this reduces to

⟨α1|AR+
T,µ|α2⟩ =

∫
R2

dp′dq′

4π α̂1(p′)BT,µ(p′, q′) [α̂2(p′) − α̂2(q′)] . (4.28)

Lemma 4.2.3 follows from an analogous computation.

Since the operator AR
T,µ is multiplication by the function (4.24), it has purely essential spectrum.

The perturbation BT,µ in A
R+
T,µ is Hilbert–Schmidt and thus compact. Hence, σ(AR

T,µ) =
σess(AR+

T,µ). It follows that for all T < TR
c (v) we have sup σ(AR+

T,µ) ≥ sup σ(AR
T,µ) > 1/v,

which implies (4.4).

Remark 4.2.5. Choosing Neumann instead of Dirichlet boundary conditions amounts to
changing the minus sign in (4.26) into a plus sign.

It is possible to give a more explicit expression for sup σ(AR
T,µ). The following is proved in

Section 4.6.1.

Lemma 4.2.6. For all p ∈ R∫
R
BT,µ(p, q)dq ≤

∫
R
BT,µ(0, q)dq . (4.29)
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Consequently,
aT,µ := sup σ(AR

T,µ) = 1
4π

∫
R
BT,µ(0, q)dq . (4.30)

Hence, in the translation invariant case superconductivity is equivalent to aT,µ > 1
v

and the
critical temperature is determined by (4.3). Note that aT,µ is decreasing in T . Therefore,
TR
c (v) is a monotonically increasing function of v.

4.3 Existence of Boundary Superconductivity
From now on we assume that µ > 0. In this Section, we show that for weak coupling the
half-line critical temperature is higher than the bulk critical temperature. The idea is to prove
that for T below a threshold T0 > 0 we have

sup σ(AR+
T,µ) > aT,µ . (4.31)

Then consider v < ṽ := a−1
T0,µ. We must have TR

c (v) < T0 by the monotonicity of TR
c (v).

By definition and continuity of inf σ(HR+
T ) in T , sup σ

(
A

R+

T
R+
c (v),µ

)
= 1

v
= aTR

c (v),µ. If
TR
c (v) = TR+

c (v), we would get a contradiction to (4.31). Thus, TR
c (v) ̸= TR+

c (v) and,
together with (4.4), part 1 of Theorem 4.1.1 follows.
To prove (4.31), we use the variational principle with a trial function mimicking the ground
state found in [62]. We choose ψλϵ (x) = e−ϵ|x| + λg(x), where λ ∈ R and the cosine Fourier
transform ĝ(p) = 1√

π

∫∞
0 g(x) cos(px)dx is real, continuous and centered at 2√

µ.

Proposition 4.3.1. Let ĝ(p) = e−(|p|−2√
µ)2/b for some constant b > 0. For µ > 0 there exists

T0 > 0 such that for T < T0

max
λ

lim
ϵ→0

⟨ψλϵ |AR+
T,µ − aT,µI|ψλϵ ⟩ > 0.

As discussed above, Theorem 4.1.1 1 follows directly from Prop. 4.3.1.

Proof. Let hϵ(x) = e−ϵ|x|. The cosine Fourier transform of the trial state is ψ̂λϵ (p) = ĥϵ(p) +
λĝ(p), where ĥϵ(p) = 1√

π
ϵ

ϵ2+p2 . We have limϵ→0⟨ψλϵ |AR+
T,µ − aT,µI|ψλϵ ⟩ = limϵ→0⟨hϵ|AR+

T,µ −
aT,µI|hϵ⟩ + 2λ limϵ→0⟨g|AR+

T,µ − aT,µI|hϵ⟩ + λ2⟨g|AR+
T,µ − aT,µI|g⟩. In Lemma 4.3.3 we show

⟨g|AR+
T,µ − aT,µI|g⟩ < 0. Maximizing over λ thus yields

max
λ

lim
ϵ→0

⟨ψλϵ |AR+
T,µ−aT,µI|ψλϵ ⟩ = lim

ϵ→0
⟨hϵ|AR+

T,µ−aT,µI|hϵ⟩−
limϵ→0⟨g|AR+

T,µ − aT,µI|hϵ⟩2

⟨g|AR+
T,µ − aT,µI|g⟩

(4.32)

We now compute the two limits. Note that for bounded continuous functions f , we have
limϵ→0

∫
R

1√
π

ϵ
ϵ2+p2f(p)dp =

√
πf(0). Moreover, for bounded functions f such that limp→0

f(p)
p

exists, limϵ→0
∫
R

1
π

ϵ2

(ϵ2+p2)2f(p)dp = 1
π

limp→0
f(p)
p

. With the momentum space representation
of AR+

T,µ in Lemma 4.2.4 we thus obtain

lim
ϵ→0

⟨hϵ|AR+
T,µ − aT,µI|g⟩ = lim

ϵ→0

∫
R

dp ĥϵ(p)ĝ(p) (AT,µ(p) − AT,µ(0))

− lim
ϵ→0

∫
R

dp ĥϵ(p)
∫
R

dq 1
4πBT,µ(p, q)ĝ(q) = − 1

4
√
π

∫
R

dq BT,µ(0, q)ĝ(q). (4.33)
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Moreover,

lim
ϵ→0

⟨hϵ|AR+
T,µ − aT,µI|hϵ⟩

= lim
ϵ→0

∫
R

dp ĥ2
ϵ(p)

∫
R

dq 1
4π (BT,µ(p, q)−BT,µ(0, q))−lim

ϵ→0

∫
R

dp ĥϵ(p)
∫
R

dq 1
4πBT,µ(p, q)ĥϵ(q)

= 1
π

lim
p→0

1
p

∫
R

dq 1
4π (BT,µ(p, q) − BT,µ(0, q)) − 1

4BT,µ(0, 0). (4.34)

In the first summand, we want to interchange limit and integration using dominated convergence.
The following Lemma is proved below.
Lemma 4.3.2. The function f(p, q) = 1

p
(BT,µ(p, q) − BT,µ(0, q))

1. is continuous at p = 0 and satisfies f(0, q) = 0 for all q.

2. There is a g ∈ L1(R) ∩ L∞(R) such that |f(p, q)| ≤ g(q) for all p and q.

By dominated convergence the first term on the right hand side of (4.34) vanishes and thus
limϵ→0⟨hϵ|AR+

T,µ − aT,µI|hϵ⟩ = −1
4BT,µ(0, 0). Combining this with (4.32) and (4.33) yields

max
λ

lim
ϵ→0

⟨ψλϵ |AR+
T,µ − aT,µI|ψλϵ ⟩ = −1

4BT,µ(0, 0) − 1
16π

(
∫
RBT,µ(0, q)ĝ(q)dq)2

⟨g|AR+
T,µ − aT,µ|g⟩

(4.35)

For T → 0 the term BT,µ(0, 0) is bounded while the second summand diverges logarithmically,
which is content of the following Lemma.

Lemma 4.3.3. Let ĝ(p) = e− (|p|−2√
µ)2

b for some b > 0. Then,

1. 4√
µ
e− 4µ

b < limT→0
(
ln µ

T

)−1 ∫
RBT,µ(0, q)ĝ(q)dq < 4√

µ
,

2. 0 ≥ limT→0
(
ln µ

T

)−1
⟨g|AR+

T,µ − aT,µ|g⟩ > −∞.

Therefore, the last term in (4.35) dominates for small T and makes the right hand side positive.
This completes the proof of Prop. 4.3.1.
Remark 4.3.4. For Neumann boundary conditions, one obtains limϵ→0⟨hϵ|AR+

T,µ − aT,µI|hϵ⟩ =
1
4LT,µ(0, 0) > 0. Hence, the trial state hϵ suffices to prove sup σ(AR+

T,µ) > aT,µ for all T > 0.

Proof of Lemma 4.3.2. Using (4.12) one obtains the series representation

f(p, q) = T

8
∑
n∈Z

8µp− p3 + 2pq2 − 16iqwn((
p+q

2

)2
− µ− iwn

)((
p−q

2

)2
− µ+ iwn

)((
q
2

)2
− µ− iwn

)((
q
2

)2
− µ+ iwn

)
(4.36)

where wn = (2n + 1)πT . From this, claim 1 is easy to see. For part 2, note that by
Lemma 4.2.1, |f(p, q)| < C

1+q2 =: g1(q) for |p| > √
µ. For |p| < √

µ,

sup
(p,q)∈R2,|p|<√

µ

|8µp− p3 + 2pq2|∣∣∣∣((p+q
2

)2
− µ− iwn

)((
p−q

2

)2
− µ+ iwn

)∣∣∣∣
≤ sup

(p,q)∈R2,|p|<√
µ

8µ|p| + |p|3 + 2|p|q2√[(
p+q

2

)2
− µ

]2
+ w2

0

√[(
p−q

2

)2
− µ

]2
+ w2

0

=: c1 < ∞ (4.37)
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and

sup
(p,q)∈R2

16|qwn|∣∣∣∣((p+q
2

)2
− µ− iwn

)((
p−q

2

)2
− µ+ iwn

)∣∣∣∣
≤ sup

(p,q)∈R2

16|q|√[(
|p|+|q|

2

)2
− µ

]2
+ w2

0

=: c2 < ∞ (4.38)

With these estimates, one obtains for |p| < √
µ

|f(p, q)| ≤ T (c1 + c2)
8

∑
n∈Z

1(
q2

4 − µ
)2

+ w2
n

(4.39)

Using that the summands are decreasing in n, we can estimate the sum by an integral

|f(p, q)| ≤ T (c1 + c2)
4

 1(
q2

4 − µ
)2

+ w2
0

+
∫ ∞

1/2

1(
q2

4 − µ
)2

+ 4π2T 2x2
dx



= T (c1 + c2)
4

 1(
q2

4 − µ
)2

+ w2
0

+
arctan

(
| q2

4 −µ|
πT

)
2πT | q2

4 − µ|

 =: g2(q) (4.40)

Clearly, g = max{g1, g2} ∈ L1(R) ∩ L∞(R).

The logarithmic divergence in Lemma 4.3.3 originates from the following asymptotics proved
in Section 4.6.2.

Lemma 4.3.5. Let µ > 0. As T → 0∫
R
FT,µ(p)dp = 2

√
µ

(
ln µ

T
+ γ + ln 8

π

)
+ o(1) =

∫ √
2µ

−
√

2µ
FT,µ(p)dp+O(1), (4.41)

where γ denotes the Euler–Mascheroni constant.

Proof of Lemma 4.3.3. Part 1. On the interval [−2
√

2µ, 2
√

2µ] the minimum of ĝ is e− 4µ
b .

We estimate∫ 2
√

2µ

−2
√

2µ
BT,µ(0, p)e− 4µ

b dp ≤
∫
R
BT,µ(0, p)ĝ(p)dp

≤
∫ 2

√
2µ

−2
√

2µ
BT,µ(0, p)dp+

∫
R
χ|p|>2

√
2µ
e− (|p|−2√

µ)2
b

(p/2)2 − µ
dp, (4.42)

where we used ĝ(k) ≤ 1 and tanh(x) ≤ 1. The last summand is some constant independent
of T . Using that BT,µ(0, p) = FT,µ(p/2) and Lemma 4.3.5 the asymptotic behavior for T → 0
is∫ 2

√
2µ

−2
√

2µ
BT,µ(0, p)dp =

∫ 2
√

2µ

−2
√

2µ
FT,µ(p/2)dp = 2

∫ √
2µ

−
√

2µ
FT,µ(p)dp = 4

√
µ

ln µ

T
+O(1) (4.43)
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and the claim follows.
Part 2. Recall that

⟨g|AR+
T,µ−aT,µ|g⟩ =

∫
R

dp ĝ(p)2 (AT,µ(p) − aT,µ)−
∫
R

dp ĝ(p)
∫
R

dq 1
4πBT,µ(p, q)ĝ(q). (4.44)

By Lemma 4.2.6, the first summand is negative and thus also ⟨g|AR+
T,µ−aT,µ|g⟩ < 0. Moreover,

using Lemma 4.2.6 and 0 < ĝ(p) ≤ 1 we have

|⟨g|AR+
T,µ − aT,µ|g⟩| ≤

∫
R

dp ĝ(p)2aT,µ +
∫
R

dp ĝ(p)
∫
R

dq 1
4πBT,µ(0, q). (4.45)

In both terms, the integral over p gives a finite constant independent of T . The claim follows
from the asymptotics in Lemma 4.3.5.

4.4 Weak Coupling Limit
In [62] it was observed by numerical and non-rigorous analytical computations that the
effect of boundary superconductivity disappears in the weak coupling limit, in the sense that
T

R+
c (v)−TR

c (v)
TR

c (v) → 0 for v → 0. In this section we shall verify this claim.

Recall that the bulk critical temperature TR
c (v) is the unique T > 0 such that aT,µ = 1

v
. For

the system on the half-line, we have by continuity of inf σ(HR+
T ) in T

TR+
c (v) = min{T ∈ [0,∞)| sup σ(AR+

T,µ) = v−1}. (4.46)

We want to invert this function and view v as function of TR+
c . We define v(T ) :=

(sup σ(AR+
T,µ))−1. Note that v ◦ TR+

c = id and for all T > 0 we have TR+
c (v(T )) ≤ T .

The claim can be reformulated in terms of the operator AR+
T,µ and aT,µ in the following way.

Lemma 4.4.1. limv→0
T

R+
c (v)−TR

c (v)
TR

c (v) = 0 ⇔ limT→0 inf σ(aT,µI − A
R+
T,µ) = 0.

Proof. By definition, we have sup σ(AR+
T,µ) = 1

v(T ) = aTR
c (v(T )),µ. Hence,

lim
T→0

inf σ(aT,µI − A
R+
T,µ) = lim

T→0
(aT,µ − aTR

c (v(T )),µ) = 1
π

√
µ

lim
T→0

ln
(
TR
c (v(T ))
T

)
(4.47)

where in the last equality we used Lemma 4.3.5 and that T ≥ TR+
c (v(T )) ≥ TR

c (v(T )) ≥ 0
and thus limT→0 T

R
c (v(T )) = 0. Therefore,

lim
T→0

inf σ(aT,µI − A
R+
T,µ) = 0 ⇔ lim

T→0

T − TR
c (v(T ))

TR
c (v(T )) = 0 . (4.48)

There exists a sequence (Tn) such that Tn → 0 as n → ∞ and TR+
c (v(Tn)) = Tn for all n.

Therefore,
lim
T→0

T − TR
c (v(T ))

TR
c (v(T )) = lim

T→0

TR+
c (v(T )) − TR

c (v(T ))
TR
c (v(T )) . (4.49)

Since limT→0 T
R
c (v(T )) = 0, also limT→0 v(T ) = 0. Thus,

lim
T→0

TR+
c (v(T )) − TR

c (v(T ))
TR
c (v(T )) = lim

v→0

TR+
c (v) − TR

c (v)
TR
c (v) (4.50)

and the claim follows.
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Recall the definition of AT,µ in (4.24). With the notation

ET,µ(p) = 4π (aT,µ − AT,µ(p)) (4.51)

we have for all ψ ∈ L2((0,∞))

4π(aT,µI − A
R+
T,µ)ψ(p) = ET,µ(p)ψ(p) +

∫
R
BT,µ(p, q)ψ(q)dq. (4.52)

For the proof of Theorem 4.1.1 2, we need the following intermediate results which are proved
in Section 4.4.1.

Lemma 4.4.2. Let µ > 0. Then

sup
T>0

∥BT,µ∥ < ∞ (4.53)

Lemma 4.4.3. Let I≤ϵ denote multiplication with the characteristic function of the interval
[−ϵ, ϵ] in momentum space. Let µ > 0. Then

lim
ϵ→0

sup
T

∥I≤ϵBT,µI≤ϵ∥≤ lim
ϵ→0

sup
T

∥I≤ϵBT,µI≤ϵ∥HS= 0, (4.54)

where ∥·∥HS denotes the Hilbert–Schmidt norm.

Lemma 4.4.4. Let 0 < ϵ < 2√
µ. For |p| > ϵ we have

ET,µ(p) ≥ c1 ln
(
c2

T

)
(4.55)

for constants c1, c2 > 0 and T small enough.

Proof of Theorem 4.1.1 2. By Lemma 4.4.1 it suffices to prove 0 = limT→0 inf σ(aT,µI −
A

R+
T,µ) = limT→0

1
4π inf σ(ET,µ+BT,µ). By (4.4), we only need to show that limT→0 inf σ(ET,µ+

BT,µ) ≥ 0. For δ > 0 we can write

ET,µ +BT,µ + δ =
√
ET,µ + δ

I + 1√
ET,µ + δ

BT,µ
1√

ET,µ + δ

√ET,µ + δ (4.56)

since ET,µ(p) ≥ 0 by Lemma 4.2.6. We shall show that for all δ > 0

lim
T→0

∥∥∥∥∥∥ 1√
ET,µ + δ

BT,µ
1√

ET,µ + δ

∥∥∥∥∥∥ = 0 . (4.57)

Hence, the operator in the bracket in (4.56) is positive for small T . This implies that for all
δ > 0 for T small enough we have inf σ(ET,µ + BT,µ + δ) > 0. Since δ can be arbitrarily
small, the theorem follows.
To prove (4.57), we use the notation of Lemma 4.4.3 and estimate for an arbitrary 0 < ϵ < 2√

µ∥∥∥∥∥∥ 1√
ET,µ + δ

BT,µ
1√

ET,µ + δ

∥∥∥∥∥∥ ≤

∥∥∥∥∥∥I≤ϵ
1√

ET,µ + δ
BT,µ

1√
ET,µ + δ

I≤ϵ

∥∥∥∥∥∥
+

∥∥∥∥∥∥I≤ϵ
1√

ET,µ + δ
BT,µ

1√
ET,µ + δ

I>ϵ

∥∥∥∥∥∥+

∥∥∥∥∥∥I>ϵ 1√
ET,µ + δ

BT,µ
1√

ET,µ + δ

∥∥∥∥∥∥ . (4.58)
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Now we use that ET,µ ≥ 0 and Lemma 4.4.4 to obtain

lim
T→0

∥∥∥∥∥∥ 1√
ET,µ + δ

BT,µ
1√

ET,µ + δ

∥∥∥∥∥∥ ≤ lim
T→0

1
δ

∥I≤ϵBT,µI≤ϵ∥ + lim
T→0

2c1/2
1

(δ| ln(c2/T )|)1/2 ∥BT,µ∥.

(4.59)
With Lemma 4.4.2 it follows that the second term vanishes and

lim
T→0

∥∥∥∥∥∥ 1√
ET,µ + δ

BT,µ
1√

ET,µ + δ

∥∥∥∥∥∥ ≤ sup
T

1
δ

∥I≤ϵBT,µI≤ϵ∥ . (4.60)

Since ϵ > 0 was arbitrary, (4.57) follows from Lemma 4.4.3.

Remark 4.4.5. In the case of Neumann boundary conditions, the same argument proves
(4.9).

4.4.1 Proofs of Intermediate Results
Proof of Lemma 4.4.2. In order to bound BT,µ(p, q) we apply the following inequality proved
in Section 4.6.3.
Lemma 4.4.6. For all x, y ∈ R and T > 0 it holds that

tanh(x/T ) + tanh(y/T )
x+ y

<
2

|x| + |y|
. (4.61)

Hence, BT,µ(p, q) is bounded above by

f(p, q) = 2
|
(
p+q

2

)2
− µ| + |

(
p−q

2

)2
− µ|

. (4.62)

The function f has singularities at the four points where {|p|, |q|} = {0, 2√
µ}. Since f

diverges linearly at those points, the idea is to do a Schur test with a test function of the
form d(p)α, where d(p) is the distance from the singularities in variable p and α ∈ (0, 1). We
choose the function h(p) = min{|p|, |2√

µ− |p||}1/2. The Schur test gives

sup
T

∥BT,µ∥ ≤ sup
T

sup
p
h(p)

∫
R

BT,µ(p, q)
h(q) dq ≤ sup

p
h(p)

∫
R

f(p, q)
h(q) dq = 2 sup

p>0
h(p)

∫ ∞

0

f(p, q)
h(q) dq,

(4.63)
where we used that h(p)f(p,q)

h(q) = h(|p|)f(|p|,|q|)
h(|q|) for the last equality.

In order to estimate h(p)
∫∞

0
f(p,q)
h(q) dq, we split the domain into nine regions as indicated in

Figure 4.1. The finiteness of the right hand side of (4.63) follows from the bounds listed in
Table 4.1. In the following, we prove the bounds in Table 4.1.
In region 1, we have
∫ ∞

2√
µ+p

f(p, q)
h(q) dq =

∫ ∞

2√
µ+p

4
p2 + q2 − 4µ

1
(q − 2√

µ)1/2 dq ≤
∫ ∞

2√
µ+p

4
(q + 2√

µ)(q − 2√
µ)3/2 dq

≤ 1
√
µ

∫ ∞

2√
µ+p

1
(q − 2√

µ)3/2 dq = 2
√
µp1/2 . (4.64)
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Figure 4.1: The nine regions of the domain of p, q in the proof of Lemma 4.4.2.

Region Expression Upper bound Proof
1 h(p)

∫∞
2√

µ+p
f(p,q)
h(q) dq 2√

µ
(4.64)

2 h(p)
∫ 2√

µ+p
max{2√

µ,p−2√
µ}

f(p,q)
h(q) dq 2√

µ
(4.65)

3 h(p)
∫ p−2√

µ
2√

µ
f(p,q)
h(q) dq 2√

µ
(4.66)

4 h(p)
∫ 2√

µ−p√
µ

f(p,q)
h(q) dq 8·21/2

√
µ

(4.67)
5 h(p)

∫ 2√
µ

max{2√
µ−p,√µ,p−2√

µ}
f(p,q)
h(q) dq 4√

µ
(4.68)

6 h(p)
∫min{2√

µ,p−2√
µ}√

µ
f(p,q)
h(q) dq 21/28√

µ(3−33/4) (4.69)
7 h(p)

∫min{√
µ,2√

µ−p}
0

f(p,q)
h(q) dq 4√

µ
(4.70)

8 h(p)
∫√

µ

|2√
µ−p|

f(p,q)
h(q) dq 4√

µ
(4.71)

9 h(p)
∫min{√

µ,p−2√
µ}

0
f(p,q)
h(q) dq 2√

µ
(4.72)

Table 4.1: Overview of the estimates used in the proof of Lemma 4.4.2.

In region 2, we have

∫ 2√
µ+p

max{2√
µ,p−2√

µ}

f(p, q)
h(q) dq =

∫ 2√
µ+p

max{2√
µ,p−2√

µ}

2
pq(q − 2√

µ)1/2 dq ≤ 2
p

∫ 2√
µ+p

2√
µ

1
q(q − 2√

µ)1/2 dq

≤ 1
p
√
µ

∫ 2√
µ+p

2√
µ

1
(q − 2√

µ)1/2 dq = 2
√
µp1/2 . (4.65)

In region 3, we have p > 4√
µ and

∫ p−2√
µ

2√
µ

f(p, q)
h(q) dq =

∫ p−2√
µ

2√
µ

4
p2 + q2 − 4µ

1
(q − 2√

µ)1/2 dq

≤ 4
p2

∫ p−2√
µ

2√
µ

1
(q − 2√

µ)1/2 dq = 8
p2 (p− 4√

µ)1/2 ≤ 8
p3/2 ≤ 2

√
µp1/2 (4.66)

where we used p > 4√
µ in the last inequality.
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In region 4, we have p < √
µ and

∫ 2√
µ−p

√
µ

f(p, q)
h(q) dq =

∫ 2√
µ−p

√
µ

4
4µ− p2 − q2

1
(2√

µ− q)1/2 dq

=
∫ 2√

µ−p

√
µ

4
(
√

4µ− p2 + q)(
√

4µ− p2 − q)
1

(2√
µ− q)1/2 dq

≤ 1
√
µ

∫ 2√
µ−p

√
µ

4
(
√

4µ− p2 − q)
1

(2√
µ− q)1/2 dq ≤ 1

√
µ

∫ 2√
µ−p

−∞

4
(
√

4µ− p2 − q)3/2 dq

= 8
√
µ(

√
4µ− p2 − 2√

µ+ p)1/2 = 8
√
µ(2√

µ− p)1/4
[
(2√

µ+ p)1/2 − (2√
µ− p)1/2

]1/2

=
8
[
(2√

µ+ p)1/2 + (2√
µ− p)1/2

]1/2

√
µ(2√

µ− p)1/4 (2p)1/2 ≤
8
(
4µ1/4

)1/2

√
µµ1/8 (2p)1/2 = 8 · 21/2

√
µp1/2 , (4.67)

where we used p < √
µ in the last inequality.

In region 5, we have
∫ 2√

µ

max{2√
µ−p,√µ,p−2√

µ}

f(p, q)
h(q) dq =

∫ 2√
µ

max{2√
µ−p,√µ,p−2√

µ}

2
pq

1
(2√

µ− q)1/2 dq

≤ 2
p
√
µ

∫ 2√
µ

max{2√
µ−p,√µ,p−2√

µ}

1
(2√

µ− q)1/2 dq = 4
p
√
µ

min{p,√µ, 4√
µ−p}1/2 ≤ 4

√
µp1/2 .

(4.68)

In region 6, we have p > 3√
µ and

∫ min{2√
µ,p−2√

µ}

√
µ

f(p, q)
h(q) dq =

∫ min{2√
µ,p−2√

µ}

√
µ

4
p2 + q2 − 4µ

1
(2√

µ− q)1/2 dq

≤ 4
p2 − 3µ

∫ 2√
µ

0

1
(2√

µ− q)1/2 dq = 8
p2 − 3µ(2√

µ)1/2 = 8
(p+

√
3µ)(p−

√
3µ)(2√

µ)1/2

≤ 8√
3µ(p1/2 − (3µ)1/4)(p1/2 + (3µ)1/4)(2√

µ)1/2 ≤ 21/28
√
µ(3 − 33/4)p1/2 . (4.69)

In region 7, we have
∫ min{√

µ,2√
µ−p}

0

f(p, q)
h(q) dq =

∫ min{√
µ,2√

µ−p}

0

4
4µ− p2 − q2

1
q1/2 dq

≤ 4
4µ− p2 − min{√

µ, 2√
µ− p}2

∫ min{√
µ,2√

µ−p}

0

1
q1/2 dq =

8 min{√
µ, 2√

µ− p}1/2

4µ− p2 − min{√
µ, 2√

µ− p}2

=


8µ1/4

3µ−p2 if p < √
µ

4
p(2√

µ−p)1/2 if p > √
µ

≤


4µ1/4

µ
if p < √

µ
4√

µ(2√
µ−p)1/2 if p > √

µ
(4.70)

In region 8, we have p > √
µ and

∫ √
µ

|2√
µ−p|

f(p, q)
h(q) dq =

∫ √
µ

|2√
µ−p|

2
pq

1
q1/2 dq ≤ 2

√
µ

∫ ∞

|2√
µ−p|

1
q3/2 dq = 4

√
µ

|2√
µ−p|−1/2. (4.71)
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In region 9, we have p > 2√
µ and

∫ min{√
µ,p−2√

µ}

0

f(p, q)
h(q) dq =

∫ min{√
µ,p−2√

µ}

0

4
p2 + q2 − 4µ

1
q1/2 dq

≤ 4
p2 − 4µ

∫ min{√
µ,p−2√

µ}

0

1
q1/2 dq = 8

(p+ 2√
µ)(p− 2√

µ) min{µ1/4, (p− 2√
µ)1/2}

≤ 2
√
µ(p− 2√

µ)1/2 (4.72)

Proof of Lemma 4.4.3. Let 0 < ϵ <
√
µ. For 0 ≤ |p|, |q| ≤ ϵ we have 2µ−

(
p+q

2

)2
−
(
p−q

2

)2
≥

2µ− 2ϵ2. Together with 0 ≤ tanh(x) ≤ 1 for x ≥ 0 we obtain

0 ≤ BT,µ(p, q) ≤ 1
µ− ϵ2 . (4.73)

Using this estimate, we bound the Hilbert–Schmidt norm as

∥I≤ϵBT,µI≤ϵ∥2
HS=

∫ ϵ

−ϵ

∫ ϵ

−ϵ
BT,µ(p, q)2dpdq ≤ 4ϵ2

(µ− ϵ2)2 . (4.74)

Proof of Lemma 4.4.4. Recall that ET,µ(p) = 4πaT,µ −
∫
RBT,µ(p, q)dq. The idea is to

show that the supremum supp>ϵ,T>0
∫
RBT,µ(p, q)dq < ∞. Then, for T → 0 we have

inf |p|>ϵET,µ(p) ∼ 4πaT,µ ∼ 4√
µ

ln µ
T

.

We shall prove that the following four expressions are finite.

I1 := sup
p>ϵ,T>0

∫ ∞

p+2√
µ
BT,µ(p, q)dq (4.75)

I2 := sup
2√

µ>p>ϵ,T>0

∫ 2√
µ−p

0
BT,µ(p, q)dq (4.76)

I3 := sup
p>2√

µ,T>0

∫ p−2√
µ

0
BT,µ(p, q)dq (4.77)

I4 := sup
p>ϵ,T>0

∫ p+2√
µ

|p−2√
µ|
BT,µ(p, q)dq (4.78)

From this, together with BT,µ(p, q) = BT,µ(|p|, |q|) it follows that

sup
|p|>ϵ,T>0

∫
R
BT,µ(p, q)dq ≤ 2 max

{
sup

2√
µ>p>ϵ,T>0

∫ ∞

0
BT,µ(p, q)dq, sup

p>2√
µ,T>0

∫ ∞

0
BT,µ(p, q)dq

}
≤ 2 max{I2 + I4 + I1, I3 + I4 + I1} < ∞. (4.79)

The following inequality is proved in Section 4.6.3.
Lemma 4.4.7. For x, y > 0

tanh(x) − tanh(y)
x− y

≤ 4e−2 min{x,y} (4.80)
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Applying Lemmas 4.4.6 and 4.4.7 we estimate

BT,µ(p, q) ≤
{ 2
T

exp (−min {(p+ q)2 − 4µ, 4µ− (p− q)2}/4T ) for |p− 2√
µ| < q < p+ 2√

µ
8

|(p+q)2−4µ|+|(p−q)2−4µ| otherwise.
(4.81)

With (4.81) we have

I1 ≤ sup
p>ϵ

∫ ∞

p+2√
µ

4
p2 + q2 − 4µdq ≤

∫ ∞

ϵ+2√
µ

4
q2 − 4µdq < ∞ . (4.82)

Furthermore,

I2 ≤ sup
2√

µ>p>ϵ

∫ 2√
µ−p

0

4
4µ− p2 − q2 dq ≤ sup

2√
µ>p>ϵ

(2√
µ− p) 4

4µ− p2 − (2√
µ− p)2

= sup
2√

µ>p>ϵ

2
p

= 2
ϵ

(4.83)

Moreover,

I3 ≤ sup
p>2√

µ

∫ p−2√
µ

0

4
p2 + q2 − 4µdq = sup

p>2√
µ

4 arctan
(√

p−2√
µ

p+2√
µ

)
√
p2 − 4µ

≤ sup
0<x<1

arctan (x)
√
µx

≤ 1
√
µ

(4.84)
In order to estimate I4, note that (p+ q)2 − 4µ < 4µ− (p− q)2 ⇔ q <

√
4µ− p2. Let

I5 := sup
ϵ<p<2√

µ,T>0

2
T

∫ √
4µ−p2

2√
µ−p

eµ/T−(p+q)2/4Tdq, (4.85)

I6 := sup
ϵ<p<2√

µ,T>0

2
T

∫ 2√
µ+p

√
4µ−p2

e(q−p)2/4T−µ/Tdq, (4.86)

and
I7 := sup

p>2√
µ,T>0

2
T

∫ p+2√
µ

p−2√
µ
e(q−p)2/4T−µ/Tdq. (4.87)

Then we have I4 ≤ max{I5 + I6, I7}. We can bound both I6 and I7 using

I6, I7 ≤ sup
p>ϵ,T>0

2
T

∫ p+2√
µ

p−2√
µ
e(q−p)2/4T−µ/Tdq = sup

T>0

2
T

∫ 2√
µ

−2√
µ
eq

2/4T−µ/Tdq

= sup
T>0

4
√
πe−µ/T
√
T

erfi
(√

µ

T

)
= 4

√
π

√
µ

sup
x>0

xe−x2erfi(x). (4.88)

Since √
π limx→∞ xe−x2erfi(x) = 1, it follows that I6, I7 < ∞.

Finally,

I5 = sup
ϵ<p<2√

µ,T>0

2eµ/T

T

∫ √
4µ−p2+p

2√
µ

e−q2/4Tdq ≤ sup
T>0

2eµ/T

T

∫ ∞

2√
µ
e−q2/4Tdq

= sup
T>0

2
√
πeµ/T√
T

erfc
(√

µ

T

)
= 2

√
π

√
µ

sup
x>0

xex
2erfc(x) (4.89)

Since 0 ≤ erfc(x) ≤ 1 and for x → ∞ asymptotically erfc(x) ∼ e−x2

x
√
π

+ o(e−x2
/x), we have

supx>0 xe
x2erfc(x) < ∞ and obtain I5 < ∞.
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4.5 Strong Coupling Limit
The goal of this section is to prove part 3 of Theorem 4.1.1. As for the weak coupling limit, we
first translate the question about the relative temperature difference into a condition on AR+

T,µ

and aT,µ. While the weak coupling limit turned out to be equivalent to a low temperature
limit, the strong coupling limit corresponds to a high temperature limit. In this limit, the
relevant quantities behave as follows.

Lemma 4.5.1. Let µ > 0. Then

1. limv→∞ TR+
c (v) = ∞

2. limT→∞ TR
c (v(T )) = ∞

3. limT→∞ T 1/2aT,µ = a1,0

4. limT→∞ T 1/2 sup σ(AR+
T,µ) = sup σ(AR+

1,0 )

The proof is provided in Section 4.5.1. We can reformulate Theorem 4.1.13 as follows.

Lemma 4.5.2.
lim
v→∞

TR+
c (v) − TR

c (v)
TR
c (v) = 0 ⇔ sup σ(AR+

1,0 ) = a1,0 (4.90)

Proof. By Lemma 4.5.14 and the definition of v(T ) we have

sup σ(AR+
1,0 ) = lim

T→∞
T 1/2 sup σ(AR+

T,µ) = lim
T→∞

T 1/2aTR
c (v(T )),µ (4.91)

By Lemma 4.5.12 and 3 we get

lim
T→∞

T 1/2aTR
c (v(T )),µ = a1,0 lim

T→∞

(
T

TR
c (v(T ))

)1/2

= a1,0 lim
v→∞

(
TR+
c (v)
TR
c (v)

)1/2

(4.92)

where we used Lemma 4.5.11 and v(TR+
c (v)) = v for the second equality. Since a1,0 > 0, the

claim follows.

Remark 4.5.3. In the case of Neumann boundary conditions, d := sup σ(AR+
1,0 ) − a1,0 > 0.

With the argument in Lemma 4.5.2, we have

lim
v→∞

TR+
c (v) − TR

c (v)
TR
c (v) =

(
d

a1,0
+ 1

)2

− 1 > 0 . (4.93)

We are thus left with showing that sup σ(AR+
1,0 ) = a1,0. Recall that sup σess(AR+

1,0 ) = a1,0.
Hence it suffices to prove that for all ψ ∈ L2((0,∞))

⟨ψ|AR+
1,0 |ψ⟩ = 1

8π

∫
R

∫
R
B1,0(p, q)|ψ(p)−ψ(q)|2dpdq ≤ 1

4π

∫
R

|ψ(p)|2dp
∫
R
B1,0(0, q)dq = ∥ψ∥2

2a1,0.

(4.94)
In order to show this, we shall bound B1,0 by a positive definite kernel K, in such a way that
the right hand side of (4.94) does not change.
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Lemma 4.5.4. Let K be the operator on L2(R2) with integral kernel

K(p, q) = min{B1,0(p, 0), B1,0(q, 0)} (4.95)
Then K satisfies

1. B1,0(p, q) ≤ K(p, q) for all p, q ∈ R

2. K(p, q) = K(q, p) for all p, q ∈ R

3. K is positive definite

4.
∫
RK(p, q)dq ≤

∫
RK(0, q)dq for all p ∈ R

5. B1,0(p, 0) = K(p, 0) for all p ∈ R

This implies (4.94) and hence part 3 of Theorem 4.1.1 since
1
2

∫
R

∫
R
B1,0(p, q)|ψ(p) − ψ(q)|2dpdq ≤ 1

2

∫
R

∫
R
K(p, q)|ψ(p) − ψ(q)|2dpdq

=
∫
R

|ψ(p)|2
∫
R
K(p, q)dqdp− ⟨ψ|K|ψ⟩

≤
∫
R

|ψ(p)|2
∫
R
K(p, q)dqdp

≤ ∥ψ∥2
2

∫
R
K(0, q)dq = ∥ψ∥2

2

∫
R
B1,0(0, q)dq . (4.96)

Proof of Lemma 4.5.4. Property 2 is obvious. Properties 4 and 5 follow from the fact that
K(p, q) = min{F1,0(p/2), F1,0(q/2)} = F1,0(max{|p|, |q|}/2), (4.97)

where F1,0(p) = tanh(p2/2)
p2 has a maximum at p = 0 and is monotonously decreasing for p > 0.

For 1 consider the following inequality, which is proved in Section 4.6.4.
Lemma 4.5.5. For all p, q ∈ R

B1,0(p, q) ≤
tanh

(
p2+q2

8

)
p2+q2

4

(4.98)

Together with the monotonicity of tanh(p)/p for p ≥ 0, it implies 1. For property 3 it suffices
to show that there is a real-valued function g such that

K(p, q) =
∫
R
g(r, p)g(r, q)dr. (4.99)

In fact, let g(r, p) =
√
h(r)χr>p2 with

h(r) = d
dx

tanh(x/2)
x

∣∣∣∣∣
x=−r

≥ 0. (4.100)

With this choice, (4.99) holds since∫
R
g(r, p)g(r, q)dr =

∫ ∞

max{p2,q2}
h(r)dr =

∫ − max{p2,q2}

−∞

d
dx

tanh(x/2)
x

∣∣∣∣∣
x=r

dr

= tanh(max{p2, q2}/2)
max{p2, q2}

= K(p, q) (4.101)
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4.5.1 Proof of Lemma 4.5.1
Proof of Lemma 4.5.1. For part 1 we have limv→∞ TR+

c (v) ≥ limv→∞ TR
c (v) = ∞ by (4.4).

Part 2 follows easily from part 4: Clearly 4 implies that

lim
T→∞

sup σ(AR+
T,µ) = 0. (4.102)

Since aTR
c (v(T )),µ = sup σ(AR+

T,µ) this is equivalent to

lim
T→∞

aTR
c (v(T )),µ = 0. (4.103)

Using that aT,µ is strictly decreasing in T with limT→∞ aT,µ = 0, this in turn is equivalent to

lim
T→∞

TR
c (v(T )) = ∞. (4.104)

For part 3 we have after substituting q/2T 1/2 → q

lim
T→∞

T 1/2aT,µ = 1
2π lim

T→∞

∫
R

tanh
(
q2−µ/T

2

)
q2 − µ/T

dq. (4.105)

Fix some T0 > 0. Since tanh(x)/x is decreasing for x ≥ 0 and bounded by 1, the integrand
is bounded by 1

2χ|q|<2
√
µ/T0

+ 1
q2−µ/T0

χ|q|>2
√
µ/T0

for T > T0. This is an L1 function, so by
dominated convergence we can pull the limit into the integral and arrive at the claim.

Part 4: Let UT denote the unitary transformation UTψ(p) = T 1/4ψ(T 1/2p) on L2(R2). We
shall prove that limT→∞∥UTT 1/2A

R+
T,µU

†
T − A

R+
1,0 ∥ = 0, which implies the claim. Note that

UTT
1/2A

R+
T,µU

†
T = A

R+
1,µ/T (4.106)

Therefore, we have

lim
T→∞

∥UTT 1/2A
R+
T,µU

†
T − A

R+
1,0 ∥ = lim

µ→0
∥AR+

1,µ − A
R+
1,0 ∥

≤ 1
4π lim

µ→0
sup
p

∣∣∣∣∫
R
(B1,µ(p, q) − B1,0(p, q))dq

∣∣∣∣+ 1
4π lim

µ→0
∥B1,µ − B1,0∥ (4.107)

For the second term on the second line of (4.107) we bound the operator norm by the
Hilbert–Schmidt norm

∥B1,µ − B1,0∥2 ≤ ∥B1,µ − B1,0∥2
HS =

∫
R

dp
∫
R

dq (B1,µ(p, q) − B1,0(p, q))2 (4.108)

Using that BT,µ(p, q) ≤ 1/2T and | tanh(x)| ≤ 1 one can bound

B1,µ(p, q)2 ≤ 1
4χp

2+q2≤4µ(p, q) + χp2+q2>4µ(p, q) min
{

1
4 ,

16
(p2 + q2 − 4µ)2

}
=: fµ(p, q).

(4.109)
By the monotonicity of fµ in µ, we have for all ν ≤ µ that (B1,ν(p, q) − B1,0(p, q))2 ≤
2fµ(p, q). Since fµ is an L1 function, dominated convergence implies limµ→0∥B1,µ−B1,0∥ = 0.
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For the first term in the second line of (4.107) we estimate

lim
µ→0

sup
p

∣∣∣∣∫
R
(B1,µ(p, q) − B1,0(p, q))dq

∣∣∣∣ = lim
µ→0

sup
p

∣∣∣∣∣
∫
R

∫ µ

0

∂

∂ν
B1,ν(p, q)dνdq

∣∣∣∣∣
≤ lim

µ→0
µ sup

p
sup
ν∈[0,µ]

∫
R

∣∣∣∣∣ ∂∂νB1,ν(p, q)
∣∣∣∣∣ dq, (4.110)

where we used the triangle inequality and Fubini’s theorem in the last step. By (4.12) we may
write

∂

∂µ
B1,µ(p, q) = 2

∑
n∈Z

1((
p+q

2

)2
− µ− iwn

)2
1(

p−q
2

)2
− µ+ iwn

+ 1(
p+q

2

)2
− µ− iwn

1((
p−q

2

)2
− µ+ iwn

)2 , (4.111)

where wn = π(2n+ 1). Observe that
∣∣∣∣∣
(
p+ q

2

)2
− µ− iwn

∣∣∣∣∣ ≥ wnχ|q|<2√
µ +

√
(q2/4 − µ)2 + w2

nχ|q|>2√
µ (4.112)

and ∣∣∣∣∣
(
p− q

2

)2
− µ+ iwn

∣∣∣∣∣ ≥ wn. (4.113)

Applying Fubini’s theorem to swap integration and summation, we have for all p and µ

∫
R

∣∣∣∣∣ ∂∂µB1,µ(p, q)
∣∣∣∣∣ dq ≤ 2

∑
n∈Z

∫
R

dq
 2
w3
n

χ|q|≤2√
µ +

χ|q|>2√
µ

wn ((q2/4 − µ)2 + w2
n)

+
χ|q|>2√

µ

w2
n

√
(q2/4 − µ)2 + w2

n


= 2

∑
n∈Z

8√
µ

w3
n

+ 2
w

5/2
n

∫ ∞

0
ds
 1

(s2 + 1)
√
s+ µ/wn

+ 1√
(s2 + 1)(s+ µ/wn)

 , (4.114)

where we substituted s = w−1
n (q2/4 − µ). For µ < 1 we therefore obtain a µ-independent

bound

sup
p

sup
ν∈[0,µ]

∫
R

∣∣∣∣∣ ∂∂νB1,ν(p, q)
∣∣∣∣∣ dq

≤ 2
∑
n∈Z

 8
w3
n

+ 2
w

5/2
n

∫ ∞

0
ds
 1

(s2 + 1)
√
s

+ 1√
(s2 + 1)s

 < ∞. (4.115)

Thus, the last expression in (4.110) vanishes and the claim follows.
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4.6 Proofs of Auxiliary Results
4.6.1 From Section 4.2
Proof of Lemma 4.2.1. Note that for all p, q ∈ R

LT,µ(p, q) ≤ min
{

1
2T ,

2
|p2 + q2 − 2µ|

}
(4.116)

Hence, LT,µ(p, q)(1 + p2 + q2) ≤ 1+4T+2µ
2T and LT,µ(p, q)(T + p2 + q2) ≤ 5T+2µ

2T . So with
C1(T, µ) = 2T

1+4T+2µ and C3(T0, µ) = 2T0
5T0+2µ the respective inequalities hold.

For the remaining inequality, note that LT,µ vanishes only at infinity. Let ϵ > 0. There is a
constant c1 such that LT,µ(p, q) > c1 for all |p|, |q| ≤

√
max{2µ, 0} + ϵ. Moreover, if |p| or

|q| >
√

max{2µ, 0} + ϵ, we have

LT,µ(p, q) ≥ tanh((|µ| + ϵ)/2T ) − tanh(µ/2T )
p2 + q2 − 2µ ≥ c2

p2 + q2 + max{−2µ, 0}
(4.117)

In particular, LT,µ(p, q)(1 + p2 + q2) ≥ min{c1, c2, c2/max{−2µ, 0}}.

Proof of Lemma 4.2.6. First, we show that for every x, y ∈ R

tanh(x) + tanh(y)
x+ y

≤ 1
2

(
tanh(x)

x
+ tanh(y)

y

)
(4.118)

Since changing x → −x, y → −y does not change the expressions, we may assume without
loss of generality that x ≥ |y|. Note that

tanh(x) + tanh(y)
x+ y

= 1
2(x+ y)

[
(x+ y)

(
tanh(x)

x
+ tanh(y)

y

)
+ (x− y)

(
tanh(x)

x
− tanh(y)

y

)]
(4.119)

Since tanh(x)/x ≤ tanh(y)/y, the last term is not positive and the inequality (4.118) follows.
For p ∈ R we therefore have∫

R
BT,µ(p, q)dq ≤ 1

2

∫
R

[
FT,µ

(
p+ q

2

)
+ FT,µ

(
p− q

2

)]
dq =

∫
R
FT,µ(q/2)dq. (4.120)

Since FT,µ(q/2) = B(0, q), the claim follows.

4.6.2 From Section 4.3
Proof of Lemma 4.3.5. Substituting by p2 − µ = t for p2 > µ and µ− p2 = t for p2 < µ we
get

∫
R
FT,µ(p)dp = 2

∫ ∞

0

tanh
(
p2−µ

2T

)
p2 − µ

dp = 2
∫ ∞

0

tanh(t/2T )
2t

√
µ+ t

dt+2
∫ µ

0

tanh(t/2T )
2t

√
µ− t

dt. (4.121)

It was shown in [35, Lemma 1] that

lim
T→0

(∫ µ

0

tanh(t/2T )
t

dt− ln µ

T

)
= γ − ln π2 . (4.122)
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By monotone convergence, we observe that

lim
T→0

∫ µ

0

tanh(t/2T )
2t

(
1√
µ− t

− 1
√
µ

)
dt =

∫ µ

0

1
2t

(
1√
µ− t

− 1
√
µ

)
dt = ln 4

2√
µ

(4.123)

as well as

lim
T→0

∫ µ

0

tanh(t/2T )
2t

(
1√
µ+ t

− 1
√
µ

)
dt =

∫ µ

0

1
2t

(
1√
µ+ t

− 1
√
µ

)
dt =

ln
(
2(

√
2 − 1)

)
√
µ

.

(4.124)
Using monotone convergence once more, we obtain

lim
T→0

∫ ∞

µ

tanh(t/2T )
2t

√
µ+ t

dt =
∫ ∞

µ

1
2t

√
µ+ t

dt = ln(
√

2 + 1)
√
µ

. (4.125)

Combining all the terms we arrive at the first equality in (4.41). Observe that

0 <
∫
R
χ|p|>

√
2µFT,µ(p)dp ≤ 2

∫ ∞

√
2µ

1
p2 − µ

dp < ∞. (4.126)

Therefore, this term is of order one for T → 0 and ∫R FT,µ(p)dp =
∫√

2µ
−

√
2µ FT,µ(p)dp+O(1).

4.6.3 From Section 4.4
Proof of Lemma 4.4.6. In the case xy > 0, the inequality follows immediately from the fact
that | tanh(z)| < 1 for all z ∈ R. In the case xy < 0, let us replace y → −y and assume
without loss of generality that x > y > 0. Since the function s 7→ e−2s is convex, we have

e−2y − e−2x

x− y
≤ − d

dse
−2s
∣∣∣∣∣
s=y

= 2e−2y (4.127)

We estimate
x+ y

x− y
(tanh(x)−tanh(y)) = 2(x+ y)

1 + e−2y
e−2y − e−2x

(x− y)(1 + e−2x) ≤ 2(x+ y)e−2y

1 + e−2y min
{

2, 1
x− y

}

≤ 4(2y + 1/2)e−2y

1 + e−2y , (4.128)

where we maximized over x in the last step. The maximum of the last expression over y is
attained at the value y = ỹ satisfying e−2ỹ = 2ỹ − 1/2. Therefore, we get

x+ y

x− y
(tanh(x) − tanh(y)) ≤ 4(2ỹ − 1/2). (4.129)

The function e−2y is decreasing in y and 2y−1/2 is increasing. For y = 1/2 we have e−1 < 1/2,
hence the intersection point ỹ satisfies 0 < ỹ < 1/2 . Thus, x+y

x−y (tanh(x) − tanh(y)) < 2,
which proves the claim.

Proof of Lemma 4.4.7. Without loss of generality, we may assume that y < x. We have

tanh(x) − tanh(y) = ex − e−x

ex + e−x − ey − e−y

ey + e−y = 2 ex−y − ey−x

(ex + e−x)(ey + e−y)

≤ 2e
x−y − ey−x

ex+y = 2(e−2y − e−2x)

Applying (4.127) the claim follows.
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4.6. Proofs of Auxiliary Results

4.6.4 From Section 4.5
Proof of Lemma 4.5.5. By concavity of tanh(x) for x ≥ 0 for x, y ≥ 0 it holds that

tanh(x) + tanh(y)
2 ≤ tanh

(
x+ y

2

)
⇔ tanh(x) + tanh(y)

2(x+ y) ≤
tanh

(
x+y

2

)
x+ y

(4.130)

Choosing x = (p+ q)2/8 and y = (p− q)2/8 gives the desired inequality.
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CHAPTER 5
BCS Critical Temperature on

Half-Spaces

Abstract We study the BCS critical temperature on half-spaces in dimensions d = 1, 2, 3
with Dirichlet or Neumann boundary conditions. We prove that the critical temperature on
a half-space is strictly higher than on Rd, at least at weak coupling in d = 1, 2 and weak
coupling and small chemical potential in d = 3. Furthermore, we show that the relative shift
in critical temperature vanishes in the weak coupling limit.

5.1 Introduction and Results
We study the effect of a boundary on the critical temperature of a superconductor in the
Bardeen-Cooper-Schrieffer model. It was recently observed [6, 7, 62, 63, 68] that the presence
of a boundary may increase the critical temperature. For a one-dimensional system with
δ-interaction, a rigorous mathematical justification was given in [34]. Here, we generalize
this result to generic interactions and higher dimensions. While in dimensions d = 2, 3 the
existing numerical works only consider lattice models, our analytic approach allows us to study
continuum models. We compare the half infinite superconductor with shape Ω1 = (0,∞)×Rd−1

to the superconductor on Ω0 = Rd in dimensions d = 1, 2, 3. We impose either Dirichlet
or Neumann boundary conditions, and prove that in the presence of a boundary the critical
temperature can increase. The critical temperature can be determined from the spectrum of
the two-body operator

HΩ
T = −∆x − ∆y − 2µ

tanh
(

−∆x−µ
2T

)
+ tanh

(
−∆y−µ

2T

) − λV (x− y) (5.1)

acting in L2
sym(Ω×Ω) = {ψ ∈ L2(Ω×Ω)|ψ(x, y) = ψ(y, x) for all x, y ∈ Ω} with appropriate

boundary conditions [21]. Here, ∆ denotes the Dirichlet or Neumann Laplacian on Ω and the
subscript indicates on which variable it acts. Furthermore, T denotes the temperature, µ is
the chemical potential, V is the interaction and λ is the coupling constant. The first term in
HΩ
T is defined through functional calculus.

Importantly, the system is superconducting if inf σ(HΩ
T ) < 0. For translation invariant systems,

i.e. Ω = Rd, it was shown in [33] that superconductivity is equivalent to inf σ(HΩ
T ) < 0.

In this case, there is a unique critical temperature Tc determined by inf σ(HΩ
Tc

) = 0 which
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separates the superconducting and the normal phase. The critical temperatures T 0
c and T 1

c for
Ω = Rd and Ω = Ω1, respectively, are defined as

T jc (λ) := inf{T ∈ (0,∞)| inf σ(HΩj

T ) ≥ 0}. (5.2)

In Lemma 5.2.3 we prove that the inf σ(HΩ1
T ) ≤ inf σ(HΩ0

T ). Therefore, T 1
c (λ) ≥ T 0

c (λ). The
main part is to show that the inequality is strict.

Our strategy involves proving inf σ(HΩ1
T 0

c (λ)) < 0 using the variational principle. The idea is
to construct a trial state involving the ground state of HΩ0

T 0
c (λ). However, HΩ0

T is translation
invariant in the center of mass coordinate and thus has purely essential spectrum. To obtain
a ground state eigenfunction, we remove the translation invariant directions, and instead
consider the reduced operator

H0
T = −∆ − µ

tanh
(

−∆−µ
2T

) − λV (r) (5.3)

acting in L2
s (Rd), where L2

s(Ω) = {ψ ∈ L2(Ω)|ψ(r) = ψ(−r)} (c.f. Lemma 5.2.4). Our
trial state hence involves the ground state of H0

T 0
c (λ). In the weak coupling limit, λ → 0, we

can compute the asymptotic form of this ground state provided that µ > 0 and the operator
Vµ : L2

s(Sd−1) → L2
s(Sd−1) with integral kernel

Vµ(p, q) = 1
(2π)d/2 V̂ (√µ(p− q)) (5.4)

has a non-degenerate eigenvalue eµ = sup σ(Vµ) > 0 at the top of its spectrum [32, 40]. Here,
V̂ (p) = 1

(2π)d/2

∫
Rd V (r)e−ip·rdr denotes the Fourier transform of V . For d = 1, since L2

s(S0)

is a one-dimensional vector space, Vµ is just multiplication by the number eµ = V̂ (0)+V̂ (µ)
2(2π)1/2 .

We make the following assumptions on the interaction potential.

Assumption 5.1.1. Let d ∈ {1, 2, 3} and µ > 0. Assume that

1. V ∈ L1(Rd) ∩ Lpd(Rd), where pd = 1 for d = 1, and pd > d/2 for d ∈ {2, 3},

2. V is radial, V ̸≡ 0,

3. | · |V ∈ L1(Rd),

4. V̂ (0) > 0,

5. eµ = sup σ(Vµ) is a non-degenerate eigenvalue.

Remark 5.1.2. The assumption V ∈ L1(Rd) implies that V̂ is continuous and bounded. The
operator Vµ is thus Hilbert-Schmidt and in particular compact. Due to Assumption 5 we
have eµ > 0. This in turn implies that the critical temperature T 0

c (λ) for the system on Rd

is positive for all λ > 0 ([32, Theorem 3.2] for d = 3, and [40, Theorem 2.5] for d = 1, 2).
Furthermore, radiality of V and Assumption 5 imply that the eigenfunction corresponding to
eµ must be rotation invariant, i.e. the constant function. Assumption 5 is satisfied if V̂ ≥ 0
[32].
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These assumptions suffice to observe boundary superconductivity in d = 1, 2. For d = 3, we
need one additional condition. Let

jd(r;µ) := 1
(2π)d/2

∫
Sd−1

eiω·r√µdω. (5.5)

Define
m̃
D/N
3 (r;µ) :=

∫
R

(
j3(z1, r2, r3;µ)2 − |j3(z1, r2, r3;µ) ∓ j3(r;µ)|2χ|z1|<|r1|

)
dz1∓

π

µ1/2 j3(r;µ)2,

(5.6)
where the indices D and N as well as the upper/lower signs correspond to Dirichlet/Neumann
boundary conditions, respectively. Our main result is as follows:
Theorem 5.1.3. Let d ∈ {1, 2, 3}, µ > 0 and let V satisfy 5.1.1. Assume either Dirichlet or
Neumann boundary conditions. For d = 3 additionally assume that∫

R3
V (r)m̃D/N

3 (r;µ)dr > 0. (5.7)

Then there is a λ1 > 0, such that for all 0 < λ < λ1, T 1
c (λ) > T 0

c (λ).

For d = 3 we prove that (5.7) is satisfied for small enough chemical potential.
Theorem 5.1.4. Let d = 3 and let V satisfy 5.1.11-4. For Dirichlet boundary conditions,
additionally assume that | · |2V ∈ L1(R3) and

∫
R3 V (r)r2dr > 0. Then there is a µ0 > 0

such that for all 0 < µ < µ0,
∫
R3 V (r)m̃D/N

3 (r;µ)dr > 0. In particular, if V additionally
satisfies 5.1.15 for small µ (e.g. if V̂ ≥ 0), then for small µ there is a λ1(µ) > 0 such that
T 1
c (λ) > T 0

c (λ) for 0 < λ < λ1(µ).

Remark 5.1.5. Numerical evaluation of m̃D
3 suggests that m̃D

3 ≥ 0 (see Section 5.5, in
particular Figure 5.1). Hence, for Dirichlet boundary conditions (5.7) appears to hold under the
additional assumption that V ≥ 0. We therefore expect that for Dirichlet boundary conditions
also in 3 dimensions boundary superconductivity occurs for all values of µ. There is no proof
so far, however.
Remark 5.1.6. One may wonder why in d = 1, 2 no condition like (5.7) is needed. Actually, in
d = 1, 2 the analogous condition is always satisfied if V̂ (0) > 0. The reason is that if one defines
m̃
D/N
d (r;µ) by replacing j3 by jd in (5.6), the first term diverges and m̃D/N

d (r;µ) = +∞.

Our second main result is that the relative shift in critical temperature vanishes as λ → 0.
This generalizes the corresponding result for d = 1 with contact interaction in [34].
Theorem 5.1.7. Let d ∈ {1, 2, 3}, µ > 0 and let V satisfy 5.1.1 and V ≥ 0. Then

lim
λ→0

T 1
c (λ) − T 0

c (λ)
T 0
c (λ) = 0. (5.8)

We expect that the additional assumption V ≥ 0 in Theorem 5.1.7 is not necessary; it is
required in our proof, however.
The rest of the paper is organized as follows. In Section 5.2 we prove the Lemmas mentioned
in the introduction. In Section 5.3 we use the Birman-Schwinger principle to study the ground
state of H0

T 0
c (λ). Section 5.4 contains the proof of Theorem 5.1.3. Section 5.5 discusses the

conditions under which (5.7) holds and in particular contains the proof Theorem 5.1.4. In
Section 5.6 we study the relative temperature shift and prove Theorem 5.1.7. Section 5.7
contains the proof of auxiliary Lemmas from Section 5.6.
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5.2 Preliminaries
The following functions will occur frequently

KT,µ(p, q) := p2 + q2 − 2µ
tanh

(
p2−µ

2T

)
+ tanh

(
q2−µ

2T

) (5.9)

and
BT,µ(p, q) := 1

KT,µ(p+ q, p− q) . (5.10)

We will suppress the subscript µ and write KT , BT when the µ-dependence is not relevant.
The following estimate [34, Lemma 2.1] will prove useful.

Lemma 5.2.1. For every T0 > 0 there is a constant C1(T0, µ) > 0 such that for T > T0,
C1(T + p2 + q2) ≤ KT (p, q). For every T > 0 there is a constant C2(T, µ) > 0 such that
KT (p, q) ≤ C2(p2 + q2 + 1).

The minimal value of KT is 2T . Since | tanh(x)| < 1, we have for all p, q ∈ Rd and T ≥ 0

BT (p, q) ≤ 1
max{|p2 + q2 − µ|, 2T}

and BT (p, q)χp2+q2>2µ>0 ≤ C(µ)
1 + p2 + q2 , (5.11)

where C(µ) depends only on µ.

Remark 5.2.2. Assumption 5.1.11 guarantees that V is infinitesimally form bounded with
respect to −∆x − ∆y [50, 59]. By Lemma 5.2.1, HΩ

T defines a self-adjoint operator via the
KLMN theorem. Furthermore, HΩ

T becomes positive for T large enough and hence the critical
temperatures are finite.

Let KΩ
T be the kinetic term in HΩ

T . The corresponding quadratic form acts as ⟨ψ,KΩ
T ψ⟩ =∫

Ω4 ψ(x, y)KΩ
T (x, y;x′, y′)ψ(x′, y′)dxdydx′dy′ where KΩ

T (x, y;x′, y′) is the distribution

KΩ
T (x, y;x′, y′) =

∫
R2d

FΩ(x, p)FΩ(y, q)KT (p, q)FΩ(x′, p)FΩ(y′, q)dpdq, (5.12)

with
FRd(x, p) = e−ip·x

(2π)d/2 and FΩ1(x, p) = (e−ip1x1 ∓ eip1x1)e−ip̃·x̃

21/2(2π)d/2 , (5.13)

where the −/+ sign corresponds to Dirichlet and Neumann boundary conditions, respectively.
Here, x̃ denotes the vector containing all but the first component of x. (In the case d = 1, x̃
is empty and can be omitted.)

Lemma 5.2.3. Let T, λ > 0, d ∈ {1, 2, 3}, and let V satisfy 5.1.11. Then inf σ(HΩ1
T ) ≤

inf σ(HΩ0
T ).

The following Lemma shows that we may use H0
T instead of HΩ0

T to compute T 0
c (λ).

Lemma 5.2.4. Let T, λ > 0, d ∈ {1, 2, 3}, and let V satisfy 5.1.11. Then inf σ(HΩ0
T ) =

inf σ(H0
T ).

Remark 5.2.5. The essential spectrum of H0
T satisfies inf σ ess(H0

T ) = 2T (see e.g. [48, Proof
of Thm 3.7]). Due to continuity of inf σ(H0

T ) in T (see Lemma 5.4.1), inf σ(H0
T 0

c (λ)) = 0. In
particular, zero is an eigenvalue of H0

T 0
c (λ).
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5.2.1 Proof of Lemma 5.2.3

Proof of Lemma 5.2.3. Let Sl be the shift to the right by l in the first component, i.e.
Slψ(x, y) = ψ(((x1 − l), x̃), (y1 − l, ỹ)). Let ψ be a compactly supported function in
H1

sym(R2d), the Sobolev space restricted to functions satisfying ψ(x, y) = ψ(y, x). For l big
enough, Slψ is supported on half-space and satisfies both Dirichlet and Neumann boundary
conditions. The goal is to prove that liml→∞⟨Slψ,HΩ1

T Slψ⟩ = ⟨ψ,HΩ0
T ψ⟩. Then, since

compactly supported functions are dense in H1
sym(R2d), the claim follows.

Note that ⟨Slψ, V Slψ⟩ = ⟨ψ, V ψ⟩. Furthermore, using symmetry of KT in p1 and q1 one
obtains

⟨Slψ,KΩ1
T Slψ⟩ =

∫
R2d

ψ̂(p, q)KT (p, q)
[
ψ̂(p, q) ∓ ψ̂((−p1, p̃), q)ei2lp1 ∓ ψ̂(p, (−q1, q̃))ei2lq1

+ ψ̂((−p1, p̃), (−q1, q̃))ei2l(p1+q1)
]
dpdq (5.14)

for l big enough such that ψ is supported on the half-space. The first term is exactly ⟨ψ,KΩ0
T ψ⟩.

Note that by the Schwarz inequality and Lemma 5.2.1, the function

(p, q) 7→ ψ̂(p, q)KT (p, q)ψ̂((−p1, p̃), q) (5.15)
is in L1(R2d) since ψ ∈ H1(R2d). By the Riemann-Lebesgue Lemma, the second term in
(5.14) vanishes for l → ∞. By the same argument, also the remaining terms vanish in the
limit.

5.2.2 Proof of Lemma 5.2.4
First, we prove the following inequality.

Lemma 5.2.6. For all x, y ∈ R we have
x+ y

tanh(x) + tanh(y) ≥ 1
2

(
x

tanh(x) + y

tanh(y)

)
(5.16)

Proof of Lemma 5.2.6. Suppose |x| ̸= |y|. Without loss of generality we may assume x > |y|.
Since x

tanhx ≥ y
tanh y ,

x

2 tanh x
tanh x− tanh y
tanh x+ tanh y ≥ y

2 tanh y
tanh x− tanh y
tanh x+ tanh y (5.17)

This inequality is equivalent to (5.16), as can be seen using tanhx−tanh y
tanhx+tanh y = 2 tanhx

tanhx+tanh y − 1 =
1 − 2 tanh y

tanhx+tanh y on the left and right side, respectively. By continuity, (5.16) also holds in the
case |x| = |y|.

Proof of Lemma 5.2.4. Let U denote the unitary transform Uψ(r, z) = 1
2d/2ψ((r+ z)/2, (z−

r)/2) for ψ ∈ L2(R2d). By Lemma 5.2.6 we have

UHΩ0
T U † = − (∇r + ∇z)2 − (∇r − ∇z)2 − 2µ

tanh
(

−(∇r+∇z)2−µ
2T

)
+ tanh

(
−(∇r−∇z)2−µ

2T

) + V (r)

≥ 1
2

 − (∇r + ∇z)2 − µ

tanh
(

−(∇r+∇z)2−µ
2T

) + V (r)

+ 1
2

 − (∇r − ∇z)2 − µ

tanh
(

−(∇r−∇z)2−µ
2T

) + V (r)

 (5.18)
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Both summands are unitarily equivalent to 1
2H

0
T ⊗ I, where I acts on L2(Rd). Therefore,

inf σ(HΩ0
T ) ≥ inf σ(H0

T ).

For the opposite inequality let f ∈ H1(Rd) with f(r) = f(−r) and ψϵ(r, z) = e−ϵ
∑d

j=1 |zj |f(r).
Note that ∥ψϵ∥2

2 = 1
ϵd

∥f∥2
2. Since the Fourier transform of e−ϵ|r1| in L2(R) is

√
2
π

ϵ
ϵ2+p2

1
, we

have ψ̂ϵ(p, q) = 2d/2

πd/2
∏d
j=1

ϵ
(ϵ2+p2

j ) f̂(q). Therefore,

⟨ψϵ|UHΩ0
T U †ψϵ⟩

∥ψϵ∥2 = 2d

πd∥f∥2

∫
R2d

KT (p+ q, p− q)
d∏
j=1

ϵ3

(ϵ2 + p2
j)2 |f̂(q)|2dpdq

= 2d

πd∥f∥2

∫
R2d

KT (ϵp+ q, ϵp− q)
 d∏
j=1

1
(1 + p2

j)2

 |f̂(q)|2dpdq, (5.19)

where we substituted p → ϵp in the second step. By Lemma 5.2.1,

KT (ϵp+ q, ϵp− q)
 d∏
j=1

1
(1 + p2

j)2

 |f̂(q)|2 ≤ C(1 + dϵ2 + q2)
 d∏
j=1

1
1 + p2

j

 |f̂(q)|2, (5.20)

which is integrable. With ∫R 1
(1+p2

j )2 dpj = π/2 it follows by dominated convergence that

lim
ϵ→0

⟨ψϵ|UHΩ0
T U †ψϵ⟩

∥ψϵ∥2 = ⟨f |H0
Tf⟩

∥f∥2 . (5.21)

5.3 Ground State of H0
T 0

c (λ)

To study the ground state of H0
T 0

c (λ), it is convenient to apply the Birman-Schwinger principle.
For q ∈ Rd let BT (·, q) denote the operator on L2(Rd) which acts as multiplication by BT (p, q)
(defined in (5.10)) in momentum space. The Birman-Schwinger operator corresponding to
H0
T acts on L2

s (Rd) and is given by

A0
T = V 1/2BT (·, 0)|V |1/2, (5.22)

where we use the notation V 1/2(x) = sgn(V (x))|V |1/2(x). This operator is compact [32, 40].
It follows from the Birman-Schwinger principle that sup σ(A0

T ) = 1/λ exactly for T = T 0
c (λ)

and that the eigenvalue 0 of H0
T 0

c (λ) has the same multiplicity as the largest eigenvalue A0
T 0

c (λ).

Let F : L1(Rd) → L2(Sd−1) act as Fψ(ω) = ψ̂(√µω) and define Oµ = V 1/2F †F|V |1/2 on
L2

s (Rd). Furthermore, let

mµ(T ) =
∫ √

2µ

0
BT (t, 0)td−1dt. (5.23)

Note that mµ(T ) = µd/2−1 (ln (µ/T ) + cd)+o(1) for T → 0, where cd is a number depending
only on d [40, Prop 3.1].

The operator Oµ captures the singularity of A0
T as T → 0. The following has been proved in

[22, Lemma 2] for d = 3 and in [40, Lemma 3.4] for d = 1, 2.
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Lemma 5.3.1. Let d ∈ {1, 2, 3} and µ > 0 and assume 5.1.1. Then,

sup
T∈(0,∞)

∥∥∥A0
T −mµ(T )Oµ

∥∥∥
HS
< ∞, (5.24)

where ∥·∥ HS denotes the Hilbert-Schmidt norm.

Thus, the asymptotic behavior of sup σ(A0
T ) depends on the largest eigenvalue of Oµ. Note

that Oµ is isospectral to Vµ = FV F †, since both operators are compact. The eigenfunction
of Oµ corresponding to the eigenvalue eµ is

Ψ(r) := V 1/2(r)jd(r;µ), (5.25)

where jd was defined in (5.5). Note that

j1(r;µ) =
√

2
π

cos(√µr), j2(r;µ) = J0(
√
µ|r|), j3(r;µ) = 2

(2π)1/2
sin √

µ|r|
√
µ|r|

, (5.26)

where J0 is the Bessel function of order 0. Furthermore

eµ = 1
(2π)d/2

∫
Sd−1

V̂ (√µ((1, 0, ..., 0) − p))dp = 1
|Sd−1|

∫
Rd
V (r)jd(r;µ)2dr (5.27)

The following asymptotics of T 0
c (λ) for λ → 0 was computed in [32, Theorem 3.3] and [40,

Theorem 2.5].

Lemma 5.3.2. Let µ > 0, d ∈ {1, 2, 3} and assume 5.1.1. Then

lim
λ→0

∣∣∣∣∣∣eµmµ(T 0
c (λ)) − 1

λ

∣∣∣∣∣∣ = lim
λ→0

∣∣∣∣∣∣eµµd/2−1 ln
(

µ

T 0
c (λ)

)
− 1
λ

∣∣∣∣∣∣ < ∞. (5.28)

Lemma 5.3.1 does not only contain information about eigenvalues, but also about the
corresponding eigenfunctions. In the following we prove that the eigenstate corresponding to
the maximal eigenvalue of A0

T converges to Ψ.

Lemma 5.3.3. Let µ > 0, d ∈ {1, 2, 3} and assume 5.1.1.

1. There is a λ0 > 0 such that for λ ≤ λ0, the largest eigenvalue of A0
T 0

c (λ) is non-degenerate.

2. Let λ ≤ λ0 and let ΨT 0
c (λ) be the eigenvector of A0

T 0
c (λ) corresponding to the largest

eigenvalue, normalized such that ∥ΨT 0
c (λ)∥2 = ∥Ψ∥2. Pick the phase of ΨT 0

c (λ) such that
⟨ΨT 0

c (λ),Ψ⟩ ≥ 0. Then
lim
λ→0

1
λ

∥Ψ − ΨT 0
c (λ)∥2

2 < ∞ (5.29)

Remark 5.3.4. Let λ0 be as in Lemma 5.3.3. By the Birman-Schwinger principle, the
multiplicity of the largest eigenvalue of A0

T 0
c (λ) equals the multiplicity of the ground state of

H0
T 0

c (λ). Hence, H0
T 0

c (λ) has a unique ground state for λ ≤ λ0. For d ≥ 2, since H0
T 0

c (λ) is
rotation invariant, uniqueness of the ground state implies that the ground state is radial.
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For values of λ such that the operator H0
T 0

c (λ) has a non-degenerate eigenvalue at the bottom
of its spectrum let Φλ be the corresponding eigenfunction, with normalization and phase
chosen such that ΨT 0

c (λ) = V 1/2Φλ. The following Lemma with regularity and convergence
properties of Φλ will be useful.

Lemma 5.3.5. Let d ∈ {1, 2, 3}, µ > 0 and assume 5.1.1. For all 0 < λ < ∞ such that
H0
T 0

c (λ) has a non-degenerate ground state Φλ, we have

1. |Φ̂λ(p)| ≤ C(λ)
1+p2 |V̂ Φλ(p)| ≤ C(λ)∥V ∥1/2

1 ∥Ψ∥2
1+p2 for some number C(λ) depending on λ,

2. p 7→ Φ̂λ(p) is continuous,

3. ∥Φ̂λ∥1 < ∞ and ∥Φλ∥∞ < ∞.

Furthermore, in the limit λ → 0

4. ∥Φ̂λχp2>2µ∥1 = O(λ),

5. ∥Φ̂λ∥1 = O(1),

6. and in particular ∥Φλ∥∞ = O(1).

In three dimensions, because of the additional condition (5.7), we need to compute the limit
of Φλ.

Lemma 5.3.6. Let d = 3, µ > 0 and assume 5.1.1. Then ∥Φλ − j3∥∞ = O(λ1/2) as λ → 0.

5.3.1 Proof of Lemma 5.3.3

Proof of Lemma 5.3.3. Part 1: The proof uses ideas from [35, Proof of Thm 1]. Let MT =
BT (·, 0) −mµ(T )F †F . By Lemma 5.3.1, for λ small enough the operator 1 −λV 1/2MT |V |1/2

is invertible for all T . Then we can write

1 − λA0
T = (1 − λV 1/2MT |V |1/2)

1 − λmµ(T )
1 − λV 1/2MT |V |1/2V

1/2F †F|V |1/2

 (5.30)

Recall that the largest eigenvalue of A0
T 0

c (λ) equals 1/λ. Hence, 1 is an eigenvalue of

λmµ(T 0
c (λ))

1 − λV 1/2MT 0
c (λ)|V |1/2V

1/2F †F|V |1/2 (5.31)

and it has the same multiplicity as the eigenvalue 1/λ of A0
T 0

c (λ). This operator is isospectral
to the self-adjoint operator

F|V |1/2 λmµ(T 0
c (λ))

1 − λV 1/2MT 0
c (λ)|V |1/2V

1/2F †. (5.32)

Note that the operator difference

F|V |1/2 1
1 − λV 1/2MT 0

c (λ)|V |1/2V
1/2F † − Vµ = λF|V |1/2 V 1/2MT 0

c (λ)|V |1/2

1 − λV 1/2MT 0
c (λ)|V |1/2V

1/2F †

(5.33)
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has operator norm of order O(λ) according to Lemma 5.3.1. By assumption, the largest
eigenvalue of Vµ has multiplicity one, and λmµ(T 0

c (λ))eµ = 1 +O(λ) by Lemma 5.3.2. Let
α < 1 be the ratio between the second largest and the largest eigenvalue of Vµ. The second
largest eigenvalue of λmµ(T 0

c (λ))Vµ is of order α +O(λ). Therefore, the largest eigenvalue
of (5.32) must have multiplicity 1 for small enough λ, and it is of order 1 +O(λ), whereas
the rest of the spectrum lies below α+O(λ). Hence, 1 is the maximal eigenvalue of (5.32)
and it has multiplicity 1 for small enough λ.
Part 2: Note that ΨT 0

c (λ) is an eigenvector of (5.31) with eigenvalue 1. Furthermore, let ψλ
be a normalized eigenvector of (5.32) with eigenvalue 1. Then

Ψ̃T 0
c (λ) = ∥Ψ∥2

∥ 1
(1−λV 1/2M

T 0
c (λ)|V |1/2)V

1/2F †ψλ∥2

1
1 − λV 1/2MT 0

c (λ)|V |1/2V
1/2F †ψλ (5.34)

agrees with ΨT 0
c (λ) up to a constant phase. Since ∥ΨT 0

c (λ) − Ψ∥2 ≤ ∥Ψ̃T 0
c (λ) − Ψ∥2, it suffices

to prove that the latter is of order O(λ) for a suitable choice of phase for ψλ.
Let ψ(p) = 1

|Sd−1|1/2 . This is the eigenfunction of Vµ corresponding to the maximal eigenvalue,
and Ψ = V 1/2F †ψ. In particular, for all ϕ ∈ L2(Sd−1),

⟨ϕ,Vµϕ⟩ ≤ eµ|⟨ϕ, ψ⟩|2 + αeµ(∥ϕ∥2
2 − |⟨ϕ, ψ⟩|2) (5.35)

We choose the phase of ψλ such that ⟨ψλ, ψ⟩ ≥ 0. We shall prove that ∥ψλ − ψ∥2
2 = O(λ).

We have by (5.33) and (5.35)

O(λ) = ⟨ψλ, (1 − λmµ(T 0
c (λ))Vµ)ψλ⟩

≥ 1 − λmµ(T 0
c (λ))eµ|⟨ψλ, ψ⟩|2 − λmµ(T 0

c (λ))αeµ(1 − |⟨ψλ, ψ⟩|2)
= O(λ) + (1 − α)(1 − |⟨ψλ, ψ⟩|2) (5.36)

where we used Lemma 5.3.2 for the last equality. In particular, 1 − |⟨ψλ, ψ⟩|2 = O(λ). Hence,

∥ψ − ψλ∥2
2 = 2(1 − ⟨ψλ, ψ⟩) = 21 − ⟨ψλ, ψ⟩2

1 + ⟨ψλ, ψ⟩
= O(λ). (5.37)

Using Lemma 5.3.1 and that V 1/2F † : L2(Sd−1) → L2(Rd) is a bounded operator, and then
(5.37) we obtain

1
1 − λV 1/2MT 0

c (λ)|V |1/2V
1/2F †ψλ = V 1/2F †ψλ +O(λ) = V 1/2F †ψ +O(λ1/2), (5.38)

where O(λ) here denotes a vector with L2-norm of order O(λ). Furthermore,∣∣∣∥(1 − λV 1/2MT 0
c (λ)|V |1/2)−1V 1/2F †ψλ∥2 − ∥V 1/2F †ψ∥2

∣∣∣
≤ ∥(1 − λV 1/2MT 0

c (λ)|V |1/2)−1V 1/2F †ψλ − V 1/2F †ψ∥2 = O(λ1/2). (5.39)

In total, we have

Ψ̃T 0
c (λ) = ∥Ψ∥2

∥V 1/2F †ψ∥2 +O(λ1/2)(V 1/2F †ψ+O(λ1/2)) = ∥Ψ∥2

∥V 1/2F †ψ∥2
V 1/2F †ψ+O(λ1/2)

= Ψ +O(λ1/2) (5.40)
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5.3.2 Regularity and convergence of Φλ

In this section, we prove Lemma 5.3.5 and Lemma 5.3.6. The following standard results (see
e.g. [50, Sections 11.3, 5.1]) will be helpful.

Lemma 5.3.7. 1. Let V ∈ Lp(Rd), where p = 1 for d = 1, p > 1 for d = 2 and p = 3/2
for d = 3. Let ψ ∈ H1(Rd). Then V 1/2ψ ∈ L2.

2. If V ∈ L1(Rd), and ψ ∈ L2(Rd), then V 1/2ψ ∈ L1 and hence V̂ 1/2ψ is continuous and
bounded.

3. For 1 ≤ t, ∥V̂ 1/2ψ∥s ≤ C∥V ∥1/2
t ∥ψ∥2, where s = 2t/(t − 1) and C is some constant

independent of ψ and V .

4. Let f be a radial, measurable function on R3 and p ≥ 1. Then there is a constant C
independent of f such that supp1∈R∥f(p1, ·)∥Lp(R2)= ∥f(0, ·)∥Lp(R2)≤ C(∥f∥pLp(R3) +
∥f∥pL∞(R3))1/p.

Proof. For parts 1 and 2 see e.g. [50, Sections 11.3, 5.1]. For part 3 let s ≥ 2. Applying the
Hausdorff-Young and Hölder inequality gives

∥V̂ 1/2ψ∥s ≤ C∥V 1/2ψ∥p ≤ C∥V ∥1/2
t ∥ψ∥2, (5.41)

where 1 = 1/p+ 1/s and 1 = p/2t+ p/2. Hence, s = 2t/(t− 1).
For part 4 we write

∥f(p1, ·)∥pLp(R2)= 2π
∫ ∞

0
|f(
√
p2

1 + t2)|ptdt = 2π
∫ ∞

|p1|
|f(s)|psds ≤ ∥f(0, ·)∥pLp(R2)

≤ 2π
∫ 1

0
|f(s)|pds+ 2π

∫ ∞

0
|f(s)|ps2ds ≤ 2π∥f∥p∞ + 1

2∥f∥pp, (5.42)

where in the second step we substituted s =
√
p2

1 + t2 and in the third step we used
s ≤ max{1, s2}.

Proof of Lemma 5.3.5. The eigenvalue equation H0
T 0

c (λ)Φλ = 0 implies that

Φ̂λ(p) = λBT 0
c (λ)(p, 0)V̂ Φλ(p). (5.43)

Part (1) follows with Lemma 5.2.1 and 5.3.73 and the normalization ∥V 1/2Φλ∥2 = ∥Ψ∥2. For
part (2), note that p 7→ BT (p, 0) is continuous for T > 0. Since Φλ ∈ H1(Rd), continuity of
V̂ Φλ follows by Lemma 5.3.71 and 2.
Note that ∥Φλ∥∞ ≤ (2π)−d/2∥Φ̂λ∥1 = (2π)−d/2(∥Φ̂λχp2<2µ∥1 + ∥Φ̂λχp2>2µ∥1). In particular,
the second part of (3) and (6) follow from the first part of (3) and (5), respectively. Using
(5.43) and ∥ΨT 0

c (λ)∥2 = ∥Ψ∥2 we obtain

∥Φ̂λχp2<2µ∥1 ≤ λmµ(T 0
c (λ))|Sd−1|∥ ̂V 1/2ΨT 0

c (λ)∥∞ ≤ λmµ(T 0
c (λ))|Sd−1|∥V ∥1/2

1 ∥Ψ∥2,
(5.44)

where mµ was defined in (5.23). In particular, for fixed λ, ∥Φ̂λχp2<2µ∥1 < ∞ and from
Lemma 5.3.2 it follows that ∥Φ̂λχp2<2µ∥1 is bounded for λ → 0.
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It only remains to prove that ∥Φ̂λχp2>2µ∥1 is bounded for fixed λ and is O(λ) for λ → 0. By
(5.11) BT (p, 0)χp2>2µ ≤ C/(1 + p2) for some C independent of T . Using (5.43) and applying
Hölder’s inequality and Lemma 5.3.73,

∥Φ̂λχp2>2µ∥s ≤ Cλ

∥∥∥∥∥ 1
1 + | · |2

∥∥∥∥∥
p

∥ ̂V 1/2ΨT 0
c (λ)∥q ≤ Cλ

∥∥∥∥∥ 1
1 + | · |2

∥∥∥∥∥
p

∥V ∥1/2
t ∥Ψ∥2 (5.45)

where 1/s = 1/p + 1/q and q = 2t/(t − 1). For d = 1 the claim follows with the choice
t = p = 1. For d = 2, V ∈ L1+ϵ for some 0 < ϵ ≤ 1. With the choice t = 1 + ϵ, p =
2t/(t+ 1) > 1 the claim follows.

For d = 3, we may choose 1 ≤ t ≤ 3/2 and 3/2 < p ≤ ∞ which gives

∥Φ̂λχp2>2µ∥s = O(λ) (5.46)

for all 6/5 < s ≤ ∞. We use a bootstrap argument to decrease s to one. Let us use the short
notation B for multiplication with BT (p, 0) in momentum space and F : L2(Rd) → L2(Rd)
the Fourier transform. Using (5.43) one can find by induction that

Φ̂λχp2>2µ = λn(χp2>2µBFV F
†)nΦ̂λχp2>2µ +

n∑
j=1

λj(χp2>2µBFV F
†)jΦ̂λχp2<2µ (5.47)

for any n ∈ Z≥1. The strategy is to prove that applying χp2>2µBFV F
† to an Lr function will

give a function in Ls ∩L∞, where s/r < c < 1 for some fixed constant c. For n large enough,
the first term will be in L1, while the second term is in L1 for all n since Φ̂λχp2<2µ is L1.

Lemma 5.3.8. Let V ∈ L1 ∩ L3/2+ϵ(R3) for some 0 < ϵ ≤ 1/2 and let 1 ≤ r ≤ 3/2 and
f ∈ Lr(R3). Let 2 ≥ q ≥ r and 3/2 < t ≤ ∞.

1. Then,

∥χp2>2µBFV F
†f∥s ≤ C(r, q)

∥∥∥∥∥ 1
1 + | · |2

∥∥∥∥∥
t

∥V ∥q∥f∥r (5.48)

where 1/s = 1/t+ 1/r− 1/q and C(r, q) is a finite number. (For s < 1, ∥·∥s has to be
interpreted as ∥f∥s = (

∫
R3 |f(p)|sdp)1/s.)

2. Let c = ϵ
(3+ϵ)(3+2ϵ) > 0 and let r/(1 + c) ≤ s ≤ ∞. Then ∥χp2>2µBFV F

†f∥s ≤
C(r, s)∥f∥r, where C(r, s) is a finite number.

Proof of Lemma 5.3.8. Part 1: Using (5.11) we have |χp2>2µBFV F
†f(p)| ≤ C

1+p2 |V̂ ∗ f(p)|.
By the Young and Hausdorff-Young inequalities, the convolution satisfies

∥V̂ ∗ f∥p ≤ C(q, r)∥V ∥q∥f∥r (5.49)

for some finite constant C(q, r) where 1/p = 1/r − 1/q. The claim follows from Hölder’s
inequality.

Part 2: For fixed r and choosing q, t in the range r ≤ q ≤ 3/2 + ϵ and 3/2 + ϵ/2 ≤ t ≤ ∞,
s = (1/t+ 1/r − 1/q)−1 can take all values in [r/(1 + c),∞]. The claim follows immediately
from part 1.
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Let n be the smallest integer such that 7
5

1
(1+c)n ≤ 1. To bound the first term in (5.47),

recall from (5.46) that ∥Φ̂λχp2>2µ∥s = O(λ) for s = 7/5. We apply the second part of
Lemma 5.3.8 n times. After the jth step, we have ∥(χp2>2µBFV F

†)jΦ̂λχp2>2µ∥s = O(λ) for
s = 7

5
1

(1+c)j . In the nth step we pick s = 1 and obtain ∥(χp2>2µBFV F
†)nΦ̂λχp2>2µ∥1 = O(λ).

To bound the second term in (5.47) recall that ∥Φ̂λχp2<2µ∥1 = O(1). Applying the first part
of Lemma 5.3.8 with r = 1, t = q = 3/2 + ϵ implies that
∥∥∥∥∥∥
n∑
j=1

λj(χp2>2µBFV F
†)jΦ̂λχp2<2µ

∥∥∥∥∥∥
1

≤
n∑
j=1

λj

C(1, 3/2 + ϵ)
∥∥∥∥∥ 1

1 + | · |2

∥∥∥∥∥
3/2+ϵ

∥V ∥3/2+ϵ

j ∥Φ̂λχp2<2µ∥1 = O(λ). (5.50)

It follows that ∥Φ̂λχp2>2µ∥1 is finite and O(λ) for d = 3.

Proof of Lemma 5.3.6. Using the eigenvalue equation (5.43), we write

Φλ(r) =
∫

|p|>
√

2µ

eip·r

(2π)3/2 Φ̂λ(p)dp

+ λ
∫

|p|<
√

2µ

eip·(r−r′) − ei
√
µ p

|p| ·(r−r′)

(2π)3 BT 0
c (λ)(p, 0)|V |1/2(r′)ΨT 0

c (λ)(r′)dpdr′

+ λ
∫

|p|<
√

2µ

ei
√
µ p

|p| ·(r−r′)

(2π)3 BT 0
c (λ)(p, 0)|V |1/2(r′)(ΨT 0

c (λ)(r′) − V 1/2(r′)j3(r′))dpdr′

+ λ
∫

|p|<
√

2µ

ei
√
µ p

|p| ·(r−r′)

(2π)3 BT 0
c (λ)(p, 0)V (r′)j3(r′)dpdr′ (5.51)

We prove that the first three terms have L∞-norm of order O(λ1/2). For the first term this
follows from Lemma 5.3.5. For the second term in (5.51), we proceed as in the proof of [32,
Lemma 3.1]. First, integrate over the angular variables
∫

|p|<
√

2µ

[
eip·(r−r′) − ei

√
µ p

|p| ·(r−r′)
]
BT 0

c (λ)(p, 0)dp

=
∫

|p|<
√

2µ

[
sin |p||r − r′|

|p||r − r′|
−

sin √
µ|r − r′|

√
µ|r − r′|

]
BT 0

c (λ)(|p|, 0)|p|2d|p|, (5.52)

where we slightly abuse notation writing BT (|p|, 0) for the radial function BT (p, 0). Bounding
the absolute value of this using | sin x/x−sin y/y| < C|x−y|/|x+y| and BT (p, 0) ≤ 1/|p2−µ|
gives

(5.52) ≤ C
∫

|p|<
√

2µ

|p|2

(|p| + √
µ)2 d|p| =: C̃ < ∞. (5.53)

In particular, the second term in (5.51) is bounded uniformly in r by

λ
C̃

(2π)3 ∥V ∥1/2
1 ∥ΨT 0

c (λ)∥2 (5.54)

which is of order O(λ).
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To bound the absolute value of the third term in (5.51), we pull the absolute value into the
integral, carry out the integration over p and use the Schwarz inequality in r′. This results in
the bound

λ
|S2|

(2π)3mµ(T 0
c (λ))∥V ∥1/2

1 ∥ΨT 0
c (λ) − Ψ∥2. (5.55)

By Lemma 5.3.2, λmµ(T 0
c (λ)) is bounded and by Lemma 5.3.3, ∥ΨT 0

c (λ) − Ψ∥2 decays like
λ1/2 for small λ.

The fourth term in (5.51) equals λmµ(T 0
c (λ))F †FV j3, where we carried out the radial part

of the p integration. Recall that j3 = F †1S2 and Vµ1S2 = eµ1S2 , where 1S2 is the constant
function with value 1 on S2. Hence, F †FV j3 = F †Vµ1S2 = eµj3 and the fourth term in
(5.51) equals λmµ(T 0

c (λ))eµj3. By Lemma 5.3.2, λmµ(T 0
c (λ))eµ = 1+O(λ) as λ → 0. Thus,

∥Φλ − j3∥∞ = |λmµ(T 0
c (λ))eµ − 1|∥j3∥∞ +O(λ) = O(λ).

5.4 Proof of Theorem 5.1.3
Instead of directly looking at HΩ1

T , we extend the domain to L2(R2d) by extending the wave-
functions (anti)symmetrically across the boundary. Recall that x̃ denotes the vector containing
all but the first component of x. The half-space operator HΩ1

T with Dirichlet/Neumann
boundary conditions is unitarily equivalent to

H ext
T = KRd

T − λV (x− y)χ|x1−y1|<|x1+y1| − λV (x1 + y1, x̃− ỹ)χ|x1+y1|<|x1−y1| (5.56)

on L2(Rd × Rd) restricted to functions antisymmetric/symmetric under swapping x1 ↔ −x1
and symmetric under exchange of x ↔ y. Next, we express H ext

T in relative and center of
mass coordinates r = x − y and z = x + y. Let U be the unitary on L2(R2d) given by
Uψ(r, z) = 2−d/2ψ((r + z)/2, (z − r)/2). Then

H1
T := UH ext

T U † = UKRd

T U † − λV (r)χ|r1|<|z1| − λV (z1, r̃)χ|z1|<|r1| (5.57)

on L2(R2d) restricted to functions antisymmetric/symmetric under swapping r1 ↔ z1 and
symmetric in r. The spectra of H1

T and HΩ1
T agree.

For an upper bound on inf σ(H1
T ), we restrict H1

T to zero momentum in the translation
invariant center of mass directions and call the resulting operator H̃1

T . The operator H̃1
T acts

on {ψ ∈ L2(Rd × R)|ψ(r, z1) = ψ(−r, z1) = ∓ψ((z1, r̃), r1)}. The kinetic part of H̃1
T reads

K̃T (r, z1; r′, z′
1) =

∫
Rd+1

eip(r−r′)+iq1(z1−z′
1)

(2π)d+1 B−1
T (p, (q1, 0̃))dpdq1. (5.58)

An important property is the continuity of inf σ(H1
T ), proved in Section 5.4.1.

Lemma 5.4.1. Let d ∈ {1, 2, 3} and let V satisfy 5.1.1. Then inf σ(H0
T ) and inf σ(H1

T )
depend continuously on T for T > 0.

To prove Theorem 5.1.3 we show that there is a λ1 > 0 such that for λ ≤ λ1, inf σ(H1
T 0

c (λ)) ≤
inf σ(H̃1

T 0
c (λ)) < 0. For all T < T 0

c (λ) we have by Lemma 5.2.3 that inf σ(H1
T ) ≤ inf σ(HΩ0

T ) <
0. By continuity (Lemma 5.4.1) there is an ϵ > 0 such that inf σ(H1

T ) < 0 for all T < T 0
c (λ)+ϵ.

Therefore, T 1
c (λ) > T 0

c (λ).
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To prove that inf σ(H̃1
T 0

c (λ)) < 0 for small enough λ, we pick a suitable family of trial states
ψϵ(r, z1). Let λ be such that H0

T 0
c (λ) has a unique (and hence radial) ground state Φλ.

According to Remark 5.3.4, this is the case for 0 < λ ≤ λ0. We choose the trial states

ψϵ(r, z1) = Φλ(r)e−ϵ|z1| ∓ Φλ(z1, r̃)e−ϵ|r1|, (5.59)

with the − sign for Dirichlet and + for Neumann boundary conditions. Since Φλ(r) =
Φλ(−r) = Φλ(−r1, r̃), these trial states satisfy the symmetry constraints and lie in the form
domain of H̃1

T . The norm of ψϵ diverges as ϵ → 0.

Remark 5.4.2. The trial state is the (anti-)symmetrization of Φλ(r)e−ϵ|z1|, i.e. the projection
of Φλ(r)e−ϵ|z1| onto the domain of H̃1

T . The intuition behind our choice is that, as we will
see in Section 5.6, at weak coupling the Birman-Schwinger operator corresponding to HΩ1

T

approximately looks like A0
T (defined in (5.22)) on a restricted domain. This is why we want

our trial state to look like the ground state Φλ of H0
T projected onto the domain of H̃1

T .

We shall prove that limϵ→0⟨ψϵ, H̃1
T 0

c (λ)ψϵ⟩ is negative for weak enough coupling. This is the
content of the next two Lemmas, which are proved in Sections 5.4.2 and 5.4.3, respectively.

Lemma 5.4.3. Let d ∈ {1, 2, 3}, µ > 0 and assume 5.1.1. Let λ be such that H0
T 0

c (λ) has a
unique ground state Φλ. Then,

lim
ϵ→0

⟨ψϵ, H̃1
T 0

c (λ)ψϵ⟩ = −2λ
∫

Rd+1
V (r)

−|Φλ(r)∓Φλ(z1, r̃)|2χ|z1|<|r1|+|Φλ(z1, r̃)|2
drdz1

∓ 2π
∫
Rd−1

Φ̂λ(0, p̃)V̂ Φλ(0, p̃)dp̃
, (5.60)

where the upper signs correspond to Dirichlet and the lower signs to Neumann boundary
conditions. For d = 1, the last term in (5.60) is to be understood as ∓2πΦ̂λ(0)V̂ Φλ(0).

For small λ we shall prove that the expression in the round bracket in (5.60) is positive.

Lemma 5.4.4. Let d ∈ {1, 2, 3}, µ > 0 and let V satisfy 5.1.1. Let λ0 be as in Re-
mark 5.3.4. Assume Dirichlet or Neumann boundary conditions. For d = 3 assume that∫
R3 V (r)m̃D/N

3 (r)dr > 0, where m̃D/N
3 was defined in (5.6). Then there is a λ0 ≥ λ1 > 0

such that for λ ≤ λ1 the right hand side in (5.60) is negative.

Therefore, for small enough ϵ, ⟨ψϵ, H̃1
T 0

c (λ)ψϵ⟩ < 0 proving that inf σ(H̃1
T 0

c (λ)) < 0. This
concludes the proof of Theorem 5.1.3.

Remark 5.4.5. The additional condition ∫R3 V (r)m̃D/N
3 (r)dr > 0 for d = 3 is exactly the

limit of the terms in the round brackets in (5.60) for λ → 0. Taking the limit amounts to
replacing Φλ by j3 (cf. Lemma 5.3.6).

5.4.1 Proof of Lemma 5.4.1
Proof of Lemma 5.4.1. Let 0 < T0 < T1 < ∞. We claim that there exists a constant CT0,T1

such that |KT (p, q) −KT ′(p, q)| ≤ CT0,T1 |T − T ′|(1 + p2 + q2) for all T0 ≤ T, T ′ ≤ T1. To
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see this, compute

∂

∂T
KT (p, q) = KT (p, q)

2T 2

sech
(
p2−µ

2T

)2
(p2 − µ) + sech

(
q2−µ

2T

)2
(q2 − µ)

tanh
(
p2−µ

2T

)
+ tanh

(
q2−µ

2T

) . (5.61)

KT can be estimated using Lemma 5.2.1 and the remaining term is bounded.
The kinetic part K0

T of H0
T acts as multiplication by KT (p, 0) in momentum space. For

T0 < T, T ′ < T1 and ψ in the Sobolev space H1(Rd), therefore

⟨ψ, (K0
T −K0

T ′)ψ⟩ ≤ CT0,T1 |T − T ′|∥ψ∥H1(Rd). (5.62)

Similarly, for T0 < T, T ′ < T1 and ψ ∈ H1(R2d),

⟨ψ, (KRd

T −KRd

T ′ )ψ⟩ ≤ CT0,T1 |T − T ′|∥ψ∥H1(R2d). (5.63)

Set D0 = H1(Rd) and D1 := {ψ ∈ H1(R2d)|ψ(x, y) = ψ(y, x) = ∓ψ((−x1, x̃), y)}, where
−/+ corresponds to Dirichlet/Neumann boundary conditions, respectively. Let j ∈ {0, 1} and
ϵ > 0. There is a family {ψT} of functions in Dj such that ∥ψT∥2 = 1 and ⟨ψT , Hj

TψT ⟩ ≤
inf σ(Hj

T ) + ϵ.
We first argue that there is a constant C > 0 such that for all T ∈ [T0, T1] : ∥ψT∥H1 < C.
Recall that 2T lies in the essential spectrum of H0

T . Together with Lemma 5.2.3, ⟨ψT , Hj
TψT ⟩ ≤

2T1 + ϵ. Furthermore, by Lemma 5.2.1, the kinetic part of Hj
T is bounded below by some

constant C1(T0)(1 − ∆), where ∆ denotes the Laplacian in all variables. Since the interaction
is infinitesimally form bounded with respect to the Laplacian, there is a finite constant C2(T0),
such that for all ψ ∈ Dj with ∥ψ∥2 = 1, ⟨ψ,Hj

Tψ⟩ ≥ C1(T0)
2 ⟨ψ, (1 − ∆)ψ⟩ − C2(T0) =

C(T0)
2 ∥ψ∥H1 − C2(T0). In particular, ∥ψT∥H1 ≤ 2

C1(T0)(2T1 + ϵ+ C2(T0)) =: C.

Let T, T ′ ∈ [T0, T1]. Then

inf σ(Hj
T ) + ϵ ≥ ⟨ψT , Hj

TψT ⟩ = ⟨ψT , Hj
T ′ψT ⟩ + ⟨ψT , KT −KT ′ψT ⟩

≥ inf σ(Hj
T ′) − |T − T ′|CT0,T1C. (5.64)

Swapping the roles of T, T ′, we obtain

inf σ(Hj
T ) − ϵ− |T − T ′|CT0,T1C ≤ inf σ(Hj

T ′) ≤ inf σ(Hj
T ) + ϵ+ |T − T ′|CT0,T1C (5.65)

and thus
inf σ(Hj

T ) − ϵ ≤ lim
T ′→T

inf σ(Hj
T ′) ≤ inf σ(Hj

T ) + ϵ. (5.66)

Since ϵ was arbitrary, equality follows. Hence inf σ(Hj
T ) is continuous in T for T > 0.

5.4.2 Proof of Lemma 5.4.3
The following technical lemma will be helpful for d = 3.

Lemma 5.4.6. Let V,W ∈ L1 ∩ L3/2(R3), let W be radial and let ψ ∈ L2(R3). Then∫
R5

|V̂ 1/2ψ(p)| 1
1 + p2 Ŵ (0, p̃− q̃) 1

1 + p2
1 + q̃2 |V̂ 1/2ψ(p1, q̃)|dpdq̃

≤ C∥Ŵ (0, ·)∥L3(R2)∥V ∥3/2∥ψ∥2
2 < ∞ (5.67)

for some constant C independent of V , W and ψ.
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Proof of Lemma 5.4.6. By Lemma 5.3.74, Ŵ (0, ·) ∈ L3(R2)∩L∞(R2). By Young’s inequality,
the integral is bounded by

C∥Ŵ (0, ·)∥L3(R2)

∫
R

∣∣∣∣∣∣
∫
R2

∣∣∣∣∣ 1
1 + p2 V̂

1/2ψ(p)
∣∣∣∣∣
6/5

dp̃

∣∣∣∣∣∣
5/3

dp1 (5.68)

By Lemma 5.3.73, ∥V̂ 1/2ψ∥6 ≤ C∥V ∥1/2
3/2∥ψ∥2. Applying Hölder’s inequality in the p̃ variables,

we obtain the bound

C∥Ŵ (0, ·)∥L3(R2)

∫
R

∣∣∣∣∣
∫
R2

1
(1 + p2)3/2 dp̃

∣∣∣∣∣
4/3 ∣∣∣∣∫

R2
|V̂ 1/2ψ(p)|6dp̃

∣∣∣∣1/3
dp1 (5.69)

Applying Hölder’s inequality in p1, we further obtain

C∥Ŵ (0, ·)∥L3(R2)

∫
R

∣∣∣∣∣
∫
R2

1
(1 + p2)3/2 dp̃

∣∣∣∣∣
2

dp1

2/3

∥V̂ 1/2ψ∥2
6 (5.70)

The remaining integral is finite.

Proof of Lemma 5.4.3. Plugging in the trial state and regrouping terms we obtain

⟨ψϵ, H̃1
T 0

c (λ)ψϵ⟩ = 2
∫
R2d+2

Φλ(r)e−ϵ|z1|(KT (r, z1; r′, z′
1)−λV (r)δ(r−r′)δ(z1−z′

1))Φλ(r′)e−ϵ|z′
1|

∓ Φλ(r)e−ϵ|z1|(KT (r, z1; r′, z′
1) − λV (r)δ(r − r′)δ(z1 − z′

1))e−ϵ|r′
1|Φλ(z′

1, r̃
′)
drdz1dr′dz′

1

+ 2
∫
Rd+1

λV (r)χ|z1|<|r1||Φλ(r)|2e−2ϵ|z1| ∓ Φλ(r)e−ϵ|z1|λV (r)χ|z1|<|r1|e
−ϵ|r1|Φλ(z1, r̃)

+ λV (z1, r̃)χ|r1|<|z1||Φλ(r)|2e−2ϵ|z1| ∓ Φλ(r)e−ϵ|z1|λV (z1, r̃)χ|z1|>|r1|e
−ϵ|r1|Φλ(z1, r̃)

− λV (z1, r̃)|Φλ(r)|2e−2ϵ|z1| ± Φλ(r)e−ϵ|z1|λV (z1, r̃)e−ϵ|r1|Φλ(z1, r̃)
drdz1 (5.71)

We will prove that the first integral vanishes due to the eigenvalue equation H0
T 0

c (λ)Φλ = 0
as ϵ → 0. For the second integral in (5.71), we will show that it is bounded as ϵ → 0 and
argue that it is possible to interchange limit and integration. The limit of the second integral
is exactly the right hand side of (5.60).
The first two terms in the integrand of the second integral in (5.71) can be bounded by
λ∥Φλ∥2

∞|V (r)|χ|z1|<|r1|. This is an L1 function, since | · |V ∈ L1 and ∥Φλ∥∞ < ∞ by
Lemma 5.3.5. The same argument applies to the next two terms as well.
For the fifth term in the second integral, we can interchange limit and integration by dominated
convergence if ∫Rd+1 |V (r)||Φλ(z1, r̃)|2drdz1 < ∞. Observe that∫

Rd+1
|V (r)||Φλ(z1, r̃)|2drdz1 = (2π)1−d/2

∫
R2d−1

Φ̂λ(p)|̂V |(0, p̃− q̃)Φ̂λ(p1, q̃)dpdq̃ (5.72)

According to Lemma 5.3.5(1) the latter is bounded by

C
∫
R2d−1

| ̂V 1/2ΨT 0
c (λ)(p)|

1
1 + p2 |̂V |(0, p̃− q̃) 1

1 + p2
1 + q̃2 | ̂V 1/2ΨT 0

c (λ)(p1, q̃)|dpdq̃ (5.73)
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For d = 1, 2 we bound this by

C∥V ∥2
1∥Ψ∥2

2

∫
R2d−1

1
(1 + p2

1 + p̃2)(1 + p2
1 + q̃2)dpdq̃, (5.74)

which is finite. For d = 3, (5.74) is finite by Lemma 5.4.6 since W = |V | is radial and in
L1 ∩ L3/2. Hence, limit and integration can be interchanged for the fifth term in the second
integral in (5.71).
For the last term in (5.71) we have∫

Rd+1
Φλ(r)e−ϵ|z1|V (z1, r̃)e−ϵ|r1|Φλ(z1, r̃)dz1dr

= 2
π

∫
Rd+1

Φ̂λ(p)
ϵ

ϵ2 + q2
1

ϵ

ϵ2 + p2
1
V̂ Φλ(q1, p̃)dpdq1

= 2
π

∫
Rd+1

Φ̂λ(ϵp1, p̃)
1

1 + q2
1

1
1 + p2

1
V̂ Φλ(ϵq1, p̃)dpdq1. (5.75)

According to Lemma 5.3.5(1) and Lemma 5.3.73, the integrand is bounded by C(λ)
1+p̃2

∥V ∥1∥Ψ∥2
2

(1+q2
1)(1+p2

1) .
For d = 1, 2 this is integrable, so by dominated convergence and since ∫R 1

1+x2 dx = π, this
term converges to the last term in (5.60). For d = 3, the following result will be useful.
Lemma 5.4.7. Let λ, T, µ > 0 and d = 3 and let V satisfy 5.1.1. The functions

f(p1, q1) =
∫
R2

Φ̂λ(p)V̂ Φλ(q1, p̃)dp̃ (5.76)

and
g(p1, q1) =

∫
R2
B−1
T ((p1, p̃), (q1, 0̃))Φ̂λ(p1, p̃)Φ̂λ(q1, p̃)dp̃ (5.77)

are bounded and continuous.

Its proof can be found after the end of the current proof.
We write the term in (5.75) as

2
π

∫
R2

f(ϵp1, ϵq1)
(1 + q2

1)(1 + p2
1)

dp1dq1. (5.78)

By Lemma 5.4.7 we can exchange limit and integration by dominated convergence and (5.78)
converges to the last term in (5.60).
For the second summand in the first integral in (5.71) we also want to argue using dominated
convergence. The interaction term agrees with (5.75). The kinetic term can be written as

4
π

∫
Rd+1

1
(1 + q2

1)(1 + p2
1)
B−1
T ((ϵp1, p̃), (ϵq1, 0̃))Φ̂λ(ϵp1, p̃)Φ̂λ(ϵq1, p̃)dpdq1

= 4
π

∫
R2

1
(1 + q2

1)(1 + p2
1)
g(ϵp1, ϵq1)dp1dq1 (5.79)

For d = 3, we can apply dominated convergence according to Lemma 5.4.7. For d = 1, 2 note
that by Lemma 5.3.5 and Lemma 5.2.1,

B−1
T (p, (q1, 0̃))|Φ̂λ(p)||Φ̂λ(q1, p̃)| ≤ CT,µ,λ

1 + p2 + q2
1

(1 + p2)(1 + q2
1 + p̃2)∥V ∥1∥Ψ∥2

2

≤ 2CT,µ,λ
∥V ∥1∥Ψ∥2

2
1 + p̃2 (5.80)
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Therefore, the integrand is bounded by C∥V ∥1∥Ψ∥2
2

(1+q2
1)(1+p2

1)(1+p̃2) . For d = 1, 2 this is integrable and
we can apply dominated convergence. We conclude that the limit of the second summand in
the first integral in (5.71) as ϵ → 0 equals

4π
∫
Rd−1

(
|Φ̂λ(0, p̃)|2

BT ((0, p̃), 0) − λΦ̂λ(0, p̃)V̂ Φλ(0, p̃)
)

dp̃ = 0 (5.81)

where we used that ∫R 1
1+x2 dx = π and (5.43).

To see that the first summand in the first integral in (5.71) vanishes as ϵ → 0, we use (5.43)
to obtain
2
ϵ
λ
∫
Rd
V (r)|Φλ(r)|2dr = 2

ϵ

∫
Rd
B−1
T (p, 0)|Φ̂λ(p)|2dp = 4

π

∫
Rd+1

ϵ2

(ϵ2 + q2
1)2B

−1
T (p, 0)|Φ̂λ(p)|2dpdq1.

(5.82)
Hence, we need to prove that

lim
ϵ→0

∫
Rd+1

ϵ2

(ϵ2 + q2
1)2 (B−1

T (p, (q1, 0̃)) − B−1
T (p, 0))|Φ̂λ(p)|2dpdq1 = 0 (5.83)

We split the integration into two regions with |q1| > C1 and |q1| < C1, respectively. By
Lemma 5.2.1, we have B−1

T (p, q) ≤ C2(1 + p2 + q2). Together with Φλ ∈ H1(Rd) therefore
∫
Rd+1,|q1|>C1

ϵ2

(ϵ2 + q2
1)2 |B−1

T (p, (q1, 0̃)) − B−1
T (p, 0)||Φ̂λ(p)|2dpdq1

≤ 2C2

∫
R2,|q1|>C1

ϵ2(1 + p2 + q2
1)|Φ̂λ(p)|2

q4
1

dpdq1 < C3ϵ
2∥Φλ∥2

H1 , (5.84)

which vanishes in the limit ϵ → 0. For the case |q1| < C, the following Lemma is useful. Its
proof can be found at the end of this Section.
Lemma 5.4.8. Let T, µ > 0, d ∈ {1, 2, 3}. The function

k(p, q) := 1
|q|

(BT (p, q) − BT (p, 0)) (5.85)

is continuous at q = 0 and satisfies k(p, 0) = 0 for all p ∈ Rd. Furthermore, there is a constant
C depending only on T, µ, d such that |k(p, q)| < C

1+p2 for all p, q ∈ Rd.

Since B−1
T (p, q) − B−1

T (p, 0) = − |q|k(p,q)
BT (p,q)BT (p,0) , we have

∫
Rd+1,|q1|<C1

ϵ2

(ϵ2 + q2
1)2 (B−1

T (p, (q1, 0̃)) − B−1
T (p, 0))|Φ̂λ(p)|2dpdq1

= −
∫
Rd+1

|q1|χ|q1|<C1/ϵ

(1 + q2
1)2

k(p, (ϵq1, 0̃))
BT (p, (ϵq1, 0̃))BT (p, 0)

|Φ̂λ(p)|2dpdq1 (5.86)

By Lemma 5.2.1 and Lemma 5.4.8, we can bound the absolute value of the integrand by

C
|q1|χ|q1|<C1/ϵ

(1 + q2
1)2 (1 + p2 + ϵ2q2

1)|Φ̂λ(p)|2 ≤ C
|q1|

(1 + q2
1)2 (1 + p2 + C2

1)|Φ̂λ(p)|2 (5.87)

The latter is integrable since Φλ ∈ H1(Rd). Thus, by dominated convergence and since
k(p, 0) = 0, the integral vanishes in the limit ϵ → 0.
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Proof of Lemma 5.4.7. For convenience, we introduce the notation Df(p, q1) = λBT (p, 0)
and

Dg(p, q1) = λ2BT (p, 0)BT (p, (q1, 0̃))−1BT ((q1, p̃), 0). (5.88)
For h ∈ {f, g}, Df (p, q1), Dg(p, q1) ≤ C

1+p̃2 by Lemma 5.2.1 and (5.11). Furthermore,

h(p1, q1) =
∫
Rd−1

V̂ Φλ(p1, p̃)Dh(p, q1)V̂ Φλ(q1, p̃)dp̃ (5.89)

using (5.43).
Lemma 5.4.9. For h ∈ {f, g},

sup
p1,q1,w1∈R

∥Dh((p1, ·), q1)V̂ Φλ(w1, ·)∥L1(R2) ≤ sup
w1∈R

∥∥∥∥∥ C

1 + | · |2
V̂ Φλ(w1, ·)

∥∥∥∥∥
L1(R2)

< ∞. (5.90)

Proof. Using Hölder’s inequality,

∥Dh((p1, ·), q1)V̂ Φλ(w1, ·)∥L1(R2) ≤
∥∥∥∥∥ C

1 + | · |2
V̂ Φλ(w1, ·)

∥∥∥∥∥
L1(R2)

≤ 1
(2π)3/2

∫
R2

∫
R3

C

1 + p̃2 |V̂ ((w1, p̃) − k)||Φ̂λ(k)|dkdp̃

≤ C

∥∥∥∥∥ 1
1 + | · |2

∥∥∥∥∥
Lr(R2)

∫
R

(∫
R2

|V̂ (w1 − k1, p̃)|sdp̃
)1/s (∫

R2
|Φ̂λ(k)|dk̃

)
dk1

≤ C

∥∥∥∥∥ 1
1 + | · |2

∥∥∥∥∥
Lr(R2)

sup
k1

∥V̂ (k1, ·)∥s∥Φ̂λ∥1, (5.91)

where 1 = 1/r + 1/s. For this to be finite we need r > 1, i.e. s < ∞. By Lemma 5.3.74,
supq1∥V̂ (q1, ·)∥3 < ∞. Furthermore ∥Φ̂λ∥1 is bounded by Lemma 5.3.5.

The functions f and g are bounded, as can be seen using that ∥V̂ Φλ∥∞ ≤ C∥V ∥1/2
1 ∥ΨT 0

c (λ)∥2
by Lemma 5.3.73 and ∥ΨT 0

c (λ)∥2 = 1, hence we get that for h ∈ {f, g}

|h(p1, q1)| ≤ C∥V ∥1/2
1 sup

p1,q1
∥Dh((p1, ·), q1)V̂ Φλ(q1, ·)∥L1(R2), (5.92)

which is finite by Lemma 5.4.9. To see continuity, we write for h ∈ {f, g}

|h(p1 + ϵ1, q1 + ϵ2) − h(p1, q1)| ≤∣∣∣∣∣∣
∫
R2

(V̂ Φλ(p1 + ϵ1, p̃) − V̂ ϕT,λ(p))Dh((p1 + ϵ1, p̃), q1 + ϵ2)V̂ Φλ(q1 + ϵ2, p̃)dp̃

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
R2
V̂ Φλ(p)Dh((p1 + ϵ1, p̃), q1 + ϵ2)(V̂ Φλ(q1 + ϵ2, p̃) − V̂ Φλ(q1, p̃))dp̃dk

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
R2
V̂ Φλ(p)(Dh((p1 + ϵ1, p̃), q1 + ϵ2) −Dh(p, q1))V̂ Φλ(q1, p̃)dp̃

∣∣∣∣∣∣
 (5.93)

Observe that

|V̂ Φλ(p1 + ϵ1, p̃) − V̂ Φλ(p)| ≤ 1
(2π)d/2

∫
Rd

|eiϵ1r1 − 1||V (r)||Φλ(r)|dr ≤ ϵ1∥Φλ∥∞∥| · |V ∥1

(2π)d/2

(5.94)
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With Lemma 5.4.9 and Lemma 5.3.5, we bound the first two terms in (5.93) by Cϵ1 and Cϵ2,
respectively. Hence they vanish as ϵ1, ϵ2 → 0. The absolute value of the integrand in the
last term in (5.93) is bounded by ∥V̂ Φλ∥∞

2C
1+p̃2 V̂ Φλ(q1, p̃). By Lemma 5.4.9, this is an L1

function. Hence, when taking the limit ϵ1, ϵ2 → 0, we are allowed to pull the limit into the
integral by dominated convergence, showing that also the last term vanishes. Therefore, the
functions f and g are continuous.

Proof of Lemma 5.4.8. This Lemma is a generalization of [34, Lemma 3.2] and its proof
follows the same ideas. For |q| > 1, Lemma 5.2.1 implies the bound |k(p, q)| < C

1+p2 . For
|q| < 1, we use the partial fraction expansion (see [34, (2.2)])

k(p, q) = 2T
∑
n∈Z

|q|(2µ− q2 − 2p2 + 4(p · q
|q|)

2) − 4iwnp · q
|q|(

(p+ q)2 − µ− iwn
) (

(p− q)2 − µ+ iwn
)

(p2 − µ− iwn) (p2 − µ+ iwn)
(5.95)

where wn = (2n+ 1)πT . Continuity of k follows e.g. using the Weierstrass M-test. Noting
that wn = −w−n−1, it is easy to see that k(p, 0) = 0.

With the estimates

sup
(p,q)∈R2d,|q|<1

∣∣∣∣∣∣
|q|(2µ− q2 − 2p2 + 4(p · q

|q|)
2)(

(p+ q)2 − µ− iwn
) (

(p− q)2 − µ+ iwn
)
∣∣∣∣∣∣

≤ sup
(p,q)∈R2d,|q|<1

|q|(2µ+ q2 + 6p2)√[
(p+ q)2 − µ

]2
+ w2

0

√[
(p− q)2 − µ

]2
+ w2

0

=: c1 < ∞ (5.96)

and

sup
(p,q)∈R2d,|q|<1

∣∣∣∣∣∣ 4iwnp(
(p+ q)2 − µ− iwn

) (
(p− q)2 − µ+ iwn

)
∣∣∣∣∣∣

≤ sup
(p,q)∈R2d,|q|<1

4|p|√[
(p+ q)2 − µ

]2
+ w2

0

=: c2 < ∞ (5.97)

one obtains
|k(p, q)| ≤ 2T (c1 + c2)

∑
n∈Z

1
(p2 − µ)2 + w2

n

(5.98)

Using that the summands are decreasing in n, we can estimate the sum by an integral

|k(p, q)| ≤ 4T (c1 + c2)
[

1
(p2 − µ)2 + w2

0
+
∫ ∞

1/2

1
(p2 − µ)2 + 4π2T 2x2

dx
]

= 4T (c1 + c2)
 1

(p2 − µ)2 + w2
0

+
arctan

(
|p2−µ|
πT

)
2πT |p2 − µ|

 < C
1

1 + p2 (5.99)

for some constant C independent of p and q.
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5.4.3 Proof of Lemma 5.4.4
Proof of Lemma 5.4.4. Recall that ΨT 0

c (λ) = V 1/2Φλ with normalization ∥ΨT 0
c (λ)∥2

2 = ∥Ψ∥2
2 =∫

Rd V (r)jd(r)2dr, where jd was defined in (5.5). Recall from (5.60) that

− 1
2λ lim

ϵ→0
⟨ψϵ, H1

T 0
c (λ),λψϵ⟩ =

∫
Rd+1

V (r)|Φλ(z1, r̃)|2drdz1

−
∫
Rd+1

V (r)|Φλ(z1, r̃) ∓ Φλ(r)|2χ|z1|<|r1|drdz1 ∓ 2π
∫
Rd−1

Φ̂λ(0, p̃)V̂ Φλ(0, p̃)dp̃ (5.100)

The claim follows, if we prove that the right hand side is positive in the limit λ → 0. For
d ∈ {1, 2} we prove that the terms on the second line are bounded and the first term diverges
as λ → 0. For d = 3 the first term is bounded too, so we need to compute the limit of all
terms. The idea is that in the limit, one would like to replace Φλ by j3 using Lemmas 5.3.3
and 5.3.6. We consider each of the three summands in (5.100) separately.
Second term: The second term is bounded by 4∥| · |V ∥1∥Φλ∥2

∞, which is bounded for small
λ by Lemma 5.3.5. For d = 3 we want to compute the limit. By Lemma 5.3.6 the integrand
is bounded by 8|V (r)|∥j3∥2

∞χ|z1|<|r1| for λ small enough, which is integrable. By dominated
convergence, the term thus converges to

−
∫
R4
V (r)|j3(z1, r̃) ∓ j3(r)|2χ|z1|<|r1|drdz1. (5.101)

Third term: Using (5.43) the third term in (5.100) equals

∓2πλ
∫
Rd−1

| ̂V 1/2ΨT 0
c (λ)(0, p̃)|2BT 0

c (λ)((0, p̃), 0)dp̃ (5.102)

For d = 1, this is bounded by 2πλBT 0
c (λ)(0, 0)∥ ̂V 1/2ΨT 0

c (λ)∥2
∞. By Lemma 5.3.73 and since

supT BT (0, 0) = 1
µ
, this is O(λ) as λ → 0. For d = 2 we use (5.11) to bound (5.102) by

2πλ
∫

|p̃|2<2µ
BT 0

c (λ)((0, p̃), 0)dp̃∥ ̂V 1/2ΨT 0
c (λ)∥2

∞ + Cλ
∫

|p̃|2>2µ

1
1 + p̃2 dp̃∥ ̂V 1/2ΨT 0

c (λ)∥2
∞,

(5.103)
where C is independent of λ. By Lemma 5.3.73 ∥ ̂V 1/2ΨT 0

c (λ)∥∞ is bounded as λ → 0. The
second term in (5.103) thus vanishes as λ → 0. For the first term, recall from (5.23) that∫

|p̃|2<2µBT 0
c ,µ

((0, p̃), 0)dp̃ = 2πmd=2
µ (T 0

c (λ)). By Lemma 5.3.2 the first term is bounded for
small λ. For d = 3, we rewrite (5.102) as

∓ 2πλ
∫
p̃2>2µ

| ̂V 1/2ΨT 0
c (λ)(0, p̃)|2BT 0

c
((0, p̃), 0)dp̃

∓ λ
∫
p̃2<2µ

∫
R6
V 1/2ΨT 0

c (λ)(x)e
ip̃·(x̃−ỹ) − ei

√
µ p̃

|p̃| ·(x̃−ỹ)

(2π)2 BT 0
c
((0, p̃), 0)V 1/2ΨT 0

c (λ)(y)dxdydp̃

∓ λ
∫
p̃2<2µ

∫
R6

(
V 1/2ΨT 0

c (λ)(x) − V j3(x)
)ei√µ p̃

|p̃| ·(x̃−ỹ)

(2π)2 BT 0
c
((0, p̃), 0)V 1/2ΨT 0

c (λ)(y)dxdydp̃

∓ λ
∫
p̃2<2µ

∫
R6
V (x)j3(x)e

i
√
µ p̃

|p̃| ·(x̃−ỹ)

(2π)2 BT 0
c
((0, p̃), 0)

(
V 1/2ΨT 0

c (λ)(y) − V j3(y)
)

dxdydp̃

∓ λ
∫
p̃2<2µ

∫
R6
V (x)j3(x)e

i
√
µ p̃

|p̃| ·(x̃−ỹ)

(2π)2 BT 0
c
((0, p̃), 0)V (y)j3(y)dxdydp̃. (5.104)
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We prove that the first four integrals vanish as λ → 0 and compute the limit of the expression
in the last line.
Using (5.11), Lemma 5.3.73 and ΨT 0

c (λ) = V 1/2Φλ the first term in (5.104) is bounded by

Cλ∥V ∥1/2
1 ∥ΨT 0

c (λ)∥2

∥∥∥∥∥ 1
1 + | · |2

V̂ Φλ(0, ·)
∥∥∥∥∥
L1(R2)

(5.105)

where C is independent of λ. By (5.91),∥∥∥∥∥ 1
1 + | · |2

V̂ Φλ(0, ·)
∥∥∥∥∥
L1(R2)

≤
∥∥∥∥∥ 1

1 + | · |2

∥∥∥∥∥
L3/2(R2)

sup
k1

∥V̂ (k1, ·)∥3∥Φ̂λ∥1 (5.106)

By Lemma 5.3.74, supk1∥V̂ (k1, ·)∥3 < ∞. Furthermore ∥Φ̂λ∥1 is bounded uniformly in λ by
Lemma 5.3.5. In total, the first term in (5.104) is O(λ) as λ → 0.
For the second line of (5.104) we use that

sup
λ>0

sup
x̃,ỹ∈R2

∣∣∣∣∣∣
∫
R2,p̃2<2µ

eip̃·(x̃−ỹ) − ei
√
µ p̃

|p̃| ·(x̃−ỹ)

(2π)3 BT 0
c (λ)((0, p̃), 0)dp̃

∣∣∣∣∣∣ < ∞, (5.107)

as was shown in the proof of [40, Lemma 3.4]. Applying the Schwarz inequality, the second
line is bounded by Cλ∥V ∥1∥ΨT 0

c (λ)∥2
2 for some constant C and vanishes for λ → 0.

We bound the third line of (5.104) by

λ

(2π)2

∫
R2,p̃2<2µ

∫
R6

|(V 1/2Ψλ(x) − V j3(x))|BT 0
c (λ)((0, p̃), 0)|V 1/2ΨT 0

c (λ)(y)|dxdydp̃

≤ λ
|S1|

(2π)2m
d=2
µ (T 0

c (λ))∥V ∥1∥ΨT 0
c (λ)∥2∥ΨT 0

c (λ) − Ψ∥2, (5.108)

where in the second step we carried out the p̃ integration and used the Schwarz inequality in
x and y. By Lemma 5.3.2, λmd=2

µ (T 0
c (λ)) is bounded and by Lemma 5.3.3, ∥ΨT 0

c (λ) − Ψ∥2

decays like λ1/2. Hence, this vanishes for λ → 0. Similarly, the fourth integral in (5.104) is
bounded by

λ
|S1|

(2π)2m
d=2
µ (T 0

c (λ))∥V ∥1∥V 1/2j3∥2∥ΨT 0
c (λ) − Ψ∥2, (5.109)

which vanishes for λ → 0.
For the last line of (5.104) we first carry out the integration over x, y and the radial part of p̃,
and then use that V̂ j3 is a radial function. This way we obtain

∓λmd=2
µ (T 0

c (λ))2π
∫
S1

|V̂ j3(0,
√
µw)|2dw = ∓λmd=2

µ (T 0
c (λ))π

∫
S2

|V̂ j3(
√
µw)|2dw

(5.110)
The latter integral equals ⟨|V |1/2j3, OµV

1/2j3⟩ = eµ
∫
R3 V (x)j3(x)2dx. By Lemma 5.3.2,

lim
λ→0

λmd=2
µ (T 0

c (λ))eµ = lim
λ→0

λ ln(µ/T 0
c (λ))eµ = 1

µ1/2 . (5.111)

Therefore, the limit of the last line of (5.104) for λ → 0 equals

∓ π

µ1/2

∫
R3
V (x)j3(x)2dx. (5.112)

108



5.4. Proof of Theorem 5.1.3

First term: It remains to consider the first term in (5.100). If V ≥ 0, one could argue
directly using the convergence of Φλ in Lemma 5.3.6 for d = 3. However, the analogue of
Lemma 5.3.6 does not hold for d = 1. Instead, the strategy is to use the L2-convergence of
the ground state in the Birman-Schwinger picture, Lemma 5.3.3. This approach also allows us
to treat V that take negative values.

Switching to momentum space and using the eigenvalue equation (5.43), we rewrite the first
term in (5.100) as

(2π)1− d
2

∫
R2d−1

Φ̂λ(p)V̂ (0, p̃− q̃)Φ̂λ(p1, q̃)dpdq̃ = (2π)1− d
2λ2⟨ΨT 0

c (λ), DT 0
c (λ)ΨT 0

c (λ)⟩, (5.113)

where DT is the operator given by

⟨ψ,DTψ⟩ =
∫
R2d−1

̂|V |1/2ψ(p)BT (p, 0)V̂ (0, p̃− q̃)BT ((p1, q̃), 0) ̂|V |1/2ψ(p1, q̃)dpdq̃ (5.114)

for ψ ∈ L2(Rd). We decompose (5.113) as

(2π)1− d
2λ2⟨ΨT 0

c (λ), DT 0
c (λ)ΨT 0

c (λ)⟩ = (2π)1− d
2λ2

(
⟨ΨT 0

c (λ) − Ψ, DT 0
c (λ)ΨT 0

c (λ)⟩

+ ⟨Ψ, DT 0
c (λ)(ΨT 0

c (λ) − Ψ)⟩ + ⟨Ψ, DT 0
c (λ)Ψ⟩

)
. (5.115)

Recall that by Lemma 5.3.3, ∥ΨT 0
c

− Ψ∥2 = O(λ1/2). The strategy is to prove that ∥DT∥
and ⟨Ψ, DTΨ⟩ are of the same order for T → 0. Then, the positive term ⟨Ψ, DT 0

c (λ)Ψ⟩
will be the leading order term in (5.115) as λ → 0. The asymptotic behavior of ∥DT∥ and
⟨Ψ, DTΨ⟩ is the content of the following two Lemmas. These asymptotics strongly depend
on the dimension and this is where the different treatment of d = 3 versus d ∈ {1, 2} in
Theorem 5.1.3 originates.

It will be convenient to introduce the operator D<
T as

⟨ψ,D<
T ψ⟩ =

∫
|p|2<2µ,|(p1,q̃)|2<2µ,p2

1<µ

̂|V |1/2ψ(p)BT (p, 0)V̂ (0, p̃−q̃)BT ((p1, q̃), 0) ̂|V |1/2ψ(p1, q̃)dpdq̃

(5.116)
for ψ ∈ L2(Rd). Furthermore, for d = 2 we define for 0 < δ < µ the operator Dδ

T as

⟨ψ,Dδ
Tψ⟩ =

∫
µ−δ<p2

1<µ,p
2
2<2δ,q2

2<2δ
̂|V |1/2ψ(p)BT (p, 0)V̂ (0, p2−q2)BT ((p1, q̃), 0) ̂|V |1/2ψ(p1, q2)dpdq2

(5.117)
for ψ ∈ L2(R2).

Lemma 5.4.10. Let µ > δ > 0 and let V satisfy 5.1.1. There are constants C, T0 > 0
such that for all 0 < T < T0 for d = 1 ∥DT∥ ≤ C/T , for d = 2 ∥DT∥ ≤ C(lnµ/T )3 and
∥DT −Dδ

T∥ ≤ C(lnµ/T )2, and for d = 3 ∥DT∥ ≤ C(lnµ/T )2 and ∥DT −D<
T ∥ ≤ C lnµ/T .

Lemma 5.4.11. Let µ > 0 and let V satisfy 5.1.1. Recall that Ψ = V 1/2jd. There are con-
stants C, T0 > 0 such that for all 0 < T < T0, ⟨Ψ, DTΨ⟩ ≥ C/T for d = 1 and ≥ C(lnµ/T )3

for d = 2. For d = 3, limλ→0(2π)−1/2λ2⟨Ψ, DT 0
c (λ)Ψ⟩ =

∫
R4 V (r)j3(z1, r̃;µ)2drdz1.

For λ → 0, by Lemma 5.3.2, ln(µ/T 0
c (λ)) is of order 1/λ, hence the last term in (5.115)

diverges for d = 1, 2. For d = 3 we get the desired constant by Lemma 5.4.11.
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Proof of Lemma 5.4.10. Assume that T/µ < 1/2. We treat the different dimensions d
separately.
Dimension one: Note that

|⟨ψ,DTψ⟩| = |V̂ (0)|
∫
R
BT (p, 0)2| ̂|V |1/2ψ(p)|2dp ≤ ∥V ∥2

1

∫
R
BT (p, 0)2dp∥ψ∥2

2, (5.118)

where we used Lemma 5.3.7. Recall from (5.11) that BT (p, 0) ≤ min
{

1
|p2−µ| ,

1
2T

}
. We

estimate the integral

∫
R
BT (p, 0)2dp ≤

∫
√
µ− T√

µ
<|p|<√

µ+ T√
µ

1
4T 2 dp+

∫
R

χ|p|<√
µ− T√

µ
+ χ√

µ+ T√
µ
<p<2√

µ

µ(|p| − √
µ)2 dp

+
∫
p>2√

µ

1
(p2 − µ)2 dp (5.119)

The first term equals (√µT )−1. The last term is a finite constant independent of T . In the
second term we substitute ||p| − √

µ| by x and get the bound

2
∫ √

µ

T√
µ

1
µx2 dx = 2

√
µ

(1/T − 1/µ) (5.120)

Dimension two: Using the Schwarz inequality we have

⟨ψ,DTψ⟩ ≤ C∥V ∥2
1

∫
R3
BT,µ(p, 0)BT,µ((p1, q̃), 0)dpdq̃∥ψ∥2

2 (5.121)

The integral can be rewritten as∫
R

(∫
R
BT,µ−p2

1
(p2, 0)dp2

)2
dp1, (5.122)

where BT,µ here is understood as the function on R × R instead of R2 × R2. Similarly,

|⟨ψ, (DT−Dδ
T )ψ⟩| ≤ C∥V ∥2

1

∫
R3

(1−χµ−δ<p2
1<µ

χp2
2<2δχp′2

2 <2δ)BT,µ(p, 0)BT,µ((p1, q̃), 0)dpdq̃∥ψ∥2
2

(5.123)

We prove that (5.122) and (5.123) are of order O(ln(µ/T )3) and O(ln(µ/T )2) for T → 0,
respectively. To bound the integrals we consider three regimes, p2

1 < µ−T , µ−T < p2
1 < µ+T ,

and µ+ T < p2
1. Corresponding to these regimes, we need to understand ∫RBT,µ(p, 0)dp for

T/µ < 1, −1 < µ/T < 1, and µ/T < −1.
In the first regime, there is a constant C1, such that for all T/µ < 1∣∣∣∣√µ ∫

R
BT,µ(p, 0)χp2<2µdp− 2 ln µ

T

∣∣∣∣+ ∣∣∣∣√µ ∫
R
BT,µ(p, 0)χp2>2µdp

∣∣∣∣ ≤ C1 (5.124)

This follows from rescaling √
µ
∫
RBT,µ(p, 0)dp =

∫
RBT/µ,1(p, 0)dp and applying [34, Lemma

3.5]. For the second regime, we rewrite
∫
R
BT,µ(p, 0)dp = 1√

T

∫
R

tanh((p2 − µ/T )/2)
p2 − µ/T

dp (5.125)
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Since tanh(x)/x ≤ min{1, 1/|x|} the latter integral is uniformly bounded for |µ/T | < 1,∫
R
BT,µ(p, 0)dp ≤ C2√

T
. (5.126)

For the third regime, it follows from (5.125) that∫
R
BT,µ(p, 0)dp ≤ 1√

T

∫
R

1
p2 − µ/T

dp = 1√
−µ

∫
R

1
p2 + 1dp =: C3√

−µ
. (5.127)

Combining the bounds in the three regimes, we bound (5.122) from above by

∫
|p1|<

√
µ−T

(
2 ln

(
µ−p2

1
T

)
+ C1

)2

µ− p2
1

dp1 +
∫

√
µ−T<|p1|<

√
µ+T

C2
2
T

dp1 +
∫

√
µ+T<|p1|

C2
3

p2
1 − µ

dp1

(5.128)
The first integral is bounded above by(

2 ln
(
µ

T

)
+ C1

)2 ∫
|p1|<

√
µ−T

1
µ− p2

1
dp1. (5.129)

Since
∫

|p1|<
√
µ−T

1
µ− p2

1
dp1 = 1

√
µ

ln
2µ− T +

√
µ(µ− T )

T

 = O(ln(µ/T )), (5.130)

the first integral in (5.128) is of order O(ln(µ/T )3). In the second integral, the size of the
integration domain is 2T/√µ + O(T 2), so the integral is bounded as T → 0. The third
integral equals

C2
3√
µ

ln
2µ+ T +

√
µ(µ+ T )

T

 = O(lnµ/T ). (5.131)

In total (5.122) is of order O(ln(µ/T )3).
For the integral in (5.123) we obtain the upper bound similar to (5.128). The main difference is
that in the regime

√
µ− δ < |p1| <

√
µ− T , at least one of the variables p2, p

′
2 is constrained

to absolute values larger than
√

2δ ≥
√

2(µ− p2
1), and thus for the integration over this

variable there will be no ln
(
µ−p2

1
T

)
contribution from (5.124). The upper bound for (5.123) is

∫
|p1|<

√
µ−δ

(
2 ln

(
µ−p2

1
T

)
+ C1

)2

µ− p2
1

dp1 +
∫
√
µ−δ<|p1|<

√
µ−T

2
(
2 ln

(
µ−p2

1
T

)
+ C1

)
C1

µ− p2
1

dp1

+
∫

√
µ−T<|p1|<

√
µ+T

C2
2
T

dp1 +
∫

√
µ+T<|p1|

C2
3

p2
1 − µ

dp1 (5.132)

We have already seen above that the last two integrals are of order O(1) and O(lnµ/T ), respec-
tively. The first integral in (5.132) is bounded above by

(
2 ln

(
µ
T

)
+ C1

)2 ∫
|p1|<

√
µ−δ

1
µ−p2

1
dp1 =

O(ln(µ/T )2). Similarly, the second integral in (5.132) is of order O(ln(µ/T )2) by (5.130).
Dimension three: For d = 3, we first prove that ∥D<

T ∥ = O(ln(µ/T )2). We bound (5.116)
using the Schwarz inequality

⟨ψ,D<
T ψ⟩ ≤ ∥V ∥2

1∥ψ∥2
2

∫
R5
χ|p|2<2µ,|(p1,q̃)|<2µ,p2

1<µ
BT,µ(p, 0)BT,µ((p1, q̃), 0)dpdq̃. (5.133)
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The integral can be rewritten as

4π2
∫ √

µ

0

∫ √
2µ−p2

1

0
BT,µ−p2

1
(t, 0)tdt

2

dp1 (5.134)

Substituting s = (t2 + p2
1 − µ)/T gives

π2
∫ √

µ

0

(∫ µ/T

−(µ−p2
1)/T

tanh(s)
s

ds
)2

dp1 ≤ √
µπ2

(∫ µ/T

−µ/T

tanh(s)
s

ds
)2

(5.135)

Since tanh(x)/x ≤ min{1, 1/|x|}, this is bounded by
√
µ4π2 (1 + ln(µ/T ))2 . (5.136)

To bound ∥DT −D<
T ∥, we distinguish the cases were p2 and (p1, q̃)2 are larger or smaller than

2µ. Using (5.11) we bound

|⟨ψ, (DT −D<
T )ψ⟩| ≤ ∥V ∥2

1∥ψ∥2
2

∫
R5
χ|p|2<2µ,|(p1,q̃)|<2µ,p2

1>µ
BT,µ(p, 0)BT,µ((p1, q̃), 0)dpdq̃

+ 2∥V ∥1∥ψ∥2
2

∫
R5

C

p̃2 + 1 |V̂ (0, p̃− q̃)|BT,µ((p1, q̃), 0)χ|(p1,q̃)|2<2µdpdq̃

+
∫
R5

̂|V |1/2ψ(p) C

p2 + 1 |V̂ (0, p̃− q̃)| C

p2
1 + q̃2 + 1

̂|V |1/2ψ(p1, q̃)dpdq̃, (5.137)

where C is a constant independent of T . For the first term, proceeding similarly to (5.134)–
(5.136), the integral equals

π2
∫ √

2µ

√
µ

(∫ µ/T

(p2
1−µ)/T

tanh(s)
s

ds
)2

dp1 ≤ π2
∫ √

2µ

√
µ

ln
(

µ

p2
1 − µ

)2

dp1 < ∞ (5.138)

For the second term in (5.137) we apply Young’s inequality to bound the integral by

C

∥∥∥∥∥ 1
1 + | · |2

∥∥∥∥∥
L3/2(R2)

∥V̂ (0, ·)∥L3(R2)|S2|mµ(T ) (5.139)

which is O(lnµ/T ). The third term in (5.137) is bounded by C∥ψ∥2
2 by Lemma 5.4.6.

Proof of Lemma 5.4.11. By assumption, 0 < eµ = 1
(2π)d/2

∫
Sd−1 V̂ (p−√

µω)dΩ(ω) = V̂ jd(|p| =
√
µ). By continuity of V̂ jd(p) in p, there is an ϵ > 0 such that V̂ jd(p) > 1

2 V̂ jd(|p| = √
µ) > 0

for all √
µ− ϵ < |p| < √

µ+ ϵ. In the following we treat the different dimensions separately.

Dimension one: Suppose T < ϵ. Since V̂ (0) > 0,

⟨V 1/2j1, DTV
1/2j1⟩ = V̂ (0)

∫
R
BT (p, 0)2|V̂ j1(p)|2dp ≥ 1

4 V̂ (0)|V̂ j1(
√
µ)|2

∫ √
µ+ϵ

√
µ+T

BT (p, 0)2dp

(5.140)
For p ∈ [√µ + T,

√
µ + ϵ], BT (p, 0) ≥ tanh(√µ)

p2−µ ≥ tanh(√µ)
(2√

µ+ϵ)(p−√
µ) . Since ∫√

µ+ϵ√
µ+T

1
(p−√

µ)2 dp =
1/T − 1/ϵ, we obtain the lower bound

⟨V 1/2j1, DTV
1/2j1⟩ ≥ 1

4 V̂ (0)|V̂ j1(
√
µ)|2

tanh(√µ)2

(2√
µ+ ϵ)2

( 1
T

− 1
ϵ

)
(5.141)
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and the claim follows.

Dimension two: Since V̂ (0) > 0, by continuity also V̂ (p) > 0 for small |p|. Therefore,
there are constants 0 < δ < µ and C > 0 such that for all

√
µ− δ < p1 ≤ √

µ and
|p2|, |q2| < (2δ)1/2

V̂ j2(p1, p2)V̂ (0, p2 − q2)V̂ j2(p1, q2) > C. (5.142)

By Lemma 5.4.10, we have ⟨V 1/2j2, DTV
1/2j2⟩ = ⟨V 1/2j2, D

δ
TV

1/2j2⟩ + O((lnµ/T )2). It
hence suffices to show that ⟨V 1/2j2, D

δ
TV

1/2j2⟩ grows like (lnµ/T )3. Let A := {(p1, p2, q2) ∈
R3|

√
µ− δ < p1 <

√
µ, 0 < p2, q2 < δ1/2, p2

1 + p2
2 > µ + T, p2

1 + q2
2 > µ + T}. This is a

subset of the support in Dδ
T . Using that all terms in the integrand of ⟨V 1/2j2, D

δ
TV

1/2j2⟩ are
positive, we estimate

⟨V 1/2j2, D
δ
TV

1/2j2⟩ ≥ C
∫
A
BT (p, 0)BT ((p1, q2), 0)dpdq2. (5.143)

For (p1, p2, q2) ∈ A we have p2
1 + p2

2 − µ > T and thus

BT (p, 0) ≥
tanh

(
1
2

)
p2

1 + p2
2 − µ

(5.144)

For p2
1 > µ+ T − δ

∫ δ1/2

√
µ+T−p2

1

1
p2

1 + p2
2 − µ

dp2 = 1√
µ− p2

1

artanh
(√

1 − T

µ+ T − p2
1

)
− artanh

√µ− p2
1

δ

 .
(5.145)

Hence, the integral in (5.143) is bounded below by

tanh
(1

2

)2 ∫ √
µ

√
µ+T−δ

1
µ− p2

1

artanh
(√

1 − T

µ+ T − p2
1

)
− artanh

√µ− p2
1

δ

2

dp1

(5.146)
Assume that T < δ/2. For a lower bound, we further restrict the p1-integration to the interval(√

µ− δ/2,
√
µ− µ1/2T 1/2

)
. For these values of p1, we have

artanh
√µ− p2

1
δ

 ≤ artanh
(

1√
2

)
≤ artanh


√√√√1 − T 1/2

µ1/2

 ≤ artanh
(√

1 − T

µ+ T − p2
1

)
.

(5.147)
Furthermore,

∫ √
µ−µ1/2T 1/2

√
µ−δ/2

1
µ− p2

1
dp1 = 1

√
µ

artanh
(

1 −
(√µ/a+ 1)(1 − b/

√
µ)

√
µ/a− b/

√
µ

)
, (5.148)

where a =
√
µ− δ/2 and b =

√
µ− µ1/2T 1/2 ≤ √

µ. This is bounded below by

1
√
µ

artanh
(

1 −
(√µ/a+ 1)(1 − b/

√
µ)

√
µ/a− 1

)
. (5.149)
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In total, (5.146) is bounded from below by

1
√
µ

tanh
(1

2

)2
artanh


√√√√1 − T 1/2

µ1/2

− artanh
(

1√
2

)2

×

artanh
1 −

(√µ/a+ 1)(1 −
√

1 − (T/µ)1/2)
√
µ/a− 1

 (5.150)

With artanh(1 − x) = 1
2 ln 2/x+ o(1) as x → 0, we obtain that for T → 0

artanh

√√√√1 − T 1/2

µ1/2

 = 1
4 ln

(
16µ
T

)
+ o(1) (5.151)

and

artanh
1 −

(√µ/a+ 1)(1 −
√

1 − (T/µ)1/2)
√
µ/a− 1

 = 1
4 ln

16
(√

µ/a− 1
√
µ/a+ 1

)2
µ

T

+ o(1)

(5.152)
In particular, we obtain

⟨V 1/2j2, DTV
1/2j2⟩ ≥ C

√
µ

ln
(
µ

T

)3
+O

(
ln
(
µ

T

)2
)

(5.153)

for some C > 0 which implies the claim.
Dimension three: Using Lemma 5.4.10 and that lnµ/T 0

c (λ) ∼ 1/λ by Lemma 5.3.2,

lim
λ→0

λ2⟨V 1/2j3, DT 0
c (λ)V

1/2j3⟩ = lim
λ→0

λ2⟨V 1/2j3, D
<
T 0

c (λ)V
1/2j3⟩. (5.154)

By integrating out the angular variables ∫R3 V (r)j3(r;µ) ei
√

µr·p/|p|

(2π)3/2 dr = 1
|S2|

∫
R3 V (r)j3(r;µ)2 =

eµ. Therefore, we can write

⟨V 1/2j3, D
<
T 0

c (λ)V
1/2j3⟩ = 1

(2π)3

∫
R11;p̃2,q̃2<2µ−p2

1,p
2
1<µ

(
V j3(r;µ)(eir·p − ei

√
µr·p/|p|)×

BT 0
c (λ)(p, 0)V̂ (0, p̃− q̃)BT 0

c (λ)((p1, q̃), 0)e−ip·r′
V j3(r′;µ)

+V j3(r;µ)ei
√
µr·p/|p|BT 0

c (λ)(p, 0)V̂ (0, p̃−q̃)BT 0
c (λ)((p1, q̃), 0)(e−ip·r′−e−i√µr′·p/|p|)V j3(r′;µ)

)
dpdq̃drdr′

+ e2
µ

∫
R8;p̃2,q̃2<2µ−p2

1,p
2
1<µ

BT 0
c (λ)(p, 0) e

i(p̃−q̃)r̃

(2π)3/2V (r)BT 0
c (λ)((p1, q̃), 0)dpdq̃dr (5.155)

By [32, Proof of Lemma 3.1]∣∣∣∣∫
S2
ei|r|w·p − ei

√
µ|r|w·p/|p|dw

∣∣∣∣ ≤ C
|p| − √

µ

|p| + √
µ
. (5.156)

Furthermore, note that BT (p, 0) |p|−√
µ

|p|+√
µ

≤ 1
µ
. Hence, the first integral in (5.155) is bounded by

C

µ
∥V j3∥2

1∥V̂ ∥∞

∫
p2

1+q̃2<2µ,p̃2<2µ
BT 0

c (λ)((p1, q̃), 0)dp1dp̃dq̃ ≤ C∥V j3∥2
1∥V̂ ∥∞mµ(T 0

c (λ)),

(5.157)
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which is of order 1/λ by Lemma 5.3.2.
Changing to angular coordinates for the p̃ and q̃ integration, the integral on the last line of
(5.155) can be rewritten as

2
∫
R3

dr
∫ √

µ

0
dp1

∫ √
2µ−p2

1

0
dt
∫ √

2µ−p2
1

0
ds
∫
S1

dw
∫
S1

dw′BT 0
c (λ)(

√
p2

1 + t2, 0)te
i(tw−sw′)·r̃

(2π)3/2 ×

V (r)BT 0
c (λ)(

√
p2

1 + s2, 0)s

= 2
∫
R3

dr
∫ √

µ

0
dp1

∫ √
2µ

p1
dx
∫ √

2µ

p1
dy
∫
S1

dw
∫
S1

dw′BT 0
c (λ)(x, 0)xe

i(
√
x2−p2

1w−
√
y2−p2

1w
′)·r̃

(2π)3/2 ×

V (r)BT 0
c (λ)(y, 0)y (5.158)

where we substituted x =
√
p2

1 + t2, y =
√
p2

1 + s2. Next, we want to replace the x2 and y2

in the exponent by µ. We rewrite (5.158) as

2
∫
BT 0

c (λ)(x, 0)x

(
ei

√
x2−p2

1w·r̃ − ei
√
µ−p2

1w·r̃
)

(2π)3/2 V (r)e−i
√
y2−p2

1w
′·r̃BT 0

c (λ)(y, 0)ydp1drdxdydwdw′

+2
∫
BT 0

c (λ)(x, 0)xei
√
µ−p2

1w·r̃V (r)

(
e−i

√
y2−p2

1w
′·r̃ − ei

√
µ−p2

1w
′·r̃
)

(2π)3/2 BT 0
c (λ)(y, 0)ydp1drdxdydwdw′

+ 2
∫
BT 0

c (λ)(x, 0)xe
i
√
µ−p2

1(w−w′)·r̃

(2π)3/2 V (r)BT 0
c (λ)(y, 0)ydp1drdxdydwdw′ (5.159)

By [40, Proof of Lemma 3.4]∣∣∣∣∣∣
∫
S1

ei
√
x−p2

1w·r̃ − ei
√
µ−p2

1w·r̃

(2π)2 dw

∣∣∣∣∣∣ ≤ C
∣∣∣∣√x2 − p2

1 −
√
µ− p2

1

∣∣∣∣1/3 ∣∣∣(x2 − p2
1)−1/6 + (µ− p2

1)−1/6
∣∣∣

(5.160)
We bound this further by C |x2 − µ|1/3 ((x2 − p2

1)−1/3 + (µ− p2
1)−1/3

)
. Using thatBT 0

c (λ)(x, 0) ≤
1/|x2 − µ| by (5.11) and recalling the definition of mµ in (5.23) we bound the first two lines
in (5.159) by

C∥V ∥1m
d=2
µ (T 0

c (λ))
∫ √

µ

0
dp1

∫ √
2µ

p1
dx 1

|x− √
µ|2/3(x+ √

µ)2/3

(
1

(x2 − p2
1)1/3 + 1

(µ− p2
1)1/3

)
(5.161)

The integral is bounded by
√
µ
∫ √

2

0
dx
∫ x

0
dp1

1
|x− 1|2/3

(
1

x1/3(x− p1)1/3 + 1
(1 − p1)1/3

)
< ∞ (5.162)

Hence, the first two lines in (5.159) are of order O(1/λ) by Lemma 5.3.2. For the third line
we carry out the r-integration and obtain

2
∫ √

µ

0

(∫ √
2µ

p1
BT 0

c (λ)(x, 0)xdx
)2 (∫

S1

∫
S1
V̂
(

0,
√
µ− p2

1(w − w′)
)

dwdw′
)

dp1. (5.163)

Note that ∫√
2µ

p1
BT 0

c (λ)(x, 0)xdx = md=2
µ (T 0

c (λ)) −
∫ p1

0 BT 0
c (λ)(x, 0)xdx and∫ p1

0
BT 0

c (λ)(x, 0)xdx = 1
2

∫ µ/T 0
c (λ)

(µ−p2
1)/T 0

c (λ)

tanh s
s

ds ≤ 1
2 ln µ

µ− p2
1

(5.164)
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where we substituted s = (µ− x2)/T 0
c (λ). In particular,∣∣∣∣∣∣2

∫ √
µ

0

(∫ √
2µ

p1
BT 0

c (λ)(x, 0)xdx
)2

−md=2
µ (T 0

c (λ))2

×

(∫
S1

∫
S1
V̂
(

0,
√
µ− p2

1(w − w′)
)

dwdw′
)

dp1

∣∣∣∣∣∣
≤ 2|S1|2∥V̂ ∥∞

∫ √
µ

0

1
4

(
ln µ

µ− p2
1

)2

+ ln µ

µ− p2
1
md=2
µ (T 0

c (λ))
 dp1 ≤ C(1+md=2

µ (T 0
c (λ)))

(5.165)

which is of order O(1/λ) by Lemma 5.3.2. In total, we thus obtain

lim
λ→0

λ2⟨V 1/2j3, DT 0
c (λ)V

1/2j3⟩

= lim
λ→0

2λ2md=2
µ (T 0

c )2√µe2
µ

∫ 1

0

(∫
S1

∫
S1
V̂
(

0,√µ
√

1 − p2
1(w − w′)

)
dwdw′

)
dp1 (5.166)

By writing out the definition of j3 and then switching to spherical coordinates and carrying
out the r integration, we have
∫
R4
V (r)j3(z1, r̃;µ)2drdz1 =

∫
S2

du
∫
S2

dv
∫
R7

dpdrdz1
eip·rV̂ (p)
(2π)3/2

ei
√
µ(z1,r̃)·(u−v)

(2π)3 = 1
(2π)3/2 ×∫

R

(∫ π

0
sin θdθ

∫ π

0
sin θ′dθ′

∫
S1

dw
∫
S1

dw′V̂ (0,√µ(sin θw − sin θ′w′)ei
√
µz1(cos θ−cos θ′)

)
dz1

= 1
√
µ(2π)1/2

∫ 1

−1
dt
∫ 1

−1
ds
∫
S1

dw
∫
S1

dw′V̂ (0,√µ(
√

1 − t2w −
√

1 − s2w′)δ(s− t),

(5.167)

where in the last step we substituted t = cos θ, s = cos θ′ and carried out the z1 integration.
Furthermore, according to Lemma 5.3.2, limλ→0 λm

d=2
µ (T 0

c )eµ = 1√
µ
. This gives the desired

lim
λ→0

λ2⟨V 1/2j3, DT 0
c (λ)V

1/2j3⟩ = (2π)1/2
∫
R4
V (r)j3(z1, r̃;µ)2drdz1 (5.168)

5.5 Boundary Superconductivity in 3d
In this section we shall prove Theorem 5.1.4, which provides sufficient conditions for (5.7)
to hold. Due to rotation invariance, we consider the spherical average of m̃D/N

3 (defined in
(5.6)). With

m
D/N
3 (|r|;µ) := 1

4π

∫
S2
m̃
D/N
3 (|r|ω;µ)dω (5.169)

we have ∫R3 V (r)m̃D/N
3 (r;µ)dr =

∫
R3 V (r)mD/N

3 (|r|;µ)dr. Furthermore, we have the scaling
property

m
D/N
3 (|r|;µ) = 1

√
µ
m
D/N
3 (√µ|r|; 1). (5.170)

We shall derive the following, more explicit, expression for mD/N
3 in Section 5.5.1.
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Lemma 5.5.1. For x ≥ 0 we can write mD
3 (x; 1) = ∑4

j=1 tj(x) and mN
3 (x; 1) = ∑2

j=1 tj(x)−∑4
j=3 tj(x), where

t1(x) = 4
πx

∫ ∞

1

sin2(xk)
k

arcoth(k)dk

t2(x) = − 2
π

sin2(x)
x

t3(x) = −2sin2(x)
x2

t4(x) = 4 sin x
πx2 (sin x Si 2x− cos xCin 2x)

= sin x
2π3x

∫
S2

∫
S2

sin(xω1|ω′
1|)e−ixω̃·ω̃′

ω1
dωdω′

where Cin(x) =
∫ x

0
1−cos t

t
dt and Si(x) =

∫ x
0

sin t
t

dt.

To determine for which interactions ∫R3 V (r)mD/N
3 (|r|;µ)dr > 0 holds, we need to understand

m
D/N
3 (|r|;µ). In Figures 5.1 and 5.2 we plot mD

3 and mN
3 for µ = 1, respectively. The

10 20 30 40 50
x

0.1

0.2

0.3

0.4

m3
D(x;1)

Figure 5.1: Plot of mD
3 for µ = 1, created using [53].

function mD
3 seems to be nonnegative. If one could prove that mD

3 ≥ 0, then Theorem 5.1.3
would apply to all V ≥ 0 satisfying 5.1.1. Unfortunately, this is beyond our reach. On the
other hand, the function mN

3 changes sign, but is positive in a neighborhood of zero.

Remark 5.5.2. To create the plots, it is computationally more efficient to use the first
expression for t4, whereas for the following analytic computations the second expression is
more convenient.
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5 10 15 20
x

1
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3

4

m3
N(x;1)

Figure 5.2: Plot of mN
3 for µ = 1, created using [53].

Intuitively, if we let µ → 0, due to the scaling (5.170) the sign of ∫R3 V (r)mD/N
3 (|r|;µ)dr is

determined by the values of mD/N
3 (|r|; 1) for r in the vicinity of zero. To obtain Theorem 5.1.4,

we prove that both functions mD/N
3 (|r|; 1) are non-negative in a neighborhood of zero.

The following is proved in Section 5.5.2.

Lemma 5.5.3. The functions tj for j = 1, 2, 3, 4 are bounded and twice continuously
differentiable. The values of the functions and their derivatives at zero are listed in Table 5.1.

f t1 t2 t3 t4 mD
3 (·; 1) mN

3 (·; 1)
f(0) 2 0 −2 0 0 4
f ′(0) −2/π −2/π 0 4/π 0
f ′′(0) −8/9 0 4/3 0 4/9

Table 5.1: Values of the functions tj and mD/N
3 and their derivatives at zero. The missing

entries are not needed.

Proof of Theorem 5.1.4. We start with the case of Neumann boundary condition. By (5.170),
it suffices to prove that limµ→0

∫
R3 V (r)mN

3 (√µ|r|; 1)dr > 0. With V ∈ L1 and Lemma 5.5.3
it follows by dominated convergence that limµ→0

∫
R3 V (r)mN

3 (√µ|r|; 1)dr = mN
3 (0; 1)

∫
R3 V (r)dr =

4
∫
R3 V (r)dr. Since V̂ (0) > 0 by assumption, this is positive.

For Dirichlet boundary conditions, according to Lemma 5.5.3, mD
3 (0; 1) and its first derivative

vanish. Thus, we consider I(√µ) := 1
µ

∫
R3 mD

3 (√µ|r|; 1)V (r)dr. Since mD
3 (·; 1) is bounded,

I is continuous away from 0. It suffices to prove that limµ→0 I(
√
µ) > 0. According to
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Lemma 5.5.3 and Taylor’s theorem, we have mD
3 (x; 1) = 1

2(mD
3 )′′(0; 1)x2 +R(x), where R is

continuous with limx→0
|R(x)|
x2 = 0. Let ϵ > 0 and c := sup0≤x<ϵ

|R(x)|
x2 < ∞. One can bound

∣∣∣∣∣ 1µmD
3 (√µ|r|; 1)V (r)

∣∣∣∣∣ ≤ χ√
µ|r|<ϵ

(1
2(mD

3 )′′(0; 1) + c
)

|r2V (r)| + χ√
µ|r|>ϵ

∥mD
3 ∥∞

ϵ2 |r2V (r)|

≤
(1

2(mD
3 )′′(0; 1) + c+ ∥mD

3 ∥∞

ϵ2

)
|r2V (r)|, (5.171)

which is integrable by the assumptions on V . By dominated convergence

lim
µ→0

I(√µ) =
∫
R3

lim
µ→0

mD
3 (√µ|r|; 1)
µ|r|2

V (r)|r|2dr = 1
2

∫
R3

(mD
3 )′′(0; 1)V (r)|r|2dr = 2

9

∫
R3
V (r)|r|2dr,

(5.172)
which is positive by assumption.

5.5.1 Proof of Lemma 5.5.1
Proof of Lemma 5.5.1. With

t̃1(r) =
∫
R
j3(z1, r2, r3; 1)2χ|z1|>|r1|dz1

t̃2(r) = −j3(r; 1)2
∫
R
χ|z1|<|r1|dz1

t̃3(r) = ∓πj3(r; 1)2

t̃4(r) = ±2j3(r; 1)
∫
R
j3(z1, r2, r3; 1)χ|z1|<|r1|dz1

one can write m̃D
3 (r; 1) = ∑4

j=1 t̃j(r) and m̃N
3 (r; 1) = ∑2

j=1 t̃j(r) −∑4
j=3 t̃j(r). Let tj(|r|) =

1
4π
∫
S2 t̃

D/N
j (|r|ω;µ)dω. The following explicit computations show that the tj agree with the

claimed expressions.

Recall that j3(r; 1) =
√

2
π

sin |r|
|r| . For t1 we write out the integral in spherical coordinates and

substitute z1 = xy and s = cos θ

t1(x) = 1
π

2π
4π

∫ π

0

∫
R

sin2
√
z2

1 + (x sin θ)2

z2
1 + (x sin θ)2 χ|z1|>x| cos θ| sin θdz1dθ

= 1
πx

∫ 1

−1

∫
R

sin2 x
√
y2 + 1 − s2

y2 + 1 − s2 χ|y|>|s|dyds (5.173)

Next, we use the reflection symmetry of the integrand in s and y, substitute y by k =√
y2 + 1 − s2 and then carry out the s integration to obtain

t1(x) = 4
πx

∫ 1

0

∫ ∞

1

sin2 xk

k
√
k2 + s2 − 1

dkds = 4
πx

∫ ∞

1

sin2 xk

k
arcoth(k)dk. (5.174)

For t2, we have

t2(x) = − 2
π

sin2 x

x2
1

4π

∫
S2

2x|ω1|dω = − 2
π

sin2 x

x
. (5.175)
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Since t̃3 is radial, we have t3 = t̃3. For t4 we want to derive two expressions. For the first, we
perform the same substitutions as for t1

t4(x) = 4
π

sin x
x

2π
4π

∫ π

0

∫
R

sin
√
z2

1 + (x sin θ)2√
z2

1 + (x sin θ)2
χ|z1|<x| cos θ| sin θdz1dθ

= 2
π

sin x
x

∫ 1

−1

∫
R

sin x
√
y2 + 1 − s2

√
y2 + 1 − s2 χ|y|<|s|dyds = 8

π

sin x
x

∫ 1

0

∫ 1

0

sin xk√
k2 + s2 − 1

χk2+s2>1dkds

= 8
π

sin x
x

∫ 1

0
sin xk artanh kdk = ±4 sin x

πx2 (sin x Si 2x− cos xCin 2x) (5.176)

To obtain the second expression for t4, note that ∫R e−iω1z1χ|z1|<|r1|dz1 = 2 sinω1|r1|
ω1

. Therefore,

t4(x) = 2
√

2
π

sin x
x

1
4π

∫
S2

∫
R

∫
S2

e−iω·(z1,xω̃′)

(2π)3/2 χ|z1|<x|ω′
1|dωdz1dω′

= 1
2π3

sin x
x

∫
S2

∫
S2

sin xω1|ω′
1|

ω1
e−ixω̃·ω̃′dωdω′ (5.177)

5.5.2 Proof of Lemma 5.5.3
Proof of Lemma 5.5.3. Since sin(x)/x is a bounded and smooth function, also t2 and t3 are
bounded and smooth. Elementary computations give the entries in Table 5.1.
For t4 use the second expression in Lemma 5.5.1. Since the integrand is bounded and smooth
and the domain of integration is compact, the integral is bounded and we can exchange
integration and taking limits and derivatives. In particular, t4 is bounded and smooth and it is
then an elementary computation to verify the entries in Table 5.1. For instance,

t′4(0) = 1
2π3

∫
S2

∫
S2

|ω′
1|dωdω′ = 4

π
. (5.178)

To study t1 we define auxiliary functions f(x) = 4
πx

artanh(x) and g(x) = sin(x)2

x2 . Note
that f(x) diverges logarithmically for x → 1 and is continuous otherwise with f(0) = 4

π
.

Furthermore, f(x) is increasing on [0, 1) and for every 0 < ϵ < 1, sup0≤x<ϵ
f ′(x)
x

= f ′(ϵ)
ϵ
< ∞

since all coefficients in the Taylor series of artanh(x) are positive.
We can write

t1(x) =
∫ ∞

1
xg(xk)f(1/k)dk =

∫ c

1
xg(xk)f(1/k)dk +

∫ ∞

cx
g(k)f(x/k)dk (5.179)

for any constant c > 1. The first integrand is bounded by Cx arcoth(k), the second one by
C 1
k2 (since f is bounded on the integration domain). By dominated convergence we obtain

that t1 is continuous and t1(0) = 4
π

∫∞
0 g(k)dk = 2.

For x > 0 we compute the derivative

t′1(x) =
∫ c

1
(g(xk) + xkg′(xk))f(1/k)dk − cg(cx)f(1/c) +

∫ ∞

cx
g(k)f ′(x/k)1

k
dk

=
∫ c

1
(g(xk) + xkg′(xk))f(1/k)dk − cg(cx)f(1/c) +

∫ ∞

c
g(kx)f ′(1/k)1

k
dk, (5.180)
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where we could apply the Leibnitz integral rule since f ′(1/k) decays like 1/k for k → ∞. By
dominated convergence, t′1 is continuous for x > 0. By continuity of t1 and the mean value
theorem, t′1(0) = limx→0

t1(x)−t1(0)
x

= limx→0 limy→0
t1(x)−t1(y)

x−y = limx→0 t
′
1(x). We evaluate

t′1(0) =
∫ c

1
f(1/k)dk − cf(1/c) +

∫ ∞

c
f ′(1/k)1

k
dk

=
∫ c

1
(f(1/k) − f(1/c)) dk − f(1/c) +

∫ ∞

c
f ′(1/k)1

k
dk (5.181)

This is a number independent of c. To compute the number, we let c → ∞, and by monotone
convergence

t′1(0) =
∫ ∞

1
(f(1/k) − f(0)) dk − f(0) = 2

π
− 4
π

= − 2
π
. (5.182)

Note that g′(k) = 2(cos k − sin k
k

) sin k
k2 has a zero of order one at k = 0. Therefore,

|g′(kx)f ′(1/k)| < C
x2k3 and for x > 0 the second derivative is

t′′1(x) =
∫ c

1
(2xg′(xk) + xk2g′′(xk))f(1/k)dk − c2g′(cx)f(1/c) +

∫ ∞

c
g′(kx)f ′(1/k)dk

=
∫ c

1
(2xg′(xk) + xk2g′′(xk))f(1/k)dk − c2g′(cx)f(1/c) +

∫ ∞

cx

g′(y)
y

f ′(x/y)
x/y

dy (5.183)

We can bound g′(y)
y

≤ C
1+y3 and supy |f

′(x/y)
x/y

χy>cx| = cf ′(1/c) < ∞. By dominated conver-
gence, the function above is continuous (also at zero). We have

t′′1(0) =
∫ ∞

0

g′(y)
y

dy lim
x→0

f ′(x)
x

(5.184)

Since ∫∞
0

g′(y)
y

dy = −π
3 and limx→0

f ′(x)
x

= 8
3π we obtain

t′′1(0) = −8
9 . (5.185)

5.6 Relative Temperature Shift
In this section we shall prove Theorem 5.1.7, which states that the relative temperature shift
vanishes in the weak coupling limit. We proceed similarly to the δ-interaction case in one
dimension analyzed in [34]. For this, we switch to the Birman-Schwinger formulation. Recall
the Birman-Schwinger operator A0

T corresponding to H0
T from (5.22). Let Ω̃1 = {(r, z) ∈

R2d||r1| < z1}. Define the operator A1
T on ψ ∈ L2

s(Ω̃1) = {ψ ∈ L2(Ω̃1)|ψ(r, z) = ψ(−r, z)}
via

⟨ψ,A1
Tψ⟩ =

∫
R4d+2(d−1)

drdr′dpdqdz̃dz̃′
∫

|r1|<z1
dz1

∫
|r′

1|<z′
1

dz′
1

1
(2π)2dψ(r, z)V (r)1/2ei(p·z+q·r)×

BT (p, q)
e−i(p1z′

1+q1r′
1)+ei(p1z′

1+q1r′
1)∓e−i(q1z′

1+p1r′
1)∓ei(q1z′

1+p1r′
1)

e−i(p̃·z̃′+q̃·r̃′)|V (r′)|1/2ψ(r′, z′),

(5.186)
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where the upper signs correspond to Dirichlet and the lower signs to Neumann boundary
conditions, respectively. It follows from a computation analogous to [34, Lemma 2.4] that
the operator A1

T is the Birman-Schwinger operator corresponding to HΩ1
T in relative and

center of mass variables. The Birman-Schwinger principle implies that sgn inf σ(HΩ1
T ) =

sgn(1/λ− sup σ(A1
T )), where we use the convention that sgn 0 = 0.

One can reformulate the claim of Theorem 5.1.7 in terms of the Birman-Schwinger operators.
For j = 0, 1 let ajT = sup σ(AjT ). Then

lim
λ→0

T 1
c (λ) − T 0

c (λ)
T 0
c (λ) = 0 ⇔ lim

T→0

(
a0
T − a1

T

)
= 0. (5.187)

This is a straightforward generalization of [34, Lemma 4.1] and we refer to [34, Lemma 4.1]
for its proof.

Proof of Theorem 5.1.7. First we will argue that a0
T ≤ a1

T for all T > 0. If inf σ(K0
T −λV ) <

2T , then inf σ(K0
T − λ′V ) < inf σ(K0

T − λV ) for all λ′ > λ. Furthermore, inf σ(K0
T −

(a0
T )−1V ) = 0 = inf σ(KΩ1

T −(a1
T )−1V ) ≤ inf σ(KΩ0

T −(a1
T )−1V ), where we used Lemma 5.2.3

in the last step. In particular, a0
T ≤ a1

T .
It remains to show that limT→0 (a0

T − a1
T ) ≥ 0. Let ι : L2(Ω̃1) → L2(R2d) be the isometry

ιψ(r1, r̃, z1, z̃) = 1√
2

(ψ(r1, r̃, z1, z̃)χΩ̃1
(r, z) + ψ(−r1, r̃,−z1, z̃)χΩ̃1

(−r1, r̃,−z1, z̃)).

(5.188)
Let F2 denote the Fourier transform in the second variable F2ψ(r, q) = 1

(2π)d/2

∫
Rd e−iq·zψ(r, z)dz

and F1 the Fourier transform in the first variable F1ψ(p, q) = 1
(2π)d/2

∫
Rd e−ip·rψ(r, q)dr. Recall

that by assumption V ≥ 0 and for functions ψ ∈ L2(Rd × Rd) we have V 1/2ψ(r, q) =
V 1/2(r)ψ(r, q). We define self-adjoint operators ẼT and GT on L2(R2d) through

⟨ψ, ẼTψ⟩ = a0
T∥ψ∥2

2 −
∫
R2d

BT (p, q)|F1V
1/2ψ(p, q)|2dpdq (5.189)

and

⟨ψ,GTψ⟩ =
∫
R2d

F1V 1/2ψ((q1, p̃), (p1, q̃))BT (p, q)F1V
1/2ψ(p, q)dpdq. (5.190)

With this notation, we have a0
T I − A1

T = ι†F †
2 (ẼT ± GT )F2ι, where I denotes the identity

operator on L2
s(Ω̃1). In particular,

a0
T − a1

T = inf
ψ∈L2

s(Ω̃1),∥ψ∥2=1
⟨F2ιψ, (ẼT ±GT )F2ιψ⟩ ≥ inf

ψ∈L2
s(R2d),∥ψ∥2=1

⟨ψ, (ẼT ±GT )ψ⟩,

(5.191)
where we used that ∥F2ιψ∥2= ∥ψ∥2. Define the function

ET (q) = a0
T − ∥V 1/2BT (·, q)V 1/2∥. (5.192)

We claim that ∥V 1/2BT (·, q)V 1/2∥ ≤ a0
T . The Birman Schwinger operator ÃT corresponding

to HRd

T satisfies sup σ(ÃT ) = supq∥V 1/2BT (·, q)V 1/2∥. Pick λ = sup σ(ÃT )−1. According
to the Birman Schwinger principle and Lemma 5.2.4, 0 = inf σ(HΩ0

T ) = inf σ(H0
T ). Using

the Birman Schwinger principle for H0
T , we obtain a0

T = sup σ(ÃT ) ≥ ∥V 1/2BT (·, q)V 1/2∥.
Hence, ET (q) ≥ 0. Let ET act on L2(R2d) as ETψ(r, q) = ET (q)ψ(r, q). Then

a0
T − a1

T ≥ inf
ψ∈L2

s(R2d),∥ψ∥2=1
⟨ψ, (ET ±GT )ψ⟩. (5.193)

122



5.6. Relative Temperature Shift

It thus suffices to prove that limT→0 inf σ(ET ±GT ) ≥ 0. With the following three Lemmas,
which are proved in the next sections, the claim follows completely analogously to the proof of
[34, Theorem 1.2 (ii)]. For completeness, we provide a sketch of the argument in [34, Theorem
1.2 (ii)] after the statement of the Lemmas.

Lemma 5.6.1. Let µ > 0, d ∈ {1, 2, 3} and let V ≥ 0 satisfy 5.1.1. Then supT>0∥GT∥ < ∞.

Lemma 5.6.2. Let µ > 0, d ∈ {1, 2, 3} and let V ≥ 0 satisfy 5.1.1. Let I≤ϵ act on L2(R2d)
as I≤ϵψ(r, p) = ψ(r, p)χ|p|≤ϵ. Then limϵ→0 supT>0∥I≤ϵGT I≤ϵ∥= 0.

Lemma 5.6.3. Let µ > 0, d ∈ {1, 2, 3} and let V ≥ 0 satisfy 5.1.1. Let 0 < ϵ <
√
µ.

There are constants c1, c2, T0 > 0 such that for 0 < T < T0 and |q| > ϵ we have ET (q) >
c1| ln(c2/T )|.

Since ET (q) ≥ 0, we can write

ET ±GT + δ =
√
ET + δ

(
I ± 1√

ET + δ
GT

1√
ET + δ

)√
ET + δ (5.194)

for any δ > 0. It suffices to prove that for all δ > 0

lim
T→0

∥∥∥∥∥ 1√
ET + δ

GT
1√

ET + δ

∥∥∥∥∥ = 0 . (5.195)

To prove (5.195), with the notation introduced in Lemma 5.6.2 we have for all 0 < ϵ <
√
µ

∥∥∥∥∥ 1√
ET + δ

GT
1√

ET + δ

∥∥∥∥∥ ≤
∥∥∥∥∥I≤ϵ

1√
ET + δ

GT
1√

ET + δ
I≤ϵ

∥∥∥∥∥
+
∥∥∥∥∥I≤ϵ

1√
ET + δ

GT
1√

ET + δ
I>ϵ
∥∥∥∥∥+

∥∥∥∥∥I>ϵ 1√
ET + δ

GT
1√

ET + δ

∥∥∥∥∥ . (5.196)

With ET ≥ 0 and Lemma 5.6.3 we obtain

lim
T→0

∥∥∥∥∥ 1√
ET + δ

GT
1√

ET + δ

∥∥∥∥∥ ≤ sup
T>0

1
δ

∥I≤ϵGT I≤ϵ∥ + lim
T→0

2
(δc1| ln(c2/T )|)1/2 ∥GT∥. (5.197)

The second term vanishes by Lemma 5.6.1 and the first term can be made arbitrarily small by
Lemma 5.6.2. Hence, (5.195) follows.

Remark 5.6.4. The variational argument above relies on A1
T being self-adjoint. This is why

we assume V ≥ 0 in Theorem 5.1.7.

5.6.1 Proof of Lemma 5.6.1

Proof of Lemma 5.6.1. We have ∥GT∥ ≤ ∥G<
T ∥ + ∥G>

T ∥, where for d ∈ {2, 3}

⟨ψ,G<
Tψ⟩ =

∫
R2d

F1V 1/2ψ((q1, p̃), (p1, q̃))BT (p, q)χ|p̃|<2√
µF1V

1/2ψ(p, q)dpdq, (5.198)

and for G>
T change χ|p̃|<2√

µ to χ|p̃|>2√
µ. For d = 1 set G<

T = GT and G>
T = 0. We will prove

that G<
T and G>

T are bounded uniformly in T .
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To bound G>
T in d = 2, 3 we use the Schwarz inequality in p1, q1 to obtain

∥G>
T ∥ ≤ sup

ψ∈L2(R2d),∥ψ∥=1

∫
R2d

BT (p, q)χ|p̃|>2√
µ|F1V

1/2ψ(p, q)|2dqdp (5.199)

The right hand side defines a multiplication operator in q. By (5.11) there is a constant
C > 0 independent of T such that ∥G>

T ∥ ≤ C∥M∥, where M := V 1/2 1
1−∆V

1/2 on L2(Rd).
It follows from the Hardy-Littlewood-Sobolev and the Hölder inequalities that M is a bounded
operator [32, 40, 50].

To bound G<
T note that for fixed q, ∥F1V

1/2ψ(·, q)∥∞ ≤ C∥V ∥1/2
1 ∥ψ(·, q)∥2 by Lemma 5.3.73.

Therefore, we estimate

∥G<
T ∥ ≤ C2∥V ∥1 sup

ψ∈L2(R2d),∥ψ∥=1

∫
R2d

∥ψ(·, (p1, q̃))∥2BT (p, q)χp̃2<2µ∥ψ(·, q)∥2dpdq (5.200)

Since the right hand side defines a multiplication operator in q̃, we obtain

∥G<
T ∥ ≤ C2∥V ∥1 sup

q̃∈Rd−1
sup

ψ∈L2(R),∥ψ∥=1

∫
Rd+1

ψ(p1)BT (p, q)χp̃2<2µψ(q1)dpdq1, (5.201)

where for d = 1 the supremum over q̃ is absent. For d = 1, the operator with integral
kernel BT (p, q) is bounded uniformly in T according to [34, Lemma 4.2], and thus the
claim follows. For d ∈ {2, 3} we need to prove that the operators with integral kernel∫
Rd−1 BT (p, q)χ|p̃|<2√

µdp̃ are bounded uniformly in q̃ and T . We apply the bound [34, Lemma
4.6.]

BT (p, q) ≤ 2
|(p+ q)2 − µ| + |(p− q)2 − µ|

(5.202)

Then, we scale out µ and estimate the expression by pulling the supremum over ψ into the
p̃-integral

sup
q̃∈Rd−1

sup
ψ∈L2(R),∥ψ∥=1

∫
Rd+1

2χ|p̃|<2√
µψ(p1)ψ(q1)

|(p+ q)2 − µ| + |(p− q)2 − µ|
dpdq1

= µd/2−1 sup
q̃∈Rd−1

sup
ψ∈L2(R),∥ψ∥=1

∫
Rd+1

2χ|p̃|<2ψ(p1)ψ(q1)
|(p+ q)2 − 1| + |(p− q)2 − 1|

dpdq1

≤ µd/2−1 sup
q̃∈Rd−1

∫
Rd−1

χ|p̃|<2

[
sup

ψ∈L2(R),∥ψ∥=1

∫
R2

2ψ(p1)ψ(q1)
|(p+ q)2 − 1| + |(p− q)2 − 1|

dp1dq1

]
dp̃

(5.203)

Let µ1 = 1 − (p̃+ q̃)2 and µ2 = 1 − (p̃− q̃)2. For fixed µ1, µ2 we need to bound the operator
with integral kernel

Dµ1,µ2(p1, q1) = 2
|(p1 + q1)2 − µ1| + |(p1 − q1)2 − µ2|

. (5.204)

Lemma 5.6.5. Let µ1, µ2 ≤ 1 with min{µ1, µ2} ≠ 0. The operator Dµ1,µ2 on L2(R) with
integral kernel given by (5.204) satisfies

∥Dµ1,µ2∥ ≤ C(1 + d(µ1, µ2)| min{µ1, µ2}|−1/2) (5.205)

for some finite C independent of µ1, µ2, where

d(µ1, µ2) =
{

1 + ln
(
1 + max{µ1,µ2}

| min{µ1,µ2}|

)
if min{µ1, µ2} < 0 ≤ max{µ1, µ2},

1 otherwise.
(5.206)
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This is a generalization of [34, Lemma 4.2]. The proof of Lemma 5.6.5 is based on the Schur test
and can be found in Section 5.7.1. Since max{µ1, µ2} ≤ 1, it follows from Lemma 5.6.5 that
for any α > 1/2 one has ∥Dµ1,µ2∥ ≤ C (1 + | min{µ1, µ2}|−α) for a constant C independent
of µ1, µ2. The following Lemma concludes the proof of supT>0∥G<

T ∥ < ∞.

Lemma 5.6.6. Let d ∈ {2, 3} and 0 ≤ α < 1. Let µ1 = 1 − (p̃+ q̃)2 and µ2 = 1 − (p̃− q̃)2.
Then

sup
q̃∈Rd−1

∫
Rd−1

χ|p̃|<2

| min{µ1, µ2}|α
dp̃ < ∞. (5.207)

Lemma 5.6.6 follows from elementary computations which are carried out in Section 5.7.2.

5.6.2 Proof of Lemma 5.6.2

Proof of Lemma 5.6.2. With the notation introduced in the proof of Lemma 5.6.1 we have
∥I≤ϵGT I≤ϵ∥ ≤ ∥I≤ϵG

<
T I≤ϵ∥ + ∥I≤ϵG

>
T I≤ϵ∥.

For d = 2, 3 we have analogously to (5.199)

∥I≤ϵG
>
T I≤ϵ∥ ≤ sup

ψ∈L2(R2d),∥ψ∥=1

∫
R2d

χ|q|<ϵχ|(p1,q̃)|<ϵBT (p, q)χ|p̃|>2√
µ|F1V

1/2ψ(p, q)|2dqdp.

(5.208)
Let 1 < t < ∞ such that V ∈ Lt(Rd). According to Lemma 5.3.72, for fixed q we have

∥F1V
1/2ψ(·, q)∥Ls(Rd) ≤ C∥V ∥1/2

t ∥ψ(·, q)∥L2(Rd), (5.209)

where 2 ≤ s = 2t/(t− 1) < ∞. By (5.11) and Hölder’s inequality in p, there is a constant C
independent of T such that

∥I≤ϵG
>
T I≤ϵ∥ ≤ C sup

ψ∈L2(R2d),∥ψ∥=1

∫
R2d

χ|p1|<ϵ

1 + p̃2 |F1V
1/2ψ(p, q)|2dpdq

≤ C∥V ∥t
(∫

Rd

χ|p1|<ϵ

(1 + p̃2)tdp
)1/t

. (5.210)

In particular, the remaining integral is of order O(ϵ1/t) and vanishes as ϵ → 0.

To estimate ∥I≤ϵG
<
T I≤ϵ∥ we proceed as in the derivation of the bound on ∥G<

T ∥ from (5.200)
until the first line of (5.203) and obtain

∥I≤ϵG
<
T I≤ϵ∥ ≤ C∥V ∥1 sup

|q̃|<ϵ
sup

ψ∈L2(R),∥ψ∥=1

∫
Rd+1

2χ|p1|,|q1|<ϵχ|p̃|<2√
µψ(p1)ψ(q1)

|(p+ q)2 − µ| + |(p− q)2 − µ|
dpdq1

(5.211)
Hence, we need that the norm of the operator on L2(R) with integral kernel

∫
Rd−1

2χ|p1|,|q1|<ϵχ|p̃|<2√
µ

|(p+ q)2 − µ| + |(p− q)2 − µ|
dp̃ (5.212)

vanishes uniformly in q̃ as ϵ → 0. In d = 1, the Hilbert-Schmidt norm clearly vanishes as
ϵ → 0. Similarly for d = 2, 3 the following Lemma implies that the Hilbert-Schmidt norm
vanishes uniformly in q̃ as ϵ → 0.
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Lemma 5.6.7. Let d ∈ {2, 3}. Then

lim
ϵ→0

sup
|q̃|<ϵ

∫
R2
χ|p1|,|q1|<ϵ

[∫
Rd−1

2χp̃2<2

|(p+ q)2 − 1| + |(p− q)2 − 1|
dp̃
]2

dp1dq1 = 0 (5.213)

The proof can be found in Section 5.7.3. We give the proof for d = 2 only; the one for d = 3
works analogously and is left to the reader.

5.6.3 Proof of Lemma 5.6.3

Proof of Lemma 5.6.3. Since a0
T diverges like eµµd/2−1 ln(µ/T ) as T → 0, the claim follows

if we prove that supT>0 sup|q|>ϵ∥V 1/2BT (·, q)V 1/2∥ < ∞. For d = 1 we have

∥V 1/2BT (·, q)V 1/2∥2 ≤ ∥V 1/2BT (·, q)V 1/2∥2
HS

=
∫
R2
V (r)V (r′)

(∫
R
BT (p, q)e

ip(r−r′)

2π dp
)2

drdr′ ≤ 1
(2π)2 ∥V ∥2

1

(∫
R
BT (p, q)dp

)2
(5.214)

It was shown in the proof of [34, Lemma 4.4] that supT>0,|q|>ϵ
∫
RBT (p, q)dp < ∞ .

For d ∈ {2, 3}, the claim follows from the following Lemma which is proved below.

Lemma 5.6.8. Let d ∈ {2, 3} and µ > 0. Let V satisfy Assumption 5.1.1 and V ≥ 0. Recall
that Oµ = V 1/2F †FV 1/2 (defined above (5.23)). Let f(x) = χ(0,1/2)(x) ln(1/x). There is a
constant C(d, µ, V ) such that for all T > 0, q ∈ Rd, and ψ ∈ L2(Rd) with ∥ψ∥2 = 1

⟨ψ, V 1/2BT (·, q)V 1/2ψ⟩ ≤ µd/2−1⟨ψ,Oµψ⟩f(max{T/µ, |q|/√µ}) + C(d, µ, V ). (5.215)

This concludes the proof.

Proof of Lemma 5.6.8. Note that if we set q = 0, and optimize over ψ, the left hand side
would have the asymptotics a0

T,µ ∼ eµµ
d/2−1 ln(1/T ) as T → 0. Intuitively, keeping q away

from 0 on a scale larger than T will slow down the divergence. In the case q = 0, divergence
comes from the singularity on the set |p| = √

µ. For |q| > 0, there will be two relevant sets,
(p+ q)2 = µ and (p− q)2 = µ. These sets are circles or spheres in 2d and 3d, respectively.
The function BT is very small on the region which lies inside exactly one of the disks or
balls (see the shaded area in Figure 5.3). The part lying inside or outside both disks (the
white area in Figure 5.3) will be relevant for the asymptotics. Define the family of operators
QT (q) : L1(Rd) → L∞(Rd) for q ∈ Rd through

⟨ψ,QT (q)ψ⟩ = χ
max

{
T
µ
,

|q|√
µ

}
< 1

2

∫
Rd

∣∣∣ψ̂ (√µp/|p|)
∣∣∣2 BT (p, q)χ((p+q)2−µ)((p−q)2−µ)>0χp2<3µdp.

(5.216)
We claim that QT captures the divergence of BT .

Lemma 5.6.9. Let d ∈ {2, 3} and µ > 0. Let V satisfy Assumption 5.1.1. Then

sup
T>0

sup
q∈Rd

∥V 1/2BT (·, q)|V |1/2 − V 1/2QT (q)|V |1/2∥ < ∞. (5.217)
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p2

p1|q|−|q|

√
µ

φ

r−(eφ)

r+(eφ)

Figure 5.3: Two circles of radius √
µ, centered at (−|q|, 0) and (|q|, 0). In d = 2 the function

BT (p, (|q|, 0)) diverges on the two circles as T → 0 and approaches zero in the shaded area.
Given an angle φ, the numbers r±(eφ) are the distances between zero and the intersections of
the circles with the ray tilted by an angle φ with respect to the p1-axis.

The proof of Lemma 5.6.9 can be found in Section 5.7.4. It now suffices to prove that there
is a constant C such that for all T > 0 and q ∈ Rd

⟨ψ,QT (q)ψ⟩ ≤ ⟨ψ,F †Fψ⟩f(max{T/µ, |q|/√µ}) + C∥ψ∥2
1. (5.218)

Then for all ψ ∈ L2(Rd) with ∥ψ∥2 = 1

⟨ψ, V 1/2QT (q)V 1/2ψ⟩ ≤ ⟨ψ,Oµψ⟩f(max{T/µ, |q|/√µ}) + C∥V ∥1 (5.219)
and the claim follows with Lemma 5.6.9.
We are left with proving (5.218). By the definition of QT , it suffices to restrict to |q| <√
µ/2, T < µ/2. Let R be the rotation in Rd around the origin such that q = R(|q|, 0̃). For

d = 2 the condition ((p+ (|q|, 0))2 − µ)((p− (|q|, 0))2 − µ) > 0 holds exactly in the white
region sketched in Figure 5.3. The inner white region is characterized by (|p1| + |q|)2 + p̃2 < µ,
and the outer region by (|p1| − |q|)2 + p̃2 > µ. Thus,

⟨ψ,QT (q)ψ⟩ =
∫
Rd

∣∣∣ψ̂ (√µRp/|p|)
∣∣∣2 [χ(|p1|+|q|)2+p̃2<µ + χ(|p1|−|q|)2+p̃2>µ

]
BT (p, (|q|, 0̃))χp2<3µdp,

(5.220)
where we substituted p by Rp.

Let us use the notation r±(e) = ±|e1||q| +
√
µ− e2

2|q|2 and eφ = (cosφ, sinφ), where the
choice of r± is motivated in Figure 5.3. For d = 2 rewriting the integral (5.220) in angular
coordinates gives∫ 2π

0

∣∣∣ψ̂ (√µReφ|)
∣∣∣2 [∫ r−(eφ)

0
BT (reφ, (|q|, 0))rdr +

∫ √
3µ

r+(eφ)
BT,µ(reφ, (|q|, 0))rdr

]
dφ.

(5.221)
For d = 3 with the notation eφ,θ = (cosφ, sinφ cos θ, sinφ sin θ) and using that BT (reφ,θ, (|q|, 0, 0)) =
BT (reφ, (|q|, 0)), (5.220) equals∫ π

0

(∫ 2π

0

∣∣∣ψ̂ (√µreφ,θ|)
∣∣∣2 dθ

) [∫ r−(eφ)

0
BT (reφ, (|q|, 0))r2dr +

∫ √
3µ

r+(eφ)
BT (reφ, (|q|, 0))r2dr

]
sinφdφ.

(5.222)
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We distinguish two cases depending on whether r is within distance T/√µ to r± or not. Note
that r−(e) ≥ −|q| + √

µ ≥
√
µ

2 ≥ T√
µ

and r+(e) + T√
µ

≤ |q| + √
µ+ T ≤ 2√

µ. If r is close
to r± we use that BT (p, q) ≤ 1/2T . Otherwise we use (5.202). The expressions in the square
brackets in (5.221) and (5.222) are thus bounded by
∫ r−(eφ)− T√

µ

0

rd−1

µ− r2 − q2 dr+
∫ r−(eφ)

r−(eφ)− T√
µ

rd−1

2T dr+
∫ r+(eφ)+ T√

µ

r+(eφ)

rd−1

2T dr+
∫ √

3µ

r+(eφ)+ T√
µ

rd−1

r2 + q2 − µ
dr

(5.223)
The second and third term are clearly bounded for T < µ/2. Since ∥ψ̂∥∞ ≤ (2π)−d/2∥ψ∥1,
they contribute C∥ψ∥1 to the upper bound on ⟨ψ,QT (q)ψ⟩.

To bound the contributions of the first and the last term in (5.223) we treat d = 2 and d = 3
separately.

Case d = 2: The sum of the two integrals equals

ln
√√√√ (µ− q2)(2µ+ q2)

(µ− q2 − (r−(eφ) − T√
µ
)2)((r+(eφ) + T√

µ
)2 + q2 − µ)

 (5.224)

To bound this expression, we first make a few observations. Note that

µ− q2 −
(
r−(eφ) − T

√
µ

)2

= 2|e1||q|(
√
µ− e2

2|q|2 − |e1||q|) + T
√
µ

(
2r−(eφ) − T

√
µ

)

≥ (
√

3 − 1)√µ|e1||q| + T

2 , (5.225)

where we used that r−(eφ) ≥ √
µ− |q| and |q|, T/√µ ≤ √

µ/2. Similarly,

(
r+(eφ) + T

√
µ

)2

+ q2 − µ = 2|e1||q|(
√
µ− e2

2|q|2 + |e1||q|) + T
√
µ

(
2r+(eφ) + T

√
µ

)
≥

√
3√

µ|e1||q| +
√

3T (5.226)

Furthermore, note that 2µ + q2 ≤ 5µ
4 . The expression under the square root in (5.224) is

therefore bounded above by

5µ2

4((
√

3 − 1)√µ|e1||q| + T
2 )(

√
3√

µ|e1||q| +
√

3T )
(5.227)

We now bound this from above in two ways. First we drop the T terms in the denominator, and
second we drop the other terms in the denominator, which gives 5µ

4
√

3(
√

3−1)|e1|2|q|2 and 5µ2

2
√

3T 2 ,
respectively. Thus, (5.224) is bounded above by f(max{T/µ, |q|/√µ})+ ln(1/|e1|)+C. The
contribution to the upper bound on ⟨ψ,QT (q)ψ⟩ is∫ 2π

0

∣∣∣ψ̂ (√µeφ|)
∣∣∣2 f(max{T/µ, |q|/√µ})dφ+ (2π)−2∥ψ∥2

1

∫ 2π

0
(ln (1/| cosφ|) + C) dφ,

(5.228)
where for the second term we used that |ψ̂

(√
µeφ|

)
|2 ≤ (2π)−2∥ψ∥2

1. Note that the
first summand equals ⟨ψ,F †Fψ⟩f(max{T/µ, |q|/√µ}) and that the integral in the second
summand is finite. In total, we have obtained (5.218) for d = 2.
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Case d = 3: Note that d
dr (−r+a artanh(r/a)) = r2/(a2 − r2) and d

dr (r−a arcoth(r/a)) =
r2/(r2 − a2). The sum of the first and the last integral in (5.223) hence equals

√
3µ− r+(eφ) − r−(eφ) −

√
µ− q2

2 ln
(

(
√
µ− q2 +

√
3µ)

(
√

3µ−
√
µ− q2)

)

+
√
µ− q2

2 ln
(

√
µ− q2 + r−(eφ) − T√

µ
)

(
√
µ− q2 − r−(eφ) + T√

µ
)

(
√
µ− q2 + r+(eφ) + T√

µ
)

(r+(eφ) + T√
µ

−
√
µ− q2)

 (5.229)

The terms in the first line are bounded. The argument of the logarithm in the second line
equals

(
√
µ− q2 + r−(eφ) − T√

µ
)2

(µ− q2 − (r−(eφ) − T√
µ
)2)

(
√
µ− q2 + r+(eφ) + T√

µ
)2

((r+(eφ) + T√
µ
)2 − µ+ q2)

≤ Cµ2

((
√

3 − 1)√µ|e1||q| + T
2 )(

√
3√

µ|e1||q| +
√

3T ))
(5.230)

where we used (5.225) and (5.226). Analogously to the case d = 2 the contribution to the
upper bound on ⟨ψ,QT (q)ψ⟩ is
∫ π

0

(∫ 2π

0

∣∣∣ψ̂ (√µeφ,θ|)
∣∣∣2 dθ

)
f(max{T/µ, |q|/√µ}) sinφdφ

+ (2π)−2∥ψ∥2
1

∫ π

0
(ln (1/| cosφ|) + C) sinφdφ. (5.231)

and (5.218) follows.

5.7 Proofs of Auxiliary Lemmas
5.7.1 Proof of Lemma 5.6.5
Proof of Lemma 5.6.5. If we write Dµ1,µ2 as a sum Dµ1,µ2 = ∑n

j=1 D
j
µ1,µ2 a.e. for some

integral kernels Dj
µ1,µ2 , then ∥Dµ1,µ2∥ ≤ ∑n

j=1∥Dj
µ1,µ2∥. We will choose the Dj

µ1,µ2 as localized
versions of Dµ1,µ2 in different regions (by multiplying Dµ1,µ2 by characteristic functions).
Let D1

µ1,µ2 = Dµ1,µ2χmax{|p1|,|q1|}>2 and D2
µ1,µ2 = Dµ1,µ2χmax{|p1|,|q1|}<2. We first prove

that the Hilbert-Schmidt norm of ∥D1
µ1,µ2∥ is bounded uniformly in µ1, µ2. Note that if

max{|p1|, |q1|} > 2, we have max{(p1 ± q1)2} = (|p1| + |q1|)2 > 4 and µ1, µ2 ≤ 1. Hence,

D1
µ1,µ2(p1, q1) ≤

2χmax{|p1|,|q1|}>2

(|p1| + |q1|)2 − 1 ≤
2χmax{|p1|,|q1|}>2

p2
1 + q2

1 − 1 . (5.232)

For the Hilbert-Schmidt norm we obtain

∥D1
µ1,µ2∥2

HS ≤ 4
∫
R2

χmax{|p1|,|q1|}>2

(p2
1 + q2

1 − 1)2 dp1dq1 ≤ 8π
∫ ∞

2

r

(r2 − 1)2 dr = 4π
3 , (5.233)

and therefore ∥D1
µ1,µ2∥ is indeed bounded uniformly in µ1, µ2.

For D2
µ1,µ2 we first observe that ∥D2

µ2,µ1∥ = ∥D2
µ1,µ2∥ since D2

µ1,µ2(p1, q1) = D2
µ2,µ1(p1,−q1).

Hence, without loss of generality we may assume µ1 ≤ µ2 from now on. To bound the norm
of D2

µ1,µ2 we distinguish the cases µ1 < 0 and µ1 > 0 and continue localizing.
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Case µ1 < 0: We localize in the regions |p1 − q1|2 < µ2 and |p1 − q1|2 > µ2, where the first
one only occurs if µ2 > 0. Let D3

µ1,µ2 = D2
µ1,µ2χ|p1−q1|2<µ2 and D4

µ1,µ2 = D2
µ1,µ2χ|p1−q1|2>µ2 .

For D3
µ1,µ2 we do a Schur test with test function h(p1) = |p1|1/2. Using the symmetry of the

integrand under (p1, q1) → −(p1, q1), we have

∥D3
µ1,µ2∥ ≤ sup

−2<p1<2
|p1|1/2

∫ 2

−2

1
2

χ|p1−q1|2<µ2

p1q1 + (µ2 − µ1)/4
1

|q1|1/2 dq1

= χ0<µ2 sup
0≤p1<2

|p1|1/2
∫ p1+√

µ2

p1−√
µ2

1
2

1
p1q1 + (µ2 − µ1)/4

1
|q1|1/2 dq1. (5.234)

For µ2 > 0, carrying out the integration we obtain

∥D3
µ1,µ2∥ ≤ sup

0≤p1<2

2√
µ2 − µ1

arctan

√√√√4p1(p1 + √

µ2)
µ2 − µ1


−χp1>

√
µ2 arctan


√√√√4p1(p1 − √

µ2)
µ2 − µ1

+ χp1<
√
µ2 artanh


√√√√4p1(

√
µ2 − p1)

µ2 − µ1


≤ 2√

µ2 − µ1

[
π

2 + artanh
(√

µ2

µ2 − µ1

)]
, (5.235)

where we used the monotonicity of artanh. Note that for x ≥ 0,

artanh
√ 1

1 + x

 = ln
√1

x
+ 1 +

√
1
x

 ≤ ln
2
√

1
x

+ 1
 = ln(2) + 1

2 ln
(

1 + 1
x

)
.

(5.236)
In total, we obtain

∥D3
µ1,µ2∥ ≤ C√

−µ1

(
1 + ln

(
1 + µ2

−µ1

))
(5.237)

for some constant C.
We bound the Hilbert-Schmidt norm of D4

µ1,µ2 as

∥D4
µ1,µ2∥ HS =

(∫
(−2,2)2

χ|p1−q1|2>µ2

(p2
1 + q2

1 − µ1+µ2
2 )2 dp1dq1

)1/2

(5.238)

For µ2 < 0, we clearly have ∥D4
µ1,µ2∥ HS ≤ ∥D4

µ1,0∥ HS. For µ2 ≥ 0 observe that the constraint
|p1 − q1|2 > µ2 implies p2

1 + q2
1 >

µ2
2 . Hence,

∥D4
µ1,µ2∥ HS ≤

(
2π
∫ ∞
√

µ2
2

r

(r2 − µ1+µ2
2 )2 dr

)1/2

=
(

2π
−µ1

)1/2

. (5.239)

Case µ1 > 0: We are left with estimating D2
µ1,µ2 in the case that µ1 > 0. First we

sketch the location of the singularities of D2
µ1,µ2(p1, q1). On each of the diagonal lines in

Figure 5.4, one of the two terms |(p1 + q1)2 − µ1|, |(p1 − q1)2 − µ2| in the denominator
of D2

µ1,µ2(p1, q1) vanishes. The function D2
µ1,µ2(p1, q1) thus has four singularities located

at the crossings of the diagonal lines Figure 5.4. The coordinates of the singularities are
(p1, q1) ∈ {(s1,−s2), (s2,−s1), (−s1, s2), (−s2, s1)}, where s1 =

√
µ1+√

µ2
2 , s2 =

√
µ2−√

µ1
2 .

Note that s2
1 + s2

2 = µ1+µ2
2 and s1s2 = µ2−µ1

4 .
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q1

p1

5

5

6

6

7

7

8

8

9

9

5

5

10

10
11

11

12

1213

1314

q1 = −
√
µ2
2

q1 =
√
µ2
2

q1 = √
µ1 − p1

q1 = −√
µ1 − p1

q1 = √
µ2 + p1

q1 = −√
µ2 + p1

Figure 5.4: In the proof of Lemma 5.6.5, in the case 0 < µ1 ≤ µ2 we split the domain of
p1, q1 into ten different regions. The solid lines indicate the boundaries between these regions.

To bound ∥D2
µ1,µ2∥, the idea is to perform a Schur test with test function h(p1) = min{||p1|−

s1|1/2, ||p1| − s2|1/2}. Since the behavior of D2
µ1,µ2(p1, q1) strongly depends on whether

|p1 + q1| ≷
√
µ1, |p1 − q1| ≷

√
µ2 and which singularity of D2

µ1,µ2 is close to p1, q1, we
distinguish the ten different regions sketched in Figure 5.4. For 5 ≤ j ≤ 14, we define the
operator Dj

µ1,µ2 to be localized in region j, Dj
µ1,µ2 = D2

µ1,µ2χj. According to the Schur test,

∥Dj
µ1,µ2∥ ≤ sup

|p1|<2
h(p1)−1

∫ 2

−2
Dj
µ1,µ2(p1, q1)h(q1)dq1. (5.240)

The bounds on ∥Dj
µ1,µ2∥ we obtain from the Schur test are listed in Table 5.2. In the following

we prove all the bounds.
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Operator Upper bound Proof
D5 16

µ
1/2
1

(5.241)-(5.243)

D6 6
µ

1/2
1

(5.244)-(5.249)

D7 (6+2
√

2)1/2

µ
1/2
1

(5.250)-(5.252)

D8 21/24
µ

1/2
1

(5.253) -(5.257)

D9 8
µ

1/2
1

(5.258)-(5.260)

D10 4
µ

1/2
1

(5.261)-(5.264)

D11 4
µ

1/2
1

(5.265)- (5.268)

D12 2
µ

1/2
1

(5.269)- (5.271)

D13 4(artanh(1/
√

2)+π)
µ

1/2
1

(5.272)- (5.280)

D14 4(
√

3+1)
µ

1/2
1

(5.281)-(5.285)

Table 5.2: Overview of the estimates used in the proof of Lemma 5.6.5.

Region 5: By symmetry of the integrand under (p1, q1) → −(p1, q1) we have

∥D5
µ1,µ2∥ ≤ sup

−2<p1<2
h(p1)

∫ 2

−2

χ5

p2
1 + q2

1 − s2
1 − s2

2

1
h(q1)

dq1

= sup
√
µ1+

√
µ2
2 <p1<2

|p1 − s1|1/2

 ∫ −
√

µ2
2

√
µ1−p1

1
p2

1 + q2
1 − s2

1 − s2
2

1
|q1 + s1|1/2 dq1

+
∫ p1−√

µ2

√
µ2/2

1
p2

1 + q2
1 − s2

1 − s2
2

1
|q1 − s1|1/2 dq1


≤ 2 sup

√
µ1+

√
µ2
2 <p1<2

|p1 − s1|1/2
∫ p1−√

µ1

√
µ2/2

1
p2

1 + q2
1 − s2

1 − s2
2

1
|q1 − s1|1/2 dq1

≤ 2 sup
√
µ1+

√
µ2
2 <p1<2

|p1 − s1|1/2

p2
1 + µ2

4 − s2
1 − s2

2

∫ p1−√
µ1

√
µ2/2

1
|q1 − s1|1/2 dq1 (5.241)

Note that p2
1 + µ2

4 − s2
1 − s2

2 = p2
1 − µ1

2 − µ2
4 ≥

√
µ2
2 (p1 −

√
µ1
2 + µ2

4 ). Carrying out the
integration, (5.241) is bounded above by

8
√
µ2

sup
√
µ1+

√
µ2
2 <p1<2

|p1 − s1|1/2

p1 −
√

µ1
2 + µ2

4

(√
µ1

2

)1/2

+ χp1>s1+√
µ1 |p1 − s1 − √

µ1|1/2

 (5.242)

Note that s1 >
√

µ1
2 + µ2

4 . Using that for x ≥ a ≥ b, (x− a)/(x− b) ≤ 1 we bound (5.242)
above by

8
√
µ2


(√

µ1
2

)1/2

|√µ1 +
√
µ2
2 −

√
µ1
2 + µ2

4 |1/2
+1
 ≤ 8

√
µ2

√
µ1 +

√
µ2
2 +

√
µ1
2 + µ2

4√
µ1 + 2√

µ2

1/2

+ 8
√
µ1

≤ 16
√
µ1
.

(5.243)
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Region 6: By symmetry under (p1, q1) → −(p1, q1), we obtain

∥D6
µ1,µ2∥ ≤ sup

−2<p1<2
h(p1)

∫ 2

−2

1
2

χ6

−p1q1 − s1s2

1
h(q1)

dq1

≤ sup
−2<p1<−s2

h(p1)
∫ min{−p1+√

µ1,2}

max{−√
µ1−p1,

√
µ2
2 ,

√
µ2+p1}

1
−p1q1 − s1s2

1
|q1 − s1|1/2 dq1 (5.244)

We split the integral into the sum of the integral over q1 > s1 and q1 < s1. For p1 < −s2 and
q1 > s1 we have −p1q1 − s1s2 > −(p1 + s2)s1. Hence,

sup
−2<p1<−s2

h(p1)
∫ min{−p1+√

µ1,2}

s1

1
−p1q1 − s1s2

1
|q1 − s1|1/2 dq1

≤ sup
−2<p1<−s2

1
|p1 + s2|1/2s1

∫ −p1+√
µ1

s1

1
|q1 − s1|1/2 dq1 = 2

s1
≤ 2

√
µ1

(5.245)

The case q1 < s1 only occurs for p1 > −s1 − √
µ1. For −

√
µ2
2 < p1 < −s2 and √

µ2 + p1 <

q1 < s1 note that −p1q1 − s1s2 ≥ −p1(√µ2 + p1) − s1s2 = |p1 + s2|(p1 + s1) ≥ |p1 + s2|
√
µ1
2 .

Hence,

sup
−

√
µ2
2 <p1<−s2

h(p1)
∫ s1

√
µ2+p1

1
−p1q1 − s1s2

1
|q1 − s1|1/2 dq1

≤ sup
−

√
µ2
2 <p1<−s2

2
√
µ1|p1 + s2|1/2

∫ s1

√
µ2+p1

1
|q1 − s1|1/2 dq1 = 4

√
µ1

(5.246)

For −s1 −
√
µ1
2 < p1 < −

√
µ2
2 and

√
µ2
2 < q1 < s1, we have −p1q1 − s1s2 ≥ µ2

4 − s1s2 = µ1
4 .

Therefore,

sup
−s1−

√
µ1
2 <p1<−

√
µ2
2

h(p1)
∫ s1

√
µ2
2

1
−p1q1 − s1s2

1
|q1 − s1|1/2 dq1

≤ sup
−s1−

√
µ1
2 <p1<−

√
µ2
2

4|p1 + s1|1/2

µ1

∫ s1
√

µ2
2

1
|q1 − s1|1/2 dq1 ≤

8
(√

µ1
2

)1/2

µ1

(√
µ1

2

)1/2

= 4
µ

1/2
1

(5.247)

For −s1 − √
µ1 < p1 < −s1 −

√
µ1
2 and −p1 − √

µ1 < q1 < s1, we have −p1q1 − s1s2 ≥
p1(p1 + √

µ1) − s1s2 = −(p1 + s1)(s2 − p1). Hence,

sup
−s1−√

µ1<p1<−s1−
√

µ1
2

h(p1)
∫ s1

−p1−√
µ1

1
−p1q1 − s1s2

1
|q1 − s1|1/2 dq1

≤ sup
−s1−√

µ1<p1<−s1−
√

µ1
2

2|p1 + √
µ1 + s1|1/2

|p1 + s1|1/2(s2 − p1)
= 2
s2 + s1 +

√
µ1
2

≤ 4
√
µ1

(5.248)

In total, summing the contributions from q1 > s1 and q1 < s1 gives

∥D6
µ1,µ2∥ ≤ 6

√
µ1

(5.249)
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Region 7: By symmetry of the two components of region 7 we have

∥D7
µ1,µ2∥ ≤ sup

−2<p1<2
h(p1)

∫ 2

−2

χ7

p2
1 + q2

1 − s2
1 − s2

2

1
h(q1)

dq1

≤ 2 sup
−2<p1<2

||p1| − s2|1/2
∫ 2

max{√
µ1−p1,

√
µ2+p1}

1
p2

1 + q2
1 − s2

1 − s2
2

1
|q1 − s1|1/2 dq1

(5.250)

For |p1| > s2, q1 > s1 we observe p2
1 + q2

1 − s2
1 − s2

2 ≥ (q1 + s1)(q1 − s1) ≥ 2s1(q1 − s1).
Therefore,

sup
s2<|p1|<2

||p1| − s2|1/2
∫ 2

max{√
µ1−p1,

√
µ2+p1}

1
p2

1 + q2
1 − s2

1 − s2
2

1
|q1 − s1|1/2 dq1

≤ sup
s2<|p1|<2

||p1| − s2|1/2

2s1

∫ ∞

max{√
µ1−p1,

√
µ2+p1}

1
(q1 − s1)3/2 dq1

= sup
s2<|p1|<2

||p1| − s2|1/2

s1(max{√
µ1 − p1,

√
µ2 + p1} − s1)1/2 = 1

s1
≤ 1

√
µ1
. (5.251)

For |p1| < s2, q1 > s1 we have (p2
1 + q2

1 − s2
1 − s2

2)(q1 − s1)1/2 ≥ (q1 +
√
s2

1 + s2
2 − p2

1)(q1 −√
s2

1 + s2
2 − p2

1)3/2 ≥ 2s1(q1 −
√
s2

1 + s2
2 − p2

1)3/2. Hence,

sup
|p1|<s2

||p1| − s2|1/2
∫ 2

max{√
µ1−p1,

√
µ2+p1}

1
p2

1 + q2
1 − s2

1 − s2
2

1
|q1 − s1|1/2 dq1

≤ sup
|p1|<s2

|p1 + s2|1/2

2s1

∫ ∞

√
µ2+p1

1
(q1 −

√
s2

1 + s2
2 − p2

1)3/2
dq1

= sup
|p1|<s2

|p1 + s2|1/2

s1

1
(√µ2 + p1 −

√
s2

1 + s2
2 − p2

1)1/2

= sup
|p1|<s2

1
s1

|p1 + s2|1/2(√µ2 + p1 +
√
s2

1 + s2
2 − p2

1)1/2

(p1 + s1)1/2(p1 + s2)1/2

= sup
|p1|<s2

1
s1

(√µ2 + p1 +
√
s2

1 + s2
2 − p2

1)1/2

(p1 + s1)1/2 ≤
(3

2 +
√

2)1/2s
1/2
1

s1µ
1/4
1

≤
(3

2 +
√

2)1/2

µ
1/2
1

(5.252)

In total, we obtain ∥D7∥ ≤ (6+2
√

2)1/2
√
µ1

.

Region 8: Taking the supremum separately over the two symmetric components of region 8,
we have

∥D8
µ1,µ2∥ ≤ sup

−2<p1<2
h(p1)

∫ 2

−2

χ8

s2
1 + s2

2 − p2
1 − q2

1

1
h(q1)

dq1

≤ 2 sup
−

√
µ2
2 <p1<

√
µ1−

√
µ2
2

h(p1)
∫ min{√

µ2+p1,
√
µ1−p1}

√
µ2/2

1
s2

1 + s2
2 − p2

1 − q2
1

1
|s1 − q1|1/2 dq1

≤ 2 sup
−

√
µ2
2 <p1<

√
µ1−

√
µ2
2

h(p1)√
µ2

∫ min{√
µ2+p1,

√
µ1−p1}

√
µ2/2

1√
s2

1 + s2
2 − p2

1 − q1

1
|s1 − q1|1/2 dq1,

(5.253)
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since
√
s2

1 + s2
2 − p2

1 + q1 >
√

µ1
2 + µ2

2 − µ2
4 +

√
µ2
2 ≥ √

µ2. For |p1| > s2 we have s1 >√
s2

1 + s2
2 − p2

1, whereas for |p1| < s2, s1 <
√
s2

1 + s2
2 − p2

1. For p1 < −s2 we obtain

sup
−

√
µ2
2 <p1<−s2

2h(p1)√
µ2

∫ min{√
µ2+p1,

√
µ1−p1}

√
µ2/2

1√
s2

1 + s2
2 − p2

1 − q1

1
|s1 − q1|1/2 dq1

≤ sup
−

√
µ2
2 <p1<−s2

2|p1 + s2|1/2
√
µ2

∫ √
µ2+p1

−∞

1
(
√
s2

1 + s2
2 − p2

1 − q1)3/2
dq1

= sup
−

√
µ2
2 <p1<−s2

4|p1 + s2|1/2

√
µ2(

√
s2

1 + s2
2 − p2

1 − √
µ2 − p1)1/2

≤ sup
−

√
µ2
2 <p1<−s2

4(
√
s2

1 + s2
2 − p2

1 + √
µ2 + p1)1/2

21/2√µ2(p1 + s1)1/2 ≤ 21/24s1/2
1

√
µ2µ

1/4
1

≤ 21/24
µ

1/2
1

(5.254)

Similarly, for p1 > s2 (which only occurs if 2√
µ2 < 3√

µ1),

sup
s2<p1<

√
µ1−

√
µ2
2

2h(p1)√
µ2

∫ min{√
µ2+p1,

√
µ1−p1}

√
µ2/2

1√
s2

1 + s2
2 − p2

1 − q1

1
|s1 − q1|1/2 dq1

≤ sup
s2<p1<

√
µ2
2

2|p1 − s2|1/2
√
µ2

∫ √
µ2−p1

−∞

1
(
√
s2

1 + s2
2 − p2

1 − q1)3/2
dq1 ≤ 21/24

µ
1/2
1

, (5.255)

by (5.254). For |p1| < s2,

sup
−s2<p1<s2

2h(p1)√
µ2

∫ √
µ1−p1

√
µ2/2

1√
s2

1 + s2
2 − p2

1 − q1

1
|s1 − q1|1/2 dq1

≤ sup
−s2<p1<s2

2||p1| − s2|1/2
√
µ2

∫ √
µ1−p1

−∞

1
|s1 − q1|3/2 dq1

= sup
−s2<p1<s2

4||p1| − s2|1/2
√
µ2|s2 + p1|1/2 = 4

√
µ2

(5.256)

In total, we have

∥D8
µ1,µ2∥ ≤ 21/24

µ
1/2
1

. (5.257)

Region 9: By taking the supremum separately over the two components of region 9 and using
the symmetry in (p1, q1) → −(p1, q1), we obtain

∥D9
µ1,µ2∥ ≤ sup

−2<p1<2
h(p1)

∫ 2

−2

1
2

χ9

p1q1 + s1s2

1
h(q1)

dq1

≤ sup
−s2<p1<2

h(p1)
∫ min{p1+√

µ2,2}

max{√
µ1−p1,

√
µ2/2,p1−√

µ2}

1
p1q1 + s1s2

1
|q1 − s1|1/2 dq1 (5.258)

135



5. BCS Critical Temperature on Half-Spaces

For p1 > −s2 and max{√
µ1 − p1,

√
µ2
2 } < q1 <

√
µ2 + p1 note that

p1q1+s1s2 ≥


p1(

√
µ2 + p1) + s1s2 = (p1 + s2)(p1 + s1) if p1 ≤ 0

p1(
√
µ1 − p1) + s1s2 = (p1 + s2)(s1 − p1) if √

µ1 −
√
µ2
2 ≥ p1 ≥ 0

p1
√
µ2
2 + s1s2 if p1 ≥ max{√

µ1 −
√
µ2
2 , 0}


≥

√
µ1

2 (p1 + s2) (5.259)

Hence,

∥D9
µ1,µ2∥ ≤ sup

−s2<p1<2

2
√
µ1(p1 + s2)1/2

∫ p1+√
µ2

√
µ1−p1

1
|q1 − s1|1/2 dq1 = 8

√
µ1

(5.260)

Region 10: By symmetry in p1, we have

∥D10
µ1,µ2∥ ≤ sup

−2<p1<2
h(p1)

∫ 2

−2

χ10

p2
1 + q2

1 − s2
1 − s2

2

1
h(q1)

dq1

= sup
s1<p1<2

|p1 − s1|1/2
∫ min{p1−√

µ2,
√

µ2
2 }

max{√
µ1−p1,−

√
µ2
2 }

1
p2

1 + q2
1 − s2

1 − s2
2

1
||q1| − s2|1/2 dq1 (5.261)

If we mirror the part of region 10 with p1 > 0, q1 < 0 along q1 = 0, its image contains the part
of region 10 with p1 > 0, q1 > 0. Since the integrand is symmetric in q1, we can thus bound

∥D10
µ1,µ2∥ ≤ sup

s1<p1<2
2|p1 − s1|1/2

∫ min{p1−√
µ1,

√
µ2
2 }

max{√
µ2−p1,0}

1
p2

1 + q2
1 − s2

1 − s2
2

1
|q1 − s2|1/2 dq1 (5.262)

Note that for q1 ≥ √
µ2 − p1, p1 > s1 we have

p2
1 + q2

1 − s2
1 − s2

2 = (p1 − s1)2 + (q1 − s2)2 + 2s1(p1 − s1) + 2s2(q1 − s2)
≥ 2s1(p1 − s1) + 2s2(s1 − p1) = 2√

µ1(p1 − s1). (5.263)

Therefore,

∥D10
µ1,µ2∥ ≤ sup

s1<p1<2

1
√
µ1|p1 − s1|1/2

∫ p1−√
µ1

√
µ2−p1

1
|q1 − s2|1/2 dq1 = 4

√
µ1
. (5.264)

Region 11: By symmetry in p1, we obtain

∥D11
µ1,µ2∥ ≤ sup

−2<p1<2
h(p1)

∫ 2

−2

1
2

χ11

−p1q1 − s1s2

1
h(q1)

dq1

= sup
−µ1−

√
µ2
2 <p1<−

√
µ2
2

1
2 |p1 + s1|1/2

∫ √
µ2
2

max{−√
µ1−p1,

√
µ2+p1}

1
−p1q1 − s1s2

1
|q1 − s2|1/2 dq1

(5.265)

For p1 < −s1 we have −p1q1 − s1s2 > s1(q1 − s2). Hence,

sup
−µ1−

√
µ2
2 <p1<−s1

1
2 |p1 + s1|1/2

∫ √
µ2
2

−√
µ1−p1

1
−p1q1 − s1s2

1
|q1 − s2|1/2 dq1

≤ sup
−µ1−

√
µ2
2 <p1<−s1

|p1 + s1|1/2

2s1

∫ ∞

−√
µ1−p1

1
|q1 − s2|3/2 dq1 = 1

s1
≤ 1

√
µ1

(5.266)
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For p1 > −s1, we carry out the integration

sup
−s1<p1<−

√
µ2
2

1
2 |p1 + s1|1/2

∫ √
µ2
2

√
µ2+p1

1
−p1q1 − s1s2

1
|q1 − s2|1/2 dq1

≤ sup
−s1<p1<−

√
µ2
2

1
|p1|1/2s

1/2
2

artanh
 s

1/2
2

|p1|1/2

 = 21/2

µ
1/4
2 s

1/2
2

artanh
21/2s

1/2
2

µ
1/4
2

 (5.267)

With artanh(x) ≤ x
1−x , we obtain

21/2

µ
1/4
2 s

1/2
2

artanh
21/2s

1/2
2

µ
1/4
2

 ≤ 21/2

µ
1/4
2 s

1/2
2

s
1/2
2

µ
1/4
2

21/2 − s
1/2
2

= 21/2

µ
1/4
2

µ
1/4
2

21/2 + s
1/2
2

µ
1/2
1
2

≤ 4
µ

1/2
1

(5.268)

Therefore, ∥D11
µ1,µ2∥ ≤ 4

µ
1/2
1

.

Region 12: By symmetry in p1, we obtain

∥D12
µ1,µ2∥ ≤ sup

−2<p1<2
h(p1)

∫ 2

−2

1
2

χ12

p1q1 + s1s2

1
h(q1)

dq1

= sup
−√

µ2<p1<−√
µ1

1
2h(p1)

∫ min{p1+√
µ2,−

√
µ1−p1}

0

1
p1q1 + s1s2

1
|s2 − q1|1/2 dq1 (5.269)

For p1 ≥ −s1 note that p1q1 + s1s2 ≥ s1(s2 − q1) ≥
√
µ1
2 (s2 − q2). For p1 ≤ −s1 and

q1 < p1 + √
µ2 observe that

p1q1 + s1s2 = (−p1 − s1)(s2 − q1) + s1(s2 − q1) + s2(p1 + s1)

≥
√
µ1

2 (s2−q1)+
√
µ2

2 (s2−q1)+s2(q1−√
µ2+s1) =

√
µ1

2 (s2−q1)+
√
µ2

2 (s2−q1)−s2(s2−q1)

≥
√
µ1

2 (s2 − q1) (5.270)

Therefore,

∥D12
µ1,µ2∥ ≤ sup

−√
µ2<p1<−√

µ1

|p1 + s1|1/2
√
µ1

∫ min{p1+√
µ2,−

√
µ1−p1}

−∞

1
|s2 − q1|3/2 dq1 = 2

√
µ1
(5.271)

Region 13: By symmetry under (p1, q1) → −(p1, q1), we obtain

∥D13
µ1,µ2∥ ≤ sup

−2<p1<2
h(p1)

∫ 2

−2

1
2

χ13

p1q1 + s1s2

1
h(q1)

dq1

= sup
−

√
µ2
2 +√

µ1<p1<
3√

µ2
2

h(p1)
∫ √

µ2
2

max{√
µ1−p1,0,−

√
µ2+p1}

1
p1q1 + s1s2

1
|s2 − q1|1/2 dq1 (5.272)
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For p1 >
√
µ1, q1 > 0, we have p1q1 + s1s2 ≥ √

µ1(q1 + s2). Therefore,

sup√
µ1<p1<

√
µ2+s2

h(p1)
∫ √

µ2
2

max{√
µ1−p1,0,−

√
µ2+p1}

1
p1q1 + s1s2

1
|s2 − q1|1/2 dq1

≤ sup√
µ1<p1<

√
µ2+s2

|p1 − s1|1/2
√
µ1

∫ ∞

0

1
q1 + s2

1
|s2 − q1|1/2 dq1

= 21/2
√
µ1

∫ ∞

0

1
q1 + 1

1
|1 − q1|1/2 dq1 ≤ 21/2

√
µ1

[∫ 2

0

1
|1 − q1|1/2 dq1 +

∫ ∞

2

1
|q1 − 1|3/2 dq1

]
= 21/26

√
µ1

(5.273)

and

sup
√
µ2+s2<p1<

3√
µ2

2

h(p1)
∫ √

µ2
2

max{√
µ1−p1,0,−

√
µ2+p1}

1
p1q1 + s1s2

1
|s2 − q1|1/2 dq1

≤ sup
√
µ2+s2<p1<

3√
µ2

2

|p1 − s1|1/2
√
µ1

∫ ∞

−√
µ2+p1

1
q1 + s2

1
|q1 − s2|1/2 dq1

= sup
2s2<x<µ2−

√
µ1
2

|x|1/2
√
µ1

∫ ∞

x

1
y

1
|y − 2s2|1/2 dy = sup

2s2<x<µ2−
√

µ1
2

1
√
µ1

∫ ∞

1

1
y

1
|y − 2s2

x
|1/2 dy

= 1
√
µ1

∫ ∞

1

1
y

1
|y − 1|1/2 dy ≤ 1

√
µ1

[∫ 2

1

1
|y − 1|1/2 dy +

∫ ∞

2

1
|y − 1|3/2 dy

]
= 4

√
µ1
,

(5.274)

where we substituted x = p1 − s1 and y = q1 + s2. Next, we consider the case p1 <
√
µ1
2 . For

√
µ2
2 ≥ q1 ≥ √

µ1 − p1 and −s2 < p1 <
√
µ1
2 we have

p1q1 + s1s2 ≥
{ √

µ1
2 (p1 + s2) if p1 > 0

(s1 − q1)(p1 + s2) − p1(s1 − q1) + q1(p1 + s2) if p1 < 0

≥
{ √

µ1
2 (p1 + s2) if p1 > 0

(s1 − q1)(p1 + s2) if p1 < 0 ≥
√
µ1

2 (p1 + s2) (5.275)

Therefore,

sup
−

√
µ2
2 +√

µ1<p1<
√

µ1
2

h(p1)
∫ √

µ2
2

max{√
µ1−p1,0,−

√
µ2+p1}

1
p1q1 + s1s2

1
|s2 − q1|1/2 dq1

≤ sup
−

√
µ2
2 +√

µ1<p1<
√

µ1
2

2h(p1)√
µ1(p1 + s2)

∫ √
µ2
2

√
µ1−p1

1
|s2 − q1|1/2 dq1

≤ sup
−

√
µ2
2 +√

µ1<p1<
√

µ1
2

4
√
µ1(p1 + s2)1/2


(√

µ1
2

)1/2
if √

µ1 − p1 > s2(√
µ1
2

)1/2
+ (s2 − √

µ1 + p1)1/2 if √
µ1 − p1 < s2

(5.276)

Note that sup−
√

µ2
2 +√

µ1<p1<
√

µ1
2

(p1 + s2)−1/2
(√

µ1
2

)1/2
= 1 and that for p1 >

√
µ1 − s2 we

have
∣∣∣ s2−√

µ1+p1
p1+s2

∣∣∣ ≤ 1. One can hence bound (5.276) above by 8√
µ1

.
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For q1 ≥ 0 and p1 >
√
µ1
2 we have p1q1 + s1s2 ≥

√
µ1
2 (q1 + s2). Therefore,

sup
√

µ1
2 <p1<

√
µ1

h(p1)
∫ √

µ2
2

max{√
µ1−p1,0,−

√
µ2+p1}

1
p1q1 + s1s2

1
|s2 − q1|1/2 dq1

≤ sup
√

µ1
2 <p1<

√
µ1

2h(p1)√
µ1

∫ ∞

√
µ1−p1

1
(q1 + s2)|s2 − q1|1/2 dq1

= sup
√

µ1
2 <p1<

√
µ1

4h(p1)√
µ1

√
2s2

artanh
(√

s2−√
µ1+p1

2s2

)
+ π if s2 >

√
µ1 − p1

arctan
(√

2s2√
µ1−p1−s2

)
if s2 <

√
µ1 − p1

(5.277)

We estimate the two cases separately:

sup√
µ1−s2<p1<

√
µ1

4h(p1)√
µ1

√
2s2

artanh
√s2 − √

µ1 + p1

2s2

+ π


≤

4|s1 − √
µ1 + s2|1/2

√
µ1

√
2s2

[
artanh

(
1√
2

)
+ π

]
= 4

artanh
(

1√
2

)
+ π

√
µ1

(5.278)

and

sup
√

µ1
2 <p1<

√
µ1−s2

4h(p1)√
µ1

√
2s2

arctan
√√√√ 2s2√

µ1 − p1 − s2


≤ 4

√
µ1

sup
√

µ1
2 <p1<

√
µ1−s2

 |s1 − p1|1/2 − |√µ1 − p1 − s2|1/2
√

2s2

π

2

+
|√µ1 − p1 − s2|1/2

√
2s2

arctan
√√√√ 2s2√

µ1 − p1 − s2


≤ 4

√
µ1

sup
√

µ1
2 <p1<

√
µ1−s2

√
2s2

|s1 − p1|1/2 + |√µ1 − p1 − s2|1/2
π

2 + 1 ≤
4(π2 + 1)

√
µ1

(5.279)

In total, we obtain

∥D13
µ1,µ2∥ ≤ max

{
21/26
µ

1/2
1

,
4
µ

1/2
1
,

8
µ

1/2
1
,
4(artanh(1/

√
2) + π)

µ
1/2
1

,
4(π/2 + 1)

µ
1/2
1

}

= 4(artanh(1/
√

2) + π)
µ

1/2
1

(5.280)

Region 14: By symmetry in p1, we have

∥D14
µ1,µ2∥ ≤ sup

−2<p1<2
h(p1)

∫ 2

−2

χ14

s2
1 + s2

2 − p2
1 − q2

1

1
h(q1)

dq1

= sup
0<p1<s1

h(p1)
∫ min{√

µ1−p1,
√

µ2
2 }

max{−√
µ1−p1,−

√
µ2/2,−√

µ2+p1}

1
s2

1 + s2
2 − p2

1 − q2
1

1
||q1| − s2|1/2 dq1

≤ sup
0<p1<s1

2h(p1)
∫ min{√

µ1+p1,
√

µ2
2 ,

√
µ2−p1}

max{0,p1−√
µ1}

1
s2

1 + s2
2 − p2

1 − q2
1

1
||q1| − s2|1/2 dq1,

(5.281)
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where in the last inequality we increased the domain to be symmetric in q1 and used the
symmetry of the integrand.

For p1 ≤ s2 and √
µ1 + p1 > q1 we have s2

1 + s2
2 − p2

1 − q2
1 ≥ s2

1 + s2
2 − p2

1 − (√µ1 + p1)2 =
2(s2 − p1)(p1 + s1). Hence,

sup
0<p1<

√
µ2
2 −√

µ1

2h(p1)
∫ √

µ1+p1

0

1
s2

1 + s2
2 − p2

1 − q2
1

1
||q1| − s2|1/2 dq1

≤ sup
0<p1<

√
µ2
2 −√

µ1

1
(s2 − p1)1/2(p1 + s1)

∫ √
µ1+p1

0

1
||q1| − s2|1/2 dq1

= sup
0<p1<

√
µ2
2 −√

µ1

2(s1/2
2 + (p1 + √

µ1 − s2)1/2)
(s2 − p1)1/2(p1 + s1)

≤
2(s1/2

2 +
(√

µ1
2

)1/2
)(√

µ1
2

)1/2
s1

≤
4
(√

µ2
2

)1/2

(√
µ1
2

)1/2 √
µ2
2

≤ 8
√
µ1

(5.282)

Similarly, for p1 ≥ s2 and √
µ2−p1 > q1 we have s2

1+s2
2−p2

1−q2
1 ≥ s2

1+s2
2−p2

1−(√µ2−p1)2 =
2(s1 − p1)(p1 − s2). Therefore,

sup
√

µ2
2 <p1<s1

2h(p1)
∫ √

µ2−p1

p1−√
µ1

1
s2

1 + s2
2 − p2

1 − q2
1

1
|q1 − s2|1/2 dq1

≤ sup
√

µ2
2 <p1<s1

1
(s1 − p1)1/2(p1 − s2)

∫ √
µ2−p1

p1−√
µ1

1
|q1 − s2|1/2 dq1 = sup

√
µ2
2 <p1<s1

4
p1 − s2

= 8
√
µ1
.

(5.283)

For
√
µ2
2 − √

µ1 ≤ p1 ≤
√
µ2
2 and q1 <

√
µ2
2 , we have s2

1 + s2
2 − p2

1 − q2
1 ≥ µ1

2 . Thus,

sup
√

µ2
2 −√

µ1<p1<
√

µ2
2

2h(p1)
∫ √

µ2
2

max{0,p1−√
µ1}

1
s2

1 + s2
2 − p2

1 − q2
1

1
|q1 − s2|1/2 dq1

≤ 4
µ1

(√
µ1

2

)1/2 ∫ √
µ2
2

√
µ2
2 −2√

µ1

1
|q1 − s2|1/2 dq1 =

8
((3√

µ1
2

)1/2
+
(√

µ1
2

)1/2
)

21/2µ
3/4
1

≤ 4
µ

1/2
1

(√
3 + 1

)
(5.284)

In total, we have
∥D14

µ1,µ2∥ ≤ 4
µ

1/2
1

(√
3 + 1

)
(5.285)

5.7.2 Proof of Lemma 5.6.6
Proof of Lemma 5.6.6. The integral in (5.207) is invariant under rotations of q̃. Therefore,
it suffices to take the supremum over q̃ = q2 ≥ 0 for d = 2 and q̃ = (q2, 0) with q2 ≥ 0 for
d = 3. Furthermore, it suffices to restrict to p2 ≥ 0 since the integrand is invariant under
p̃ → −p̃. Note that under these conditions µ1 ≤ µ2. We split the domain of integration in
(5.207) into two regions according to µ1 = min{µ1, µ2} ≶ 0.
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Dimension three: We first consider the case µ1 < 0, i.e. |p2 + q2|2 > 1 − p2
3. In this case,

sup
q̃=(q2,0),q2≥0

∫
R2
χ|p̃|<2χp2≥0

χmin{µ1,µ2}<0

(− min{µ1, µ2})αdp̃

= sup
q2≥0

 ∫ 1

−1
dp3

∫ √
4−p2

3

max{
√

1−p2
3−q2,0}

1
((p2 + q2)2 + p2

3 − 1)αdp2

+
∫

1<|p3|<2
dp3

∫ √
4−p2

3

0

1
((p2 + q2)2 + p2

3 − 1)αdp2

 (5.286)

Let q2 and |p3| ≤ 1 be fixed. By substituting x = p2 + q2 −
√

1 − p2
3 if q2 ≤

√
1 − p2

3 one
obtains∫ 2

max{
√

1−p2
3−q2,0}

1
((p2 + q2)2 + p2

3 − 1)αdp2

≤
∫ 2

0

χ
q2≤

√
1−p2

3

(x+
√

1 − p2
3)2 + p2

3 − 1)α
dx+

∫ 2

0

χ
q2>

√
1−p2

3

((p2 +
√

1 − p2
3)2 + p2

3 − 1)α
dp2

≤
∫ 2

0

1
(2p2

√
1 − p2

3)α
dp2 ≤ C

(1 − p2
3)α/2 (5.287)

for some finite constant C. Since ∫ 1
−1(1 − p2

3)−α/2dp3 < ∞, the first term in (5.286) is
bounded. The second term is bounded by∫

1<|p3|<2
dp3

∫ 2

0

1
(p2

3 − 1)αdp2 < ∞. (5.288)

For the case µ1 > 0 we have |p2 + q2|2 < 1 − p2
3. Hence,

sup
q̃=(q2,0),q2≥0

∫
R2
χ|p̃|<2χp2≥0

χ0<min{µ1,µ2}

min{µ1, µ2}α
dp̃

= sup
q2≥0

∫ 1

−1
dp3χq2≤

√
1−p2

3

∫ √
1−p2

3−q2

0

1
(1 − (p2 + q2)2 − p2

3)α
dp2 (5.289)

For fixed |p3| < 1 and q2 ≤
√

1 − p2
3 substituting x =

√
1 − p2

3 − q2 − p2 gives

∫ √
1−p2

3−q2

0

1
(1 − (p2 + q2)2 − p2

3)α
dp2 =

∫ √
1−p2

3−q2

0

1
(1 − (

√
1 − p2

3 − x)2 − p2
3)α

dx

=
∫ √

1−p2
3−q2

0

1
xα(2

√
1 − p2

3 − x)α
dx. (5.290)

Thus the expression in (5.289) is bounded by

sup
q2≥0

∫ 1

−1
dp3χq2≤

√
1−p2

3

∫ √
1−p2

3−q2

0

1
xα(

√
1 − p2

3 + q2)α
dx

≤
∫ 1

−1
dp3

∫ 1

0

1
xα(

√
1 − p2

3)α
dx < ∞ (5.291)
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Dimension two: For the case µ1 < 0 we have |p2 + q2| > 1. Hence,

sup
q2≥0

∫ 2

0

χmin{µ1,µ2}<0

(− min{µ1, µ2})αdp2 = sup
q2≥0

∫ 2

max{1−q2,0}

1
((p2 + q2)2 − 1)αdp2. (5.292)

This is finite according to (5.287).

For the case µ1 > 0,

sup
q2≥0

∫ 2

0

χ0<min{µ1,µ2}

min{µ1, µ2}α
dp2 = sup

0≤q2≤1

∫ 1−q2

0

1
(1 − (p2 + q2)2)αdp2 =

∫ 1

0

1
xα(2 − x)αdx < ∞,

(5.293)
where we used (5.290) in the second equality.

5.7.3 Proof of Lemma 5.6.7
Proof of Lemma 5.6.7. The proof follows from elementary computations. We carry out the
case d = 2 and leave the case d = 3, where one additional integration over q3 needs to be
performed, to the reader.

By symmetry, we may restrict to p1, q1, p2 ≥ 0. Furthermore, we will partition the remaining
domain of p2, q2 into nine subdomains. Let χj be the characteristic function of domain j.
Since (a + b)2 ≤ 2(a2 + b2), there is a constant C such that the expression in (5.213) is
bounded above by C∑9

j=1 limϵ→0 Ij, where

Ij = sup
0≤p2<ϵ

∫
R2
χ0<p1,q1<ϵ

[∫ √
2

−
√

2

2χj
|(p+ q)2 − 1| + |(p− q)2 − 1|

dq2

]2

dp1dq1. (5.294)

Hence, we can consider the domains case by case and prove that limϵ→0 Ij = 0 for each of
them.

We use the notation µ1 = 1 − (p1 + q1)2 and µ2 = 1 − (p1 − q1)2. (Note that this differs from
the notation in Lemma 5.6.5). Since p1, q1 ≥ 0 we have µ2 ≥ µ1. We assume that ϵ < 1/4,
and thus for p1, q1 < ϵ we have µ1, µ2 > 1 − 4ϵ2 > 3/4.

For fixed 0 < p1, q1 < ϵ, we choose the subdomains for p2, q2 as sketched in Figure 5.5. The
subdomains are chosen according to the signs of (p2 + q2)2 − µ1 and (p2 − q2)2 − µ2, and to
distinguish which of −√

µ1 − p2,−
√
µ2 + p2 is larger.

We start with domains 1 to 4, where (p+ q)2 − 1 = (p2 + q2)2 − µ1 > 0 and (p− q)2 − 1 =
(p2 − q2)2 − µ2 > 0. Note that in domain 4, p2 ≥

√
µ1+√

µ2
2 ≥

√
1 − 4ϵ2, which is larger than

ϵ. Hence χ4 = 0 for p2 <
√

1 − 4ϵ2, giving I4 = 0. For domains 2 and 3, we have

I2 = sup
0≤p2<ϵ

∫
R2
χ0<p1,q1<ϵχ2p2<

√
µ2−√

µ1

[∫ 2

a2

1
p2

1 + q2
1 + p2

2 + q2
2 − 1dq2

]2

dp1dq1, (5.295)

I3 = sup
0≤p2<ϵ

∫
R2
χ0<p1,q1<ϵχ2p2>

√
µ2−√

µ1

[∫ 2

a3

1
p2

1 + q2
1 + p2

2 + q2
2 − 1dq2

]2

dp1dq1, (5.296)
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q2

p2

1

2 3

4

5

6 7

8 9

q2 = √
µ1 − p2

q2 = −√
µ1 − p2

q2 = √
µ2 + p2

q2 = −√
µ2 + p2

Figure 5.5: Domains occurring in the proof of Lemma 5.6.7.

where a2 = √
µ2−p2 and a3 = √

µ1+p2. Since 0 ≤ p1, q1, p2 < ϵ we have 1−p2
1−q2

1−p2
2 > 3/4

and thus

∫ 2

aj

1
p2

1 + q2
1 + p2

2 + q2
2 − 1 =

artanh
√

1−p2
1−q2

1−p2
2

aj
− artanh

√
1−p2

1−q2
1−p2

2
2√

1 − p2
1 − q2

1 − p2
2

≤ C artanh

√
1 − p2

1 − q2
1 − p2

2

aj
. (5.297)

Since artanh(x/y) = ln((y + x)2/(y2 − x2))/2 and
√

1 − p2
1 − q2

1 − p2
2 + aj ≤ 3 we get

I2 ≤ C

2 sup
0≤p2<ϵ

∫
R2
χ0<p1,q1<ϵχ2p2<

√
µ2−√

µ1

[
ln 9

2(p1q1 − p2(
√
µ2 − p2))

]2

dp1dq1 (5.298)

and

I3 ≤ C

2 sup
0≤p2<ϵ

∫
R2
χ0<p1,q1<ϵχ2p2>

√
µ2−√

µ1

[
ln 9

2(p1q1 + p2(
√
µ1 + p2))

]2

dp1dq1. (5.299)

For domain 2, we substitute z = p1 + q1 and r = p1 − q1 and obtain the bound

I2 ≤ C

4 sup
0≤p2<ϵ

∫
R2
χ|r|<z<2ϵχ2p2<

√
µ2−√

µ1

[
ln 18
z2 − r2 − 4p2(

√
1 − r2 − p2)

]2

drdz (5.300)
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The condition 2p2 <
√
µ2 − √

µ1 implies that x := z2 − r2 − 4p2(
√

1 − r2 − p2) ≥ 0.
Substituting z by x gives

I2 ≤ C

4 sup
0≤p2<ϵ

∫ 2ϵ

−2ϵ
dr
∫ ϵ2

0
dx
[
ln 18

x

]2 1
2
√
x+ r2 + 4p2(

√
1 − r2 − p2)

≤ C

2 ϵ
∫ ϵ2

0

[
ln 18

x

]2 1√
x

dx (5.301)

This vanishes as ϵ → 0. For domain 3 we bound (5.299) by

I3 ≤ C
∫
R2
χ0<p1,q1<ϵ

[
ln 9

2p1q1

]2

dp1dq1, (5.302)

which vanishes in the limit ϵ → 0. For domain 1 note that since √
µ2 + p2 ≥ a2, a3, we have

I1 ≤ I2 + I3.
Now consider domain 5, where (p + q)2 − 1 = (p2 + q2)2 − µ1 > 0 and (p − q)2 − 1 =
(p2 − q2)2 − µ2 < 0. We have

I5 = sup
0≤p2<ϵ

∫
R2
χ0<p1,q1<ϵ

[∫ √
µ2+p2

√
µ1−p2

1
2(p1q1 + p2q2)

dq2

]2

dp1dq1. (5.303)

Integration over q2 gives∫ √
µ2+p2

√
µ1−p2

1
2(p1q1 + p2q2)

dq2 = 1
2p2

ln
(

1 +
(√µ2 − √

µ1)p2 + 2p2
2

p1q1 + (√µ1 − p2)p2

)
. (5.304)

Note that √
µ2−√

µ1 = 4p1q1/(
√
µ2+√

µ1) ≤ 2p1q1/
√

1 − 4ϵ2 and √
µ1−p2 ≥

√
1 − 4ϵ2−ϵ.

We can therefore bound the previous expression from above by

1
2p2

ln
(

1 + 2p2√
1 − 4ϵ2

+ 2p2√
1 − 4ϵ2 − ϵ

)
≤ 1√

1 − 4ϵ2
+ 1√

1 − 4ϵ2 − ϵ
< C, (5.305)

where we used that ln(1 + x)/x ≤ 1 for x ≥ 0. Therefore I5 ≤ C2ϵ2 vanishes as ϵ → 0.
For region 6 we have

I6 = sup
0≤p2<ϵ

∫
R2
χ0<p1,q1<ϵχ2p2≤√

µ2−√
µ1

[∫ −√
µ1−p2

−√
µ2+p2

1
2(p1q1 + p2q2)

dq2

]2

dp1dq1. (5.306)

Integration over q2 gives∫ −√
µ1−p2

−√
µ2+p2

1
2(p1q1 + p2q2)

dq2 = 1
2p2

ln
(

1 + p2
(√µ2 − √

µ1 − 2p2)
p1q1 − (√µ2 − p2)p2

)
. (5.307)

One can compute that

∂

∂p2

√
µ2 − √

µ1 − 2p2

p1q1 − (√µ2 − p2)p2
= 8

(√µ2 + √
µ1 − 2p2)2 > 0. (5.308)

Thus, for χ2p2≤√
µ2−√

µ1 we have
√
µ2 − √

µ1 − 2p2

p1q1 − (√µ2 − p2)p2
≤ lim

p2→(√µ2−√
µ1)/2

√
µ2 − √

µ1 − 2p2

p1q1 − (√µ2 − p2)p2
= 2

√
µ1
. (5.309)
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The expression in (5.307) is thus bounded above by

1
2p2

ln
(

1 + p2
2

√
µ1

)
≤ 1

√
µ1

≤ 1√
1 − 4ϵ2

, (5.310)

which is bounded as ϵ → 0. In total, we have I6 ≤ Cϵ2, which vanishes in the limit ϵ → 0.

For region 7,

I7 = sup
0≤p2<ϵ

∫
R2
χ0<p1,q1<ϵχ2p2≥√

µ2−√
µ1

[∫ −√
µ2+p2

−√
µ1−p2

1
−2(p1q1 + p2q2)

dq2

]2

dp1dq1. (5.311)

Integration over q2 gives
∫ −√

µ2+p2

−√
µ1−p2

1
−2(p1q1 + p2q2)

dq2 = 1
2p2

ln
(

1 + p2
(√µ2 − √

µ1 − 2p2)
p1q1 − (√µ2 − p2)p2

)
. (5.312)

According to (5.308), for (√µ2 − √
µ1)/2 ≤ p2 < ϵ this is bounded by

1
2p2

ln
(

1 + p2
(√µ2 − √

µ1 − 2ϵ)
p1q1 − (√µ2 − ϵ)ϵ

)
≤ 1

2
2ϵ− (√µ2 − √

µ1)
(√µ2 − ϵ)ϵ− p1q1

. (5.313)

For p1, q1 < ϵ this can be further estimated by

1
2

2ϵ
(√µ2 − ϵ)ϵ− ϵ2 ≤ 1√

1 − 4ϵ2 − 2ϵ
, (5.314)

which is bounded for ϵ → 0. Hence, I7 ≤ Cϵ2 vanishes for ϵ → 0.

For domains 8 and 9, we have

I8 = sup
0≤p2<ϵ

∫
R2
χ0<p1,q1<ϵχ2p2<

√
µ2−√

µ1

[∫ √
µ1−p2

−√
µ1−p2

1
1 − p2

1 − q2
1 − p2

2 − q2
2
dq2

]2

dp1dq1,

(5.315)

I9 = sup
0≤p2<ϵ

∫
R2
χ0<p1,q1<ϵχ2p2>

√
µ2−√

µ1

[∫ √
µ1−p2

−√
µ2+p2

1
1 − p2

1 − q2
1 − p2

2 − q2
2
dq2

]2

dp1dq1.

(5.316)

We bound
∫ √

µ1−p2

−√
µ1−p2

1
1 − p2

1 − q2
1 − p2

2 − q2
2
dq2 ≤ 2

∫ √
µ1+p2

0

1
1 − p2

1 − q2
1 − p2

2 − q2
2
dq2

= 1√
1 − p2

1 − q2
1 − p2

2

ln

√

1 − p2
1 − q2

1 − p2
2 + √

µ1 + p2√
1 − p2

1 − q2
1 − p2

2 − √
µ1 − p2


= 1√

1 − p2
1 − q2

1 − p2
2

ln
(
√

1 − p2
1 − q2

1 − p2
2 + √

µ1 + p2)2

2(p1q1 − p2(
√
µ1 + p2))


≤ 1√

1 − 3ϵ2
ln
(

9
2(p1q1 − p2(

√
µ1 + p2))

)
(5.317)
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Substituting z = p1 + q1 and r = p1 − q1 we obtain

I8 ≤ C sup
0≤p2<ϵ

∫
R2
χ0<p1,q1<ϵχ2p2<

√
µ2−√

µ1 ln
(

9
2(p1q1 − p2(

√
µ1 + p2))

)2

dp1dq1

≤ C

2 sup
0≤p2<ϵ

∫ 2ϵ

0
dz
∫ ϵ

−ϵ
drχ|r|<zχ2p2<

√
1−r2−

√
1−z2 ln

(
18

z2 − r2 − 4p2(
√

1 − z2 + p2)

)2

.

(5.318)

Substituting r by x = z2 − r2 − 4p2(
√

1 − z2 + p2) and using Hölder’s inequality we obtain

I8 ≤ C

4 sup
0≤p2<ϵ

∫ 2ϵ

4p2−4p2
2

dz
∫ z2−4p2(p2+

√
1−z2)

0
ln
(18
x

)2 1√
z2 − 4p2(

√
1 − z2 + p2) − x

dx

≤ C

4 sup
0≤p2<ϵ

∫ 2ϵ

4p2−4p2
2

dz
(∫ z2−4p2(p2+

√
1−z2)

0
ln
(18
x

)6
dx
)1/3

×

(∫ z2−4p2(p2+
√

1−z2)

0

1
(z2 − 4p2(

√
1 − z2 + p2) − x)3/4

dx
)2/3 . (5.319)

In the last line we substitute y = z2 − 4p2(
√

1 − z2 + p2) − x, and then we use z2 −
4p2(

√
1 − z2 + p2) − x ≤ 4ϵ2 to arrive at the bound

I8 ≤ C

4 sup
0≤p2<ϵ

∫ 2ϵ

4p2−4p2
2

dz
(∫ 4ϵ2

0
ln
(18
x

)6
dx
)1/3 (∫ 4ϵ2

0

1
y3/4 dy

)2/3


≤ C

2 ϵ
(∫ 4ϵ2

0
ln
(18
x

)6
dx
)1/3 (∫ 4ϵ2

0

1
y3/4 dy

)2/3

, (5.320)

which vanishes as ϵ → 0. For I9 we bound (analogously to (5.317))

∫ √
µ1−p2

−√
µ2+p2

1
1 − p2

1 − q2
1 − p2

2 − q2
2
dq2 ≤ 2

∫ √
µ2−p2

0

1
1 − p2

1 − q2
1 − p2

2 − q2
2
dq2

= 1√
1 − p2

1 − q2
1 − p2

2

ln
(
√

1 − p2
1 − q2

1 − p2
2 + √

µ2 − p2)2

2(p2(
√
µ2 − p2) − p1q1)


≤ 1√

1 − 3ϵ2
ln
(

4
2(p2(

√
µ2 − p2) − p1q1)

)
(5.321)

Substituting z = p1 + q1 and r = p1 − q1 we obtain

I9 ≤ C sup
0≤p2<ϵ

∫
R2
χ0<p1,q1<ϵχ2p2>

√
µ2−√

µ1 ln
(

4
2(p2(

√
µ2 − p2) − p1q1)

)2

dp1dq1

≤ C

2 sup
0≤p2<ϵ

∫ ϵ

−ϵ
dr
∫ 2ϵ

0
dzχ|r|<zχ2p2>

√
1−r2−

√
1−z2 ln

(
8

4p2(
√

1 − r2 − p2) − z2 + r2

)2

.

(5.322)
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Substituting z by x = 4p2(
√

1 − r2 − p2) − z2 + r2 and using Hölder’s inequality we obtain

I9 ≤ C

4 sup
0≤p2<ϵ

∫ ϵ

−ϵ
dr
∫ 4p2(

√
1−r2−p2)+r2

0
ln
(8
x

)2 1√
4p2(

√
1 − r2 − p2) + r2 − x

dx

≤ C

4 sup
0≤p2<ϵ

∫ ϵ

−ϵ
dr
(∫ 4p2(

√
1−r2−p2)+r2

0
ln
(8
x

)6
dx
)1/3

×
(∫ 4p2(

√
1−r2−p2)+r2

0

1
(4p2(

√
1 − r2 − p2) + r2 − x)3/4

dx
)2/3

≤ C

2 ϵ
(∫ 4ϵ+ϵ2

0
ln
(8
x

)6
dx
)1/3 (∫ 4ϵ+ϵ2

0

1
y3/4 dy

)2/3

, (5.323)

which vanishes for ϵ → 0.

5.7.4 Proof of Lemma 5.6.9
Proof of Lemma 5.6.9. To prove Lemma 5.6.9 we show that the following expressions are
finite.

1. supT>µ/2 supq∈Rd∥V 1/2BT (·, q)|V |1/2∥

2. supT supq∈Rd∥V 1/2BT (·, q)χ|·|2>3µ|V |1/2∥

3. supT supq∈Rd∥V 1/2BT (·, q)χ((·+q)2−µ)((·−q)2−µ)<0|V |1/2∥

4. supT sup|q|>
√

µ

2
∥V 1/2BT (·, q)χp2<3µχ((·+q)2−µ)((·−q)2−µ)>0|V |1/2∥

5. supT sup|q|<
√

µ

2

∥∥∥V 1/2
[
BT (·, q)χ|·|2<3µχ((·+q)2−µ)((·−q)2−µ)>0 −QT (q)

]
|V |1/2

∥∥∥
In combination, they prove (5.217).
For part 1, note that ∥V 1/2BT (·, q)|V |1/2∥ = ∥|V |1/2BT (·, q)|V |1/2∥ and by Lemma 5.2.4 this
is maximal for q = 0, i.e.

sup
T>µ/2

sup
q∈Rd

∥V 1/2BT (·, q)|V |1/2∥ = sup
T>µ/2

∥|V |1/2BT (·, 0)|V |1/2∥. (5.324)

By Lemma 5.24, there is a constant C depending only on µ and V such that

sup
T>µ/2

∥|V |1/2BT (·, 0)|V |1/2∥ ≤ sup
T>µ/2

eµ(|V |)mµ(T ) + C < ∞, (5.325)

where eµ(|V |) = sup σ(|V |1/2F †F|V |1/2).
Part 2 follows using (5.11) and that ∥|V |1/2 1

1−∆ |V |1/2∥ is bounded [32, 40, 50].
For part 3, it suffices to prove that

Y = sup
T

sup
q∈Rd

∫
Rd
BT (p, q)χ((p+q)2−µ)((p−q)2−µ)<0dp < ∞ (5.326)

since (3) is bounded by ∥V ∥1Y . The integrand is invariant under rotation of (p, q) → (Rp,Rq)
around the origin. Hence, the integral only depends on the absolute value of q and we
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may take the supremum over q of the form q = (|q|, 0) only. For p, (q1, 0) satisfying
((p+ (q1, 0))2 − µ)((p− (q1, 0))2 − µ) < 0, we can estimate by [34, Lemma 4.7]

BT (p, (q1, 0)) ≤ 2
T

exp
(

− 1
T

min{(|p1| + |q1|)2 + p̃2 − µ, µ− (|p1| − |q1|)2 − p̃2}
)

(5.327)
Note that (|p1| + |q1|)2 + p̃2 − µ < µ− (|p1| − |q1|)2 − p̃2 ↔ p2 + q2

1 < µ. We can therefore
further estimate

BT (p, (q1, 0))χ(|p1|+|q1|)2+p̃2>µ>(|p1|−|q1|)2+p̃2

≤ 2
T

exp
(

− 1
T

((|p1| + |q1|)2 + p̃2 − µ)
)
χ(|p1|+|q1|)2+p̃2>µχp2+q2

1<µ

+ 2
T

exp
(

− 1
T

(µ− (|p1| − |q1|)2 − p̃2)
)
χµ>(|p1|−|q1|)2+p̃2 (5.328)

We now integrate the bound over p and use the symmetry in p1 to restrict to p1 > 0, replace
|p1| by p1 and then extend the domain to p1 ∈ R. We obtain

Y ≤ sup
T

sup
q1∈R

4
T

[∫
Rd

exp
(

− 1
T

((p1 + |q1|)2 + p̃2 − µ)
)
χ(p1+|q1|)2+p̃2>µχp2+q2

1<µ
dp

+
∫
Rd

exp
(

− 1
T

(µ− (p1 − |q1|)2 − p̃2)
)
χµ>(p1−|q1|)2+p̃2dp

]
. (5.329)

Now we substitute p1 ± |q1| by p1 and obtain

Y ≤ sup
T

sup
|q1|<√

µ

4
T

∫
Rd

exp
(

− 1
T

(p2
1 + p̃2 − µ)

)
χp2

1+p̃2>µχ(p1−|q1|)2+p̃2+q2
1<µ

dp

+ sup
T

4
T

∫
Rd

exp
(

− 1
T

(µ− p2
1 − p̃2)

)
χµ>p2

1+p̃2dp

≤ sup
T

4|Sd−1|(2√
µ)d−1eµ/T

T

∫ ∞

√
µ
e−r2/Tdr + sup

T

4|Sd−1|√µd−1e−µ/T

T

∫ √
µ

0
er

2/Tdr, (5.330)

where we used that (p1 − |q1|)2 + p̃2 + q2
1 < µ ⇒ p2 < 2µ. Note that

√
µeµ/T

T

∫ ∞

√
µ
e−r2/Tdr = π1/2

2

√
µ

T
eµ/T erfc

(√
µ

T

)
(5.331)

and √
µe−µ/T

T

∫ √
µ

0
er

2/Tdr = π1/2

2

√
µ

T
e−µ/T erfi

(√
µ

T

)
(5.332)

As in the proof of [34, Lemma 4.4], we conclude that Y < ∞ since the functions xex2erfc(x)
and xe−x2erfi(x) are bounded for x ≥ 0.
For part 4, it again suffices to prove that

X = sup
T

sup
|q|>

√
µ

2

∫
Rd
BT (p, q)χp2<3µχ((p+q)2−µ)((p−q)2−µ)>0dp < ∞, (5.333)

since (4) is bounded by ∥V ∥1X. Again we can restrict to q of the form q = (|q|, 0). The idea
is to split the integrand in X into four terms localized in different regions. The integrand
is supported on the intersection and the complement of the two disks/balls with radius √

µ
centered at (±q1, 0). (For d = 2 this is the white region in Figure 5.3).
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• The first term covers the domain with |p̃| > √
µ outside the disks/balls:

X1 = supT sup|q1|>
√

µ

2

∫
Rd BT (p, (q1, 0))χp2<3µχp̃2>µdp

• The second term covers the remaining domain with |p1| > |q1| outside of the two
disks/balls:
X2 = supT sup|q1|>

√
µ

2

∫
p̃2<µ dp̃

∫
|p1|>

√
µ−p̃2+|q1| dp1BT (p, (q1, 0))χp2<3µ

• The third term covers the remaining domain with |p1| < |q1| outside of the two
disks/balls:
X3 = supT sup|q1|>

√
µ

2

∫
µ−q2

1<p̃
2<µ dp̃

∫
|p1|<−

√
µ−p̃2+|q1| dp1BT (p, (q1, 0))χp2<3µ

• The fourth term covers the domain in the intersection of the two disks/balls:
X4 = supT sup|q1|>

√
µ

2

∫
p̃2<µ−q2

1
dp̃
∫

|p1|<
√
µ−p̃2−|q1| dp1BT (p, (q1, 0))χp2<3µ

We prove that each Xj is finite. It then follows that X ≤ X1 +X2 +X3 +X4 is finite. We
use the bounds

BT (p, (q1, 0)) ≤


1

p2+q2
1−µ if (|p1| − |q1|)2 + p̃2 > µ,

1
µ−p2−q2

1
if (|p1| + |q1|)2 + p̃2 < µ,

(5.334)

which follow from (5.202). The first line applies to X1, X2, X3, the second line to X4.
For X1, we have p2 + q2

1 − µ > q2
1 > µ/4 and thus X1 < ∞. Similarly, for X2, we have

p2+q2
1 −µ = (

√
q2

1 + p2
1+

√
µ− p̃2)(

√
q2

1 + p2
1−

√
µ− p̃2) ≥ |q1|(|p1|−

√
µ− p̃2) ≥ q2

1 ≥ µ/4
and thus X2 < ∞. For X3, we have p2 +q2

1 −µ ≥ |q1|(|q1|−
√
µ− p̃2) ≥

√
µ

2 (|q1|−
√
µ− p̃2).

Hence, X3 ≤ sup|q1|>
√

µ

2

4√
µ

∫
µ−q2

1<p̃
2<µ dp̃ < ∞. For X4 we have µ−p2−q2

1 ≥ µ−(
√
µ− p̃2−

|q1|)2 − p̃2 − q2
1 = 2|q1|

√
µ− p̃2 ≥ √

µ
√
µ− p̃2. Thus,

X4 ≤ sup
|q1|>

√
µ

2

2
√
µ

∫
p̃2<µ−q2

1

√
µ− p̃2 − |q1|√

µ− p̃2 dp̃ < ∞. (5.335)

To prove that (5) is finite, let ST,d(q) : L1(Rd) → L∞(Rd) be the operator with integral kernel

ST,d(q)(x, y) = 1
(2π)d

∫
Rd

[
ei(x−y)·p − ei

√
µ(x−y)·p/|p|

]
BT (p, q)χ((p+q)2−µ)((p−q)2−µ)>0χp2<3µdp

(5.336)
Then (5) equals supT sup|q|<

√
µ

2

∥∥∥V 1/2ST,d(q)|V |1/2
∥∥∥. With (5.11) and |eix−eiy| ≤ min {|x− y|, 2}

we obtain

|ST,d(q)(x, y)| ≤ 1
(2π)d

∫
Rd

min
{
|(|p| − √

µ)(x− y) · p/|p||, 2
}

|p2 + q2 − µ|
χ((p+q)2−µ)((p−q)2−µ)>0χp2<3µdp

≤ 1
(2π)d

∫
Rd

min
{
||p| − √

µ||x− y|, 2
}

|p2 + q2 − µ|
χ((p+q)2−µ)((p−q)2−µ)>0χp2<3µdp (5.337)

Again, the integral only depends on |q|, so we may restrict to q = (|q|, 0). We now switch
to angular coordinates. Recall the notation r± and eφ introduced before (5.221) and that
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(|r cosφ| ∓ |q1|)2 + r2 sinφ2 ≷ µ ↔ r ≷ r±(eφ). For d = 2 we have

|ST,2((q1, 0))(x, y)| ≤ 1
(2π)2

∫ 2π

0

 ∫ √
3µ

r+(eφ)

min
{
|r − √

µ||x− y|, 2
}

r2 + q2
1 − µ

rdr

+
∫ r−(eφ)

0

min
{
(√µ− r)|x− y|, 2

}
µ− r2 − q2

1
rdr

dφ =: g(x, y, q1) (5.338)

and for d = 3

|ST,3((q1, 0))(x, y)| ≤ 1
(2π)2

∫ π

0

 ∫ √
3µ

r+(eθ)

min
{
|r − √

µ||x− y|, 2
}

r2 + q2
1 − µ

sin θr2dr

+
∫ r−(eθ)

0

min
{
(√µ− r)|x− y|, 2

}
µ− r2 − q2

1
sin θr2dr

dθ ≤
√

3µ
2 g(x, y, q1). (5.339)

We bound g by

|g(x, y, q1)|

≤ 1
(2π)2

∫ 2π

0

∫ √
3µ

r+(eφ)

min {(r − r+(eφ))|x− y|, 2} + min
{
|√µ− r+(eφ)||x− y|, 2

}
r2 + q2

1 − µ
rdr

+
∫ r−(eφ)

0

min {(r−(eφ) − r)|x− y|, 2} + min
{
(√µ− r−(eφ))|x− y|, 2

}
µ− r2 − q2

1
rdr

 dφ (5.340)

Note that r+(eφ) attains the minimal value
√
µ− q2

1 at |φ| = π
2 and the maximal value

√
µ + |q1| at |φ| = 0. Similarly, r−(eφ) attain the maximal value

√
µ− q2

1 at |φ| = π
2 and

the minimal value √
µ− |q1| at |φ| = 0. For the first summand in both integrals we take the

supremum over the angular variable. For the second summand in both integrals, we carry
out the integration over r and use that |√µ− r−(eφ)|, |√µ− r+(eφ)| ≤ |q1|. We obtain the
bound

|g(x, y, q1)| ≤ 1
2π

∫ √
3µ

0

min
{

|r −
√
µ− q2

1||x− y|, 2
}
r

|r2 + q2
1 − µ|

dr

+ min {|q1||x− y|, 2}
2(2π)2

∫ 2π

0

[
ln
(

2µ+ q2
1

r+(eφ)2 + q2
1 − µ

)
+ ln

(
µ− q2

1
µ− q2

1 − r−(eφ)2

)]
dφ

(5.341)
Recall that we are only interested in |q1| <

√
µ/2. For the first term, we use that r ≤

√
3µ and

|r2 +q2
1 −µ| = |r−

√
µ− q2

1||r+
√
µ− q2

1| ≥ |r−
√
µ− q2

1|
√
µ− q2

1. This gives the following
bound, where we first carry out the r-integration and then use that

√
µ− q2

1 ≥
√

3µ/2:
√

3µ
π
√
µ− q2

1

∫ √
3µ

0
min

 |x− y|
2 ,

1
|r −

√
µ− q2

1|

 dr

≤
√

3µ
π
√
µ− q2

1

ln
max

1,

√
µ− q2

1|x− y|
2


+ 2 + ln

max

1,
(
√

3µ−
√
µ− q2

1)|x− y|
2




≤ C

[
1 + ln

(
1 +

√
3µ|x− y|

2

)]
(5.342)
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For the second term, we use that

2µ+ q2
1

r+(eφ)2 + q2
1 − µ

µ− q2
1

µ− q2
1 − r−(eφ)2 = 2µ+ q2

1
4|eφ,1|2|q1|2

(5.343)

and |q1| <
√
µ/2 as well as |eφ,1| = | cosφ| ≥ 1

2 min{|π2 −φ|, |3π
2 −φ|} to arrive at the bound

min {|q1||x− y|, 2}
(2π)2

∫ 2π

0
ln
( √

3µ
2|eφ,1q1|

)
dφ ≤ 4 min {|q1||x− y|, 2}

(2π)2

∫ π/2

0
ln
(√

3µ
|φq1|

)
dφ

= min {|q1||x− y|, 2}
2π

(
1 + ln

(
2
√

3µ
π|q1|

))

= min {|q1||x− y|, 2}
2π

(
1 + ln

(√
3µ|x− y|

)
+ ln

(
2π

|x− y||q1|

))
, (5.344)

where we used ∫ ln(1/x)dx = x+ x ln(1/x). Since x ln(1/x) ≤ C, this is bounded above by

1
π

(
1 + max

{
ln
(√

3µ|x− y|
)
, 0
})

+ C. (5.345)

In total, we obtain the bound

sup
|q1|<

√
µ

2

|g(x, y, q1)| ≤ C [1 + ln (1 + √
µ|x− y|)] . (5.346)

Let M : L2(Rd) → L2(Rd) be the operator with integral kernel M(x, y) = |V |1/2(x)(1 +
ln
(
1 + √

µ|x− y|
)
)|V |1/2(y). We have

sup
T

sup
|q|<

√
µ

2

∥∥∥V 1/2ST,d(q)|V |1/2
∥∥∥ ≤ C(µ, d)∥M∥ (5.347)

for some constant C(µ, d) < ∞. The operator M is Hilbert-Schmidt since the function
x 7→ (1 + ln(1 + |x|)2)|V (x)| is in L1(Rd).
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CHAPTER 6
Enhanced BCS Superconductivity at a

Corner

Abstract We consider the critical temperature for superconductivity, defined via the linear
BCS equation. We prove that at weak coupling the critical temperature for a sample confined
to a quadrant in two dimensions is strictly larger than the one for a half-space, which in turn
is strictly larger than the one for R2. Furthermore, we prove that the relative difference of the
critical temperatures vanishes in the weak coupling limit.

6.1 Introduction
Recent work [6, 7, 62, 63, 64, 68] predicts the occurrence of boundary superconductivity in
the BCS model. Close to edges superconductivity sets in at higher temperatures than in the
bulk, and at corners the critical temperature appears to be even higher than at edges. Our
goal is to provide a mathematically rigorous justification of these results. It was proved in
[34, 60] that the system on half-spaces in dimensions d ∈ {1, 2, 3} can have higher critical
temperatures than on Rd. Here, we extend this result for d = 2 and show that a quadrant has
a higher critical temperature than a half-space, at least at weak coupling.
We consider the full plane, and the half- and quarter-spaces Ωk = (0,∞)k × R2−k for
k ∈ {0, 1, 2}. We define the critical temperature as in [34, 60] using the operator

HΩ
T = −∆x − ∆y − 2µ

tanh
(

−∆x−µ
2T

)
+ tanh

(
−∆y−µ

2T

) − λV (x− y) (6.1)

acting in L2
sym(Ω × Ω) = {ψ ∈ L2(Ω × Ω)|ψ(x, y) = ψ(y, x) for all x, y ∈ Ω}, where −∆

denotes the Dirichlet or Neumann Laplacian and the subscript indicates on which variable it
acts, T is the temperature, µ is the chemical potential, V is the interaction, and λ is the
coupling constant. The first term is defined through functional calculus. For V ∈ Lt(R2) with
t > 1, the HΩk

T are self-adjoint operators defined via the KLMN theorem [60, Remark 2.2].
The critical temperatures are defined as

T kc (λ) := inf{T ∈ (0,∞)| inf σ(HΩk
T ) ≥ 0}. (6.2)

The operator HΩk
T is the Hessian of the BCS functional at the normal state [21]. In particular,

the system is superconducting for T < T kc (λ), when the normal state is not a minimizer of
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6. Enhanced BCS Superconductivity at a Corner

the BCS functional. A priori, superconductivity may also occur at temperatures T > T kc (λ),
when the normal state is a local minimum of the BCS functional, but not a global one.
For translation invariant systems, in particular for Ω0 = R2, this is not the case and the
system is in the normal state if T > T 0

c (λ) [32, 33], hence T 0
c separates the normal and the

superconducting phase. However, it remains an open question whether the same is true for
T 1
c and T 2

c .
We prove that for small enough λ, the critical temperatures defined through the linear criterion
(6.2) satisfy T 2

c (λ) > T 1
c (λ). Together with the result from [60], we get the strictly decreasing

sequence T 2
c (λ) > T 1

c (λ) > T 0
c (λ) of critical temperatures at weak coupling.

Similarly to [60, Lemma 2.3], where it was shown that T 1
c (λ) ≥ T 0

c (λ) for all λ, the following
Lemma is relatively easy to prove.

Lemma 6.1.1. Let λ, T > 0 and V ∈ Lt(R2) for some t > 1. Then inf σ(HΩ2
T ) ≤ inf σ(HΩ1

T ).

Its proof can be found in Section 6.2. In particular it follows that for all λ > 0, we have
T 2
c (λ) ≥ T 1

c (λ). The difficulty lies in proving a strict inequality, which the rest of the paper
will be devoted to. In order to prove T 2

c (λ) > T 1
c (λ), we shall give a precise analysis of the

asymptotic behavior of HΩ1
T 1

c (λ) as λ → 0.

For µ > 0 let F : L1(R2) → L2(S1) act as the restriction of the Fourier transform to a sphere
of radius √

µ, i.e., Fψ(ω) = ψ̂(√µω) and for V ≥ 0 define Oµ = V 1/2F †FV 1/2 on L2
s (R2) =

{ψ ∈ L2(R2)|ψ(r) = ψ(−r)}. The operator Oµ is compact. For the desired asymptotic
behavior of HΩ1

T 1
c (λ) we need that Oµ has a non-degenerate eigenvalue eµ = sup σ(Oµ) > 0 at

the top of its spectrum [32, 40].
We require the following assumptions for our main result.

Assumption 6.1.2. Let µ > 0. Assume that

1. V ∈ L1(R2) ∩ Lt(R2) for some t > 1,

2. V is radial, V ̸≡ 0,

3. | · |V ∈ L1(R2),

4. V ≥ 0,

5. eµ = sup σ(Oµ) is a non-degenerate eigenvalue.

Remark 6.1.3. Similarly to the three dimensional case discussed in [32, Section III.B.1],
because of rotation invariance the eigenfunctions of Oµ are given, in radial coordinates
r ≡ (|r|, φ), by V 1/2(r)eimφJm(√µ|r|), where Jm denote the Bessel functions and m ∈ 2Z
since the functions must be even in r. The corresponding eigenvalues are

e(m)
µ = 1

2π

∫
R2
V (r)|Jm(√µ|r|)|2dr (6.3)

and in particular e(m)
µ = e(−m)

µ . Assumption 5 therefore means that eµ = e(0)
µ and that all

other eigenvalues e(m)
µ are strictly smaller. Hence, the eigenstate corresponding to eµ has

zero angular momentum. Analogously to the three dimensional case, a sufficient condition for
Assumption 5 to hold is that V̂ ≥ 0.
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6.1. Introduction

Our first main result is:

Theorem 6.1.4. Let µ > 0 and let V satisfy Assumption 6.1.2. Assume the same boundary
conditions, either Dirichlet or Neumann, on Ω1 and Ω2. Then there is a λ1 > 0, such that for
all 0 < λ < λ1, T 2

c (λ) > T 1
c (λ).

The second main result is that the relative difference in critical temperatures vanishes in the
weak coupling limit.

Theorem 6.1.5. Let µ > 0 and let V satisfy Assumption 6.1.2. Assume either Dirichlet or
Neumann boundary conditions on Ω2. Then

lim
λ→0

T 2
c (λ) − T 0

c (λ)
T 0
c (λ) = 0. (6.4)

Since T 2
c (λ) ≥ T 1

c (λ) ≥ T 0
c (λ), this implies limλ→0

T 2
c (λ)−T 1

c (λ)
T 1

c (λ) = 0 and limλ→0
T 1

c (λ)−T 0
c (λ)

T 0
c (λ) =

0. The latter was already shown in [60] and we closely follow [60] to prove Theorem 6.1.5.

The paper is structured as follows. In Section 6.1.1 we explain the proof strategy for
Theorem 6.1.4. Section 6.2 contains the proofs of some basic properties of HΩ

T . Section 6.3
discusses the regularity and asymptotic behavior of the ground state of HΩ1

T . In Section 6.4
we prove Lemma 6.1.8, the first key step in the proof of Theorem 6.1.4. The second key step,
Lemma 6.1.9 is proved in Section 6.5. In Section 6.6 we prove Theorem 6.1.5. Section 6.7
contains the proofs of auxiliary Lemmas.

6.1.1 Proof strategy for Theorem 6.1.4
The proof of Theorem 6.1.4 is based on the variational principle. The idea is to construct
a trial state for HΩ2

T 1
c (λ) involving the ground state of HΩ1

T 1
c (λ). However, the latter operator is

translation invariant in the second component of the center of mass variable and therefore
has purely essential spectrum. To work with an operator that has eigenvalues, we fix the
momentum in the translation invariant direction, and choose it in order to minimize the energy.

Let U : L2(R2 × R2) → L2(R2 × R2) be the unitary operator switching to relative and center
of mass coordinates r = x− y and z = x+ y, i.e. Uψ(r, z) = 1

2ψ((r + z)/2, (z − r)/2). We
shall apply U to functions defined on a subset of Ω ⊂ R2 × R2, by identifying L2(Ω) with
the set of functions in L2(R2 × R2) supported in Ω. The operator UHΩ1

T U †, which is HΩ1
T

transformed to relative and center of mass coordinates, acts on functions on Ω̃1 × R, where
Ω̃1 = {(r, z1) ∈ R3||r1| < z1}, and is translation invariant in z2. For every q2 ∈ R let H1

T (q2)
be the operator obtained from UHΩ1

T U † by restricting to momentum q2 in the z2 direction.
The operator H1

T (q2) acts in L2
s(Ω̃1) = {ψ ∈ L2(Ω̃1)|ψ(r, z1) = ψ(−r, z1)} and we have

inf σ(HΩ1
T 1

c (λ)) = infq2∈R inf σ(H1
T 1

c (λ)(q2)). We want to choose q2 to be optimal. That this can
be done is a consequence of the following Lemma, whose proof will be given in Section 6.2.2.

Lemma 6.1.6. Let T, λ, µ > 0 and V ∈ Lt(R2) for some t > 1. The function q2 7→
inf σ(H1

T (q2)) is continuous, even and diverges to +∞ as |q2| → ∞.

Therefore, the infimum is attained and we can define η(λ) to be the minimal number in [0,∞)
such that inf σ(H1

T 1
c (λ)(η(λ))) = inf σ(HΩ1

T 1
c (λ)).
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y1

x1

z1

r1

ψ(r, z)∓ψ(r, z)

∓ψ(r, z)ψ(r, z)

Figure 6.1: Sketch of the (anti)symmetric extension of a function ψ defined on the upper
right quadrant in the (r1, z1)-coordinates. The extension is defined by mirroring along the x1
and y1-axes and multiplying by −1 for Dirichlet boundary conditions.

Next, we shall argue that H1
T 1

c (λ)(η(λ)) indeed has a ground state, at least for small enough
coupling, which allows us to construct the desired trial state. Let λ0 > 0 be such that
T 1
c (λ) > T 0

c (λ) for λ ≤ λ0. Such a λ0 exists by [60, Theorem 1.3].

Lemma 6.1.7. Let µ > 0, let V satisfy Assumption 6.1.2 and let 0 < λ ≤ λ0. Then
H1
T 1

c (λ)(η(λ)) has an eigenvalue at the bottom of its spectrum.

The proof of Lemma 6.1.7 can be found in Section 6.2.3. For λ ≤ λ0 let Φ̃λ be the ground
state of H1

T 1
c (λ)(η(λ)). In the case η(λ) = 0, the operator H1

T 1
c (λ)(η(λ)) commutes with

reflections r2 → −r2 and we may assume that Φ̃λ is even or odd under this reflection. We
extend the function Φ̃λ (anti)symmetrically from Ω̃1 to R3, such that the extended function
Φλ satisfies Φλ((−r1, r2),−z1) = Φλ(r, z1) and ∓Φλ((z1, r2), r1) = Φλ(r, z1), where −/+
corresponds to Dirichlet/Neumann boundary conditions (see Figure 6.1 for an illustration).
The function Φλ is the key ingredient for our trial state. Let χΩ̃1

denote multiplication by the
characteristic function of Ω̃1; then Φ̃λ = χΩ̃1

Φλ . We choose the normalization such that
∥V 1/2χΩ̃1

Φλ∥2 = 1, where V 1/2ψ(r, z) = V 1/2(r)ψ(r, z). (Since V ∈ Lt(R2) for some t > 1
and Φλ ∈ H1(R3), it follows by the Hölder and Sobolev inequalities that V 1/2Φλ is an L2

function [50].)

Our choice of trial state is

ψϵλ(r1, r2, z1, z2) = (Φλ(r1, r2, z1)eiη(λ)z2 + Φλ(r1,−r2, z1)e−iη(λ)z2)e−ϵ|z2|

∓ (Φλ(r1, z2, z1)eiη(λ)r2 + Φλ(r1,−z2, z1)e−iη(λ)r2)e−ϵ|r2| (6.5)

for some ϵ > 0. Here and throughout the paper we use the convention that upper signs
correspond to Dirichlet and lower signs to Neumann boundary conditions, unless stated
otherwise. The function (6.5) is the natural generalization of the trial state for a half-space
used in [60]. Note that ψϵλ is the (anti)symmetrization of Φλ(r, z1)eiη(λ)z2−ϵ|z2| and satisfies
the boundary conditions. The trial state vanishes if η = 0 and Φλ is odd under r2 → −r2; our
proof will implicitly show that at weak coupling Φλ must be even if η = 0. We shall prove the
following two Lemmas in Sections 6.4 and 6.5, respectively.
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6.1. Introduction

Lemma 6.1.8. Let µ > 0, let V satisfy Assumption 6.1.2 and let 0 < λ ≤ λ0. Then

lim
ϵ→0

⟨ψϵλ, UH
Ω2
T 1

c (λ)U
†ψϵλ⟩ = λ(L1 + L2) (6.6)

with

L1 =
∫

Ω̃1×R
χ|z2|<|r2|V (r)

|Φλ(r1, r2, z1)|2 + |Φλ(r1, z2, z1)|2

+ Φλ(r1, r2, z1)Φλ(r1,−r2, z1)e−2iη(λ)z2 + Φλ(r1, z2, z1)Φλ(r1,−z2, z1)e−2iη(λ)r2

∓ Φλ(r1, r2, z1)Φλ(r1, z2, z1)eiη(λ)(r2−z2) ∓ Φλ(r1, z2, z1)Φλ(r1, r2, z1)e−iη(λ)(r2−z2)

∓Φλ(r1, r2, z1)Φλ(r1,−z2, z1)e−iη(λ)(r2+z2)∓Φλ(r1, z2, z1)Φλ(r1,−r2, z1)eiη(λ)(−r2+z2)

drdz

(6.7)

and

L2 = −
∫

Ω̃1×R
V (r)

|Φλ(r1, z2, z1)|2 + Φλ(r1, z2, z1)Φλ(r1,−z2, z1)e−2iη(λ)r2

drdz

∓2π
∫
R2

Φ̂λ(p1, η(λ), q1) χΩ̃1̂
V Φλ(p1, η(λ), q1)+Φ̂λ(p1,−η(λ), q1) χΩ̃1̂

V Φλ(p1,−η(λ), q1)
dp1dq1,

(6.8)

where ψ̂(p, q1) =
∫
R3

e−ip·r−iq1z1
(2π)3/2 ψ(r, z1)drdz1 denotes the Fourier transform and χΩ̃1

denotes
multiplication by the characteristic function of Ω̃1.

Lemma 6.1.9. Let µ > 0 and let V satisfy Assumption 6.1.2. As λ → 0 we have L1 = O(1)
and L2 ≤ −C

λ
for some constant C > 0.

In particular, there is a λ1 > 0 such that for all 0 < λ ≤ λ1, limϵ→0⟨ψϵλ, UH
Ω2
T 1

c (λ)U
†ψϵλ⟩ < 0

and hence also inf σ(HΩ2
T 1

c (λ)) < 0. The final ingredient is the continuity of inf σ(HΩ2
T ) in T ,

which can be proved analogously to [60, Lemma 4.1]. For λ ≤ λ1 we have for T < T 1
c (λ)

by Lemma 6.1.1 and the definition of T 1
c that inf σ(HΩ2

T ) ≤ inf σ(HΩ1
T ) < 0. We saw that

inf σ(HΩ2
T 1

c (λ)) < 0 and thus by continuity there is an ϵ > 0 such that for all T ∈ (0, T 1
c (λ) + ϵ]

we have inf σ(HΩ2
T ) < 0. In particular, T 2

c (λ) > T 1
c (λ). This concludes the proof of

Theorem 6.1.4.

Remark 6.1.10. Compared to the proof of T 1
c (λ) > T 0

c (λ) in [60] there are two main
differences and additional difficulties here. The first difference is that Φλ here depends on r
and z1, and not just r. In particular, we need to understand the dependence and regularity
of Φλ in z1. The second difference is that for the full space minimizer it was possible to
prove that the optimal momentum in the translation invariant center of mass direction is zero,
whereas here we have to work with the momentum η(λ), which potentially is non-zero, and
we need knowledge about its asymptotics for λ → 0. As a consequence, we may have that
Φλ(r1, r2, z1)eiη(λ)z2 ≠ Φλ(r1,−r2, z1)e−iη(λ)z2 , which is why the expressions in Lemma 6.1.8
are twice as long as in the analogous ones in [60, Lemma 4.3].
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Remark 6.1.11. The Assumptions 6.1.2 are almost identical to the assumptions for proving
T 1
c (λ) > T 0

c (λ) in dimension two in [60]. Here we additionally assume V ≥ 0 because to
compute the asymptotics of Φλ we apply [60, Theorem 1.7] and several Lemmas used in
the proof thereof, which require V ≥ 0. However, we do not expect this assumption to be
necessary.

Remark 6.1.12. We expect that our method of proof can also be applied in the three-
dimensional case. For a quarter space in d = 3, we conjecture that similarly to the case
of a half-space [60], the three-dimensional analogues of L1 and L2 in Lemma 6.1.8 are of
equal order and converge to some finite numbers as λ → 0. The limits of L1 and L2 then
need to be computed to determine whether limλ→0(L1 + L2) < 0. In [60], the ground
state on the full space could effectively be replaced by Φ0 = (

∫
R3 V (r)j3(r)2dr)−1j3, with

j3(r) = (2π)−3/2 ∫
S2 ei

√
µw·rdω, in the limit λ → 0. Motivated by the asymptotics of the

half-space minimizer Φλ in two dimensions proved in Lemma 6.3.2, we expect that as λ → 0,
η(λ) → 0 and the function Φλ behaves like Φ0 in the r-variable, and concentrates at zero
momentum in the z1 direction. A combination of the methods used in [60] and the methods
developed in this paper should then allow to compute the limit, and the expected result is

lim
λ→0

L1 = 2
∫
R4
χ|z2|<|r2|V (r)|Φ0(r) ∓ Φ0(r1, z2, r3)|2drdz2 (6.9)

and

lim
λ→0

L2 = −2
∫
R4
V (r)|Φ0(r1, z2, r3)|2drdz2 ∓ 2π

µ1/2

∫
R3
V (r)|Φ0(r)|2dr. (6.10)

We therefore expect T 2
c (λ) > T 1

c (λ) at weak enough coupling if V satisfies limλ→0(L1 +L2) <
0, which due to radiality of V and Φ0 is the same condition as for T 1

c (λ) > T 0
c (λ) in [60,

Theorem 1.3]. In [60, Theorem 1.4 and Remark 1.5] this condition on V is further analyzed.

6.2 Basic properties of HΩ1
T and HΩ2

T

In this section we shall introduce some notation that will be useful later on, and prove
Lemmas 6.1.1, 6.1.6 and 6.1.7. The following functions will be important:

KT (p, q) = p2 + q2 − 2µ
tanh

(
p2−µ

2T

)
+ tanh

(
q2−µ

2T

) , and BT (p, q) = 1
KT (p+ q, p− q) . (6.11)

We may write BT,µ when the dependence on µ matters. The function KT satisfies the following
bounds [34, Lemma 2.1].

Lemma 6.2.1. For every T > 0 there are constants C1(T, µ), C2(T, µ) > 0 such that
C1(1 + p2 + q2) ≤ KT (p, q) ≤ C2(1 + p2 + q2).

We will frequently use the following estimates for BT [60, Eq. (2.3)]:

BT (p, q) ≤ 1
max{|p2 + q2 − µ|, 2T}

and BT (p, q)χp2+q2>2µ>0 ≤ C(µ)
1 + p2 + q2 , (6.12)

where C(µ) depends only on µ.
We use the notation H1

0 (Ω) for the Sobolev space of functions vanishing at the boundary of
Ω. In the case of Dirichlet boundary conditions, the form domain corresponding to HΩk

T is
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T and HΩ2

T

DD
k := {ψ ∈ H1

0 (Ωk × Ωk)|ψ(x, y) = ψ(y, x)}. For Neumann boundary conditions, one needs
to replace the Sobolev space H1

0 by H1 to obtain DN
k . Let KΩ

T be the kinetic term in HΩ
T .

The corresponding quadratic form acts as

⟨ψ,KΩ
T ψ⟩ =

∫
R4
KT (p, q)

∣∣∣∣∫
Ω2
TΩ(x, p)TΩ(y, q)ψ(x, y)dxdy

∣∣∣∣2 dpdq, (6.13)

with

TΩ1(x, p) = (e−ip1x1 ∓ eip1x1)e−ip2x2

21/22π , and TΩ2(x, p) = (e−ip1x1 ∓ eip1x1)(e−ip2x2 ∓ eip2x2)
4π .

(6.14)
As already mentioned in the Introduction, we shall use the convention that upper signs
correspond to Dirichlet and lower signs to Neumann boundary conditions, unless stated
otherwise. For the switch to relative and center of mass coordinates, it is convenient to define

t(p, q1, r, z1) = 1
2
(
e−i(p1r1+q1z1) + ei(p1r1+q1z1) ∓ e−i(p1z1+q1r1) ∓ ei(p1z1+q1r1)

)
e−ip2r2 . (6.15)

Note that with r = x− y, z = x+ y, p′ = (p− q)/2 and q′ = (p+ q)/2 we have

TΩ1(x, p)TΩ1(y, p) = 1
(2π)2 t(p

′, q′
1, r, z1)e−iq′

2z2 (6.16)

and therefore

⟨ψ,UKΩ1
T U †ψ⟩ =

∫
R4
BT (p′, q′)−1

∣∣∣∣∣
∫

Ω̃1×R

1
(2π)2 t(p

′, q′
1, r, z1)e−iq′

2z2ψ(r, z)drdz
∣∣∣∣∣
2

dp′dq′.

(6.17)
The operators H1

T (q2) defined by restricting UHΩ1
T U † to momentum q2 in z2-direction can

thus be expressed as

⟨ψ,H1
T (q2)ψ⟩ = ⟨ψ,K1

T (q2)ψ⟩ − λ
∫

Ω̃1
V (r)|ψ(r, z1)|2drdz1 (6.18)

where the kinetic term K1
T (q2) on L2

s(Ω̃1) is given by

⟨ψ,K1
T (q2)ψ⟩ =

∫
R3
BT (p, (q1, q2))−1

∣∣∣∣∣
∫

Ω̃1

1
(2π)3/2 t(p, q1, r, z1)ψ(r, z1)drdz1

∣∣∣∣∣
2

dpdq1.

(6.19)

It is convenient to introduce the Birman-Schwinger operators A0
T and A1

T corresponding to
HΩ0
T and HΩ1

T , respectively. Let A0
T be the operator with domain L2(R2 × R2) restricted to

functions satisfying ψ(r, z) = ψ(−r, z) and given by

⟨ψ,A0
Tψ⟩ =

∫
R4
BT (p, q)|V̂ 1/2ψ(p, q)|2dpdq. (6.20)

Define the operator A1
T on ψ ∈ L2

s(Ω̃1 × R) = {ψ ∈ L2(Ω̃1 × R)|ψ(r, z) = ψ(−r, z)} via

⟨ψ,A1
Tψ⟩ =

∫
R4
BT (p, q)

∣∣∣∣∣
∫

Ω̃1×R

1
(2π)2 t(p, q1, r, z1)e−iq2z2V 1/2(r)ψ(r, z)drdz

∣∣∣∣∣
2

dpdq.

(6.21)
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For j ∈ {0, 1}, the operator AjT is the Birman-Schwinger operator corresponding to HΩj

T in
relative and center of mass variables [60, Section 6]. The Birman-Schwinger principle implies
that sgn inf σ(HΩj

T ) = sgn(1/λ− sup σ(AjT )), where we use the convention that sgn 0 = 0.
Due to translation invariance in z2, for fixed momentum q2 in this direction, we obtain the
operators A1

T (q2) on ψ ∈ L2
s(Ω̃1) given by

⟨ψ,A1
T (q2)ψ⟩ =

∫
R3
BT (p, (q1, q2))

∣∣∣∣∣
∫

Ω̃1

1
(2π)3/2 t(p, q1, r, z1)V 1/2(r)ψ(r, z1)drdz1

∣∣∣∣∣
2

dpdq1.

(6.22)
The operator A1

T (q2) is the Birman-Schwinger version of H1
T (q2). In particular, H1

T 1
c (λ)(η(λ))

has the eigenvalue zero at the bottom of its spectrum if and only if 1/λ is the largest eigenvalue
of A1

T 1
c (λ)(η(λ)).

Let ι : L2(Ω̃1) → L2(R3) be the isometry

ιψ(r1, r2, z1) = 1√
2

(ψ(r1, r2, z1)χΩ̃1
(r, z1) + ψ(−r1, r2,−z1)χΩ̃1

(−r1, r2,−z1)). (6.23)

Using the definition of t in (6.15) and evenness of V in r2 one can rewrite (6.22) as

⟨ψ,A1
T (q2)ψ⟩ =

∫
R3
BT (p, q)

∣∣∣∣∣ 1√
2

(V̂ 1/2ιψ(p, q1) ∓ V̂ 1/2ιψ((q1, p2), p1))
∣∣∣∣∣
2

dpdq1 (6.24)

Let F2 denote the Fourier transform in the second variable F2ψ(r, q1) = 1√
2π
∫
R e

−iq1z1ψ(r, z1)dz1

and F1 the Fourier transform in the first variable F1ψ(p, q) = 1
2π
∫
R2 e−ip·rψ(r, q)dr. Define

the operators GT (q2) on L2(R3) through

⟨ψ,GT (q2)ψ⟩ =
∫
R3
F1V 1/2ψ((q1, p2), p1)BT (p, q)F1V

1/2ψ(p, q1)dpdq1. (6.25)

LetA0
T (q2) acting on L2

s (R2×R) be given by ⟨ψ,A0
T (q2)ψ⟩ =

∫
R3 BT (p, q)|V̂ 1/2ψ(p, q1)|2dpdq1.

It follows from (6.24) and BT (p, q) = BT ((q1, p2), (p1, q2)) that

A1
T (q2) = ι†(A0

T (q2) ∓ F †
2GT (q2)F2)ι. (6.26)

6.2.1 Proof of Lemma 6.1.1
Proof of Lemma 6.1.1. We proceed analogously to the proof of [60, Lemma 2.3]. Let Sl be
the shift by l in the second component, i.e. Slψ(x, y) = ψ((x1, x2 − l), (y1, y2 − l)). Let ψ
be a function in DD/N

1 with bounded support, for the case of Dirichlet/Neumann boundary
conditions, respectively. For l big enough, Slψ is supported on Ω2 × Ω2 and satisfies the
boundary conditions. The goal is to prove that liml→∞⟨Slψ,HΩ2

T Slψ⟩ = ⟨ψ,HΩ1
T ψ⟩. Then,

since functions with bounded support are dense in DD/N
1 (with respect to the Sobolev norm),

the claim follows.
Note that ⟨Slψ, V Slψ⟩ = ⟨ψ, V ψ⟩. Let ψ̃ be the (anti-)symmetric continuation of ψ from
Ω1 × Ω1 to R2 × R2 as in Figure 6.1, giving ψ̃ ∈ H1(R4). Furthermore, using symmetry of
KT in p2 and q2 one obtains

⟨Slψ,KΩ2
T Slψ⟩ = 1

4

∫
R4

̂̃
ψ(p, q)KT (p, q)

[ ̂̃
ψ(p, q)∓ ̂̃ψ((p1,−p2), q)ei2lp2∓ ̂̃ψ(p, (q1,−q2))ei2lq2

+ ̂̃
ψ((p1,−p2), (q1,−q2))ei2l(p2+q2)

]
dpdq (6.27)
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T and HΩ2

T

for l big enough such that Slψ is supported on Ω2 × Ω2. The first term is exactly ⟨ψ,KΩ1
T ψ⟩.

Note that by the Schwarz inequality and Lemma 6.2.1, the function

(p, q) 7→ ̂̃
ψ(p, q)KT (p, q) ̂̃ψ((p1,−p2), q) (6.28)

is in L1(R2d) since ψ̃ ∈ H1(R4). By the Riemann-Lebesgue Lemma, the second term in (6.27)
vanishes for l → ∞. By the same argument, also the remaining terms vanish in the limit.

6.2.2 Proof of Lemma 6.1.6
Proof of Lemma 6.1.6. For continuity, it suffices to prove that for all T > 0 and µ,Q0, Q1 ∈ R
there is a constant C(T, µ,Q0, Q1) such that for all Q0 < q2, q

′
2 < Q1 we have |BT (p, q)−1 −

BT (p, (q1, q
′
2))−1| ≤ C(T, µ,Q0, Q1)|q2 − q′

2|(1 +p2 + q2
1). The claim then follows analogously

to the proof of [60, Lemma 4.1].
We write BT (p, q)−1 − BT (p, (q1, q

′
2))−1 = (q′

2 − q2)f(p, q, q′
2 − q2)B−1

T (p, (q1, q
′
2))B−1

T (p, q),
where f is defined as in the following Lemma.
Lemma 6.2.2. Let T, µ,Q1 > 0 and define the function f : R2 × R2 × R → R through

f(p, q, x) = 1
x

(BT (p, (q1, q2 + x)) − BT (p, q)) (6.29)

for x ̸= 0 and f(p, q, 0) = ∂q2BT (p, q). Then f is continuous and for |q2| < Q1 there is a
constant C depending only on T, µ and Q1 such that

|f(p, q, x)| ≤ C

1 + p2
1 + p2

2 + q2
1
. (6.30)

The proof is provided in Section 6.7.1. Together with Lemma 6.2.1 the desired bound on
|BT (p, q)−1 − BT (p, (q1, q

′
2))−1| follows.

The function q2 → inf σ(H1
T (q2)) is even since by (6.18), (6.19) and radiality of V we

have ⟨ψ,H1
T (−q2)ψ⟩ = ⟨ψ̃, H1

T (q2)ψ̃⟩, where ψ̃(r, z1) = ψ((r1,−r2), z1). The divergence of
inf σ(H1

T (q2)) as |q2| → ∞ follows from (6.19) and (6.12).

6.2.3 Proof of Lemma 6.1.7
Proof of Lemma 6.1.7. According to (6.26), the half-space Birman-Schwinger operator A1

T (q2)
for q2 ∈ R can be decomposed into a term involving A0

T (q2) and a perturbation involving GT (q2).
The operator A0

T (q2) has purely essential spectrum and a0
T := sup σ(A0

T ) = sup σ(A0
T (0)) [60,

Lemma 2.4]. Below we shall prove that GT (q2) is compact. The part of the spectrum of A1
T

that lies above a0
T hence consists of eigenvalues.

Since sup σ(A0
T ) is strictly decreasing in T and T 1

c (λ) > T 0
c (λ), sup σ(A1

T 1
c (λ)(η(λ))) = λ−1 >

a0
T 1

c (λ). Hence λ−1 is an eigenvalue of A1
T 1

c (λ)(η(λ)) and by the Birman-Schwinger principle
H1
T 1

c (λ)(η(λ)) has an eigenvalue at the bottom of the spectrum.
To prove compactness of GT (q2) defined in (6.25), we prove that its Hilbert-Schmidt norm is
finite. Writing out the Hilbert-Schmidt norm in terms of the integral kernel of GT (q2) and
carrying out the integrations over relative and center of mass coordinates, one obtains

∥GT (q2)∥2
HS =

∫
R4

|V̂ (0, p2 − p′
2)|2BT (p, q)BT ((p1, p

′
2), q)dp1dq1dp2dp′

2. (6.31)
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6. Enhanced BCS Superconductivity at a Corner

By (6.12) and Young’s inequality, this is bounded above by

C(T, µ)
(∫

R
|V̂ (0, |p2|)|2rdp2

)1/r ∫
R

(∫
R

(
1

1 + p2
1 + q2

1 + p2
2

)s
dp2

)2/s

dp1dq1 (6.32)

where 2 = 1/r+ 2/s. By assumption V ∈ L1 ∩Lt for some t > 1. Note that V̂ is continuous
by Riemann-Lebesgue and V̂ ∈ Lt

′ ∩L∞ for some t′ < ∞ by the Hausdorff-Young inequality. In
particular, due to the radiality of V , we can bound

(∫
R |V̂ (0, |p2|)|2r

)1/r
≤ ∥V ∥2

∞ + 1
2π∥V̂ ∥2

2r,
which is finite for the choice r = t′/2. With this choice, we have s > 1. Note that(∫

R

(
1

1+p2
1+q2

1+p2
2

)s
dp2

)2/s
= C

(1+p2
1+q2

1)2−1/s for some constant C. Hence the integral over p1, q1

in (6.32) is finite for s > 1.

6.3 Regularity and asymptotic behavior of the half-space
ground state

In this section we prove some regularity and convergence results for Φλ (defined in Section 6.1.1),
which we shall use later to prove Lemmas 6.1.8 and 6.1.9. The asymptotics of T 0

c (λ) and
T 1
c (λ) for λ → 0 are known:

Remark 6.3.1. It follows from [40, Theorem 2.5] that |λ−1 − eµ ln µ
T 0

c (λ) | = O(1) for λ → 0.
Furthermore, [60, Theorem 1.7] implies that ln µ

T 0
c (λ) − ln µ

T 1
c (λ) = o(1) for λ → 0. Therefore,

|λ−1 − eµ ln µ
T 1

c (λ) | = O(1) as well. In particular, both T 0
c (λ) and T 1

c (λ) → 0 as λ → 0
exponentially fast.

Let Ψλ(r, z1) := 1√
2V

1/2(r)Φλ(r, z1)χ|r1|<|z1| as function on R3. Note that ∥Ψλ∥2 = 1 due to
the symmetry under (r1, z1) → −(r1, z1) and the normalization ∥V 1/2χΩ̃1

Φλ∥2 = 1. The first
convergence result describes the asymptotic behavior of η(λ) and Ψλ as λ → 0. According to
the Birman-Schwinger principle, χΩ̃1

Ψλ is an eigenvector of AT 1
c (λ)(η(λ)) corresponding to

the largest eigenvalue.
Let

j2(r) := 1
2π

∫
S1
eiω·r√µdω. (6.33)

Due to assumptions 6.1.22 and 5, the eigenvector corresponding to the largest eigenvalue eµ
of Oµ has angular momentum zero and is given by [60]

ψ0(r) = V 1/2(r)j2(r)( ∫
R2 V (r′)j2(r′)2dr′

)1/2 . (6.34)

Let P : L2(R3) → L2(R3) denote the projection onto ψ0 in the r-variable, i.e. Pψ(r, q1) =
ψ0(r)

∫
R2 ψ0(r′)ψ(r′, q1)dr′. For 0 ≤ β < 1 let Qβ denote the projection onto small momenta

in q1, i.e. Qβψ(r, q1) = ψ(r, q1)χ |q1|√
µ
<

(
T 1

c (λ)
µ

)β . Let P⊥ = I − P and Q⊥
β = 1 − Qβ.

Our first convergence result is that for λ → 0 the minimizer of HΩ1
T 1

c (λ) concentrates at
momentum zero in the center of mass variable. More precisely, η(λ) → 0 and Ψλ concentrates
at momentum zero in z1 direction and approaches ψ0 in the r-variables. This is made precise
in the following Lemma, whose proof can be found in Section 6.3.1.
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Lemma 6.3.2. Let µ > 0, V satisfy Assumption 6.1.2 and let 0 ≤ β < 1. For λ → 0 we have

1. η(λ) = O(T 1
c (λ))

2. ∥P⊥F2Ψλ∥2
2 = O(λ)

3. ∥Q⊥
β F2Ψλ∥2

2 = O(λ)

For the following regularity and convergence results we need to introduce some more notation.
For a function f depending on two variables we define the mixed Lebesgue norm ∥f∥Lp

iL
q
j

for
{i, j} = {1, 2}, as first taking the Lq-norm in the j-th variable and then taking the Lp-norm
in the i-th variable. The following estimate is analogous to [60, Lemma 3.7] and follows from
the Cauchy-Schwarz inequality.

Lemma 6.3.3. Let V ∈ L1(R2) and ψ ∈ L2(R2 × R). Then

∥V̂ 1/2ψ∥L∞
1 L2

2
≤ sup

p

(∫
R

|V̂ 1/2ψ(p, q1)|2dq1

)1/2

≤ ∥V̂ 1/2ψ∥L2
2L

∞
1

=
(∫

R
sup
p

|V̂ 1/2ψ(p, q1)|2dq1

)1/2

≤ ∥V ∥1/2
1

2π ∥ψ∥2. (6.35)

To simplify notation, we shall sometimes write T 1
c , η instead of T 1

c (λ), η(λ). The eigenvalue
equation χΩ̃1

Φλ = λ(K1
T 1

c (λ)(η(λ))−1V χΩ̃1
Φλ combined with

1
(2π)3/2

∫
Ω̃1
t(p, q1, r, z1)Φλ(r, z1)drdz1 = 1

2Φ̂λ(p, q1) (6.36)

gives

Φ̂λ(p, q1) = 2λ
(2π)3/2

∫
Ω̃1
BT 1

c (λ)(p, (q1, η(λ)))t(p, q1, r
′, z′

1)V (r′)Φλ(r′, z′
1)dr′dz′

1 (6.37)

for (p, q1) ∈ R3. We use (6.37) together with (6.15) and the definition of Ψλ to split Φλ into
the sum Φd

λ ∓ Φex
λ , where

Φd
λ(r, z1) =

√
2λ
∫
R3

ei(p·r+q1z1)

(2π)3/2 BT 1
c
(p, (q1, η))V̂ 1/2Ψλ(p, q1)dpdq1 (6.38)

and

Φex
λ (r, z1) =

√
2λ
∫
R3

ei(p·r+q1z1)

(2π)3/2 BT 1
c
(p, (q1, η))V̂ 1/2Ψλ((q1, p2), p1)dpdq1. (6.39)

For j ∈ {d, ex} we further split Φj
λ = Φj,<

λ + Φj,>
λ , where Φj,# for # ∈ {<,>} has the

characteristic function χp2+q2
1#2µ in the integrand. Furthermore, let Φ# = Φd,# ∓ Φex,#.

The following three Lemmas contain regularity properties for Φλ, which are later used for
dominated convergence arguments in the proof of Lemma 6.1.8. Furthermore, they also
contain information about the weak coupling behavior of the different Φj,#

λ , which is important
for the proof of Lemma 6.1.9. The first Lemma is useful to prove that L1 is of order O(1).
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Lemma 6.3.4. Let µ > 0, let V satisfy Assumption 6.1.2 and let 0 < λ ≤ λ0. Then
∥Φλ∥L∞

1 L2
2
< ∞. Furthermore, ∥Φd

λ∥L∞
1 L2

2
= O(1) and ∥Φex,>

λ ∥L∞
1 L2

2
= O(λ) as λ → 0.

To understand the asymptotics of L2 the following result comes in handy.

Lemma 6.3.5. Let µ > 0, let V satisfy Assumption 6.1.2 and let 0 < λ ≤ λ0. The function
(r, z) 7→ V 1/2(r)|Φλ(r1, z2, z1)| is in L2(R4). Furthermore, as λ → 0, the L2(R4)-norms of
the functions V 1/2(r)|Φ>

λ (r1, z2, z1)|, V 1/2(r)|Φd,<
λ (r1, z2, z1)| and V 1/2(r)|Φex,<

λ (r1, z2, z1)|
are of order O(λ), O(λ−1/2), and O(λ1/2), respectively.

This suggests that the only possible origin for divergence in L2 lies in contributions from
V 1/2(r)|Φd,<

λ (r1, z2, z1)|. In the proof of Lemma 6.1.9 we shall show that the L2 norm of this
term indeed grows as λ−1/2, resulting in the 1/λ divergence of L2. Furthermore, we need the
following for the proof of Lemma 6.1.8.

Lemma 6.3.6. Let µ > 0, let V satisfy Assumption 6.1.2 and let 0 < λ ≤ λ0. Define the
functions g0, g+ and g− on R2 as

g0(p2, q2) :=
∫
R2

Φ̂λ(p, q1) χΩ̃1̂
V Φλ(p1, q2, q1)dp1dq1 (6.40)

and

g±(p2, q2) :=
∫
R2

Φ̂λ(p, q1)
[
B−1
T 1

c
(p, q) − B−1

T 1
c

(p, (q1, η))
]
Φ̂λ((p1,±q2), q1)dp1dq1. (6.41)

The functions g0 and g± are continuous and bounded and g±(p2, η) = 0 for all p2 ∈ R.

The proofs of these three Lemmas are given in Sections 6.3.2 – 6.3.4.

6.3.1 Proof of Lemma 6.3.2
Proof of Lemma 6.3.2. Recall the operators A0

T , and A1
T from Section 6.2 and let ajT =

sup σ(AjT ). It follows from Lemma 6.1.1 and the Birman-Schwinger principle that a0
T ≤ a1

T

(for details see the proof of [60, Theorem 1.7]). According to [40, Lemma 3.4] for T → 0 the
asymptotic behavior of a0

T is given by a0
T = eµ ln(µ/T ) +O(1). Recall the decomposition of

A1
T (q2) in (6.26). The operator norm of GT (q2) is bounded uniformly in T and q2 according

to [60, Lemma 6.1]. Recall that
√

2χΩ̃1
Ψλ is a normalized eigenvector of A1

T 1
c (λ)(η(λ)) and

note that ι
√

2χΩ̃1
Ψλ = Ψλ, where ι was defined in (6.23). With Remark 6.3.1, we have for

λ → 0

eµ lnµ/T 1
c (λ) +O(1) = a0

T 1
c (λ) ≤ a1

T 1
c (λ) = ⟨Ψλ, A

0
T 1

c (λ)(η(λ))Ψλ⟩ +O(1) (6.42)

For q ∈ R2 let BT (·, q) denote the operator on L2(R2) which acts as multiplication by BT (p, q)
(defined in (6.11)) in momentum space. Note that

⟨Ψλ, A
0
T 1

c (λ)(η(λ))Ψλ⟩ =
∫
R
⟨F2Ψλ(·, q1), V 1/2BT 1

c (λ)(·, (q1, η(λ)))V 1/2F2Ψλ(·, q1)⟩dq1

(6.43)
According to [60, Lemma 6.8], there is a constant C(µ, V ), such that for all q ∈ R2 and
ψ ∈ L2

s(R2) with ∥ψ∥2 = 1

⟨ψ, V 1/2BT (·, q)V 1/2ψ⟩ ≤ ⟨ψ,Oµψ⟩ ln
(

min
{√

µ

|q|
,
µ

T

})
χ2<min{µ/T,√µ/|q|} + C(µ, V ).

(6.44)
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In combination, we have for λ → 0

eµ lnµ/T 1
c (λ) ≤

∫
|q1|<√

µ/2
⟨F2Ψλ(·, q1), OµF2Ψλ(·, q1)⟩ ln

min


√
µ√

q2
1 + η(λ)2

,
µ

T 1
c (λ)


 dq1+O(1)

(6.45)
We will use this to prove the three parts of the claim.
Part 1: By definition of eµ, we can bound ⟨F2Ψλ(·, q1), OµF2Ψλ(·, q1)⟩ ≤ eµ∥F2Ψλ(·, q1)∥2

2.
Moreover, clearly ln

(
min

{ √
µ√

q2
1+η(λ)2

, µ
T 1

c (λ)

})
≤ ln(√µ/η(λ)). By (6.45) and since ∥F2Ψλ∥2 =

1, there is a constant c such that eµ ln(µ/T 1
c (λ)) ≤ eµ ln(√µ/η(λ)) + c for small λ. In par-

ticular, |η(T )| ≤ exp(c/eµ)√
µ

T 1
c (λ), i.e. η(λ) = O(T 1

c (λ)).

Part 2: Denote the ratio of the second highest and the highest eigenvalue of Oµ by α, where
α < 1 by Assumption 6.1.25. Then∫

R
⟨F2Ψλ(·, q1), OµF2Ψλ(·, q1)⟩dq1 ≤ eµ

(
∥PF2Ψλ∥2 + α∥P⊥F2Ψλ∥2

)
= eµ

(
∥F2Ψλ∥2 − (1 − α)∥P⊥F2Ψλ∥2

)
(6.46)

Therefore, by (6.45)

lnµ/T 1
c (λ) ≤

(
1 − (1 − α)∥P⊥F2Ψλ∥2

)
lnµ/T 1

c (λ) +O(1) (6.47)

for λ → 0. This means that ∥P⊥F2Ψλ∥2 = O(1/ lnµ/T 1
c (λ)). According to Remark 6.3.1,

limλ→0 λ lnµ/T 1
c (λ) = e−1

µ and thus ∥P⊥F2Ψλ∥2 = O(λ).
Part 3: Let ϵ(λ) = ∥Q⊥

β F2Ψλ∥2 =
∫
R3 |F2Ψλ(r, q1)|2χ

|q1|>√
µ

(
T 1

c (λ)
µ

)β drdq1. By (6.45), we

have for small λ

eµ lnµ/T 1
c (λ) ≤ (1 − ϵ(λ))eµ lnµ/T 1

c (λ) + ϵ(λ)eµ ln µβ

T 1
c (λ)β + C (6.48)

for some constant C. Hence

ϵ(λ) ≤ C

(1 − β)eµ lnµ/T 1
c (λ) = O(λ) (6.49)

where we used Remark 6.3.1 in the last step.

6.3.2 Proof of Lemma 6.3.4
Proof of Lemma 6.3.4. If we show ∥Φd

λ∥L∞
1 (R2)L2

2(R) < ∞ and ∥Φex
λ ∥L∞

1 (R2)L2
2(R) < ∞, the

Schwarz inequality implies ∥Φλ∥L∞
1 (R2)L2

2(R) < ∞ .

We shall first prove that ∥Φd
λ∥L∞

1 L2
2

is finite and of order O(1) for λ → 0. Using (6.38) we
have

∥Φd
λ(r, ·)∥2

2

= 2λ2
∫
R5
V̂ 1/2Ψλ(p′, q1)BT 1

c
(p′, (q1, η))e

i(p−p′)·r

(2π)2 BT 1
c
(p, (q1, η))V̂ 1/2Ψλ(p, q1)dpdp′dq1

≤ 2λ2 sup
q1∈R

sup
ψ∈L2(R2),∥ψ∥2=1

∫
R4
V̂ 1/2ψ(p′)BT 1

c
(p′, (q1, η))e

i(p−p′)·r

(2π)2 BT 1
c
(p, (q1, η))V̂ 1/2ψ(p)dpdp′

(6.50)
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The latter integral is the quadratic form corresponding to the projection onto the function
ϕq1(r′) = 1

2πF1BT 1
c
(r−r′, (q1, η))V 1/2(r′). Hence, taking the supremum over ψ, (6.50) equals

2λ2 sup
q1∈R

∥ϕq1∥2
2 = 2λ2 sup

q1∈R

∫
R4

ei(p−p′)·r

(2π)3 BT 1
c
(p, (q1, η))V̂ (p− p′)BT 1

c
(p′, (q1, η))dpdp′. (6.51)

We split the integration into p2 > 2µ, p2 < 2µ and p′2 > 2µ, p′2 < 2µ. Using (6.12) leads to
the bound

∥Φd
λ(r, ·)∥2

2 ≤ 2λ2

(2π)3

∥V̂ ∥∞ sup
q1

∫
R2
BT 1

c
(p, (q1, η))χp2<2µdp

2

+ 2 sup
q1

∫
R4
BT 1

c
(p, (q1, η))χp2<2µ|V̂ (p− p′)| C

1 + p′2 dpdp′

+
∫
R4

C

1 + p2 |V̂ (p− p′)| C

1 + p′2 dpdp′

 (6.52)

for a constant C independent of λ. We start by considering the first term in the square bracket.
Note that ∥V̂ ∥∞ < ∥V ∥1

2π < ∞. For fixed T > 0, the function BT (p, q) is bounded, hence the
term is finite for fixed λ. For T → 0 we have supq∈R2

∫
R2 BT (p, q)χp2<2µdp = O(lnµ/T ). To

see this, we first apply the inequality [34, (6.1)]

BT (p, q) ≤ 1
2(BT (p+ q, 0) + BT (p− q, 0)). (6.53)

This gives the upper bound supq∈R2
∫
R2 BT (p, 0)χ(p−q)2<2µdp. The vector q shifts the disk-

shaped domain of integration, but does not change its size. In particular, the contribution
with p2 < 2µ is bounded above by ∫R2 BT (p, 0)χp2<2µdp = O(lnµ/T ) [40, Proposition 3.1]
while the contribution with p2 > 2µ is uniformly bounded in T since by (6.12) the integrand
is uniformly bounded. Since for λ → 0 we have lnµ/T 1

c (λ) = O(1/λ) by Remark 6.3.1, the
first term in the square bracket in (6.52) is of order 1/λ2 as λ → 0. For the second term
in the square bracket we use Hölder’s inequality in p′. Since V ∈ Lt for some t > 0, by the
Hausdorff-Young inequality we have V̂ ∈ Lt

′ where 1 = 1/t′ + 1/t. Hence, the second term is
bounded by

2 sup
q1

∫
R4
BT 1

c
(p, (q1, η))χp2<2µdp∥V̂ ∥t′

∥∥∥∥∥ C

1 + | · |2

∥∥∥∥∥
Lt(R2)

, (6.54)

which is finite for fixed λ and of order O(1/λ) for λ → 0. Using Young’s inequality, one sees
that the third term in the square bracket is bounded. Taking into account the factor λ2 in
front of the square bracket, we conclude that ∥Φd

λ(r, ·)∥2
2 = O(1) uniformly in r.

We shall now show that for fixed λ, ∥Φex
λ ∥L∞

1 L2
2
< ∞ and ∥Φex,>

λ ∥L∞
1 L2

2
= O(λ) as λ → 0.

We have

∥Φex
λ (r, ·)∥2

2 = 2λ2
∫
R2d+1

V̂ 1/2Ψλ((q1, p′
2), p′

1)BT 1
c
(p′, (q1, η))e

i(p−p′)·r

(2π)d BT 1
c
(p, (q1, η))

× V̂ 1/2Ψλ((q1, p2), p1)dpdp′dq1 (6.55)

Similarly, we get an expression for ∥Φex,>
λ (r, ·)∥2

2 if we multiply the above integrand by
the characteristic functions χp2+q2

1>2µχp′2+q2
1>2µ. Using (6.12), we bound ∥Φex

λ ∥2
L∞

1 L2
2

and
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∥Φex,>
λ ∥2

L∞
1 L2

2
above by

Cλ2
∫
R2d+1

|V̂ 1/2Ψλ((q1, p′
2), p′

1)|
1

1 + p′2 + q2
1

1
1 + p2 + q2

1
|V̂ 1/2Ψλ((q1, p2), p1)|dpdp′dq1

(6.56)
where the constant C depends on µ and λ for the bound on ∥Φex

λ ∥2
L∞

1 L2
2
, but is independent

of λ for the bound on ∥Φex,>
λ ∥2

L∞
1 L2

2
. Using the Schwarz inequality in p1 and p′

1 and then
Lemma 6.3.3 we get the upper bound

Cλ2∥V̂ 1/2Ψλ∥2
L∞

1 L2
2

∫
R2d+1

(∫
R

1
(1 + p′2 + q2

1)2 dp′
1

)1/2 (∫
R

1
(1 + p2 + q2

1)2 dp1

)1/2

dp2dp′
2dq1

≤ C̃λ2∥V ∥1∥Ψλ∥2
2 (6.57)

Therefore, ∥Φex
λ ∥L∞

1 L2
2

is finite and ∥Φex,>
λ ∥L∞

1 L2
2

= O(λ).

6.3.3 Proof of Lemma 6.3.5

Proof of Lemma 6.3.5. By the Schwarz inequality, it suffices to prove that for j ∈ {d, ex}
and # ∈ {<,>} the integrals ∫R4 V (r)|Φj,#

λ (r1, z2, z1)|2drdz are finite for all λ0 ≥ λ >
0 and that as λ → 0 we have ∫R4 V (r)|Φj,>

λ (r1, z2, z1)|2drdz = O(λ2) for j ∈ {d, ex},∫
R4 V (r)|Φd,<

λ (r1, z2, z1)|2drdz = O(λ−1) and ∫R4 V (r)|Φex,<
λ (r1, z2, z1)|2drdz = O(λ).

Using the definitions (see (6.38) and (6.39)) one can rewrite for # ∈ {<,>}

∫
R4
V (r)|Φd,#

λ (r1, z2, z1)|2drdz = 2λ2
∫
R4
V̂ (p1−p′

1, 0)BT 1
c
((p′

1, p2), (q1, η))V̂ 1/2Ψλ(p′
1, p2, q1)

× BT 1
c
(p, (q1, η))V̂ 1/2Ψλ(p, q1)χp2+q2

1#2µχp′2
1 +p2

2+q2
1#2µdp1dp′

1dp2dq1 (6.58)

and
∫
R4
V (r)|Φex,#

λ (r1, z2, z1)|2drdz = 2λ2
∫
R4
V̂ (p1−p′

1, 0)BT 1
c
((p′

1, p2), (q1, η))V̂ 1/2Ψλ(q1, p2, p′
1)

× BT 1
c
(p, (q1, η))V̂ 1/2Ψλ(q1, p2, p1)χp2+q2

1#2µχp′2
1 +p2

2+q2
1#2µdp1dp′

1dp2dq1. (6.59)

For Φd,>
λ , with the aid of (6.12) and Lemma 6.3.3 the expression is bounded by

Cλ2∥V ∥1

∫
R4

1
1 + p′2

1 + p2
2

1
1 + p2

1 + p2
2
∥V̂ 1/2Ψλ(·, q1)∥2

∞dq1dp′
1dp1dp2

≤ C̃λ2∥V ∥2
1∥Ψλ∥2

2 < ∞ (6.60)

where the constants C, C̃ depend only on µ. For Φex,>
λ we use (6.12) and the Schwarz

inequality in p1 and p′
1 to bound (6.59) by

Cλ2∥V ∥1

∫
R2

∥∥∥∥∥ 1
1 + | · |2 + p2

2 + q2
1

∥∥∥∥∥
2

L2(R)
dp2dq1∥V̂ 1/2Ψλ∥2

L∞
p L2

q
≤ C̃λ2∥V ∥2

1∥Ψλ∥2
2 (6.61)

where we used Lemma 6.3.3 in the second step. Again, the constants C, C̃ depend only on µ.
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For Φd,<
λ we bound (6.58) above by

∥V ∥1

π
λ2
∫
R4
BT 1

c
(p, (q1, η))BT 1

c
((p′

1, p2), (q1, η))∥V̂ 1/2Ψλ(·, q1)∥2
∞χp2+q2

1<2µχp′2
1 +p2

2+q2
1<2µdpdp′

1dq1

≤ ∥V ∥2
1

4π3 λ2 sup
q1∈R

∫
R3
BT 1

c
(p, (q1, η))BT 1

c
((p′

1, p2), (q1, η))χp2+q2
1<2µχp′2

1 +p2
2+q2

1<2µdpdp′
1 (6.62)

where we used Lemma 6.3.3 and ∥Ψλ∥2 = 1 in the second step. For fixed λ this is finite because
BT 1

c
is a bounded function. For λ → 0 the following Lemma together with Remark 6.3.1 imply

that this is of order O(λ−1).
Lemma 6.3.7. Let µ,C > 0. For T → 0 we have

sup
q,q′∈R2

∫
R3
BT (p, q)BT ((p′

1, p2), q′)dp1dp′
1dp2 = O(lnµ/T )3. (6.63)

Furthermore, for every 0 < δ1 < µ there is a δ2 > 0 such that for T → 0

sup
|q|,|q′|<δ2

∫
R3

(1 − χµ−δ1<p2
2<µ+δ1χp2

1<4δ1χp′2
1 <4δ1)BT (p, q)BT ((p′

1, p2), q′)dp1dp′
1dp2

= O(lnµ/T )5/2. (6.64)

The second part of this Lemma will be used in the proof of Lemma 6.1.9 to compute the
asymptotics of L2. The proof of Lemma 6.3.7 can be found in Section 6.7.2.
For Φex,<

λ we bound (6.59) above using Lemma 6.3.3 and ∥Ψλ∥2 = 1, which gives

λ2

2π2 ∥V ∥2
1∥B

ex,2
T 1

c
(η)∥ (6.65)

where Bex,2
T (ξ) is the operator acting on L2(−

√
2µ,

√
2µ) with integral kernel

Bex,2
T (ξ)(p′

1, p1) =
∫
R2
BT ((p′

1, p2), (q1, ξ))BT (p, (q1, ξ))χq2
1+p2

2<2µdq1dp2. (6.66)

The superscript 2 indicates that there are two factors of BT , as opposed to Bex
T which is

defined later in (6.113). The following Lemma together with Remark 6.3.1 and Lemma 6.3.21
implies that (6.65) is bounded for fixed λ and of order O(λ) for λ → 0.
Lemma 6.3.8. Let c, µ > 0. Then sup|ξ|<cT∥Bex,2

T (ξ)∥ is finite for all T > 0 and of order
O(lnµ/T ) as T → 0.

The proof of Lemma 6.3.8 is given in Section 6.7.3.

6.3.4 Proof of Lemma 6.3.6
Proof of Lemma 6.3.6. For functions ψ on R3 let Sψ(p1, p2, q1) = ψ(p, q1)+ψ(−p1, p2,−q1)∓
ψ(q1, p2, p1) ∓ ψ(−q1, p2,−p1). For p, q ∈ R2 let

L0(p, q) := λBT 1
c
(p, (q1, η)), (6.67)

L±(p, q) := λ2BT 1
c
(p, (q1, η))

[
B−1
T 1

c
(p, q) − B−1

T 1
c

(p, (q1, η))
]
BT 1

c
((p1,±q2), (q1, η) (6.68)
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Using (6.37) we have

g0(p2, q2) =
∫
R2
S χΩ̃1̂
V Φλ(p, q1)L0(p, q) χΩ̃1̂

V Φλ(p1, q2, q1)dp1dq1 (6.69)

and
g±(p2, q2) =

∫
R2
S χΩ̃1̂
V Φλ(p, q1)L±(p, q)S χΩ̃1̂

V Φλ(p1,±q2, q1)dp1dq1. (6.70)

Note that g±(p2, η) = 0 since L±(p, (q1, η)) = 0. For measurable functions ψ1, ψ2 on R3 and
p2, q2 ∈ R we obtain using the Schwarz inequality in q1

∫
R2

|ψ1(p1, p2, q1)|
1

1 + p2
1
|ψ2(p1, q2, q1)|dp1dq1

≤
∫
R

1
1 + p2

1
dp1 sup

p∈R2
∥ψ1(p, ·)∥L2(R) sup

p∈R2
∥ψ2(p, ·)∥L2(R) (6.71)

and using the Schwarz inequality in q1, p1

∫
R2

|ψ1(p1, p2, q1)|
1

1 + p2
1 + q2

1
|ψ2(q1, q2, p1)|dp1dq1

≤
∫
R

1
1 + p2

1
dp1 sup

p∈R2
∥ψ1(p, ·)∥L2(R) sup

p∈R2
∥ψ2(p, ·)∥L2(R). (6.72)

By (6.12) there is a constant C independent of p, q (but dependent on λ) such that L0(p, q) ≤
C

1+p2
1+q2

1
. Similarly, by (6.12) and Lemma 6.2.1 there is a constant C independent of p, q but

dependent on λ such that

L±(p, q) ≤ C(1 + p2 + q2)
(1 + p2 + q2

1)(1 + p2
1 + q2) ≤ 2C

1 + p2
1 + q2

1
(6.73)

It follows from (6.71) and (6.72) that there is a constant C such that for all measurable
functions ψ1, ψ2 on R3 and p2, p

′
2, q2, q

′
2 ∈ R

∣∣∣∣ ∫
R2
Sψ1(p, q1)L0(p1, p

′
2, q1, q

′
2)ψ2(p1, q2, q1)dp1dq1

∣∣∣∣ ≤ C sup
p∈R2

∥ψ1(p, ·)∥L2(R) sup
p∈R2

∥ψ2(p, ·)∥L2(R),

(6.74)
and similarly
∣∣∣∣ ∫

R2
Sψ1(p, q1)L±(p1, p

′
2, q1, q

′
2)Sψ2(p1,±q2, q1)dp1dq1

∣∣∣∣ ≤ C sup
p∈R2

∥ψ1(p, ·)∥L2(R) sup
p∈R2

∥ψ2(p, ·)∥L2(R).

(6.75)
In particular it follows from (6.69) and (6.70) with Lemma 6.3.3 and the normalization
∥V 1/2χΩ̃1

Φλ∥2 = 1 that g0 and g± are bounded.

To prove continuity, first note that

χΩ̃1̂
V Φλ(p1, p2 + ϵ, q1) − χΩ̃1̂

V Φλ(p, q1) = χΩ̃1̂
Wϵ Φλ(p, q1) (6.76)
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where Wϵ(r) = V (r)(e−iϵr2 − 1). We only spell out the proof for g±, the argument for g0 is
analogous. For all p2, q2 ∈ R we have

g±(p2 + ϵ, q2 + ϵ′) − g±(p2, q2)

=
∫
R2
S χΩ̃1̂
V Φλ(p1, p2 + ϵ, q1)L±(p1, p2 + ϵ, q1, q2 + ϵ′)S χΩ̃1̂

Wϵ Φλ(p1,±q2, q1)dp1dq1

+
∫
R2
S χΩ̃1̂
Wϵ Φλ(p, q1)L±(p1, p2 + ϵ, q1, q2 + ϵ′)S χΩ̃1̂

V Φλ(p1,±q2, q1)dp1dq1

+
∫
R2
S χΩ̃1̂
V Φλ(p, q1)(L±(p1, p2 + ϵ, q1, q2 + ϵ′) − L±(p, q))S χΩ̃1̂

V Φλ(p1,±q2, q1)dp1dq1

(6.77)

Using (6.73) it follows by dominated convergence that the last line vanishes as ϵ, ϵ′ → 0.
Furthermore, note that by Lemma 6.3.3

∥ χΩ̃1̂
Wϵ Φλ∥L∞

p L2
q1

≤ ∥Wϵ∥1/2
1

2π ∥W 1/2
ϵ χΩ̃1

Φλ∥2≤
∥Wϵ∥1

2π ∥Φλ∥L∞
r L2

z1
(6.78)

where ∥Φλ∥L∞
r L2

z1
< ∞ by Lemma 6.3.4. Since ∥Wϵ∥1 ≤ |ϵ|∥| · |V ∥1 it follows from (6.75)

that the first two lines in (6.77) vanish as ϵ, ϵ′ → 0. In particular, g± are continuous.

6.4 Proof of Lemma 6.1.8
This section contains the proof of Lemma 6.1.8. Recall the definition of t from (6.15) and let
t̃(p1, q1, r1, z1) = t((p1, 0), q1, (r1, 0), z1). Let Ω̃2 = {(r, z) ∈ R2 × R2||r1| < z1, |r2| < z2}.
Analogously to (6.17) we have

⟨ψϵλ, UH
Ω2
T U †ψϵλ⟩ =

∫
R4
BT (p, q)−1

∣∣∣∣∣
∫

Ω̃2

1
(2π)2 t̃(p1, q1, r1, z1)t̃(p2, q2, r2, z2)ψϵλ(r, z)drdz

∣∣∣∣∣
2

dpdq

− λ
∫

Ω̃2
V (r)|ψϵλ(r, z)|2drdz. (6.79)

Since the function ψϵλ defined in (6.5) is symmetric under (r2, z2) → −(r2, z2) and (anti)symmetric
under (r2, z2) → (z2, r2), we have∫

|r2|<z2
t̃(p2, q2, r2, z2)ψϵλ(r, z)dr2dz2 = 1

2

∫
R2
e−ip2r2−iq2z2ψϵλ(r, z)dr2dz2 (6.80)

and∫
|r2|<z2

V (r)|ψϵλ(r, z)|2dr2dz2 = 1
4

∫
R2

(V (r)χ|r2|<|z2| + V (r1, z2)χ|z2|<|r2|)|ψϵλ(r, z)|2dr2dz2.

(6.81)
Together with (6.17) we obtain ⟨ψϵλ, UH

Ω2
T 1

c (λ)U
†ψϵλ⟩ = 1

4⟨ψϵλ, H2
T 1

c (λ)ψ
ϵ
λ⟩, where the operator

H2
T is given by

H2
T = UKΩ1

T U † − λV (r)χ|r2|<|z2| − λV (r1, z2)χ|z2|<|r2| (6.82)

acting on L2(Ω̃1 ×R) functions symmetric in r and antisymmetric/symmetric under swapping
r2 ↔ z2 for Dirichlet/Neumann boundary conditions, respectively. Let us define K2

T :=
UKΩ1

T U †.
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The trial state ψϵλ has four summands, which we number from one to four in the order they
appear in (6.5) and refer to as |j⟩ for j ∈ {1, 2, 3, 4}. By symmetry under (z2, r2) → −(z2, r2)
and (r2, z2) → (z2, r2) we have

⟨ψϵλ, H2
T 1

c
ψϵλ⟩ = 4

4∑
j=1

⟨1, H2
T 1

c
j⟩ (6.83)

For each j ∈ {1, 2, 3, 4} we write

⟨1, H2
T 1

c
j⟩ = ⟨1, (K2

T 1
c
−λV (r))j⟩+⟨1, (λV (r)χ|z2|<|r2|+λV (r1, z2)χ|r2|<|z2|)j⟩−⟨1, λV (r1, z2) j⟩

(6.84)
We shall prove that

lim
ϵ→0

4∑
j=1

⟨1, (K2
T 1

c
− λV (r))j⟩ = 0, (6.85)

L1 = lim
ϵ→0

4∑
j=1

⟨1, (V (r)χ|z2|<|r2| + V (r1, z2)χ|r2|<|z2|)j⟩, (6.86)

and
L2 = − lim

ϵ→0

4∑
j=1

⟨1, V (r1, z2) j⟩. (6.87)

In particular, it follows that limϵ→0⟨ψϵλ, UH
Ω2
T 1

c
U †ψϵλ⟩ = λ(L1 + L2).

6.4.1 Proof of (6.85):
We argue that all summands vanish as ϵ → 0.
j=1: We first show that

⟨1, (K2
T 1

c
−λV (r))1⟩ = 1

2π

∫
R4

B−1
T 1

c
(p, (q1, q2+η))−B−1

T 1
c

(p, (q1, η))
 ϵ2

(ϵ2 + q2
2)2 |Φ̂λ(p, q1)|2dpdq

(6.88)
Using eigenvalue equation K1

T 1
c
(η)χΩ̃1

Φλ = λV χΩ̃1
Φλ together with the expressions (6.17)

and (6.19) for KΩ1
T and K1

T (q2), respectively, we observe that

⟨1, (K2
T 1

c
− λV (r))1⟩

= 1
(2π)4

∫
(Ω̃1×R)2×R3

Φλ(r, z1)t(p, q1, r, z1)
 ∫

R
B−1
T 1

c
(p, q)ei(η−q2)(z′

2−z2)−ϵ(|z2|+|z′
2|)dq2

− B−1
T 1

c
(p, (q1, η))e−2ϵ|z2|2πδ(z2 − z′

2)
t(p, q1, r

′, z′
1)Φλ(r′, z′

1)drdzdr′dz′dpdq1 (6.89)

We shall carry out the r, r′, z, z′ integrations. With ∫R ei(η−q2)z2−ϵ|z2|dz2 = 2ϵ
ϵ2+(η−q2)2 , 2π

∫
R e

−2ϵ|z2| =
2πϵ−1 =

∫
R

4ϵ2
(ϵ2+(η−q2)2)2 dq2 and (6.36) we obtain

⟨1, (K2
T 1

c
−λV (r))1⟩ = 1

2π

∫
R4

B−1
T 1

c
(p, q)−B−1

T 1
c

(p, (q1, η))
 ϵ2

(ϵ2 + (η − q2)2)2 |Φ̂λ(p, q1)|2dpdq

(6.90)
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and substituting q2 → q2 + η we arrive at (6.88).

For |q2| > 1, we bound the integrand in (6.88) by Cϵ2(1+p2+q2
1)

q2
2

|Φ̂λ(p, q1)|2 using Lemma 6.2.1.
Since Φλ ∈ H1(R3), the integral vanishes as ϵ → 0. For |q2| < 1 substitute q2 → ϵq2
and use that q−1

2 (B−1
T 1

c
(p, (q1, q2 + η) − B−1

T 1
c

(p, (q1, η))) = −f(p, (q1, η), q2)B−1
T 1

c
(p, (q1, q2 +

η)B−1
T 1

c
(p, (q1, η)) where f is defined as in Lemma 6.2.2. The integral then equals

− 1
2π

∫
R4
χ|q2|<ϵ−1f(p, (q1, η), ϵq2)B−1

T 1
c

(p, (q1, ϵq2+η)B−1
T 1

c
(p, (q1, η)) q2

(1 + q2
2)2 |Φ̂λ(p, q1)|2dpdq.

(6.91)
By Lemma 6.2.2 and Lemma 6.2.1 the integrand is bounded above by the integrable function

C(1 + p2 + q2
1) |q2|

(1 + q2
2)2 |Φ̂λ(p, q1)|2. (6.92)

Thus by dominated convergence, continuity of f and BT and since ∫R q2
(1+q2

2)2 dq2 = 0 we have
limϵ→0⟨1, K2

T 1
c

− λV (r)1⟩ = 0.
j=2: We distinguish the cases η(λ) = 0 and η(λ) ̸= 0. If η(λ) = 0, Φλ(r, z1) is either

even or odd in r2. The term for j = 2 hence agrees with the term for j = 1 or its negative
and hence vanishes in the limit. For η(λ) ̸= 0, the intuition is that integration over z2, z

′
2

approximately gives a product of delta functions δ(q2 − η)δ(q2 + η) = 0. Using (6.36) and
t(p, q1, (r1,−r2), z1) = t((p1,−p2), q1, r, z1) we have

⟨1, (K2
T 1

c
− λV (r))2⟩

= 1
8π

∫
R6

Φ̂λ(p, q1)B−1
T 1

c
(p, q)e−i(η−q2)z2−i(η+q2)z′

2−ϵ(|z2|+|z′
2|)Φ̂λ((p1,−p2), q1)dz2dz′

2dpdq

−
∫

Ω̃1×R
Φλ(r, z1)λV (r)Φλ(r1,−r2, z1)e−2iηz2−2ϵ|z2|drdz (6.93)

Carrying out the z2 and z′
2 integrations gives

⟨1, (K2
T 1

c
− λV (r))2⟩

= 1
2π

∫
R4

Φ̂λ(p, q1)B−1
T 1

c
(p, q) ϵ2

(ϵ2 + (η − q2)2)(ϵ2 + (η + q2)2)Φ̂λ((p1,−p2), q1)dpdq

−
∫

Ω̃1
Φλ(r, z1)λV (r)Φλ(r1,−r2, z1)

ϵ

ϵ2 + η2 drdz1 (6.94)

Using the Schwarz inequality in the r2 variable, we bound the absolute value of the sec-
ond term by ϵλ

η2

∫
Ω̃1
V (r)|Φλ(r, z1)|2drdz1 ≤ ϵλ

η2 ∥V ∥1∥Φλ∥2
L∞

1 L2
2
. According to Lemma 6.3.4,

∥Φλ∥L∞
1 L2

2
< ∞ and hence the term vanishes for ϵ → 0 . To bound the absolute value of the

first term in (6.94), we first use Lemma 6.2.1 and the Schwarz inequality in the p2 variable,
and then use symmetry to restrict to q2 > 0 and distinguish the cases |q2 − η| ≶ ϵ:

C
∫
R4

ϵ2(1 + p2 + q2)
(ϵ2 + (η − q2)2)(ϵ2 + (η + q2)2) |Φ̂λ(p, q1)|2dpdq

≤ 2C
∫
R3

∫ ∞

0

χ|q2−η|<ϵ(1 + p2 + q2)
(η − q2)2 + (η + q2)2 +χ|q2−η|>ϵϵ

2(1 + p2 + q2)
(η − q2)2(η + q2)2

dq2

|Φ̂λ(p, q1)|2dpdq1.

(6.95)
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There is a constant C(η) such that the first term in the square brackets is bounded above by
C(η)χ|q2−η|<ϵ(1 + p2 + q2

1), and the second term is bounded by C(η)χ|q2−η|>ϵϵ
2(1+p2+q2

1)
(η−q2)2 . This

gives the upper bound

C̃

∫ ∞

0

χ|q2−η|<ϵ + χ|q2−η|>ϵϵ
2

(η − q2)2

dq2

∥Φλ∥2
H1(R3) (6.96)

The remaining integral is of order O(ϵ) as ϵ → 0, and thus the term vanishes in the limit
ϵ → 0.
j=3,4: Using the eigenvalue equation K1

T 1
c (λ)(η)χΩ̃1

Φλ = λV χΩ̃1
Φλ and (6.36) we have

|⟨1, (K2
T 1

c
− λV (r))j⟩|

=
∣∣∣∣ 1
8π

∫
R6

Φ̂λ(p, q1)
(
B−1
T 1

c
(p, q) − B−1

T 1
c

(p, (q1, η))
)
e−i(η−q2)z2−i(∓η+p2)r′

2−ϵ(|z2|+|r′
2|)

× Φ̂λ((p1,±q2), q1)dz2dr′
2dpdq

∣∣∣∣ (6.97)

where the upper signs correspond to j = 3 and the lower ones to j = 4, respectively. Carrying
out the integration over r′

2 and z2 and substituting q2 → ϵq2 + η, p2 → ϵp2 ± η we obtain

|⟨1, (K2
T 1

c
− λV (r))j⟩|

=
∣∣∣∣ 1
2π

∫
R4

Φ̂λ((p1, ϵp2 ± η), q1)
1

1 + p2
2

1
1 + q2

2

[
B−1
T 1

c
((p1, ϵp2 ± η), (q1, ϵq2 + η))

− B−1
T 1

c
((p1, ϵp2 ± η), (q1, η))

]
Φ̂λ((p1,±(ϵq2 + η)), q1)dpdq

∣∣∣∣ (6.98)

With the definition of g± as in Lemma 6.3.6, the latter equals∣∣∣∣ 1
2π

∫
R2

g±(ϵp2 ± η, ϵq2 + η)
(1 + p2

2)(1 + q2
2) dp2dq2

∣∣∣∣ (6.99)

With Lemma 6.3.6 it follows by dominated convergence that limϵ→0⟨1, (K2
T 1

c
− λV (r))j⟩ = 0.

6.4.2 Proof of (6.86):
We have

4∑
j=1

⟨1, (V (r)χ|z2|<|r2|+V (r1, z2)χ|r2|<|z2|)j⟩ =
∫

Ω̃1×R
(V (r)χ|z2|<|r2|+V (r1, z2)χ|r2|<|z2|)Φλ(r, z1)

×
(

Φλ(r, z1)e−2ϵ|z2| + Φλ(r1,−r2, z1)e−2ϵ|z2|−2iηz2 ∓ Φλ(r1, z2, z1)e−ϵ(|r2|+|z2|)−iη(z2−r2)

∓ Φλ(r1,−z2, z1)e−ϵ(|r2|+|z2|)−iη(z2+r2)
)

drdz (6.100)

The claim follows from dominated convergence provided that∫
R4

(V (r)χ|z2|<|r2| + V (r1, z2)χ|r2|<|z2|)|Φλ(r, z1)|
(

|Φλ(r, z1)| + |Φλ(r1,−r2, z1)|

+ |Φλ(r1, z2, z1)| + |Φλ(r1,−z2, z1)|
)

drdz (6.101)
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is finite. Using the Schwarz inequality in z1 and carrying out the integration over z2, this is
bounded above by

4
∫
R3

(V (r)χ|z2|<|r2| + V (r1, z2)χ|r2|<|z2|)∥Φλ∥L∞
1 L2

2
drdz2 ≤ 16

∫
R2
V (r)|r2|dr∥Φλ∥L∞

1 L2
2

(6.102)
This is finite by Lemma 6.3.4 and since | · |V ∈ L1 by assumption.

6.4.3 Proof of (6.87):
j=1,2: We have

⟨1, V (r1, z2)1⟩ =
∫

Ω̃1×R
V (r1, z2)|Φλ(r, z1)|2e−2ϵ|z2|drdz (6.103)

and

⟨1, V (r1, z2)2⟩ =
∫

Ω̃1×R
V (r1, z2)Φλ(r, z1)Φλ(r1,−r2, z1)e−2ϵ|z2|−2iηz2drdz (6.104)

In both cases we can apply dominated convergence by Lemma 6.3.5 (and the Schwarz inequality
in the second case) and obtain the first two terms in L2.
j=3,4: We start with the case of Neumann boundary conditions. Rewriting the expression in

momentum space we have

⟨1, V (r1, z2)j⟩ =
∫
R4
V (r1, z2)χΩ̃1

Φλ(r, z1)Φλ(r1,±z2, z1)e−ϵ|z2|−iηz2e−ϵ|r2|±iηr2drdz

= 2
π

∫
R4

Φ̂λ(p, q1) χΩ̃1̂
V Φλ(p1, p

′
2, q1)

ϵ2

(ϵ2 + (p2 ∓ η)2)(ϵ2 + (p′
2 ∓ η)2)dp1dp2dp′

2dq1

= 2
π

∫
R2
g0(ϵp2 ± η, ϵp′

2 ± η) 1
(1 + p2

2)(1 + p′2
2 )dp2dp′

2 (6.105)

where the upper/lower signs correspond to j = 3 and j = 4, respectively, and g0 is defined as
in Lemma 6.3.6. It follows from Lemma 6.3.6, dominated convergence and ∫R 1

1+x2 dx = π
that

lim
ϵ→0

⟨1, V (r1, z2)j⟩ = 2πg0(±η,±η) (6.106)

For Dirichlet boundary conditions this comes with a minus sign.

6.5 Weak coupling asymptotics
In this section we shall prove Lemma 6.1.9. We prove the desired asymptotic bounds for L1
and L2 in Sections 6.5.1 and 6.5.2, respectively.

6.5.1 Asymptotics of L1

The goal is to show that L1 defined in (6.7) is of order O(1) as λ → 0. By the Schwarz inequal-
ity, it suffices to prove that ∫Ω̃1×R χ|z2|<|r2|V (r)(|Φλ(r1, r2, z1)|2 + |Φλ(r1, z2, z1)|2)drdz =
O(1). Furthermore, since Φλ = Φd

λ ∓ Φex,<
λ ∓ Φex,>

λ (see (6.38) and (6.39) for the definitions),
again by the Schwarz inequality it suffices to prove∫

Ω̃1×R
χ|z2|<|r2|V (r)|Φj

λ(r1, r2, z1)|2drdz = O(1) (6.107)
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6.5. Weak coupling asymptotics

and ∫
Ω̃1×R

χ|z2|<|r2|V (r)|Φj
λ(r1, z2, z1)|2drdz = O(1) (6.108)

for j ∈ {d, (ex,<), (ex,>)}.
Case j ∈ {d, (ex,>)}: According to Lemma 6.3.4, supr∈R2

∫
R |Φj

λ(r, z1)|2dz1 = O(1). Both
(6.107) and (6.108) follow since | · |V ∈ L1.
Case j = (ex,<): Let W1(r) := 2|r2|V (r) and W2(r) :=

∫
R V (r1, z2)χ|r2|<|z2|dz2. We have

W1,W2 ∈ L1(R2). Note that∫
Ω̃1×R

χ|z2|<|r2|V (r)|Φex,<
λ (r1, r2, z1)|2drdz =

∫
Ω̃1
W1(r)|Φex,<

λ (r1, r2, z1)|2drdz1 (6.109)

and∫
Ω̃1×R

χ|z2|<|r2|V (r)|Φex,<
λ (r1, z2, z1)|2drdz =

∫
Ω̃1
W2(r)|Φex,<

λ (r1, r2, z1)|2drdz1, (6.110)

where we renamed z2 ↔ r2. For any L1-function W ≥ 0 we have(∫
Ω̃1
W (r)|Φex,<

λ (r1, r2, z1)|2drdz1

)1/2
= ∥W 1/2Φex,<

λ ∥2 = sup
ψ∈L2(Ω̃1),∥ψ∥2=1

|⟨ψ,W 1/2Φex,<
λ ⟩|

≤
√

2λ sup
ψ1,ψ2∈L2(R3),∥ψ1∥=∥ψ2∥=1

∫
R3

∣∣∣Ŵ 1/2ψ1(p, q1)BT 1
c
(p, (q1, η))χp2

2<2µ

× V̂ 1/2ψ2((q1, p2), p1)
∣∣∣dpdq1 (6.111)

where we used (6.39) and the normalization ∥Ψλ∥ = 1 in the last step. We bound
|Ŵ 1/2ψ1(p, q1)| ≤ ∥W∥1/2

1 ∥F2ψ1(·, q1)∥2, and similarly for |V̂ 1/2ψ2(p, q1)|. Thus (6.111)
is bounded above by √

2λ∥W∥1/2
1 ∥V ∥1/2

1 ∥Bex
T (η)∥ (6.112)

where Bex
T (q2) is the operator on L2(R) with integral kernel

Bex
T (q2)(p1, q1) =

∫
R
BT (p, q)χp2

2<2µdp2. (6.113)

It was shown in [60, Proof of Lemma 6.1] (see Eq. (6.16) and rest of argument), that

sup
T

sup
q2

∥Bex
T (q2)∥ < ∞. (6.114)

In particular, we conclude that ∫Ω̃1
Wk(r)|Φex,<

λ (r1, r2, z1)|2drdz1 = O(λ2) for k ∈ {1, 2}.

6.5.2 Asymptotics of L2

The goal is to prove that L2 defined in (6.8) diverges like −λ−1 to negative infinity as λ → 0.
We shall prove that the second line in (6.8) is of order O(1) as λ → 0. For the first line in
(6.8) we shall prove that it is bounded above by −cλ−1 for some c > 0 as λ → 0.
Second line of (6.8): Let ξ ∈ {η,−η}. Combining (6.40), (6.69) and the definitions of L0

and S at the beginning of Section 6.3.4 we have∣∣∣∣ ∫
R2

Φ̂λ(p1, ξ, q1) χΩ̃1̂
V Φλ(p1, ξ, q1)dp1dq1

∣∣∣∣ ≤ λ
∫
R2

(| χΩ̃1̂
V Φλ(p1, ξ, q1)|+| χΩ̃1̂

V Φλ(−p1, ξ,−q1)|

+| χΩ̃1̂
V Φλ(q1, ξ, p1)|)+| χΩ̃1̂

V Φλ(−q1, ξ,−p1)|)BT 1
c
((p1, ξ), (q1, η))| χΩ̃1̂

V Φλ(p1, ξ, q1)|dp1dq1
(6.115)
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Using the Schwarz inequality and | χΩ̃1̂
V Φλ(p1, ξ, q1)| ≤ ∥ χΩ̃1̂

V Φλ(·, q1)∥∞ this is bounded
above by

4λ
∫
R2
BT 1

c
((p1, ξ), (q1, η))∥ χΩ̃1̂

V Φλ(·, q1)∥2
∞dp1dq1

≤ 4λ sup
q1∈R

∫
R
BT 1

c
((p1, ξ), (q1, η))dp1∥ χΩ̃1̂

V Φλ∥2
L2

2(R)L∞
1 (R2), (6.116)

where in the second step we used that ∫RBT 1
c
((p1, ξ), (q1, η))dp1 acts as multiplication

operator on ∥ χΩ̃1̂
V Φλ(·, q1)∥∞. By Lemma 6.3.3 and since ∥V 1/2χΩ̃1

Φλ∥2 = 1 we have
∥ χΩ̃1̂
V Φλ∥2

L2
2(R)L∞

1 (R2) ≤ ∥V ∥1. The following Lemma together with Remark 6.3.1 and
Lemma 6.3.21 implies that (6.116) is of order O(1).
Lemma 6.5.1. Let ξ(T ), ξ′(T ) be functions of T with limT→0 ξ(T ) = limT→0 ξ

′(T ) = 0.
Then as T → 0,

sup
q1

∫
R
BT ((p1, ξ(T )), (q1, ξ

′(T )))dp1 = O(lnµ/T ). (6.117)

The proof can be found in Section 6.7.4.
First line of (6.8): Recall from Section 6.3 that Φλ = Φ>

λ + Φd,<
λ ∓ Φex,<

λ . By Lemma 6.3.5
the L2-norms of V 1/2(r)Φ>

λ (r1, z2, z1), V 1/2(r)Φd,<
λ (r1, z2, z1), and V 1/2(r)Φex,<

λ (r1, z2, z1)
are of order O(λ), O(λ−1/2), and O(λ1/2), respectively. It follows with the Schwarz inequality
that the first line of L2 in (6.8) equals

−
∫

Ω̃1×R
V (r)

|Φd,<
λ (r1, z2, z1)|2 + Φd,<

λ (r1, z2, z1)Φd,<
λ (r1,−z2, z1)e−2iη(λ)r2

drdz +O(1)

(6.118)
Note that Φd,<

λ (r1, z2, z1) = Φd,<
λ (−r1, z2,−z1). We rewrite the expression in (6.118) as

− 1
2

∫
R4
V (r)Φd,<

λ (r1, z2, z1)
Φd,<

λ (r1, z2, z1) + Φd,<
λ (r1,−z2, z1)e−2iη(λ)r2

χ|r1|<|z1|drdz

= −1
2

∫
R4
V (r)Φd,<

λ (r1, z2, z1)
Φd,<

λ (r1, z2, z1) + Φd,<
λ (r1,−z2, z1)e−2iη(λ)r2

drdz

+ 1
2

∫
R4
V (r)Φd,<

λ (r1, z2, z1)
Φd,<

λ (r1, z2, z1) + Φd,<
λ (r1,−z2, z1)e−2iη(λ)r2

χ|z1|<|r1|drdz

(6.119)
We first consider the last line in (6.119) with the restriction to |z1| < |r1|. We prove that this
term is of order O(1) as λ → 0. Second, we will prove that the expression on the second line
in (6.119) is bounded above by −cλ−1 for some constant c > 0 as λ → 0.
Asymptotics of third line in (6.119): Define W ∈ L1(R3) by W (r, z1) := V (r)χ|z1|<|r1|.

By the Schwarz inequality it suffices to prove that ∫R4 W (r, z1)|Φd,<
λ (r1, z2, z1)|2drdz = O(1)

for λ → 0. Using the definition of Φd,<
λ we have∫

R4
W (r, z1)|Φd,<

λ (r1, z2, z1)|2drdz = 2λ2

(2π)1/2

∫
R5
Ŵ ((p1 − p′

1, 0), q1 − q′
1)BT 1

c
(p, (q1, η))

×V̂ 1/2Ψλ(p, q1)BT 1
c
((p′

1, p2), (q′
1, η))V̂ 1/2Ψλ(p′

1, p2, q
′
1)χp2+q2

1<2µχp′2
1 +p2

2+q′2
1 <2µdpdp′

1dq1dq′
1

(6.120)
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Using |Ŵ (p, q1)| ≤ ∥W∥1
(2π)3/2 and ∥V̂ 1/2Ψλ(·, q1)∥∞ ≤ ∥V ∥1/2

1 ∥F2Ψλ(·, q1)∥2 we bound this from
above by

λ2

2π2 ∥W∥1∥V ∥1

∫
R5
BT 1

c
(p, (q1, η))BT 1

c
((p′

1, p2), (q′
1, η))χp2+q2

1<2µχp′2
1 +p2

2+q′2
1 <2µ

× ∥F2Ψλ(·, q1)∥2∥F2Ψλ(·, q′
1)∥2dpdp′

1dq1dq′
1

≤ λ2

2π2 ∥W∥1∥V ∥1

 sup
q1,q′

1∈R

∫
R3
BT 1

c
(p, (q1, η))BT 1

c
((p′

1, p2), (q′
1, η))χp′2

1 +q′2
1 +p2

2<2µχp2+q2
1<2µdpdp′

1


×
( ∫

R
∥F2Ψλ(·, q1)∥2χq2

1<2µdq1

)2
(6.121)

By Lemma 6.3.7 and Remark 6.3.1, the term in the square bracket in (6.121) is of order
O(λ−3). Splitting the domain of integration into |q1|/

√
µ ≷ (T 1

c /µ)β for some 0 < β < 1
and using the Schwarz inequality we observe that∫
R
∥F2Ψλ(·, q1)∥2χq2

1<2µdq1 ≤ (2√
µ(T 1

c /µ)β)1/2∥Ψλ∥2 + (2
√

2µ)1/2∥F2Ψλχ|q1|/√
µ>(T 1

c /µ)β ∥2

(6.122)
By Lemma 6.3.23, ∥F2Ψλχ|q1|/√

µ>(T 1
c /µ)β ∥2 = O(λ1/2) and by Remark 6.3.1 we have (T 1

c /µ)β/2 ≤

O((lnµ/T 1
c )−1) = O(λ). Thus,

( ∫
R∥F2Ψλ(·, q1)∥2χq2

1<2µdq1

)2
= O(λ) and (6.121) is of

order O(1).
Asymptotics of second line in (6.119): Analogously to (6.58) we have
∫
R4
V (r)Φd,<

λ (r1, z2, z1)Φd,<
λ (r1,−z2, z1)e−2iη(λ)r2drdz = 2λ2

∫
R4
V̂ (p1+p′

1, 2η)BT 1
c
(p, (q1, η))

× V̂ 1/2Ψλ(p, q1)BT 1
c
((p′

1, p2), (q1, η))V̂ 1/2Ψλ(p′
1, p2, q1)χp2+q2

1<2µχp′2
1 +p2

2+q2
1<2µdpdp′

1dq1

(6.123)

We can thus write
1
2

∫
R4
V (r)Φ<,d

λ (r1, z2, z1)
(

Φ<,d
λ (r1, z2, z1)+Φ<,d

λ (r1,−z2, z1)e−2iη(λ)r2

)
drdz = ⟨F2Ψλ,MλF2Ψλ⟩,

(6.124)
where Mλ is the operator acting on L2(R3) given by

⟨ψ,Mλψ⟩ = λ2
∫
R4

(V̂ (p1 − p′
1, 0) + V̂ (p1 + p′

1, 2η))BT 1
c
(p, (q1, η))F1V 1/2ψ(p, q1)χp2+q2

1<2µ

× BT 1
c
((p′

1, p2), (q1, η))χp′2
1 +p2

2+q2
1<2µF1V

1/2ψ(p′
1, p2, q1)dpdp′

1dq1 (6.125)

By the same argument as in the proof of ∫R4 V (r)|Φd,<
λ (r1, z2, z1)|2drdz = O(λ−1) in

Lemma 6.3.5 (see (6.62)) we have ∥Mλ∥ = O(λ−1). Recall the projections P and Qβ

from Section 6.3. Let T be the projection T = PQβ for some 0 < β < 1 and T⊥ = 1 − T.
We have

⟨F2Ψλ,MλF2Ψλ⟩ = ⟨TF2Ψλ,MλTF2Ψλ⟩ + ⟨TF2Ψλ,MλT⊥F2Ψλ⟩ + ⟨T⊥F2Ψλ,MλF2Ψλ⟩
(6.126)

Since P and Qβ commute, we have ∥T⊥F2Ψλ∥ = ∥Q⊥
β F2Ψλ + QβP⊥F2Ψλ∥ = O(λ1/2)

according to Lemma 6.3.22 and 3. In particular, the last two terms in (6.126) are of order
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O(λ−1/2). The remaining term in (6.126) is bounded below by

⟨TF2Ψλ,MλTF2Ψλ⟩

≥ inf
|q1|/√

µ<(T 1
c /µ)β

λ2
∫
R3

(V̂ (p1 − p′
1, 0) + V̂ (p1 + p′

1, 2η))BT 1
c
((p1, p2), (q1, η))V̂ j2(p)χp2+q2

1<2µ

× BT 1
c
((p′

1, p2), (q1, η))χp′2
1 +p2

2+q2
1<2µV̂ j2(p′

1, p2)dpdp′
1∥TF2Ψλ∥2

2∥V 1/2j2∥−2
2 (6.127)

The remainder of the proof follows the same ideas as the proof of [60, Lemma 4.11]. Since
V ≥ 0 we have V̂ (0) > 0. Furthermore, the eigenvalue equation eµV

1/2j2 = OµV
1/2j2 =

V̂ j2(|p| = √
µ)V 1/2j2 implies that V̂ j2(|p| = √

µ) = eµ > 0. By continuity of V̂ and
V̂ j2 and Lemma 6.3.21, there exist λ̃ > 0, 0 < δ < µ and c1 > 0 such that for all√
µ− δ < p2 <

√
µ+ δ, p2

1 < 4δ, p′2
1 < 4δ and λ < λ̃ we have

(V̂ (p1 − p′
1, 0) + V̂ (p1 + p′

1, 2η))V̂ j2(p)V̂ j2(p′
1, p2)χp2+q2

1<2µχp′2
1 +p2

2+q2
1<2µ∥V 1/2j2∥−2

2 > c1.
(6.128)

Using the second part of Lemma 6.3.7, Lemma 6.3.21 and the boundedness of V̂ , V̂ j2, it
follows that up to an error of order O(λ2(lnµ/T 1

c )5/2) = O(λ−1/2) we may restrict the
domain of integration in (6.127) to

√
µ− δ < p2 <

√
µ+ δ, p2

1 < 4δ, p′2
1 < 4δ . Since

∥TF2Ψλ∥2
2 = 1 −O(λ) ≥ 1

2 for small λ, we obtain

⟨TF2Ψλ,MλTF2Ψλ⟩ ≥ c1

2 inf
|q1|/√

µ<(T 1
c /µ)β

λ2
∫
R3
BT 1

c
((p1, p2), (q1, η))

× BT 1
c
((p′

1, p2), (q1, η))χµ−δ<p2
2<µ+δχp2

1<4δχp′2
1 <4δdpdp′

1 +O(λ−1/2) (6.129)

Using Lemma 6.3.7 once more, we may leave away the characteristic functions at the expense
of an error of order O(λ−1/2). Since η(λ) = O(T 1

c (λ)), there is a c2 > 0 such that
η2 + (√µ(T 1

c /µ)β)2 ≤ c2
2µ(T 1

c /µ)2β for T 1
c < µ. The following Lemma, whose proof is given

in Section 6.7.5, thus concludes the proof of Lemma 6.1.9.

Lemma 6.5.2. Let µ, c2 > 0, 0 < β < 1 and ϵ := c2
√
µ(T/µ)β for T > 0. Then there are

constants T0, C > 0 such that

inf
|q|<ϵ

∫
R

(∫
R
BT (p, q)dp1

)2
dp2 ≥ C(lnµ/T )3 (6.130)

for all 0 < T < T0.

6.6 Proof of Theorem 6.1.5
This Section is dedicated to the proof of Theorem 6.1.5, which states that the relative
difference of T 2

c and T 0
c vanishes in the weak coupling limit. It has been shown in [60, Theorem

1.7] that the relative difference of T 1
c and T 0

c vanishes in the weak coupling limit and we
follow the same proof strategy here. We first switch to the Birman-Schwinger picture. Recall
the Birman-Schwinger operator A0

T corresponding to HΩ0
T defined in (6.20). Furthermore,

recall the notation t̃, Ω̃2 and the representation of UHΩ2
T U † in (6.79) from Section 6.4. The

corresponding Birman-Schwinger operator A2
T : L2(Ω̃2) → L2(Ω̃2) is given by

⟨ψ,A2
Tψ⟩ =

∫
R4
BT (p, q)

∣∣∣∣∣
∫

Ω̃2

1
(2π)2 t̃(p1, q1, r1, z1)t̃(p2, q2, r2, z2)V 1/2(r)ψ(r, z)drdz

∣∣∣∣∣
2

dpdq

(6.131)
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6.6. Proof of Theorem 6.1.5

and it follows from the Birman-Schwinger principle that sgn inf σ(HΩ2
T ) = sgn(1/λ −

sup σ(A2
T )). Let ajT = sup σ(AjT ). It is a straightforward generalization of [34, Lemma

4.1] that the claim (6.4) is equivalent to

lim
T→0

(a0
T − a2

T ) = 0 (6.132)

and we refer to [34] for the proof.
To verify (6.132), the first step is to argue that a2

T ≥ a0
T for all T > 0. Lemma 6.1.1

together with [60, Lemma 2.3] imply that inf σ(HΩ2
T ) ≤ inf σ(HΩ0

T ) for all λ, T > 0. Using
the Birman-Schwinger principle, it follows that a2

T ≥ a0
T for all T > 0. For details we refer to

the proof of [60, Theorem 1.7].
It remains to show that limT→0(a0

T − a2
T ) ≥ 0. We decompose A2

T in the same spirit as we
decomposed A1

T (q2) in (6.26). For A1
T , the decomposition consisted of the “unperturbed" term

A0
T and the “perturbation term" GT , where the first components of the momentum variables

were swapped. For A2
T we additionally get the terms arising from swapping the variables in

the second component, which leads to four terms in total. Let ι̃ : L2(Ω̃2) → L2(R4) be the
isometry

ι̃ψ(r, z) = 1
2

(
ψ(r, z)χΩ̃2

(r, z) + ψ(−r1, r2,−z1, z2)χΩ̃2
(−r1, r2,−z1, z2)

+ ψ(r1,−r2, z1,−z2)χΩ̃2
(r1,−r2, z1,−z2) + ψ(−r,−z)χΩ̃2

(−r,−z)
)
. (6.133)

Using the definition of t̃ and evenness of V in r1 and r2 we rewrite (6.131) as

⟨ψ,A2
Tψ⟩ =

∫
R4
BT (p, q)

∣∣∣∣12( ι̂̃V 1/2 ψ(p, q) ∓ ι̂̃V 1/2 ψ((q1, p2), (p1, q2))

∓ ι̂̃V 1/2 ψ((p1, q2), (q1, p2)) + ι̂̃V 1/2 ψ(q, p))
∣∣∣∣2dpdq (6.134)

Define the self-adjoint operators G1
T , G

2
T , and NT on L2(R4) through

⟨ψ,G1
Tψ⟩ =

∫
R4
F1V 1/2ψ((q1, p2), (p1, q2))BT (p, q)F1V

1/2ψ(p, q)dpdq, (6.135)

⟨ψ,G2
Tψ⟩ =

∫
R4
F1V 1/2ψ((p1, q2), (q1, p2))BT (p, q)F1V

1/2ψ(p, q)dpdq, and (6.136)

⟨ψ,NTψ⟩ =
∫
R4
F1V 1/2ψ(q, p)BT (p, q)F1V

1/2ψ(p, q)dpdq. (6.137)

We slightly abuse notation and write F2 for the Fourier transform in the second variable
also when the second variable has two components, i.e. F2ψ(r, q) = 1

2π
∫
R2 e−iq·zψ(r, z)dz. It

follows from (6.134) and BT (p, q) = BT ((q1, p2), (p1, q2)) = BT (q, p) that

A2
T = ι̃†(A0

T − F †
2RTF2)ι̃, (6.138)

where RT = ±G1
T ± G2

T − NT . Let BT (·, q) : L2(R2) → L2(R2) denote multiplication by
BT (p, q) in momentum space and define the function ET (q) on R2 through

ET (q) := a0
T − ∥V 1/2BT (·, q)V 1/2∥. (6.139)

Note that a0
T = supq∈R2∥V 1/2BT (·, q)V 1/2∥ and therefore ET (q) ≥ 0. For ψ ∈ L2(R4) let

ETψ(r, q) = ET (q)ψ(r, q). We get the operator inequality a0
T I − A0

T ≥ F †
2ETF2, where
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I denotes the identity operator on L2(R4). Using (6.138), the above inequality and that
∥F2ι̃ψ∥2 = ∥ψ∥2 we obtain

a0
T−a2

T ≥ inf
ψ∈L2

s(Ω̃2),∥ψ∥2=1
⟨F2ι̃ψ, (ET+RT )F2ι̃ψ⟩ ≥ inf

ψ∈L2(R4),∥ψ∥2=1
⟨ψ, (ET+RT )ψ⟩. (6.140)

Therefore, it suffices to show that limT→0 inf σ(ET + RT ) ≥ 0. The proof relies on the
following three Lemmas.

Lemma 6.6.1. Let µ > 0 and let V satisfy Assumption 6.1.2. Then supT>0∥RT∥ < ∞.

Lemma 6.6.2. Let µ > 0 and let V satisfy Assumption 6.1.2. Let I≤ϵ act on L2(R4) as
I≤ϵψ(r, q) = ψ(r, q)χ|q|≤ϵ. Then limϵ→0 supT>0∥I≤ϵRT I≤ϵ∥= 0.

Lemma 6.6.3. Let µ > 0 and let V satisfy Assumption 6.1.2. Let 0 < ϵ <
√
µ. There are

constants c1, c2, T0 > 0 such that for 0 < T < T0 and |q| > ϵ we have ET (q) > c1| ln(c2/T )|.

The first two Lemmas are extensions of [60, Lemma 6.1 and Lemma 6.2] and proved in
Sections 6.7.6 and 6.7.7, respectively. The third Lemma is contained in [60, Lemma 6.3].
With these Lemmas, the claim follows completely analogously to the proof of [34, Theorem
1.2 (ii)] and we provide a sketch for completeness. Using that ET (q) ≥ 0, we write

ET +RT + δ =
√
ET + δ

(
I + 1√

ET + δ
RT

1√
ET + δ

)√
ET + δ (6.141)

for any δ > 0. It suffices to prove that for all δ > 0 the norm of the second term in the
bracket vanishes in the limit T → 0. With the notation from Lemma 6.6.2 we estimate for all
0 < ϵ <

√
µ∥∥∥∥∥ 1√

ET + δ
RT

1√
ET + δ

∥∥∥∥∥ ≤
∥∥∥∥∥I≤ϵ

1√
ET + δ

RT
1√

ET + δ
I≤ϵ

∥∥∥∥∥
+
∥∥∥∥∥I≤ϵ

1√
ET + δ

RT
1√

ET + δ
I>ϵ
∥∥∥∥∥+

∥∥∥∥∥I>ϵ 1√
ET + δ

RT
1√

ET + δ

∥∥∥∥∥ . (6.142)

Lemma 6.6.3 and ET ≥ 0 imply

lim
T→0

∥∥∥∥∥ 1√
ET + δ

RT
1√

ET + δ

∥∥∥∥∥ ≤ sup
T>0

1
δ

∥I≤ϵRT I≤ϵ∥ + lim
T→0

2
(δc1| ln(c2/T )|)1/2 ∥RT∥. (6.143)

The first term can be made arbitrarily small by Lemma 6.6.2 and the second term vanishes by
Lemma 6.6.1. Hence, Theorem 6.1.5 follows.

6.7 Proofs of Auxiliary Lemmas
6.7.1 Proof of Lemma 6.2.2
Proof of Lemma 6.2.2. Using the Mittag-Leffler series (as in [34, (2.1)]) one can write

f(p, q, x) = 2T
∑
n∈Z

Ξ−1
n

[
(2q2 + x)(2µ− 2q2 − 2p2 − x2 + 2(p2 − q2)x)

+ 2p2(4p · q − 2iwn + 2(p2 − q2)x− x2)
]

(6.144)
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where

Ξn =
(
(p+ q + (0, x))2 − µ− iwn

) (
(p− q − (0, x))2 − µ+ iwn

)
×
(
(p+ q)2 − µ− iwn

) (
(p− q)2 − µ+ iwn

)
(6.145)

and wn = (2n+ 1)πT . Continuity of f follows from dominated convergence. For x > √
µ/4

the bound on f follows from (6.12). Let Q2 = Q1 + √
µ/4. For x < √

µ/4 we have

|f(p, q, x)| ≤ sup
|q2|≤Q2

| ∂
∂q2

BT (p, q)| = sup
|q2|≤Q2

|f(p, q, 0)|. (6.146)

To bound |f(p, q, 0)|, first note that for x = 0 with the notation y = (p+q)2−µ, z = (p−q)2−µ
and v = max{(|p1| + |q1|)2 + (|p2| − |q2|)2 − µ, 0},

|Ξn| =
(
y2 + w2

n

) (
z2 + w2

n

)
≥
(
v2 + w2

n

) (
max{(|p2| − |q2|)2 − µ, 0})2 + w2

n

)
. (6.147)

Furthermore,

sup
(p,q)∈R4,|q2|≤Q2

∣∣∣∣∣ 4iwnp2

max{(|p2| − |q2|)2 − µ, 0})2 + w2
n

∣∣∣∣∣
≤ sup

(p,q)∈R4,|q2|<Q2

4|p2|√
max{(|p2| − |q2|)2 − µ, 0})2 + w2

0

=: c1 < ∞ (6.148)

There is a constant c2 > µ depending only on µ and Q2 such that |p2|2 ≤ 4(min{y, z} + c2)
for |q2| ≤ Q2 and all p1, q1 ∈ R. One obtains that for |q2| ≤ Q2

|f(p, q, 0)| ≤ 2T
∑
n∈Z

2Q2|y + z| + 4
√

min{y, z} + c2|y − z|
(y2 + w2

n)(z2 + w2
n) + 2T

∑
n∈Z

c1

v2 + w2
n

(6.149)

Since the summands are decreasing in n, we can estimate the sums by integrals. The second
term is bounded by

4Tc1

[
1

v2 + w2
0

+
∫ ∞

1/2

1
v2 + 4π2T 2x2 dx

]
= 4Tc1

 1
v2 + w2

0
+

arctan
(
v
πT

)
2πTv


<

C

1 + p2
1 + q2

1 + p2
2

(6.150)

for some constant C independent of p and q1, since sup(p,q)∈R4,|q2|≤Q2
1+p2

1+q2
1+p2

2
1+v < ∞. The

first term in (6.149) is bounded by

16T (Q2 + 2
√

min{|y|, |z|} + c2) max{|y|, |z|}

 1
(y2 + w2

0)(z2 + w2
0)

+
∫ ∞

1/2

1
(y2 + 4π2T 2x2)(z2 + 4π2T 2x2)dx

 (6.151)

Note that y + z + 2µ+ 1 = 1 + 2p2 + 2q2. The claim thus follows if we prove that for c3 > 0

sup
y>z>0

(1+y+z)(1+
√
z + 1)y

 1
(y2 + 1)(z2 + 1) +

∫ ∞

c3

1
(y2 + x2)(z2 + x2)dx

 < ∞ (6.152)
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The supremum over the first summand is obviously finite. The supremum over the second
summand is bounded by

sup
y>z>0

(1 + 2y)y
y2 + c2

3

1 +
√
z + 1

(z2 + c2
3)1/4

∫ ∞

c3

1
x3/2 dx < ∞. (6.153)

6.7.2 Proof of Lemma 6.3.7
Proof of Lemma 6.3.7. Using (6.53) and substituting p1 ± q1 → p1, p

′
1 ± q′

1 → p′
1 , we have

∫
R3
BT (p, q)BT ((p′

1, p2), q′)dp1dp′
1dp2 ≤ 1

4

∫
R3

(BT ((p1, p2 + q2), 0) +BT ((p1, p2 − q2), 0))

× (BT ((p′
1, p2 + q′

2), 0) + BT ((p′
1, p2 − q′

2), 0))dp1dp′
1dp2 (6.154)

One can bound this from above by

sup
q2,q′

2∈R

∫
R

(∫
R
BT ((p1, p2 + q2), 0)dp1

)(∫
R
BT ((p′

1, p2 + q′
2), 0)dp′

1

)
dp2

≤ sup
q2∈R

∫
R3
BT ((p1, p2 + q2), 0)BT ((p′

1, p2 + q2), 0)dp1dp′
1dp2

=
∫
R3
BT ((p1, p2), 0)BT ((p′

1, p2), 0)dp1dp′
1dp2 (6.155)

where in the second step we used the Schwarz inequality in p2. The latter expression is of
order O(ln(µ/T )3) for T → 0, as was shown in the proof of [60, Lemma 4.10].
To prove the second statement, we shall use that for fixed 0 < δ < µ∫

R3
(1 −χµ−δ<p2

2<µ
χp2

1<2δχp′2
1 <2δ)BT (p, 0)BT ((p′

1, p2), 0)dp1dp′
1dp2 = O((lnµ/T )2) (6.156)

for T → 0 as was shown in the proof of [60, Lemma 4.10]. We choose δ2 and δ small enough,
such that for all q2 < δ2, if p2

1 > 4δ1 we have (p1 + q1)2 > 2δ and if p2
2 < µ− δ1 or p2

2 > µ+ δ1
we have (p2 + q2)2 < µ− δ or (p2 + q2)2 > µ, respectively. Using (6.53) as above, we have

sup
q2,q′2<δ2

∫
R3

(1 − χµ−δ1<p2
2<µ+δ1χp2

1<4δ1χp′2
1 <4δ1)BT (p, q)BT ((p′

1, p2), q′)dp1dp′
1dp2

≤ sup
q2,q′2<δ2

∫
R3

(1−χµ−δ1<p2
2<µ+δ1χp2

1<4δ1χp′2
1 <4δ1)BT (p+ q, 0)BT ((p′

1, p2)+ q′, 0)dp1dp′
1dp2

(6.157)

Note that 1−χµ−δ1<p2
2<µ+δ1χp2

1<4δ1χp′2
1 <4δ1 ≤ χµ−δ1>p2

2
+χµ+δ1<p2

2
+χp2

1>4δ1 +χp′2
1 >4δ1 . Using

the Schwarz inequality in p2 we bound (6.157) above by

sup
q2<δ2

∫
R3

(χµ−δ1>p2
2

+ χµ+δ1<p2
2
)BT ((p1 + q1, p2 + q2), 0)BT ((p′

1 + q1, p2 + q2), 0)dp1dp′
1dp2

+2 sup
q2,q′2<δ2

( ∫
R3
BT ((p1+q1, p2+q2), 0)BT ((p′

1+q1, p2+q2), 0)χp2
1>4δ1χp′2

1 >4δ1dp1dp′
1dp2

)1/2

×
( ∫

R3
BT ((p1, p2 + q2), 0)BT ((p′

1, p2 + q2), 0)dp1dp′
1dp2

)1/2
(6.158)
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Substituting pj + qj → pj and by choice of δ2 and δ, this is bounded above by∫
R3

(χµ−δ>p2
2

+ χµ<p2
2
)BT (p, 0)BT ((p′

1, p2), 0)dp1dp′
1dp2

+ 2
( ∫

R3
BT (p, 0)BT ((p′

1, p2), 0)χp2
1>2δχp′2

1 >2δdp1dp′
1dp2

)1/2

×
( ∫

R3
BT (p, 0)BT ((p′

1, p2), 0)dp1dp′
1dp2

)1/2
(6.159)

By (6.156) and the first part of this Lemma, this is of order O((lnµ/T )2)+O((lnµ/T )(lnµ/T )3/2) =
O((lnµ/T )5/2).

6.7.3 Proof of Lemma 6.3.8
Proof of Lemma 6.3.8. For p2, q2 ∈ R letBT ((·, p2), (·, q2)) denote the self-adjoint operator on
L2((−

√
2µ,

√
2µ)) acting as ⟨ψ,BT ((·, p2), (·, q2))ψ⟩ =

∫√
2µ

−
√

2µ
∫√

2µ
−

√
2µ ψ(p1)BT (p, q)ψ(q1)dp1dq1.

Enlarging the domain of integration for (q1, p2) from a disk to square we have

∥Bex,2
T (ξ)∥ ≤ sup

∥ψ∥2=1

∫
(−

√
2µ,

√
2µ)4

ψ(p′
1)BT ((p′

1, p2), (q1, ξ))BT (p, (q1, ξ))ψ(p1)dp1dp′
1dq1dp2

= sup
∥ψ∥2=1

∫ √
2µ

−
√

2µ
⟨ψ,BT ((·, p2), (·, ξ))2ψ⟩dp2. (6.160)

By the triangle inequality,

∥Bex,2
T (ξ)∥ ≤

∫ √
2µ

−
√

2µ
∥BT ((·, ξ), (·, p2))∥2dp2. (6.161)

For fixed p2, q2 we derive two bounds on ∥BT ((·, p2), (·, q2))∥2. For the first bound we estimate
the Hilbert-Schmidt norm using (6.12):

∥BT ((·, p2), (·, q2))∥2 ≤ ∥BT,µ((·, p2), (·, q2))∥2
HS

≤
∫ √

2µ

−
√

2µ

∫ √
2µ

−
√

2µ

1
max{|p2

1 + q2
1 + p2

2 + q2
2 − µ|2, T 2}

dp1dq1

≤ 2π
∫ 2√

µ

0

r

max{|r2 + p2
2 + q2

2 − µ|2, T 2}
dr ≤ π

∫
R

1
max{x2, T 2}

dx = 4π
T

(6.162)

where we first switched to angular coordinates and then substituted x = r2 + p2
2 + q2

2 − µ.
For the second bound the idea is to apply [60, Lemma 6.5]. For µ1, µ2 ∈ R let Dµ1,µ2 be the
operator on L2(R) with integral kernel

Dµ1,µ2(p1, q1) = 2
|(p1 + q1)2 − µ1| + |(p1 − q1)2 − µ2|

. (6.163)

It was shown in [34, Lemma 4.6] that

BT (p, q) ≤ 2
|(p+ q)2 − µ| + |(p− q)2 − µ|

. (6.164)

In particular, we have ∥BT ((·, p2), (·, q2))∥ ≤ ∥Dµ−(p2+q2)2,µ−(p2−q2)2∥ and

∥Bex,2
T (ξ)∥ ≤

∫ √
2µ

−
√

2µ
min

{4π
T
, ∥Dµ−(ξ+q2)2,µ−(ξ−q2)2∥2

}
dq2 (6.165)
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According to [60, Lemma 6.5], for µ1, µ2 ≤ µ there is a constant C > 0 such that

∥Dµ1,µ2∥ ≤ C + Cµ1/2

| min{µ1, µ2}|1/2

1 + χmin{µ1,µ2}<0<max{µ1,µ2} ln
(

1 + max{µ1, µ2}
| min{µ1, µ2}|

)
(6.166)

The condition µ− (|q2| + |ξ|)2 < 0 < µ− (|q2| − |ξ|)2 can only be satisfied for √
µ− |ξ| ≤

|q2| ≤ √
µ+ |ξ|. We get the bound

sup
|ξ|<cT

∥Bex,2
T (ξ)∥ ≤ C

∫
||q2|−√

µ|<2cT

1
T

dq2

+ sup
|ξ|<cT

∫ √
2µ

−
√

2µ
χ||q2|−√

µ|>2cT

[
1 + 1

|µ− (|q2| + |ξ|)2|1/2

]2

dq2

 ≤ C̃(1 + lnµ/T ) (6.167)

6.7.4 Proof of Lemma 6.5.1
Proof of Lemma 6.5.1. Applying (6.53), we have

sup
q1

∫
R
BT,µ((p1, ξ(T )), (q1, ξ

′(T )))dp1

≤ 1
2

[∫
R
BT,µ((p1, ξ(T ) + ξ′(T )), 0)dp1 +

∫
R
BT,µ((p1, ξ(T ) − ξ′(T )), 0)dp1

]
(6.168)

The first integral equals ∫
R
BT,µ−(ξ(T )+ξ′(T ))2(p1, 0)dp1, (6.169)

where here BT,µ is understood as the function defined through (6.11) on R × R instead
of R2 × R2. For the second integral replace ξ′(T ) by −ξ′(T ). The claim follows from the
asymptotics ∫

R
BT,µ(p1, 0)dp1 = 2

√
µ

(ln(µ/T ) +O(1)) (6.170)

for T/µ → 0, see e.g. [34, Lemma 3.5].

6.7.5 Proof of Lemma 6.5.2
Proof of Lemma 6.5.2. Let γ = µ(T/µ)β/2. By invariance of BT (p, q) under (pj, qj) →
−(pj, qj) for j ∈ {1, 2}, we may assume without loss of generality that q ∈ [0,∞)2. For a lower
bound, we restrict the integration to p1, p2 > 0, p2

2 < µ−ϵ2−γ and p2
1 > (√µ+ϵ)2+T−p2

2. For
p, q ∈ [0,∞)2 with |q| < ϵ and p2 > (√µ+ϵ)2 +T , we have (p−q)2 −µ ≥ ||p|−|q||2 −µ ≥ 0
and (p+ q)2 − µ ≥ p2 + q2 − µ ≥ T . Therefore, in this regime

BT (p, q) ≥ 1
2

tanh(1/2)
p2 + q2 − µ

. (6.171)

This is minimal if |q| = ϵ. Since ∫∞
a

1
p2

1−b2 dp1 = artanh(b/a)
b

= 1
b

artanh
(√

1 − (a2 − b2)/a2
)

for a > b > 0, the left hand side of (6.130) is bounded below by

tanh(1/2)2

4

∫ √
µ−ϵ2−γ

√
µ−δ

artanh
(√

1 − 2√
µϵ+2ϵ2+T

(√µ+ϵ)2+T−p2
2

)2

µ− ϵ2 − p2
2

dp2 (6.172)
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By monotonicity of artanh, the artanh term in the integrand is minimal for p2 =
√
µ− ϵ2 − γ.

Since ∫√
µ−ϵ2−γ√
µ−δ

1
µ−ϵ2−p2

2
dp2 = 1

µ−ϵ2 (artanh(
√

1 − (ϵ2 + γ)/µ) − artanh(
√

1 − δ/µ)), the left
hand side of (6.130) is bounded below by

tanh(1/2)2

4(µ− ϵ2) artanh
√√√√1 −

2√
µϵ+ 2ϵ2 + T

2√
µϵ+ 2ϵ2 + T + γ

2  artanh
(√

1 − ϵ2 + γ

µ

)
−artanh

(√
1 − δ

µ

)
(6.173)

With artanh(
√

1 − x) = 1
2 ln(4/x) + o(1) as x → 0, we have for T → 0

artanh
√√√√1 −

2√
µϵ+ 2ϵ2 + T

2√
µϵ+ 2ϵ2 + T + γ

 = β

4 ln(µ/T ) +O(1) (6.174)

and
artanh

(√
1 − ϵ2 + γ

µ

)
= β

4 ln(µ/T ) +O(1). (6.175)

Hence, the left hand side of (6.130) is bounded below by tanh(1/2)2

43
β3

µ
(lnµ/T )3 +O(lnµ/T )2,

and the claim follows.

6.7.6 Proof of Lemma 6.6.1
Proof of Lemma 6.6.1. According to [60, Lemma 6.1], supT∥Gj

T∥ < ∞ for j ∈ {1, 2} and it
suffices to prove supT∥NT∥ < ∞. We have ∥NT∥ ≤ ∥N<

T ∥ + ∥N>
T ∥, where

⟨ψ,N<
T ψ⟩ =

∫
R4
F1V 1/2ψ(q, p)BT (p, q)χp2,q2<2µF1V

1/2ψ(p, q)dpdq (6.176)

and for N>
T replace the characteristic function by 1 − χp2,q2<2µ.

To bound ∥N>
T ∥, we first use the Schwarz inequality to obtain

∥N>
T ∥ ≤ sup

ψ∈L2(R4),∥ψ∥2=1

∫
R4
BT (p, q)(1 − χp2,q2<2µ)|F1V

1/2ψ(p, q)|2dpdq (6.177)

By (6.12), there is a constant C > 0 independent of T such that ∥N>
T ∥ ≤ C∥M∥, where

M := V 1/2 1
1−∆V

1/2 on L2(R2). The Young and Hölder inequalities imply that M is a bounded
operator [50].

To bound ∥N<
T ∥, we use that ∥F1V

1/2ψ(·, q)∥∞ ≤ ∥V ∥1/2
1 ∥ψ(·, q)∥2 by the Schwarz inequality

and (6.164) to obtain

⟨ψ,N<
T ψ⟩ ≤ 2∥V ∥1

∫
R4

∥ψ(·, q)∥2∥ψ(·, p)∥2

|(p+ q)2 − µ| + |(p− q)2 − µ|
χp2,q2<2µdpdq (6.178)

Recalling the definition of the operator Dµ1,µ2 from (6.163), this is further bounded by

2∥V ∥1

∫
R2

∥ψ(·, (·, q2))∥2∥Dµ−(p2+q2)2,µ−(p2−q2)2∥∥ψ(·, (·, p2))∥2χp2
2,q

2
2<2µdpdq (6.179)

It follows from (6.166) that for any α > 0 there is a constant Cα independent of p2, q2 such
that ∥Dµ−(p2+q2)2,µ−(p2−q2)2∥ ≤ Cα(1+ |µ− (|p2|+ |q2|)2|−1/2−α). Let D̃α denote the operator
on L2((−

√
2µ,

√
2µ)) with integral kernel D̃α(q2, p2) = (1 + |µ− (|p2| + |q2|)2|−1/2−α). Then
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we have ∥N<
T ∥ ≤ 2Cα∥V ∥1∥D̃α∥ and it remains to prove that ∥D̃α∥ < ∞ for a suitable

choice of α. Applying the Schur test with constant test function gives

∥D̃α∥ ≤ sup
|q2|<

√
2µ

∫ √
2µ

−
√

2µ
(1 + |µ− (|p2| + |q2|)2|−1/2−α)dp2, (6.180)

which is finite for α < 1/2.

6.7.7 Proof of Lemma 6.6.2
Proof of Lemma 6.6.2. It was shown in [60, Lemma 6.2] that limϵ→0 supT>0∥I≤ϵG

j
T I≤ϵ∥= 0

for j ∈ {1, 2} and it remains to prove limϵ→0 supT>0∥I≤ϵNT I≤ϵ∥= 0. We use the Schwarz
inequality twice to bound

∥I≤ϵNT I≤ϵ∥≤ ∥V ∥1 sup
ψ∈L2(R4),∥ψ∥2=1

∫
R4

∥ψ(·, p)∥2BT (p, q)χ|p|,|q|≤ϵ∥ψ(·, q)∥2dpdq

≤ ∥V ∥1 sup
ψ∈L2(R4),∥ψ∥2=1

∫
R4
BT (p, q)χ|p|,|q|≤ϵ∥ψ(·, q)∥2

2dpdq ≤ ∥V ∥1 sup
|q|≤ϵ

∫
|p|≤ϵ

BT (p, q)dp.

(6.181)

Applying (6.12), for ϵ <
√
µ/2 one can bound the right hand side uniformly in T by

∥V ∥1 sup
|q|≤ϵ

∫
|p|≤ϵ

1
µ− p2 − q2 dp, (6.182)

which vanishes as ϵ → 0. The claim follows.
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