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Abstract

Superconductivity has many important applications ranging from levitating trains over qubits
to MRI scanners. The phenomenon is successfully modeled by Bardeen-Cooper-Schrieffer
(BCS) theory. From a mathematical perspective, BCS theory has been studied extensively for
systems without boundary. However, little is known in the presence of boundaries. With the
help of numerical methods physicists observed that the critical temperature may increase in
the presence of a boundary. The goal of this thesis is to understand the influence of boundaries
on the critical temperature in BCS theory and to give a first rigorous justification of these
observations. On the way, we also study two-body Schrodinger operators on domains with
boundaries and prove additional results for superconductors without boundary.

BCS theory is based on a non-linear functional, where the minimizer indicates whether the
system is superconducting or in the normal, non-superconducting state. By considering the
Hessian of the BCS functional at the normal state, one can analyze whether the normal state
is possibly a minimum of the BCS functional and estimate the critical temperature. The
Hessian turns out to be a linear operator resembling a Schrodinger operator for two interacting
particles, but with more complicated kinetic energy. As a first step, we study the two-body
Schrédinger operator in the presence of boundaries. For Neumann boundary conditions, we
prove that the addition of a boundary can create new eigenvalues, which correspond to the
two particles forming a bound state close to the boundary.

Second, we need to understand superconductivity in the translation invariant setting. While in
three dimensions this has been extensively studied, there is no mathematical literature for the
one and two dimensional cases. In dimensions one and two, we compute the weak coupling
asymptotics of the critical temperature and the energy gap in the translation invariant setting.
We also prove that their ratio is independent of the microscopic details of the model in the
weak coupling limit; this property is referred to as universality.

In the third part, we study the critical temperature of superconductors in the presence of
boundaries. We start by considering the one-dimensional case of a half-line with contact
interaction. Then, we generalize the results to generic interactions and half-spaces in one, two
and three dimensions. Finally, we compare the critical temperature of a quarter space in two
dimensions to the critical temperatures of a half-space and of the full space.
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CHAPTER

Introduction

Superconductivity has many important applications ranging from levitating trains over qubits
to MRI scanners. However, there are still gaps in its theoretical understanding. In particular,

superconducting properties at the edge of a sample are an active field of research and the
focus of this PhD thesis.

For a large class of materials, Bardeen-Cooper-Schrieffer (BCS) theory successfully describes
superconductivity [28]. BCS theory is derived from the microscopic laws governing the electrons
in a metal. The key observation in BCS theory is that, under suitable conditions, there is an
effective attraction between the electrons in the metal. This attraction can arise due to the
interaction of the electrons with the vibrations of the lattice of ions in the metal, known as
electron-phonon interaction. According to BCS theory, a system is superconducting when the
so-called gap function does not vanish. The gap function is related to the energy gap of the
system, which is the amount of energy needed to excite the system out of its ground state.
Typically, a material becomes superconducting below a certain critical temperature. In the
superconducting regime, the resistivity of the material vanishes and there is a jump in the
electronic heat capacity at the critical temperature. Superconductivity is sensitive to currents
and magnetic fields. For instance, application of strong currents or magnetic fields destroys
the superconducting state.

Based on the work of Caroli, de Gennes, and Matricon [12] it was believed for a long time that
in BCS theory the gap function can be approximated by a constant function at the edge of a
sample, and that the boundary does not affect the critical temperature. There are, however,
experimental observations showing that close to the edge of a sample superconductivity persists
at higher temperatures than in the bulk [20, 42, 43, 44, 45, 52|, see the sketch in Figure 1.1.
In [52] the authors measured the resistivity and the heat capacity of a sample and found that
the drop in resistivity occurs at a higher temperature than the transition in heat capacity. The
heat capacity measurement determines the bulk critical temperature, since the bulk has a much
larger volume than the surface. On the other hand, the resistivity measurement gives the critical
temperature of surface superconductivity. This observed boundary superconductivity was often
attributed to inhomogeneities at the surface. It was recently found by Samoilenka and Babaev
[6, 7, 62, 63, 68], however, that already BCS theory predicts boundary superconductivity.
They observed localization of the gap function at the boundary and an increased critical
temperature in the presence of a boundary. The shape dependence of the critical temperature
has also been observed in [64]. Older works [30, 67], which studied the gap function at a
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Figure 1.1: Schematic of boundary superconductivity in a two dimensional sample. For a
sequence of temperatures increasing from left to right, the shaded regions indicate where the
superconducting gap function is large.

boundary, observed only relatively small boundary effects. To our knowledge, there is currently
no intuitive explanation for the enhancement of the critical temperature at boundaries.

The effect of the boundary depends on the regime considered. While for thick samples, the
critical temperature seems to increase as the thickness is decreased, in very thin samples the
critical temperature appears to decrease together with the sample thickness [58, 70].

In this thesis, we prove in a mathematically rigorous way that within the framework of BCS
theory, the critical temperature increases in the presence of a boundary, at least in certain
regimes. This provides a first step towards justifying the results by Samoilenka and Babaev
[62].

There is another manifestation of boundary superconductivity in the context of magnetic
fields [28]. Superconductivity may survive at higher magnetic fields close to the surface than
in the bulk. This phenomenon is modelled using Ginzburg-Landau (GL) theory, which is a
phenomenological theory. In 1959, Gorkov [31] established that close to the critical temperature
GL theory can be derived from BCS theory. The first rigorous proof connecting these two
theories was given by Frank, Hainzl, Seiringer and Solovej [23] for periodic systems with weak
external fields. Their results have been extended in [16, 17] to a larger class of weak external
fields. It would be interesting to rigorously derive such an effective GL theory also in the
presence of a boundary. Understanding the influence of a boundary on the critical temperature
is a crucial first step.

For the mathematical description of the BCS model and to sketch the physical motivation
behind it, we follow [32]. We consider a fermionic system confined to a subset 2 C R? with
one-particle Hilbert-space L?*(2) ® C2. The one particle part of the Hamiltonian is of the
form h = ([—iV + A(z)]* + W(z)) ® I, where A and W denote the external magnetic and
electric potential, respectively, and I is the identity operator on C2. The fermions interact
through a two particle interaction —2V. Let u € R be the chemical potential and T' the
temperature. For a statistical state with density matrix p the pressure functional is given by
F(p) =Tr (H— uN)p —TS(p), where H and N denote the Hamiltonian and the number
operator on Fock space and S(p) = —Tr plnp is the entropy. In statistical equilibrium, the
system is in the Gibbs state which minimizes the pressure functional over all states p > 0
with Tr p = 1. However, it is challenging to compute expectation values of observables in the
Gibbs state. This also makes it difficult to study superconductivity since this phenomenon is
related to a positive expectation for annihilating a pair of particles in one place and creating a
pair in a different spot.

To simplify the problem, one can minimize the pressure functional over a smaller set of



particularly nice states, the quasi-free states. Every quasi-free state is determined by two
operators & and 7 on L?(Q) ® C%. The operator 7 is the one-particle density matrix given
by (¢|71) = Tr a'(1)a(¢)p, where a', a are the creation and annihilation operators on Fock
space. The operator & is the pairing expectation (¢|at)) = Tr a(¢y)a(¢)p. For quasi-free
states Wick's theorem holds, implying that the expectation of a product of annihilation and
creation operators can always be expressed in terms of 4 and &. One further restricts to
SU (2)-invariant states, for which 4 and & can be written as ¥ = y® [ and & = a ® 02, where
o9 is the second Pauli matrix and « and ~y are operators on L*(Q2). This effectively removes
the spin degrees of freedom. Since p is self-adjoint, it turns out that ~ is self-adjoint and « is
symmetric.

For SU(2)-invariant, quasi-free states p it is possible to express the pressure functional F(p)
in terms of v and «. Due to Wick's theorem, the trace over the interaction term in the
Hamiltonian splits into three summands. Two of these summands, the so-called direct and
exchange terms, are omitted for simplicity. At least for short ranged V, this is expected to be
a good approximation. These two terms have little influence apart from an effective change
in chemical potential. For translation invariant systems, this was justified in [9]. With the

notation
_ 7 o
b= (a 1— 7)

the remaining terms in the pressure functional give the BCS energy functional
F() =Tr ([—iV + A(x)]* + W(z) — p)y — TS(T // (z,9)|*V (2 — y)dzdy,

up to a factor of 2 coming from the trace over spin. Here, a(x,y) is the integral kernel of «
and S(T') = —Tr T'InT where the trace is over L?(2) & L*(©2). The BCS energy is obtained
by minimizing F over all admissible pairs v and « giving

F(Tp) = | inf_ F(T).
The interpretation is that superconductivity occurs if and only if for the minimizer o does not
vanish identically. The integral kernel of o can be interpreted as two-particle wave function

and is referred to as Cooper pair wave function. A minimizer of the BCS energy functional
has to satisfy the Euler-Lagrange equation

0= (Z Ah> + T (1_Fr) (1.1)

where A denotes the operator given by (Ay)(y) = — 2V (z — y)a(z, y)Y(z)dx for ¢ €
L?(€2). The integral kernel of A is the gap function. There is one solution of the Euler-Lagrange
equation (1.1) with a = 0, the so-called normal state Ty with v = (1 + exp((h — p)/T))™*
The normal state minimizes F(I') among all states with a = 0 [24]. To determine whether
the system is superconducting or not, one therefore has to check whether F'(T', i) is smaller
or bigger than F(I'y).

For translation invariant systems, it turns out that there is a unique critical temperature that
separates the superconducting from the normal phase [32, 33]. In general, however, when the
temperature is raised it is conceivable that the system could change between superconducting
and normal states several times. One can define two critical temperatures, the temperature
TBCS | above which there is no superconductivity, and 729, below which there is always
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inf o(Hr) inf o(Hr)

sc /7_\ sc ? sc normal
0 0

c T T. T

Figure 1.2: Sketch of inf o(H7) and the Figure 1.3: Sketch of inf o(H7r) and the
(local) critical temperature T, for a generic critical temperature 7, for a translation
system. The system is superconduct- invariant system. For T' < T, the system
ing (sc) whenever info(Hy) < 0. |If is superconducting. For T' > T, the system
inf o(Hr) > 0, the state of the system is in the normal state.

is unknown in general.

superconductivity. For systems without boundary, but where the translation invariance is
broken by external fields, these critical temperatures were computed in [16, 17, 24] for weak
macroscopic external fields.

In contrast to introducing weak external fields, introducing a boundary is not a small pertur-
bation and computing TBCS is currently beyond our reach. Nevertheless, there is a simpler
approach which allows to estimate 72, This simpler approach is based on the observation
that it is possible to obtain information on the state of the system by analyzing the stability of
the normal state. If the normal state is not a (local) minimum, there is a different minimizer
with a: # 0, which corresponds to superconductivity. To check the local stability, one can com-
pute the Hessian of F at the normal state. Positivity of the Hessian indicates that the normal
state is a local minimizer, i.e. small perturbations increase . If the spectrum contains a nega-
tive number, the system is superconducting. Since the normal state is optimal in ~, it suffices
to consider the Hessian for variations in « only. In [21], this linear operator is computed to be
2(Kr — V) actingon L%, (2 x Q) ={¢ € L*(Q x Q)|(z,y) = Y(y,z) for all z,y € O}

symm

with appropriate boundary conditions, where V' acts as (Va)(z,y) = V(z — y)a(z,y) and

B hy +hy — 21
fr= tanh (hg;“) + tanh (h;;u) ' (1.2)

Here, h, and h, denote h acting on the z or y variable, respectively. Since h, and h, commute,
the operator K1 is well-defined through functional calculus. Let

HT:KT—V

If the infimum of the spectrum inf o(Hy) < 0, the normal state is unstable, and therefore the
system is superconducting. For inf o(H7) > 0, the normal state is a local minimum, but it
is unclear whether it is also a global minimum of F. Hence, it remains unclear whether the
system is superconducting in this case. The situation in sketched in Figure 1.2.

For translation invariant systems it was shown that the normal state is a global minimum
if inf o(Hz) > 0 [32, 33]. The argument involves proving that the minimizer of the BCS
functional is translation invariant [32, Section IV.F] and using a monotonicity argument for the
gap equation (1.1) [32, Section IlI.A], which is specific to the translation invariant case. In
particular, it suffices to compute inf o( Hr) to determine whether the system is superconducting

4



1.1. Two-Particle Schrodinger Operator

or not. Moreover, in the translation invariant case K is strictly monotone in T'. Hence, there
is a unique critical temperature 7T, defined by inf o(Hz,) = 0 which separates the normal and
the superconducting phase, as visualized in Figure 1.3. For a general system, we define the
(local) critical temperature as sketched in Figure 1.2 through

T, .= inf{T € (0, 00)|inf o(Hz) > 0}.

This critical temperature satisfies T, < T5CS in general and T, = TBCS — TBCS for
translation invariant systems.

In this setting, we shall ask two types of questions. Given a system with boundary,

» is the corresponding critical temperature T, larger than the critical temperature for the
system without boundary?

= does the critical temperature T, increase upon adding another boundary?

In this thesis we focus on domains of the form €, = (0, 00)* x R?~* where d is the dimension
of the system and £ denotes how many times we cut full space in half. We shall assume either
Dirichlet or Neumann boundary conditions and that there are no external fields. If 7% denotes
the critical temperature on €2, we want to find out

= under which conditions TC0 < Tf for 1 <k <d,

» and whether for d = 2, 3 the critical temperatures form an increasing sequence T <
T! <TA<T?).

In terms of the critical temperatures of the BCS functional, since the system on (2 is translation
invariant, the first point corresponds to TP = TB¢S0 = TBCS0 <« Tk < TBOSk  This means
whenever T? < T*, there is a temperature range, where the system without boundary is in
the normal state, whereas the system with boundary is superconducting. The second point
corresponds to the surface and corner superconductivity sketched in Figure 1.1 within the
framework of local critical temperatures.

1.1 Two-Particle Schrodinger Operator

The critical temperature T, is determined by the spectrum of Hy = Ky — V', where K
is defined in (1.2). Since the operator Kr is rather complicated, we start by considering a
simpler problem. We replace K1 by a Laplacian operator and study the spectrum of the
resulting operator.

More precisely, we study the operator

H = —2T1%Axa — 2;()&,@ + V(2* — 2"),
which is the Schrodinger operator for two interacting particles with masses m, and m,.
The Hamiltonian H specifies the energy of the system. We assume the interaction to be
regular enough for the Hamiltonian to be bounded from below and that it decays at infinity.
Furthermore, we assume that the interaction is sufficiently attractive such that in free space
the particles form a bound state with energy inf o(H) < 0. We sequentially constrain the

5
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particles to the smaller spaces 2. The goal is to understand how adding a boundary affects
the spectrum and the ground state. Of course, this depends on the boundary conditions.
Dirichlet boundaries tend to repel states and to increase the ground state energy. In our
setting all particle domains are infinite and adding a Dirichlet boundary does not affect the
spectrum. Hence, we impose Neumann boundary conditions. The general picture is that a
Neumann boundary “attracts” the particles. We show that introducing Neumann boundaries
creates new bound states with lower energies.

We remove the free center of mass kinetic energy from the Hamiltonian H to work with
operators that have eigenvalues; this gives modified Hamiltonians H;. We show that the
ground state energy strictly decreases when cutting space in half, i.e. when going from k to
k + 1. Moreover, the essential spectrum after dividing space starts at the previous ground
state energy. Finally, there is only a finite number of eigenvalues. This is the content of our
main theorem.

Theorem 1.1.1. For every k € {1, ...,d}, the bottom of the spectrum of the operator Hy, is
an isolated eigenvalue E*. The essential spectrum of Hy, is 0ess(Hy,) = [E¥1, 00). Thus, the
ground state energies form a decreasing sequence B¢ < E41 < ... < E° < 0. Moreover, the
operator Hy. has only a finite number of eigenvalues below the essential spectrum.

In one dimension with equal masses m, = m;, the same properties were already proved in [18].
The proof of Theorem 1.1.1 is provided in Chapter 2 and is the content of the publication

» B. Roos and R. Seiringer. “Two-particle bound states at interfaces and corners”. Journal
of functional analysis 282.12 (2022), p. 109455. por: 10.1016/7.jfa.2022.
109455.

Here, we briefly sketch the main methods used in the proof. Assuming that Hy ; has an
eigenvalue E¥~1 at the bottom of its spectrum, we first compute that o..,(H}) = [E*~!, 00).
Second, we show that the operator Hj has an eigenvalue below the essential spectrum. Since
the operator H has an eigenvalue at the bottom of its spectrum by assumption, we inductively
obtain the decreasing sequence of ground state energies. Third, we show that the number of
eigenvalues is finite.

To compute the essential spectrum, we construct Weyl sequences which show [E*~! 00) C
0ess(Hy). For the opposite inclusion, we bound the essential spectrum of Hj, from below by
introducing additional Neumann boundaries. They split the particle domain into three regions.
One of them is bounded, so it does not contribute to the essential spectrum. In the second
region, the Hamiltonian approximately becomes Hy,_; ® T — i]l ® A, , where z;, denotes the
kth component of the center of mass variable and u = % is the reduced mass. For this
operator the essential spectrum starts at £*~1. In the third region, the interaction potential is
larger than E*~!. Thus, there is no essential spectrum below E*~1.

To show that there is an eigenvalue below the essential spectrum, we use the variational
principle. The operator Hy_; has a non-degenerate ground state 1;_; which can be chosen
positive almost everywhere [29]. We choose the trial function ¢ = v~ 7%, which decays
exponentially away from the new boundary. Using the positivity and uniqueness of v;_1, we
obtain hy[y)] < EF1||4]|? for v > 0 small enough.

To prove the finiteness of the discrete spectrum, we use the standard technique of localization.
Using the min-max principle one can bound the number of eigenvalues of H) below E*
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through the number of eigenvalues below E* of the localized operators. The localization is
conducted in such a way that the localized operators fall into three categories. First, the
operator can be compact or second, the potential is larger than E*. In these cases the number
of eigenvalues below E¥ is certainly finite or zero. In the third category, the operator is of the
form H, 1 ®1 — i]l ® A, — G, where G is a well behaved error term. One estimates this
operator by projecting onto 1,1 ® L*(R) and its orthogonal complement. This reduces the
problem to a one dimensional operator. Then the Agmon [3] and Bargman estimate [8] imply
that the number of eigenvalues is finite.

1.2 Universality in Low Dimensions

Before being able to investigate boundary superconductivity, one needs to compute the critical
temperature for translation invariant systems. We are particularly interested in the weak
coupling limit, where we replace V by AV and send A\ — 0, as this is the regime where
boundary superconductivity was observed in [62]. In three dimensions, the asymptotics are
well-known and summarized in [32]. We compute the asymptotics for one and two dimensional
systems in

= J. Henheik, A. B. Lauritsen, and B. Roos. “Universality in low-dimensional BCS theory”.
Preprint of an article accepted for publication in Reviews in Mathematical Physics.
arXiv:2301.05621 [cond-mat, physics:math-ph]. 2023. URL: http://arxiv.org/
abs/2301.05621,

which is the content of Chapter 3. Apart from the asymptotics of the critical temperature
T2(\), we also compute the asymptotics of the energy gap =Z(\) at zero temperature. This
allows us to prove that the ratio converges to a number independent of V/,

. E(N) o
i () e (13)

in dimensions one and two, where ~y is the Euler-Mascheroni constant. The property that the
ratio is independent of the microscopic details of the interaction is called universality. The
same universal behavior is well known to occur in three dimensions [5, 46], with rigorous proofs
in different limits (A — 0, © — 0, © — o0) in [22, 35, 36, 38, 39, 49].

In the translation invariant setting, the gap function A only depends on the relative coordinate.
In [33, Appendix A] it is explained that the energy gap is given by

E=inf \/(p? — )2+ |A(p) %,
peERA

where A(p) is the Fourier transform of the gap function with p the momentum in the
relative coordinate. The asymptotics of 70 and A are determined by self-adjoint operators
Vi, W, o LA(S%1) — L*(S%1) to leading and next to leading order, respectively. The integral
kernel of V,, is

Vup0) = Gy (ViD= ).
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This operator can be interpreted as restriction of V' to the Fermi sphere. The operator W, is
defined via the quadratic form

1
u, Wyu) = dﬂ_l{/ ICE—
e, W) = p pl<v2 |p? — 1]

(I (v/ap) 2 = 10(/p/ p))?) dp
+ (/)P

pl>v2 |p? — 1

where ¥(p) = W Jsar V(p — \/iiw)u(w)dw and u € L2(S*7). Let b,()\) be given by
b (\) = supa(A\V, + XN2W,).

We consider d € {1,2,3}, u > 0 and V regular enough with e, = supc(V,) > 0 (the precise
assumptions can be found in Theorems 3.2.5 and 3.2.7 for d = 1,2 and [32, Theorem 3.3] for
d = 3). The critical temperature T° and the energy gap Z satisfy

iy (0 (5) ~ i) = (), 44

iy (i (=fyy) ~ gy ) = e

where ¢4 is a dimension-dependent constant. In particular,

2 _
TO(A) = 264 (1 + o(1)) et/ #7100,
T
=(A) = 2¢a(1 + o(1)) et/ 0,

and (1.3) holds.

The proof in one and two dimensions provided in Chapter 3 is similar to the three dimensional
case in [35]. Here, we briefly sketch the main ingredients. For the asymptotics of T one uses
the Birman Schwinger principle. The Birman-Schwinger operator is defined as

Ap = V2RI VY2 (1.5)

where V'/2 denotes multiplication by sgn(V (r))|V(r)|*/2. The condition inf o(K70 —AV) = 0
is equivalent to 1 = sup o(AAzo). It turns out that V2K ' [V/|'/2 has a logarithmic divergence
at the Fermi surface as 7' — 0 and is bounded otherwise. The divergence is captured by
m,(T)O,, where m,,(T) is a function with asymptotics m,,(T') = u%?>1In(u/T) + O(1) for
T — 0 and O, is the operator O, = VY/2FIF|V|Y/2, where F : L}(R?) — L?(S471) is the
Fourier transform restricted to the Fermi sphere Fi)(w) = @(ﬁw) For suitable radial V, for

instance when V' > 0, this asymptotic operator O, has a non-degenerate eigenvalue at the
top of its spectrum. It turns out that O, is isospectral to V,, and hence e, = supo(O,). The
corresponding eigenfunction of O, is given by V1/2j,, where

. 1 i/ T
]d(T’) = W /Sd?1 (& z dw. (16)

One obtains that A\u%?~te, In o6y
arrive at the asymptotics of In ﬁ

A)
order correction.

— 1 and in particular T2(\) — 0 as A — 0. In order to
stated in (1.4), one then needs to compute the second
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For the energy gap, the first step is to prove that under suitable conditions on V, involving
that V is radial, the gap function A is unique, which makes = well-defined. Under these
conditions, A is also radial and positive. Then one uses the Euler Lagrange equation of
the BCS functional to argue that the operator \/(p2 — )%+ |A(p)]? — AV has the Cooper
pair wave function « as ground state with energy zero. Similarly as for T, one applies the
Birman Schwinger principle to compute an asymptotic expression for A. It turns out that
A(p) vanishes for all p as A — 0. Hence, \/(p2 — )%+ |A(p)|? is minimal close to the Fermi
sphere and Z = A(/iz)(1 4 o(1)), where we use radiality to write A(/j) instead of A(,/up)
for some p € S%'. Now A(,/j) takes the role of a vanishing parameter similar to T, before,

and one computes the asymptotics of In ﬁ\/ﬁ) to second order in a similar way as for In TOL(/\) .

1.3 Boundary Superconductivity

We are now ready to study superconductors with boundaries. We consider superconductors
of the shape 2 = (0,00)* x R4"*, with either Dirichlet or Neumann boundary conditions
and no external fields. In this setting, we want to understand the relationship between the
corresponding critical temperatures T*.

In [62] the authors consider the one dimensional case of a half-line versus full line with
interaction Ad, where \ is the coupling parameter and ¢ the Dirac delta. They assume Dirichlet
boundary conditions and compute the minimizer of the Hessian H7 on half-space numerically.
They report that in the center of mass coordinate it decays exponentially away from the
boundary with some oscillation near the boundary. In momentum space, this corresponds to a
peak at zero and a dip at \/z. Their results indicate that 7)) (\) > T(\) for some values of
A, and that the relative difference Tl(%%f\po(’\) vanishes as A — 0 and for large enough A. In
Chapter 4, which contains the following publication

» C. Hainzl, B. Roos, and R. Seiringer. “Boundary superconductivity in the BCS Model".
Journal of spectral theory 12.4 (2022), pp. 1507-1540. por: 10.4171/JST/439

we study this system rigorously and confirm some of the predictions from [62]. Our main
result for Dirichlet boundary conditions is

Theorem 1.3.1. Let ;1 > 0.

1. Thereis a Ay > 0 such that T}(\) > T2()\) for 0 < X\ < Ay.

2. In the weak coupling limit
(A —T7(\)

}\12(1) TN = 0. (1.7)
3. In the strong coupling limit
TN - TP(N)
Wy

This proves that a boundary can increase the critical temperature of a superconductor.
Furthermore, it confirms the behavior of the relative temperature difference in the strong and
weak coupling limit. However, it is unclear whether the difference vanishes at large enough
finite A\ already. We extend this result to Neumann boundary conditions, where we obtain that
boundary superconductivity exists at all coupling strengths.

9


https://doi.org/10.4171/JST/439

1.

INTRODUCTION

Theorem 1.3.2. Let pn > 0.

1. Then TX(\) > T2(\) for all A > 0.

2. In the weak coupling limit

ey (18)
3. In the strong coupling limit
- TE(N) -T2V
0< /\h_}rgo 0N < 0.

To look at higher dimensional systems, the numerical works [6, 7, 62, 63, 68] focus on tight
binding models on lattices. Our analytic analytic approach allows us to study continuum
models in higher dimensions and with generic interactions. In Chapter 5, we consider the case
of a half-space in dimensions d € {1,2,3}. This chapter contains the preprint

= B. Roos and R. Seiringer. “BCS Critical Temperature on Half-Spaces”. arXiv:2306.05824
[cond-mat, physics:math-ph]. 2023. URL: http://arxiv.org/abs/2306.
05824.

Again, we prove that an increase in critical temperature occurs in the weak coupling limit,
meaning we take the interaction AV and look at small A\. As we saw in Section 1.2, the
function j; defined in (1.6) determines the asymptotics of the minimizer of Hy on R? in the
Birman-Schwinger picture. For d = 3, we define

_ . . . T
m??/N(T;M) = /R (]3(2177’277"3)2 — |js(21, 72, 73) ¥]3(T)’2Xlzll<\m) dz F WJ?»(?")Z, (1.9)

where the indices D and N as well as the upper/lower signs correspond to Dirichlet/Neumann
boundary conditions, respectively. For radial and regular enough V with V(0) > 0 and such
that e, is a non-degenerate eigenvalue of V,, we obtain the following result (the precise
assumptions are stated in 5.1.1).

Theorem 1.3.3. Let d € {1,2,3}, u > 0. Assume either Dirichlet or Neumann boundary
conditions. For d = 3 additionally assume that

/3 V(ryms ™ (r; p)dr > 0. (1.10)
R
Then, there is a \; > 0, such that for all 0 < A < Ay, TH(A\) > T°(N).

Note that for general interactions in one dimension with Neumann boundary conditions, we
do not necessarily observe T (\) > TY(\) for all A as in Theorem 1.3.2. For d = 3 we further
prove that (1.10) is satisfied for small enough chemical potential. Numerical evaluation of m¥
suggests that m% > 0 (see Section 5.5, in particular Figure 5.1), whereas m?’ changes sign
(Figure 5.2). For Dirichlet boundary conditions (1.10) thus seems to hold under the additional
assumption that V' > 0. Hence we expect boundary superconductivity to occur for all p > 0
also in three dimensions. One may wonder why in lower dimensions no condition like (1.10) is

10
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needed. For d € {1, 2}, if one defines %fl)/N(r; 1) by replacing j3 by jq in (1.9), the first term
diverges and mdD/N(r; (1) = +00. The analogue of (1.10) is then always satisfied if V(0) > 0.

The second main result in Chapter 5 is that the relative shift in critical temperature vanishes as
A — 0 for both Dirichlet and Neumann boundary conditions. This generalizes the corresponding
results (1.7) and (1.8) to dimensions d € {1,2,3} and generic interactions.

In Chapter 6 we focus on two dimensions and compare critical temperatures 7! and 72 of the
half-space {2; and the quarter space €25, respectively. This chapter contains the preprint

» B. Roos and R. Seiringer. “Enhanced BCS Superconductivity at a Corner”. arXiv:2308.07115
[cond-mat, physics:math-ph]. 2023. URL: http://arxiv.org/abs/2308.
07115

For 1+ > 0 and interactions V' satisfying essentially the same assumptions as for Theorem 1.3.3
(see 6.1.2 for the precise statement), we prove that there is a A; > 0, such that for all
0 < X< A, TN > THX) > TO(\) for Dirichlet and Neumann boundary conditions.
Furthermore, we prove that the relative difference between T2()\) and T°()) vanishes in the
weak coupling limit.

The proofs of T}(A) > T?()\) and T?(\) > T}(\) follow the same strategy, which we will
illustrate here in the example of dimension d = 1. Comparing the Birman-Schwinger operators
for €2y and €2y, it turns out that the boundary induces a compact perturbation. One can
conclude that the Hessian on the half-line always contains the spectrum of the Hessian on the
full line, and therefore T1(\) > T2(\). To show the strict inequality T}(\) > T°(\), the idea
is to use the variational principle. We build a trial state which contains the ground state ®)
of Hroey) on 2. Due to the translation invariance of Hro(y in the center of mass direction
z=ux+y, Oy is a function of r = x — y. We want the trial state to look like (ID,\(r)e*EM, but
we symmetrize it to meet the boundary conditions, which leads to the choice

e(r, z) = (13,\(7’)6_42' = (I)/\(Z)e—e\ﬂ

where the signs — and + correspond to Dirichlet and Neumann boundary conditions, respectively.
From the asymptotics of the Birman-Schwinger operator (1.5) described in Section 1.2, it
follows that V'/2®, converges to V/2j;. Hence, we expect ®, to localize on the Fermi
sphere. In particular, the two summands in 9, localize at momentum zero and momentum
VIt in z-direction. This agrees with the qualitative behavior of the minimizer for the half-line
with delta interaction numerically obtained in [62]. The strategy is to show that for Hr on
the half-line

lim lim<1/15, HTC()()\)¢€> < 0. (111)

A—0e—0

By continuity, and since we already know that inf o(Hz) < 0 for T' < T?(\) we then have
that inf o(Hy) < 0 for all 0 < T < T? + 6 for a small § > 0, proving that T} (\) > TY(\)
for small \. Taking the limit ¢ — 0 in (1.11) gives some expression involving V' and ®,.
To compute the asymptotics of this expression for A — 0, we use the asymptotics in the
Birman-Schwinger picture to effectively replace ®, by j;. It turns out that the leading order
term is negative, giving (1.11). In three dimensions, the term that defines the leading order in
one and two dimensions has the same order as the other terms. This is where the condition
(1.10) originates.

To prove that the relative difference in critical temperature vanishes in the weak coupling limit,
one uses the fact that the boundary causes a bounded perturbation in the Birman-Schwinger

11
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picture, while the unperturbed part diverges logarithmically as 7" — 0. This also allows to
compute the asymptotics of the Birman-Schwinger maximizer V/2®, on half-space, which is
used in the trial state to prove that T2()\) > T1(\).

To sum up, the results in this thesis confirm that a boundary can increase the BCS critical
temperature. There are many topics left for future research, including

» the extension of our results to domains of other shapes, different boundary conditions
and external fields,

= the investigation of the relationship of 7. defined through the linear criterion, and the
critical temperatures 725 TBCS of the full BCS functional,

» the study of the gap function A, and the proof of its localization at the boundary,
justifying Figure 1.1.

The last two points involve studying the non-linear BCS functional, which we expect to

be much more difficult than working with the linear criterion that defines the local critical
temperature 7..
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CHAPTER

Two-particle Bound States at Interfaces
and Corners

Abstract We study two interacting quantum particles forming a bound state in d-dimensional
free space, and constrain the particles in k directions to (0,00)* x R¢*, with Neumann
boundary conditions. First, we prove that the ground state energy strictly decreases upon
going from k to k + 1. This shows that the particles stick to the corner where all boundary
planes intersect. Second, we show that for all £ the resulting Hamiltonian, after removing
the free part of the kinetic energy, has only finitely many eigenvalues below the essential
spectrum. This paper generalizes the work of Egger, Kerner and Pankrashkin (J. Spectr.
Theory 10(4):1413-1444, 2020) to dimensions d > 1.

2.1 Introduction and Main Results

We consider two interacting quantum particles in d-dimensional space that form a bound
state in free space. We constrain the particles in k directions to (0,00)* x R?~* for some
k € {1,...,d} and impose Neumann boundary conditions. The goal of this paper is to show
that at low energy the particles will stick to the boundary of the domain. In fact, the particles
want to be close to as many boundary planes as possible. In particular, they stick to the
corner where all boundary planes intersect. Neumann boundary conditions can be interpreted
as representing perfect mirrors. It is remarkable that while such boundary conditions are not
sufficiently attractive to capture single particles, mutually bound pairs are always attracted to
the boundary.

In order to justify the picture of particles sticking to the boundary, we show that introducing
a boundary plane lowers the ground state energy. Then it is energetically favorable for the
particles to localize at a finite distance to the new boundary plane. Moving the particles away
from that boundary plane would reduce the boundary effects and raise the energy to reach the
previous ground state energy, which is strictly higher. Since moving just one of the particles to
infinity would increase the potential energy between them, both particles stick to the boundary.

This problem was already studied (for particles with equal masses) in the case d = k = 1.
Kerner and Miihlenbruch [41] considered a hard-wall interaction between the particles. (For a
higher-dimensional version of this problem, which is different from the one we consider here,
however, see [4].) More general interactions were studied by Egger, Kerner and Pankrashkin in
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[18]. Additionally, they showed that the Hamiltonian has only finitely many eigenvalues below
the essential spectrum. We show here that this also holds true for particles with different
masses and all dimensions d and numbers of boundary planes k. The finiteness of the number
of bound states is a consequence of the fact that the effective attractive interaction with the
boundary decays exponentially with distance, a decay that is inherited from the corresponding
one of the ground state wave function in free space.

Let 2% and ¥ be the coordinates of the particles. The Hamiltonian of the system is

He e tnn o LA, 4 Ve — b (2.1)
b

2my, 2m

acting in L? ((0, o0)F x Rd*k) ® L? ((O, o0)* x Rd*k), where V : R? — R is the interaction
potential. We change to relative and center-of-mass coordinates y = 2% — 2% and z =
%’”bmb, where M = m, + my is the total mass. The conditions zi >0 and x? > 0 for
1 < j < k result in the coordinates (z1, ..., 2k, Y1, ..., Yx) lying in the domain

. M M
Qi = {(zl, s 2l YLy e Yk) ERP IV € {1, k} 1z >0and — p— <y; < mz]},
b a
(2.2)
while (2x41,..-,24) and (Yrs1,..-,yq) lie in R* In these coordinates, the Hamiltonian
becomes H = —iAy — ﬁAZ + V(y), where 1 = ™47 is the reduced mass. Separating the
variables (zjy1, ..., 2q) from the rest, we write the Hamiltonian as H = H;, ® [ + [ ® ¢, where

q = —52 on H*(R?*) and

Ho——ta,— L2 vy (2.3)
T A e Y |

acting in L2(Qr x R?7%). To be precise, we define the Hamiltonian H), via the quadratic form

1 k

1 0
mpd= [ (MW o> |t

aZj

j=1

2
+ V(y)hbﬁ) dzy..dzpdy;...dyy  (2.4)

with domain D[h;] = HY(Q) x R97%). Due to the free part of the kinetic energy ¢, the
Hamiltonian H has no discrete spectrum if k& < d. We remove this free part and work with
H;, instead of H.

We impose the following conditions on the interaction potential V.

Assumption 2.1.1. We assume that

1. V=v+w for some v € L"(RY) and w € L>*(R?), where

r=1 ifd=1, (2.5)
r>1 if d=2, (2.6)
r > ;l it d > 3, (2.7)

2. the operator Hy = —ﬁAy—I—V(y) in L2(R?) has a ground state vy with energy E° < 0,
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3. lim inf|y‘_>oo V(y) Z 0,
4. V is invariant under permutation of the d coordinates (1, ..., ya) € R%.

Remark 2.1.2. Condition 1 implies that in the quadratic form h; the interaction term is
infinitesimally form bounded with respect to the kinetic energy, see Proposition 2.A.3 in
the Appendix. The KLMN theorem (see e.g. Theorem 6.24 in [69]) then guarantees that
there is a unique self-adjoint operator Hj, corresponding to hy, which is bounded from below.
Assumption 2 means that the particles form a bound state in free space. Condition 3 is a rather
strong form of decay of the negative part at infinity. Presumably some weaker assumptions
would be sufficient, but in our proofs this version is convenient. Also the assumptions on the
positive part of V' can probably be relaxed. Assumption 4 is imposed for convenience as it
implies that it is irrelevant which coordinates are restricted, and without loss of generality we
pick the first k. However, our methods easily extend to the general case.

Our first result is that the ground state energy strictly decreases upon adding a Neumann
boundary that cuts space in half, i.e. when going from k& — k + 1. Moreover, the essential
spectrum after dividing space starts at the previous ground state energy.

Theorem 2.1.3. Let V satisfy Assumptions 2.1.1. Then for every k € {1, ...,d}, the bottom
of the spectrum of the operator Hy, is an isolated eigenvalue E* = inf o(H},). Moreover, the
essential spectrum of Hy, is 0..s(Hy) = [E¥~1,00). In particular, the ground state energies
form a decreasing sequence E? < B! < ... < EY < 0.

Our second result is that the operators Hj have only finitely many bound states.

Theorem 2.1.4. Let 1 < k < d. Then Hy, has a finite number of eigenvalues below the
essential spectrum.

In the one-dimensional case d = k£ = 1 with equal masses m, = m;, Theorems 2.1.3 and
2.1.4 were proved in [18]. While we follow their main ideas, several new ingredients are needed
to extend the results to general d and k. In particular, the localization procedure in the proofs
is more complicated and requires several additional steps.

Remark 2.1.5. At various places it will be convenient to switch back to the particle coordinates
in the first k& components, while keeping the relative coordinate in the last d — k components.
We shall from now on use the notation 2% = (29, ...,2%), z° = (2}, ...,2%) for the first k
components of the particle coordinates and § = (yx+1, ..., ya) for the remaining components
of the relative coordinate. In this notation, y = (2% — 2%, ) and

hily] = /

J10,00

1 1 1
Vaath|? + — |V 2 Va2
I O 2 A

+ V(2 — 2, g)w\?) dz®dz’dy (2.8)

with domain D[hy] = H*((0,00)?* x RZF).

Remark 2.1.6. By Corollary 5.1 in [19], if Hj, has a ground state, it is non-degenerate and
we can choose the corresponding wave function to be positive almost everywhere.
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The remainder of this paper is structured as follows. Section 2.2 contains the proof of
Theorem 2.1.3. In Section 2.3, we prove Theorem 2.1.4. The Appendix contains an explicit
example for d = 1 in 2.A.1, the proof of Lemma 2.2.3 in 2.A.2, as well as technical details of
the proofs in 2.A.3. The exponential decay of Schrodinger eigenfunctions needed in the proof
is discussed in Appendix 2.B by Rupert L. Frank.

2.2 Proof of Theorem 2.1.3

We shall prove the following two statements.

Proposition 2.2.1. Let k € {1,...,d}. If H,_, has a ground state with energy E*~! < ... <
E° the essential spectrum of Hy, is [E*~1 0o).

Proposition 2.2.2. Let k € {1,...,d}. If H,_, has a ground state 1;,_, with energy E*~*
the spectrum of H,, satisfies

J2M . -1
E* = info(H,) < B*1 — (1 + 2 max {m, mb}) < EBF Y, (2.9)

8#2 my Mg

where J = [, ga-r+1 0(Yk)|[Ye—1[*dzdy > 0 with & the Dirac delta-function.

The assumption E¥~1 < ... < E°in the first Proposition holds as a consequence of the second
Proposition. These two propositions combined yield Theorem 2.1.3.

Proof of Theorem 2.1.3. We proceed by induction. The claim is that Hj has a ground state,
and that the ground state energies form a strictly decreasing sequence £ < ... < E°. Fork = 0
the former is true by Assumption 2.1.12. For the induction step we apply Propositions 2.2.1
and 2.2.2. Assuming that the claim is true for £ — 1, Proposition 2.2.2 implies that H}
has spectrum below E*~!. By Proposition 2.2.1 this part of the spectrum must consist of
eigenvalues. Since Hj, is bounded from below by Proposition 2.A.3, it must have a ground
state. The ground state energy E¥ is strictly smaller than E*~! by Proposition 2.2.2. O]

2.2.1 Proof of Proposition 2.2.1

In order to compute the essential spectrum of Hj, we follow the proof of Proposition 2.1 in
[18]. For the inclusion [E*™!, 00) C 0es(Hy) we use Weyl's criterion (see Section 6.4 in [69]).
For the opposite inclusion, we bound the essential spectrum of Hj from below by introducing
additional Neumann boundaries. They split the particle domain into several regions. One
of them is bounded, so it does not contribute to the essential spectrum. In another, the
interaction potential is larger than E*=1, and hence there is no essential spectrum below
E*=1_In the remaining regions, the Hamiltonian can be bounded from below by approximately
H;,_1 ® 1. For this operator the essential spectrum starts at F*~1.

Proof of Proposition 2.2.1. For the inclusion [E*~! 00) C 0es(H}) we construct a Weyl
sequence. Remark 2.1.6 allows us to choose the ground state wave function v, of Hy_;
to be normalized and positive almost everywhere. Let [ € [0,00) and let 7 : R — R be a
smooth function satisfying 0 < 7 < 1 with 7(z) = 0 for x < 1 and 7(z) = 1 for z > 2.
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Let us write § = M/ max{m,, m;}. For integers n > 5, choose v, (21, ..., 2k, Y1, -, Ya) =
Fn(21, oy 2o, Y1y s Ya) gn(21) for (2,y) € Qp x R with
(215 ooy 21, Y15 s Ya) = Uk1(21, ooy Zh—15 Y1y -, Ya)T (0 — |yx] /9) (2.10)
and
Gn(zx) = cos(lzp)T(zx — n)T(2n — 2). (2.11)
Using the properties of 7, we observe that g,,(z) = cos(lzy) for zx € [n+2,2n—2]. Moreover,

for |yx| < 8(n — 2) we have f,, = 9,_1. Note that for (z,7) € Q) x R4* with z, > n + 2,
the variable y; can take all values satisfying |yx| < 0(n + 2). Therefore,

2n—2
2 2 2
||¢”HL2(Q;€XR‘1*]“) = <~/Qk—1X[5(—n+2),6(n—2)]XRdk wkl) </n+2 €08 (le)de) ' (212)

Since 1,1 is normalized, the first integral converges to 1 as n — oo. The second integral
is greater than some constant times n. Thus, ||s0n||iz(Qkad,k) > ('in for some constant
01 > 0.

Using the eigenvalue equation for ¢;_1, we have
l2
H,—E"'— — o, = 9, + 0,9, 2.1
(1 1) #0 = ¥t g (2.13)
with

U, (2x) = Al/[lsin(lzk) [7'(zx — n)T(2n — 21) — 7(2, — )7’ (2n — 2]

—2]1\4 cos(lzy) [7"(z), — n)T(2n — 2z1,) — 27" (2 — n)T'(2n — 1) + 7(21, — n)7"(2n — 21.)]
(2.14)

and

1
s et (0= el 0.
(2.15)
By choice of the function 7, we have supp ¥,, C [n+ 1,n + 2] U [2n — 2,2n — 1] and
supp ®,, C Qr_1 X [0(—n+1),5(—n+2)]U[§(n—2),6(n—1)] x R4 *. Since both 7/ and 7" are
bounded, there is a constant C, > 0 independent of n such that |®,,| < Cy (|0, Yk—1| + [¢r-1])
and ||V, ]|oc < Cy. We the aid of the Schwarz inequality, we therefore have

k—1 I?
H,— B~ o,
<2 2/ U2 42 @2/2n1g2
= JQu_i xRak+1 T St nrouen—2,2n-1 Qp_y xRa-k+1 " Juqg T

§4C'22<1+(n—2)/Q

1 /
(I)n(zlv ey Rk—15 Y1y -ey yd) = @aykwkflsgrmyk)T (n - ‘yk‘/(s) -

2

L2(QpxRI—F)

CROBST'S)
(2.16)

where we used ||¢x_1|z2 = 1 in the last step. Since 1,1 € H'(Qy_1 x R¥**+1) we obtain

k—1X[6(—n+1),6(—n+2)]U[§(n—2),6(n—1)]xRd—k

12

|(Hy, — EF1 — W)WnH%Z)(Qkad—k)

lim 5

nree HSOnHLZ’(Qkad—k)

<24 1y (Ot +v) =0 @17
= O n=0 JQu X [5(—n+1),5(—n+2)]U[6(n—2),8(n—1)| xRd—k N\ I TET h=l B
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b

4?/1

Figure 2.1: In the case d = k = 1, the areas labeled 1, 2, and 3 are precisely 2,2y, (23,
respectively. In higher dimensions, region 1 (blue) is the domain of the /th component of z
and y for (z,y) € €, I < k. In particular, the domain of y; is independent of 2. The (red)
triangular area 2 corresponds to the domain of z; and y; for (z,y) € 4 and j <1 < k+ 1.

By Weyl's criterion, we obtain £~ 4 % € o(Hy,) for all I > 0. Since the interval [E*~1 00)
has no isolated points, it belongs to the essential spectrum of Hy.

For the opposite inclusion oes(Hy) C [EF~1,00), we partition the domain Q; x R%~* into
k 4 2 subsets. By Assumption 2.1.13 there is a number L such that for all y € R? with
ly| > Lo the potential satisfies V(y) > E°. For L > Ly and 1 <1 <k let

L L
Q= {(z,y) €QpxR&F| 2 > 5 | < LV1<j<l:z< 5}, (2.18)
L
Qpyq = {(z,y) EQXxRITFIVI<j<k:z< g,‘v’j >k yil < L}, (2.19)
k+1
Qk+2 = Q[)\ U Ql. (220)
I=1

These sets are sketched in Figure 2.1. The set ;11 is bounded. For (z,y) € Q42, we always
have |y| > L. Moreover, in 2, the range of y; is independent of z;.

For 1 <1 < k + 2 we define the quadratic forms a; : H'(Q;) — R as

altli= |, (53170 + 5 9ol + VOl ) asa (221

For 1 <11 < k + 1, the potential term in q; is infinitesimally bounded with respect to the
kinetic energy term, as will be shown in Lemma 2.A.4. For a; o the potential is bounded from
below. Thus, by the KLMN theorem there is a corresponding self-adjoint operator A; for all
1 <1<k+2. Let A= @7 A Thereis anisometry ¢ : H'(Q) — @, H' (), ¢ — {0lg, }-

Let {¢,} be a normalized Weyl sequence such that lim,, o ||(Hx — inf gess(Hy))n|| = 0.
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2.2. Proof of Theorem 2.1.3

Then {¢(¢,)} is an orthonormal sequence with lim,, . (¢(,)|At(@n)) = inf oess(Hy). By
the min-max principle,

Inf Oess(Hg) > inf 0ess (A) = mlin inf oess (A;). (2.22)

We shall now analyze inf ge(A;) for all 1 <1 < k+ 2. Since €41 is a bounded Lipschitz
domain, H'(Qy1) is compactly embedded in L?(€2, ) by the Rellich-Kondrachov theorem
[2]. Therefore, Ajy1 has compact resolvent and the spectrum of Ay, is discrete. In Q. 0,
always at least one of the y; is larger than L. Therefore, inf o(Agy2) > infjysr V(y) > E°.

Consider now A; with [ < k. In order to separate the variable z; from the rest, let ¢ be
the quadratic form ¢[¢] = ﬁfﬁé ¢/ (2)|? dz with domain H'((L/d,00)). The remaining
variables lie in
L
o
. M M
Vi<j#l<k:——z <y, < —2z,ul < L} (2.23)
my me

Qﬁ_ll = {(zl,...,,?l,...jzk,yl, aoyg) ERTFLIVI<j<1:0< 2j < =,Vj>1:2z; >0,

where the hat means that the z variable is omitted. Note that for L — co the set O},
becomes Qj,_; x R¥**! with [ and k components swapped. Define the quadratic form

k 2

1
h 0] = /957_,1 BY; >

j=1
J#l

O

aZj

1 —
+5pwwﬁ+wwm2d%@%@ww (2.24)

with domain D[h',] = H'(QF',). In Lemma 2.A.4 we show that there is a self-adjoint
operator H,f;ll corresponding to the quadratic form h,ﬁ’fl. By Assumption 2.1.14, the quadratic

form hﬁ’_ll resembles hy_; with [ and k components swapped, up to the constraints imposed
by the finite number L.

We can decompose
a=h'ol+leg (2.25)

It is well-known that the self-adjoint operator corresponding to ¢ has purely essential spectrum
[0,00). Therefore, we obtain inf oes(A;) = inf o(H,",). Using localization arguments, one
can easily prove the following.

Lemma 2.2.3. Let 1 <[ < k < d and assume that E*=1 < ... < E°. The self-adjoint
operator H', defined through the quadratic form (2.24) satisfies lim inf_,. inf o (H',) >
EFL

The proof of Lemma 2.2.3 is rather straightforward and follows similar arguments as in
the one-dimensional case in Proposition A.5 in [18]. For completeness, we carry it out in
Appendix 2.A.2.

Collecting all estimates and applying (2.22), we see that
inf gess(Hy,) > min{E°, inf o (H"',)} (2.26)

for all L > Ly. With Lemma 2.2.3 and since £° > E*! it follows that oes(Hy) C
[EF1 00). O
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2. TWwWO-PARTICLE BOUND STATES AT INTERFACES AND CORNERS

2.2.2 Proof of Proposition 2.2.2

The goal is to find a trial function 1 such that (v, Hytp) < E*71||[+4)||3. Then inf o(Hy) < E**
by the min-max principle.

We denote the ground state of Hy_; by 1;_1 and choose it normalized and positive a.e. (see
Remark 2.1.6). Since we expect the ground state of Hj, to stick to the boundary, we pick the
trial function

(215 ooy 2k Y1y oy Yd) = Vko1(21, ooy Zh1, Y1y ooy Ya) € 7F (2.27)

for v > 0. We start with a preliminary computation.

Lemma 2.2.4. Let f(yi) = X(—co0)(yr)e 2 1\ o) (i) e~ 2malvrl/M - where  de-
notes the characteristic function. We have

A= L(fohmr, i) = 5 (2.28)

Proof. Carrying out the integration over z;, we have

5= - 2 —2vz
]2 = /Qk_ldekH dZ1...de—1dy/0 dz X{_%2k<yk<%zk}¢k_l(zl, s 2l YLy ey Y )€V
1
= % /Q Rkt le...defldy "(/}]%71(21, vy Rk—1,Y1y -0y yd)f(yk:)
k—1
1 1
= —(fr—1,11) = —A. (2.29)
O

Proof of Proposition 2.2.2. e have

1 1
hk[l/)] = /QkXde le...dedyl...dyd (lezwk_ﬂQ + ﬂ|vywk_1‘2
2
Y —2yz
—l—ml/fiz—l + V(?Jﬁ/’z—l) e, (2.30)

We rewrite this as

Il
2M

o 1 2 1 2 2 —2vz
/0 deX{—mL[bzk<yk<mMazk} <W|Vz1/)k—1’ + @|Vy¢k—1| +V(?J)¢k1> e " (2-31)

hi )] + / dz...dzp1dyy...dyg
Qp—1xRI—k+1

Integrating over z; as in the proof of Lemma 2.2.4, we obtain

Pl 1

2M +27

1
hi[1)] /Qk_lde—kH dz...dzg—1dyr...dyq <2M|Vz¢k—1|2

ATyl + v<y>w2_1) o). (232)

20



2.2. Proof of Theorem 2.1.3

We pull the function f into the gradients and write

VI3 1 1
hk [770] 2M + ﬂ /Qk 1 xRd—k+1 (sz<f¢k—1>vzwk—l + ﬂvy(f@bk—l)vywk—l

+M'JYV[ <_mbX(foo,O)€_2’Yle‘yk‘ + max(om)e—%%lykI) Y10y, Y1 + V(y)f¢,%_1> . (2.33)

Let us write hy[-, -] for the sesquilinear form associated to the quadratic form hy. The previous
equation reads

(0
hi[Y] = 2”M||2 7 1 [fr—1, Yra] + (2.34)
where
= 71 ( mbx( )6 ’Y M |yk‘ + m X( )6_27%@’16') wk—la ¢k—1
2MM Qk—l xRd—k+1 vk
(2.35)
Since ty,_; is the minimizer of the functional =1l for all functions ¢ € HY(Qp_1 x RITHFL)

lell3
it holds that hy_1[g, ¥r_1] = E* (g, ¥r_1). With g = f1),_; and Lemma 2.2.4, we obtain

lv] = (g + B ) Il + . (230

We now simplify the integral in B. By the Sobolev embedding theorem (Theorem 4.12 in
[2]), the restriction of an H'-function to a hyperplane is an L?-function. Therefore, one can

. 2
restrict the function ¢;_; to y, = 0 and obtain a finite number J := [, ga-« (¢k—1|yk:0) :
Integration by parts with respect to ¥, gives

my

“pieS == mb/ e 2 gy 10y, i
Qr_1 % (—00,0) xRd—F
+ Mg —27 i ‘yk| a
Qr—1%(0,00) xRk Vi1 ykd}k 1
--3 —2y3f lykl )2
2 JQi_xRi-k <¢k—1|yk:0) + ’VM 11 x(—00.0)XRAF e M ¢k_1
e 2 25 1yl
5 - = + - ’Y 1Yk
2 JQp_q1xRi—k (djk 1|yk—0) ry M Qr—1%(0,00) x RA— k w _
M
=
2

v o o
/Q S (mI%X(—oo,O)(yk)e 2757 k| +mZX(O,oo)(yk)e 2y e |yk‘) wz_r
k—1
(2.37)

The last integral is bounded from above by 2 max{m? mi}A. With (2.36), Lemma 2.2.4 and
the min-max principle we obtain

h[¢)] -1, 0 <<1 my, A J
inf o(H, <F —|—rnax{ , })— . 2.38
U= =P a2 Gy, 1) 0 (239)
This holds for all ¥ > 0. Minimizing with respect to v yields
J*M Mg mp 1\
: k—1 a b
lnfU(Hk> S FE - m (1 + 2 max { mb, Ma }) . (239)
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Moreover, since 1;_1 is normalized we have

1
A= / . 2.40
2 S e fhia <5 S Vi1 = 5 (2.40)
This yields (2.9).

We are left with showing that J > 0. Suppose that J = 0. Define a new function
Vk1 = Yro1 (Xyeco — Xu>0)- Since J = 0, the function ¢y, € HY(Q)_, x R+,

Moreover, 1,1 is a ground state of Hj,_; because TIJIMHQI] = h’ﬁwl wk”; Since 1,1 and ¥y
k—1llg -

are linearly independent, this contradicts the uniqueness of the ground state (Remark 2.1.6).
Hence, J > 0 and inf o(H,) < E* 1. O

2.3 Finiteness of the Discrete Spectrum

In this section we shall give the proof of Theorem 2.1.4. An important ingredient will be the
exponential decay of the ground state wave function ¢y of Hy. In fact, the Agmon estimate

Corollary 4.2. in [3]) implies that for any a < y/inf 0ess(Hi) — E* we have
( y p y

/Q e || 2PV 2MIEE 2P q 2 dy < oo (2.41)

Strictly speaking, the assumptions on the interaction potential stated in [3] are slightly stronger
than ours. However, the Agmon estimate only requires V' to be form-bounded with respect to
the kinetic energy with form bound less than 1, as shown in Theorem 2.B.1 in Appendix 2.B
by Rupert Frank. As we argue in Proposition 2.A.3, this is the case given Assumptions 2.1.1.

In order to derive (2.41) from Theorem 2.B.1, we remove the boundaries in the particle domain
via mirroring and consider the operator H, acting on H'(R%**) (see Proposition 2.A.1). It
suffices to prove the exponential decay for the ground state v, of Hy,. We rescale the variables
to remove the masses in front of the Laplacians using the unitary transform Up(z,y) =

\/2Mk\/2,udg0(\/2]\/[z,\~/2,uy) on H'(R**) . Switching to relative and center of mass
coordinates and writing V(z,y) = V((|z§| — |2%])¥_,, ) and Vi (2, y) = V(2/V2M,y//2p)

we have

— 1 ~ ~
H, = ——AZ—@AZJ%—V:U(—AZ—AN—VU) Ut (2.42)

The ground state ¢y, of —AZ—Ay+‘~/U satisfies 1;1@ = Uypy. Foranya < \/inf Oess(Hy) — EF =
\/inf aess(ﬁk) — E* we thus have

/Hk ‘Jk|2€2a 2M|z|2+2u|y\2dzdy:/ ’@k’2€2a |z\2+|y\2dzdy< 00 (2_43)
RA-+k

Rd+k

by Theorem 2.B.1. Hence (2.41) holds.

Definition 2.3.1. Let n € Z=° and A be a self-adjoint operator with corresponding quadratic
form a. We define
o ale]
E,(A):= inf sup (2.44)

veopil, eev [l
dim V=n+1 p#

By the min-max principle, if n is larger than the number of eigenvalues below the essential
spectrum, we have E,(A) = inf g.s(A). Otherwise, E,,_; is the n-th eigenvalue of A below
the essential spectrum counted with multiplicities.
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2.3. Finiteness of the Discrete Spectrum

Definition 2.3.2. For a self-adjoint operator A and a number A € R, let N(A, \) denote the
number of eigenvalues in (—00, \) if gess(A) N (—00, A) = (). Otherwise, set N(A, \) = co.
When N (A, \) # 0, one can write

N(A,\) = sup{n € Z7'|E,_1(A) < A} (2.45)

In the case k = d = 1, Theorem 2.1.4 was already shown in [18]. We generalize the proof
using similar ideas. The overall strategy is to construct localized operators A and bound
N(Hy, E¥=1) using N(A, E*=1). The localized operators fall into three categories. First, they
can have compact resolvent or second, the corresponding potential is larger than E*~!. In
these cases, the number of eigenvalues below E*~! is certainly finite (or even zero). In the
third category, the operator is of the form I ® Hy ; — ﬁAzj ® I — K, where K is a well
behaved error term. One estimates this operator by projecting onto L*(R) ® v,_; and its
orthogonal complement. This reduces the problem to a one-dimensional operator. Then,
(2.41) and the Bargmann estimate [8] imply that the number of eigenvalues is finite.

Proof of Theorem 2.1.4. Let x1,x2 : R — [0,1] and x3 : R*> — [0,1] be continuously
differentiable functions satisfying x1(¢t) = 0 for t > 2, x1(t) =1 for t <1, x1(t)* + x2(t)* =1
for all ¢ and x3(s,t)* + x2(s)*x2(t)?> = 1 for all t and s. Note that for j = 1,2,3 we have
1(Vx3)?[ls0 < 00

Let 2y = (0,00)%* x R?¥*. The boundary of the particle domain consists of k orthogonal
d — 1-dimensional hyperplanes. We start by localizing into two separate regions, distinguishing
whether there is a particle close to all the hyperplanes, or whether both particles are far from
some hyperplane. For R > 0, let

0, = {(xa,xb,ﬂ) € Qolz® € (0,2R)* or 2* € (0, 2R)k}

= {(a",2",9) € Q|max{af, .., 25} < 2R or max{a}, ..., 2}} <2R},  (2.46)
Qy = {(m“,xb,gj) € |z & [0, R]* and 2® ¢ [0, R]k}

= {(xa,xb,g) € Q| max{z9,...,2¢} > R and max{z}, .., 2%} > R} : (2.47)

We define the functions

max{z?, .., x¢} max{z?, ..., o}

fﬁ(xa7$b) X3 ( { 1R k}v { 1R k}> ) (248)
max{z{, ..., x% max{z?, ..., 2!

sz(xawb) = X2 < t 1R k}> X2 ( t 1R k}> : (2.49)

Note that for all functions ¢ € L?*(£)y) we have support supp f]Rgp C ; . By the IMS
localization formula we have for all o € H'(€)) that

Pl T+ hal ) = hule] + | WilgP deda’dg,  (250)
(0700)2k xRd—k
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TWO-PARTICLE BOUND STATES AT INTERFACES AND CORNERS

where
_ 1 1 max{z¢, ..., 7%} max{z?, ... 22})\"
a b _ . 150 %k 15 Yk
1 max{z{, ..., z¢} max{z},..., 2%} ?
—(V
g (Vo) (b h) ot
1, (max{z? ...,2¢}\> max{z}, ..., 2%} ?
+ X2 X2
2m,, R R
2 2
1 max{z{, ..., x¢ max{z?, ..., x?
+ 2mb>@< { i k}> xé( ! i "“}> ] (2.51)

Note that there is a constant ¢; > 0 such that [[Wg|[oo < #5. For j = 1,2, define the
quadratic forms

1 1 1
o] = Vaep|? + ——|Vaip]? + — |Vl
a;[e] /Qj<2ma\ ¢l +2mb\ 2| +2u’ 77|

+ (V(@* = 2*,§) = Wr(z*, 2", 7)) |w|2)dxadxbdg (2.52)

with domains

Dla,] = {go € H*(Q)|p(z*, 2%, §) = 0if max{z?, ..., x¢} > 2R and max{z}, ..., 2%} > 2R} :
(2.53)

Diay] = {(p € H*(Q)|p(z*, 2%, §) = 0if max{z9,...,2¢} < R or max{az}, ... 2%} < R} :
(2.54)

For all quadratic forms a; in this proof, let A; denote the corresponding self-adjoint operator.
In Lemma 2.A.5, we verify that these operators exist. For ¢ € D[hy|, the restriction
of the function ffp to Q; belongs to D[a;]. With (f*)* + (f5})* = 1, it follows that
helg] = ai[fFe] + aa[fFe]. Let A denote the operator A = A; @ Ay;. The map J :
HY () = H' () ® H (), o — (fp, ffp) is an L-isometry and thus injective. By the
min-max principle, we have

) hilp . alJp
En(Hy) = Inf S“pnuz[]: VB, STy HQ[ |
dim V:n’:—l f,i‘é 90 LQ(QO) dimV:n’:»l ii‘é SO LQ(QO)@LQ(QO)
inf  sup aly] > inf sup aly] — E,(A) (2.55)

dm vty oSy 1l Z20mr2000) T2 wey 10122 0)or2(00)

for all n € Z2°. Thus, N(Hy, EF') < N(A, EF=1) = N(Ay, E¥1) + N(A,, EF1).

Let



2.3. Finiteness of the Discrete Spectrum

0

Figure 2.2: Let k = 2. In O, both 2 and z° lie outside the square (0, R)2. If 2 lies below
the upper diagonal, the configuration belongs to {23 ;. If 2 lies above the lower diagonal, the
configuration belongs to (13 .

Moreover, let {}; , = Ql,. Ny for @ € {int,ext}. Define quadratic forms @ jnt, @1 ext through
expression (2.52) with domain

D[CLL.] =
{90 € H' (Q14)|p(z? 2%, ) = 0 if max{z?,...,2%} > 2R and max{az?, ..,2b} > 2R} :
(2.58)
for @ € {int,ext}. Again, there is an isometry
Dlay] = Dlay int] ® Dlayext|, p — (90|521,;m7 90|Ql,ext>v (2.59)

and therefore, N(A;, E¥=1) < N(Ajjnt, E¥ 1)+ N(A] ext, E¥71). Since the negative part of V
vanishes at infinity by Assumption 2.1.13 and since |[Wg||oc < £, there is a Ry > 0 such that
for R > Ry and |(z® —2°, )| > Ry we have V(2% — 2% §) — Wg(2®, b, §) > E*~1. Choosing
R > Ry, we have N (A ext, E*1) = 0. Since 4 int is @ bounded Lipschitz domain, A iy has
purely discrete spectrum. As A; ;,; is bounded from below, we have N (A i, Ekil) < 0.

We are left with showing that N(A,, E*~1) < co. For k = 1, wave functions in the support
of A, are localized away from the boundary. Effectively, the boundary has thus disappeared
and one can directly make a comparison with H,_; = Hy. For k > 1, the domain 25 is more
complicated and we need to continue localizing in order to effectively eliminate one of the
boundary planes. For now, assume k > 1 and let r = R/8. We localize x* in the k sectors

Q3 = {(2%,2%,7) € Qolz§ > max{zy, ..., 2} —r} for 1 <j <k (2.60)

In the sector {23 ;, the largest component of z“ is 2 up to the constant r. The domains are
sketched in Figure 2.2 for the case k = 2. For the localization, we need functions f3; on {2y

which are supported in €3 ;, satisfy Z?Zl(fgvjf = 1, and their derivatives scale as 1/r. We
construct auxiliary functions f3 ; corresponding to the case r = 1 and set

fii(a®,a®,g) = fay(a®/r). (2.61)

The idea behind the construction of the auxiliary functions is as follows. We want that f3;
equals 1 on (23 ; apart from the boundary region which overlaps with other €23 ;. The expression
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2. TWwWO-PARTICLE BOUND STATES AT INTERFACES AND CORNERS

max{zy, ..., z¢} — x measures the distance to the boundary of 3, and is large outside {23 ;.
Hence, to define f5,, we apply x; to this expression (up to some constants). For the sum
condition to hold, the remaining f3; will contain the corresponding factor x,. This x2 factor
takes care of the behavior at the boundary towards large x{. For the next function f5,, we
proceed analogously to before, but ignoring the z¢ direction. Inductively, for 2¢ € (0, 00)*
and 1 < j <k — 1 we define

a k a a a 3 ]_1 k a a a 3
f5;(z%) = x1 (2 (max{xjH, TR} — :Bj) + 2) lzl_[l X2 (2 (max{a:lH, O 5’31) + 2) :

k—1 kf 3
Fan(ae®) =TI xo (2 (max{af,y, ... 25} — 2f) + 2) , (2.62)
=1

where the product in the first line has to be understood as 1 for j = 1. Note that for all
1 < j < k the derivatives are bounded, i.e. ||(V f3,)?|lcc < 00. By construction, we have
Z?=1(f3,j)2 = 1. That the functions f3 ; indeed have the correct support is the content of
the following Lemma, which is proved at the end of this section.

Lemma 2.3.3. For 1 < j <k, the functions f; ; defined through (2.61) and (2.62) satisfy
supp fi,; N Qs C Qs (2.63)
Moreover,

supp V3, Ny C
{(2, 2%, §) € Q| max{zy, ...,a/:?, o xpt —r < af < max{af, ...,@, wxpt 41}, (2.64)

where 9/55’ means that this variable is omitted.

By the IMS formula, we have for all ¢ € D[ay]

k
> awlfs el = wlel+ [ Fia®,a’§)lplde"da’dy. (2.65)

where

(Vfs,)% (x%)r). (2.66)

For 1 < j5 < k, define the quadratic forms

_ 1 R S B
sl = [, (o Tl + g Vool + 5L Ty
+ (V(a® = 2" §) = Wa(a®,2",5) — F,(a",2",5)) |so|2)dx“dxbdg (2.67)
with domains

Dlas ;] = {<,0 c H' (Q)|p(z®, 2% ) =0 if max{z? ..., 2¢} < Ror max{z}, ..., 2} <R

or 7§ < max{z{, .., v} — 7’}. (2.68)
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2.3. Finiteness of the Discrete Spectrum

Figure 2.3: In Q3 5, the first particle’s coordinate x lies in the shaded area, while the second
particle at z° lies outside the square (0, R)2. If 2° lies above the lowest diagonal (blue), the
configuration belongs to 4. If 2° lies below the middle diagonal (red), the configuration
belongs to 25. Note that for any configuration in €25, the particles are separated by at least
distance 7/+/2.

Again we have N(A,, E*1) <Yk N(A3;, E*'). We will show that N(Asy, BF7) < occ.
For 1 < j < k, by Assumption 2.1.14 the same argument with vector components k <> j
swapped gives N (43 ;, E*¥!) < co.

We localize x° close and far from the domain of z%. Define the sets
Q= {(x“,xb,gj) € Q3 plah > max{z}, ... 2% |} — 47’} and (2.69)
Q5 = {(m“,xb,y]) € Qs ploh < max{z}, ..., 2% |} — 27“} . (2.70)

max{z?,...,z0 —af
For k = 2, they are sketched in Figure 2.3. Let fi(2°) = X1< s S k) and

max wb l’b —fEb
fr(ab) = xz ( o1, Z’T’“‘l} k) By the IMS formula, we have for all ¢ € D[as k]
asklf1e] + aslf5] = asule] + /Q Gy (2", 2", )|l dada’dy, (2.71)
3,k
where

Gp(2%, 2", ) =

4r2my, X1 2r 2 2r

2 2
1 [ , (max{x’{,...,xi_ﬁ—x%) Ly <max{a:1i,...,xz_1}—xz> ]

(2.72)
For 7 = 4,5, define the quadratic forms

1 1 1
[ = V| + —— |Vl + —|Vp[?
ajl¢] /Qj<2ma| ¢l +2mb| ] +2u| 3¢l

+ (V(xa — 2, 9) — Wr(2®, 2°,§) — F.(2*, 2%, §) — Gr(x“,xb,g)) \go|2> dzdz’dy (2.73)
with domains

Dla4) = {g& € H'(Q)|p(x*, 2%, 9) =0 if max{z{,..,2¢} < Ror max{z},...,2}} <R

or 2§ < max{z{,..,x¢ } —r or 2b < max{z}, .. 2t |} — 47’} . (2.74)
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Dias] = {gp € H' (Q)|p(x*, 2%, 9) =0 if max{z{,..,2¢} < Ror max{z},...,2}} <R

or #¢ < max{z9,...2¢ } —r or 2} > max{a?, ... 2} |} — 27"} . (2.75)

Again, we have N (A3, E*1) < N(A4, E¥Y) + N(45, EFY).

For (22, 2% ) € s, we claim that
(2" — 2", §)| = r/V2 = R/(8V2). (2.76)

Let I be the index such that ¥ = max{z},...,2%_,}. We estimate
@~ )P > (af — a4 (a2 > g (o —og—af+ad)’ . (277)
Since max{z{,...,x¢_;} > xf we have in the set 5 (see (2.70) and (2.60))
¢ >t —r and b <al—2r & ¢ —x¢<r and ) —ab>2r. (2.78)

Combining this with (2.77) yields (2.76). Moreover, we have ||[Wg||oo 4[| F}[|oc + [|Grlloc < 2.
By Assumption 2.1.13, there is R; > 0 such that for R > R, we have a5 > E*~!. Choosing

R large enough, we thus have N (A5, E¥1) = 0.

For k =1, we set F,, = G, = 0 and a4 = ay. For any choice of £k > 1, we now just need to
show N (A4, E*7!) < co. At the boundaries which constrain the kth component of 2 and z°,
the operator A4 has Dirichlet boundary conditions. The idea is to extend the domain of x¢ and
2% to R, which leads to the new operator A, defined below. In A, the boundary hyperplane
in the kth direction has disappeared. This makes it possible to compare the operator A,
to the Hamiltonian Hj_; of the problem with £ — 1 boundary hyperplanes. Let us write
Kr = (Wg + F, + G.)X(0,00)2k xra-+- Let Q = ((0,00)’“‘1 X R)2 x R4 and define the
quadratic form

1 1 1
Gafp] = Vo> + — |V + —|Vipl?
aalep] / <2ma| el +2mb| el +2u| 7

+ (V(a® — ") — Kn(a",2"7)) |so|2>dx“dxbdg (2.79)

with domain Dlas] = H'(Q). We have N(Ay, EF1) < N(A,, E*1),

maac”-l—mbarb

Let us change to relative and center-of-mass coordinates y = (2% — 2%, 7) and 2z = o

Then
N 1 2, 1 2
aa[e] :/Rdzk /Qk_lde—k“ dz..dz—1dy ﬂ|vy4p| +m|vz¥?|

[V = K (=4 o)z = o)) 62) (280)
with D[as) = HY (R x Q_; x R¥7*+1) Note that we can separate z; from the other variables
and write the corresponding operator as fl4 =1® H;,_1 — ﬁAzk ® I — Kp. Recall that H;,_;
has the ground state v;,_; with energy E*~1. Let II denote the orthogonal projection onto
LA R)®@Yp_1 in L2(R x Qp_1 x RI7*+1) "and TI+ :=T—1II. For ¢ € H'(R x Q)_; x RI7F+1)
both ITy and Tt belong to H'(R x Q)_; x RT*F1) We have

aalip] = 4Tl + as[IIp] — 2KR[ITp, Ty], (2.81)
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where

mb ma ~

K :/ K ( LY ~ M )
R[W?lp] Rx Qo xRA—F+1 30(2724) R zZ + M(yb 7yk)72 M(yb 7yk)7y w(zay)
dzgdz;...dzi_1dy. (2.82)

Using the Schwarz inequality, we estimate
1
|2KR[HL90> HSOH < RHKRH()OHiQ(RXQk,Ide—’H'l) + E“HLQOH%Q(RXQ;CA xRd—k+1Y- (283)
Since E*~! is a discrete and non-degenerate eigenvalue of Hj,_1, we have E¥ ! = inf(o(Hj_1)\

{EF1Y) > E*1 and (I ® hy_y)[[THe] > Ef_l||HLSOH%2(RXQ,€71><Rd7k+1)- Together with the
positivity of —A,, ® I and || Kg|le < 4 it follows that

R2
~ _ Co
alll) > (B = 25 ) Il sy (2:84)
In total, we have
~ N _ 1 Co
aylp] > a4[H90]—RHKRHSOH%2(Rka1dek+1)+<Ef t— R R2> HHLSDH%%Rka,ldeka)-
(2.85)

We choose R large enough such that Ef " — E*~! > L + . Let By be the self-adjoint
operator corresponding to

A

bilg] = asle] — RIKROlLo gy, xra-re) (2.86)

in ran II. Then N(A,, E¥~') < N(By, E*') by the min-max principle.

We can write any function ¢ € ran Il as ¢(z,y) = f(zk)¥k-1(21, ..., 2k_1,y) for some
f € HY(R). Integrating over 21, ..., 2x_1,%, we have

. 1 -
alf @ bl = [ (G0 GOP + (B! = Un(a) f()*) dan, (287)
where
m ma ~
Ur(2k) = /ledekH Kr (Z + Mb(yb e Yk)y 2 — M(yb '-'7yk:)7y) Ur-1(z15-26-1,9)°
dzp..dzp_1dy. (2.88)
Moreover,
IKR(f @ V1) ||72mn0y_, xmi-ri1y = AVR(Zk)f(Zk)Zde (2.89)
with
m My )2
VR(’Zk) = /leledk+1 KR (’Z + Mb(yh S yk)u = M(ylv BT yk)v Z/) wkfl(zh ooy Rk—1, y>2
dzy..dzp_1dy. (2.90)
Let Zr = Ug + RVy. With
_ e 2>
balf) = [ (53710 P = Za(2)£ () d, (291)
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we can write by [f @ ¥y 1] = E* | f||72@) + b2[f]. Therefore, N(By, E*~') = N(B,,0).

In the following, we bound the function Zz from above by an exponentially decaying function.
With this bound it is easy to see that N(Bs,0) < co using e.g. the Bargmann estimate (see
Chapter 2, Theorem 5.3 in [8]). This concludes the proof of N(Hj, E¥1) < oc.

To bound Zp, first use that K is bounded to obtain
Zr(z) < (Kl + RIK ) 1(z4), (2.92)

where
(%) = /Q s Xovop (2 )0z dy. (2.93)

By construction, I(zx) = 0 for z; < 0. We shall show that I(z;) decays exponentially for
2z, > 0. In fact, if 2z is large and Kr(z,y) # 0, then necessarily one of the remaining
coordinates 21, ..., 2k_1, Y1, ..., Yq has to be large as well. This is essentially the content of the
following Lemma.

Lemma 2.3.4. Let a > 0. For z;, > 2R the function

satisfies a(z,y) > e 2Ry e (2, y) with c = 2M (1 + 2max{je, )12,

The Agmon estimate (2.41) tells us that there is a constant a > 0 such that

2 2 2
c3 = 1/)2_1@“\/2”‘['31‘ Fe A 2M Iz P20 Q2 dz_dy < oo (2.95)
Qp—1xRI=F+1

We apply Lemma 2.3.4 with this constant a and conclude that

Xsupp KR(Za y) < 6_64(zk_2R)CY(Z7y) (296)

for z; > 2R and suitable constant ¢4 > 0. In particular,
I(z) < 6_04(Zk_2R)/ oz, y)r-1(z1, oo, 211, y) d21..dz_ 1 dy
Qp—1xRI—Fk+1

< cge 4= 2R) (2.97)

for z;, > 2R. Recall that Zy vanishes on (—00,0) and || Zg|l < 00. With (2.92) we thus
conclude the desired exponentially decaying bound. ]

It remains to give the proof of Lemmas 2.3.3 and 2.3.4.

Proof of Lemma 2.3.4. Recall the definitions of W, F, and G, in (2.51), (2.66) and (2.72),
respectively. Since supp Kgr C supp Wgr U supp F,. U supp G,, we estimate o on each of
these three sets. In supp Wk, at least one particle is close to the corner, i.e. in the hypercube
(0,2R)*. If 2, is large, this means that the two particles are far apart and y; is large. To be
precise, using z§ = z; + Jty; and x? = z; — 5#y; we have

+% _ Ma
supp Wr C {(z,y) € QrxR&7F0 < LRM% <2o0r0< ZiRMyk §2}
c {(z,y) € Qn x RF|z, — 2R < Wyyky}. (2.98)
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2.3. Finiteness of the Discrete Spectrum

For (z,y) € supp Wg with z; > 2R, we therefore have

pM?*(z, — 2R)*  M(z, — 2R)?
me My
mp’ Ma

k—1 k
MY |z + )yl > (2.99)
j=1 i=1

max{m2,m?}  max

which implies the desired bound on .

For k =1, both F, and G, are identically zero, hence to estimate « on their support we can
restrict our attention to the case k > 1. Observe that in supp F, every coordinate z{ for
1 <3 <k is smaller than or similar in magnitude to the largest of the other coordinates x,
i # j; in particular, this applies to j = k. Intuitively, for large zj either x{ or |yx| needs to
be large. If xf is large, also some other ¢ with j < k has to be large. Phrased precisely, by
Lemma 2.3.3 we have

supp F. C
’ Rk < my
!1 (2,y) € Qr x | max {z + Myl} —r <zt gy S pax {a + Z/l} +r
7= 1#j 1]
d—k my
< " =
C {(z,y) €Qr X Rz —r < At  Jnax 1{My] + z]}} : Sp. (2.100)

The constraint in Sp can be written as z, —r < (V Mz, \/iy) - e for a vector e € RF . A
simple Schwarz inequality therefore shows that on the set Sr we have

r)? Mz —r)?

MZ|ZJ|2+MZ|yk|2 ||—||2 = g (2.101)

as long as z; > r, which yields the desired bound on «a.

Similarly to the previous case, in supp G, the coordinate z} is of similar magnitude as the
largest of the other coordinates x? We have

supp G, € {(2.0) € Qe RV < max (5 - "oy} + Moy - s < ar)
d—k Ma Ma | _.
C {(z,y) Qr X Rz 4+ 2r < | nax 1{,2] yj} + Myk} =: Sg. (2.102)

Analogously to before, on the set Si we have

= K M (z, + 2r)?
MY 23 e > ML 20T (2.103)
j=1 j=1 L+ 27

This concludes the proof. O

Proof of Lemma 2.3.3. Suppose (2%, 2°,7) € supp fj ;. If j <k, we need

max{z§,, ..., 74} — §

K 2r

+2<2 (2.104)

DO | W

for the factor x; to be non-zero. This is equivalent to max{z§,,,...,z}} < z§ + {. Thus,
for any 1 < j < k we have max{xz},...,zf} < x§ + { on the support of f;.. Let us
argue inductively why max{x{,...,r¢} < 2% + r. Suppose we know for some 1 < [ < j
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+(+1=0f. If2f, < max{z},.. x5}, we trivially have

that max{z{, ..., zf} < o}
U +1—=(—1);. Ifaf, > max{xz{,.., 2}, for the factor

T
Y
max{z{ |, ..., 74} < @]

max{z®,...,.x¢}—x ‘ .
X2 | k LR o + 3 ) not to vanish we have max{xz?,...,z¢} + = > z¢ .. Thus,
27 2 l k k -1

r

o (2.105)

a a a a a T a N
max{z} |,....,z¢} = 2} | < max{zy,.., 3} + S+ (j+1—-(-1))
Inductively, we see that for every j we have max{z{,...,zf} < 2¢ +j; < 25 +r. Thus,
supp f3,; N2 C Q3 ;.

For the support of V f3 ;, we have

supp V f3 ;NQs C supp f3 ;M0 C Q35 = {(z%, 2%, 9) € Qo|7§ > max{xf, ...,5?, xR t—r}.
(2.106)
Now, suppose z¢ > max{x{,...,x}, ..., v} + r. It is sufficient to show that f; . =1 in this

a
]’ .
region. For j < k, we have

max{z?, |, ...,2%} —x% 3 max{z?, .., z%, ..., x}} — % 3 E 3
k Tk T D <k : T4 <242 <1 (2107
2r * 2~ 2r + 2 2 * 2~ ( )
Thus, 1 (kmax{x?+12’;vf’f‘é}x? + ;’) =1. Forl < j <k, we have
max{xfﬂ,...,x%}—xf 3 x?_xél 3 x?—max{x‘f,...,gj?,...,:vz} 3 k3
k —=k - >k —>—4=2>2
2r +2 2r +2 - 2r +2 2+2 R
(2.108)
Thus, X (k:max{xf“z’;"mz}_m? - g) = 1. In total, f3; =1 for 2% > max{x{,..., 2%, .., 20} +
T, =
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2.A Appendix

2.A.1 Explicit example in one dimension

To illustrate the effect of a boundary on two-particle bound states, we present an explicit
example in one dimension. We consider particles with equal masses m, = my = % and with
delta-interaction V' (y) = —ad(y) for a > 0. The full Hamiltonian is

H=— (aia>2 — (88551’>2 —ad(z® — P, (2.109)

either on L?(R?) or on L*((0,00)?) with Neumann boundary conditions. In the first case,
corresponding to k = 0, we look at the operator Hy = —25—;2 — ad(y) on L3(R). It has the

ground state vy(y) = e~ 7% with corresponding energy E° = —%2.

The second case corresponds to k& = 1. To compute the ground state of H = H; on
L*((0,00)?), we mirror the problem along the 2% = 0 and 2 = 0 boundaries, and look for the
ground state of the modified Hamiltonian

= o\ (oY
H =— <8:ca) — (W) —ab(z® — 2%) — ad(x” + 2°) (2.110)
on L*(R?). This is exactly the operator considered in Proposition 2.A.1. Switching to relative
and center of mass coordinates y = x% — 2P and z = “GT”b we obtain
~ 0? 1 0?
H, = <_20y2 — aé(y)) +3 (_822 - a5(2)> . (2.111)
The ground state of Hy is ¢y (y, z) = 1o(y)e~ 2|, which decays exponentially away from the
Neumann boundary. The ground state energy E! = —%2 is strictly lower than E°.

2.A.2 Proof of Lemma 2.2.3

Let 1 < k < d. First, we shall prove that the claim is true for [ =1, i.e.

lim inf o(HY) > E* 1. (2.112)

L—oo

In Q',, the first component of 7 is constrained to |y;| < L. Apart from that, "', is the
same as Q_1; X R 1 with components 1 and k swapped. We localize in the y; direction,
analogously to the one-dimensional case in Proposition A.5 in [18]. For this, let x1,x2 : R —
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[0, 1] be continuously differentiable functions satisfying x1(t) = 0 for t > 1, x1(t) = 1 for
t <1 and x1(t)% + x2(t)* = 1 for all ¢. Note that ¢ := max{||(x})?||c, || (X2)?[lec} < 0.
We choose the localizing functions f; on Q"' as f;(za, ... 2,y) = x;(|y1]/L). By the IMS
localization formula, we have for all 1) € H'(Qp"))

REAY] = WA LR+ R LR = [ (VR + (V)2 (2.113)

1

2p Sy
Note that (Vf;)> = 2z (X(ly1]/L))? < . Since fot) is nonzero only for |y;| > L/2, for
large enough L, we have hi''\[foth] > E* 1| f21]|3 by Assumption 2.1.13. Furthermore, since
f11 satisfies Dirichlet boundary conditions at |y;| = L, we can extend the function by zero
to y1 € R. Additionally, let us swap the first and the kth components and call the function

obtained this way ¢(f11). Note that ¢(f190) € H(Qr_1 x RF1) and |[u(f1v0)]12 = || fre]|2.

Therefore, .
h ' [fiv] hei[e(fr0))] 1
= E7 2.11
170l OB (2114)

Combining the estimates, we obtain for large L that

hﬁ/fl[’l?D] > Ek*l ||f1¢||2 + ||f2w||2 - c — Ek*l . L (2115)
[l 13 plL? plL?
Hence, inf o(H"") > E*1 — 7= and the claim follows.

Note that for £ = 1, [ = 1 was the only possible case. Consider & > 2. We proceed by
induction. For [ > 2, assume the claim holds for [ — 1. The strategy is to bound hﬁ’_ll using
httand h'St In QL each of the first [ — 1 components are restricted to the (red)
triangular domain 2 in Figure 2.1. Furthermore, y; € (—L, L) while in the z-coordinate the
[th component is omitted. In the components [ + 1 to k we have the full quadrant. Recall
that 0 = M/ max{m,, mp}. In the (I — 1)th component, we localize such that one function
has Dirichlet boundary conditions along the (red) line z;_; = L/d in Figure 2.1 and the other
is localized at L/26 < z_; < L/d, with a Dirichlet boundary at z,_; = L/26. For this, we
use the functions f;(z1,...,%;,..., 2k y) = Xx;(dz-1/L). By the IMS localization formula,
we have for all ¥ € H'(Q"))

REL 0] = RE L)+ L) = 5 [ (VP4 (VR2) P, (2116

Note that (V f;)? = %Z(X;((Szl,l/L))Q < % Since f11 satisfies Dirichlet boundary conditions
along z;_1 = L/d, one can extend the function by zero to the quadrant @), in the (I — 1)th
component. Additionally swap ;1 and y; to define 1, (f110) € H (') Then [jey(fiv)||3 =
| f120]/3 and hence

L0 e CTE ) B Ay (2117)

119113 e (f1)]13
To estimate k"', [f21)], we localize in the 1;_;-direction, such that the first function satisfies
Dirichlet boundary conditions at y;_; = L/2 and the second function is nonzero only for
yi—1 > L/4. For this, we use the functions g;(z1,..., 2, ..., 2k, y) = X;(2y;—1/L). The IMS
localization formula gives

W] = W ot S et = o [ (Va)® + (Fe?) L, @2:118)
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where (Vg;)? = 75 (X;(2lyi—1]/L))* < 5. For L large enough, by Assumption 2.1.13, we have

hit gafotd] = EFY|goforb]|2. In the (l — 1)th component, the function g; fo? is supported in
the parallelogram (z,_1,4,1) € (L/20,L/§) x (—L/2, L/2) and satisfies Dirichlet boundary
conditions at |y;_1| = L/2 and 2, = L/25. We extend the function g; fo1) by zero to
yi—1 € R. Then we define 15(g1 fo1h) on Q5" % (L/26, L/6) as

L(g1fo) (21 21, - 2em1, Y, )
= glf277b(zlv s R=2, L5 20y e BE—1 Y1 Y2 Yk Y115 - - 5 YR—1, YR41 - - yd) (2119)

Observe that hi"', now can effectively be decomposed into h"'5" plus a Laplacian in the
x-direction . e
hihlo o] (s @ T+1® g)[ea(g1fo0)]

_ , 2.120
oot Ol (2120
where ¢ is defined on H'((L /25, L/§)) through
o= [ i) 2121
alel = [, 5 207 1¥ (@) e (2.121)
Since inf o(H, ' @ 1 - ;L 1® A,) > inf o (H[';"), we obtain
hé’l1[91f2¢] Li-1
= >info(H. ", ). 2.122
Combining all the estimates, we obtain that for large L and all ¢ € Hl(Qi_ll)
hﬁ’hW] - Li-1y - Ll-1\ k-1 d%c 4c
T > min{inf o(H,”] "), info(H", "), E" "} — MIE T aLE (2.123)

Taking L — oo the claim now follows from the induction hypothesis.

2.A.3 Technical details

By mirroring along the z} = 0 and x? = 0 hyperplanes, we can relate Hj, to an operator H,
defined in L2(RZt*).

Proposition 2.A.1. Let H, be the operator defined by the quadratic form
Wl = [ (5 (Va5 VP + V0P
P JRave 2my, v 2my, o 21 Y
V(5] = D IO st (2128

with domain D[h;] = H' (R**). Theninf o(H,) = inf o(Hy) and inf oess(Hy) = inf oess(Hy,).
Moreover, the function vy, is a ground state of Hy, if and only if the function

P, 2%, 9) = o255y, (2351 9) (2.125)
is a ground state of H,.
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Proof. The operator H,, commutes with all reflections along the x5 = 0 or xg’ = 0 hyperplanes.
Reflections along different hyperplanes commute as well. Therefore, the Hilbert space H =
L?(R**) splits into subspaces H = @, H, characterized by the eigenvalues +1 of these
reflections. We can write Ek =@, H, wheLe Hj is the restriction of Hj to HT.NFor the
spectrum, we obtain inf o(Hy) = min, inf 0(H}) and inf oess( Hy) = min, inf e (H}).

The subspace that is symmetric under all reflections corresponds to Neumann boundary
conditions on [0,00)%* x R¥*_ The other subspaces H, are antisymmetric under at least
one reflection, so they have Dirichlet boundary conditions along the corresponding hyper-
plane. Thus, the domains of the quadratic forms for Hj satisfy D[h;] C D[h;"™]. By the
min-max principle, E,(H}) > E,(H.>™). Therefore, both inf o(Hj) = inf o(H,>™) and
inf Jess(ﬁ k) = inf ges (H,™).

Note that the map U : L2([0,00)% x R*%) — L2 (R**) that maps ¢ to ¥ (2%, 2", 7)) =

30 ((|9]);, (|25]);,7) is unitary. Since H®™ = UH,U™", the operators are unitarily equiva-
lent and o(H, ™) = o(Hy). O

The next lemma follows from the Sobolev inequality, see e.g. Sections 8.8 and 11.3 in [50].

Lemma 2.A.2. Let Q C R? be a domain satisfying the cone property (as defined in [50])
with radius R and opening angle 6. Let V satisfy Assumption 2.1.11. Then, for any 0 < a < 1
there is a constant b € R (depending only on d, R, 0,V and a) such that

LIVIFE < all Vs + b1 I (2.126)

for all f € H*(Q).

Proposition 2.A.3. Let 0 < k < d. Assumption 2.1.11 implies that in the quadratic form h,
in (2.4) the interaction term is infinitesimally form bounded with respect to the kinetic energy.
By the KLMN theorem, there is a unique self-adjoint operator H;, corresponding to hy, and
both h;, and H;, are bounded from below.

Proof. The quadratic form ¢ : H'([0,00)%* x R?*) — R given by

1 9 1 9 1 9 b1~
= a — — dz?dz’d 2.127
001 = [ (g Vot o Tt 9,0 | asty 2220

is closed and bounded from below. In order to apply the KLMN theorem, we need to show
that there are constants a < 1,b € R such that for all ¢p € H([0,00)% x RI7*)

K[y]:= < aqu[y] + bll9l2- (2.128)

S V@ =2 DI datdg

Let v € H'([0,00)% xR?™*) and define ¢ (2", *, §) = g ((|25]);, (|3]);,§) for (2", 2", ) €
R* x R* x RY*. We have [|¢||3 = [|¢]|2 and ||[V9||3 = [[Ve||2. Moreover, 1 and 2% agree
on [0,00)%* x R?*. Hence,

K] < 4 / IV (2® — 2, §)||9(z%, 2, §) Pdz*dabdy. (2.129)

[0700)2k xRd—k
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Since the integrand is nonnegative, extending the domain of integration from [0, c0)?* x R4*
to R?* x R?* gives the upper bound

Kl <4 [ V(=2 )b, 2, 5)Pdetdatdg

R2k xRd—F

=4t /kaRd V0w + g1y oo y0) /2,0 = (Y1, -, k) /2, §) [Pdwdy, (2.130)

where we changed to coordinates w = ”C(LT”b and y. For almost every w € R¥, the function

fly) = zZ(w + (Y1, ey Uk)/2,w — (Y1, -, yk) /2, ) lies in HY(RY) by Fubini's theorem. By
Lemma 2.A.2, for any 0 < a there is a constant b independent of f such that [ |V]|f]* <
a||Vf||3 + b||f||3. Integrating over w then gives

K <4 (a [ [0 4+ i) 200 = e )/2.5)] 1513

(2.131)
For1 <5 <k,
~ 2 1 ~ ~2 1 ~12
(2.132)
Therefore,
K[p) < 4% (al| V|13 + bl ]13) = 4%all V|13 + 4] ¢|3. (2.133)

Forany 0 < a < 1, pick @ = 272*~Ymin (m;!, m; ')a to obtain K[¢] < aqy[v]+4%b|y|3. O

Lemma 2.A.4. The quadratic forms defined in the proof of Proposition 2.2.1 in Egs. (2.21)
and (2.24) correspond to unique self-adjoint operators.

Proof. In all cases we prove that the potential term in the quadratic form is infinitesimally
bounded with respect to the kinetic energy term. The claim then follows from the KLMN
theorem.

Let us begin with the quadratic form hkfl in (2.24). The idea is to use the same mirroring
argument as in Prop. 2.A.3 for the coordinate components from [ + 1 to k. In the first
[ — 1 components, we extend the triangular domain in Figure 2.1 via a suitable mirroring,
in order to be able to apply Lemma 2.A.2. To be precise, we define the map ¢ taking
(0,L/d) x (—M M) to the triangular domain {(z,y) € (0,L/J) x R| — z <y< o= }

mpd’ magd

as
o(z,y) = (z,9) if x“:z+%y203nd xb:z—%yzo (2.134)
3z, y) = (T]@y n]\jz) ifa <0 (2.135)
o(z,y) = (”]\Z’y n]\iz) if x* <0  (2.136)

Let us use the notation ¢ = (¢1, ¢2). Note that for a function f defined on the triangular
domain, we have

1f o oll5 = 2 115, (2.137)
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where one contribution of || f||3 comes from the triangular domain, and the second || f||3 is
the sum of the contributions with 2° < 0 and 2% < 0. In the region with 2° < 0 we have

ma may ML may

/ " gy | st = [ ay [ dalfmay/ M, 2z ma) P
L/§ ﬁ{j ~ o
:/0 d%/o djlf ()2, (2.138)

where we substituted Z = m,y/M and § = Mz/m,. Similarly, for z* <0

[ﬂ dy/ s dz|f(o(z,v)) / Mdz/ dy|f (2.139)

Moreover, if f € H!, then fo¢ € H*' by the Lipschitz continuity of ¢.

Let us work in center of mass and relative coordinates in the first [ components, and with the
2% and z° coordinates in components [ + 1 to k. The kinetic part of hé;fl is then

-1

1 1
dhl= [, [Z(QM!VW\2+!VW\2> L o e

J=l+1

1 1 N
+2|v$b¢|2) + —|Vu? ] dzy...dzqdaf ... dogdy; ... dydal, ... dzbdg.
my 9 2u
(2.140)
For ¢ € H'(Q}",) define ¢ on

OLL . a a
Qkfl = {(zl,...zl_l,xl+1,...xk,yl,...,yl,$?+1,.. xh 9)IVj < 1:z € (0,L/6),

ML ML
” ( )yl (- L,L),Vl<j§k:xjER,x?ER,geRd’“} (2.141)

mb5 5
as
1 1
77[](2 y) 2(1 1)/2 9k— lw<(¢1(zj7y]))] 17(|$a|)j l+1’(¢2(zj7yj)>j 17?/17(|3j |)] l+1>y)~

(2.142)
~ ~ -1
By (2.137) we have [[¢)[|3 = [[¢:[|3. Furthermore, |V|3 < (fmitmyz + 1) [VRI3
Analogously to (2.129)-(2.130) we obtain

KW] = I/QZ’L V<y17---yl,x7+1 _x?Jrl?""ra xkv )|1/1|2
k—1

dzy...dz_qdaf ... dogdy; ... dydal, ... d2bdg

_ _ ~ Y; Y; -
< 2114k l/ﬁu |V(y)Hw(Zl>-'-Zl—la<wj+5j)§:l+1>yla--~>yla( j 2])] 1+1>y)‘2
k—1

dzy...dzdwyyy .. dwgdy, (2.143)

oy b -1
where we changed the coordinates z7, x7 btow; =2 ‘2“” and y;. Let D, = (—%—5, %ﬁs) X

(=L, L) xR¥*. For almost every (z1,...2_1, w11, .. wg) € (0,L/5)" x R*!, the function
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fly) = ¥(z1,2m1, (w; + %);?:Hl,yl, e Ul (W — %)leﬂ,gj) lies in H' (D,) by Fubini's
theorem. Applying Lemma 2.A.2 with €2 = D, and integrating over z and w one obtains

2

o Y; Y -
vyw(zlu < Zl—1, (w] + 5])§=l+17 Y1, - Ui,y (wj - EJ);?:ZJrla y)

dz; ... dz_ydwyy, .. dwgdy + 2714572 (2.144)

K[w] S 2l—l4k—la /QZ’L

k-1

for any a > 0 and a suitable constant b. As in (2.132) we have
K[y] < 27145 (o] V(13 + b]14]13)
< ol—1 k1 ( M?

min{mg, m}?

-1
+1) VI + 243, (2.145)

Since a can be arbitrarily small, the interaction term is infinitesimally bounded w.r.t. ¢;*,.

Let us now consider the quadratic form a; in (2.21). For [ = k + 2, the potential term is
bounded from below since |y| > L, and is hence infinitesimally bounded w.r.t the kinetic
energy.

The kinetic part of a; is

1

. : 1 \V4 2 1 \V4 2 -
alé)i= [, | 32 (qalVael + 3 1%uef) + 3 (51

1
Vol + 5 Vol

1
+ﬂyvg¢|2 dzy ... dzdaf ... dafdy, ... dydal, ... d2hdg. (2.146)

First, we consider 1 < [ < k. Then, q is closely related to ht", through (2.25). Let
¢ € H'(). For every z € (L/,00), the function (-,.. ., z,...,-) belongs to H(QL").
In (2.143)-(2.145), we saw that for any a > 0 there is a constant b such that

/Q V()| 16(z, ) [Pdydz . . dz ... dz
k—1

< gty [0z + b [ 0z y)Pdyda . e dae (2147)

Integrating the inequality over z;, we obtain

L @GPz <a [t zolde o bolE < aafe] + vl (2148)

Hence, the potential term is infinitesimally bounded w.r.t ¢;.

For I = k + 1, we use the map ¢ in the first k components. For 1) € H'(Q1) define ¥ on

k
Qpsr = (0, L/6)* x (-%%) x (=L, L)* (2.149)
as 1
Dz,y) = g (0102541, (0227 43))}=1,8) (2.150)
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~ ~ 5 k
By (2.137) we have || = [[¢[3. Furthermore, [|VY[} < (mmrlomye +1) VY3
Analogously to (2.129)-(2.130) we obtain

K[y]:=

[ V@l Pz

<2 [ V@) Pdy. (2150)

k
Let D, = (—M M) x (—L,L)¥%. For almost every z € (0,L/d)*, the function

N mpd’ mad
f(y) =¥(z,y) liesin H* (D,) by Fubini’s theorem. Applying Lemma 2.A.2 with Q = D,, and
integrating over z gives

K[y < Qka/

Qp11

~ 2 ~ ~ ~
V, 0z y)| dedy + 20013 < 25| VO3 + 2003 (2.152)

for any a > 0 and a suitable constant b. Hence,

M2

min{m,, my}?

k
K[y < 2 ( " 1) A Vol3+ 2502 (2.153)

Since a can be arbitrarily close to zero, the interaction term is infinitesimally bounded w.r.t.
Qh+1- L

Lemma 2.A.5. The quadratic forms defined in the proof of Theorem 2.1.4 in Egs. (2.52),
(2.58), (2.67), (2.73), (2.79), (2.86) and (2.91) correspond to unique self-adjoint operators.

Proof. The quadratic forms a; with j € {1,2,4,5} in Egs. (2.52) and (2.73) and the forms
asj for 1 < j <k in (2.67) have the form

1 1 1
) _ ‘7 " 2 - ‘7 2 T ‘7~ 2
lil = |, (ol Voo + e Vool + 51Vl

+ (V(a* =2, 9) + Vioa®, 2", ) w) da*da’dj (2.154)
for some bounded potential V... The quadratic form ¢; : H'(Q;) — R given by
wle = [ (g Vol + 5 (Vo + o [Vl | datdabdy  (2155)
/ o, \2m, ° 2my ' 2 Y '

is closed and bounded from below. Using that ¢ € D[a;] vanishes outside O; and applying
Proposition 2.A.3, we obtain

/Q V(2" =", 9) + Vo (2%, 2", 5) o] +[Vaolloc [l ol2

J

< v 2
<|f . Ve
<agle)+ 0+ [Valligly  (2156)

for some a < 1 and b € R. By the KLMN theorem, there is a unique self-adjoint operator A,
corresponding to a;.

For a4 in (2.79), note that K is bounded. Adapting the argument in Proposition 2.A.3,
we show that the interaction term is infinitesimally bounded with respect to the kinetic part
G: H'(((0,00)* ! x R)? x R*) — R given by

N 1 2 1 o, 1 2 b1~
— —_— a S - 77 a . 21
qle] /Q <2ma|vx o|” + melvxbgpl + 2M|Vyg0| )daz d2’dy (2.157)
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For € H'((), define ¢)(2", 2", §) = s ((|af))=1, o, (|2 )51 2}, 9) for (a°,2",9) €
RF x R* x R**. We have ||¢[|2 = ||¢|2 and ||V4||2 = ||V¥||2. Following the same steps as
in Proposition 2.A.3 from (2.129)-(2.133) with this adapted choice of ), we obtain that for
any 0 < a there is a b such that

< 441 (a]| VO[3 + bllv|3)
= 4410 V|3 + 4%b]l9 |13 (2.158)

K[o] = [ vt -t plufdadatag

By the KLMN theorem, a4 corresponds to a self-adjoint operator. Since b; in (2.86) differs
from G4 by a bounded term, it also corresponds to a self-adjoint operator. For by in (2.91) and
a1ext in (2.58), the potential is bounded. Thus, these forms also correspond to self-adjoint
operators.

x; ijA . §
\\ N\
R%-=<- g
\ AN 'R
0 R

Figure 2.4: In the domain of ¢ for 1 < j <k,  Figure 2.5: Mirroring ¢ along z§ = 0 and
the coordinates (x?,x;’) lie in the hatched set. x;’ — 0 defines 772 For 1 < j < k, the
vt coordinates (7%, %

/ 4,x;) or equivalently (w;,y;)

We have y; = 2} — 2% and w; =
lie in the hatched set.

J

For ay i in (2.58), we proceed similarly to Proposition 2.A.3. Let ¢ € D[ay in|. The domain
of ¢ is sketched in Figure 2.4. Mirroring the domain along the 2 = ( and :1:2’ = 0 hyperplanes,

we obtain the set  sketched in Figure 2.5. For (2 2%,7) € Q define (2, 2%, ) =
s ((125]);, (|1251)5,9). We have [[¢]13 = [[¥[[5 and [[V[3 = [[V¥]3. Using the triangle
inequality and enlarging the domain of integration to €2, we have

K[y] =

[ Vi =gl xb,g>|2dxadasbdg|
Q1 int

< 4 /Q IV (2® — 2%, 9)|[d (22, 2°, §) Pdzadadg. (2.159)

We change to coordinates w = "”(LT”b and y. For every w € R¥, the set

Q= { y € RY(w+ (y1, ., ye)/2,w — (1, -, 4) /2, 7)) € Q} (2.160)

is equal to I; X ... x I, x R¥* where each I; € {R, (—R, R)} (Figure 2.5). Thus, there is
an angle ¢ and radius r such that all the sets €2, satisfy the cone property with parameters
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0,r. For almost every w € R¥, the function f(y) = ¥ (w + (Y1, .., Y&) /2, w0 — (Y1, -+, Y&) /2, §)
lies in H'(Q,,). By Lemma 2.A.2, for any 0 < a there is a constant b independent of f,, and
w such that

L V@I @)y < @l V3 + bl 713, (2.161)

Integrating inequality (2.161) over w and using (2.132) gives
/Q V(2" =", )| (", 2", §)*datda’dg < a|| VP + bl |15 < all Ve | b3 (2.162)
In total, we thus have
K[y] < 4%a|| Vo3 + 47|19 l3. (2.163)

For any 0 < a < 1, pick @ = 272" min(m; ', m; )a to obtain K[¢)] < aqyim[t] + 45b||0||3.
The KLMN theorem thus implies that there is a self-adjoint A j,:, which is bounded from
below. O

2.B Exponential decay of Schrodinger eigenfunctions
(by Rupert L. Frank?)

It is a folklore theorem that eigenfunctions of Schrodinger operators corresponding to eigen-
values below the bottom of their essential spectrum decay exponentially. This was raised to
high art by Agmon [3] and others; see, for instance, the review [66]. It may be of interest to
note that the most basic one of these bounds holds under rather minimal assumptions of the
potential. This is what we record here.

Let V € LY. (R?) be real and set V. := max{+£V,0}. Given a € [0, 1], we say that V_ is

loc

—A-form bounded with form bound « if there is a C, < 0o such that
/ V)2 de < a/ V[ do + Ca/ W2de  forall b € H'(RY).
R4 R4 Rd

In this case, we define a quadratic form h by
D[h] = {w e H'RY): [ VifylPdo < oo} ,
JRd
hly] = /]R (V4P + VIoP)de  for v € D[]

This quadratic form is lower semibounded in LQ(]Rd) and, if &« < 1, closed. Thus, it corresponds
to a selfadjoint, lower semibounded operator, which we denote by —A + V. We abbreviate

Ey =info (A +V) e RU{+00}.

Theorem 2.B.1. Assume that V, € L', (R?) and that V_ is —A-form bounded with
bound < 1. For every E' < E., there is a constant C'pr < oo such that if E < E' and if
1 € D(—A + V) satisfies (—A + V)i = Ev, then

L, ETEE (V2 + Vel + (B = B)P) do < Cp ). (2.164)

Lr frank@Imu.de; Mathematisches Institut, Ludwig-Maximilans Universitat Miinchen, Theresienstr. 39,
80333 Miinchen, Germany, and Munich Center for Quantum Science and Technology, Schellingstr. 4, 80799
Miinchen, Germany, and Mathematics 253-37, Caltech, Pasadena, CA 91125, USA

Partial support through U.S. National Science Foundation grant DMS-1954995 and through the Deutsche
Forschungsgemeinschaft (German Research Foundation) through Germany’s Excellence Strategy EXC-2111-
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2.B. Exponential decay of Schrodinger eigenfunctions (by Rupert L. Frank)

We emphasize that E, may be equal to +00, in which case E’ may be taken arbitrarily large.
If Fo < o0, the decay exponent v/ E' — E can be any number < \/E,, — E.

Note that under the assumptions of the theorem, 1) is not necessarily bounded, so one cannot
expect pointwise exponential decay bounds. The bounds in the theorem control the quantities
that are natural from the definition of the operator in the form sense.

In order to prove Theorem 2.B.1, we use a geometric characterization of the bottom of the
essential spectrum due to Persson [57]. Let K C R be a compact set and define

hly]
1112

Clearly, E'(—A + V|ga\ ) is nondecreasing in K and therefore its supremum over all compact
K C R? exists in R U {+o0}.

E1<—A+V|Rd\K):inf{ : ¢ € DIh], ¥ =0 on K}.

Theorem 2.B.2. Assume that V, € L', (RY) and that V_ is —A-form bounded with bound
< 1. Then
Eoo = sup E1<—A + V|Rd\K) .

KCR4 compact

We first assume Theorem 2.B.2 and show how it implies Theorem 2.B.1. Then we will provide
a proof of Theorem 2.B.2 under our assumptions on V.

Proof of Theorem 2.B.1. Fix E,, > E” > E’. By Theorem 2.B.2, there is an R’ > 0 such
that
hlu] > E"||ul)?

for all u € D[h] with v = 0 in Bg//5. Next, for an R > 0 to be specified, we choose two
smooth, real-valued functions y. and x- on R such that

supp X< C Bog  and  supp x> C R%\ By (2.165)

and such that x2 + x2 = 1 on R?. By scaling an R-independent quadratic partition of unity,
we may assume that
IVx<|*+|Vxs? <CR? (2.166)

with a constant C' independent of R. By increasing R’ if necessary, we can make sure that
C(R)™2 < (E" - E')/2 =: ¢ with C from (2.166). Let f : RY — R be a bounded Lipschitz
function and take ¢ = €2/1¢) € DI[h] as a trial function in the quadratic form version of the
equation (—A + V)¢ = E1) to obtain, after an integration by parts,

B[ e = [ (V0P + = VPl do. (2.167)
Rd R’i
Thus, in view of the IMS formula (see, e.g., [14, Theorem 3.2]),
B[ el d+ B [ leevPde= [ (196 )P + Ve xul?) do
Rd R R4
+ [ (W0l + Ve e vf) de

with V=V — |[Vf|> = |Vx<|? — |Vx>|>. For R > R’ we bound the terms on the right side
from below by

L (V) + Vi) do = (B = IV FIE =€) [ e/l do
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with E; :=info(—A + V), and
L (Ve + Viehaul) de 2 (B = 9112 —€) [ lexouf da.
Thus,
(B" = B IVfI =€) [ lehxavP e < (B = By + VAR +e) [ le/xev do,
R4 R4
and therefore
(B" = E= V1% =€) [ |/ vl de < (B" — By) [ le/xctfdo
R4 R4

< (B" — By) [¢]]* supe? .

Br
Ideally, we would want to choose f(z) = k|x| with x as large as possible. The wish to have
a positive constant (¢, say) in front of the integral on the left side then dictates our choice
k=+E"—FE —2e¢=+/E — E. The problem with this ‘ideal" choice of f is that the function
|| is Lipschitz, but not bounded. We remedy this by taking |z|/(1+ d|z|) instead and proving
bounds which are uniform in the parameter 6 > 0, which we will let tend to zero at the end.
Thus, let us choose

o) = VE— B 1

14 6|z

with a (small) parameter 6 > 0. This is a Lipschitz function satisfying ||V f|l« = VE' — E.
Thus, the previous inequality with R = R’ becomes

[ el v du < (B = By) gl RV

Since the right side is independent of §, we can take the limit 6 — 0 and obtain by monotone
convergence

E/Rd ’e\/E’fEmw’Q dr S (E// o El) HwHZ eQR’\/E’fE'

This is already one of the inequalities claimed in the theorem.

To prove boundedness of the terms involving the gradient term and V. we recall that, by form
boundedness,

hlef] > (1 — ) /R IV (el ) dz + /]R Vilefp2de — C /R e |2 da
This, together with identity (2.167), implies
(E+ V% + Ca) /R 2 de > (1 - a) /R V(! )2 da + /R Vilel ol d

Using
V(') = e |V + oV [ = e (Ve + 2Re §VY - Vf + [4[Vf])
1
b - —
> e (SIVUl — [V IE).
we obtain
(E +(2—a)||VfIA + Ca) /R el dx > 1;0‘ /]R e/ V| dw + /]R Vilel | dx .

Since we have already shown an upper bound on the left side, this completes the proof of the
theorem. O
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Thus, we are left with proving Theorem 2.B.2. We use the following abstract characterization
of the essential spectrum.

Lemma 2.B.3. Let a be a lower semibounded, closed quadratic form in a Hilbert space and
A the corresponding self-adjoint operator. Then

inf o ss(4) = inf {lminfalg;) s & =0, 45 =1}
j—o00

(with the convention that inf () = +o00). Moreover, if both sides are finite, then there is a

sequence (&;) with ||&;]] =1, al§;] — inf o s(A) and §§ — 0 in Dlal.

This lemma is classical. The proof in [25, Lemma 1.20] shows the first assertion and, in the
case of finiteness, the existence of a normalized sequence with a[¢;] — inf 0 .ss(A) and &; — 0.
Since this sequence is bounded in DJa], a subsequence converges weakly in D[a] and, since
Dia] is continuously embedded into the Hilbert space, the weak limit is necessarily zero, as
claimed.

Proof of Theorem 2.B.2. We abbreviate E := SUPy compact 1(—A + V]rarx).

We begin by proving E,, > E’_. We may assume that E,, < co and we shall show that for
all R >0,
Ey(-A+V]p) < B, (2.168)

for then the claimed inequality follows as R — oo. Fix R > 0 and let x. and x- be as in the
proof of Theorem 2.B.1. By Lemma 2.B.3, there is a sequence (§;) C D[h] with |&;]| =1
such that £ — 0 in DI[h] and h[{;] — E. Then

sias v h oS ] i
[1x>&;ll
and our goal is to estimate the right side as 7 — oo.
By Rellich’s compactness theorem, &; — 0 in L% .(R?), so x<& — 0 in L?(R?) and
I>&l7 = 1617 = lIx<gl* =1 asj—co. (2.170)
Moreover, by the IMS formula,
9 N2 |2
hhe6] = 6] - hlxeg) + | (Vxel + IVasP) 76 (2171)

The last term vanishes as 7 — oo again by Rellich's theorem. Moreover,

hx<&] > Eillx<&l°

and therefore
liminf A [x<&] > liminf By ||x<&* = 0.
j—o0 J—0o0

Putting this into (2.171), we learn that

limsup  [x>§;] < limsuph [§;] = Fu .

Jj—00 Jj—o0

This, together with (2.169) and (2.170), yields (2.168).
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We now prove the converse inequality Eo, < E’_. Let (R;) C (0,00) be a sequence with
R; — oo and let (¢;) C DI[h| be a sequence with ||¢;]| =1, ¢, = 0 in {|z| < R;} and
hl;] — Ex(=A 4 Vs, ) — 0. The support condition implies that ¢; — 0 in L*(R?) and

therefore, by Lemma 2.B.3,

By <liminf hy)] = liminf By (—=A + V]ge ) < EL,

J—00

which proves the theorem. O
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CHAPTER

Universality in low-dimensional BCS
theory

Abstract It is a remarkable property of BCS theory that the ratio of the energy gap at zero
temperature = and the critical temperature 7T, is (approximately) given by a universal constant,
independent of the microscopic details of the fermionic interaction. This universality has
rigorously been proven quite recently in three spatial dimensions and three different limiting
regimes: weak coupling, low density, and high density. The goal of this short note is to extend
the universal behavior to lower dimensions d = 1,2 and give an exemplary proof in the weak
coupling limit.

3.1 Introduction

The Bardeen—Cooper—Schrieffer (BCS) theory of superconductivity [5] is governed by the BCS
gap equation. For translation invariant systems without external fields the BCS gap equation

A(p) = —(273),”2 /Rd Vip- Q)Ei((q;) tanh (E;(ﬁ@) dq (3.1)

with dispersion relation Ea(p) = \/(p2 — )%+ |A(p)|?. Here, T' > 0 denotes the temperature
and o > 0 the chemical potential. We consider dimensions d € {1,2,3}. The Fourier
transform of the potential V' € L!(R?) N LPV (R?) (with a d-dependent py > 1 to be specified
below), modeling their effective interaction, is denoted by V (p) = (2)~%2 [pa V (x)e P *dz.

According to BCS theory, a system is in a superconducting state, if there exists a non-zero
solution A to the gap equation (3.1). The question of existence of such a non-trivial solution
A hinges, in particular, on the temperature 7. It turns out, there exists a critical temperature
T. > 0 such that for T' < T.. there exists a non-trivial solution, and for 7" > T, it does not [33,
Theorem 3.1.3 and Definition 3.1.4]. This critical temperature is one of the key (physically
measurable) quantities of the theory and its asymptotic behavior, in three spatial dimensions,
has been studied in three physically rather different limiting regimes: In a weak-coupling limit
(i.e. replacing V' — AV and taking A — 0) [22, 35], in a low-density limit (i.e. © — 0) [36],
and in a high-density limit (i.e. © — o0) [38].

As already indicated above, at zero temperature, the function Eo may be interpreted as the
dispersion relation of a certain ‘approximate’ Hamiltonian of the quantum many-body system,
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see [33, Appendix A]. In particular
=:= inf Fa(p) (3.2)

peR?
has the interpretation of an energy gap associated with the approximate BCS Hamiltonian and
as such represents a second key quantity of the theory. Analogously to the critical temperature,
the asymptotic behavior of this energy gap, again in three spatial dimensions, has been studied
in the same three different limiting regimes: In a weak coupling limit [35], in a low density
limit [49], and in a high density limit [39].

In this paper, we focus on a remarkable feature of BCS theory, which is well known in the
physics literature [5, 47, 55]: The ratio of the energy gap = and critical temperature 7, tends
to a universal constant, independent of the microscopic details of the interaction between the
fermions, i.e. the potential V. More precisely, in three spatial dimension, it holds that

= T
T e~ 1.76, (3.3)
where v = 0.577 is the Euler-Mascheroni constant, in each of the three physically very different
limits mentioned above. This result follows as a limiting equality by combining asymptotic
formulas for the critical temperature T, (see [22, 35, 36, 38]) and the energy gap = (see [35, 39,
49]) in the three different regimes. Although these scenarios (weak coupling, low density, and
high density) are physically rather different, they all have in common that ‘superconductivity is
weak’ and one can hence derive an asymptotic formula for 7,. and = as they depart from being
zero (in the extreme cases A = 0, = 0, ;1 = 0o, respectively). However, all the asymptotic
expressions are not perturbative, as they depend exponentially on the natural dimensionless
small parameter in the respective limit. We refer to the above mentioned original works for
details.

The goal of this note is to prove the same universal behavior (3.3), which has already been
established in three spatial dimension, also in dimensions d = 1,2 in the weak coupling limit
(i.e. replacing V' — AV and taking A — 0). This situation serves as a showcase for the
methods involved in the proofs of the various limits in three dimensions (see Remark 3.3.5
and Remark 3.3.8 below). Apart from the mathematical curiosity in d = 1,2, there have been
recent studies in lower-dimensional superconductors in the physics literature, out of which we
mention one-dimensional superconducting nanowires [54] and two-dimensional ‘magic angle'
graphene [11].

In the remainder of this introduction, we briefly recall the mathematical formulation of BCS
theory, which has been developed mostly by Hainzl and Seiringer, but also other co-authors
[22, 32, 33]. Apart from the universality discussed here, also many other properties of BCS
theory have been shown using this formulation: Most prominently, Ginzburg-Landau theory,
as an effective theory describing superconductors close to the critical temperature, has been
derived from BCS theory [16, 17, 23, 26]. More recently, it has been shown that the effect
of boundary superconductivity occurs in the BCS model [34]. We refer to [32] for a more
comprehensive review of developments in the mathematical formulation of BCS theory. The
universal behavior in the weak coupling limit for lower dimensions d = 1,2 is presented in
Section 3.2. Finally, in Section 3.3, we provide the proofs of the statements from Section 3.2.

3.1.1 Mathematical formulation of BCS theory

We will now briefly recall the mathematical formulation [32, 33] of BCS theory [5], which
is an effective theory developed for describing superconductivity of a fermionic gas. In the
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following, we consider these fermions in R?, d = 1,2, at temperature 7' > 0 and chemical
potential 1 € R, interacting via a two-body potential V', for which we assume the following.

Assumption 3.1.1. We have that V' is real-valued, reflection symmetric, i.e. V(z) = V(—x)
for all z € R?, and it satisfies V € LPV(RY), where py = 1if d =1, py € (1,00) if d = 2.

Moreover, we neglect external fields, in which case the system is translation invariant.

The central object in the mathematical formulation of the theory is the BCS functional, which
can naturally be viewed as a function of BCS states I'. These states are given by a pair of
functions (7, @) and can be conveniently represented as a 2 x 2 matrix valued Fourier multiplier

on L*(R%) @ L*(RY) of the form
- ilp)  alp) )
F — DR ~ 34
®) <a(p) 1—5(p) (34)
for all p € R%. In (3.4), 4(p) denotes the Fourier transform of the one particle density matrix

and &(p) is the Fourier transform of the Cooper pair wave function. We require reflection
symmetry of &, i.e. &(—p) = &(p), as well as 0 < I'(p) < 1 as a matrix.

The BCS free energy functional takes the form

Felll = [ 0% = 0Aw)dp = TSI + [ V(@)la(@)Pde, TeD,  (35)

R4 JRd
3 A(p) a(p) ) ¢ S 1(mpd 2 1 d }
D:=<sI(p) =% . 0<I'<1, e L/(R*, (1 +p)dp), a € H (R},
o= (1 40 5 € LR (14 7)), € B (B)
where the entropy density is defined as
Sl =-— y Tree [f‘(p) log f(p)] dp.
The minimization problem associated with (3.5) is well defined. In fact, the following result has

only been proven for d = 3 and V' € L3/2(R?), but its extension to d = 1,2 is straightforward.

Proposition 3.1.2 ([33], see also [32]). Under Assumption 3.1.1 on V', the BCS free energy
is bounded below on D and attains its minimum.

The BCS gap equation (3.1) arises as the Euler-Lagrange equations of this functional [33].
Namely by defining A = —2Va, the Euler—Lagrange equation for o takes the form of the
BCS gap equation (3.1). Additionally, one has the following linear criterion for the BCS gap
equation to have non-trivial solutions. Again, so far, a proof has only been given in spatial
dimension d = 3 and for V € L32(R?), but its extension to d = 1,2 is straightforward.

Theorem 3.1.3 ([33, Thm. 1]). Let V satisfy Assumption 3.1.1 and let . € R as well as
T > 0. Then, writing Fr|[I'] = Fr(7, «), the following are equivalent.

1. The minimizer of F7 is not attained with oo = 0, i.e.

inf Fr(v,a) < inf  Fp(v,0),
(r)eD (7, @) (1 0)eD 7(7,0)

2. There exists a pair (y,a) € D with o # 0 such that A = —2V « satisfies the BCS gap
equation (3.1),
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2

3. The linear operator Kt + V', where Kr(p) =
eigenvalue.

m has at least one negative

The third item immediately leads to the following definition of the critical temperature T, for
the existence of non-trivial solutions of the BCS gap equation (3.1).

Definition 3.1.4 (Critical temperature, see [22, Def. 1]). For V satisfying Assumption 3.1.1,
we define the critical temperature 7. > 0 as

T.:=inf{T'>0: Kp+V >0}. (3.6)

By K7(p) > 2T and the asymptotic behavior K7 (p) ~ p? for |p| — oo, Sobolev’s inequality
[50, Thm. 8.3] implies that the critical temperature is well defined.

The other object we study is the energy gap = defined in (3.2). The energy gap depends on
the solution A of the gap equation (3.1) at 7" = 0. A priori, A may not be unique. However,
for potentials with non-positive Fourier transform, this possibility can be ruled out.

Proposition 3.1.5 (see [35, (21)-(22) and Lemma 2]). Let V satisfy Assumption 3.1.1 (and
additionally V € L'(R?) in case that d = 2). Moreover, we assume that V < 0 and V(0) < 0.
Then, there exists a unique minimizer I of Fy (up to a constant phase in «). One can choose
the phase such that « has strictly positive Fourier transform & > 0.

In particular, we conclude that A is strictly positive. Moreover, by means of the gap equation
(3.1), A'is continuous and thus = > 0.

3.2 Main Results

As explained in the introduction, our main result in this short note is the extension of the
universality (3.3) from d = 3 to lower spatial dimensions d = 1,2 in the limit of weak coupling
(i.e., replacing V' — AV and taking A — 0). We assume the following properties for the
interaction potential V.

Assumption 3.2.1. Let d € { 1,2} and assume that V satisfies Assumption 3.1.1 as well as
V <0, V(0) < 0. Moreover, for d = 1 we assume that (1+|-|°)V € L'(R') for some € > 0.
Finally, in case that d = 2, we suppose that V' € L'(R?) is radial.

By Proposition 3.1.5, this means that, in particular, the minimizer of Fj is unique (up to a
phase) and the associated energy gap at zero temperature (3.2) is strictly positive, = > 0.
We are now ready to state our main result.

Theorem 3.2.2 (BCS Universality in one and two dimensions). Let V' be as in Assump-
tion 3.2.1. Then the critical temperature T.(\) (defined in (3.6)) and the energy gap =(\)
(defined in (3.2)) are strictly positive for all A > 0 and it holds that

EN) 7w

T T e

where v = 0.577 is the Euler-Mascheroni constant.
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To prove the universality, we separately establish asymptotic formulas for T, (see Theorem 3.2.5)
and = (see Theorem 3.2.7), valid to second order, and compare them by taking their ratio.
The asymptotic formula for T, is valid under weaker conditions on V' than Assumption 3.2.1,
because we do not need uniqueness of A. To obtain the asymptotic formulas, we first
introduce two self-adjoint operators V(¥ and W{® mapping L*(S*!) — L*(S*!) and as
such measuring the strength of the interaction ¥ on the (rescaled) Fermi surface (see [35, 38,
39]). To assure that V{? and W{? will be well-defined and compact, we assume the following.

Assumption 3.2.3. Let V satisfy Assumption 3.1.1. Additionally, assume that for d = 1,
(1+(n(1+]-])?)V € LY(R!) and for d = 2, V € L}(R?).

First, in order to capture the strength to leading order, we define V/Sd) via

V00 = s [, VA =~ D)u(@de(o).

where dw is the Lebesgue measure on S*1. Since V € L'(R%), we have that V is a bounded
continuous function and hence Vfﬂ) is a Hilbert-Schmidt operator (in fact, trace class with trace

being equal to (2m)~%|S?!| [a V(x)dz). Therefore, its lowest eigenvalue e{?) := inf spec V(¥
satisfies el(f) < 0 and it is strictly negative if e.g. [V < 0 as in Assumption 3.2.1.

Second, in order to capture the strength of V to next to leading order, we define the operator
W via its quadratic form

(W)
i [ (R = Wil v+ [k
pl<v2 [p? — 1 pl>v2 [p* — 1]
where ¢(p) = Wfsd—l V(p — ig)u(g)dw(q) and u € L*(S* ). The proof of the

following proposition shall be given in Section 3.3.3.

Proposition 3.2.4. Let d € {1,2} and let V satisfy Assumption 3.2.3. The operator W%
is well-defined and Hilbert-Schmidt.

Next, we define the self-adjoint Hilbert-Schmidt operator
d T d 2y1)(d
BN = 5 (WD — X2w)

I

on L?(S%1) and its ground state energy
b (\) := inf spec (B (N)) . (3.7)

I

Note that if e&d) < 0, then also b&d)(/\) < 0 for small enough \. After these preparatory
definitions, we are ready to state the separate asymptotic formulas for the critical temperature
and the energy gap in one and two dimensions, which immediately imply Theorem 3.2.2.

Theorem 3.2.5 (Critical Temperature for d = 1,2). Let u > 0. Let V satisfy Assumption 3.2.3
and additionally eLd) < 0. Then the critical temperature T.., given in Definition 3.1.4, is strictly
positive and satisfies

lim | In o + T =—y—1In <20d)
A—0 TC()\) 92 Nd/zfl de)()\) T ’

where ~y denotes the Euler-Mascheroni constant and ¢; =

_4
1+V2
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Here, the Assumptions on V' are weaker than Assumption 3.2.1, since V(O) < 0 implies that
e/(jl) < 0. We thus have the asymptotic behavior

TC()\) = 2¢, g (1 + O(1>)Neﬁ/(zud/z_lb;(‘d)m)
T
in the limit of small \.

Remark 3.2.6. Theorem 3.2.5 is essentially a special case of [37, Theorem 2]. We give the
proof here for two main reasons.

1. There is still some work required to translate the statement of [37, Theorem 2] into a
form in which it is comparable to that of Theorem 3.2.7 (in order to prove Theorem 3.2.2).
The main difficulty is that the operator W(¥ in [37] is only defined via a limit, [37,
Equation (2.10)].

2. The goal of this paper is to give an exemplary proof of Theorem 3.2.5 in order to compare
it to the proofs of the similar statements in the literature concerning the asymptotic
behavior of the critical temperature in various limits [35, 36, 38].

Theorem 3.2.5 is complemented by the following asymptotics for the energy gap.

Theorem 3.2.7 (Energy Gap for d = 1,2). Let V satisfy Assumption 3.2.1 and let . > 0.
Then there exists a unique radially symmetric minimizer (up to a constant phase) of the BCS
functional (3.5) at temperature T = 0. The associated energy gap =, given in (3.2), is strictly
positive and satisfies

. 1 T -
}E}% (ln <E) + 2 i/ de)(A)) = —1In(2¢,),

where b\") is defined in (3.7) and ¢; = 4f and ca = 1.

12
In other words, we have the asymptotic behavior
Z(\) = 2¢q (1 + 0(1))’uew/(Q#d/Q—lde)(A))

in the limit of small A. Now, Theorem 3.2.2 follows immediately from Theorems 3.2.5 and
3.2.7.

Remark 3.2.8 (Other limits in dimensions d = 1,2). Similarly to the presented results, one
could also consider the limits of low and high density, i.e. © — 0 and p — oo, respectively. We
expect that also here the universality Té ~ = holds. Indeed, one would expect that the proofs
of BCS universality in dimension d = 3 should carry over to one and two dimensions with
some minor technical modifications. Note that, even for the (technically less demanding) case
of a weak coupling limit, which we consider here, there are still some technical details that are
different in dimensions d = 1,2 compared to dimension d = 3. Hence, it is not a trivial matter
to generalize the arguments of [36, 38, 39, 49] to one and two dimensions. Moreover, for the
case of low density, there is even an issue of what exactly low density means in dimensions
one and two: In three spatial dimensions [36, 49], the asymptotic formulas for 7. and = were
obtained for potentials V' with negative scattering length but not creating bound states for
the Laplacian. This latter condition ensures that u — 0 actually corresponds to the limit of
low density. However, in spatial dimensions one and two, attractive potentials, no matter how
weak, always give rise to bound states of —V? + V/, see [65]. Thus for i = 0 the particle
density is non-zero. We will not deal with the low- and high-density limits here.
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Proofs

The rest of the paper is devoted to proving Theorem 3.2.5 and Theorem 3.2.7.

3.3 Proofs

The overall structure of our proofs is as follows: The principal idea is to derive two different
formulas for each of the two integrals

1 1
D7y = — d 3.8
m . .
w @) IS Jipl<van Kr(p) b (3:8)
and
@(A) = L 4 3.9
m(A) = p. (3.9)

1S Jipl<vzr Ea(p)

The first set of formulas is derived by studying the Birman-Schwinger operators
B = \VYVARNVIY? and  BY = AVY2ELN VY2,

associated to the Schrodinger type operators K+ AV and EA + AV, respectively. In particular,
spectral properties of these unbounded Schrodinger type operators naturally translate to their
associated Birman-Schwinger operators, which are compact and as such much simpler to

analyze. The second set of formulas is obtained by just calculating the integrals mff” directly.

Indeed, for the critical temperature we obtain the following asymptotics, which, by combining
them, immediately prove Theorem 3.2.5.

Proposition 3.3.1. Let > 0. Let V satisfy Assumption 3.2.3 and additionally () < 0.
Then, the critical temperature T, is positive and, as A — 0, we have that

m@(T,) = —%E;T)(A) +o(1),
(L) = w2 (In (5 ) +7 +1n (%) + o)) -

For the energy gap we obtain the following asymptotics, which, again by combining them,
immediately prove Theorem 3.2.7.

Proposition 3.3.2. Let V satisfy Assumption 3.2.1 and let x > 0. Then (by Proposition
3.1.5) we have a strictly positive radially symmetric gap function A and associated energy
gap =, which, as A\ — 0, satisfy the asymptotics

= Ay (1+o(1))

mD(A) = _%E;T)(A) +o(1)

mftd)(A) — 42 (111 (A(/\L/ﬁ)> + In(2¢,4) + 0(1))

[1]

With a slight abuse of notation, using radiality of A, we wrote A(,/z) instead of A(,/up) for
some p € S4L.
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In the remainder of this paper, where we give the proofs of Propositions 3.3.1 and 3.3.2, we
shall frequently use the notation F@ : L'(R?) — L*(S*"!) for the (scaled) Fourier transform
restricted to the (rescaled) Fermi sphere,

1 —1 T
d/Q/ Y(z)e VIPTdg

(@ -
(37%) () - G Joa

Note that for an L!-function, pointwise values of its Fourier transform are well-defined by the
Riemann—Lebesgue lemma. (In particular the restriction to a co—dimension 1 manifold of a
sphere is well-defined.)

Remark 3.3.3. In [13], Cuenin and Merz use the Tomas-Stein theorem to define ¥ on a
larger space than L!(IR?). With this they are able to prove a general version of Theorem 3.2.5
under slightly weaker conditions on V. However, we do not pursue this here, see Remark 3.2.6.

3.3.1 Proof of Proposition 3.3.1

Proof of Proposition 3.3.1. The argument is divided into several steps.

1. A priori spectral information on K7, + AV. First note that, due to Theorem 3.1.3
and Definition 3.1.4, the critical temperature T, is determined by the lowest eigenvalue of
K1+ AV being 0 exactly for T =T..

2. Birman-Schwinger principle. Next, we employ the Birman-Schwinger principle,
which says that the compact Birman-Schwinger operator B{? = AV1/2K7'|V|'/2 (denoting
V(2)Y? = sgn(V(2))|V(2)]*/?) has —1 as its lowest eigenvalue exactly for T = T, see [22,
35].

Using the notation for the Fourier transform restricted to the rescaled Fermi sphere introduced
above, we now decompose the Birman-Schwinger operator as

Béd) — )\de)<T)V1/2(S£d))TSLd)|V’1/2 + )‘Vl/ZM’}d)‘V‘l/Z;

where M}d) is defined through the integral kernel

1 1 |
M (2 y) = l /|p (e (e=9) — vl a-n) gp 4

1 .
em(m—y)dp] ]
(2m)? | ipl<vze Kr(p)

pl>v7i Kr
(3.10)
We claim that V20 |V|1/2 is uniformly bounded.

Lemma 3.3.4. Let x > 0. Let V satisfy Assumption 3.2.3. Then we have for all T > 0

(v <c,
HS
where C' > 0 denotes some positive constant and || - || us is the Hilbert-Schmidt norm.

Armed with this bound, we have that for sufficiently small X that 1 + )\V1/2M§d)]V|1/2 is
invertible, and hence

Am&d)(T)
14+ AV2M V|12
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Thus, the fact that Brfpd) has lowest eigenvalue —1 at T' =T, is equivalent to

! VI (F (3.11)

) (yz(d)|y7(1/2
e O8I vy S

having lowest eigenvalue —1, again at 7' =T, as it is isospectral to the rightmost operator
on the right-hand-side above. (Recall that for bounded operators A, B, the operators AB and
BA have the same spectrum apart from possibly at 0. However, in our case, both operators
are compact on an infinite dimensional space and hence 0 is in both spectra.)

We now prove Lemma 3.3.4.

Proof of Lemma 3.3.4. We want to bound the integral kernel (3.10) of M uniformly in T.
Hence, we will bound K7 > [p? — pu|. The computation is slightly different in d = 1 and
d = 2, so we do them separately.

d = 1. The second integral in (3.10) is bounded by

2/ 1 dp 2arcoth\/_
Ipl>v2e [p? — p Vi

For the first integral, we use that |¢" — e™| < min{|z —yl, 2}, [p* — | > /llp| — /A, and
increase the domain of integration to obtain the bound

2 e ||p|pr"ij‘y"2}dp g L1 (s {F )

< 2 (1401 + Vamax{|z], ly]}).

%

We conclude that |M\" (z,y)| < %( + In(1 + /g max{|z|, [y|})). Hence,

[ < (anil(R) IVl [ V@I + (1 + ala])Rde)

d = 2. We first compute the angular integral. Note that [ e?*dw(p) = 27 Jy(|z]), where
Jo is the zeroth order Bessel function. For the second integral in (3.10) we may bound
|p?> — | > cp®. Up to some finite factor, the second integral is hence bounded by

/. ,|J0<p|x_y|>|dp<o/ 1+A|:c— y|dp < Chlz —y| >,

for any 0 < X\ < 1/2since |Jo(x)| < C and /zJy(z) < C, see e.g. [10, (9.55f), (9.57a)]. For
the first integral we get the bound

[ el — ul) — (il -yl d
) g PolPle =y o(vulz —y)[ dp.

Here we use that Jy is Lipschitz, since its derivative J_; is bounded (see e.g. [10, (9.55a),
(9.55f)]), so that

o(@) = Jo()] < Cla =y 3 (| Jo(@)| + [ Jo())** < Clae — |3 (273 4y 1/3).
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That is

p— vl
ol o) = (e ) < €

This shows that the first integral is bounded. We conclude that |M\? (z,y)| < 1+ ﬁ for

any 0 < A < 1/2. Then, by the Hardy-Littlewood—Sobolev inequality [50, Theorem 4.3] we
have that

2
[vena@ w2 = [V @I @) PV )ldedy S IV g + IV 0

forany 1 <p<4/3. O

3. First order. Evaluating (3.11) at 7" = T, and expanding the geometric series to first order
we get

1
V12 ()t
14+ AVY2MED V|12 (87

d e d _ d d
= /\me )(T.) inf spec V,L(L J1+0(\) = )\mL N(T.) e/g (14 0(N)

—1= /\mftd) (T.) inf spec (Sgd)|V|1/2

d) _ z(d d - - d : d
where we used V‘(L ) = SEL )V(gg ))t. Since by assumption eEL) < 0, this shows that mL NT,) —
oo as A — 0.

4. A priori bounds on T,. By (3.8), the divergence of m(® as A — 0 in particular shows
that 7./ — 0 in the limit A — 0.

5. Calculation of the integral m{?(T,). This step is very similar to [35, Lemma 1] and [34,
Lemma 3.5], where the asymptotics have been computed for slightly different definitions of
m,(f) in three and one spatial dimension, respectively. Integrating over the angular variable

2
and substituting s = ‘ﬂ — 1’, we get
I

<d>T=d/21/th N ds.
m(Le) = p o 0 2(T./ ) 25 °

According to [35, Lemma 1],

lim (
T.10

By monotone convergence, it follows that

1 tanh(2 = )
AT/ ) s o —1 m
/o . ds nTc) v n2.

ds +o(1)

- L T 1(1—8d/2_1+ 1—|—8d/2_1—2
m\(T,) = p*! llnT+v—ln2+/0 ) 2(5 )

The remaining integral equals Inc,; and we have thus proven the second item in Proposi-
tion 3.3.1.

Combining this with the third step, one immediately sees that the critical temperature vanishes
exponentially fast, T, ~ e'/*, as X — 0, recalling that e{?) < 0 by assumption.

6. Second order. Now, to show the universality, we need to compute the next order correction.
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To do so, we expand the geometric series in (3.11) and employ first order perturbation theory,
yielding that

(7Y — —1
m,” (Te) A<u‘3£d>v(ggd))f‘u> )2 <u’8,(fl)VM}f)V( I(Ld))T‘u> o) (3.12)

where v is the (normalized) ground state (eigenstate of lowest eigenvalue) of F@V (F(@)f. (In
case of a degenerate ground state, u is the ground state minimizing the second order term.)

This second order term in the denominator of (3.12) is close to W!(Ld). More precisely, it holds
that
im (ufFOV MV ED) ) = (uW D) (3.13)

|
A—0 K

which easily follows from dominated convergence, noting that %T increases to p% as ' — 0.

[p?—p
We then conclude that

; (d) m _
/1\13(1) (m# (T.) + 26&”(}\)) 0,

since (u[ AV — AW |u) = inf spec(AV® — WD) + O(X?) = 55D (A) + O(X*), again
by first-order perturbation theory. This concludes the proof of Proposition 3.3.1. m

We conclude this subsection with several remarks, comparing our proof with those of similar
results from the literature.

Remark 3.3.5 (Structure here vs. in earlier papers on T..). We compare the structure of our
proof to that of the different limits in three dimensions [35, 36, 38]:

» Weak coupling: The structure of the proof we gave here is quite similar to that of
[35], only they do Steps 5 and 6 in the opposite order. Also the leading term for T, was
shown already in [22], where a computation somewhat similar to Steps 1-4 is given.

= High denisty: For ;1 — oo, the structure of the proof in [38] is slightly different
compared to the one given here. This is basically due to the facts that (i) the necessary
a priori bound T, = o(u) already requires the Birman-Schwinger decomposition and
(i) the second order requires strengthened assumptions compared to the first order.
To conclude, the order of steps in [38] can be thought of as: 1, 5, 4 (establishing
T.=0(n)), 2, 3, 4 (establishing T.. = o(u)), 2 (again), 6. Here the final step is much
more involved than in the other limits considered.

= Low density: As above, for the proof of the low density limit in [36] the structure is
slightly different. One first needs the a priori bound 7, = o(u) on the critical temperature
before one uses the Birman-Schwinger principle and decomposes the Birman-Schwinger
operator.! Also, the decomposition of the Birman-Schwinger operator is again different.
For the full decomposition and analysis of the Birman-Schwinger operator one needs
also the first-order analysis, that is Step 2, which is done in two parts. The order of the
steps in [36] can then mostly be though of as: 1, 4, 5, 2, 3, 2 (again), 6.

IStrictly speaking, in [36], it is only proven that T. = O(u) (which is sufficient for applying the Birman-
Schwinger principle), while the full T, = o(u) itself requires the Birman-Schwinger decomposition (see [48,
Remark 4.12] for details).
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3.3.2 Proof of Proposition 3.3.2

Proof of Proposition 3.3.2. The structure of the proof is parallel to that of Proposition 3.3.1
for the critical temperature.

1. A priori spectral information on E + AV. First, it is proven in [35, Lemma 2] that Fy
has a unique minimizer o which has strictly positive Fourier transform. Using radiality of V/, it
immediately follows that this minimizer is rotationally symmetric (since otherwise rotating
a would give a different minimizer) and hence also A = —2\V % @ is rotation invariant. It
directly follows from [35, (43) and Lemma 3] that that EA + AV has lowest eigenvalue 0, and
that the minimizer « is the corresponding eigenfunction.

2. Birman-Schwinger principle. This implies, by means of the Birman-Schwinger principle,
that the Birman-Schwinger operator B(Ad) = AVI2EMV|Y2 has —1 as its lowest eigenvalue.
As in the proof of Proposition 3.3.1, we decompose it as

and prove the second summand to be uniformly bounded.

Lemma 3.3.6. Let 4 > 0. Let V satisfy Assumption 3.2.3. Then, uniformly in small \, we
have
o), <c.
HS

With this one may similarly factor

/\mffl)(A)
14+ V2O V|12

1+BY = 14 V20D v |12y (1 + vl/Q(g;@)ngdva/?) (3.14)

and conclude that

1

(d) ._ (d) (d)11/11/2 1/2 ((d)\t
a7 = Am ARSIV 1+)\V1/2M(Ad)|V|1/2V (8:") (3.13)
has lowest eigenvalue —1.
Proof of Lemma 3.3.6. Note that M, has kernel
Ma(x,y) = ! [/ 1 (eip-(xfy) — eix/ﬁp/\pl-(:v*y)) dp +/ 1 eip-(wy)dp] _
(2m)¢ | Jipl<vzrn Ea(p) p>v2a Ea(p)

We may bound this exactly as in the proof of Lemma 3.3.4 using that Ea(p) > |p?> —p|. O

3. First order. Expanding the geometric series in (3.15) to first order, we see that

1

V2R
L+ V2| v)y2 (37
= Am{?(A)inf spec VP (1 4+ O(X)) = Aelm{P (A)(1 4+ O(N)).

I

1= )\mELd)(A) inf spec (SL‘OH/PM

Hence, in particular, m{®(A) ~ _iﬁﬁ) — 00 as A — 0.

4. A priori bounds on A. We now prepare for the computation of the integral ml(fl)(A)
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in terms of A(y/i). This requires two types of bounds on A: One bound estimating the
gap function A(p) at general momentum p € R? in terms of A(/1z) (see (3.16)), and one
bound controlling the difference |A(p) — A(g)| in some kind of Holder-continuity estimate
(see (3.17)).

Lemma 3.3.7. Suppose that V is as in Assumption 3.2.1. Then for \ small enough

Al = FO) ([, Vo= Viiad(@) + ().

where [ is some function of A and ||n;|| o ga) is bounded uniformly in A.

Proof. Recall that « is the eigenfunction of EA + AV with lowest eigenvalue 0. Then, by the
Birman-Schwinger principle, ¢ = V/2« satisfies

Bad = Av1/2iyvyl/2vl/2a = —¢.
Ea

With the decomposition (3.14) then ¢ is an eigenfunction of

Am{@(A)
14+ AV2MP v |2

Vl/2(g£d))T%r£d) ’V’1/2

of eigenvalue —1. Thus, F(?|V["/%¢ is an eigenfunction of T(" of (lowest) eigenvalue —1.
Now u = |S?~*|71/2 is the unique eigenfunction corresponding to the lowest eigenvalue of V(%)
by radiality of V and the assumption V < 0 (see e.g. [22]). Hence, for A small enough, u is
the unique eigenfunction of Téd) of smallest eigenvalue. Thus,

1

— f(x
i f()1+>\V1/2MXi)\V\1/2

VG = £ (VEEN u+ 26)

for some number f(A). The function &, satisfies [|{y]| 2gay < C' by Lemma 3.3.6. Noting
that A = —2|V/|1/\2¢> and bounding |V/|1/7§A _< IVIIZ2 1]l we get the desired. [

Evaluating the formula in Lemma 3.3.7 at p = /i we get |f()\)| < CA(/i) for A small
enough. This in turn implies that

Alp) < CA(VR). (3.16)

For the Holder-continuity, we have by rotation invariance

‘/V (q—\/_rdw ‘/V|p|€1 V) —

1%
= ‘(273)6[/2 /]Rd dz <V(x) (6ilp|z1 — ei“”xl) /Sd—l e_i\/m'rdw(r))
(

< Cor™Pllpl = lall* [ do (V@) I(aal)| [, e dtr)

for any 0 < e < 1. For d = 2 we have V € L}(R?) and

—i\/pTT
/Sd?1 e dw(r)

(lgler = /pr)de (r)

),

= [Jo(v/alz)| < (Vale]) "2
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For d = 1 we have |z|V € L'(R) for some ¢ > 0 and

—i\/pTT
/S L€ dw(r)

We conclude that with ¢ = 1/2 for d = 2 and small enough ¢ > 0 for d = 1

A(p) = Alg) < CLEN (lIpl = lall + X) < CIAG/E)] (1IIpl = |l + A) -
(3.17)
Additionally, since m{?(A) — oo we have that A(p) — 0 at least for some p € R? by (3.9).
Then it follows from Lemma 3.3.7 that f(A) = 0, i.e. that A(p) — 0 for all p.

= 2 cos(y/file])]| < 2.

5. Calculation of the integral m DA
(3.17), we can now compute the mtegral m

Armed with the apriori bounds (3.16) and

)-
l(f (A). Carrying out the angular integration and

substituting s = "pl ) we have

m(d)(A) _ ,ud/2—1 |:/1 ((1 — s)d/2—1 1 (1 + S)d/2 1 1)

1
+ + ds|
/ ( 2+ x_(s)? \/s2+x+(s)2) }

A(/pv1Es)
-

where z4(s) = By dominated convergence, using that z.(s) — 0, the first
integral is easily seen to converge to

1 _ d/2—1 _ d/2—1 _
/ ((1 s) 1+(1+s) 1>ds:2lncd
0

S S

for A = 0. For the second integral, we will now show that

1 1 1
/ — ds — 0.
0 \/52 + z4(s)? \/52 + 24(0)2
In fact, the integrand is bounded by

1
l\/32+xi(3)2 \/32+xi( )?
_ |22(0)” — 2+(s)?|
V2 + 2a(9)2/s? + 22 (0)2(\/5? + 22(5)2 + /5% + 22(0)2)
Cz(0)(s+ A)
B \/82 + xi(s)Q\/SQ +24(0)?

Y

using the Holder continuity from (3.17). By continuity of V there exists some sg (independent
of A\) such that for s < sy we have z4(s) > cx4(0). We now split the integration into [;°
and fslo. For the first we have

/SO
0

1 B 1
\/32 +x4(s)? \/32 + 24(0)?

(s°4+A)ds = O(xz.(0)°+ A).
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For the second we have

| ds < C/ 0 ‘“”S“ds — O(24(0)).

sz—l—xi

52 + aci(s)z

Collecting all the estimates, we have thus shown that m&d)(A) equals

d/2 1 ne 0
(1 d+/ \/82+A s+ (1))

— 2 e+ In Pty +A(\/ﬁ) o _ ety [ 2Hea
g (1 ot ( Apl ) )= 1<\A(\/ﬁ)!+ <1>).

This proves the third inequality in Proposition 3.3.2.

Combining this with the third step, one immediately sees that the gap function evaluated
on the Fermi sphere vanishes exponentially fast, A(,/jz) ~ et/ as X — 0, recalling that
e{® < 0 by assumption.

6. Second order. To obtain the next order, we recall that Téd) has lowest eigenvalue —1
(see (3.15)), and hence, by first-order perturbation theory,

—1
Al @) ) 22 (ulgi VMLV @) ) + 00

mD(A) = (3.18)

where u(p) = |S9"|71/2 is the constant function on the sphere. Recall that u is the unique
ground state of V{?).

In the second order term we have that

; (d) (d) (d)\T _ (d)

i (B0 VG0 ) = (i)
which follows from a simple dominated convergence argument as for T, noting that A(p) — 0
pointwise.

By again employing first—order perturbation theory, similarly to the last step in the proof of
Proposition 3.3.1, we conclude the second equality in Proposition 3.3.2.

7. Comparing A(,/11) to Z. To prove the first equality in Proposition 3.3.2 we separately
prove upper and lower bounds. The upper bound is immediate from

== inf, Ba(p) = inf, /9" — ul + A < AVi).

pERA

Hence, for the lower bound, take p € R? with y/[p? — p| < E < A(\/fz). Then by (3.17)

Alp) =2 AV =[Ap) ANV = AV =CANB) (lpl = Vil + ) = AlVi) (1+0(1)).

In combination with the upper bound, we have thus shown that = = A(,/i)(1 + o(1)) as
desired. This concludes the proof of Proposition 3.3.2. m

We conclude this subsection with several remarks, comparing our proof with those of similar
results from the literature.
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Remark 3.3.8 (Structure here vs. in earlier papers on Z). We now compare the proof above
to the proofs of the three different limits in 3 dimensions [35, 39, 49]:

= Weak coupling: The structure of our proof here is very similar to that of [35]. Essentially,
only the technical details in Lemma 3.3.6 and the calculation of m&d)(A) in Step 5 are
different.

= High density: For the high-density limit in [39], we needed some additional a priori
bounds on A before we could employ the Birman-Schwinger argument. Apart from
that, in [39] the comparison of A(,/z) and Z are done right after these a priori bounds.
Additionally, since one starts with finding a priori bounds on A, one does not need the
first-order analysis in Step 3. One may think of the structure in [39] as being ordered in
the above steps as follows: 4, 7, 1, 2, 4 (again), 5, 6.

» Low density: For the low-density limit in [49] the structure is quite different. Again,
one first needs some a priori bounds on A before one can use the Birman-Schwinger
argument. One then improves these bounds on A using the Birman-Schwinger argument,
which in turn can be used to get better bounds on the error term in the decomposition
of the Birman—Schwinger operator. In this sense, the Steps 2—4 are too interwoven to
be meaningfully separated. Also, Step 5 is done in two parts.

3.3.3 Proof of Proposition 3.2.4

Note that W@ = FOV MV (FD)!, where M” is defined in (3.10). By Lemma 3.3.4,
V1201{PV1/2 is Hilbert-Schmidt. The integral kernel of W is bounded by

1
W)l < Lo V@M (@, 9)][V(y)|dzdy < gV IV 2V s
(3.19)
d—1
It follows that [|W(?|| ys < %HVH1||V”2M£‘”V”2H Hs- O
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CHAPTER

Boundary Superconductivity in the BCS
Model

Abstract We consider the linear BCS equation, determining the BCS critical temperature,
in the presence of a boundary, where Dirichlet boundary conditions are imposed. In the
one-dimensional case with point interactions, we prove that the critical temperature is strictly
larger than the bulk value, at least at weak coupling. In particular, the Cooper-pair wave
function localizes near the boundary, an effect that cannot be modeled by effective Neumann
boundary conditions on the order parameter as often imposed in Ginzburg—Landau theory. We
also show that the relative shift in critical temperature vanishes if the coupling constant either
goes to zero or to infinity.

4.1 Introduction and Main Result

We study how a boundary influences the critical temperature of a superconductor in the
Bardeen—Cooper—Schrieffer (BCS) model. At superconductor—insulator (or superconductor—
vacuum) boundaries, it is natural to impose Dirichlet boundary conditions on the Cooper-pair
wave function. In several works [1, 12, 15] it was concluded that the presence of the boundary
only affects the Cooper-pair wave function on microscopic scales; in particular, on larger scales
described by Ginzburg—Landau theory (GL), the effect of the Dirichlet boundary conditions
disappears and consequently the GL order parameter should satisfy Neumann boundary
conditions [28, Ch. 7.3], [56, Ch. 6]. This seems to implicitly assume that the effect of the
boundary on the critical temperature is negligible. Recent computations [6, 7, 62] indicate,
however, that the Cooper-pair wave function can localize near the boundary, leading to an
increase in the critical temperature compared to its bulk value. In this paper, we shall give a
rigorous proof of the occurrence of this phenomenon in the simplest setting of one dimension,
with d-interactions among the particles. We consider a system on the half-line, where the
boundary is then just a point.

The increase of the critical temperature in the presence of a boundary has some far-reaching
implications. First of all, it implies that boundary superconductivity in the BCS model sets in
already above the bulk value of the critical temperature. Second, it questions the validity of
the often employed phenomenological GL theory in the presence of boundaries, as detailed in
[63]. Note that GL theory has so far only been rigorously derived from the BCS model for
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4. BOUNDARY SUPERCONDUCTIVITY IN THE BCS MODEL

periodic systems without boundaries [23]. (In the low-density BEC limit at zero temperature it
was shown in [27] that the effective Gross—Pitaevskii theory inherits the microscopic Dirichlet
boundary conditions.)

In mathematical terms, the presence of a boundary manifests itself in a compact perturbation
of a translation-invariant operator, and we shall show that at weak coupling this leads to the
appearance of discrete eigenvalues outside the continuous spectrum. In particular, there is an
effective attraction to the boundary, which is strong enough to create bound states.

In the following, we shall consider a superconductor on a domain €2, with either {2 = R or
=R, = (0,00). The main quantity of interest is the linear two-particle operator

N —

tanh (=5 ) + tanh (=5

H} =

—vi(z — y) (4.1)
)

acting in L2, () = {¢ € L*()[¢(z,y) = ¢(y, z) for all z,y € Q}, where A denotes
the Dirichlet Laplacian on €, and the subscripts = and y, respectively, indicate the variable on
which A acts. The first term is defined through functional calculus. In the second term, 4 is
the Dirac delta distribution, and v > 0 is a coupling constant. Moreover, T" > 0 denotes the

temperature, and p € R is the chemical potential.

As explained in [21], HS characterizes the local stability of the normal state in BCS theory. If
HS$} has spectrum below zero, i.e. inf o( H$}) < 0, the normal state is unstable and the system
in Q is superconducting. If inf o(H$}) > 0, the normal state is locally stable. We define the
critical temperatures T*? as

T8 (v) := inf {T € (0,00)|inf o (Hf}) > 0} . (4.2)
The sample is thus superconducting for T < TS In the translation-invariant case, i.e.
2 =R, it is also known that local stability of the normal state implies global stability [33]; in
particular, the sample is always in a normal state for 7' > T¥ in this case, i.e. TX separates
the superconducting and the normal phases. For the point interactions considered in (4.1),
one can derive the explicit relation

2
1 tanh ( of=ts 1
/ Q(QTB( )) d ) (4.3)
R ¢—p v

o —

Because of translation invariance, Hx has purely essential spectrum. Moreover, Hﬁ* has the
same essential spectrum and possibly additional eigenvalues below it. In particular, for all
v > 0 the critical temperatures satisfy

T (v) = T (v). (4.4)

Our main result states that this inequality is actually strict, at least for small v, proving that
the boundary increases the critical temperature. Moreover, the relative difference between the
two critical temperatures vanishes both in the weak and in the strong coupling limit.

Theorem 4.1.1. Let 4 > 0.

1. Thereis a v > 0 such that
T (v) > T (v) (4.5)

for)0 < v <.
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2. In the weak coupling limit

TE () = T (v)

qlgr(l) TE(0) =0 (4.6)
3. In the strong coupling limit
TR+ (v) — TR (v)
li ; ; = 4.7

This result can be viewed as a rigorous justification of the observations in [62]. Numerics shows
that the ratio 7%+ (v)/T®(v) can be as large as 1.06, see [62, Fig. 2]. Moreover, numerics
also suggests that 7%+ (v) and T®(v) actually agree for v large enough, but it remains an
open problem to show this.

Part 1 of Theorem 4.1.1 follows from the existence of an eigenvalue of H$+ below the spectrum
of HE. It is quite remarkable that a Dirichlet boundary can decrease the ground state energy
and create bound states. In contrast, for two-particle Schrodinger operators of the form
—A,; — A, + V(xz —y), only Neumann boundaries can bind states [18, 59].

While we restrict our attention in this article to the one-dimensional setting with point
interactions, we expect that our methods can be generalized to a larger class of interaction
potentials, as well as to higher dimensions and the corresponding more complicated geometries
possible. We shall leave these generalizations for future investigations, however.

Remark 4.1.2. Our techniques can also be applied in case of Neumann boundary conditions
for A on R.. In this case one obtains the following results instead.

1. Forallv >0
T3 (v) > T, (v) (4.8)

2. In the weak coupling limit

T (v) = TE ()

ql}lir(l) TE(0) =0 (4.9)
3. In the strong coupling limit
T (v) = T (v)
0 < lim TR() < 00 (4.10)

In the remainder of this article we shall give the proof of Theorem 4.1.1. In the next Section 4.2,
we shall use the Birman—Schwinger principle to conveniently reformulate the problem in terms
of bounded operators and compact perturbations. Section 4.3 contains the proof of part 1,
the existence of boundary superconductivity. The analysis of the weak and strong coupling
limits in parts 2 and 3 is the content of Sections 4.4 and 4.5, respectively. Finally, Section 4.6
contains the proofs of some auxiliary Lemmas.
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4.2 Preliminaries

Let us fix the notation

tanh (Z57) + tanh (%)
P’ +q* —2p '

Ly ,u(p,q) == (4.11)

Using the partial fraction expansion for tanh (Mittag-Leffler series), one can obtain the series
representation [21]

1 1
L ,q) =2T : ; 412
TM(p q) %p2_ﬂ_lwnq2_ﬂ+zwn ( )
for w,, = m(2n + 1)T". Moreover, let
tanh (24
Fru(p) == Lr,(p,p) = (T) (4.13)
p—=n
and +
b+—q p—¢q
BT,,LL(p7 q) = Lr, (27 2) (4.14)

In order to control the kinetic energy in H$ the following bounds turn out to be useful. We
shall prove them in Section 4.6.1.

Lemma 4.2.1. Let T > 0. There are constants C\(T', 1), Co(T, ) > 0 such that for all
p,gER
CUT, 1)1+ +¢*) < Lru(p, @)™ < Co(T, p)(1+p° + %) (4.15)

Moreover, for Ty > 0 there is a C3(Tp, i) > 0 such that

Cs(To, u)(T +p* +¢*) < Ly u(p,q) " (4.16)

for all T > Ty and p,q € R.

Since vé(x — y) is infinitesimally form bounded with respect to —A, — A, it follows that the
H$ are self-adjoint operators defined via the KLMN theorem. Moreover, the operators H$
become positive for T large enough. In particular, the critical temperatures defined in (4.2)
are finite in both cases 2 =R and 2 =R,.

Let L%M denote the operator Ly ,(—iV,, —iV,) defined through functional calculus. Of
course, L%M depends on the domain €2 and on the boundary conditions imposed on A. lIts
integral kernel is given by

LY (x g5 y) = /R _dpdata(zp)te(ye) Lru(p, Ote(@'p)ta(y'q) , (4.17)

where for the problem on the full real line tg(x) = \/#276_” and on the half-line with Dirichlet

boundary condition tg, (z) = ﬁ sin(x). For Neumann boundary conditions, one would have
tr, (2) = ﬁ cos(x) instead.

It is convenient to switch to the Birman—Schwinger formulation of the problem. For a more
regular interaction V instead of J, the Birman-Schwinger operator would be V1/2L¥7ﬂV1/2.
For the d-case, it turns out that V'/2 has to be understood as restriction of a two-body wave
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function to its diagonal. Hence, the Birman-Schwinger operator has kernel L}  (x,x; ', 2')

and acts on functions of one variable only. For the two domains under consideration, the
) : R

Birman-Schwinger operators A7, : L*((0,00)) — L*((0,00)) and A7, : L*(R) — L*(R) are

explicitly given by

1
(AFe)@) = — [ dp [ dg [~ dysin(pa)sin(ga)Lru(p, ) sin(py) sin(ay)aly)  (418)
and 1

(A5,8)@) = 15 [dp [ dg [ dye @ 0Ly, (p.g)3(y) (4.19)

Lemma 4.2.2. The condition inf o(HS) < 0 is equivalent to

1
0

supo(Az,) > . (4.20)

for either ) =R or Q@ = R,.

Proof. The quadratic form corresponding to H5 is defined on the Sobolev space Do = H}(02?).
Since the operator L%ﬂ is positive definite, one can write

-1

H%:(L%u) — 08 = — < — vy /LE 6 L%u)\/r. (4.21)
T T,

L

Hence, inf o(HS}) < 0 is equivalent to

|
sup <¢‘ TTRNIT ¢> > (4.22)

Ye(LE )2 Dg,|[¢]2=1

By Lemma 4.2.1, \/L$ , : L*(Q?) — Dq and its inverse are bounded. Hence, (L ,)~"/*Dg =
L?(92%). The projection onto the diagonal H'(Q?) — L*(Q), ¥(x,y) — ¢ (z,x) defines a
bounded operator [2, Thm 4.12]. Let Mg : L*(2%) — L?(Q) be the composition of \/ﬁﬂ
with the projection H'(Q?) — L?(Q). Explicitly, My, is given by

Mot(a) = [ dpdg [ de'dy alap)ta(ea)/Lra(p. tal@ptal/av () (4.23)

where tz() = —=¢~" and tg, (v) = —=sin(v). Note that \/L? d\/LF, = M{ Mg, and
A7, = MqMy,. Hence, o(A?,)\ {0} = o(,/LE ,6,/LE,) \ {0} and the claim follows. [J

From now on we will work with the operators A%u rather than H$®. In momentum space, the
operator AQA,R%M is multiplication by the function

Ar,(p) / Br.,(p,q)dq, (4.24)

where B is defined in (4.14).

Lemma 4.2.3 (Momentum representation of A7, ). With B(p) = 5= Jp B(x)eP*dz we have
for all 3, B> € D(AF )

(511 A%,182) = [ Bi(0)Ar,(0)Ba(p)dp, (4.25)
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4. BOUNDARY SUPERCONDUCTIVITY IN THE BCS MODEL

The following Lemma shows that adding the boundary to the system effectively introduces the
perturbation ﬁBTW where By, is short for the operator with integral kernel By ,(p, q).

Lemma 4.2.4 (Momentum representation of Aﬂ;ij/;). With a(p) = Jo~ a(z) 7= = cos(px)dz we
have for all a1, an € D(AH;;L)

(ol A5 Jo) = [ @) Ar,@)as)dp — - [ [ 30)Br, (r.0) Gafa)dpda.  (426)

Note that here we work with the cosine transform and not the sine transform as might be
expected from (4.18). This is because « is the diagonal of a function which is antisymmetric
under both x — —z and y — —y and hence symmetric under (z,y) — (—z, —y).

Proof or Lemma 4.2.4. Using that sin(pz) sin(gz) = [cos((p — ¢)x) — cos((p + ¢)z)] and
substituting p’ = p — ¢ and ¢’ = p + ¢ gives

(alAflas) = — [ dpdg [ de [ dya (@) sin(pe) sinaz) Lr(p. ) sin(py) sin(ay)as(y)

R o
— 4TTZ/RZ p2 d /0 dx/o dy {al(:p)[cos(p’x) — cos(q'z)]| Lt (p 5 ¢ ’p 5 d )

x [cos(p'y) — COS(Q’y)]az(y)]

_ [ Y (55 - E0) Bra o) [6a) - dale)]. (427)

R2 87

Since B(p/,q') = B(¢',p'), this reduces to

dp'dq’ —
47

(el Az le) = [ LGB0 ) @) - Ga(d). (4.28)

Lemma 4.2.3 follows from an analogous computation.

Since the operator A]%M is multiplication by the function (4.24), it has purely essential spectrum.
The perturbation By, in AEL is Hilbert-Schmidt and thus compact. Hence, o(A},) =

aess(Aﬂwa). It follows that for all T < T%(v) we have sup O'(A]%L) > supo(AF,) > 1/v,
which implies (4.4).

Remark 4.2.5. Choosing Neumann instead of Dirichlet boundary conditions amounts to
changing the minus sign in (4.26) into a plus sign.

It is possible to give a more explicit expression for sup o(A7 ). The following is proved in
Section 4.6.1.

Lemma 4.2.6. For allp € R
/R Br,.(p,q)dg < /R Br,,(0,¢)dg. (4.29)
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Consequently,
ary =supo(Af,) = /BT“ 0,¢)dgq . (4.30)

Hence, in the translation invariant case superconductmty is equivalent to az, > % and the
critical temperature is determined by (4.3). Note that ag, is decreasing in 7. Therefore,
T®(v) is a monotonically increasing function of v.

4.3 Existence of Boundary Superconductivity

From now on we assume that ;2 > 0. In this Section, we show that for weak coupling the
half-line critical temperature is higher than the bulk critical temperature. The idea is to prove
that for 1" below a threshold 7;, > 0 we have

sup O'(AéR;L) > ar,, . (4.31)

Then consider v < ¥ := az, ,. We must have T*(v) < Ty by the monotonicity of 77 (v).

By definition and continuity of inf o(HE ) in T, supo (A + . ) =L = apryu I
. :

TR(v) = T®+(v), we would get a contradiction to (4.31). Thus, T%(v) # T®+(v) and,

together with (4.4), part 1 of Theorem 4.1.1 follows.

To prove (4.31), we use the variational principle with a trial function mimicking the ground
state found in [62]. We choose 9} (x) = e~*l + \g(x), where A € R and the cosine Fourier
transform g(p) = % Jo” g(x) cos(px)dx is real, continuous and centered at 2, /7.

Proposition 4.3.1. Let §(p) = e (PI=2V*/% for some constant b > 0. For ju > 0 there exists
To > 0 such that for T < Tj

. R
max im(y2| A, — ar,IlY7) > 0
As discussed above, Theorem 4.1.1 1 follows directly from Prop. 4.3.1.

Proof. Let h.(z) = e~97l. The cosine Fourier transform of the trial state is ¥ (p) = he(p) +
Aj(p), where h (p) = ;ﬂup We have lim,_o(¢) A7, — ar, Iyd) = limeo(he| A7, —
ar Ilhe) + 2/\11m6_>0<g|AT7H ar, I he) + /\2<g|AT’H — aT,M]Hg). In Lemma 4.3.3 we show

(g\AH;iL —ar,llg) < 0. Maximizing over X thus yields

lime_m(g|AH;L — ar,I|he)?

(4.32)
(9| AT, — ar,llg)

mesclim (02| A%, —ar, 102) = im(h A% —ar, dlh) -

We now compute the two limits. Note that for bounded continuous functions f, we have
lim. 0 [ ﬁﬁf{ )dp = /7 f(0). Moreover, for bounded functions f such that limy, 0 = i)

f(p)

exists, lim_,q [ & Wf( ydp =+ hmp_m . With the momentum space representat|on

of A;Ril in Lemma 4.2.4 we thus obtain

lim(h| A7}, - ar,Jlg) = lim /R dp he(p)g(p) (Ar,u(p) — Az, (0))

. . 1 S| _
— lim | dphe(p) /}R dg —Br,u(p. 4)9(a) = W /R dg Br,.(0,9)g(q). (4.33)
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4. BOUNDARY SUPERCONDUCTIVITY IN THE BCS MODEL

Moreover,

li_r>%<h€|Aﬂ;iL - aT,uH|hE>
. ~ 1 ~
:hm/dehf(p)/quf Br,.(p,4)—Br,.(0,9)) hm/ dp he(p /dq —Br,u(p, 9)he(q)

e—0
T /dq (Br.u(p,q) — Br,u(0,q)) —

T pr—=0p JR

ZBT#(O, 0). (4.34)

In the first summand, we want to interchange limit and integration using dominated convergence.
The following Lemma is proved below.

Lemma 4.3.2. The function f(p,q) = %(BTM(p, q) — Br,,(0,q))

1. is continuous at p = 0 and satisfies f(0,q) = 0 for all q.

2. Thereis a g € L*(R) N L>°(R) such that |f(p,q)| < g(q) for all p and q.
By dominated convergence the first term on the right hand side of (4.34) vanishes and thus
lim_,0(he |ATM — arllhe) = —1Br,(0,0). Combining this with (4.32) and (4.33) yields

1 B
max lim< |AT“ — aTu]IW)?) = —~B1,(0,0) — 1 (Jg Br,u(0,9)3(q )dQ)
X e— 167 (g]AT# — aT,u’9>

4
For " — 0 the term By ,,(0,0) is bounded while the second summand diverges logarithmically,
which is content of the following Lemma.

(4.35)

. _lpl=2v?
Lemma 4.3.3. Let §(p) = e v for some b > 0. Then,

1. %67# < limp_yq (ln ) fR BTM<O Q) ( )dq < 7
-1
2. 0> limy_o <ln %) (g]AH;L —ar,lg) > —oo.

Therefore, the last term in (4.35) dominates for small 7" and makes the right hand side positive.
This completes the proof of Prop. 4.3.1. O

Remark 4.3.4. For Neumann boundary conditions, one obtains lim5_>0<hE|A]§L —arllhe) =
1L7,,(0,0) > 0. Hence, the trial state h, suffices to prove sup U(A;R;L) > ar,, for all T' > 0.

Proof of Lemma 4.3.2. Using (4.12) one obtains the series representation

T 8up — p* + 2pq® — 16iqu,

f(p7 Q) -9 Z 2 2 2 2
8 et ((;‘1) — - iwn) ((”;q) —p+ iwn> ((g) — - iwn> ((g) — 4+ iwn>
(4.36)
where w,, = (2n + 1)7TT From this, claim 1 is easy to see. For part 2, note that by

Lemma 4.2.1, |f(p,q) 1+q =: g1(q) for |p| > \/p. For |p| < /1,

18up — p* + 2pg?|

2 . —_— 2 .
Z ((pquq) ol zwn> ((”zq) —p+ zwn>
8 3+ 2|plg?
< sw plpl + |pl” + 2lplg <00 (437)
(p,q) €R?,[p| </t \/ 2

2 2
p+q ,u] +w3\/{(}72(1> —u} + w
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and
16]qw,|
sup Y ‘ — :
(p.a)eR ((1’2‘1) o zwn) ((%q) —p+ zwn>
16
< sup g - =:cy <00 (4.38)
(p,q)€R? 2
P, \/{(kﬂ;‘ﬂ) _ M} + w?
With these estimates, one obtains for |p| < /1
T(Cl + CQ) 1
|f(p,q)] < > (4.39)

8 nerz (%—u)2+w%

Using that the summands are decreasing in n, we can estimate the sum by an integral

T(Cl + CQ) 1 o0 1
. 9)l < 4 q2 2 2 + /1/2 7 2 27772 de
(Z_M) + wg (Z‘“) + AmiT?x
q2
arctan | L2
T(c1+c 1 ( T )

_ I 14 2) — - > =:g2(q) (4.40)

(% — ,u) + w3 27T — p
Clearly, ¢ = max{gi, g2} € L*(R) N L*=(R). O

The logarithmic divergence in Lemma 4.3.3 originates from the following asymptotics proved
in Section 4.6.2.

Lemma 4.3.5. Let pt > 0. AsT — 0

Fro(p)dp = —— (n £ n2) +o(1) /mF (p)dp+O(1),  (4.41)
/R T,u(p)P—\/ﬁ(nT‘f"Y‘f‘ nﬂ) o(l) = e T.u(P)Ap ; .
where ~y denotes the Euler—-Mascheroni constant.

Proof of Lemma 4.3.3. Part 1. On the interval [—2+/2p,2+/2p] the minimum of g is et
We estimate

N o -
/ Br,(0,p)e” v dp < /R Br,(0,p)g(p)dp

S Nem
. _(\p|—§¢ﬁ>2 |
< Br,,(0,p)d / ———dp, 4.42
< /—2@ 7..(0, p)dp + o Xini>2v2i o v~ AP (4.42)

where we used G(k) <1 and tanh(xz) < 1. The last summand is some constant independent
of T'. Using that Br,(0,p) = Fr,(p/2) and Lemma 4.3.5 the asymptotic behavior for 7" — 0
is

In % +O(1) (4.43)

/NﬁB 0,p)d /QmF (p/2)d 2/mF (p)d
- 7..(0,p)dp = - Tu(p/2)dp = . ru(p)dp =

e
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4. BOUNDARY SUPERCONDUCTIVITY IN THE BCS MODEL

and the claim follows.

Part 2. Recall that
" . 1 .
(G147, ~arulg) = [ dpa(p)* (Aru(p) = ar,)— [ dp3(p) [ dg 1-Bra(p.9)3(a)- (444)

By Lemma 4.2.6, the first summand is negative and thus also (g|A[7RiL —ar,lg) < 0. Moreover,
using Lemma 4.2.6 and 0 < g(p) < 1 we have

. N 1
(9455, — arul)l < [ dpgw)ar,+ [ dpg() [ dg [-Bru(0,0).  (445)

R R R 4
In both terms, the integral over p gives a finite constant independent of T". The claim follows
from the asymptotics in Lemma 4.3.5. [

4.4 Weak Coupling Limit

In [62] it was observed by numerical and non-rigorous analytical computations that the

effect of boundary superconductivity disappears in the weak coupling limit, in the sense that

R
W(Tq’éi@?% — 0 for v — 0. In this section we shall verify this claim.

Recall that the bulk critical temperature T (v) is the unique 7' > 0 such that ar,, = % For
the system on the half-line, we have by continuity of inf o(HE") in T

T+ (v) = min{T € [0, 00)|supo(Ay,) = v '}, (4.46)

We want to invert this function and view v as function of TX+. We define v(7T) :=
(sup a(AH;iL))*l. Note that v o T+ = id and for all 7' > 0 we have T%+(v(T)) < T.

The claim can be reformulated in terms of the operator AEL and ar,, in the following way.

T (0) =T (v)

Lemma 4.4.1. hmvﬁo TJR(’U)

=0« limpoinf o(ar,I — AH;iL) =0.

Proof. By definition, we have sup O’(A;Ri:;) = ﬁ = Grz(o(1)),.- Hence,

! (TR(U(TD

lim 1
im In T
>

. . R .
%1% inf O'(CI,TNM]I — ATL) = ZLIL%(GT’M — aTB(n(T)),u) = W\/ﬂ 7

where in the last equality we used Lemma 4.3.5 and that 7' > T%+(v(T'))
and thus limz_,o TX(0(T")) = 0. Therefore,

T (0(T)) >0

T - T¥(o(T))
. . . RJr — . c —
%13%] inf o(ar,l— Azl) =0 & %13%) TR (o(T)) 0. (4.48)

There exists a sequence (7},) such that 7, — 0 as n — oo and T%+(v(T},)) = T,, for all n.
Therefore,

T - T (o(T)) T+ (0(T) — T (o(T))

lim ———— o = i 4.4
P TR(r) 1 TRe(T) (4.49)
Since limy_,o T®(0(T)) = 0, also limy_,q0(T) = 0. Thus,
Ry _ TR R _ TR
TR (6(T) = TH6(T) _ | TE(0) ~ TH) s
R e) .
and the claim follows. O
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4.4. Weak Coupling Limit

Recall the definition of Ar, in (4.24). With the notation

Eru(p) = 4m (a1, — Aru(p)) (4.51)
we have for all 1) € L*((0, 00))

Am(ar,d = AT)00) = Bru(p)e) + | Bra(p.ahé(a)da. (452)

For the proof of Theorem 4.1.1 2, we need the following intermediate results which are proved
in Section 4.4.1.

Lemma 4.4.2. Let > 0. Then

sup|| By, || < oo (4.53)
70

Lemma 4.4.3. Let I<. denote multiplication with the characteristic function of the interval
[—e€, €] in momentum space. Let > 0. Then

lim Sl%PHngBT,que I< lim Sl%pHngBT,uﬂge | as=0, (4.54)

where ||-|| gs denotes the Hilbert-Schmidt norm.

Lemma 4.4.4. Let 0 < e < 2,/i1. For|p| > ¢ we have
Ca
Er,(p) > c1ln <T> (4.55)
for constants ¢y, co > 0 and T" small enough.
Proof of Theorem 4.1.1 2. By Lemma 4.4.1 it suffices to prove 0 = limy_,inf o(az,,I —

AEL) = limp_, ﬁ inf o(Er,+Br,). By (4.4), we only need to show that limy_,q inf o (Er,,+
Br,) > 0. For § > 0 we can write

1 1
ET,/J, —+ BT,,u -+ ) = ,/ET# —+ ) (]I + \/mBT’M \/m) W/ET,,u + 1) (456)
Tvp“ T,/J,

since E7,,(p) > 0 by Lemma 4.2.6. We shall show that for all § > 0

%1% =0. (4.57)

1 1
JBr,+ 5o [Er, +0

Hence, the operator in the bracket in (4.56) is positive for small 7". This implies that for all
d > 0 for T" small enough we have inf o(E7,, + Br, + 6) > 0. Since § can be arbitrarily
small, the theorem follows.

To prove (4.57), we use the notation of Lemma 4.4.3 and estimate for an arbitrary 0 < € < 2,/1

|

1 1
I, Br, I<.
- \/ET,u+5 M\/ET7M+5
1 1
]I>€ BT,
\ ET#"“; u\/ ET,M"'(S

1 1
H BT+ 5BT’“,/ET,H +0

+

N . (4.58)

1 1
ng BT,M H>€
VEru+08 " \/Bru+4
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4. BOUNDARY SUPERCONDUCTIVITY IN THE BCS MODEL

Now we use that Er, > 0 and Lemma 4.4.4 to obtain

2c1/2
lim < hm ||]I<EBT I || + hm || Br,.]|-
70 ,/ETH+5 ,/ET#+5 8 =0 (6] In(co/T) )12 "
(4.59)
With Lemma 4.4.2 it follows that the second term vanishes and
lim < sup |]I<EBT I . (4.60)
=0 \/ET/L+5 Q/ETM+5 !
Since € > 0 was arbitrary, (4.57) follows from Lemma 4.4.3. O

Remark 4.4.5. In the case of Neumann boundary conditions, the same argument proves
(4.9).

4.4.1 Proofs of Intermediate Results

Proof of Lemma 4.4.2. In order to bound By ,(p,q) we apply the following inequality proved
in Section 4.6.3.

Lemma 4.4.6. For all x;y € R and T > 0 it holds that

tanh(z/T") + tanh(y/T) _ 2
T4y el + [yl

(4.61)

Hence, Br,(p,q) is bounded above by

f(p,q) = & . (4.62)

[ (22)" -l + 1 (552) -

The function f has singularities at the four points where {|p|,|q|} = {0,2/1}. Since f
diverges linearly at those points, the idea is to do a Schur test with a test function of the
form d(p)®, where d(p) is the distance from the singularities in variable p and o € (0,1). We
choose the function h(p) = min{|p|, |2\/z — |p||}'/2. The Schur test gives

B
sup|| Br.|| < sup sup h(p)/ qu < sup h(p / fp.g dq = 2sup h(p f p’
T T »p ®  h(q) p>0
4 63)
where we used that (})l{g’ ) — h(‘pD(lJ‘p‘ 19D for the last equality.

[e.9]

In order to estimate h(p) (

Figure 4.1. The finiteness of the rlght hand side of (4.63) follows from the bounds listed in
Table 4.1. In the following, we prove the bounds in Table 4.1.

In region 1, we have

/°° f(p,Q)qu/OO 4 1 dq</°° 4 dg
2vitr h(q) 2vi+p P2+ @2 = Ap (g = 2/p)'V2 7 T g (g + 20/0) (g — 24/10)%2
1 oo 1 2

< - . dg= . (464
= VR e (a2 T (464
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A
1 2
3
2/l
4 5 6
VA
7 8 9
>
0 VI 2y 3 4/ p
Figure 4.1: The nine regions of the domain of p, ¢ in the proof of Lemma 4.4.2.
Region Expression Upper bound | Proof
1 hp) oy it da Z (4.64)
2/fi+p
2 i )fmax{2fp 2./} fE( ))dq % (4.65)
3 hip) J3 V" L2 dg 2 (4.66)
4 h(p )J’M pf(“)dq B2 (4.67)
2
5 h(p) fm&Q@;I;f{} ,EM)dq éﬁ (4.68)
6 h(p) [z {fzpf } T dg Tz | (469)
7 h(p) fy ? fhqu dq N (4.70)
8 h(p )[{2\[ p2| hiq dg % (4.71)
0 | h(p) Ve e 2 @)
Table 4.1: Overview of the estimates used in the proof of Lemma 4.4.2.
In region 2, we have
2/fi+p 2/f+p 2 2 2 1
/ f(p,Q)dqz/ 1/qugi/ dg
max{2y7p-2yE}  h(q) max{2y/Ji.p— 2f} pq(q —2\/n) playe qlg—2/n)
/ P— 2 (465)
dg=——. (4
= o (g=2ym2"  Jap'?
In region 3, we have p > 4,/u and
/P 2ve f(p,q) /P 2Vp 4 1 d
q= q
N () 2i PP+ —Ap (g — 2y/p)?
4 p=2vk 1 8 8 2
< — — 4% < < 4.66
2 2 /A (q_2\/—)1/2 p (p \/ﬁ) — p3/2 — \/ﬁp1/2 ( )

where we used p > 4,/p1 in the last inequality.
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4. BOUNDARY SUPERCONDUCTIVITY IN THE BCS MODEL

In region 4, we have p < /i and

ir f(pq) [AEP 4 1
/ﬁ h(q) da= /\/ﬁ dp—p* —q¢* (2\//7—61)1/2dq
- /2f p . ! dq
(\/WJFQ)(\/W— q) (21— )12
/2f P 4 1 /Q\f » 4
\/_ (Vi —p? —q) 2y — )1/2 \/‘ (Vi —p? — g2
8 8

= \/ﬁ(\/w_ 2\/ﬁ—|—p)1/2 o \/ﬁ(zﬂ—p)l/“ [(2\/ﬁ+P)1/2 _ (2\/ﬁ_p)1/2}
8[(2\/17—1-]?)1/2—0—(2\//7—]))1/2}1/2 8(4N1/4)1/2 8'21/2

dg

1/2

V2= )V (2p) ' ERYS (2p)?
where we used p < /i in the last inequality.
In region 5, we have
/Wﬁ fp.q) 4 /Wﬁ 2 1
q = s~ N9
max{2y/f-p/Ep-2vi} 1(q) max{2/fi—p./ap-2yE) P4 (2/18 — @)1/
2 [k 1 4 4
< — sl = min{p, \/i, 4y/i—p}’* <
p\/ﬁ max{2./fi—p,/fi.p—2+/Fi} (2\/ﬁ_Q)1/2 p\/— { \/_ \/_ } \/_p1/2
(4.68)
In region 6, we have p > 3,/u and
/min{2\/ﬁ,p2\/ﬁ} f(p’ q) d /min{Q\/ﬁzl)Q\/ﬁ} 4 1 d
= q
Vi h(q) Vi P*+ ¢ —4p (24— q)'/?
4 2V 1 8 8
<t L o
I T S CN 0 e R Wi L Rl PRy v PR Ao L
< s (2y/m)"? < 2778 (4.69)
= VI = B e+ )Y S R
In region 7, we have
/min{\/ﬁvQ\/ﬁ—P} fp,q) . /min{\/ﬁvQ\/ﬁ—P} 4 1 d
0 ) o p—p = g
- 4 /min{\/ﬁﬂﬁp} L 8 min{ /i, 2\/p — p}'/?
= - q= -
4p — p? — min{\ /i1, 2\/p — p}* Jo q'/? 4p — p? — min{ /11, 2¢/f1 — p}?

81/4 4174 .
B e W e

4 .
savae P>V T ey P>V

In region 8, we have p > /i and

VE VE 2 1 9 oo 1
fos flea)g, - L i< sada = —=[2ip . (471)
2vi-pl  h(q) 2yl g 4"/ VE Dieyi-vl ¢ N
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In region 9, we have p > 2,/ and

/min{x/ﬁ,p—%/ﬁ} f(p, q)d B /min{\/ﬁ,p—%/ﬁ} 4 1 4
0 ha) o Pt —aug 2!
4 min{ /Ep—2A} 1 8
< / ——dg = min{p'*, (p — 2¢/p)"/?
p? —4pJo q'/? (p+2yR)(p —2y/1) t VT
2
< (4.72)
Vilp = 2 /i)
O

2 2
Proof of Lemma 4.4.3. Let 0 < ¢ < ,/pi. For 0 < |p|, [q| < € we have 2;1— (%) - (%) >
211 — 2€%. Together with 0 < tanh(z) < 1 for x > 0 we obtain

0< Bru(p,q) < p _1 =X (4.73)
Using this estimate, we bound the Hilbert—Schmidt norm as
2 <[ 2 4
ecBraleis= [ [ Bralarapa < = 5 (4.74)
O

Proof of Lemma 4.4.4. Recall that Er,(p) = 4mar, — Jz Bru(p,q)dg. The idea is to
show that the supremum sup,.. 7w Jg Bru(p,q)dg < oo. Then, for T" — 0 we have

infipse Br,(p) ~ dmag,, ~ % In £.

We shall prove that the following four expressions are finite.

I == sup / Br,u(p,q)dgq (4.75)
p>e,T>0/p+2\/1
2\/p—p
L= sup / Br.(p,q)dgq (4.76)
2/p>p>e,T>070
P—2\/1t
Iy:= sup / Bru(p,q)dg (4.77)
p>2,/p,T>0/0
p+2/B
I, == sup / Br.(p, q)dgq (4.78)
p>e,T>0J |p—2/p

From this, together with By, (p, ¢) = Br,.(|pl, |q|) it follows that

sup Br,u(p, q)dg < 2max{ sup / Br,(p,q)dgq, sup / Br,.(p, q)dq}
|p|>e,T>0 /R 2/a>p>e,1>00 p>2/,T>0 0

S 2max{fg + I4 + Il,I3 + I4 + Il} < 0. (479)

The following inequality is proved in Section 4.6.3.
Lemma 4.4.7. Forxz,y >0

tanh(x) — tanh(y)
r—y

< fe~2min{zy) (4.80)
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4. BOUNDARY SUPERCONDUCTIVITY IN THE BCS MODEL

Applying Lemmas 4.4.6 and 4.4.7 we estimate

Bru(p,q) < {%GXP(_mm{(pJFQ)Q A dp = (p— '} /AT) for |p =2/ <q<p+ 2y
e |(p+q)2—4u|+|(p—q)% —4p| otherwise.
(4.81)
With (4.81) we have
L < /OO : d</°o < (4.82)
su - . _
- P>IE) prova PP+ @ —Ap T T Jeraym ¢ — Ap 1
Furthermore,
2Vp—p 4 4
I, < sup / —————d¢ < sup (2y/u—p)
2\/p>p>e 0 4:“ - p2 - q2 2\/u>p>e \/_ 4# - p2 - (2\/ﬁ - p)2
2 2
= sup —=- (4.83)
2/p>p>e P €
Moreover,
p=2\/1
=2/ 4 4arctan( oo \/ﬁ) arctan (z) .
I3 < sup g, d¢= sup ; < sup ——2 < —
p>2/1i /0 pP+q —4p P>2./f Vp? —4p 0<z<l  \JHT N
(4.84)
In order to estimate Iy, note that (p + ¢)? —4u < 4u — (p — q)® & q < VAu — p?. Let
2 rV4u—p?
I5 = sup - e,u/T*(erq)Q/lleq’ (485)
e<p<2yaT>0 1 J2y/fi—p
2 [2Vetp )
Is = sup = ela=P) /A T=1/Tqq. 486
’ e<p<2ya,T>0 1 Jr/4u—p? (4.86)
and .
P+2/R
p>2ymT>0 L Jp—2y/n

Then we have I, < max{[l; + Ig, I7}. We can bound both I and I; using

I, I7 < sup 2 /pH\/ﬁ PP IAT=1/Tqg — sup 2 /2\/ﬁ /A T-1/T g
p>e,T>0 P—2/1 T>0 T 20

—u/T )
ﬂerﬁ ( ;) = 4\/\/; sup ve " erfi(x). (4.88)

= sup

7>0 ﬁ

Since /7 lim, xe‘$2erﬁ(x) =1, it follows that Ig, I; < o0.

Finally,
2et/T r/Ap—p>+p 92eh/T oo
Is = sup ¢ e_q2/4qu < sup ¢ / e_q2/4qu

e<p<2,/p,T>0 T 2/ >0 2/

2y/met!T 2
= sup ﬁieerfc ( M) = VT sup ze® erfe(z) (4.89)

>0 T T NI
.2

Since 0 < erfe(z) < 1 and for z — oo asymptotically erfc(z) ~ = + o(e™" /x), we have
Sup,- ze* erfc(z) < oo and obtain Iy < oc. O
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4.5 Strong Coupling Limit

The goal of this section is to prove part 3 of Theorem 4.1.1. As for the weak coupling limit, we
first translate the question about the relative temperature difference into a condition on Aﬂzﬁl
and ar,. While the weak coupling limit turned out to be equivalent to a low temperature
limit, the strong coupling limit corresponds to a high temperature limit. In this limit, the
relevant quantities behave as follows.

Lemma 4.5.1. Let 4t > 0. Then

1. limy 0o TR+ (v) = 0
2. limy oo TH(0(T)) = o0
3. limy e TI/QaT,N = a1

+

4. limp_o T? sup O'(A];%L) = sup O'(A]ﬁo)

The proof is provided in Section 4.5.1. We can reformulate Theorem 4.1.13 as follows.

Lemma 4.5.2. . .

+ _
TR () — TE)
ST TR

=0 & sup O'(AIEJ(S) = a1 (4.90)

Proof. By Lemma 4.5.14 and the definition of v(7") we have

supo(Ayg) = lim TV?sup o(Arf,) = lim T 2aze )

T—o0 T—o0

" (4.91)

By Lemma 4.5.12 and 3 we get

T 1/2 TR+ () 1/2
. 1/2 _ . _ . c
Jim T Pars oy = 010 Jim (W) = ay lim ( 0 > (4.92)

where we used Lemma 4.5.11 and o(7*+(v)) = v for the second equality. Since a; > 0, the
claim follows. N

Remark 4.5.3. In the case of Neumann boundary conditions, d := sup a(Alﬁg) —ayo > 0.
With the argument in Lemma 4.5.2, we have

2
L) — Tw) <d+1> —1>0.
1,0

SRR

(4.93)

We are thus left with showing that sup U(A]Eg) = a1p9. Recall that sup aess(AIEE) = Q1.
Hence it suffices to prove that for all ¢ € L*((0, c0))

1 1
WIATS 1) = <= [ [ ol a)lem)—(a)Pdpdg < - [ [00)Pdp | Bio(0.9)dq = |[3av.

(4.94)
In order to show this, we shall bound B; by a positive definite kernel K, in such a way that
the right hand side of (4.94) does not change.
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Lemma 4.5.4. Let K be the operator on L*(R?) with integral kernel
K(p, q) = min{B10(p,0), B1o(q,0)} (4.95)

Then K satisfies

1. Bio(p,q) < K(p,q) for all p,q € R

2. K(p,q) = K(q,p) forall p,q € R

3. K is positive definite

4. Jg K(p.q)dg < Jp K(0,q)dg for all p € R

5. Bio(p,0) = K(p,0) forallp e R

This implies (4.94) and hence part 3 of Theorem 4.1.1 since

5 | B o) - v@)Pdpia < 3 [ [ Ko.a)le(p) - vla)Pdpg
= [ W) [ K(po)dadp - (4]K )
S/le(p)IQ/RK(p,Q)dqdp

<1l [ K0.9)dq = 141 [ Bio(0.q)dq. (4.96)

Proof of Lemma 4.5.4. Property 2 is obvious. Properties 4 and 5 follow from the fact that

K(p,q) = min{F10(p/2), F10(q/2)} = Fro(max{|p|,[q]}/2), (4.97)
where F1o(p) = M has a maximum at p = 0 and is monotonously decreasing for p > 0.

For 1 consider the following inequality, which is proved in Section 4.6.4.

Lemma 4.5.5. For all p,q € R

) (4.98)

tanh <p2§q2
Bio(p,q) £ —

+q
4

Together with the monotonicity of tanh(p)/p for p > 0, it implies 1. For property 3 it suffices
to show that there is a real-valued function ¢ such that

K(p,q) = /R g(r,p)g(r, q)dr. (4.99)
In fact, let g(r,p) = \/h(r)Xxr>p2 with
d tanh(z/2)
h(r) = ———= 0. 4.100
M= g (4.100)
With this choice, (4.99) holds since
e _mmax{p®e’} d tanh(x/2)
Lotgtraar=["  hyar= [ e I
tanh(max{p?, ¢*}/2)
max(p?. ) ) (4100
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4.5.1 Proof of Lemma 4.5.1
Proof of Lemma 4.5.1. For part 1 we have lim,_,o, T2+ (v) > lim, o T5(v) = oo by (4.4).

Part 2 follows easily from part 4: Clearly 4 implies that

: Ryy
Tlgrolo supo(Ar!,) = 0. (4.102)

Since agz o(1)),, = SUp O'(A;R;L) this is equivalent to

flll—{%o aT]CR(U(T)),u =0. (4103)

Using that ar, is strictly decreasing in T" with limy_, a7, = 0, this in turn is equivalent to

lim T¥(0(7)) = oo. (4.104)

T—00

For part 3 we have after substituting ¢/27"/% — ¢

1 tanh ( )
1/2 — N 2 )
T11_I>roloT T =5 Th_r)r;O e - /T dg. (4.105)

Fix some Tj > 0. Since tanh(x)/x is decreasing for x > 0 and bounded by 1, the integrand
is bounded by 2Xjgl<2\/ulTo + F=uTo Xjgl>21/alTo for T > Ty. This is an L' function, so by
dominated convergence we can pull the limit into the integral and arrive at the claim.

Part 4: Let Uy denote the unitary transformation Urib(p) = TY*)(T?p) on L?(R?). We
shall prove that hmT_mHUTTl/QA 1ol = 0, which implies the claim. Note that

U Tl/QAHY*l;U} = Ayl r (4.106)

Therefore, we have
lim U772 A% Up — AT = i AT — AT

L.
< — lim sup ‘/ (B1,u(p,q) — Bio(p, ))dq’ + yp }}L%HBW — Byl (4.107)

T u—0

For the second term on the second line of (4.107) we bound the operator norm by the
Hilbert—=Schmidt norm

1B1s = Bioll* < 11, = Buallts = [ dp [ da(Biu(p.a) = Bio(p.a)*  (4.108)
Using that By, (p,q) < 1/2T and |tanh(z)| < 1 one can bound

1 1 16

Bl,u(pa Q) 7Xp +q2<4u<p7 Q> + Xp2+q2>4,u(p7 Q) min {47 (p2 + q2 _ 4/jj

)2} = fu(p, q)-

(4.109)
By the monotonicity of f, in px, we have for all v < p that (By,(p,q) — Bio(p, q))2 <
2f.(p,q). Since f, is an L' function, dominated convergence implies lim,, || By, — Bi 0| = 0.

e~
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4. BOUNDARY SUPERCONDUCTIVITY IN THE BCS MODEL

For the first term in the second line of (4.107) we estimate

lim sup ’ / (B1u(ps @) — Bio(p, Q))dQI = lim sup
pn=0 p

u=0 p

/R/OH ;,Bl,u(p, Q)dudq‘

0
— By, (p, Q)‘ dg, (4.110)

< hm psup sup 3
v

P velo,u) /R

where we used the triangle inequality and Fubini's theorem in the last step. By (4.12) we may

write
B1 S p, =2 Z 5 5
o o ((mr) = ) () b
1 1
T . S, (4.111)
(p2q> T Wn ((p;q) — -+ zwn)
where w,, = w(2n + 1). Observe that
pP+q\?
‘(2) — = | > waXigeaym + V(24— 1) + wiigoaym (4.112)
and
p—q\*
’(2> — U twy,| > Wy (4.113)

Applying Fubini's theorem to swap integration and summation, we have for all p and u

Xlal>2yf
Flagte |dQ<2Z/dq( S TN (e ey

neL

Xlg|>2ya
w2/ (/4 — p)? + w?

2 00 1 1
=2 ds , (4114
2%[ uﬁ?é (@r+sz+Wmn+¢@%+n@+uﬁ%)] ( )

where we substituted s = w;; !(¢?/4 — ). For u < 1 we therefore obtain a u-independent

bound
sup su 2B (p,q)|d
pp ye[OI’L] R aV 1,v D, q q
<2} 8+2/ < 0. (4.115)
T wlt ($2+1 Vs ,/32
Thus, the last expression in (4.110) vanishes and the claim follows. O
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4.6 Proofs of Auxiliary Results

4.6.1 From Section 4.2
Proof of Lemma 4.2.1. Note that for all p,q € R

1 2
L <min{ —, ——— 4.116
T”u(pu Q) = mln{2T7 |p2 +q2 I 2/,L|} ( )

Hence, LTu(p, q)(l +p? +¢%) < L2 and Ly,(p,q)(T + p* + ¢%) < 222 So with

2T,
Ci(T,p) = and C3(Ty, j1) = =222 the respective inequalities hold.

5To+2u

1+4T+2u

For the remaining inequality, note that Lz, vanishes only at infinity. Let € > 0. There is a

constant ¢; such that Ly ,(p,q) > ¢ for all |p|, |q| < \/max{Qu,O} + €. Moreover, if |p| or
lq| > \/HlaX{Q,u,O} + ¢, we have

tanh +¢€)/2T) — tanh(u/2T c
Len(p.q) > (Clp] 2)/ 2) (1/2T) I (4.117)
P+ q*—2p P2 + ¢ + max{—2pu,0}
In particular, Lz,.(p,q)(1 4+ p* + ¢*) > min{ci, ¢2, co/ max{—2pu,0}}. O
Proof of Lemma 4.2.6. First, we show that for every z,y € R
tanh(z) + tanh(y) < 1 <tanh(x) N tanh(y)) (4.118)
T+y 2 x Y

Since changing © — —x,y — —y does not change the expressions, we may assume without
loss of generality that > |y|. Note that

tanh(z) + tanh(y) 1 . tanh(z)  tanh(y) . tanh(z) tanh(y)
Tty 2z +y) [( +y>< vy >+( y>< z (4119)y )

Since tanh(z)/x < tanh(y)/y, the last term is not positive and the inequality (4.118) follows.

For p € R we therefore have

/RBT#(p, ¢)dg < ;/R {FT,M (p;q> v Fr, <p _ q)] dg = / Fro(q/2)dg.  (4.120)

Since Fr,(q/2) = B(0,q), the claim follows. O

4.6.2 From Section 4.3

Proof of Lemma 4.3.5. Substituting by p?> — =t for p*> > p and p — p? =t for p* < p we
get

o0 tanh oo tanh(t/27T) ntanh(t/27)
Fr,(p)d —2/ d :2/ ————=dt 2/ ———=dt. (4.121
/ r(P)dp p? —u b 0o 2t /utt N 0 2t/ —1 ( )
It was shown in [35, Lemma 1] that
_ # tanh(t/2T) wy T
lim </0 S - ) =y~ (4.122)
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4. BOUNDARY SUPERCONDUCTIVITY IN THE BCS MODEL

By monotone convergence, we observe that

_ # tanh(t/2T) 1 1 pol 1 1 In4
i [F (m_\/p> ar= %(W_w—) =5y 129

as well as
_ [#tanh(t/2T) 1 LY g /u 1 1 LY In (2(\/5 - 1))
im - — = 5|l—7——=-—F = :
T—0.Jo 2t Vit+to \/p o 2t \Vptt i VI
(4.124)
Using monotone convergence once more, we obtain
o tanh(t/2T o0 1 | 241
lim / tanh(t/27) 5, _ / g = 62+ 1) (4.125)
T—0Ju 2t\/ﬂ+t n 21&\//1"‘75 \/ﬁ
Combining all the terms we arrive at the first equality in (4.41). Observe that

Therefore, this term is of order one for " — 0 and [ Fr,(p)dp = f% Fr,(p)dp+0O(1). O

4.6.3 From Section 4.4

Proof of Lemma 4.4.6. In the case zy > 0, the inequality follows immediately from the fact

that |tanh(z)| < 1 for all z € R. In the case zy < 0, let us replace y — —y and assume

without loss of generality that 2 > 5 > 0. Since the function s — ¢~2¢ is convex, we have
€—2y _ e—2x d 0

— 76_

= 2e % 4.127
r—y ds c ( )

s=y

We estimate

2 -2y _ 2z 2 —2y 1
Ty (tanh(z) —tanh(y)) = (x+y) e ¢ < (z +y)e min {2, }

r—y S lteW(r—y)(lde ) T 14e r—y
42y +1/2)e~
< 4.128
<A (4.129)

where we maximized over x in the last step. The maximum of the last expression over y is
attained at the value y = § satisfying e=2¥ = 23 — 1/2. Therefore, we get

r+y
r—y
The function e=?¥ is decreasing in y and 2y —1/2 is increasing. Fory = 1/2 we have e™! < 1/2,

hence the intersection point ¢ satisfies 0 < g < 1/2 . Thus, %(tamh(m) —tanh(y)) < 2,
which proves the claim. O

(tanh(z) — tanh(y)) < 4(2g — 1/2). (4.129)

Proof of Lemma 4.4.7. Without loss of generality, we may assume that y < x. We have

tanh(z) — tanh(y) = cTf T ‘ ¢
er+e T eV4eV (e +e=%)(e¥ + e7Y)
eV = ey o
S QW = 2(6 — € )
Applying (4.127) the claim follows. O
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4.6.4 From Section 4.5

Proof of Lemma 4.5.5. By concavity of tanh(z) for x > 0 for x,y > 0 it holds that

tanh(z) + tanh(y) < tankh (x + y) N tanh(x) + tanh(y) - tanh (’”—;@’)

4.130
2 2(x +y) - x+y ( )

Choosing z = (p + ¢)?/8 and y = (p — ¢)?/8 gives the desired inequality. O
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CHAPTER

BCS Critical Temperature on
Half-Spaces

Abstract We study the BCS critical temperature on half-spaces in dimensions d = 1,2, 3
with Dirichlet or Neumann boundary conditions. We prove that the critical temperature on
a half-space is strictly higher than on R?, at least at weak coupling in d = 1,2 and weak
coupling and small chemical potential in d = 3. Furthermore, we show that the relative shift
in critical temperature vanishes in the weak coupling limit.

5.1 Introduction and Results

We study the effect of a boundary on the critical temperature of a superconductor in the
Bardeen-Cooper-Schrieffer model. It was recently observed [6, 7, 62, 63, 68] that the presence
of a boundary may increase the critical temperature. For a one-dimensional system with
d-interaction, a rigorous mathematical justification was given in [34]. Here, we generalize
this result to generic interactions and higher dimensions. While in dimensions d = 2,3 the
existing numerical works only consider lattice models, our analytic approach allows us to study
continuum models. We compare the half infinite superconductor with shape Q; = (0, co) x R4~!
to the superconductor on €y = R? in dimensions d = 1,2,3. We impose either Dirichlet
or Neumann boundary conditions, and prove that in the presence of a boundary the critical
temperature can increase. The critical temperature can be determined from the spectrum of
the two-body operator

N N—

- tanh (;Aﬁf“) -+ tanh (7_%?“)

Hy

—A\V(zx —vy) (5.1)

actingin L, (2xQ) = {¢) € L*(AxQ)[¢(z,y) = ¥(y,z) for all z,y € Q} with appropriate
boundary conditions [21]. Here, A denotes the Dirichlet or Neumann Laplacian on €2 and the
subscript indicates on which variable it acts. Furthermore, T" denotes the temperature, pu is
the chemical potential, V' is the interaction and X is the coupling constant. The first term in

HS$} is defined through functional calculus.

Importantly, the system is superconducting if inf o( H$}) < 0. For translation invariant systems,
i.e. Q = RY, it was shown in [33] that superconductivity is equivalent to inf o(H$) < 0.
In this case, there is a unique critical temperature T, determined by infa(H%) = 0 which
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separates the superconducting and the normal phase. The critical temperatures T and T'! for
Q =R and Q = Q, respectively, are defined as

TI(\) = inf{T € (0, 00)|inf o (Hy?) > 0}. (5.2)

[

In Lemma 5.2.3 we prove that the inf o(H3¥') < inf o(H$°). Therefore, T*(\) > T°()\). The
main part is to show that the inequality is strict.

Our strategy involves proving infa(H?&()\)) < 0 using the variational principle. The idea is

to construct a trial state involving the ground state of H%?(A). However, H¥° is translation
invariant in the center of mass coordinate and thus has purely essential spectrum. To obtain
a ground state eigenfunction, we remove the translation invariant directions, and instead
consider the reduced operator

— AV (r) (5.3)

acting in LZ(R?), where L%(Q) = {¢ € L>(Q)[(r) = ¢(—r)} (c.f. Lemma 5.2.4). Our
trial state hence involves the ground state of H%é)()\). In the weak coupling limit, A — 0, we
can compute the asymptotic form of this ground state provided that 1 > 0 and the operator
V, o LA(S*1) — LA(S*!) with integral kernel

Vu(p0) = GV (ViD= 0) 54

has a non-degenerate eigenvalue ¢, = sup (V) > 0 at the top of its spectrum [32, 40]. Here,
V(p) = W Jra V(r)e~®7"dr denotes the Fourier transform of V. For d = 1, since L% (S)

V(0)+V (1)

is a one-dimensional vector space, V), is just multiplication by the number ¢, = 2@ -

We make the following assumptions on the interaction potential.

Assumption 5.1.1. Let d € {1,2,3} and x> 0. Assume that

1. V e L}(RY) N LP(R?), where py = 1 for d = 1, and pg > d/2 for d € {2,3},

N

. Visradial, V £ 0,

3. ||V e LYRY),

4. V(0) >0,

5. e, =supo(V,) is a non-degenerate eigenvalue.

Remark 5.1.2. The assumption V' € L'(R?) implies that V is continuous and bounded. The
operator V), is thus Hilbert-Schmidt and in particular compact. Due to Assumption 5 we
have e, > 0. This in turn implies that the critical temperature T?()) for the system on R?
is positive for all A > 0 ([32, Theorem 3.2] for d = 3, and [40, Theorem 2.5] for d = 1, 2).
Furthermore, radiality of V' and Assumption 5 imply that the eigenfunction corresponding to
e, must be rotation invariant, i.e. the constant function. Assumption 5 is satisfied if Vv >0
[32].
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These assumptions suffice to observe boundary superconductivity in d = 1,2. For d = 3, we
need one additional condition. Let

. 1 wer

jd(r; IM) = W /Sd—l € \/ﬁdw (55)
Define
— . . . ™ .
g™ (r ) = /R (ds(z1, 72,733 1) = s (20, 72, 753 1) F (15 10) P X< dzlﬂijs(r;u)?,

(5.6)
where the indices D and N as well as the upper/lower signs correspond to Dirichlet/Neumann
boundary conditions, respectively. Our main result is as follows:

Theorem 5.1.3. Let d € {1,2,3}, > 0 and let V satisfy 5.1.1. Assume either Dirichlet or
Neumann boundary conditions. For d = 3 additionally assume that

/RS V(r)m?/N(r; p)dr > 0. (5.7)

Then there is a \; > 0, such that for all 0 < X < Ay, TH(A\) > T°()).

For d = 3 we prove that (5.7) is satisfied for small enough chemical potential.

Theorem 5.1.4. Let d = 3 and let V satisfy 5.1.11-4. For Dirichlet boundary conditions,
additionally assume that | - |*V € LY(R3) and [zs V (r)r®dr > 0. Then there is a o > 0
such that for all 0 < p < o, Jps V(r)ng/N(r;,u)dr > 0. In particular, if V additionally
satisfies 5.1.15 for small ju (e.g. if V > 0), then for small ju there is a Ay (1) > 0 such that

THA) > T2(N) for 0 < A < Aj(p).

Remark 5.1.5. Numerical evaluation of ?ﬁf suggests that 'Tﬁg,D > 0 (see Section 5.5, in
particular Figure 5.1). Hence, for Dirichlet boundary conditions (5.7) appears to hold under the
additional assumption that V' > 0. We therefore expect that for Dirichlet boundary conditions
also in 3 dimensions boundary superconductivity occurs for all values of . There is no proof
so far, however.

Remark 5.1.6. One may wonder why in d = 1,2 no condition like (5.7) is needed. Actually, in
d = 1, 2 the analogous condition is always satisfied if 1 (0) > 0. The reason is that if one defines

ﬁfl)/N(r;u) by replacing j3 by j4 in (5.6), the first term diverges and mdD/N(r;u) = +00.

Our second main result is that the relative shift in critical temperature vanishes as A — 0.
This generalizes the corresponding result for d = 1 with contact interaction in [34].

Theorem 5.1.7. Let d € {1,2,3}, u > 0 and let V satisfy 5.1.1 and V > 0. Then
THN) — TO(\
TN - TE)

lim =y =0 (5.8)

We expect that the additional assumption V' > 0 in Theorem 5.1.7 is not necessary; it is
required in our proof, however.

The rest of the paper is organized as follows. In Section 5.2 we prove the Lemmas mentioned
in the introduction. In Section 5.3 we use the Birman-Schwinger principle to study the ground
state of H%S(/\)‘ Section 5.4 contains the proof of Theorem 5.1.3. Section 5.5 discusses the
conditions under which (5.7) holds and in particular contains the proof Theorem 5.1.4. In
Section 5.6 we study the relative temperature shift and prove Theorem 5.1.7. Section 5.7
contains the proof of auxiliary Lemmas from Section 5.6.
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5.2 Preliminaries

The following functions will occur frequently

2 2
P+ q —2u
Kr,(p,q) :== 5.9
rulpd) = (77) + tanh (474) 59
and ]
BT,/L(p7 q) : (510)

- Krulp+ap—aq)
We will suppress the subscript ;4 and write K, By when the p-dependence is not relevant.
The following estimate [34, Lemma 2.1] will prove useful.

Lemma 5.2.1. For every Ty > 0O there is a constant Cy(Ty, ) > 0 such that for T > Ty,
Ci(T + p* + ¢*) < Kr(p,q). For every T > 0 there is a constant Cy(T, i) > 0 such that
Kr(p.q) < Co(p* +¢* + 1).

The minimal value of K7 is 27T'. Since | tanh(x)| < 1, we have for all p,q € R and T' > 0

! Cp)
d B < 2\ (511
max{|p? + ¢*> — u|,27T'} an 7(D, D) Xp2+q2>2050 < 1+p2 +¢2 (5.11)

Br(p,q) <

where C'(1) depends only on p.

Remark 5.2.2. Assumption 5.1.11 guarantees that V' is infinitesimally form bounded with
respect to —A, — A, [50, 59]. By Lemma 5.2.1, H defines a self-adjoint operator via the
KLMN theorem. Furthermore, H$* becomes positive for 7" large enough and hence the critical
temperatures are finite.

Let K3 be the kinetic term in H$:. The corresponding quadratic form acts as (1, K$})) =
Jop V(2 y) KR (2, y; 2!,y ) (2, y ) dedyda'dy’ where K (x,y; 2,y') is the distribution

K7 (e y2',y) = /RM Fo(x,p)Fa(y, 9 Kr(p, ) Fo(2', p) Faly', ¢)dpdg, (5.12)
with , = pren)ins
e e e~ 11 F eW1T1) p—tprr

F]Rd(ﬂf,p> = W and FQl (IL'7p) = 21/2(27T)d/2 s (513)

where the —/+ sign corresponds to Dirichlet and Neumann boundary conditions, respectively.
Here, & denotes the vector containing all but the first component of z. (In the case d =1, &
is empty and can be omitted.)

Lemma 5.2.3. Let T)\ > 0, d € {1,2,3}, and let V satisfy 5.1.11. Then inf o(H") <
inf o (H$).
The following Lemma shows that we may use HY instead of H3° to compute T%()\).

Lemma 5.2.4. Let T)\ > 0, d € {1,2,3}, and let V satisfy 5.1.11. Then inf o(H7°) =
inf o(HY).

Remark 5.2.5. The essential spectrum of HY. satisfies inf o o (HY) = 2T (see e.g. [48, Proof
of Thm 3.7]). Due to continuity of inf o(H3) in T (see Lemma 5.4.1), inf o(Hpo(y)) = 0. In

. - . 0
particular, zero is an eigenvalue of HTCO(A)'
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5.2.1 Proof of Lemma 5.2.3

Proof of Lemma 5.2.3. Let S; be the shift to the right by [ in the first component, i.e.
Sip(z,y) = v(((xy —1),%),(y1 — 1,7)). Let ¥ be a compactly supported function in
H .. (R*), the Sobolev space restricted to functions satisfying ¢(x,y) = ¥(y,x). For [ big
enough, S;1 is supported on half-space and satisfies both Dirichlet and Neumann boundary
conditions. The goal is to prove that lim;_,.. (S, H¥' Sip) = (1, HY°1)). Then, since

compactly supported functions are dense in Hsym(RQd), the claim follows.

Note that (Su, V.Siw) = (v, Vib). Furthermore, using symmetry of Kr in p; and ¢; one
obtains

(Spb, K2 Spp) :/RM U (p, ) Kr(p, @) | (0, @) F O((—p1. ), )™ F U (p, (—q1, 9)e™™

+0((=p1, D), (—q1, @)@ F) | dpdg  (5.14)

for [ big enough such that ¢ is supported on the half-space. The first term is exactly (¢, K¥°1/J>.
Note that by the Schwarz inequality and Lemma 5.2.1, the function

(p,q) ~ D(p, ) Kr(p, )0 ((—p1, D), @) (5.15)

is in L'(R??) since ¢ € H'(R??). By the Riemann-Lebesgue Lemma, the second term in
(5.14) vanishes for [ — co. By the same argument, also the remaining terms vanish in the
limit. [

5.2.2 Proof of Lemma 5.2.4

First, we prove the following inequality.

Lemma 5.2.6. For all x,y € R we have

Tty 1 x Y
tanh(z) + tanh(y) = 2 <tanh(a:) * tanh@)) (5.16)

Proofof Lemma 52 6. Suppose |z| # |y|. Without loss of generality we may assume z > |y|.
Since

tanhx Z tanhy

r  tanhx — tanhy S y  tanhx — tanhy (5.17)
2tanh z tanh z + tanhy — 2tanhy tanh x 4+ tanh y '

tanhz—tanhy __ 2tanh x _
tanh z+tanhy = tanhz+tanhy

This inequality is equivalent to (5.16), as can be seen using

— % on the left and right side, respectively. By continuity, (5.16) also holds in the
case |z| = |y|. O

Proof of Lemma 5.2.4. Let U denote the unitary transform Ui)(r, 2) = 5a¢((r +2)/2, (2 —
r)/2) for v € L*(R*®). By Lemma 5.2.6 we have

—(V, +V.)? = (V, = V.)* = 2u

UHQOUT - 2 2 + V(T)
g tanh (%) + tanh (%)
1 —(V,+V.)—u 1| = (V,=V.) 2 —pu
= 2 ( —(Vr-+V)z)2—u V) + 2 : —(V,,._vl)?_u +V(r)| (518)
tanh (=T =) tanh (=7 )
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Both summands are unitarily equivalent to %H% @ I, where T acts on L%(R?). Therefore,
inf o(H$) > inf o (HY).

d
For the opposite inequality let f € H'(R?) with f(r) = f(—r) and . (r, ) = e < 2==1 1l £ ().
Note that [|¢||3 = 4| f||3. Since the Fourier transform of e~ in L%(R) is \/7

T2 tp? we
— d/2 . ~
have 9(p, q) = % ?:1 mf(q). Therefore,

(Ve |UHF UY,) 9d a3 2
]2 :Wdl\f“?/deK (p+qp- U F(g)Pdpdg

d

2d
= K 2dpd 5.19
e /de r(ep+q,ep— (H 1+ 77 ) f(a)Pdpdg, (5.19)

where we substituted p — ep in the second step. By Lemma 5.2.1,

d d
Kr(ep+q,ep—q) (H mlpjg)g) f(@F <C(1+d€+¢) (H 1 ipj

) [f(a)P, (5.20)
which is integrable. With [, (1+ edp; = 7/2 it follows by dominated convergence that

(W UHPUN)  (fIHYS)
1 = .
S 1712

(5.21)

]

5.3 Ground State of Hyy

To study the ground state of H%CO(A), it is convenient to apply the Birman-Schwinger principle.

For ¢ € R? let By (-, q) denote the operator on L?(IR?) which acts as multiplication by Br(p, q)

(defined in (5.10)) in momentum space. The Birman-Schwinger operator corresponding to
HY acts on L(R%) and is given by

AY = VY2Br(-,0)|V]Y2, (5.22)

where we use the notation V1/2(x) = sgn(V (z))|V|/%(x). This operator is compact [32, 40].
It follows from the Birman-Schwinger principle that sup o(A%) = 1/ exactly for T = T?()\)
and that the eigenvalue 0 of H%O(/\) has the same multiplicity as the largest eigenvalue AOTO(/\).

Let F : L'N(RY) — L*(S*!) act as Fu)(w) = 1b(y/fiw) and define O, = VV/2FFF|V|/2 on
L2(RY). Furthermore, let

m,(T) = /0m Br(t,0)t*tdt. (5.23)

Note that m,,(T) = %2~ (In (u/T) + ca) +0o(1) for T — 0, where ¢4 is a number depending
only on d [40, Prop 3.1].

The operator O,, captures the singularity of A% as T'— 0. The following has been proved in
[22, Lemma 2] for d = 3 and in [40, Lemma 3.4] for d = 1, 2.
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Lemma 5.3.1. Letd € {1,2,3} and u > 0 and assume 5.1.1. Then,

sup HAO m,(T)O, < 00, (5.24)

Te(0,00

HS

where ||-|| ms denotes the Hilbert-Schmidt norm.

Thus, the asymptotic behavior of sup o(AY%) depends on the largest eigenvalue of O,. Note
that O,, is isospectral to V,, = FV FT, since both operators are compact. The eigenfunction
of O, corresponding to the eigenvalue ¢, is

U(r) = VY2(r)jalr; ), (5.25)

where j; was defined in (5.5). Note that

jmmwﬁwm»MwﬁMﬂijmﬂ$jvﬂﬂ@m

where J; is the Bessel function of order 0. Furthermore

1 ~
e (%W/Sdl VVal(L0, -, 0) = p))dp = ,gd 1 / r)ja(r; p)*dr (5.27)

The following asymptotics of T2(\) for A — 0 was computed in [32, Theorem 3.3] and [40,
Theorem 2.5].

Lemma 5.3.2. Let u >0, d € {1,2,3} and assume 5.1.1. Then

_ 7! 1
wi®™ i 5) -

Lemma 5.3.1 does not only contain information about eigenvalues, but also about the
corresponding eigenfunctions. In the following we prove that the eigenstate corresponding to
the maximal eigenvalue of A% converges to W.

(TN = 5| =

= lim
A—0

lim
A—0

< 00. (5.28)

Lemma 5.3.3. Let 41 >0, d € {1,2,3} and assume 5.1.1.

1. Thereisa Ny > 0 such that for A\ < Ay, the largest eigenvalue of AOTCO( NS non-degenerate.

2. Let A < Ao and let Wro(y) be the eigenvector of ATO(A) corresponding to the largest
eigenvalue, normalized such that ||Wro(n)ll2 = ||V||2. Pick the phase of Wyo(y) such that
<\IITCO(/\), \Ij> 2 0 Then

1
lim ¥ — Wrognl3 < 00 (5.29)

Remark 5.3.4. Let )y be as in Lemma 5.3.3. By the Birman-Schwinger principle, the
multiplicity of the largest eigenvalue of ATO equals the multiplicity of the ground state of

HTO(A). Hence, HTO has a unique ground state for A < A\g. For d > 2, since HTO( N
rotation invariant, umqueness of the ground state implies that the ground state is radial.
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For values of \ such that the operator H%Q(/\) has a non-degenerate eigenvalue at the bottom
of its spectrum let @, be the corresponding eigenfunction, with normalization and phase
chosen such that Wro(,) = V/2®,. The following Lemma with regularity and convergence
properties of ®, will be useful.

Lemma 5.3.5. Let d € {1,2,3}, u > 0 and assume 5.1.1. For all 0 < \ < oo such that
H%Q( N has a non-degenerate ground state ®,, we have

— _ 1/2
1 |Da(p)| < ﬂ;g\V@A(p)] < %};2”% for some number C'(\) depending on X,

2. p+s ®y(p) is continuous,

3 || ®a]l1 < 00 and || Py |ee < c0.
Furthermore, in the limit A — 0

4. ||<EAXp2>2u||1 = O()\),
5. [|®l = O(1),
6. and in particular || @]/ = O(1).

In three dimensions, because of the additional condition (5.7), we need to compute the limit
of (I))\.

Lemma 5.3.6. Let d = 3, 1 > 0 and assume 5.1.1. Then ||® — js|/oo = O(A\/?) as A — 0.

5.3.1 Proof of Lemma 5.3.3

Proof of Lemma 5.3.3. Part 1: The proof uses ideas from [35, Proof of Thm 1]. Let My =
Br(-,0) —m,(T)F'F. By Lemma 5.3.1, for A small enough the operator 1 — AV/2 My |V |*/2
is invertible for all 7. Then we can write

Amy(T)
1 — AV2Mp|V |12

1 — AAS = (1 = AV2Mp|V|'/2) (1 — V1/2]-“T]-"\V\1/2) (5.30)

Recall that the largest eigenvalue of AOTO(A) equals 1/\. Hence, 1 is an eigenvalue of

Amy, (TP (N))

1/2 1/2
- AVl/?MTo(mVll/?V PEIFIVIY (5.31)

and it has the same multiplicity as the eigenvalue 1/ of A%o(/\). This operator is isospectral
to the self-adjoint operator

Amy, (T9 (A))
1-— )\V1/2MT9(,\)‘V‘1/2

F|V|H? VRAFT (5.32)

Note that the operator difference

1
1 — AVY2Mpo(y |V |12

vl/QMTQ(A)“/‘l/Q

1/2 =+t
1—)\V1/2MT9(,\)|V|1/2V F

(5.33)

FIV|72 VIRFT—y, = \F|V|'/?
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has operator norm of order O(\) according to Lemma 5.3.1. By assumption, the largest
eigenvalue of V, has multiplicity one, and Am,,(T2(\))e, = 1 + O(\) by Lemma 5.3.2. Let
a < 1 be the ratio between the second largest and the largest eigenvalue of V,,. The second
largest eigenvalue of Am,,(T2(\))V, is of order v + O()). Therefore, the largest eigenvalue
of (5.32) must have multiplicity 1 for small enough A, and it is of order 1 4+ O(\), whereas
the rest of the spectrum lies below o + O()). Hence, 1 is the maximal eigenvalue of (5.32)
and it has multiplicity 1 for small enough A.

Part 2: Note that Wyo(y) is an eigenvector of (5.31) with eigenvalue 1. Furthermore, let ¢,
be a normalized eigenvector of (5.32) with eigenvalue 1. Then

i IR4IP 1

Fororyy = V2 5.34
T2 VI2Fiy|la 1 — AVY2 Moy |V [1/2 i (5:34)

c

1
|| (1_)‘Vl/2MT£(A)|V|1/2)
agrees with Wro() up to a constant phase. Since || W0, — ¥||* < ||\i/Tg()\) — ||, it suffices
to prove that the latter is of order O(\) for a suitable choice of phase for ;.
Let ¢ (p) = W. This is the eigenfunction of V), corresponding to the maximal eigenvalue,
and U = VY2 F Ty, In particular, for all ¢ € L2(S?1),

(9, V) < e,l(o, ¢>‘2 + aeu(”¢”§ — (¢, 77Z}>|2) (5.35)
We choose the phase of v such that (¢, %) > 0. We shall prove that ||¢) — ¥[|3 = O(N).
We have by (5.33) and (5.35)

O(N) = (¥, (1 = Amy, (T (N)V,)hn)
> 1= Ay, (T2 (M) e (x, )P = Xy, (T (V) )ave (1 = (9o, ) )
=0\ + (1= a)(1 = [(dr,¥)*) (5.36)

where we used Lemma 5.3.2 for the last equality. In particular, 1 — [{1x, )| = O()). Hence,

1 — (U, )2
1+ me

Using Lemma 5.3.1 and that V'/2FT : [2(S?~!) — L?(R) is a bounded operator, and then
(5.37) we obtain

1
1 — AVY2Mpoy |V [/2

[ —all3 = 2(1 — (¥, ) = 2 = 0(\). (5.37)

VIEFIgy = VIEFIpy 4+ 0(N) = VI2FY + O(V%), - (5.38)

where O(\) here denotes a vector with L?-norm of order O()). Furthermore,

11 = AVY2 Mo [V 72 V2 F gyl — [V F R
< H(l _ )\Vl/QMTCO()\)’V’1/2)—1V1/2]:Tw)\ _ V1/2]_—TwH2 _ O()\l/Q). (5_39)
In total, we have

: [l

G 4B
T VIEF ] + OO)

V1/2 T O AI/Q _ V1/2 1 O A1/2
epty o) = I vy o)

= U +0(\/?) (5.40)

O
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5.3.2 Regularity and convergence of ¢,

In this section, we prove Lemma 5.3.5 and Lemma 5.3.6. The following standard results (see
e.g. [50, Sections 11.3, 5.1]) will be helpful.

Lemma 5.3.7. 1. LetV € LP(R?), wherep=1ford=1,p>1ford=2 andp=3/2
ford =3. Let ¢ € H'(R?). Then V% € L%
2. IfV € L'(RY), and ¢ € L*(R%), then V% € L' and hence m is continuous and
bounded.

3. For L<t, V229, < CIV|2 v
independent of ¢ and V.

2, where s = 2t/(t — 1) and C' is some constant

4. Let f be a radial, measurable function on R and p > 1. Then there is a constant C’
independent of f such that sup,, cpllf(P1; )| ee2)= (1 (0, )lLr@e)< CUFINEprs)
1117 oo () 77

Proof. For parts 1 and 2 see e.g. [50, Sections 11.3, 5.1]. For part 3 let s > 2. Applying the
Hausdorff-Young and Hoélder inequality gives

IV200L, < CIVY2ll, < CIVIR1]2 (5.41)
where 1 = 1/p+1/s and 1 = p/2t +p/2. Hence, s = 2t/(t — 1).
For part 4 we write

171 ony= 27 [P+ 2Pt = 2 [ 1) Psds < 10, e

p1

1 o0
<on [ 1f@Pds+2m [T 1fs)Pss < 2l f + SIS (5.42)

where in the second step we substituted s = /p? +2 and in the third step we used
s < max{1, s?}. O

Proof of Lemma 5.3.5. The eigenvalue equation H%CO(A)(I))\ = 0 implies that

&)A(p) = /\BTCO(A) V2 0)‘//‘5A(p)- (5.43)

Part (1) follows with Lemma 5.2.1 and 5.3.73 and the normalization ||V/2®, ||y = ||¥||2. For
part (2), note that p — Br(p,0) is continuous for 7" > 0. Since ®, € H'(R?), continuity of
V&, follows by Lemma 5.3.71 and 2.

Note that ||®x o < (27) (|5 |1 = (27)~/2(||[@rxp2 <2l + [|Paxp252, 1) In particular,
the second part of (3) and (6) follow from the first part of (3) and (5), respectively. Using
(5.43) and ||[Wro(n)ll2 = [|¥]|2 we obtain

183zl < (T2 S IV 903 oo < Amu(TXODISS V9]l
(5.44)
where m,, was defined in (5.23). In particular, for fixed A, ||[®yXx,2<2,|l1 < 0o and from
Lemma 5.3.2 it follows that ||®x,2<2,|/1 is bounded for A — 0.
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It only remains to prove that ||<I?,\Xp2>2”||1 is bounded for fixed A and is O(\) for A — 0. By
(5.11) Br(p, 0)xp2s2, < C/(1+p?) for some C independent of T". Using (5.43) and applying
Holder's inequality and Lemma 5.3.73,

[Bresals < O H

|VY2W 0 y]lg < CA H
p

V2w, (5.45)
P

L+]-? 1+

where 1/s = 1/p+1/q and ¢ = 2t/(t — 1). For d = 1 the claim follows with the choice
t=p=1 Ford=2V &€ L' for some 0 < € < 1. With the choicet =1 +¢,p =
2t/(t + 1) > 1 the claim follows.

For d = 3, we may choose 1 < ¢ < 3/2 and 3/2 < p < oo which gives

1PAxp252ulls = O(N) (5.46)

for all 6/5 < s < co. We use a bootstrap argument to decrease s to one. Let us use the short
notation B for multiplication with Br(p,0) in momentum space and F : L*(R?) — L?(R%)
the Fourier transform. Using (5.43) one can find by induction that

By Yooy = N (Xp2oou BEVFN) @y xpenon + 3 N (xpeoou BEVENY By x 20, (5.47)

=1

for any n € Z>,. The strategy is to prove that applying sz>QMB’FVFT to an L" function will
give a function in L* N L>, where s/r < ¢ < 1 for some fixed constant c. For n large enough,
the first term will be in L', while the second term is in L' for all n since ®,x,2<, is L'.

Lemma 5.3.8. Let V € L' N L3?*(R3) for some 0 < ¢ < 1/2 and let 1 < r < 3/2 and
feL(R?). Let2>¢qg>rand3/2<t<oo.

1. Then,

N BFVES] < ) || VAL (s40)
where 1/s = 1/t +1/r —1/q and C(r,q) is a finite number. (For s <1, ||||s has to be
interpreted as || f||s = (Jgs | f(p)[*dp)'/*.)

2. Let ¢ = grsGag > 0 and let r/(1+c¢) < s < oco. Then | Xp250, BEVFf|ls <

C(r, )| fl-, where C(r,s) is a finite number.

Proof of Lemma 5.3.8. Part 1: Using (5.11) we have |x,2-2, BFVFTf(p)| < IEPQ IV« f(p)|.
By the Young and Hausdorff-Young inequalities, the convolution satisfies

1V £ll, < Cla. IVl 1l (5.49)

for some finite constant C(q,r) where 1/p = 1/r — 1/q. The claim follows from Hélder's
inequality.

Part 2: For fixed r and choosing ¢, t in the range r < ¢ <3/2+¢cand 3/2+¢/2 <t < o,
s=(1/t+1/r —1/q)"! can take all values in [r/(1 + ¢), 0c]. The claim follows immediately
from part 1. O
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Let n be the smallest integer such that %(ch)n < 1. To bound the first term in (5.47),

recall from (5.46) that [|®yx,250.lls = O(\) for s = 7/5. We apply the second part of
Lemma 5.3.8 n times. After the jth step, we have ||(x,252, BFVET) ®yx,250,]ls = O(X) for

S = £ {ryg7- In the nth step we pick s = 1 and obtain |(Xp2s2u BEV FT)'®) xp2m,ll1 = O(N).

To bound the second term in (5.47) recall that H@szdu\h = O(1). Applying the first part
of Lemma 5.3.8 with r = 1,¢ = ¢ = 3/2 + € implies that

Z)‘j(Xp2>2uBFVFT>jq/)\)\Xp2<2u
=1

1

J
|1+|’2 ||V||3/2+6) ||q)>\Xp2<2M||1=O(/\). (5.50)

< zn: N (0(1, 3/2 + €)

3/2+e

It follows that || ®xx,252,|1 is finite and O()) for d = 3. O

Proof of Lemma 5.3.6. Using the eigenvalue equation (5.43), we write

eip-r .
Oy (1) = ——__d,(p)d
A= v G PP
eip'(r‘fr’)_ei\/ﬁl%\'“—r/) 12, , ,
+ A Broy (0, 0)[V (") Wpon (r')dpdr

Ip|<v/20 (2m)3

i\/ﬁl%‘(r—ﬂ)
6 .

A /p|<m “omp Pro O)VI2(r") (o (') = VV2(r")js (1)) dpds’
VAT (=)

i Ip|< Vi WBTS(A)(P: 0)V (r")js(r")dpdr’ (5.51)

We prove that the first three terms have L>°-norm of order O(\!/2). For the first term this
follows from Lemma 5.3.5. For the second term in (5.51), we proceed as in the proof of [32,
Lemma 3.1]. First, integrate over the angular variables

e (=) _ VAR B (p, 0)dp
/|p<m[ | Braon(p:0)

sin |p||r — 7| sin/p|r — 1’| )
= — Broon(Ipl, 0)|pl=d|p|, (5.52
Fyeas it = | Bros( ol (532

where we slightly abuse notation writing Bz (|p|,0) for the radial function Br(p,0). Bounding
the absolute value of this using | sinz/x—siny/y| < C|lz—y|/|z+y| and Br(p,0) < 1/|p*—pu]
gives

Ipl*
wl<vzi (Ip| + v/1)?

In particular, the second term in (5.51) is bounded uniformly in 7 by

(5.52) < C dp| =: C < 0. (5.53)

C 1/2

AV I ¥zl (5.54)

which is of order O(\).
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To bound the absolute value of the third term in (5.51), we pull the absolute value into the
integral, carry out the integration over p and use the Schwarz inequality in r’. This results in
the bound

Bl
(27)?
By Lemma 5.3.2, Am,,(T?(\)) is bounded and by Lemma 5.3.3, || W70(,) — U||> decays like
A2 for small .

Ao (TLOD IV I [ W) — 9l (5.55)

The fourth term in (5.51) equals Am,, (T2(\))FTFV js, where we carried out the radial part
of the p integration. Recall that j; = F'lg: and Vuls: = e,ls2, where 1g2 is the constant
function with value 1 on S?. Hence, FIFVj; = FV,1g2 = e,j3 and the fourth term in
(5.51) equals Am, (T2(\))e,js. By Lemma 5.3.2, Am,(T2(N))e, = 1+ O(X) as A — 0. Thus,
105 = Jslloo = [Am,(T(N))ew = 1[s]loc + O(X) = O(N). O

5.4 Proof of Theorem 5.1.3

Instead of directly looking at H¥1, we extend the domain to L?(IR??) by extending the wave-
functions (anti)symmetrically across the boundary. Recall that Z denotes the vector containing
all but the first component of x. The half-space operator H¥1 with Dirichlet/Neumann
boundary conditions is unitarily equivalent to

ex d ~ ~
Hy b= K$ — AV (z — y)Xlxl—y1\<\$1+y1| — AV (21 +y1, T — y)X|$1+y1|<|$1—y1| (5.56)

on L*(R4 x R?) restricted to functions antisymmetric/symmetric under swapping x; < —1;
and symmetric under exchange of 2 <> y. Next, we express H, " in relative and center of
mass coordinates r = 2 —y and z = x +y. Let U be the unitary on L?(R??) given by
Uip(r, z) = 272 ((r + 2)/2, (2 — r)/2). Then

ex d ~
Hp = UHMUT = UK U = AV() X <)o) — AV (21, F) X1 <] | (5.57)
on L?(IR*?) restricted to functions antisymmetric/symmetric under swapping r; <> z; and
symmetric in . The spectra of H} and H3" agree.

For an upper bound on inf o(H}), we restrict H} to zero momentum in the translation
invariant center of mass directions and call the resulting operator Hx. The operator H1. acts
on {¢ € LA R4 x R)|¢(r, 21) = (=1, 21) = FY((21,7),71)}. The kinetic part of H1 reads

) . ginr—r)in(a =) )
Kp(r,zi;1", 21) = /}Rd+1 2m)i By (p, (¢1,0))dpdq;. (5.58)

An important property is the continuity of inf o(H~), proved in Section 5.4.1.

Lemma 5.4.1. Let d € {1,2,3} and let V satisfy 5.1.1. Then inf o(HY.) and inf o(Hz)
depend continuously on T for T' > 0.

To prove Theorem 5.1.3 we show that there is a \; > 0 such that for A < Ay, ian(H}gm) <
infa(f]}g(/\)) < 0. Forall T < T%(\) we have by Lemma 5.2.3 that inf o(H}) < inf o(HF°) <
0. By continuity (Lemma 5.4.1) there is an € > 0 such that inf o(Hz) < 0 forall T < T2 ()\)+e.
Therefore, T} (\) > T2 (\).
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To prove that infa(H}o(/\)) < 0 for small enough A, we pick a suitable family of trial states

Ye(r,z1). Let A be such that H:(}o(/\) has a unique (and hence radial) ground state ®,.
According to Remark 5.3.4, this is the case for 0 < A < \g. We choose the trial states

Ve(r, 21) = By (r)e 4 7 @, (21, 7)e M (5.59)

with the — sign for Dirichlet and + for Neumann boundary conditions. Since ®,(r) =
®)(—1) = ®x(—71,7), these trial states satisfy the symmetry constraints and lie in the form
domain of H1. The norm of 1), diverges as ¢ — 0.

Remark 5.4.2. The trial state is the (anti-)symmetrization of ®,(r)e~*l, i.e. the projection
of @, (r)e~*l onto the domain of H}. The intuition behind our choice is that, as we will
see in Section 5.6, at weak coupling the Birman-Schwinger operator corresponding to H¥1
approximately looks like AY. (defined in (5.22)) on a restricted domain. This is why we want
our trial state to look like the ground state ®, of HY projected onto the domain of H}.

We shall prove that lim,_,q (%, ]:f%w)(,\)l/)e) is negative for weak enough coupling. This is the
content of the next two Lemmas, which are proved in Sections 5.4.2 and 5.4.3, respectively.

Lemma 5.4.3. Let d € {1,2,3}, u > 0 and assume 5.1.1. Let \ be such that Hypy(,) has a
unique ground state ®,. Then,

£E%<¢Ea[j[ilf9(>\)¢6> = _2)\(/Rd+1 V(r) _‘q)A(T):Fq)/\(zl’f)‘zx21|<|T1|+|q)>\(21>77)|2] drdz

F 2o /RH éA(O,ﬁ)@,\(O,ﬁ)dﬁ), (5.60)

where the upper signs correspond to Dirichlet and the lower signs to Neumann boundary
conditions. For d =1, the last term in (5.60) is to be understood as T2w®,(0)V®,(0).

For small A we shall prove that the expression in the round bracket in (5.60) is positive.

Lemma 5.4.4. Let d € {1,2,3}, u > 0 and let V satisfy 5.1.1. Let )y be as in Re-
mark 5.3.4. Assume Dirichlet or Neumann boundary conditions. For d = 3 assume that
s V(R)mE™N (1)dr > 0, where M5 was defined in (5.6). Then there is a Ag > Ay > 0
such that for A < \; the right hand side in (5.60) is negative.

Therefore, for small enough e, (we,ﬁ}co()\)we) < 0 proving that infa(ﬁ}co()\)) < 0. This
concludes the proof of Theorem 5.1.3.

Remark 5.4.5. The additional condition [gs V(r)ﬁSD/N(r)dr > 0 for d = 3 is exactly the
limit of the terms in the round brackets in (5.60) for A — 0. Taking the limit amounts to
replacing ®, by js (cf. Lemma 5.3.6).

5.4.1 Proof of Lemma 5.4.1

Proof of Lemma 5.4.1. Let 0 < Ty < T < oo. We claim that there exists a constant Cr, 7,
SUCh that |KT(]), q) — KT/(p, q)| S CTO,T1|T — T/|(1 —l—p2 + q2) for all TO S T, T/ S Tl. To
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5.4. Proof of Theorem 5.1.3

see this, compute

2

9 Kr(p, q) sech (p M) (p* — u) + sech (‘12;“) (¢ — )
KT( Q) - 2772 tanh ( ) + tanh ( ) .

ar
K7 can be estimated using Lemma 5.2.1 and the remaining term is bounded.

(5.61)

The kinetic part K% of HY acts as multiplication by K7(p,0) in momentum space. For
To < T,T" < Ty and 1 in the Sobolev space H'(R?), therefore

(, (K} — K3)¥) < Cryry|T = T[40 1 ey - (5.62)
Similarly, for Ty < T, T" < Ty and ¢ € H'(R?),
(0, (KR — K3) < Cpyy T = T'[|[9]| i gzay.- (5.63)

Set Dy = HY(R?) and D, := {¢ € H}(R*))|[p(x,y) = ¢(y,x) = FY((—x1,%),y)}, where
—/+ corresponds to Dirichlet/Neumann boundary conditions, respectively. Let j € {0,1} and
¢ > 0. There is a family {¢)r} of functions in D; such that |[¢7|s = 1 and (¢p, Hiabp) <
inf o(HZ) + €.

We first argue that there is a constant C' > 0 such that for all T' € [Ty, T} ] : ||[¢r|m < C.
Recall that 27 lies in the essential spectrum of HY. Together with Lemma 5.2.3, (¢p, Hjtpr) <
277 + €. Furthermore, by Lemma 5.2.1, the kinetic part of H% is bounded below by some
constant C(7)(1 — A), where A denotes the Laplacian in all variables. Since the interaction
is infinitesimally form bounded with respect to the Laplacian, there is a finite constant Cy(7p),

such that for all ¢ € D; with |[¢lla = 1, (¢, Hjp) > 0l (1 — Ay — C(Ty) =
D) 4[| g1 — Cy(Tp). In particular, [[¢or]m < Cl(TO)(2T1+e+CQ(TO)) - C.

Let T,T" € [Ty, Ti]. Then
inf o(HY) + € > (Ur, Hiabr) = (r, Hjbr) + (U, Kp — Kpabr)
> inf o(H},) — |T — T'|Cpy 1, C. (5.64)
Swapping the roles of T, T", we obtain
info(H3) — e — |T —T'|Cpy 1, C < info(H3) < info(H}) + e+ |T —T'|Cror,C (5.65)

and thus ' 4 '
info(Hy) — e < Jim inf o(H7,) < info(H7}) + €. (5.66)
'

Since € was arbitrary, equality follows. Hence inf o( H7) is continuous in T for T' > 0. ]

5.4.2 Proof of Lemma 5.4.3
The following technical lemma will be helpful for d = 3.
Lemma 5.4.6. Let V,W € L' N L¥2(R3), let W be radial and let 1) € L*(R3). Then

1 —
R Vo V) .d)|dpdg
1+p%+q~2| ¥ (p1,4)|dpdg

< CIW(0, )| @y |V 3212 < 00 (5.67)

L V)W (0,5 - )

1+ p?

for some constant C' independent of V., W and 1.
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Proof of Lemma 5.4.6. By Lemma 5.3.74, W (0, -) € L*(R?)NL>*(R?). By Young's inequality,
the integral is bounded by
e

CIW (O, )l os) [

5/3
dp: (5.68)

6/5

m(p) dp

1+ p?

By Lemma 5.3.73, [V/2¢3]|g < C|[V||3/3]1l2. Applying Holder's inequality in the j variables,
we obtain the bound

IO [| [ 5 eyt UL P (50
Applying Holder's inequality in p;, we further obtain
. ) 23
CIT (0, ) oo ( L e dpl) V293 (5.70)
The remaining integral is finite. O]

Proof of Lemma 5.4.3. Plugging in the trial state and regrouping terms we obtain

(e, I—if%co()\)zﬁJ =2 Oy (rYe (K (r, 217, 2) —)xV(7’)5(7“—7“’)(5(21—,z{))CD)\(T')e_E‘Zil

R2d+2

T W@‘e‘zll(KT(r, 2151 21) — AV (r)o(r —r')o(z — zi))e‘e"'/1|<1>,\(zi, f’)] drdzdr'dz;

+2/

+ AV (2, f)x|m<‘zl||<I>,\(r)|2e’26‘zl| T CID,\(r)e*'le)\V(zl, f)x‘zl|>|7«1|e’€|”‘<1),\(21, T)

X\Z1|<|7“1||CI)>\( )| 6_2€‘Z1| :F CI)A(T)e_E‘Zl|/\V(T)X\Zl|<|T1|€_E|T1‘(I))\(Zlv 7;)

— AV (21, 7)| @ () 2e 2 £ @y (r)e 2NV (21, 7)e @ (24 f)} drdz, (5.71)

We will prove that the first integral vanishes due to the eigenvalue equation HTO(A)CD,\ 0
as € — 0. For the second integral in (5.71), we will show that it is bounded as ¢ — 0 and
argue that it is possible to interchange limit and integration. The limit of the second integral
is exactly the right hand side of (5.60).

The first two terms in the integrand of the second integral in (5.71) can be bounded by
M PAlIZ |V (7)|X |21 <|r |- This is an L' function, since |- |V € L' and ||®,]|o < oo by
Lemma 5.3.5. The same argument applies to the next two terms as well.

For the fifth term in the second integral, we can interchange limit and integration by dominated
convergence if [par1 |V (7)||®xr(21,7)|*drdz; < oo. Observe that

—

/R o VOl PPdrdz = 202 [ Sa@)IVIO,5~ )81, @)dpdg (5.72)

R2d—-1

According to Lemma 5.3.5(1) the latter is bounded by

— 1
72y S | EVET dpdg (5.7
C o WPy D5 V10.5 = )V P (1. Dl (5.73)
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5.4. Proof of Theorem 5.1.3

For d = 1,2 we bound this by
1
vz |
VIS [, a7

which is finite. For d = 3, (5.74) is finite by Lemma 5.4.6 since W = |V/| is radial and in
L' N L??. Hence, limit and integration can be interchanged for the fifth term in the second
integral in (5.71).

)dpdcj, (5.74)

For the last term in (5.71) we have

D () o€l =\ €l =
/}Rd+1 d,\(r)e V(z,7)e D\ (21, 7)dzdr

2 o
= OA(P) 5253V dpd
T JRd+1 )‘(p) _|_q €2+ 2 22 A(Qh ) paq:
2 _—
- ; Rd+1 ° ( €p1; )1 +q 2 1+p Vq)A(“]l P)dpdql (5.75)

According to Lemma 5.3.5(1) and Lemma 5.3.73, the integrand is bounded by ﬁ(;‘ (1”+‘i]”3|(|1\pl|§ 7.

For d = 1,2 this is integrable, so by dominated convergence and since [ —>dz = 7, this
term converges to the last term in (5.60). For d = 3, the following result will be useful.

Lemma 5.4.7. Let \,T,;u > 0 and d = 3 and let V satisfy 5.1.1. The functions

fpra) = [ 8p)Voa(as, )5 (5.76)

and
9(pr0) = [ B (p1,). (21,0)®x(pr, 5) %01, H)dp (5.77)

are bounded and continuous.

Its proof can be found after the end of the current proof.

We write the term in (5.75) as

2/ flepr, eqr)
mJrz (14 ¢7)(1 4 pi
By Lemma 5.4.7 we can exchange limit and integration by dominated convergence and (5.78)
converges to the last term in (5.60).

)dpldCIl- (5.78)

For the second summand in the first integral in (5.71) we also want to argue using dominated
convergence. The interaction term agrees with (5.75). The kinetic term can be written as
4 1

- B! p 0))® p)d 5)dpd
e A DA T ((ep1, D), (€q1,0))a(eps, p)a(eqr, p)dpday

4 1
- ; dp:d 5.79
W/RQ (1+g})(1 +p%)g(€p1 €0 )dpida (579)

For d = 3, we can apply dominated convergence according to Lemma 5.4.7. For d = 1,2 note
that by Lemma 5.3.5 and Lemma 5.2.1,

_ (R ~ _ 1+p®+¢f
Bt (p, (1,0))|@A(0)[|@aA(@1, B)| < CT,/M(l A0+ ¢ 1+ ~2)HVH w3
VI3
<2 - .
<2rua 1 (580)
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ClIVILwl3 _ e
) 1+ P (L) For d = 1, 2 this is integrable and

we can apply dominated convergence. We conclude that the limit of the second summand in
the first integral in (5.71) as € — 0 equals

Therefore, the integrand is bounded by (

BOH N
A . (BT((O,@,O) - )\<I>,\(O,p)V<I>,\(O,p)> dp = (5.81)

where we used that [; =>dz = 7 and (5.43).
To see that the first summand in the first integral in (5.71) vanishes as € — 0, we use (5.43)

to obtain

62

(€ +qi)?

2 2 _ =~ 4
EARgdﬂ@ﬂﬂﬁh:EAQBf@ﬁW%@Wmﬁ:—éﬂl

- Bz (p. 0)|®:(p) Pdpdg.

(5.82)
Hence, we need to prove that

2

. € —1 A -1 & 2 _

liy [ (e e B 0 (00,0)) = B2 0, 0)[Ba(p)Pdpday =0 (5:83)
We split the integration into two regions with |¢;| > C} and |¢1| < C}, respectively. By
Lemma 5.2.1, we have B! (p, q) < Cy(1 + p* + ¢?). Together with ®, € H'(R?) therefore

2

€ ~ ~
——— B (p, (q1,0)) — Bz (p, 0)||®(p)|*dpd
Lo e T gy B . (01.0)) = B7(0,0)| |80 Pape,

1+ p> + ¢)|0x(p)?

S 202 4
R2,|q1/>C1 qi

dpdg, < Csé?||®y|1%:, (5.84)

which vanishes in the limit ¢ — 0. For the case |¢;| < C, the following Lemma is useful. Its
proof can be found at the end of this Section.

Lemma 5.4.8. Let T,u >0, d € {1,2,3}. The function

1
k(p,q) := P

is continuous at ¢ = 0 and satisfies k(p,0) = 0 for all p € R®. Furthermore, there is a constant

(Br(p,q) — Br(p,0)) (5.85)

C' depending only on T, 11, d such that |k(p,q)| < # for all p, q € R,
Since B — BYp.0) = —— lak@a) oy
Ince T (pJ Q) T (pJ ) BT(p,q)BT(p,O) , We nave

62

Jeons oo T g P 0 (@0,0)) = B! (0,0))|Ba(p) oy
|Q1|X|Q1|<Cl/6 k?(p, (EQIa())) ~ 9

- = d dpd 5.86
Rd+1 (1 + q%)Q BT(p, (eql’ 0))BT(p7 0) | A(p)‘ paq ( )

By Lemma 5.2.1 and Lemma 5.4.8, we can bound the absolute value of the integrand by

41| X|q1<C1 /e ~ || ~
(@At VANl 2—1-22(1) 2<071—|— 2+C2 ) 2 5.87
1+ g2 (I+p"+eq)|Palp)]” < (1+q%)2( p DIeAp)] (5.87)

The latter is integrable since ®, € H'(R?). Thus, by dominated convergence and since
k(p,0) = 0, the integral vanishes in the limit ¢ — 0. O
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Proof of Lemma 5.4.7. For convenience, we introduce the notation D¢(p,q1) = ABr(p,0)
and

Dy(p, 1) = A Br(p, O)BT(]% (CI1>6)) BT((Ch, p),0). (5.88)
For h € {f,g}, Ds(p,q1), Dy(p,q1) < 1+~2 by Lemma 5.2.1 and (5.11). Furthermore,

h(p1,q1) = /W1 V&5 (p1, 5)Dn(p, a1)Vx(q1, p)dp (5.89)

using (5.43).
Lemma 5.4.9. For h € {f,g},

_ c
sup |[Dr((p1, ), @)V @a(w1, )12y < sup | ——5V®a(w1, ) oo. (5.90)
P1,q1,w1ER wiek || 1 + | ’ ’ L1(R2)
Proof. Using Holder's inequality,
_ c
[ Dr((p1;); @)V @a(wr, ) zrrey < ||=——5V Palwy, )
1+ | ’ | L1(R2)

1 Cc - ) . )
< o o o TV () = KB W)k

NAVALCE bop)ds) ([ B0lak) ak

1
L+]-?

2

T+ Pl

sup|[V (k1, ) l[s[a]l1, (5.91)
LT(RQ) k1

2

where 1 = 1/r + 1/s. For this to be finite we need r > 1, i.e. s < oco. By Lemma 5.3.74,
sup,, ||V (q1,)||s < oc. Furthermore ||®,||; is bounded by Lemma 5.3.5. O

The functions f and g are bounded, as can be seen using that HVCDAHOO < C’||V||1/2||\I/Tg(,\)||2
by Lemma 5.3.73 and || W0y |l2 = 1, hence we get that for h € {f, g}

h(pr, )| < CIV 1 sup | Du((p1, ), 01)VBa(qr, -) || g2y (5.92)

p1,q1

which is finite by Lemma 5.4.9. To see continuity, we write for h € {f, g}

|h(p1 + €1,q1 + €2) — h(p1,q1)| <

|

/R (V®A(py + €1, P) — Vch,\( NDu((p1 + €1,5), 1 + €2)V (g1 + €2, p)dp

/ Vo, (p) Di((p1 + €1,5), @1 + €2) (VA(q1 + €2, 5) — V®i(q1,p))dpdk

+ /}R2 @A(P)(Dh((pl +€1,D), 1 + €2) — Di(p, %))‘7(5)\(917]5)(115

] (5.93)

Observe that

e[| Pallolll - V1
(27)d/2
(5.94)

Vos01+1.8) = VE0)| < o [ = UIVE[@0(r)dr <
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With Lemma 5.4.9 and Lemma 5.3.5, we bound the first two terms in (5.93) by C¢; and Ceg,
respectively. Hence they vanish as €, e, — 0. The absolute value of the integrand in the
last term in (5.93) is bounded by HVCDAHOO%VQJA(ql,ﬁ). By Lemma 5.4.9, this is an L'
function. Hence, when taking the limit €1, e5 — 0, we are allowed to pull the limit into the
integral by dominated convergence, showing that also the last term vanishes. Therefore, the

functions f and ¢ are continuous. O]

Proof of Lemma 5.4.8. This Lemma is a generalization of [34, Lemma 3.2] and its proof
follows the same ideas. For |¢| > 1, Lemma 5.2.1 implies the bound |k(p, q)| < %. For
lg| < 1, we use the partial fraction expansion (see [34, (2.2)])

(20 — ¢ — 2p* + Alp - 4)?) — diwnp - 1

k(p,q) = 2T
(-a) 72 ((p+a)° = p—iwn) (0= @) = ptiw,) (P = p = iw,) (P — g + iwy)

(5.95)
where w,, = (2n + 1)7T. Continuity of k follows e.g. using the Weierstrass M-test. Noting
that w, = —w_,,_1, it is easy to see that k(p,0) = 0.

With the estimates

a1~ — 22+ A(p - 1)
(p+a)* = —iw,) (0 — 0) =+ iwy,)

lg| (21 + ¢* + 6p?)

sup
(p,q)€R24,|g|<1

< sup > - =:¢ < oo (5.96)
P \/[(p +q)° —p| + wg\/[(p — )" — | +wd
and
43w, p
sup . '
waer i<t | ((p+q)* = p—iw,) ((p — 0)* =+ iw,)
4
< sup i - =:cy <00 (5.97)
2d
(p.a)€R?,|q|<1 \/[(p +q)? - M} + w2
one obtains
1
|k(p.q)] < 2T(c1i +¢2) Y (5.98)

= (p? — )+ w?

Using that the summands are decreasing in n, we can estimate the sum by an integral

1 00 1
k(p, <A4T(c; + ¢ +/ dx
¥, 0) (e +c2) l(z92 — ) w2 (p?— p)? o+ AnPT2 ]
lp*—pl
1 arctan (7)

=4T(c1 + ¢ + . C 5.99
e (P2 —p)’ +wi 20T |p* — pf Ty %)
for some constant C' independent of p and q. O
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5.4.3 Proof of Lemma 5.4.4

Proof of Lemma 5.4.4. Recall that Upo(y) = V'/2®, with normalization || U7o(y |13 = ||¥[|3 =
Jra V(r)ja(r)*dr, where j; was defined in (5.5). Recall from (5.60) that

_ 5 lin(t5e, Hho o 206) = /R L V()|@(,7)Pdrdzy

_ V(1) ®x(21, 7) F Pa(F)2X|er|<fra drdzy F 27 /]R (0, )VDA(0,5)dp (5.100)

Rd+1

The claim follows, if we prove that the right hand side is positive in the limit A — 0. For
d € {1,2} we prove that the terms on the second line are bounded and the first term diverges
as A — 0. For d = 3 the first term is bounded too, so we need to compute the limit of all
terms. The idea is that in the limit, one would like to replace ®, by j3 using Lemmas 5.3.3
and 5.3.6. We consider each of the three summands in (5.100) separately.

Second term: The second term is bounded by 4|| - |V||1||®,||%,, which is bounded for small
A by Lemma 5.3.5. For d = 3 we want to compute the limit. By Lemma 5.3.6 the integrand
is bounded by 8|V (r)]||75]|% X1 |<[r| for A small enough, which is integrable. By dominated
convergence, the term thus converges to

- /R V() s (21, 7) F s ()2 g . (5.101)
Third term: Using (5.43) the third term in (5.100) equals
F2mA /IROH [VY/2W7003) (0, 5)[* Brooay (0, p), 0)dp (5.102)

For d = 1, this |s bounded by 27 ABro(x(0, 0)HV1/2\IJT0 )[|%. By Lemma 5.3.73 and since
supy Br(0,0) = u , thisis O(\) as A — 0 For d = 2 we use (5.11) to bound (5.102) by

ml\io,

(5.103)
where C'is independent of A. By Lemma 5.3.73 HVlﬁ\IJ\Tg(A)HOO is bounded as A — 0. The
second term in (5.103) thus vanishes as A — 0. For the first term, recall from (5.23) that
Jipz<ap Bro.u((0,5),0)dp = 27mi=>(T7())). By Lemma 5.3.2 the first term is bounded for
small A\. For d = 3, we rewrite (5.102) as

2 [ Brooy(0.5), 00|V P Wiy % + O [
p

P2 <2u 52>2u 1 + P2

Forh [ VP00 5) Bry((0.5), 0)dp
P*>2u

_ ipE-d) _ VA E-D) i »
¥ A/2<2 o V205 (2) )2 Bro((0,9),0) VY *Wqo\ (y)dadydp
p2<2u

VT (D)
FA L[ (VW (0) = Vi) g Bro((0,7), 0)V2 Wi (y)dadydp
Jp?<2u JRS (27T)

i/ -(3-9)
. € ~ 1/2 . ~
F A /p oy /R . ‘/(517)‘73(96)7<27T>2 Bro((0,),0) (V2 Wro(s)(y) — Viis(y) ) dadydp

oIV (D)

i /~2<2# /R6 V(@)js(@) gz Bre((0.9), OV (y)js(y)dudydp. - (5.104)

p
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We prove that the first four integrals vanish as A — 0 and compute the limit of the expression
in the last line.

Using (5.11), Lemma 5.3.73 and Wrzo(,) = V!/2®, the first term in (5.104) is bounded by

1 —
C>‘||V‘H/2||\I/T§(>\)||2 ———V®5(0,) (5.105)
I+ | : | L1(R2)
where C'is independent of A. By (5.91),
H L Va0, <H : 170k lslBale (5.106)
7 Y, - A | sup 1 )31 A(|1 .
1+ | : |2 L1(R2) 1+ | ’ |2 L3/2(R2) k1

By Lemma 5.3.74, sukaHV(kl, )|ls < cc. Furthermore ||, ||; is bounded uniformly in \ by
Lemma 5.3.5. In total, the first term in (5.104) is O(X) as A — 0.

For the second line of (5.104) we use that

sup sup < 00, (5.107)

P (E=0) _ iVAf(E=)
B 0,9),0)dp
A>0 &,jeR? /R?,ﬁ?<2u TS(A)(( p),0)dp

(2m)?

as was shown in the proof of [40, Lemma 3.4]. Applying the Schwarz inequality, the second
line is bounded by CA||V||1|[¥ro(y |3 for some constant C' and vanishes for A — 0.

We bound the third line of (5.104) by

A _ ~ ~
(2m)? /R2,ﬁ2<2u (V20 () = V(@) Brooy (0, 5), )|V P (y) | drdydp
S
< g i ANV o0 | rzcn = s (5:108)

where in the second step we carried out the p integration and used the Schwarz inequality in
z and y. By Lemma 5.3.2, Am%=%(T?()\)) is bounded and by Lemma 5.3.3, [[W70() — ||,

decays like A\'/2. Hence, this vanishes for A — 0. Similarly, the fourth integral in (5.104) is
bounded by

A

S o :
(%)Qmﬁ 2T2ONIVIIVY2 sl W ro) — ¥ lle, (5.109)

which vanishes for A — 0.

For the last line of (/5\.104) we first carry out the integration over z,y and the radial part of p,
and then use that Vj3 is a radial function. This way we obtain

FAm (T2 [ Va(0, Vi) Pdw = Fami=2 T [ [Vl i) fdw
(5.110)
The latter integral equals (|V/|Y/2js, 0, V1/2j3) = e, [gs V(2)s3(z)?dz. By Lemma 5.3.2,

1
. d=2 (0 T 0 _
}E}%) A =T, (N))e, = %%Aln(ﬂ/Tc (A))e, = Pk (5.111)
Therefore, the limit of the last line of (5.104) for A — 0 equals
:FW /R3 V(x)js(x)*dx. (5.112)
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First term: It remains to consider the first term in (5.100). If V' > 0, one could argue
directly using the convergence of ®, in Lemma 5.3.6 for d = 3. However, the analogue of
Lemma 5.3.6 does not hold for d = 1. Instead, the strategy is to use the L?-convergence of
the ground state in the Birman-Schwinger picture, Lemma 5.3.3. This approach also allows us
to treat V' that take negative values.

Switching to momentum space and using the eigenvalue equation (5.43), we rewrite the first
term in (5.100) as

(2m)' /RQH Br(p)V (0,5~ §)Pa(p1, )dpdq = (27)' =5 A2 (Uro(s), Drogy) Urony), (5.113)

where Dy is the operator given by

WD) = [ IVI200)Br(p, 00V (0,5 = ) Br((pr, @), 0)[V[(p1, 4)dpdq (5.114)

for 1 € L?(R?). We decompose (5.113) as

da da
(2m)" 2N (Urogn), Drooy rpn) = (2@1“2(@7“9@) =V, Drooy Vron)

+ (0, Dragyy (g = 9) + (¥, Dyopy ) ). (5.115)

Recall that by Lemma 5.3.3, || U0 — W[, = O(A/2). The strategy is to prove that || Dr||
and (¥, DpV) are of the same order for 7' — 0. Then, the positive term (¥, Do) V)
will be the leading order term in (5.115) as A — 0. The asymptotic behavior of || Dr|| and
(U, Dr¥) is the content of the following two Lemmas. These asymptotics strongly depend
on the dimension and this is where the different treatment of d = 3 versus d € {1,2} in
Theorem 5.1.3 originates.

It will be convenient to introduce the operator D5 as

W, D5y = [ [VI20(p) By (p,0)V (0, 5-3) Br((p1, @), Ol VI /20 (pr, @) dpdd

Ip2<2p,|(p1,@) 1> <2p,p <p
(5.116)

for 1 € L?(R%). Furthermore, for d = 2 we define for 0 < § < j the operator D} as

<¢,D%¢>=/ V[120(p) Br(p, 0)V (0, pa—g2) Br((p1, @), 0)[V[/2(p1, 2)dpelgs

,u—5<p%<u,p%<26,q§<25
(5.117)
for ) € L*(R?).

Lemma 5.4.10. Let p > 6 > 0 and let V satisfy 5.1.1. There are constants C, T, > 0
such that for all 0 < T < Ty ford =1 ||Dr|| < C/T, ford =2 ||Dr|| < C(Inpu/T)? and
| Dy — D&|| < C(Inpu/T)?, and ford = 3 || Dr|| < C(lnpu/T)? and | Dy — D3| < Clnp/T.

Lemma 5.4.11. Let ;x> 0 and let V satisfy 5.1.1. Recall that U = V''/2j,. There are con-
stants C, Ty > 0 such that for all0 < T < Ty, (U, DyW) > C/T ford =1 and > C(In u/T)?
for d = 2. For d = 3, limy_,o(27) "Y/*A2(W, Do\ ¥) = fra V (r)js(z1, 7 p)?drdzy.

For A — 0, by Lemma 5.3.2, In(u/T?()\)) is of order 1/, hence the last term in (5.115)
diverges for d = 1,2. For d = 3 we get the desired constant by Lemma 5.4.11. O
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Proof of Lemma 5.4.10. Assume that T/u < 1/2. We treat the different dimensions d
separately.

Dimension one: Note that
6, Dr)| = [VO)| [ Br(p,0*I[VI26() Pdp < [VIE [ Br(p,0/dpllo[3,  (5.118)

where we used Lemma 5.3.7. Recall from (5.11) that Br(p,0) < min{ﬁ,%}. We
estimate the integral

1 le\<f—* + Xﬂ+ - <p<2VH
Br(p,0)dp < | W
/]R 7(p,0) VimL<ppl<yi+ L AT? pllpl = /1)
1
+/ ——_dp (5.119
P>2./11 (p2 - M)Q ( )

The first term equals (,/7)~". The last term is a finite constant independent of T'. In the
second term we substitute ||p| — /| by  and get the bound

2/; M;de - jﬁ(l/T —1/p) (5.120)

Dimension two: Using the Schwarz inequality we have

W, Dr) < CIVIE [ Bro(p. 0)Bro((pr.0). 0)dpag|o]3 (5.121)

The integral can be rewritten as

2
/]R ( /]R BT’upi(pz,O)d}b) dpy, (5.122)

where Br, here is understood as the function on R x R instead of R? x R2. Similarly,

[, (Dr=D3)0)| < CIVIE [ (1=X,sept s cas) B0, 0) Bru{ (b1, @), 0)dpd
(5.123)

We prove that (5.122) and (5.123) are of order O(In(u/T)?) and O(In(u/T)?) for T — 0,
respectively. To bound the integrals we consider three regimes, p? < u—T, u—T < p? < pu+T,
and 1+ T < p?. Corresponding to these regimes, we need to understand [ Br ,.(p,0)dp for
T/p<1l, =1<p/T <1, and u/T < —1.

In the first regime, there is a constant (', such that for all T/ < 1

o
’\/ﬁ /R Br,(p,0)Xp2<2,dp — 21n T‘ + ‘\/ﬁ /R Br,,(p, 0)xp252,dp| < Cy (5.124)

This follows from rescaling /jt [z Br,.(p,0)dp = [z Br/u1(p,0)dp and applying [34, Lemma
3.5]. For the second regime, we rewrite

/RBT’M(p, O)dp \/_/ tanh pp __IUI/;;T)/Q) dp (5.125)
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Since tanh(z)/x < min{1,1/|z|} the latter integral is uniformly bounded for |u/T| < 1,

Cy
B 0)dp < —=. 5.126
/]R Tau(pa ) p_ \/T ( )

For the third regime, it follows from (5.125) that

1 1 Cs
Bru(p,0)ap < —= [ dp=—= [ dp = 7=
/]R T,u(p )p \/T ]Rp2—,u/T p \/__N rRP?+1 P —u

Combining the bounds in the three regimes, we bound (5.122) from above by

(5.127)

21D = pl +Cl 02 CQ
/ ( ( ) )dp1+/ —de1+/ =5 dp,
lp1|< V=T pt— pi VE=T<|pi|<vp+T T’ VEFT<|pi| P1 — u( 128)
5.
The first integral is bounded above by
1 2 1
21n<>—|—0) / dpr. 5.129
( 7)) Jwevier =i (5129)

Since

/| L ap :\}ﬁm (2“_T+ V“(“_T)) — O(n(y/T)),  (5.130)

p1l<vu-T /L—p% T

the first integral in (5.128) is of order O(In(x/T)?). In the second integral, the size of the
integration domain is 27'/,/i + O(T?), so the integral is bounded as T — 0. The third

integral equals

> (ou+ T+ Jup+T

Ci gy (21 MBI _ o), (5.131)
\/ﬁ T

In total (5.122) is of order O(In(u/T)3).

For the integral in (5.123) we obtain the upper bound similar to (5.128). The main difference is
that in the regime \/u — 0 < |p1| < /i — T, at least one of the variables p,, p), is constrained

to absolute values larger than v/20 > /2(u — p?), and thus for the integration over this

variable there will be no In (%p%) contribution from (5.124). The upper bound for (5.123) is

(2m (42) +Cl) . 2 (210 (42 +01)C
/|p1<\/ﬂ - pl b +/\/ﬂ<|m|<m - pl

2

dp,

2

_|_/ —2dp1+/ dp, (5.132)
Vi—T<|pi|<vp+T T VEFT<|p1| P} — [

We have already seen above that the last two integrals are of order O(1) and O(In p/T'), respec-
tively. The first integral in (5.132) is bounded above by (2 In ( ) + Cl) pal<o/i5 M%p%dpl =
O(In(p/T)?). Similarly, the second integral in (5.132) is of order O(In(u/T')?) by (5.130).

Dimension three: For d = 3, we first prove that || D5| = O(In(/T)?). We bound (5.116)
using the Schwarz inequality

(0, D7) < VI |W”2/ Xip2<2u) (o1, Dl <24t <p B1u(P: 0) Bru((p1, G), 0)dpdg.  (5.133)
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The integral can be rewritten as
2
Vi \ 2u—p3
47r2/ (/ ! BT,,u—p% (t, O)tdt) dpl (5134)
0 0

Substituting s = (t* + p? — u)/T gives

Vi (/T tanh(s) 2 #/T tanh(s) 2
2 / < / ds> dpy < /i / ds 5.135
0 —(u=p})/T S LS ViR —u)T 8 ( )

Since tanh(z)/x < min{1,1/|z|}, this is bounded by

VAT (14 In(p/T))?. (5.136)

To bound || Dy — D5||, we distinguish the cases were p? and (pi, G)* are larger or smaller than
2p. Using (5.11) we bound

|<¢ (DT_D<) >| < ||V|| ||1/)||2/ X|p|2<2u\(p1 q)\<2up1>p,BTM(p7 O)BT;L((pla ),O)dpdq

C
F2AVILIIE [, 21V 0.5 = DIBro(pr 0. 000022l
— C R —
V|1/2 0,0 — Q)| 5——=—— V|2 7)dpdg, (5.137
+/Rs! | w(p)pQH (0,p q)\p%+q~2+1! 24 (p1, ¢)dpdg, (5.137)

where C'is a constant independent of T'. For the first term, proceeding similarly to (5.134)-
(5.136), the integral equals

Nom /T 2 Nom
7r2/ m </u tanh(s)d5> dpy < 7T2/ uln(
Vi

Pi-w)/T S Vit
For the second term in (5.137) we apply Young's inequality to bound the integral by

2
dp;, < 0o 5.138
Pt — u) ' (5.138)

1V (0, )12y [S? | (T) (5.139)

LB/Q(RQ)

1
L4 [2

which is O(In p/T'). The third term in (5.137) is bounded by C/|[||3 by Lemma 5.4.6. [

Proof of Lemma 5.4.11. By assumption, 0 < e, = W Jsa— ‘A/(p—\/ﬁw)dQ(w) = Viallp| =
V/1t). By continuity of Vju(p) in p, there is an € > 0 such that Vijs(p) > 3V ija(|p| = /i) > 0
for all \/it — € < [p| < /i + €. In the following we treat the different dimensions separately.

Dimension one: Suppose T < ¢. Since V(0) > 0,

) ) 1~
(VY25 DrV*Y25,) = /BT 2,02V 1 (p))2dp > V ’le 1) / 0)*dp
(5.140)

tanh anh(\/p
For p € [\/ﬁ"_ T, \/ﬁ+ 6]1 BT(p7 O) > pz(_\[) > (2\;4_6)((1, Vi) Since ff+T o \lf)zdp =
1/T — 1/¢, we obtain the lower bound

(VY25 DrVY2) > ZV(0 )|V31(\/ﬁ)!2tanh<\/ﬁ> (1 — 1) (5.141)

(2y/1 +€)? €

.-lM»—*

112



5.4. Proof of Theorem 5.1.3

and the claim follows.

Dimension two: Since V(0) > 0, by continuity also V(p) > 0 for small [p|. Therefore,
there are constants 0 < 0 < p and C' > 0 such that for all /u—9d < p; < /u and
P2l lgo| < (20)'/?

Via(p1,p2)V (0,p2 — 2)V a1, g2) > C- (5.142)

By Lemma 5.4.10, we have (V/2j,, DpV/25)) = (VY25,, DIVY25,) + O((Inp/T)?). It
hence suffices to show that (V1/2j,, D3V/25,) grows like (In i /T)?. Let A := {(p1,p2, ¢2) €

RV =08 < p1 < V11,0 < paga < 62, pi +p3 > p+T,pi +¢3 > p+T}. Thisis a
subset of the support in DJ.. Using that all terms in the integrand of (V1/2j,, D3V/24,) are
positive, we estimate

<V1/2j2,D§,,V1/2j2> > C/ABT(Z% 0)Br((p1,42), 0)dpdgs.. (5.143)

For (p1,p2,q2) € A we have p? + p3 — > T and thus

Bo(p.0) > tanh (%)

>\ 5.144
pi+ps—p ( )

Forpi >u+T -0

§1/2 1 1 T [ — p?
dp; = —— |artanh <\/1 — ) — artanh L.
Vit = P+ p3 — pu 1 — p? [ p+ T —pt 5
Hence, the integral in (5.143) is bounded below by

2
1\? (Vi 1 T w—p?

tanh () / artanh \/ 1— ———— ] —artanh d
2) J\fuwrr=s p—pi [ ( p+T —pi 6 n

(5.146)
Assume that 7" < ¢/2. For a lower bound, we further restrict the p;-integration to the interval

<\/,u —4/2, \/,u — u1/2T1/2> . For these values of p;, we have

2 1 T1/2 T
artanh Al 4t < artanh [ —= | < artanh 1-— < artanh \/ l——.
0 \/§ Nl/z o+ T — Pi

(5.147)
Furthermore,
/_nl/2r1/2 D(1—-0
- %d}% S artanh (1 _ /et 1)( /\/ﬁ)> ; (5.148)
Visz = pi Vi Vit/a—=b/\/i
where a = \/pu— /2 and b = \/pu — p!/2TY/2 < | /ji. This is bounded below by
1)(1—=0b
L ortanh <1 _ yifat 1 Nﬁ)) . (5.149)
[z Vija—1
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In total, (5.146) is bounded from below by

2

1 1\?2 T1/2 1
—— tanh <) artanh 1— —— | —artanh | — X
Vi 2 pt/? V2

astanh (1 NI (T/u)1/2)> (5150
With artanh(1 — 2) = £ In2/z + o(1) as & — 0, we obtain that for 7' — 0
artanh ( 1- ZIIZ) - iln (16;) +o(1) (5.151)
and
artanh (1 _ Wifat 1)3;& _11_ (T/“)m)) - iln (16 (%)2 ;) +o(1)
In particular, we obtain (5:152)
(V2 DpVY2j5) > jﬁ In (;)3 L0 (m <;>2> (5.153)

for some C' > 0 which implies the claim.

Dimension three: Using Lemma 5.4.10 and that In u/T°()\) ~ 1/X by Lemma 5.3.2,

lim A (VY255 Doy VY253) = lim N (VY2 Dio ) V'25s). (5.154)
By integrating out the angular variables [ps V(7)73(r; M)e(gfr);ﬂp' dr = ‘S—lzl Jes V(r)ga(r; p)? =

eu. Therefore, we can write

1/2; < /2, \ _ (e irp _ Liy/prp/|pl
(V7js, Doy V' 7is) = 3 /Rll;ﬁ27q2<2u_p%p%<u (VJ3(7’7N)(6 e )X

)
Brooy(p:0)V (0,5 = @) Brogy (p1. @), 0)e™ " Vi (r's )
Vol ) B ) (. 0) (0,50) Brogoy (b1 ), 0)(e~" e V# 2PV o 1" ) ) dpedr”

i(p—q)7

e

+ / B 0 V(r)B .4),0)dpdgdr (5.155
€ RS 52,2 <21 p1 p1<u Tg()\)(p )(271_)3/2 ( ) TI(A )((pl ) ) paq ( )

By [32, Proof of Lemma 3.1]

/ irlwp _ giv/alrlwp/lpl g, < C\p\ VH (5.156)

s? Ip| + /1

Furthermore, note that Br(p,0) :z} ? < i Hence, the first integral in (5.155) is bounded by
Co 2o 70
*||VJ3H1||VHoo/2 _ Bropy((p1, @), 0)dpidpdg < OV js[F| V[ eomy (T2 (N),
M P+ <2p,p?<2p

(5.157)
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which is of order 1/\ by Lemma 5.3.2.

Changing to angular coordinates for the p and § integration, the integral on the last line of
(5.155) can be rewritten as

i(tw—sw’)

2p—p? Sy e
2 [ ob«/oﬁdp1 /Omdt/omds/gl dw [ dw’BTg(A)(\/m’o)te@WX
V(T)BTCO(A)(W, 0)s
=2 f /ﬁdpl /mdx/mdy/ dw/ dw' Brooy (z 0):561(\/m _\/ya—_p%w/).,.x
0 P P1 st st ¢ ’ (2m)3/2
V(r)Bro(y,0)y  (5.158)

where we substituted x = /p? + 2,y = /p? + s2. Next, we want to replace the z? and />
in the exponent by 1. We rewrite (5.158) as

<€i\/z2—p§w-f _ ez‘\/u_pfw-f)

2/BT(9()\)(I,O)$ COEE V(T)e*i\/pr%w/'fBTg(A)(y,O)ydpldrdxdydwdw'
<ei\/y2p%w/-7* . ei\/,up%w/-?>
+2/BTg(,\)(x,0)xei\/“_p%“"’zV(r) )i Broy (y, 0)ydpydrdzdydwdw’

eV ppi(w—w')-F

(2m)%

+ 2/BTCO(,\)(I,0)I V(r)Broy (¥, 0)ydprdrdrdydwdw’ (5.159)

By [40, Proof of Lemma 3.4]

ei\ /zfp%w-F . 6“ /ufpfwi 4
/S1 (2m)2

1/3

w SC‘\/ﬁ—p%—\/u—p%

(22 = 1) VO + (u = p}) V|

(5.160)
We bound this further by C' |22 — p|"/® ((:1c2 —pH) V4 (u— p%)_l/?’). Using that Broy)(,0) <
1/]a? — p| by (5.11) and recalling the definition of m,, in (5.23) we bound the first two lines
in (5.159) by
1/3)

Vi Verm 1 1 1
d=2 0
CIV T2 00) [ d [ dxu—mw(wmw((w“pﬁlﬂ( e
5.161

The integral is bounded by

1 1
\/_/ dx/ dp1 1‘2/3 <x1/3(x—p1)1/3 + i —p1)1/3> < 00 (5.162)

Hence, the first two lines in (5.159) are of order O(1/\) by Lemma 5.3.2. For the third line
we carry out the r-integration and obtain

2/ ( 2BTo xOxdx) (/S1/§1 ( pw— pl(w w))dwdw’)dpl. (5.163)

Note that [Y*" Brog(z, 0)zdz = mI=(T9(\)) — J¥' Brooy(x, 0)zdz and

1 /TN tanh 1
/( anh s & (5.164)

P1
Brooy(z,0)zdr = = ds < 5 ln
r29(2:0) 2 J-pymoey s 2 p—pi
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where we substituted s = (u — z?)/T°()\). In particular,

Vi (v ’
‘2 I [( NBTg(A)(:c,O):de> —m;{=2(T£(A))2] x
0 P1

(/Sl /Sl < M= P1(w w )) dwdw’) dpy

S VR (L ’ _ _
<2V [ (4 () +1nuf‘p%mz—2<T3<A>>) dps < C(Lmi(TE)

(5.165)

which is of order O(1/)\) by Lemma 5.3.2. In total, we thus obtain

lim A (V2j3, Do) V253)

A—=0
1
_ 2 02 2 1/ .2 o /
}\12%2/\ (1Y) \/ﬁeu/o </Sl/sl‘/(0,\/ﬁ\/1 pi(w w)) dwdw)dpl (5.166)

By writing out the definition of j3 and then switching to spherical coordinates and carrying
out the r integration, we have

zprv( ) iy/p(z1,7)-(u—v) 1
/]R V(r)js(z1, 7; p)drdz, = / du/S2 dv/ dpdrdz n)3 2n) = (27r)3/2><

/ </ sin 9d9/ sin@’d&'/ dw/ dw'V (0, \/(sin fw — sinG'w’)ei\/’jzl(cose_cosel)> dz
r \Jo

:\/ﬁ(;ﬂw/ dt/ ds/Sldw/ dw' T (0, (VI — B — VI — 2u)d(s — 1),
(5.167)

where in the last step we substituted ¢ = cosf, s = cos 6’ and carried out the z; integration.
Furthermore, according to Lemma 5.3.2, limy_, Amﬁzg(Tco)e“ = ﬁ This gives the desired

lim N*(V2s, Doy V'/%s) = (2m)'/2 / V(r)js(z, 75 ) drdz (5.168)

]

5.5 Boundary Superconductivity in 3d

In this section we shall prove Theorem 5.1.4, which provides sufficient conditions for (5.7)
to hold. Due to rotation invariance, we consider the spherical average of mf/N (defined in

(5.6)). With
me ™ (|r]; ) / g™ (|r|w; p)dew (5.169)
we have [ps V(ryml™ (r; p)dr = Jrs V(r)m3 N(r|; p)dr. Furthermore, we have the scaling
property .
D/N D/N .
riipu) =—m wrl; 1). 5.170
(Irl; ) = i (Vulrl; 1) (5.170)

We shall derive the following, more explicit, expression for m?/N in Section 5.5.1.
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Lemma 5.5.1. For z > 0 we can write m% (z;1) = ¥_; t;(x) and mi (z;1) = 35_, t;(x) —
Yi_gtj(x), where
4 oo sin®(zk)
— 2 [N reoth
ti(z) — ’ arcoth(k)dk
2 sin’(z
bo(z) = —2 (z)
T o
sin?(z)
tg(ZE) = -2 $2
dsinx , . . )
ty(x) = 3 (sin z Si2x — cos x Cin 2x)
: : 1) p—ind
_ smx/ / sin(zwy |wi|)e dode!
2m3x Js2 Js2 w1

where Cin(z) = [§ 1=%tdt and Si(z) = [§ S2dt.

t

To determine for which interactions [gs V(r)m?/N(|r|; p)dr > 0 holds, we need to understand
m&™ (|r|; ). In Figures 5.1 and 5.2 we plot m? and mY for u = 1, respectively. The
mg(xﬂ)
04 ﬂ
0.3 -
0.2 -
0.1
| | X
- 10 20 30 40 50

Figure 5.1: Plot of m% for 1 = 1, created using [53].
function mZ’ seems to be nonnegative. If one could prove that m% > 0, then Theorem 5.1.3
would apply to all V' > 0 satisfying 5.1.1. Unfortunately, this is beyond our reach. On the
other hand, the function m%" changes sign, but is positive in a neighborhood of zero.

Remark 5.5.2. To create the plots, it is computationally more efficient to use the first
expression for t4, whereas for the following analytic computations the second expression is
more convenient.
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\/\L'/\\LAAA —— X
-\ 5 10 15 20

Figure 5.2: Plot of m}’ for ;1 = 1, created using [53].

Intuitively, if we let ;z — 0, due to the scaling (5.170) the sign of frs V (r)m% /™ (Jr|; p)dr is
determined by the values of ng/N(|r|; 1) for 7 in the vicinity of zero. To obtain Theorem 5.1.4,
we prove that both functions ng/N(\r|; 1) are non-negative in a neighborhood of zero.

The following is proved in Section 5.5.2.

Lemma 5.5.3. The functions t; for j = 1,2,3,4 are bounded and twice continuously
differentiable. The values of the functions and their derivatives at zero are listed in Table 5.1.

f b ta  ty  ta [mp(51) mi'(;1)
7(0) 2 0 -2 0 0 4
1) | =2/ =2/m7 0 4/« 0

F10) | =8/9 0 4/3 0 4/9

Table 5.1: Values of the functions ¢; and m3D/N and their derivatives at zero. The missing
entries are not needed.

Proof of Theorem 5.1.4. We start with the case of Neumann boundary condition. By (5.170),

it suffices to prove that limy,_,o fgs V (r)m3 (\/g|r[; 1)dr > 0. With V € L' and Lemma 5.5.3

it follows by dominated convergence that limy,_,o fgs V (r)m3 (\/a|r|; 1)dr = m3 (0;1) fgs V(r)dr =
4 fs V(r)dr. Since V(0) > 0 by assumption, this is positive.

For Dirichlet boundary conditions, according to Lemma 5.5.3, m?’?(O; 1) and its first derivative
vanish. Thus, we consider I(\/f1) :=  Jps my (\/filr]; 1)V (r)dr. Since mf’(-;1) is bounded,
I is continuous away from 0. It suffices to prove that lim, ,o I(y/iz) > 0. According to
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Lemma 5.5.3 and Taylor's theorem, we have m# (z;1) = 3(m?%)"(0;1)2* + R(x), where R is

|R( ) x(;”” < 00. One can bound

continuous with lim,_,q L= 0. Lete>0and c:= = SUDg<z<c

[ D||oo

[V (r)]

Lo
|Mm3 (Al DV ()

]‘ "
< x5 E) 0 1) + ) IV ()] + X
L mPy" (0. s e ) 2
< (HmBY 0+ o+ R )V, (5.71)

which is integrable by the assumptions on V. By dominated convergence

) o . (\/_|7’| 1) 2 % _

lim 1(/i) = | | ili% e P rPdr = 2/ (0; )V (r)|r2dr = 9/ P [r[2dr,
(5. 172)

which is positive by assumption.

5.5.1 Proof of Lemma 5.5.1
Proof of Lemma 5.5.1. With

t(r) = /RJ'3(2177“2,7’3; 1)*X o> 421
ta(r) = —Ja(r; 1)2/RX\21|<IT1Id21
1?3(7’) = :F7Tj3(7’; 1)2
2'{4(70) = :|:2j3(7", 1) /Rj3(2177,27 r3; 1)X|21|<‘7‘1‘d21
one can write % (r;1) = Y0_ £;(r) and md (r;1) = 5, £5(r) — X5 t;(r). Let t;(|r|) =

+ Je ff/N(|r|w; p)dw. The following explicit computations show that the ¢, agree with the
claimed expressions.

Recall that js(r;1) = Sm"”' For t; we write out the integral in spherical coordinates and

7|
substitute z; = zy and s = cos@

127r/ /sm \/ 2% + (xsin 0)?

7 4m (xsin 6)2

X|z1|>x| cos 6] sin delde

1/1 / sin? z/y? + 1 — 52

Y2+ 1—s?

X|y‘>‘s|dyd8 (5.173)

Next, we use the reflection symmetry of the integrand in s and y, substitute y by & =
Vy? + 1 — s? and then carry out the s integration to obtain

4 1 oo sin? zk 4 oo sin® ok
r) = — / / g hds = [ S mcoth(R)dk. (5.174)

For ty, we have

2sin?z 1 2sin?x

ta(r) = —— —/ 2z|wy |dw = ——

T x? A4Arw T x

(5.175)
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Since 5 is radial, we have t3 = £5. For ¢, we want to derive two expressions. For the first, we
perform the same substitutions as for ¢,

4 sin x 27 sin \/ x sin #)?
t4($ = / /
T oz 4r \/z + (2 sin )2

25111‘77 sinazy/y? +1— 2 8 sinx sin ¢k
/ / \/QT X|y|<‘5‘dyd5 - — / / ka2+82>1dde

8
_ 8sinz / sin zk artanh kdk = + (sinz Si2z — cosz Cin2z) (5.176)

T x Jo T2

X|z1|<z| cos 6 sin 9dz1d9

4s1na:

2sinw|ry|

To obtain the second expression for ¢4, note that [ e ™*1x |||y d21 = . Therefore,

2sinz 1 i (21,80) ,

sin / / szl iwaw guq. (5.177)
s2 Js? !

B 1
T or3
O

5.5.2 Proof of Lemma 5.5.3

Proof of Lemma 5.5.3. Since sin(z)/z is a bounded and smooth function, also t5 and 3 are
bounded and smooth. Elementary computations give the entries in Table 5.1.

For t, use the second expression in Lemma 5.5.1. Since the integrand is bounded and smooth
and the domain of integration is compact, the integral is bounded and we can exchange
integration and taking limits and derivatives. In particular, ¢4 is bounded and smooth and it is
then an elementary computation to verify the entries in Table 5.1. For instance,

4
40) = 55 / / ) ldwd’ = . (5.178)

sin(z)? .

2

To study ¢ we define auxiliary functions f(z) = - artanh(z) and g(z) = Note

that f(x) diverges logarithmically for  — 1 and is continuous otherwise with f(0) = 2.
Furthermore, f(z) is increasing on [0, 1) and for every 0 < € < 1, supp<, ., @ = fle(e) < 00

since all coefficients in the Taylor series of artanh(z) are positive.

We can write
t(z) = /1 " 2g(ak) f(1/k)dk = /1 2g(xk) f(1/k)dk + / fle/B)dk (5.179)

for any constant ¢ > 1. The first integrand is bounded by C'z arcoth(k), the second one by
Ck2 (since f is bounded on the integration domain). By dominated convergence we obtain
that ¢; is continuous and #1(0) = 2 [° g(k)dk = 2.

For x > 0 we compute the derivative

ti@) = [ (glak) + oy (oh)) F(1/R)Ak = cglex) F(1/e) + / " glh) ’<x/k>3dk
:/lc(g(xk)+xkg’(xk)) (1/k)dk — cg(ex) f(1/c) +/ (1/k) , (5.180)
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where we could apply the Leibnitz integral rule since f’(1/k) decays like 1/k for k — oco. By
dominated convergence, t) is continuous for > 0. By continuity of ¢; and the mean value

theorem, ¢ (0) = lim,_, M = lim,_,o lim,_ % = lim, ot} (). We evaluate

£(0) = / (1/l<;)dk—cf1/c+/ 1/k:
_/ (1/k) — 1/c))dk f1/c+/ 1/k ko (5.181)

This is a number independent of ¢. To compute the number, we let ¢ — oo, and by monotone
convergence

4O = [ (k) - fO) k- fO) =2 -~ =~ (5182)

Note that ¢'(k) = 2(cosk — S2E)S5E has a zero of order one at k = 0. Therefore,

g’ (kz) f'(1/k)| < 55 and for 2 > 0 the second derivative is

ti(z) = / (2zg'(wk) + xk?*q" (xk)) f(1/k)dk — ¢ (cx) f(1/c) +/ f(1/k)dk
- / (2ag' (vk) + kg (xk)) F(1/k)dk — g (cx) f(1]c) + / g fz/ y>dy (5.183)
| @ Yy Ty
We can bound ¢ (y) < 1+ T3 and sup, |f;(r‘%y Xyscx| = ¢f'(1/c) < co. By dominated conver-

gence, the functlon above is continuous (also at zero). We have

w9 W) f'(x)
#(0) _/0 Py lim (5.184)
Since [3° ¢ (y dy = —% and lim,_,g f/;“"‘) = = we obtain
" 8
t1(0) = ~5 (5.185)
O

5.6 Relative Temperature Shift

In this section we shall prove Theorem 5.1.7, which states that the relative temperature shift
vanishes in the weak coupling limit. We proceed similarly to the J-interaction case in one
dimension analyzed in [34]. For this, we switch to the Birman-Schwinger formulation. Recall
the Birman-Schwinger operator A}. corresponding to Hj from (5.22). Let Q= {(r,2) €
R?||r;| < 21}. Define the operator Al on 1 € L2(Qy) = {v € L2(Q)|(r, 2) = ¥(—r,2)}

via

7A1 :/ drd /d d d~d~// d / d/ 7 174 1/2 Ji(p-z+q)
(W, Az¢) RAd+2(d—1) T EpaIesas r1]<z1 - 7] <z} & (QW)zdw(r V) e )

BT (p7 q) (6i(plz’1+q1r’1)_i_ei(plziJrqlr’l):Fei(q1z3+p1r’1):Fez'(qlzfrplr’l)) e—i(ﬁ.2/+q.f/) ’V(TI) ’1/2w(rl’ Z/),

(5.186)
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where the upper signs correspond to Dirichlet and the lower signs to Neumann boundary
conditions, respectively. It follows from a computation analogous to [34, Lemma 2.4] that
the operator AL is the Birman-Schwinger operator corresponding to Hg?l in relative and
center of mass variables. The Birman-Schwinger principle implies that sgninf o(H$') =
sen(1/\ — sup o(A%L)), where we use the convention that sgn0 = 0.

One can reformulate the claim of Theorem 5.1.7 in terms of the Birman-Schwinger operators.

For j = 0,1 let a}. = supo(A%). Then
L T = T
=0 T

=0 lim (af — af) =0. (5.187)

This is a straightforward generalization of [34, Lemma 4.1] and we refer to [34, Lemma 4.1]
for its proof.

Proof of Theorem 5.1.7. First we will argue that a3 < a}. for all T > 0. If inf o(K% — \V) <
2T, then info (K% — NV) < info(K% — AV) for all N > X\. Furthermore, inf o(KY —
(a3)~'V) = 0 = inf o (K" — (ak)~'V) < inf o (K2 —(at)~'V), where we used Lemma 5.2.3
in the last step. In particular, a% < al..

It remains to show that limy_q (a$ — ak) > 0. Let + : L*(€) — L?*(R?%) be the isometry

L¢(T17f775172) = \/1§(¢<T17f7 21, )XQl(T Z) +1/}< Tlu ’ Zlaé)XQl(_rl77:7 _2172))'

(5.188)
Let F, denote the Fourier transform in the second variable Fyi)(r, q) = (27r1d/2 Jra e % (r, 2)dz
and F; the Fourier transform in the first variable F1¢(p, q) = (QW)M ra € PT(r, q)dr. Recall

that by assumption V' > 0 and for functions ¢» € L*(R? x R?) we have V'/?y(r,q) =
V2(r)4)(r, q). We define self-adjoint operators 7 and G on L?(R??) through

(W, Br) = azllvll; - /de Br(p, @) F\V*¢(p, ¢)*dpdg (5.189)

and

(¥, Gry) = /R L BEVY20((a1,9). (1, @) Br(p, ) 1 V4 (p, q)dpdg. (5.190)

With this notation, we have adl — AL = LTFQT(E’T + Gr)Fst, where I denotes the identity
operator on L%(Q;). In particular,

ad — gk = inf Fou), (Ep 4+ Gp)Fou inf 7577 + G ’
T 7O 2 @) ollam 1< s, (Br + Gr)Fou) > g - 1<¢ (Er &+ Gr))
(5.191)

where we used that || Fye)||a= ||1]]2. Define the function
Br(q) = a} — |[VY?Br(-, q) V2. (5.192)

We claim that |[V'/2Bp(-, ¢)V?| < a%. The Birman Schwinger operator A7 corresponding
to HY' satisfies sup o(Ar) = sup,||V/2Br(-,q)V/?|. Pick A = supa(Ar)~'. According
to the Birman Schwinger principle and Lemma 5.2.4, 0 = inf o(H$°) = inf o(HY). Using
the Birman Schwinger principle for H%, we obtain a3 = sup o(Ag) > ||[VV2Byr(-, q)V'/?|.
Hence, Er(q) > 0. Let Er act on L*(R??) as Eri)(r,q) = Er(q)¥(r,q). Then

0 _ 15 . . .
T2 eV (BT E CTIY) (5.193)
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It thus suffices to prove that limy_,inf o(E7 £ Gr) > 0. With the following three Lemmas,
which are proved in the next sections, the claim follows completely analogously to the proof of
[34, Theorem 1.2 (ii)]. For completeness, we provide a sketch of the argument in [34, Theorem
1.2 (ii)] after the statement of the Lemmas.

Lemma 5.6.1. Let it > 0, d € {1,2,3} and let V > 0 satisfy 5.1.1. Then sup;-,||Gr| < oo.

Lemma 5.6.2. Let 1 >0, d € {1,2,3} and let V > 0 satisfy 5.1.1. Let I, act on L*(R>?)
as HSE@Z}(Ta p) = @/J(T, p)XIpISE' Then lim,_,o SUPT>0||I[§6GT]I§6||: 0

Lemma 5.6.3. Let 4 > 0, d € {1,2,3} and let V' > 0 satisfy 5.1.1. Let 0 < € < \/pu.
There are constants ¢y, ca, Ty > 0 such that for 0 < T < Tg and |q| > ¢ we have Er(q) >
c1|In(cy/T)|.

Since Er(q) > 0, we can write

1 1
Er£Gr+3=\/Epr+6 =G VEr+6 5.194
T T T ( \/ET T\/ET+§> T ( )

for any § > 0. It suffices to prove that for all § > 0

1 1
G = 5.195
50| VEr £ 0 T'/—ET+5H ( )

To prove (5.195), with the notation introduced in Lemma 5.6.2 we have for all 0 < e < /i

1 1 1
G < ||I<e G I,
H\/ET+5 T\/ET+6H— “VEr+0 'VEr+6 -
1 1 1 1
+ ||, e + ||, G . (5.196
S\/ET T\/ET “VEr+9 T\/ET‘F(;H ( )
With £+ > 0 and Lemma 5.6.3 we obtain
1 LG L .Gl |+ Jin 2 1G]], (5.197)
im su c e 1m . (5.
150 | VEr 40 VEr 0| o =TT e e/ T 2T

The second term vanishes by Lemma 5.6.1 and the first term can be made arbitrarily small by
Lemma 5.6.2. Hence, (5.195) follows. O

Remark 5.6.4. The variational argument above relies on AL being self-adjoint. This is why
we assume V' > 0 in Theorem 5.1.7.

5.6.1 Proof of Lemma 5.6.1

Proof of Lemma 5.6.1. We have ||Gr| < ||G5|| + [|GZ||, where for d € {2,3}

(¥, Gry) = /R L EVY29((a1,), (p1,@) Br(p, ) Xipi<oya 1V 0 (p, g)dpdg,  (5.198)

and for G7 change X|p <2,z to Xjp/>2, - For d =1 set G5 = G and G7. = 0. We will prove
that G+ and G7 are bounded uniformly in 7.

123



5. BCS CRITICAL TEMPERATURE ON HALF-SPACES

To bound G7 in d = 2,3 we use the Schwarz inequality in p1, ¢, to obtain

1GZ < sup / Br (p, q) Xjpi>2ya F1V'*¢(p, ¢)|*dgdp (5.199)
YEL2(R2),[ly]|=1 /R

The right hand side defines a multiplication operator in ¢q. By (5.11) there is a constant
C > 0 independent of T such that ||G7| < C||M||, where M := V2L V1/2 on L*(R?).
It follows from the Hardy-Littlewood-Sobolev and the Holder inequalities that M is a bounded
operator [32, 40, 50].

To bound G5 note that for fixed q, || F1VY29(-, q)]|00 < C’|]V||1/2Hw(-,q)]|2 by Lemma 5.3.73.
Therefore, we estimate

IGZ]l < C*|V sup / 19, (P15 @) |l2Br(p, @) X2 <2410 (-5 @) || 2dpdg  (5.200)
PEL2(R2),[[¢|=1 /R

Since the right hand side defines a multiplication operator in ¢, we obtain

1G] < C*|[V]l sup sup / V(1) Br(p, ) xp<out(q1)dpdgr,  (5.201)
geRI~1 YEL2(R),[y||=1 /R
where for d = 1 the supremum over ¢ is absent. For d = 1, the operator with integral
kernel Br(p,q) is bounded uniformly in T according to [34, Lemma 4.2], and thus the
claim follows. For d € {2,3} we need to prove that the operators with integral kernel
Jra-1 Br(p, ¢)X|5<2,zdp are bounded uniformly in ¢ and T". We apply the bound [34, Lemma
4.6.]
Br(p.q) < ”

e+ —pl+ -0 - p

Then, we scale out i1 and estimate the expression by pulling the supremum over 1 into the

(5.202)

p-integral
2 -
sup sup / X \Qp|<2\/ﬁ¢ (pl)l/)(qlz dpda,
geRi1 per2(R),pl=1 /R [(p+ @)% — p| + |(p — ¢)* — p

dj2—1

dpdq

_ 2X151<2¢ (p1) ¥ (1)
7 ) 1/Rd+1 (

sup sup
GERA—1 e L2(R), p+q?—=1+[p—q? -1

d/2—1

<u

2¢(p1)(q1) 3
sup X5 sup / dpidqq | dp
geki1 Jra-r NP Lem(mwnl w |+’ —1+[p-q?—1]

(5.203)

Let yy =1— (p+q)* and po = 1 — (p — G)*. For fixed i1, 1o we need to bound the operator
with integral kernel

2
[(pr+ q@1)? — | + (01 — @) — pa|

Lemma 5.6.5. Let py, 12 < 1 with min{uy, po} # 0. The operator D,,, ., on L*(R) with
integral kernel given by (5.204) satisfies

1D el < C(1+ dpr, o) min{pun, 2} ~/?) (5.205)

for some finite C' independent of i1, j12, where

Dy s (P1,01) = (5.204)

1+1In (1 + %) if  min{uy, uo} < 0 < max{pu, po},

1 otherwise.

A i2) — { (5.206)
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This is a generalization of [34, Lemma 4.2]. The proof of Lemma 5.6.5 is based on the Schur test
and can be found in Section 5.7.1. Since max{uy, uo} < 1, it follows from Lemma 5.6.5 that
for any o > 1/2 one has ||D,, .., || < C (14 |min{sq, po}|™) for a constant C' independent
of 1, 2. The following Lemma concludes the proof of sup,-,||G5| < co.

Lemma 5.6.6. Letd € {2,3} and 0 < a < 1. Letpy =1—(p+§)? and s =1 — (p — §)%
Then

sup / Xlpi<? dp < 0. (5.207)

GeRd—1 JRI~1 | min{ ey, po}|*

Lemma 5.6.6 follows from elementary computations which are carried out in Section 5.7.2. [J

5.6.2 Proof of Lemma 5.6.2

Proof of Lemma 5.6.2. With the notation introduced in the proof of Lemma 5.6.1 we have
[<cGrle|| < [[I<eGTl<e|l + [[I<cGFI<|l.

For d = 2,3 we have analogously to (5.199)

M<eGFI<c]| < sup Xlal<eX|v.a)|<eBr (P, @) Xipi>2m F1V'*¥ (p, ¢)|*dgdp.
pEL2(R2),[[||=1 /R
(5.208)

Let 1 < ¢ < oo such that V € L{(R?). According to Lemma 5.3.72, for fixed ¢ we have

IE VY25, )| oy < VI 106, @) |2 gy, (5.209)

where 2 < s =2t/(t — 1) < co. By (5.11) and Holder's inequality in p, there is a constant C'
independent of 1" such that

Xlp1l<e 1/2 2
| .GFI|| < C sup = |V (p, q)|7dpdg
<cCrled per?(®2d) ||y||=1 /B2 1 + P2 (#:9)

1/t
< V|, (/R Xpl|<edp> . (5.210)

L+
In particular, the remaining integral is of order O(¢'/*) and vanishes as ¢ — 0.

To estimate ||I<.G7I<.|| we proceed as in the derivation of the bound on ||G5%|| from (5.200)
until the first line of (5.203) and obtain

/ 2X|p1\7|q1|<eX|ﬁ|<2\/ﬁ1/)(p1)w(QI)
R

[ G5l || < CIV ||y sup sup
HS TSH H Hl d+1|(p—|—q)2—,u’+|(p—q)2—/~b

gl <e peL?(R),[l¢]|=1

(5.211)
Hence, we need that the norm of the operator on L?*(R) with integral kernel
2X|p1 | Jar | <eXIpl <2/ _
’ dp 5.212
e T a5 o= 07— (>:212)

vanishes uniformly in ¢ as ¢ — 0. In d = 1, the Hilbert-Schmidt norm clearly vanishes as
e — 0. Similarly for d = 2,3 the following Lemma implies that the Hilbert-Schmidt norm
vanishes uniformly in § as ¢ — 0.
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Lemma 5.6.7. Let d € {2,3}. Then

2

2V~
Xp2<2 dpidgy =0 (5.213)

lim sup X . l/ dp
0 e Jr2 NP Jea (0 1 )2 — 1)+ [(p — ¢)% — 1]

The proof can be found in Section 5.7.3. We give the proof for d = 2 only; the one for d = 3
works analogously and is left to the reader. O

5.6.3 Proof of Lemma 5.6.3

Proof of Lemma 5.6.3. Since a9 diverges like e,u¥/?1In(u/T) as T — 0, the claim follows
if we prove that suppq supjs|V/2Br(-,q)V/?|| < oo. For d = 1 we have

V2B (-, V2|12 < [[V2Br (-, )V s

eip(rfr’) 1

— R2V(T)V(r/) (/RBT(p,q) 5 dp)erdr'S (QW)QHVH% (/RBT(p,q)de (5.214)

It was shown in the proof of [34, Lemma 4.4] that supy. ~c Jz Br(p, ¢)dp < oo .
For d € {2,3}, the claim follows from the following Lemma which is proved below.

Lemma 5.6.8. Let d € {2,3} and n > 0. Let V satisfy Assumption 5.1.1 and V' > 0. Recall
that O, = VY2FIFV1/2 (defined above (5.23)). Let f(x) = X(0,1/2)(x)In(1/x). There is a
constant C(d, j1, V') such that for all T > 0, ¢ € R, and ¢ € L?(R%) with ||¢)|, = 1

(0, V2B (-, ) V'20) < P71, 0,00) f(max{T/p, gl /v/ii}) + C(d, p, V). (5.215)
This concludes the proof. O

Proof of Lemma 5.6.8. Note that if we set ¢ = 0, and optimize over 1, the left hand side
would have the asymptotics a7, ~ e u¥?> 1 In(1/T) as T — 0. Intuitively, keeping ¢ away
from O on a scale larger than T" will slow down the divergence. In the case ¢ = 0, divergence
comes from the singularity on the set |p| = ,/ui. For [g| > 0, there will be two relevant sets,
(p+q)> = and (p — q)* = p. These sets are circles or spheres in 2d and 3d, respectively.
The function Br is very small on the region which lies inside exactly one of the disks or
balls (see the shaded area in Figure 5.3). The part lying inside or outside both disks (the
white area in Figure 5.3) will be relevant for the asymptotics. Define the family of operators
Qr(q) : LY(RY) — L>*(RY) for ¢ € RY through

~ 2
O (Vip/ D] Br(®, @)Xt 02— (t-02 >0 X2 <D

Q@ =tz 01,

v\
(5.216)
We claim that ()7 captures the divergence of Br.
Lemma 5.6.9. Let d € {2,3} and > 0. Let V satisfy Assumption 5.1.1. Then
sup sup [[VY/2By (-, )|V |2 = V2Qu(q) V|| < ox. (5.217)

T>0 qe]Rd
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Figure 5.3: Two circles of radius /i, centered at (—|g|,0) and (|g|,0). In d = 2 the function
Br(p, (]¢q],0)) diverges on the two circles as 7" — 0 and approaches zero in the shaded area.
Given an angle ¢, the numbers . (e,,) are the distances between zero and the intersections of
the circles with the ray tilted by an angle ¢ with respect to the p;-axis.

The proof of Lemma 5.6.9 can be found in Section 5.7.4. It now suffices to prove that there
is a constant C such that for all 7> 0 and ¢ € R¢

(W, Qr(@)v) < (b, FIF¢) f(max{T/ulal//i}) + Cll¥|lF. (5.218)
Then for all ¢ € L*(R?) with |[¢]] = 1
(W, V2Qr(@)V*y) < (¢, 09) f(max{T/u, |ql/v/i1}) + CIV ||y (5.219)

and the claim follows with Lemma 5.6.9.

We are left with proving (5.218). By the definition of Qr, it suffices to restrict to |¢| <
VI/2,T < j1/2. Let R be the rotation in R? around the origin such that ¢ = R(|q|,0). For
d = 2 the condition ((p+ (|¢q[,0))? — u)((p — (|],0))* — 1) > 0 holds exactly in the white
region sketched in Figure 5.3. The inner white region is characterized by (|p1|+|q|)? + p* < p,
and the outer region by (|p1| — |q|)* + p* > p. Thus,

~ 2 N
(¥, Qr(9)v) = /Rd W (\/ﬁRp/|PD‘ [X(|p1\+|q\)2+;52<u + X(|p1|—|q|)2+ﬁ2>u} Br(p, (lq],0))xp2<3,dp,

(5.220)
where we substituted p by Rp.

Let us use the notation r4(e) = %|e||q| + /1 — €3]¢|?> and e, = (cos ¢, sin ¢), where the
choice of r is motivated in Figure 5.3. For d = 2 rewriting the integral (5.220) in angular

coordinates gives

[l aredf ||

T— (ew)

V3
Br(rey, (|gl,0))rdr + o Br(reg, (Ig|,0))rdr| de.

r4(eq
(5.221)

For d = 3 with the notation e, o = (cos ¢, sin ¢ cos 6, sin ¢ sin §) and using that Br(re, g, (|¢/,0,0)) =

Br(rey, (gl,0)), (5.220) equals

V3

™ 2 2 r_(ep)
(L1 mrea o) | [~ Brtveg aoprar + [ Brtres ol 0)r2ar | sin g
r4(ep
(5.222)
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We distinguish two cases depending on whether r is within distance 7'/, /i1 to 7+ or not. Note

that 7_(e) > —[q| + /1t > % > % and r (e) + % <lgl+/p+T < 2/u If ris close
to 71 we use that By (p,q) < 1/2T. Otherwise we use (5.202). The expressions in the square

brackets in (5.221) and (5.222) are thus bounded by

r_(e ),L d—1 r—(eyp) d 1 ri (e )Jr d—1 d—1
/ S d7°+/ . d—l—/+¢ fr ?"+/ ——F—dr
0 p—r*—q? »-L 2T ri(ep) T?"2+q — p

N

) (5.223)
The second and third term are clearly bounded for T' < p/2. Since [|[¢9|lo0 < (27)~42||9||1,
they contribute C'||¢||; to the upper bound on (¥, Qr(q)¥).

To bound the contributions of the first and the last term in (5.223) we treat d = 2 and d = 3
separately.

Case d = 2: The sum of the two integrals equals

n (1= @)Cu~ )
| (J (1= = (—(ep) = P () + 27+ = m) (5224)

To bound this expression, we first make a few observations. Note that

2 r_(e —22: e —ée3lq? —|e L r_(e L
i (_< ) ﬁ) erllal(/i - Al |1||q|>+ﬂ(2 () ﬂ)
> (V- )yl + 5, (5.229)

where we used that r_(e,) > /i — |q| and |q|, T/ /it < /11/2. Similarly,

(mew) T fn) ¢ — = 2lellal(y/ — eBlaP + lerllal) + fn (2”(‘“’” i ¢Tﬁ>
> V/3\/Hlellq| + V3T (5.226)

Furthermore, note that 2y + ¢> < 2. The expression under the square root in (5.224) is
therefore bounded above by

5>

4((V3 = Dyalellal + 5)(V3y/hlellal + v/3T)

We now bound this from above in two ways. First we drop the 71" terms in the denominator, a2nd
. . . . S

second we drop the other terms in the denominator, which gives PNEEYCSEyPAEIPTE and 2\/T2

respectively. Thus, (5.224) is bounded above by f(max{T/u, |q|//1t})+1n(1/|e1|)+C. The

contribution to the upper bound on (¢, Qr(q)v) is

(5.227)

2T ) 27
7715 (e D Flmae(T /e + (220l [ (1] cosio]) + C)
(5.228)
where for the second term we used that [¢ (\/ﬁew\) | < (27)72%||¥||?. Note that the

first summand equals (v, FTFv) f(max{T/u,|q|/\/1t}) and that the integral in the second
summand is finite. In total, we have obtained (5.218) for d = 2.
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Case d = 3: Note that L (—r+aartanh(r/a)) = r?/(a* —r?) and & (r —aarcoth(r/a)) =
r?/(r? — a?). The sum of the first and the last integral in (5.223) hence equals

ey ey V=@ (V¢ V3u)

VB~ rile) = r-(e) - Y (T

Vi@, (W@ ar(ey) - %)(ﬁwn(e@w%)
(Vi = —r-(ep) + 72) (re(eg) + 7 — Vi — )

2 VH
The terms in the first line are bounded. The argument of the logarithm in the second line
equals

(Vi —q+r_(ep) — %)2 (Vi =@ +rieg) + %)2

(= = (r-(ep) = 7)) ((re(ep) + 75)* =+ ¢%)

Cu?
= (B Dvilerlld + DByl + vy 20

where we used (5.225) and (5.226). Analogously to the case d = 2 the contribution to the
upper bound on (1, Qr(q)¥) is

) (5.229)

/Ow </027r ’&(\/ﬁew,gbfdQ) f(max{T/pu,|q|//1n}) sin pdyp
+ @) 20l [ (n(1/]cos ol) + C)singdg. (5:231)

and (5.218) follows. O

5.7 Proofs of Auxiliary Lemmas

5.7.1 Proof of Lemma 5.6.5

Proof of Lemma 5.6.5. If we write D, ,, as a sum D, ,, = fi iz
integral kernels Dm s then [IDyy | < 325 (1D7 L1l We will choose the D), as localized
versions of D, ,, in different regions (by mu|t|p|y|ng D,,, 4 by characteristic functions).

DJ a.e. for some

Let D}LLHQ = Dy, p2 Xmax{|p1],|q1[}>2 and D2 L2 Dy, p2 Xmax{|p1],|q1|} <2- We first prove
that the Hilbert-Schmidt norm of || D, || is bounded uniformly in jiy, 5. Note that if
max{|p1|, |¢1]} > 2, we have max{(p, ¥ ql) }=(p1| + |q1])* > 4 and py, po < 1. Hence,

2Xmax{|pi|ai|}>2 _ 2Xmax{|pi],lg1[}>2
7 < ’ . 5.232
Il o)1 Rrg@-1 (5.232)

For the Hilbert-Schmidt norm we obtain

Dy, (p1,01) <

r 47

Xmax{|pi|,|g1[}>2 / >
D} <4 —d dg; <8 ——dr = —, 5.233
|| p1 ,LL2H L (pl T ql ) p1dqy @ 5 (7“2 _ 1)2 r 3 ( )
and therefore || D}, || is indeed bounded uniformly in iy, .
For D ,, we first observe that ||D? || =||D% | since D2 (p1,q1) = D2, . (p1, —q1).

Hence, without loss of generality we may assume 1 < ps from now on. To bound the norm

of Dil i, We distinguish the cases y1; < 0 and iy > 0 and continue localizing.
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Case j1; < 0: We localize in the regions [p1 — q1|> < ps and |p1 — q1|* > pa, where the first
one only occurs if gy > 0. Let D3 = D? and D! = D?

B2 11,2 X|P1—q1 12 <prz B2 u1,p2 X|p1—aq1]2>pe -

For D3, we do a Schur test with test function h(py) = [p1|"/%. Using the symmetry of the

integrand under (p1,q1) — —(p1,q1), we have

I1D;

21 Xy —a1 |2 1
< sy 1/2/ 1 lp1—a1|2<p2 d
I'= 72<pli)<2 P, ~22p1q1 + (p2 — 1) /4 @ |2 "

1,142

B 1/2 Ptz | 1 1
=YX sup |p / - dg,. (5.234
o 0§p1<2‘ 3 pi—vim 2p1qu + (2 — 1) /4 @] V/? e )

For ps > 0, carrying out the integration we obtain

3
1D,

2 4 +
I < sup ——2 |arctan [, 222 (p1 + /112)
0<p1<2 y/ M2 — M1 Mo — M1

4 -/ 4 _
—Xp1 >y ArCtan (J al' Mz)) + Xp1 <y artanh (\l p(V/E Pl))]

Mo — U1 Ho — U1

2 T M2
< ————|—= + artanh , (5.235
V2 = [2 ( m—m)] ( )

where we used the monotonicity of artanh. Note that for x > 0,

o) (e o) o)

(5.236)

¢ H2
D3 < 1+1In 1+>> 5.237
D5l < e (1 (14 L2 (5237)

In total, we obtain

for some constant C.

We bound the Hilbert-Schmidt norm of D*  as

K142

1/2
X|p1—q1|2>p2
D _ / dpid 5.238
H Hlvl@” HS ( (_272) <p1 +q _ M1+M2) D1 ql) ( )

For ps < 0, we clearly have HDM1 ol s <Dy ol ms. For pia > 0 observe that the constraint
1 — @1|* > po implies pi + ¢ > 42, Hence,

1/2 o \ 1/2

Case iy > 0: We are left with estimating D2 i 1N the case that p; > 0. First we
sketch the location of the singularities of DM1 m(pl ¢1)- On each of the diagonal lines in
Figure 5.4, one of the two terms |(p; + ¢1)* — ), |(p1 — 1) — po| in the denominator
of D% . (p1,q) vanishes. The function D2  (p1,q1) thus has four singularities located
at the crossings of the diagonal lines Figure 5.4. The coordinates of the singularities are

(p1,q1) € {(51,—52), (82, —51), (=51, 82), (=52, 1)}, where s, = Y2 o) — VE2viL
Note that s? + s3 = X142 and 55, = L2740
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g1 = /H1 — D1

G1 = /M2 + D1

—/2 + 1

5
@ ="
10
————————— >
D1
¢ =-YP

Figure 5.4: In the proof of Lemma 5.6.5, in the case 0 < p; < o we split the domain of
p1,q1 into ten different regions. The solid lines indicate the boundaries between these regions.

To bound ||D? ||, the idea is to perform a Schur test with test function h(p;) = min{]|p:| —
s1|"2, ||p1] — s2|'/?}. Since the behavior of D2  (p1,q1) strongly depends on whether

;1 + @1l 2 /i1, lpr — @] 2 /B2 and which singularity of D?  is close to pi,qi, we
distinguish the ten different regions sketched in Figure 5.4. For 5 < j < 14, we define the

operator D#1 ., to be localized in region j, Dm yy = Dil s Xj- According to the Schur test,
107, ol < ‘Sl‘lpzh p1)” / D! @)h(q)dg (5.240)
p1|<

The bounds on || D/, || we obtain from the Schur test are listed in Table 5.2. In the following
we prove all the bounds.
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Operator | Upper bound Proof
D? =% (5.241)-(5.243)
Db Mf‘ﬂ (5.244)-(5.249)
DT G2V (5.250)-(5.252)
D8 2//4 (5.253) -(5.257)
D? ﬁ (5.258)-(5.260)
D1 uf/g (5.261)-(5.264)
D1 pr (5.265)- (5.268)
D # (5.269)- (5.271)
ps | Aartanh(l/V2)4m) | (5 972). (5.280)
D 4@@” (5.281)-(5.285)

Table 5.2: Overview of the estimates used in the proof of Lemma 5.6.5.

Region 5: By symmetry of the integrand under (p1,q1) — —(p1,q1) we have

2 1
X5
1D> | < sup h pl)/ dg
Pl = 380 0D | o — 57— hian)
N
Tz 1 1
= sup p1 — 1|/ / 1/2 dg
m+@<m<2 VE1=p1 pl + Q1 - 81 - 82 |q1 + Sl|
D1—+/12 1 1
+/ 2 2 2 2. 1/2d91
vim/2  Pi+ai — st — 85 |q— s
P1—V/HT 1 1
<2 sup lp1 — 31|1/2/ 2 2 2 2 1/2dql
AT+ < <2 viz/2  pitai — st —ss g — s
— 51|12 p1— /BT 1
<2 sup p1 — 51 / g, (5.241)
I+ Y22 <y <2p1+*—81—52 viz/2 | — s
Note that pi + 42 — sf — 55 = pf — & — 2 > @(pl — /5 + ). Carrying out the

integration, (5.241) is bounded above by

/2

8 |p1—81|1/2 vV H1 '

NI S Jrre\\2 + Xpisa sy Py — 51— Vi | (5.242)
VY2 <pi<2P1 — 5 T

Note that 51 > /& + £2. Using that for # > a > b, (z — a)/(x — b) < 1 we bound (5.242)
above by

-\ 1/2 - 1/2
8 (5) L) <8 Vi + G+ [ i<£
Vi \ |/ + 2 e R/ VAL + 2/ \/_ VAT

(5.243)
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Region 6: By symmetry under (p1,q1) — —(p1,¢1), we obtain

IDS || < sup A )/21 X6 L 4
u —
Hpe —2<p113<2 L —22—p1q1 — $152 h(q1) &
min{—p1+./p1,2} 1 1
< sw hip) [ dg (5.244
o —2<p1I<)—sz <p1 max{—mfpl,@7ﬁ+pl} —Pp1q1 — 8182 !C_h _ 51‘1/2 0 ( )

We split the integral into the sum of the integral over ¢; > s; and ¢; < s;. For p; < —s5 and
¢1 > s1 we have —p1q; — $152 > —(p1 + S2)s1. Hence,

min{—p1+/p1,2} 1 1
sup  h(p1 / 7zdan
—2<p1<—52 s1 —P1q1 — 5152 |C]1 - 81|
1 —p1+y/B1 1 2
< sup —/ —dgy = — < 5.245
—2<p1<—s2 |P1 + 52’1/281 51 |Q1 - 81|1/2 ' S1 M1 ( )

The case ¢; < s; only occurs for p; > —s; — /7. For —@ < p1 < —sgand g +p1 <

@1 < s1 note that —p1q1 — s152 > —p1(\/fiz +p1) — 5182 = |p1+ s2|(p1 +51) > [p1 + 52]\/7’71.
Hence,

51 1 1
sup h(pl)/ ST dgy

V2 <y Vizte —Piqi — s182 |1

< 2 /81 1 4 4 (5.246)
< sup , |
gy VP 52 e 0 — ]2 Vi

For —s; — \/571 <p1 < —@ and @ < q1 < s1, we have —piq; — 5159 > B2 — 5189 = £

Therefore,

1 1

S1
sup h(pl)/
VP _ — _ o |1/2
—s =Yy V2 5 p1q1 — 5152 |1 — s

dg

1/2
4lpr + 5112 = 1 8 (\/E) VH1 12 4
< sup iz 1/2dq1 = IV
—s - op < VI2 H1 2 gy — 81 M1 2 1

(5.247)

For —s;1 — /i1 < p1 < —s1 — @ and —p; — /i1 < q1 < s1, we have —p1q; — 159 >
Pl(pl + \/,Ul) — S152 = —(p1 + 51)(82 - pl)- Hence,

51 1 1
sSup h(pl)/ — — ‘ _ ’1/2dQ1
—s1—yET<p1<—s1— YL —pi—vE1 —P1q1 — S152 |q1 — S1
2p1 + /pi1 + 51|12 2 4
< sup 1 1/;21 1] = = < (5.248)
—51—\/lTl<p1<—s1—@ |p1 + 81| (82 o pl) S9 + 81+ 5 vV H1
In total, summing the contributions from ¢; > s; and ¢; < s; gives
6

(5.249)

6
1Dy ol < N
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Region 7: By symmetry of the two components of region 7 we have

2 1
X7
D < sup hpl/
H ’“”ZH <p1<2 (#1) —2pi +qi — st — s3 h(q)

1/2 2 1 1
<2 sw_pi| - s [ 7
—2<p1<2 max{/i1—p1,y/p2+p1} p1 + (h - 51 - 32 |CJ1 - 51’

(5.250)

dg

For |p1| > s2, q1 > s1 we observe p? + ¢? — 53 — s2 > (q1 + s1)(q1 — s1) > 2s1(q1 — s1).

Therefore,

sup ||pi| _32‘1/2/ 2 2 ! 2 2 : 1 2dQ1
sa<|p1]<2 max{\/fi1—p1,/A2+p1} PT + qi — ST — 53 ‘(11 - 31| /
_ 1/2 1
< sup —| p1| = 52| / ——3rdn
sa<lpi|<2 251 max{ /T —p1/Eatpi} (@1 — 1)
|Ipa| — 52| 1

= sup

wr<lprl<2 st (max{\/fir — p1, Iz + o1} — 1)V s

For |p1] < 52, g1 > 51 we have (pf 4 7 — s7 — 53)(q1 — s1)'/2 > (q1 + /57 + 53 — p}) (@1 —
87+ 53— ph)32 > 2s1(qn — /57 + 53— p?)*/2. Hence,

< (5.251)

31

sup [lpa = s [ i
|p1]<s2 max{\/a1—p1,v/Bz+p1} P1 + @i — ST — 53 |Q1 - 81|
1/2
S 00 1
< sup Ip1 + 2 / dg
prl<s2 251 Vit (g — /st + s3 — p3)3/2
Ip1 + 32‘1/2 1

= sup

p1|<s2 S1 (VHz +p1 — /51 + 55 — pi)t/?
1 |p1 + 82|1/2(\/,U2 + Pty 3% + 5% _p%)lﬂ
— sup —

Ip1]<s2 S1 (pl + 31)1/2(]91 + 32)1/2
1 (Vp2 +p1+\/3%+8§—p%)1/2 ( +/2)12s i/ (%"‘\/5)1/2
= sup 1/2 = 1/4 < 12
Ip1]<s2 S1 (pl + 51) S14q joa

(5.252)

. 6-+2+/2)1/2
In total, we obtain || D7 < %

Region 8: Taking the supremum separately over the two symmetric components of region 8,
we have

2 1
X8
D8 < sup h / d
|| B, Mg” — 72<p11)<2 (pl) 9 S% + S% _p% — q% h((]l) o
min{/m2+p1,/H1—p1} 1 1
<2 sup h(p da
N N ViAz/2 st + 83 —pi —aqi |s1 — qi|'/?
—YE<pi<ym—Y3? re ' ? ' 1
h min{\/f124p1,/B1—p1} 1 1
<9 sup (pl)/ PV 1/2dQ1,
VB -V P2 i) Jst+si—pi -l —al
(5.253)
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since \/sT+s3—pi+qn > B+ 2 -2+ @ > /uz. For |pi| > sy we have s; >
\/$3 + 83 — p3, whereas for |p1| < s9, 81 < \/s7 + 53 — pi. For p; < —s, we obtain

2h(py) [min{VRztpiV/AT—p1} 1 1
sup / — 51— i dg
*@<p1<*82 v H2 Viz/2 \V 51 TS —=p1—q 51 ¢
2|py + 59| V2 pVERtP 1
< sup 7/ dg,
— 2 cpi<—s; V2 > (V51 + 53 —pi —q1)3?
4lp1 + so|1/?

F<p1< s2 \/ 51 + 32 pl VM pl 1/2

< 4(\/ s+ s3 — pi + /1 +p1)1/2 < 21/2451/2 < 21/24
sup <

— Y2 pi <oy 21/2\//12(]71 + 51)1/2 AT ul/A‘ /L%/Q

(5.254)

Similarly, for p; > sy (which only occurs if 2,/ < 3,/111),

2h(py) [min{VAEa+pr/i-pi} 1 1
sup / » dg
2lp1 — s 12 ry/ia—p1 1 91/24
< sup |12’/ — : dgs < i (5.255)
N I (B R U

by (5254) For |p1| < S9,

2h(py) [VFEI-P1 1 1
sup / 1/2dq1
—sa<p1<sz /M2 J\/p2/2 /S% + S% _ p% —q |81 — q1|
2|p1| — 80|/ VAP 1
< sup [|p1| — o / ! —
—82<p1<582 \//TQ —00 |81 - q1| /
Aflp1| — 59|/ 4
= sup = 5.256
—sy<p1<ss \/[12]S2 +p1\1/2 V2 ( )
In total, we have
21/24
8
HDM,MH < 1/2 ° (5-257)

1

Region 9: By taking the supremum separately over the two components of region 9 and using
the symmetry in (p1,¢1) — —(p1,¢1), we obtain

21 X9 1
D < sup h / 5 d
H mm” pl?<2 ( ) -2 2p1q1 + 8182 h(c-h) o

min{p1 +/k2,2} 1 1

< sup h(pi) /

dg; (5.258
—s2<p1<2 max{/u1—p1.\/H2/2,p1—/H2} P1q1 + 5159 ‘Ch _ 81|1/2 1 ( )
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For p1 > —s9 and max{,/u1 — p1, @} < q1 < \/l12 + p1 note that

pr(y/Tiz +p1) + 5152 = (p1 + 52)(p1 + 51) if p1 <0
piqitsisa > S pi(y/pn — pi) + 8182 = (p1 + s2)(s1 — p1) if \/ur — @ >p1 =0
p1@ + 5182 if p1 > max{,/{1 — \/QTQ;O}

> \/Zu_l(pl +s2) (5.259)

Hence,
1Dl el = —52SEIE<2 \/_(P12+ 59)1/2 /\jf\;: M1—131|1/2dq1 N \/8,u_1 (5.260)
Region 10: By symmetry in p;, we have
DLl < st i) [
=, 1 — s1]'/? /mr::l{{j;f_g} o i 2 — 32 [qu] _132|1/2dq1 (5.261)

If we mirror the part of region 10 with p; > 0,¢; < 0 along ¢; = 0, its image contains the part
of region 10 with p; > 0,¢; > 0. Since the integrand is symmetric in ¢;, we can thus bound

1D}

| < sup 2|p1 — 51
s1<p1< max{/p2—p1,0} p% + Q% - 5% - 3% |Q1 - 32’

1,2

min{p1 —/f1, Y22 } 1
1/2/ 1/2dQ1 (5262)

Note that for ¢; > /s — p1, p1 > S1 we have

Pit+q — st —s3=(p1— 1)+ (@1 — 52)* +251(p1 — 81) + 252(q1 — 52)
> 251(p1 — s1) + 282(s1 — p1) = 2/ (p1 — s1). (5.263)

Therefore,
1 P1—V/H1 1 4
D0 sup / ——dgp = —. 5.264
“ ’“”‘LQH - 51<p1<2 \/_|p1 —s1|Y? Jym-p @ — so|/? \/M ( )
Region 11: By symmetry in p;, we obtain
21 X11 1
D! < sup h / = dg
H # MH pIIJ<2 <p1) -2 2 —p1q1 — 152 h(Ql) '
Vg2 1 1
=2y V2 max{—\/B1—p1,y/B2+p1} —P1q1 152 |41 2
(5.265)
For py < —s; we have —p1q; — s152 > s1(q1 — s2). Hence,
\/@
1 1
sup 2’171 + 51 1/2 — _ - ‘1/2d
=Y op sy —vai—p1 —P141 — 8182 |41 — S2
Ip1 + 5112 1 1 1
51 —VEi-p |q1 — 52 51 Vv H1

*Ml**V;Q <p1<—s1
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For p; > —s1, we carry out the integration

2 1 1

sip 2lpr+s[V2 [ dgy
—s1<pr<—YE2 2 Viztp —P1q1 — 152 |q1 — Sa|'/?

1 sé/Q 91/2 1/235/2
< sup —— = artanh = artanh | ——— 5.267
5 (!m“? NG A

—81<;D1<—% Ha
With artanh(z) < —%, we obtain
1/2 1/2.1/2 1/2 1/2 1/2 ny' 1/2
20 artenh [ 20 < 2 % _ 25 : + 5 < 1 (5.268)
/4 12 1/4 /A 172 70 VZSE 172
2 52 Ha Pa Sz T2 — 8o Ha 5 H1
Therefore, |D)} Il < #.
Region 12: By symmetry in p;, we obtain
21 X 1
DELIE sw hip) [ d
H H MH pllj 2 (1) 2 2p1g1 + 5152 h(qv) o
1 min{py+/F3,— A —p1} 1 1
= sup fh(pl)/ —zdgr (5.269)
— JEE<p1<—+/iT 2 p1qa + s182 |52 — a1

For p1 > —si note that piq1 + 5152 > s1(s2 — 1) > @(82 — ¢q2). For p; < —s; and
q1 < p1 + /12 observe that

P11+ 5152 = (—p1 — 51)(S2 — 1) + s1(s2 — ¢1) + S2(p1 + 51)

> vin \/E(SQ—Ql)‘i‘Sz(C]l—\/EvLSl) = \/M(S’Q—Ch)‘F

5

(s2—q1)+

(s2—q1)—sa(s2— 1)

- 2 2 2 2
N
25 “(s2—q) (5.270)
Therefore,
D2 < sup p1 + s1|Y2 /min{mm,—m—m} L g 2
_— - _—_— 1 —_—
Hme —VH2<p1<—y/p1 Vv H1 —o0 |82 — (]1|3/2 /1

(5.271)

Region 13: By symmetry under (p1,q1) — —(p1,¢1), we obtain

21 X13 1
DB 1< sup h / - d
1D —2 pII) (1) -2 2p1q1 + 5152 h(qv) o
2 1 1
= sup h(p1) 7zd% (5.272)
*@+\/l71<1’1<3\/2@ max{/p1—p1,0,—/m2+p1} P1G1 + S152 \82 - (J1|
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For p1 > /11, q1 > 0, we have p1q; + s152 > /1i1(q1 + s2). Therefore,

g2 1 1
sup h(p1) 172 dgs
VE1<p1<y/p2+S2 max{/fi1—p1,0,—/A2+p1} P11 + S1S2 ’32 - Ch‘
1/2
— 38 o ] 1
< sup 1= 5] / 73 dg:
VET<p1<\/fiz+52 vV H1 0 q+ 82|52 —qi

21/2 00 1 1 21/2 21/26
- 1/2dq1 = / 1/2 dg: +/ 3/2 -
Vitdo g4+ 1[1—ql 11— QI |ql—1| Vi

(5.273)
and
N
2 1 1
Vs <pr< 22 max{y/i—p1.0,—/i+p1} P1q1 + 182 |2 — qi
< sup ’]91 — 51‘1/2 / 1 1
 mtsm<p<E VI ViEte q1+ 82 g1 — 52|1/2
|z|'/2 o1 1 d / q
-oooow vl — o5, = s i 73 y
282<x<u27@ Vi Jz oyly — 252‘1/2 282<m<,u2 s yly— 2 22172
4
= " / ay+ [ =—,
S vl oyl - 1|1/2 ly — 1|1/2 1\3/2 Vi
(5.274)

where we substituted x = p; — s1 and y = g1 + Sso. Next, we consider the case p; < @ For
@ >q1 > /i1 —p1 and —sg < py < @ we have

{ @(Pl + 52) if pp >0
(51 —q1)(p1 +52) —pi(s1 — @) +qu(p1 +52) ifp1 <O

> plmts) 0, \/M_l(pl +55) (5.275)
T 1 =@)pr+se) ifpi<0T 2

P1q1 + S1S2 >

Therefore,
N
2 1 1
I i py < YL max{,/p1—p1,0,—/E2+p1} P1q1 152 |S2 — (1
_ 2h(py) V52 L
= um o V(1 + 52) i 52— @i 20
_%+\/1Tl<pl<@ 1\M1 2 H1—p1 2 1
1/2 .
< sup 4 /2 (\/STI) if i —p1> s
= 1/2 .
L a2t VI 52| (B0 (s — i+ p)'2 i = < s

(5.276)

B 1/2
Note that Sup7@+m<pl<@(p1 + 59) 712 (@) = 1 and that for p; > /i1 — so we

have % < 1. One can hence bound (5.276) above by \/%.
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For ¢1 > 0 and p; > f we have p1q; + s152 > ‘ﬁ(ql + s2). Therefore,

N5}
5 1 1
’ dg:

o e /max{r— 0—yAz+p} P1q1 + S182 |s2 — q1]'/2
%<p1<\/“71 H1—P1,U, H21Pp1 141 192 |92 1
2h 1
sup (pl)

@<p1<\/7 V IU“]- /\/lTlpl (ql + 82)‘82 - Ql|1/2

4h(p1 artanh <,/32 \2/;+p1 +7m it sy >\ —m (5.277)
= sup _
YLy <y VLY 289 arctan ( 232 ) if s < /1 —p1

VH1—P1—52

VAN

dg

We estimate the two cases separately:

4h — /I
sup (p1> artanh S22 ViDL + 7
ViT—s2<p1<+/iT / M1V 252 28y

Alsy — Jin 1/2 artanh (== ) + 7
< 51 e [artanh ( > + W] =4 ( ) (5.278)
VIV282 V2 VI

[\

and

_4h(p1) 259
sup arctan
Yl <pi<ypi— 82\/_V2S \/m_pl_52

sup [|31—p1|1/2—|\/#1—P1—32|1/27T
<p1</Ai—s2 \/282 2

7 _ 1/2 2
l — D SQ' arctan 52
V282 VH1L —P1— 52

<

é\%
3

4 V289 s 405 +1
< = Sup 1/2 1/2 tls M
VL T s, [s1— pi| /2 + |/l — p1 — 52|22 Vi
(5.279)
In total, we obtain
2126 4 8 4(artanh(1/v2) +7) 4(7/2+1)
||Du1 || < max 1720 1/2° 1/2° 172 ; 172
i M g Ha H1
4(artanh(1/v/2) + )
= 7 (5.280)
231
Region 14: By symmetry in p;, we have
2 1
D < sup h / A1 d
1Dt all < f2<p13<2 (p) ~2 57+ 53 —pi — i h(q1) o
min{ /7 —p1, Y5>} 1 1
= Ssup h(p1>/ 2 1/2d
0<p1<s1 max{—+/f1—p1,—/f2/2,—/B2+p1} ST + 82 pl - QI ||q1| - S2|
min{ /i +p1, %22, iz —p1} 1 1
< sup 2h(p / dgi,
I S—— P el PN
(5.281)
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where in the last inequality we increased the domain to be symmetric in ¢; and used the
symmetry of the integrand.

For p1 < sz and /i +p1 > g1 we have si + 53— pf —qi > s7+s3 —pi — (Vi +p1)* =
2(s2 — p1)(p1 + s1). Hence,

Vi1+p1 1 1
sup Qh(pl)/ Z+a—p—gllal—s |1/2dq1
0<p1<¥2 /iy 0 1 2~ P14 |l%1 2

< 1 VI1+Dp1 1 d

< sup / T 19

vem<Z_ s (82 = 1) (p1 + 51) [la] = 5o 2

_ sup 2(sy’> + (p1 + /i1 — $2)'72) < 2(sy’" + (Tl) ) < 4( 22) <8
ey (S2=p)Ports) T (@)1/2 s (@)1/2 NV

(5.282)

Similarly, for py > s, and \/fi—p1 > g1 we have s3+53—pf —} > s3+3—pi — (/T —p1)* =
2(s1 — p1)(p1 — s2). Therefore,

VE2—P1 1 1
sup 2h(p1)/ o T |1/2d
2 cpi<sy pi—yvim 51+ 85— Pl —qi |g — 2
< 1 /\//T2p1 1 d 4 ]
~ sup —dq; = sup — .
VI2 cpi<s (s1 = p)Y2(p1 = 82) Joi—vim |qn — s2| /2 T <5 pL— 82 i1

(5.283)

For Y2 — /iy < pi < Y22 and ¢; < Y22, we have 57 + s3 — p? — ¢? > X Thus,

v 1 1

2
sup 2h(p1) dg:
S ey < 42 max{0.p— i} ST+ 83 — Pt — qf [ — saf'/?

AV R 1L B

T 2 @_Qmm = 21/2#?/4 - M}/Q
(5.284)
In total, we have
4
1D}l < —7 (V3 +1) (5.285)
251
]

5.7.2 Proof of Lemma 5.6.6

Proof of Lemma 5.6.6. The integral in (5.207) is invariant under rotations of . Therefore,
it suffices to take the supremum over § = ¢3 > 0 for d = 2 and ¢ = (g2, 0) with g5 > 0 for
d = 3. Furthermore, it suffices to restrict to p, > 0 since the integrand is invariant under
p — —p. Note that under these conditions p; < py. We split the domain of integration in
(5.207) into two regions according to p; = min{us, pe} < 0.
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Dimension three: We first consider the case u; < 0, i.e. [p2 + q2|*> > 1 — p2. In this case,

Xmin{p1,p2}<0 d5

sup / X|pl<2X :
d=(ao.0) gpz0 Jr2 PEAPEY (Cin £ i)

4 p3 1
q2>0 [ ¥ max{4/1—p2—q2,0} ((p2 + q2)2 _|_p§ — ]_)a 2

V4-p3 1
+/ d / dps| (5.286
r<pal<z T2 o (2t @2 +p— 1o 2 ( )

Let ¢o and |p3| < 1 be fixed. By substituting x = py + g — /1 — p3 if g2 < /1 — p3 one
obtains

dps

2 1
/max{w/l—pg—qLO} ((p2 + @2)> + p§ — 1)
< /2 X< /113 d ? Xoo>y/183
< x + dps
0 (z+ MP +p3— 1) 0 ((p2+/1—p3)2+p3—1)°

C
<~ (5287
1 — p3)e/? (5.287)

for some finite constant C. Since [!,(1 — p3)~*/2dps < oo, the first term in (5.286) is
bounded. The second term is bounded by

>
d / . dpy < oo, 5.288
/1<|p3|<2 P3 0 (p%—l)a P2 < OO ( )

For the case 111 > 0 we have |ps + ¢2|*> < 1 — p3. Hence,

X0<m1n{,u1 u2}t d ~

sup /X 2Xp2>0
|pl<2Xp2z mln{ﬂla/@}a

G=(92,0),q2>0

1p3 q2 1

_ 4 / d 5.289
§2u>%/ P3X gy< /112 (1= (p2+ q2)* — p3)~ v )

For fixed |ps| < 1 and ¢ < /1 — p3 substituting x = /1 — p3 — g — p2 gives
/\/ 1-p2—qo 1 /\/ 1-p2—q2 1

dps = dz
0 (1—(p2+q2)? — p3)* 0 (1-— (m — )% — p3)”
1-p3—g2 1
_ / dz. (5.290)
0 2y/1—p3 —x)°

Thus the expression in (5.289) is bounded by

1p3 q2 1

1
sup dpsx / dz
w20/ VIS 22(\/1 = 1 + g2)°

1 1 1
g/ dpg/ — — dz<oco (5.291)
-1 0 xa( _ %a
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Dimension two: For the case 11; < 0 we have |py + ¢2| > 1. Hence,

2

Xmin{p1,p2}<0 /2 1
sup - dp, = sup dps. 5.292
S o = min o, 121 T o fuetiann) (a F @ = Do (02%2)

This is finite according to (5.287).

For the case p; > 0,

2 . 1— 1
X0<min{u1,u2} a2 1 / 1
su =l dpy = su dps = ——dx < 0,
mrodo min{uy, wye P T 2l A=t @) 0 Jo @ —a)
(5.293)
where we used (5.290) in the second equality. O

5.7.3 Proof of Lemma 5.6.7

Proof of Lemma 5.6.7. The proof follows from elementary computations. We carry out the
case d = 2 and leave the case d = 3, where one additional integration over ¢3 needs to be
performed, to the reader.

By symmetry, we may restrict to py, qi, p2 > 0. Furthermore, we will partition the remaining
domain of ps, g2 into nine subdomains. Let x; be the characteristic function of domain j.
Since (a + b)? < 2(a® + b?), there is a constant C such that the expression in (5.213) is
bounded above by CZ?:l lim._, I;, where

V2 2Xj 2
b= ‘ / dga| dpidgr.  (5.294
P opace e 0TS [—ﬁl(p+q)2—1l+l(p—q)2—1| ¢2| dpidqr.  (5.294)

Hence, we can consider the domains case by case and prove that lim._,o /; = 0 for each of
them.

We use the notation 1y = 1 — (p; +¢1)? and e = 1 — (p; — q1)?. (Note that this differs from
the notation in Lemma 5.6.5). Since py,q; > 0 we have s > 11y We assume that € < 1/4,
and thus for pi, ¢ < € we have puy, iy > 1 — 4¢® > 3/4.

For fixed 0 < p1,¢q1 < €, we choose the subdomains for p, o as sketched in Figure 5.5. The
subdomains are chosen according to the signs of (ps + ¢2)* — 1 and (ps — q2)? — pa, and to

distinguish which of —. /11 — pa, —\/1t2 + po is larger.

We start with domains 1 to 4, where (p+¢)*> — 1= (po+ @q)* — 1 >0and (p—¢q)* — 1=
(p2 — q2)? — j2 > 0. Note that in domain 4, py > 7\/’71;‘/’72 > /1 — 4¢€2, which is larger than
€. Hence x4 = 0 for po < /1 — 4¢€2, giving I, = 0. For domains 2 and 3, we have

2
2 1
] = Ssu € 19— / d d d ; 5295
27 opane Jrp XOPom<eX2pa< Vi [ P+ @G +pi+dd—1 QQ] pidgr,  (5.295)
2 1 2
I. = su / € — / d dp-d ’ 5296
37 (ot Jre XS <eXzpe>vim =i | | e e ey G| CPed (5.296)

142



5.7. Proofs of Auxiliary Lemmas

q2 o G2 = /M2 + P2
| q2 = —\/H2 + P2

q2 = /M1 — P2

q2 = —/H1 — P2

Figure 5.5: Domains occurring in the proof of Lemma 5.6.7.

where ay = \/fia—p> and az = \/fi1+po. Since 0 < p1, q1, p2 < € we have 1—p2—qi—p3 > 3/4
and thus

1—p2—q2—p2 1—p2—q2—p2
artanh Y20 ] VTR0
J

2 1
/ajp%+q%’+p%+qg—1_ Vi-pi—qt 13

12— 2 — 2
§C’artanh\/ mnor (5.297)

a;

Since artanh(z/y) = In((y + 2)?/(y* — x?))/2 and \/1 —p —q —p3+a; <3 we get

C 9 2
]<—su/ v dpidgr (5.298
2S5 SUP fon Xo<prar<eXopsy iy l s — Pl —Pz))] pidgr  ( )

and
<% s / In ) dpid (5.299)
3= 0§p2p<6 - X0<p1,q1<eX2p2>/fiz—/I1 2(p1ql+p2(\/m+p2)) p1dqs . )

For domain 2, we substitute z = p; 4+ ¢; and r = p; — ¢; and obtain the bound

C 18
L <— su rl<z<e _ In
2 > 4 p R2 X|r|<z<2eX2p2<\/1i2 ml 22_r2_4p2<m_p2

0<p2<e

)] 2 drdz (5.300)
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The condition 2py < /fi2 — /j11 implies that = := 2% — 1?2 — 4dpy(V1 =712 —py) > 0

Substituting z by = gives

C 1872 1
L<< sup [ ar / dar [m ]
4 0<py<e /2 x 2\/:1:+r2+4p2( T=7r2 —p,)

2l

< [ln } dx (5.301)

[e=]

This vanishes as ¢ — 0. For domain 3 we bound (5.299) by

2
] dp1das, (5.302)
D141

9
]3 S C/RQ X0<p1,q1<e [ln 9

which vanishes in the limit ¢ — 0. For domain 1 note that since \/i2 + p2 > a9, a3, we have
I, < Iy + Is.

Now consider domain 5, where (p +¢)2 —1 = (po + @)?> —p1 > 0and (p —q)> — 1 =
(p2 — q2)* — 2 < 0. We have

/\//Tz +p2 1

2
—d dpdg;. 5.303
VEr-p2 2(P1q1 + P2g2) QQ] b ( )

Is = sup X0<p1,q1<e
0<pa<e JR?

Integration over ¢y gives

JH+pe 1 L (\/_ V)P + 2p3
/ de> = ! < g+ (\/_ p2)p2 ) ' (5.304)

Vi 2(p1qi + p2gz) 2192
Note that /2 — /11 = 4p1q1/ (V2 ++/01) < 2p1q1 /v 1 — 4€% and /i1 —pa > V1 — 42 —e.
We can therefore bound the previous expression from above by

1 2ps 2ps 1 1
— 1+ + < + <C, (5305
2py ( V1 —4e2 \/1—462—€>_\/1—462 V1—4e2 —¢ ( )

where we used that In(1 + z)/x < 1 for > 0. Therefore I5 < C?¢? vanishes as ¢ — 0.

For region 6 we have

2
—V/R1—Dp2 1
Is = sup /2X0<P17Q1<6X2p2§\/,172—\/171 [/ dQQ] dpidg,.  (5.306)

0<pa<e JR —viztp2 2(P1q1 + P2q2)
Integration over ¢y gives

/_m_m = (1 SO/ Tt ) ) . (5.307)

¢2=-—1n 2
~vaztp: 2(P1q1 + D2g2) 2py g1 — (V2 — p2)p2

One can compute that
0 s — /i1 — 2 8
S B e I _>0. (5.308)
Opaih — (V2 — p2)p2 (V2 + /1 — 2p2)
ThUS, for X2p2§\/172—\/,171 we have

Vi TV T Vi2Z Vi T2 2 (5.309)
P — (V2 — p2)p2 ~ pe=(i—viD/2 pigy — (2 — p2)p2 N/
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The expression in (5.307) is thus bounded above by

2 1 1
)= S

which is bounded as € — 0. In total, we have Iy < C'¢?, which vanishes in the limit € — 0.

1
—In (1 + P2 (5.310)

2p2

For region 7,

— V242 1 2
I; = sup /RQX0<p1,q1<eX2p22\/;TT\/;Tl/ dg2| dpidgr. (5.311)

0<p2<e —vE-p: —2(p1q1 + p2g2)

Integration over ¢y gives

/_‘/’TMQ ! dg = — (1 L py \/m_m)). (5.312)

q
—vii-p2 —2(p1q1 + p2g2) 2p2 mq — (V2 — p2)p2

According to (5.308), for (/2 — \/ft1)/2 < p2 < € this is bounded by

O W 20 12— (ViE - )
2]021 <1+p2p1Q1_(\/E_€>€> SQ(\/E_Ek—plﬁh' (5:313)

For p1,q1 < € this can be further estimated by

L 2¢ < ! (5.314)
2(Jpz —€)e—€> 7 /1 —4e — '
which is bounded for ¢ — 0. Hence, I; < C€? vanishes for ¢ — 0.
For domains 8 and 9, we have
12
Izsup/x X /rpz ! dgz| dpidg
B R i N Ay R R ] E
(5.315)
I / /r " L d0s] dprd
= su . _ .
7 ol Jre NSRBI | TG - @ ) P
(5.316)
We bound
/\/171—P2 1 d ViB1+p2 1 d
72 < / q2
~vir-m 1 =i — i —p3 — 0 l—pi—¢ —p3— ¢
B 1 (\/1—p1—q1 p3 + /I +p2)
Vi-p—ad- \Vi-p—-ad—p3— viin—p
B 1 . (V1 -} — ¢ — 3 + /i + p2)?
\/1 —p? — 2 — p? 2(p1qr — p2(/11 + p2))
1 9
< In 5.317
T V1 — 32 (2(p1Q1—p2(\/m+p2))> ( )
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Substituting z = p; + ¢; and r = p; — ¢1 we obtain

9
p1q1 — p2(\/1 + p2

2
Is < C sup /RQ X0<p1,q1 <eX2p2 </ — /T I (2( ))> dp1dg

0<p2<e

¢ “d / d 1 18 2

— su z TX\rl<z —2_/1—21n .

2 0§p2p<e 0 —c Alrl<=Xapy<v/T=r7=VI=22 22 =12 —dpy(V1 — 22 + po)
(5.318)

Substituting r by @ = 2% — 1% — 4py(v/1 — 22 + p2) and using Hélder’s inequality we obtain

C 1
Is < — sup dz

2
0<pa<e J4p2—4p2 0 x ) \/22 —4po(V1 =22+ py) —

8. 2 2dpy(patvI==2)  18\6 \/?
< — sup dz / In <> dx X

0<pa<e J4pa—4p3 0 X

dx

2¢ 22 —4py (p2+v1-22) 18
/ In (

e ! d . 5.319
J E i i) | )

In the last line we substitute y = 22 — 4py(v/1 — 22 + py) — x, and then we use 2z* —
4pa(V1 — 22 + py) — x < 4€* to arrive at the bound

C 2 1 ,18\6 \ '3/ e q 2/3
Iy < — sup dz [ (/ In <) dx) (/ 34dy>
4 0<pa<e Japa—4p2 0 x 0oy /
C 462 ]_8 6 1/3 462 1 2/3

which vanishes as € — 0. For Iy we bound (analogously to (5.317))

/m_pg 1 do, <2 [V 1 d
g2 > / q2
~viatpe 1L =i — ¢l —p3 — @3 0 1—pt—gf—p3—a3

_ ! (W= = =3+ i — o)
\/1—17%—(]%—])% 2(P2(\//T2—p2) —Piqa)

1 4
= V1 — 3¢ 8 (2(]92(@ —p2) — p11)

) (5.321)

Substituting z = p; + ¢; and r = p; — ¢ we obtain

2
4
Iy <C su / . o In dpyd
9> OSP2I)<€ - X0<p1,q1<eX2p2>+/z—/B1 (2(}72( o —]92) —p1q1)> p1dqr
< C € d /26d 1 8 2
— su r 2X|rl<s — = .
T~ 2 0§P2p<e —e 0 Xirl<zXopa>v1=r7-vi=22 Apa(V1 — 12 — po) — 22 412

(5.322)
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Substituting z by x = 4py(v/1 — 12 — py) — 2% + r? and using Holder's inequality we obtain
g y P p

C € 4pa (V1—1Z—pg)+r? 8 2 1
Iy < — sup dr/ In (> dx
4 ogpace e o & \/4p2(m —p)+12—x
C € 4p2 (V1-12—po)+1r? ]\ 6 1/3
< — sup dr / In () dx X
0<p2<e s —¢€ 0 x
4po (VI—1r2—pg)+r2 1 1 2/3
x
/0 (4p2(V1 =12 —py) 4+ 12 — x)3/4
C dete? ]\ 6 1/3 dere? 2/3
< e (/0 In <x> dx> /0 dy) . (5:323)
which vanishes for ¢ — 0. [

5.7.4 Proof of Lemma 5.6.9

Proof of Lemma 5.6.9. To prove Lemma 5.6.9 we show that the following expressions are
finite.

L. SupT>p,/2 SUPgeRrd HVl/QBT(_’ Q)|V|1/2||
2. supy supgepal|[VY2Br (-, @) x| o3|V V2|
3. supy suPgega | VY2Br (-, ) X((+a)2—p)((—a)2—my<o] V2]

4. suprsupy, . e[V Br(s 0)xp2<apX((+a2 (om0l VI

1

- SUPTSUp|, ve vz [BT('7Q)X|-\2<3,LLX((~+q)2—u)((~—q)2—,u)>0 - QT(Q)} |V|1/2H

In combination, they prove (5.217).

For part 1, note that ||[V'2Bz(-, q)|V|'/?|| = |||V|"?Bz(-, q)|V|*/?|| and by Lemma 5.2.4 this
is maximal for ¢ = 0, i.e.

sup sup |[V'?Br(-, q)|V|"?| =TSU%HIV!”QBT(-,O)IV\”QH- (5.324)
>u

T>p/2 geR4

By Lemma 5.24, there is a constant C' depending only on x4 and V' such that

sup H]V!l/QBT(-,O)\V\l/ZH < sup e, (|V|)m,(T) + C < oo, (5.325)
T>p/2 T>p/2

where e, (|V]) = sup o (|V V2 FTF|V|Y/2).
Part 2 follows using (5.11) and that |||V|'/225|V'|'/?|| is bounded [32, 40, 50].

For part 3, it suffices to prove that

Y =supsup | Br(p, O)X(p+a2-m((p-?-w<odp < 00 (5.326)
T gcRdJ/R?

since (3) is bounded by ||V[|1Y". The integrand is invariant under rotation of (p, q) — (Rp, Rq)
around the origin. Hence, the integral only depends on the absolute value of ¢ and we
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may take the supremum over g of the form ¢ = (|q|,0) only. For p,(q:,0) satisfying
((p+ (q1,0)* — 1) ((p — (q1,0))*> — p) < 0, we can estimate by [34, Lemma 4.7]

9 1 } N
Br(p, (¢1,0)) < = exp <—T min{(|p1| + |@])* + 5 — o — (Ip1] — |@1])? —pQ})
(5.327)

Note that (|pi| + 1)+ p* — p < . — (|p1| — |qu])? — §* <> p* + ¢ < p. We can therefore
further estimate

BT(pa (QI; )) X(lp1l+la1)2+52>p>(|p1]—|q1]) 2 +52
2 1 2, 2
< 7 exp (—T((Ipll +|ql)? +p° — u)) X(Ip1 [+la1 )24+52>p Xp2 +q2 <p
2 1 2 =2
+ 5 exp (—T(u — (Ip1| = lqu])* =P )> Xpu>(p | ~lqa 2452 (5-328)

We now integrate the bound over p and use the symmetry in p; to restrict to p; > 0, replace
|p1| by p1 and then extend the domain to p; € R. We obtain

4 1 i
Y < supsup — U exp <—((p1 + @) +p° — u)) X(p1+a1 )2 45251 Xp2+g2 <D
T qer 1" L/Rd T

1 -
+ /Rd exp (—T(M — (1 —|a])? - p2)) Xp>(p1— s 2452 | - (5.329)

Now we substitute p; £ |¢1| by p1 and obtain

1
Y < Sl%p |q1s\1£)f T / exp (_T(pl +p° N)) pr+ﬁ2>uX(p1—\Q1|)2+152+Qf<udp

+supT / eXp( (1 —pi— p)) Xpsp2 524D

4 Sd_l 9 d—1,u/T ) d 1 d—1 —,u/T VB
< sup | ICN/DC / e /Mdr + sup 45 ’\/_ / e"/Tdr, (5.330)
T T N/ 0

where we used that (p; — |q1|)? + p* + ¢ < u = p* < 2u. Note that

WT oo 1/2
\/E; e Tdr = 7TT,/%e”/Terfc <,/;) (5.331)
NG

Ve “/T/ "7 7T1/2\/W /T <\/ﬂ>
T ; dr = 5\ ¢ erfi T (5.332)

As in the proof of [34, Lemma 4.4], we conclude that ¥ < oo since the functions ze*”erfc(z)
and ze*’erfi(x) are bounded for z > 0.

and

For part 4, it again suffices to prove that

X =sup sup | Br(p: a)Xp <suX(prar (=0 -w>00P < 00, (5.333)
jal>%

since (4) is bounded by ||V||;X. Again we can restrict to ¢ of the form ¢ = (|g|,0). The idea
is to split the integrand in X into four terms localized in different regions. The integrand
is supported on the intersection and the complement of the two disks/balls with radius /z
centered at (£¢;,0). (For d = 2 this is the white region in Figure 5.3).
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= The first term covers the domain with |p| > |/t outside the disks/balls:
Xy = suppsup, . vi Jpa Br(p: (a1,0))Xp2 <3 X250 dP

» The second term covers the remaining domain with [p;| > |q:| outside of the two
disks/balls:

Xo =suppsup,\ vi o 4B, o i, 1 Br(p, (@1, 0))xpe<ap

= The third term covers the remaining domain with |p;| < |qi| outside of the two
disks/balls:

Xs = suprsupy i < S, i W1 Br (P2 (01, 0))X02 <5

= The fourth term covers the domain in the intersection of the two disks/balls:
X4 = supy SUP|, 152 S <u—a dp f|p1|<\/uf_ﬁ27|q1| dp1 Br(p, (q1,0))Xp2<3u

We prove that each X is finite. It then follows that X < X; + X, 4+ X3 + X, is finite. We
use the bounds

1

Br(p, (¢1,0)) < {puqﬁ“

n—p?—qi

it (Ip1| — |aa])® +7° > p,

. N 334
i (Ipa] + |ai])? + 72 < . (5.334)

which follow from (5.202). The first line applies to Xj, X3, X3, the second line to Xj.
For X1, we have p? + q% — > q% > u/4 and thus X; < oco. Similarly, for X5, we have

PHai—p= (/@ + P +vVi— (e + =i =) = |l (I =i =) > ¢} = p/4
and thus X, < co. For X3, we have p>+¢7 — > |q1|(|q1| — Ve — p2) > %(’qu — /= p2).
Hence, X3 < SUD |5 B %fu_q%@g@ dp < oo. For X4 we have u—p?—q? > pu— (/1 — p>—

) = 7% — qf = 2la|vV — P > v — 2. Thus,

Yoz owp 2 VTl
IV T

dp < o0. (5.335)

To prove that (5) is finite, let S74(q) : L'(R?) — L>(RY) be the operator with integral kernel
1 i(z—y)- % z—y)-
Srala)(®.9) = G5 /Rd [0 — VPP Br(p, )X ()2 —) (9-0) - >0 Xp2 <3P

(5.336)
VY2874(q)| V12| With (5.11) and |e*—e¥| < min {|z — ], 2}

Then (5) equals sup,. Sup,, _vi
2
we obtain

1 [ min {|(p| = i) (@ — ) - p/Ipll, 2}

1S1.4(q)(z,y)| < X((p+a)?—1)((p—0)>—1)>0Xp? <3udP

(2m)d p? +¢* — p
1 min{||p| — |z -y, 2}
< (27r)d /Rd |p2 T _N| X((p+q)27u)((pfq)Lu)>0Xp2<3udp (5-337)

Again, the integral only depends on |¢|, so we may restrict to ¢ = (|g|,0). We now switch
to angular coordinates. Recall the notation 4 and e, introduced before (5.221) and that
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(Jrcoso| Fla|)? + r?sinp? 2 p <> r = re(e,). For d =2 we have

1 27 V3p min |r — T —y|,2
/ [/ Z {Ir = vallz =yl }rdr

1S72((q1,0))(z,y)| <

(2m)% Jo r (eW) 2+ —
(e mln —7r)|lr—yl,2
—i—/ g )’ 7 - }rdr] dep =: g(z,y,q1) (5.338)
—rt-q
and for d =3
L e[ v min{)r = VRl - o), 2}
S L0))(z,y)| < 7/ / sin rd
‘ T,3((QI ))([E y>| = (271')2 0 [ v+ (e0) 7“2"’(]% — mnor-dr
r_(eg) Min w—r)r—uy|,2 V3
—i—/ ' {(\/_ ) 5 | }sin6r2dr df < —'ug(x,y,ql). (5.339)
0 w—r?—qi 2
We bound ¢ by
l9(z,y, q1)]
_ 1 /%'/ﬁuHm%V—TM%DW—MJ}+mmﬂvﬁ—TA%W$—MJhﬂr
— 212 o | Jritey) P24+ q¢G —pn

. /T_(e@ min {(r_(e,) - )z — yl,2} + min { (/7 - r_(e,))|z - yl,2}

dr| dp (5340
0 p—r?—qi TT] 2 (534)

Note that 7 (e,) attains the minimal value \/p — ¢f at |¢| = 5 and the maximal value

VI + |qi| at [¢| = 0. Similarly, r_(e,) attain the maximal value \/u — ¢ at |¢| = § and
the minimal value /it — [q1] at || = 0. For the first summand in both integrals we take the

supremum over the angular variable. For the second summand in both integrals, we carry
out the integration over r and use that |\/x — 7_(e,)|, [\/it — r4(ey)| < [q1|. We obtain the

bound
1 mmin{V’—\/M—Q%||$—y|,2}7“d
I7 9 Si/ T
l9(z,y, q1)] 9 172 4 ¢2 — p
2} [2n 2 —
+mm{|qlllx yl, }/ l ( /qu >+ln< i 2)]@
24 g —p p—qi —r_(ep)

(5.341)
Recall that we are only interested in [q;| < /fi/2. For the first term, we use that r < /3y and

2+t —pl =|r—/n—gllr+/u—ail = [r—\/u—ail\/u— gi. This gives the following

bound, where we first carry out the r-integration and then use that \/p — ¢? > /3u/2:

W¢;_q/‘ {”Sy'v_yl_ﬁ&dr
L e R e

N
1—|—1n< le |>] (5.342)

<C
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For the second term, we use that

21+ qf pogi _ 2ptd 5 343
2 2 2 2 4 2 2 ( . )
ry(eg)? +aqf —pp—qf —r_(ey,) leg1 ]2

and |q1| < \/11/2 as well as |e,, 1| = | cosp| > 1 min{|5 — ¢l, |3 — ¢|} to arrive at the bound

min {lq ||z — o |2}/2” ( V3 )dg0§4mm{|ql . |2}/W/2 (\/_M>dg0

(2m)? 2leq1q1] (2m)? |l
_ min {|q[]z — y].2} <1+ (2\/ ))
o i
. . 9 2)
_ min{[q[z -y, 2} (1 T n (\/@W — y|> +1In (77)) . (5.344)
27 [z — ylla]

where we used [In(1/z)dz =z + xIn(1/x). Since x1n(1/z) < C, this is bounded above by

71r (1 + max {ln (\/@m - yl) ,O}) +C. (5.345)
In total, we obtain the bound

sup_lg(e,y, ) < C[1+In(1+y/ale - y)]. (5.346)

lg1]< L2

Let M : L*(R%) — L%*(R?) be the operator with integral kernel M(z,y) = |V |*/?(x)(1 +
In (14 \/ilz = y]))|[V]Y?(y). We have

VY257,4(q)[VIY?) < O d)l|M | (5.347)

T g

for some constant C'(u,d) < oo. The operator M is Hilbert-Schmidt since the function
= (14 In(1+ |2))?)|V (z)] is in L(RY). O
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CHAPTER

Enhanced BCS Superconductivity at a
Corner

Abstract We consider the critical temperature for superconductivity, defined via the linear
BCS equation. We prove that at weak coupling the critical temperature for a sample confined
to a quadrant in two dimensions is strictly larger than the one for a half-space, which in turn
is strictly larger than the one for R?. Furthermore, we prove that the relative difference of the
critical temperatures vanishes in the weak coupling limit.

6.1 Introduction

Recent work [6, 7, 62, 63, 64, 68] predicts the occurrence of boundary superconductivity in
the BCS model. Close to edges superconductivity sets in at higher temperatures than in the
bulk, and at corners the critical temperature appears to be even higher than at edges. Our
goal is to provide a mathematically rigorous justification of these results. It was proved in
[34, 60] that the system on half-spaces in dimensions d € {1,2,3} can have higher critical
temperatures than on R?. Here, we extend this result for d = 2 and show that a quadrant has
a higher critical temperature than a half-space, at least at weak coupling.

We consider the full plane, and the half- and quarter-spaces Q; = (0,00)* x R?>* for
k € {0,1,2}. We define the critical temperature as in [34, 60| using the operator

Q_ —A; — Ay —2p . o
M= (=52 + zanh (=54) Wiz =) (6:1)

acting in L%, (Q x Q) = {¢ € L*(Q x Q)[¢p(z,y) = ¢(y, ) for all z,y € Q}, where —A
denotes the Dirichlet or Neumann Laplacian and the subscript indicates on which variable it
acts, T' is the temperature, p is the chemical potential, V' is the interaction, and X is the
coupling constant. The first term is defined through functional calculus. For V € L!(R?) with

t > 1, the H;z’“ are self-adjoint operators defined via the KLMN theorem [60, Remark 2.2].

The critical temperatures are defined as
TF(\) := inf{T € (0, 00)| inf o (H2*) > 0}. (6.2)

The operator Hg’“ is the Hessian of the BCS functional at the normal state [21]. In particular,
the system is superconducting for 7' < T¥()), when the normal state is not a minimizer of
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the BCS functional. A priori, superconductivity may also occur at temperatures 7' > T ()),
when the normal state is a local minimum of the BCS functional, but not a global one.
For translation invariant systems, in particular for €y = R?, this is not the case and the
system is in the normal state if 7' > T°()\) [32, 33], hence T? separates the normal and the
superconducting phase. However, it remains an open question whether the same is true for
T} and T2

C

We prove that for small enough ), the critical temperatures defined through the linear criterion
(6.2) satisfy T2(\) > T}(\). Together with the result from [60], we get the strictly decreasing
sequence T2(\) > TH(\) > T2(\) of critical temperatures at weak coupling.

Similarly to [60, Lemma 2.3], where it was shown that T} ()\) > TY(\) for all ), the following
Lemma is relatively easy to prove.

Lemma 6.1.1. Let \,T > 0 and V € L}(R?) for somet > 1. Theninf o(H) < inf o(H").

Its proof can be found in Section 6.2. In particular it follows that for all A > 0, we have
TZ(\) > T(N\). The difficulty lies in proving a strict inequality, which the rest of the paper
will be devoted to. In order to prove TZ(\) > T}(\), we shall give a precise analysis of the
asymptotic behavior of H%(/\) as A — 0.

For yu > 0 let F : L'(R*) — L*(S') act as the restriction of the Fourier transform to a sphere
of radius /%, i.e., Fp(w) = ¢(y/fw) and for V > 0 define O, = V/2FTFV1/2 on L2(R?) =
{¢ € L*(R*)|¢(r) = ¥(—r)}. The operator O, is compact. For the desired asymptotic
behavior of H%(/\) we need that O, has a non-degenerate eigenvalue ¢, = supo(O,) > 0 at
the top of its spectrum [32, 40].

We require the following assumptions for our main result.

Assumption 6.1.2. Let ;1 > 0. Assume that

1. V e LY(R?) N LY(R?) for some t > 1,

2. Visradial, V #0,

3. ||V e LYR?),

4.V >0,

5. e, =supo(0,) is a non-degenerate eigenvalue.

Remark 6.1.3. Similarly to the three dimensional case discussed in [32, Section I11.B.1],
because of rotation invariance the eigenfunctions of O, are given, in radial coordinates
r = (|r],¢), by VY2(r)e™?J,,(\/ft|r|), where J,, denote the Bessel functions and m € 2Z
since the functions must be even in r. The corresponding eigenvalues are

1
(m) — — 2
e = o= [ V)l Far (6:3)
and in particular eLm) = efjm). Assumption 5 therefore means that ¢, = eff)) and that all
other eigenvalues ef}”) are strictly smaller. Hence, the eigenstate corresponding to ¢, has

zero angular momentum. Analogously to the three dimensional case, a sufficient condition for
Assumption 5 to hold is that V' > 0.
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Our first main result is:

Theorem 6.1.4. Let ;1 > 0 and let V' satisfy Assumption 6.1.2. Assume the same boundary
conditions, either Dirichlet or Neumann, on €1y and 5. Then there is a Ay > 0, such that for
all 0 < XA < Ay, T2(N\) > TH(N).

The second main result is that the relative difference in critical temperatures vanishes in the
weak coupling limit.

Theorem 6.1.5. Let 1 > 0 and let V' satisfy Assumption 6.1.2. Assume either Dirichlet or
Neumann boundary conditions on €),. Then
T2(N) = T2V

R XTPY

—0. (6.4)

Since T2(A\) > TX(\) > T2()), this implies limy_o %(AT;(’\) =0 and lim,_,o Tl(T)Oi(AT)O(A)

0. The latter was already shown in [60] and we closely follow [60] to prove Theorem 6.1.5.

The paper is structured as follows. In Section 6.1.1 we explain the proof strategy for
Theorem 6.1.4. Section 6.2 contains the proofs of some basic properties of HS. Section 6.3
discusses the regularity and asymptotic behavior of the ground state of H¥1. In Section 6.4
we prove Lemma 6.1.8, the first key step in the proof of Theorem 6.1.4. The second key step,
Lemma 6.1.9 is proved in Section 6.5. In Section 6.6 we prove Theorem 6.1.5. Section 6.7
contains the proofs of auxiliary Lemmas.

6.1.1 Proof strategy for Theorem 6.1.4

The proof of Theorem 6.1.4 is based on the variational principle. The idea is to construct
a trial state for HTl(A) involving the ground state of H (n- However, the latter operator is
translation invariant in the second component of the center of mass variable and therefore
has purely essential spectrum. To work with an operator that has eigenvalues, we fix the
momentum in the translation invariant direction, and choose it in order to minimize the energy.

Let U : L*(R? x R?) — L?(R? x R?) be the unitary operator switching to relative and center
of mass coordinates r =z —y and z =z + y, i.e. U(r, z) = 2¢((r + 2)/2,(z — r)/2). We
shall apply U to functions defined on a subset of Q2 C R? x R?, by identifying L*(2) with
the set of functions in L?(R? x R?) supported in 2. The operator UH3*' U, which is H'
transformed to relative and center of mass coordinates, acts on functions on Ql x R, where
Q1 = {(r,21) € R®||ry| < 21}, and is translation invariant in z,. For every ¢, € R let H}(qs)
be the operator obtained from UHQlUT by restricting to momentum ¢z in the z; direction.
The operator H(qy) acts in L2() = {¢ € L2(Q)|¢(r, z1) = ¢(—r,2)} and we have
mfa(H%(A)) inf,,er 1nfa(HT1(A)( 5)). We want to choose g, to be optimal. That this can
be done is a consequence of the following Lemma, whose proof will be given in Section 6.2.2.

Lemma 6.1.6. Let T, \,;u > 0 and V € L'(R?) for some t > 1. The function q +
inf o(H}(q2)) is continuous, even and diverges to +0o as |qa| — o0o.

Therefore, the infimum is attained and we can define 1(\) to be the minimal number in [0, 00)
such that infa(Hilpcl(/\) (n(N))) = infa(H;Zf(/\)).
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N A

Figure 6.1: Sketch of the (anti)symmetric extension of a function v defined on the upper
right quadrant in the (ry, z1)-coordinates. The extension is defined by mirroring along the x4
and y;-axes and multiplying by —1 for Dirichlet boundary conditions.

Next, we shall argue that H%,l(/\)(n()\)) indeed has a ground state, at least for small enough
coupling, which allows us to construct the desired trial state. Let Ay > 0 be such that
THN) > T2(N) for A < A\g. Such a )\ exists by [60, Theorem 1.3].

Lemma 6.1.7. Let n > 0, let V satisfy Assumption 6.1.2 and let 0 < XA < Xg. Then
Hr0(1(N)) has an eigenvalue at the bottom of its spectrum.

The proof of Lemma 6.1.7 can be found in Section 6.2.3. For A < \q let ®, be the ground
state of Hri,(1())). In the case n(A) = 0, the operator Hi iy (n(A)) commutes with
reflections 7 — —ry and we may assume that @, is even or odd under this reflection. We
extend the function ® (anti)symmetrically from € to R?, such that the extended function
®, satisfies ) ((—7r1,72), —21) = Pa(r,21) and FPy\((21,72),71) = Pa(r, 21), where —/+
corresponds to Dirichlet/Neumann boundary conditions (see Figure 6.1 for an illustration).
The function ®, is the key ingredient for our trial state. Let xq, denote multiplication by the
characteristic function of (21; then @A = Xa,Pr . We choose the normalization such that
[V12xq, @alla = 1, where VY/2¢(r, z) = V/2(r)ip(r, 2). (Since V € L'(R?) for some t > 1
and ®, € H'(RR?), it follows by the Holder and Sobolev inequalities that V/2®, is an L?
function [50].)

Our choice of trial state is

VS (11,79, 21, 22) = (Pa(r1, 72, 20N 4 By (11, =1y, 21)e” MV?2) el

F (Br(r1, 22, 21) M2 4 By (1), — 29, 21 ) e M N2) eIl (6.5)

for some ¢ > 0. Here and throughout the paper we use the convention that upper signs
correspond to Dirichlet and lower signs to Neumann boundary conditions, unless stated
otherwise. The function (6.5) is the natural generalization of the trial state for a half-space
used in [60]. Note that ¢/§ is the (anti)symmetrization of ®,(r, z;)e"M?2~¢l2 and satisfies
the boundary conditions. The trial state vanishes if n = 0 and ®, is odd under ry — —7ry; our
proof will implicitly show that at weak coupling ®, must be even if 7 = 0. We shall prove the
following two Lemmas in Sections 6.4 and 6.5, respectively.
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Lemma 6.1.8. Let ;x> 0, let V satisfy Assumption 6.1.2 and let 0 < X\ < \g. Then
lim (45, U Hzi ) UT5) = ALy + Lo) (66)

with

L, = /Q Rx|z2\<|rzlv<7“) (|(I)>\(T1,’r‘2, Zl>|2 + ‘q)A(Tl’ZQ’Zl)F
1 X

+ @y (r1, 79, 21)Pa(r1, — T2, ?«’1)‘9_22'77()‘)22 + @ (71, 29, 21)Pa(1r1, — 29, 21)6_2i77()‘)T2

F Pr(r1, 72, 21)Pr(11, 22, Zl)em(’\)(m*zr") F Oa(r1, 22, 21) P (11, 72, 21)67“7(’\)(7"2722)
FO,(r1, 72, 21) P (11, —22, Zl)efm()‘)(rﬁZQ):Fq)A(?”l, 29, 21) P (11, =72, Zl)em(’\)(erZQ)) drdz
(6.7)

and

Ly = _/~ V(r) (|‘I)A(7“1: 29, 21)|7 + Pa(r1, 22, 21) P (r1, — 20, 21)62“7(*)’”2) drdz

Ql xR

:F27T/]R2 <§\(P1777()\)7Q1)VX91@A(]91,77()\)7611)—1-@(1?17—77()\),611)VX91‘I)A(1?17—77(>\),%))dpld%a
(6.8)

where @Z(p, Q) = Jps %@/}(r, z1)drdz; denotes the Fourier transform and xg, denotes

multiplication by the characteristic function of €.

Lemma 6.1.9. Let ;o > 0 and let V satisfy Assumption 6.1.2. As A\ — 0 we have L; = O(1)
and Ly < —% for some constant C > 0.

In particular, there is a A\; > 0 such that for all 0 < A < Ay, lim.,o(¥5, UH%Z(/\)UWQ <0
and hence also inf O'(H%()\)) < 0. The final ingredient is the continuity of inf o(H32) in T,
which can be proved analogously to [60, Lemma 4.1]. For A < \; we have for T' < T}())
by Lemma 6.1.1 and the definition of 7! that inf o(H$?) < inf o(H7') < 0. We saw that
infa(H%f(A)) < 0 and thus by continuity there is an € > 0 such that for all ' € (0, T}(\) + €]
we have info(H2) < 0. In particular, T2(\) > TY(\). This concludes the proof of
Theorem 6.1.4.

Remark 6.1.10. Compared to the proof of T1(\) > T?()) in [60] there are two main
differences and additional difficulties here. The first difference is that ®, here depends on r
and zq, and not just r. In particular, we need to understand the dependence and regularity
of ®, in z;. The second difference is that for the full space minimizer it was possible to
prove that the optimal momentum in the translation invariant center of mass direction is zero,
whereas here we have to work with the momentum 7n(\), which potentially is non-zero, and
we need knowledge about its asymptotics for A — 0. As a consequence, we may have that
Dy (r1, 79, 21)€MNZ2 L By (r), —71y, 21)e"N?2 which is why the expressions in Lemma 6.1.8
are twice as long as in the analogous ones in [60, Lemma 4.3].
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Remark 6.1.11. The Assumptions 6.1.2 are almost identical to the assumptions for proving
TX(A\) > T2()) in dimension two in [60]. Here we additionally assume V' > 0 because to
compute the asymptotics of ®, we apply [60, Theorem 1.7] and several Lemmas used in
the proof thereof, which require V' > 0. However, we do not expect this assumption to be
necessary.

Remark 6.1.12. We expect that our method of proof can also be applied in the three-
dimensional case. For a quarter space in d = 3, we conjecture that similarly to the case
of a half-space [60], the three-dimensional analogues of L; and Ly in Lemma 6.1.8 are of
equal order and converge to some finite numbers as A — 0. The limits of L; and L, then
need to be computed to determine whether limy_,o(L; + Ls) < 0. In [60], the ground
state on the full space could effectively be replaced by ®¢ = ([gs V' (r)js(r)?dr)~tjs, with
ga3(r) = (27m)73/% [ VAT dw, in the limit A — 0. Motivated by the asymptotics of the
half-space minimizer ®, in two dimensions proved in Lemma 6.3.2, we expect that as A — 0,
n(A) — 0 and the function ®, behaves like ®g in the r-variable, and concentrates at zero
momentum in the z; direction. A combination of the methods used in [60] and the methods
developed in this paper should then allow to compute the limit, and the expected result is

lim Ly = 2 / Xisal<lral V()| ®o(r) F Bo(r1, 20, 73)[Pdrd.z, (6.9)
A—0 R4
and
2T
: _ 2 2
lim Ly = =2 [ V()|@o(ry, 20,75)drdz, = [, Vleo)ar. (6.10)

We therefore expect T2(\) > T}(\) at weak enough coupling if V' satisfies limy_,o(L; + Lo) <
0, which due to radiality of V and ®; is the same condition as for T}(\) > T°()) in [60,
Theorem 1.3]. In [60, Theorem 1.4 and Remark 1.5] this condition on V' is further analyzed.

6.2 Basic properties of H¥1 and H¥2

In this section we shall introduce some notation that will be useful later on, and prove
Lemmas 6.1.1, 6.1.6 and 6.1.7. The following functions will be important:

2 2
p°+q° —2u 1
, and Br(p,q) = .
tanh (257 ) + tanh (%7) = o Tar—a

Kr(p,q) = (6.11)

We may write Br, when the dependence on u matters. The function K satisfies the following
bounds [34, Lemma 2.1].

Lemma 6.2.1. For every T > 0 there are constants Cy(T, ), Co(T, ) > 0 such that
Ci(1+p* + ¢*) < Kr(p,q) < Co(1+p* + ¢°).

We will frequently use the following estimates for Br [60, Eq. (2.3)]:

1 C(p)
d B < — = (6.12
max{|p2 + q2 — [L|, 2T} an T(p7 Q)Xp2+q2>2/4>0 =1 + p2 + q2 ’ ( )

Br(p,q) <

where C(u) depends only on .

We use the notation HJ(f2) for the Sobolev space of functions vanishing at the boundary of
Q). In the case of Dirichlet boundary conditions, the form domain corresponding to H%“ is
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DP = {¢p € H (S x Q) |[v(x,y) = (y,x)}. For Neumann boundary conditions, one needs
to replace the Sobolev space H} by H' to obtain D). Let K be the kinetic term in H{.
The corresponding quadratic form acts as

(v, Kpv) = /&4 Kr(p,q) ’/92 To(a,p) Tily, )0z, y)dady| dpda, (6.13)

with

(efip1w1 ¥ o1zl )e*ipzmz

21/297 ’

(efiplflil ¥ eimm)(e*imfm F eipzl“2>

TQl(x7p) = A

and To,(x,p) =

(6.14)
As already mentioned in the Introduction, we shall use the convention that upper signs
correspond to Dirichlet and lower signs to Neumann boundary conditions, unless stated
otherwise. For the switch to relative and center of mass coordinates, it is convenient to define

t(p’ qi, T, Zl) — ; (e—i(p1r1+Q1z1) + ei(p1r1+(hz1) == e—i(P1Z1+q1r1) T ei(p121+q17“1)) e—ip2r2 (6.15)

Note that with r =2z —y, z=x+y, p' = (p—q)/2 and ¢ = (p + q)/2 we have

1 Cidl s
TQl (flf,p)Tgl (yap) = @T)Qt(pluqiura Zl)e 1272 (616)
and therefore
Quyrt _ /=1 1 o —ighz2 ’ ’y1
W, UK UW) = | Br(®,d)"| [ (%)Qt(p,qlﬂ“, z)e 2 Y(r, z)drdz| dp'dq’.

(6.17)
The operators H}(g») defined by restricting UH$' Ut to momentum g, in z-direction can
thus be expressed as

(0, Hy(g2)1) = (3, K1(q2) )\/ )b (r, z1)[Pdrdz, (6.18)

where the kinetic term K} (g2) on L%(Q;) is given by

2
(¥, K1(g2)%) _/ Br(p, (q1.¢2))~ ‘/ 73/2 t(p, q1, 7y 21)0(r, Zl)dT’dZ1‘ dpdg;.
(6.19)

It is convenient to introduce the Birman-Schwinger operators A% and Al corresponding to
Hi¥ and H$", respectively. Let AY be the operator with domain L?*(R? x R?) restricted to
functions satisfying v (r, z) = ¥(—r, z) and given by

(¥, A7) = /R4 Br(p,q)|[V1/20(p., ) Pdpda. (6-20)
Define the operator AL on i € LA(Qy x R) = {1 € L*(Q x R)|¢p(r, 2) = ¥(—r, 2)} via
1 | 2
(1, ATy = /4 Br(p, q) ‘/deR (%)Qt(p, a1, 21)e " 2 VY2 () (r, z)drdz‘ dpdg.
(6.21)
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For 7 € {0, 1}, the operator A]f is the Birman-Schwinger operator corresponding to H;Zj in
relative and center of mass variables [60, Section 6]. The Birman-Schwinger principle implies
that sgn infa(H;zj) = sgn(1/\ —sup o(A7)), where we use the convention that sgn0 = 0.
Due to translation invariance jn z, for fixed momentum ¢ in this direction, we obtain the
operators Al(g2) on 1) € L%(£2;) given by

2

(, Ap(g2)¥) = / 7(p, (01, ¢2) ‘/ 3/2 p,q1,r,zl)vl/2(r)z/;(r,z1)drdzl‘ dpdq; .

(6.22)
The operator AL(qy) is the Birman-Schwinger version of H1(qo). In particular, HTl( y(n(A)
has the eigenvalue zero at the bottom of its spectrum if and only if 1/ is the largest eigenvalue

of ATcl()\ (n(A).
Let ¢ : L?(Q) — L*(R?) be the isometry
1

(11, ro, 21) = ﬁ(wm,m, 21)Xa, (1, 21) + (=11, 72, —21)Xg, (=71, 72, —21)).  (6.23)

Using the definition of ¢ in (6.15) and evenness of V' in ry one can rewrite (6.22) as

2

(W, Ar(g2)¥) :/st Br(p, Q)’\}E(m/)(l% 0) F V2 (g1, p2).p1)| dpday  (6.24)

Let F5 denote the Fourier transform in the second variable Fy)(r, ql) \/ﬂ Jg e 0 F 1 (r, z1)d2

and F) the Fourier transform in the first variable F1¢(p, q) = 5= [p2 € P79 (r, q)dr. Define
the operators Gr(q2) on L*(R?) through

(1, Gr(ga)b) = /R3 EVY2)((qr, p2), p1) Br(p, ) F1 VY *)(p, ¢ )dpdgs. (6.25)

Let A%(g2) acting on LZ(R?xR) be given by (¢, A%.(g2)v) = Jgs Br(p, ¢)|V/?¢(p, ¢1)*dpdq;.
It follows from (6.24) and Br(p,q) = Br((q1,p2), (p1,2)) that

Ap(q2) = 1 (A%(q2) F FGr(q) Fy)e. (6.26)

6.2.1 Proof of Lemma 6.1.1

Proof of Lemma 6.1.1. We proceed analogously to the proof of [60, Lemma 2.3]. Let S; be
the shift by [ in the second component, i.e. Si(x,y) = ¥((x1, 29 — 1), (y1,y2 — 1)). Let ¢
be a function in DlD/N with bounded support, for the case of Dirichlet/Neumann boundary
conditions, respectively. For [ big enough, S;3 is supported on 25 x €2, and satisfies the
boundary conditions. The goal is to prove that limy_,..(S;0, HF2S10) = (1b, H¥)). Then,
since functions with bounded support are dense in DID/N (with respect to the Sobolev norm),

the claim follows.

Note that Sy, V.Sih) = (¥, V). Let o) be the (anti-)symmetric continuation of > from
0 x Q) to R? x R? as in Figure 6.1, giving ©» € H*(R*). Furthermore, using symmetry of
K7 in ps and ¢y one obtains

~

<Sﬂ/), KQ Sﬂﬂ 4 / a p7 KT<p7 ) ;Z(pa Q>:Fn&<<pl7 _p2)7 Q)ei2lp2:|:;;(p7 (Q1, _QQ>)€i2lq2

1&((?17 p2), (q1, —CIz))em(pﬁqQ) dpdg (6.27)
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for I big enough such that Sj) is supported on €25 x Q. The first term is exactly (¢, KSThw.
Note that by the Schwarz inequality and Lemma 6.2.1, the function

-~

(p,q) = ¥(p, ) Kr(p, @) ((p1, —p2), @) (6.28)

is in L' (R??) since ¢» € H'(R*). By the Riemann-Lebesgue Lemma, the second term in (6.27)
vanishes for [ — oo. By the same argument, also the remaining terms vanish in the limit. [

6.2.2 Proof of Lemma 6.1.6

Proof of Lemma 6.1.6. For continuity, it suffices to prove that for all 7' > 0 and u, @y, @1 € R
there is a constant C/(T', u1, Qo, Q1) such that for all Qy < go, ¢4 < Q1 we have |Br(p,q) ' —
Br(p, (q1,85)) 7 < C(T, i1, Qo, Q1)]g2 — ¢4|(1 + p* +¢F). The claim then follows analogously
to the proof of [60, Lemma 4.1].

We write Br(p,q) ™! — Br(p, (q1,6)) " = (¢ — @) (P, 4. 42 — @) By ' (. (1, 45)) B1" (. 9).
where f is defined as in the following Lemma.

Lemma 6.2.2. Let T, 1, Q; > 0 and define the function f : R? x R? x R — R through

F(p..) =+ (Be(p, (1,02 + 2)) — Br(p, ) (629)

for x # 0 and f(p,q,0) = 0y, Br(p,q). Then f is continuous and for |qs| < Q) there is a
constant C' depending only on T', i and (), such that

| < 202 2"
T+pi+p5+ai

|f(p,q, ) (6.30)

The proof is provided in Section 6.7.1. Together with Lemma 6.2.1 the desired bound on
|Br(p,q)~" — Br(p, (q1,45)) | follows.

The function ¢ — info(Hz(g2)) is even since by (6.18), (6.19) and radiality of V' we

have (¢, HL(—q2)¥) = (¥, HL(q2)¥), where o) (r, z1) = 1h((r1, —73), z1). The divergence of
inf o(H7(q2)) as |ga] — oo follows from (6.19) and (6.12). O

6.2.3 Proof of Lemma 6.1.7

Proof of Lemma 6.1.7. According to (6.26), the half-space Birman-Schwinger operator A.(¢s)
for ¢ € R can be decomposed into a term involving A%(¢2) and a perturbation involving G (g2).
The operator A%(q») has purely essential spectrum and a9 := sup o(A%) = sup o(A4%(0)) [60,
Lemma 2.4]. Below we shall prove that Gr(qz2) is compact. The part of the spectrum of A%
that lies above a hence consists of eigenvalues.

Since sup o (Af) is strictly decreasing in 7" and T, (\) > T2(A), sup 0(Afg1yy(n(A))) = A~ >
agi(y)- Hence A™!is an eigenvalue of Az, (1())) and by the Birman-Schwinger principle
H}cl(k)(n()\)) has an eigenvalue at the bottom of the spectrum.

To prove compactness of G7(gs) defined in (6.25), we prove that its Hilbert-Schmidt norm is
finite. Writing out the Hilbert-Schmidt norm in terms of the integral kernel of G1(¢2) and
carrying out the integrations over relative and center of mass coordinates, one obtains

1G7(g2) s = /R4 V(0,95 — )" Br(p, ¢) Br((p1, b), ¢)dpidgidpsdph. (6.31)
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By (6.12) and Young's inequality, this is bounded above by

R 1/r 1 s 2/s
O(T. (/ V(0. Ips)|2"d ) / / d dp,d 6.32

where 2 = 1/r 42/s. By assumption V' € L' N L* for some ¢t > 1. Note that V is continuous
by Riemann-Lebesgue and V' € L' N L for some #’ < oo by the Hausdorff Young inequality. In
particular, due to the radiality of V', we can bound (fR 1V (0, ]pgmz’"> <||VIA + gHVHQT,
which is finite for the choice » = t//2. With this choice, we have s > 1. Note that

1 s 2/s _ C .
(fR (W) dpg) = W for some constant C'. Hence the Integral over p1, q1

n (6.32) is finite for s > 1. O

6.3 Regularity and asymptotic behavior of the half-space
ground state

In this section we prove some regularity and convergence results for @, (defined in Section 6.1.1),
which we shall use later to prove Lemmas 6.1.8 and 6.1.9. The asymptotics of T(\) and
TX(\) for A — 0 are known:

Remark 6.3.1. It follows from [40, Theorem 2.5] that [A\™! — ¢, In
Furthermore, [60, Theorem 1.7] implies that In
AT — e, In s ol =
exponentially fast

TOL(,\)\ = O(1) for A — 0.
Tglzx) —In TQ%A) = o(1) for A — 0. Therefore,
O(1) as well. In particular, both T°(\) and T!(\) — 0 as A — 0

Let Wy(r,z) := %Vl/z(r)é,\(r, 21)X|r1|<|z| as function on R®. Note that ||¥,]|> = 1 due to
the symmetry under (r1,z1) = —(r1, 21) and the normalization ||V'/%xq ®,|> = 1. The first
convergence result describes the asymptotic behavior of () and ¥, as A — 0. According to
the Birman-Schwinger principle, xq, ¥y is an eigenvector of Ar1(y(n(A)) corresponding to
the largest eigenvalue.

Let ]
Ja(r) = o VI, (6.33)

™ Jst
Due to assumptions 6.1.22 and 5, the eigenvector corresponding to the largest eigenvalue ¢,
of O, has angular momentum zero and is given by [60]

V2(r)ja(r)
2
(e V()20
Let P : L?(R3®) — L?(R3) denote the projection onto ¢° in the r-variable, i.e. PY(r,q) =

PO(1) fpz WO(r)(r', q1)dr’. For 0 < 3 < 1 let Qg denote the projection onto small momenta
in q1., ie. ng(r, ql) = ’(/)(T‘, ql)xﬂ <T1(A))ﬁ Let ]P) =I-Pand Qﬁ =1- Qﬂ

VE S

v(r) =

(6.34)

N

Our first convergence result is that for A\ — 0 the minimizer of HTI(/\) concentrates at
momentum zero in the center of mass variable. More precisely, n(\) — 0 and ¥, concentrates
at momentum zero in 2; direction and approaches 1)° in the r-variables. This is made precise
in the following Lemma, whose proof can be found in Section 6.3.1.
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Lemma 6.3.2. Let ;> 0, V satisfy Assumption 6.1.2 and let 0 < 5 < 1. For A — 0 we have

1 n(A) = O(TZ (V)
2. PR, = O(N)
3. Qs F2 W3 = O(N)

For the following regularity and convergence results we need to introduce some more notation.
For a function f depending on two variables we define the mixed Lebesgue norm HfHLm for
{i,7} = {1,2}, as first taking the L7-norm in the j-th variable and then taking the LP-norm
in the i-th variable. The following estimate is analogous to [60, Lemma 3.7] and follows from
the Cauchy-Schwarz inequality.

Lemma 6.3.3. Let V € L'(R?) and ¢ € L*(R? x R). Then

- - 1/2
V70 < s ([ V720000
p

1/2 1/2
2 vy
- 27

<NV 2 = (/RS%PWW%ZJ(I?, Q1)|2dQ1> [%]|2. (6.35)

To simplify notation, we shall sometimes write T, 7 instead of T} ()\),n(\). The eigenvalue
equation X, ®x = MK 71, ((A) 'V xa, @ combined with

1 ~
(271')3/2 /Ql t(p, qi,T, Zl)q)/\(T', Zl)drdzl = §®A<pa Q1) (636)
gives
F 2\ 1o / o 'yt
Pr(p, 1) = (27T)3’/2/Q BTg(A)(p, (qu. n(M))t(p, qu, ', 2)V (") @A (r', 21)dr'dz; (6.37)

for (p,q1) € R3. We use (6.37) together with (6.15) and the definition of ¥, to split ®, into
the sum <I>§ F 5%, where

o — Vo[ dortan) o Vi dpd 6.38
)\(Ta 21) RS 7T)3/2 Tcl(p7 (91777)) /\(p>Q1) paq: ( . )

(2
and

eilpr+aiz1)

~anypr P (@, MVY2U((qr, p2), pr)dpdas. (6.39)

(I)ix(r, Zl) = \/5)\ R (27‘(

For j € {d,ex} we further split ® = ®}~ + &}, where ®# for # € {<,>} has the
characteristic function X2, 245, in the integrand. Furthermore, let &% = @%# F @e=#,

The following three Lemmas contain regularity properties for ®,, which are later used for
dominated convergence arguments in the proof of Lemma 6.1.8. Furthermore, they also
contain information about the weak coupling behavior of the different @J;#, which is important
for the proof of Lemma 6.1.9. The first Lemma is useful to prove that L, is of order O(1).
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Lemma 6.3.4. Let u > 0, let V satisfy Assumption 6.1.2 and let 0 < X\ < X\g. Then
|®allpgerz < 00. Furthermore, ||| <1z = O(1) and ||<I>ix’>||Lcl>oL§ =0()) as A — 0.

To understand the asymptotics of Ly the following result comes in handy.

Lemma 6.3.5. Let u > 0, let V satisfy Assumption 6.1.2 and let 0 < \ < \g. The function
(r,2) = VYV2(r)|®,(r1, 20, 21)| is in L*(R*). Furthermore, as A — 0, the L?*(R*)-norms of
the functions V'/2(r)|®3 (rq, 25, z1)|, VY2(r)| @Y= (1, 22, z1)| and VY/2(r)| @57 (ry, 2, 21)]
are of order O()\), O(A™'/2), and O(\'/?), respectively.

This suggests that the only possible origin for divergence in L lies in contributions from
V12(r)|®$<(ry, 22, z1)|. In the proof of Lemma 6.1.9 we shall show that the L2 norm of this
term indeed grows as A~!/2, resulting in the 1/ divergence of L,. Furthermore, we need the
following for the proof of Lemma 6.1.8.

Lemma 6.3.6. Let u > 0, let V satisfy Assumption 6.1.2 and let 0 < A\ < ). Define the
functions gy, g+ and g_ on R? as

L —

90(]92,612) = /R? ‘E\(P, Q1)VXQfI’A(p1,QQ7Q1)dP1dC]1 (6-40)

and
gi(PmCIz) = /]R? (T)A(p, C]l)

The functions gy and g+ are continuous and bounded and g (p2,n) = 0 for all ps € R.

By (p,q) — Byl (p, (q1,m) | 2a((p1, £¢2), 1) dprdas.  (6.41)

The proofs of these three Lemmas are given in Sections 6.3.2 — 6.3.4.

6.3.1 Proof of Lemma 6.3.2

Proof of Lemma 6.3.2. Recall the operators A%, and Al from Section 6.2 and let a} =
sup o(A%). It follows from Lemma 6.1.1 and the Birman-Schwinger principle that a%. < ak
(for details see the proof of [60, Theorem 1.7]). According to [40, Lemma 3.4] for " — 0 the
asymptotic behavior of af. is given by a = e, In(u/T) + O(1). Recall the decomposition of
AL(g2) in (6.26). The operator norm of Gr(qz) is bounded uniformly in T" and ¢, according
to [60, Lemma 6.1]. Recall that v/2yq, V) is a normalized eigenvector of A%ﬂg(k)(n()\)) and

note that L\/iXQl\I’)\ = W,, where ¢ was defined in (6.23). With Remark 6.3.1, we have for
A—=0

euln M/Tcl()\) +0(1) = aTl()\) < aTl()\) (U, A (A )(U()\))‘IJQ +O(1) (6.42)

For ¢ € R? let Br(-, q) denote the operator on L?(IR?) which acts as multiplication by Br(p, q)
(defined in (6.11)) in momentum space. Note that
(

(T, A () (V) W) = /R<F2\I[>\('7QI)7VI/QBTQ(A)(W (a1, 0OV U 1)) day
(6.43)
According to [60, Lemma 6.8], there is a constant C(u, V), such that for all ¢ € R? and
P € LA(R?) with [[¢]s =1

(. VY2Br(-, )V*) < (¢,0,4) In <mm { \|/|_ }) X2<min{u/ T,/ laly + C (1 V)-
(6.44)
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In combination, we have for A — 0

e/ TH) <
la1|<y/m/2

(F29(- q1), OuF2Wa(+ q1)) In (min{ Vi - }) dgi+0(1)

We will use this to prove the three parts of the claim.

Part 1: By definition of e, we can bound (FoU,(-,q1), O, FoU5(-, 1)) < e || FoUa(-, q1) )3

Moreover, clearly In (min { \/q%f;(A)?’ oy }) < In(\/t/n(X)). By (6.45) and since || F U, ||, =
1, there is a constant ¢ such that e, In(u/T, (X)) < e, In(\/1t/n(X)) + ¢ for small . In par-

ticular, |n(T)| < %WT(}(A), i.e. n(A) = O(TX(\)).

Part 2: Denote the ratio of the second highest and the highest eigenvalue of O, by «, where
a < 1 by Assumption 6.1.25. Then

/R<F2‘I/A(',Q1)7OuF2‘I’A('aQ1)>dQ1 < ey (||IP>F2\I]>\||2 + O‘||]P>LF2\I/>\||2)
= e (2957 = (1= o) [P F0,[)  (6.46)
Therefore, by (6.45)
I p/THA) < (1= (1= a)|[P-F,2) Inp/THA) + O(1) (6.47)

for A — 0. This means that [|[PTF,U,||? = O(1/Inpu/T}(N)). According to Remark 6.3.1,
limy o Anp/TH(A) = e;! and thus ||[PLEW, |12 = O(N).

i

Part 3: Let €(\) = |Q5FoW,|° = Jps [FoWa(r, 1) °x sdrdg,. By (6.45), we

1
al>va( )
have for small \

B
e, Inp/THN) < (1= e(A))ey In 11/ THN) + (A, In Tl’“(‘w e (6.48)
for some constant C'. Hence
C
e(\) < =0O(\ 6.49
W= T e iy ~ O (649
where we used Remark 6.3.1 in the last step. O]

6.3.2 Proof of Lemma 6.3.4

Proof of Lemma 6.3.4. If we show ||(I>§HL<1>O(R2)L§(R) < 00 and |57 Loo ey L2y < o0, the
Schwarz inequality implies || || Lo (2)r2m) < o0 -

We shall first prove that H<I>§HLTOL§ is finite and of order O(1) for A — 0. Using (6.38) we
have

123Cr )13
elilp=p)r

= 2)\2 /]R5 V1/2\I/)\(p,7 QI)BT} (p/7 (QIJ TI))WBT(} (p, (q1, n))vl/2\lj)\<p, ql>dpdp/dql
ei(p_pl)'r

< 2)\? sup sup /4 Vl/z?/i(p’)BTCl (p/, (¢1,7)) 5 BTCI (p, (q1, n))vl/2¢(p)dpdp’
Q1 ER YEL2(R?),[[¢]2=1 /R (2m)
(6.50)
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The latter integral is the quadratic form corresponding to the projection onto the function
¢q, (1) = 5= FiBra(r—1r', (q1,n))V*?(r'). Hence, taking the supremum over ¢, (6.50) equals

o
eilp=p)r

207 sup |6, 13 = 2% sup | —————Bri(p, (q1,1))V(p — p') B (', (q1,m))dpdp’. (6.51)
q1€R q1€R JR? (27T)

We split the integration into p? > 2u, p? < 2u and p > 2u, p < 2u. Using (6.12) leads to
the bound

2\
d M2 <
||CI))\<T’ )||2 — (27_{_)3

2
V|| o sUP (/ Bri(p, (QIan))Xp2<2udp)
q1 R2

+2sup | Bra (s (01,2 2ulV (0 = 1) dpdy/
1

L+p?

(GRS C
——|V(p—p)|-——dpdp'| (6.52
oy V =Pl p] (6.52)
for a constant C' independent of . We start by considering the first term in the square bracket.
Note that ||V ]| < % < 00. For fixed T' > 0, the function Br(p, q) is bounded, hence the
term is finite for fixed A\. For T' — 0 we have sup,cge [z Br(p; ¢)Xp2<2udp = O(In p1/T). To
see this, we first apply the inequality [34, (6.1)]

Br(p,q) < ;(BTQ? +¢,0) + Br(p — ¢,0)). (6.53)

This gives the upper bound sup,cg: gz Br(p, 0)X(p—q)2<2,dp. The vector g shifts the disk-
shaped domain of integration, but does not change its size. In particular, the contribution
with p? < 2y is bounded above by [z2 Br(p, 0)x,2<2,dp = O(In 1/T) [40, Proposition 3.1]
while the contribution with p* > 2y is uniformly bounded in T" since by (6.12) the integrand
is uniformly bounded. Since for A — 0 we have In u/T}(\) = O(1/)\) by Remark 6.3.1, the
first term in the square bracket in (6.52) is of order 1/A? as A — 0. For the second term
in the square bracket we use Holder's inequality in p’. Since V € L* for some t > 0, by the
Hausdorff-Young inequality we have V € L' where 1 = 1/t" + 1/t. Hence, the second term is
bounded by

C

Lt(R2)

2sup | Bra(p: (@ 7)) Xp2 <2 p|| V[l
1

which is finite for fixed A and of order O(1/)\) for A — 0. Using Young's inequality, one sees
that the third term in the square bracket is bounded. Taking into account the factor A\? in
front of the square bracket, we conclude that [|®4(r,-)||2 = O(1) uniformly in 7.

We shall now show that for fixed A, [[®5|| ;o012 < 00 and [[®577 |12 = O(X) as A — 0.
We have

o
eilp—p')r

WBTg (p, (q1,m))

X V1/2\IJ,\((q1,p2),p1)dpdp’dq1 (6-55)

1057, )3 =25 [ VIR0 (a1, 25, ) By (0 . )

R2d+1

Similarly, we get an expression for ||®5"7(r,-)||2 if we multiply the above integrand by
the characteristic functions X2, 4250, Xp21q252,- Using (6.12), we bound ||<I>f\xH%TQL% and
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| D5 H%?L% above by

]_ 1 —_—
sl P llanp),pldpdpdg,
1 1
(6.56)

where the constant C' depends on x and A for the bound on H<I>§x|]%i,%3, but is independent

O [ VP, 1), 16|

of A for the bound on ]l@ix’>H%<l,oLg. Using the Schwarz inequality in p; and p} and then

Lemma 6.3.3 we get the upper bound

. 1 1/2 1 1/2
CA2 V120, |[2.. / / 4y, /—d dpodpld
H )\”L1 L3 R2d+1 R (1+p,2+q%)2 P1 R <1+p2+q%)2 P1 P2dp2dqy

< CXVILAl (6.57)

Therefore, || ®57|| 13 is finite and [[®577[|fecrz = O(N). O

6.3.3 Proof of Lemma 6.3.5

Proof of Lemma 6.3.5. By the Schwarz inequality, it suffices to prove that for j € {d,ex}
and # € {<,>) the integrals [p. V(r)|®5% (rq, 25, 21 )[2drdz are finite for all Ay > X >
0 and that as A — 0 we have [p: V(r)|®)7 (71, 20, 21)Pdrdz = O(N?) for j € {d,ex},
Jas V()@= (r1, 29, z1)|2drdz = O(A1) and fpa V()| @57 (r1, 22, 21) [2drdz = O(N).

Using the definitions (see (6.38) and (6.39)) one can rewrite for # € {<, >}

L V)@ (s, 2, 20)Pdrdz = 202 [ Vpi=ph,0)Bra (0, p2). (0, )V 2000k 2. 1)
X BTcl (Pa (Q1, U))Vl/Q‘I’/\(Pa C]l)Xp2+qf#2uXp’f+p§+qf#2udp1dp’ldp2d91 (6-58)

and

/11%4 V(T)@ix’#(?“la 2, 21)drdz = 2)? /R4 V(pl—plp 0)Brz ((p1, p2), (q1,m))V'2¥x(q1, p2, 1)

X BTcl (v, (qu, n))vl/Q\IIA(Qhp27pl)Xp2+q§#2uXp’2+p§+q2#2udp1dplldPQdQ1' (6.59)

For ®~, with the aid of (6.12) and Lemma 6.3.3 the expression is bounded by

1 1 —

sIVY2U5 (-, qr) |2, dgrdpi dpy dps

CON||V
| ”1,R41+p’f+p§1+p%+p2

< OX|IVIRIWAll3 < oo (6.60)
where the constants C,C' depend only on . For &~ we use (6.12) and the Schwarz
inequality in p; and p) to bound (6.59) by

1 2

x|V, [
WLy

where we used Lemma 6.3.3 in the second step. Again, the constants C, C' depend only on .

dpaday [V 312 < CXRYVIEIWAE (6.61)
L%(R)
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For ®$< we bound (6.58) above by

V1l
™

V2
S 47'('31 )\2 Slgé /R3 BTC1 (p7 <Q17 U))BTCI ((p/1>p2)7 (qh 77))XpQ—&-qf<2po/12+p§+q%<2udpdpll (662)
q1

where we used Lemma 6.3.3 and ||V, ||2 = 1 in the second step. For fixed A this is finite because
Br1 is a bounded function. For A — 0 the following Lemma together with Remark 6.3.1 imply
that this is of order O(A™1).

Lemma 6.3.7. Let 1,C' > 0. For T — 0 we have

sup [ Br(p,q)Br((py,p2), ¢ )dpidpidps = O(In p/T)>. (6.63)

q,q'cR2 /R?

Furthermore, for every 0 < §; < p there is a 65 > 0 such that for T — 0

| \S|1}|25 R3(1 - Xu761<p§<,u+51Xp%<451Xp/12<451)BT(pa Q)BT<<p/1>p2)> q/)dpldpﬁdm
q),1q9 2

= O(lnp/T)°?. (6.64)

The second part of this Lemma will be used in the proof of Lemma 6.1.9 to compute the
asymptotics of L,. The proof of Lemma 6.3.7 can be found in Section 6.7.2.

For 5"~ we bound (6.59) above using Lemma 6.3.3 and ||¥,]|, = 1, which gives

)‘2 2 ex,2

S IVIEIBE0) (6.65)
where BS™*(€) is the operator acting on L?(—+/2j1,v/24) with integral kernel

BEXWr) = [ Br((phpo): (01.0)Br(p. (01, )Xz gz pdirdpz. (6:66)

The superscript 2 indicates that there are two factors of By, as opposed to Bf* which is
defined later in (6.113). The following Lemma together with Remark 6.3.1 and Lemma 6.3.21
implies that (6.65) is bounded for fixed A and of order O(\) for A — 0.

Lemma 6.3.8. Let ¢, > 0. Then sup‘£|<cTHB§z’2(£)|| is finite for all T > 0 and of order
O(lnp/T) asT — 0.

The proof of Lemma 6.3.8 is given in Section 6.7.3. O

6.3.4 Proof of Lemma 6.3.6

Proof of Lemma 6.3.6. For functions 1) on R? let Sv(p1, pa, q1) = ¥ (p, ¢1)+U(—=p1, p2, —q1)F
(g1, 2 1) F (—q1,p2, —p1). For p,q € R? let

L°(p,q) == ABr: (p, (q1,m)), (6.67)
L*(p,q) :== NBra(p. (a1,m))| By (p. @) — Byt (b, (@1.1)) | Bra (01, £02), (1,m)  (6.68)
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6.3. Regularity and asymptotic behavior of the half-space ground state

Using (6.37) we have

9o(p2; @2) = /]R SV xa@A(p, )L (P, )V xa@a(p1, g2, a1)dprda (6.69)
and
9+ (P2, @2) = /]R L SVxa@a(p, a1) L= (0, ) SV xa@A(p1, £z, a1)dprdar. (6.70)

Note that gi(p2,n) = 0 since L=(p, (q1,m)) = 0. For measurable functions 11, %, on R* and
P2, q2 € R we obtain using the Schwarz inequality in ¢

/11&2 |¢1(P1>P2>Q1)‘ Wz(]?b%,%)\dpld%

1+

(s ) 22y sup ||¥2(p, )|l L2y (6.71)
R 1 + pER?2 pER2

and using the Schwarz inequality in ¢, py

/]RZ |@/}1(p1,p2,q1)| (91aQ2up1)|dp1dQ1

1
L
< [t Sl . o sup [ ey (672
pER?

By (6 12) there is a constant C' independent of p, ¢ (but dependent on \) such that L°(p,q) <

W Similarly, by (6.12) and Lemma 6.2.1 there is a constant C' independent of p, g but
a3

dependent on A such that

Cl+p*+¢*) .

L*(p,q) < <
(#.9) A+ +@)(1+pi+¢?) ~ 1+pi+4

(6.73)

It follows from (6.71) and (6.72) that there is a constant C' such that for all measurable
functions 1,1y on R? and po, ph, g, ¢4 € R

‘/R? 51/11(]?7 Q1)LO(P1,p/27Q17€I§)¢2(Z717Q2,Q1)dp1d%

< Csup||tr(p, )|l L2w) sup ||¥2(p, )| c2w)
2 PER?

peER
(6.74)
and similarly

<C SUPH%(IJ, N2y SUPH%(% N2y

pER?
(6.75)
In particular it follows from (6.69) and (6.70) with Lemma 6.3.3 and the normalization
[V12xq, @all2 = 1 that go and g4 are bounded.

‘/ﬂp S%(p, 91) (pl,Pza(h Q2)S¢2(p1,iCI2,Q1)dP1dCI1

To prove continuity, first note that

— —_—

Vxa®a(p1,p2 +6,q1) — Vxa®a(p, a1) = Wexa®a(p, ¢1) (6.76)
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where W(r) = V(r)(e~*"2 — 1). We only spell out the proof for g, the argument for g is
analogous. For all po, g2 € R we have

ge(p2 + 6,2+ €) — g+ (p2, ¢2)
= /R2 SVxa®a(p1,p2 +e, @) LF (p1,pa +€.q1, ¢ + 6/)SW6XQfI))\(p17 +q2, ¢1)dpidg

+ /R2 SWexa®a(p, @) L*(p1,p2 + €,q1, 42 + €)SVxa®a(p1, £¢2, ¢ )dp1dgs

+ /R2 SVxa®a(p, @) (L (p1,p2 + €, q1, 42 + €) — L (p, 7))SVxa®a(p1, £¢2, ¢1)dp1da:
(6.77)

Using (6.73) it follows by dominated convergence that the last line vanishes as ¢,¢ — 0.
Furthermore, note that by Lemma 6.3.3

—_—
IWexa@allperz, <

Wl Wl
oo 12l e, (6.78)

< e W22, @4 <

where |[®)[|z0z2 < 0o by Lemma 6.3.4. Since |[W[|ly < e[| - [V'[]1 it follows from (6.75)
that the first two lines in (6.77) vanish as ¢, ¢’ — 0. In particular, g+ are continuous. [

6.4 Proof of Lemma 6.1.8

This section contains the proof of Lemma 6.1.8. Recall the definition of ¢ from (6.15) and let
t(p1, q1,71,21) = t((p1,0),qu, (r1,0),21). Let Qo = {(r,2) € R?2 x R?||ry| < 21, |ra| < 22}
Analogously to (6.17) we have

2

1 . -
/Qz (27)215(]91;(11,7”1,Zl)t(pzaQ2,7”2722)¢f\(7"72)d7"d2 dpdg

(W5, UHFUS) = [ Br(p.g)”

— )\/ )5 (r, 2))*drdz.  (6.79)

Since the function v§ defined in (6.5) is symmetric under (rq, z2) — —(72, 22) and (anti)symmetric
under (rq, z2) — (22,72), we have

. 1 . .
/ t(pa, Go, re, 22)W5 (1, 2)dradze = 7/ e P22y () 2)drod 2y (6.80)
[ro|<z2 2 Jr2
and

1
/ ., VORAG 2)fPdradzy = 4 /RZ,(V(T)XVQMZQ\ + V(71 22)Xjaal<pra ) [UA (7, 2) [Pdrad .
r2|<Z22

(6.81)
Together with (6.17) we obtain (¢, UH?E(A)UW);) = (Y5, H%Q(A)@Di% where the operator
H?2 is given by

HE = UKHUY = AV (1) Xjral<foa] — AV (715 22) X 2a| <] (6.82)

acting on LQ(Ql x R) functions symmetric in r and antisymmetric/symmetric under swapping
Ty <> 2o for Dirichlet/Neumann boundary conditions, respectively. Let us define K? :=
UK U,
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6.4. Proof of Lemma 6.1.8

The trial state 9§ has four summands, which we number from one to four in the order they
appear in (6.5) and refer to as |j) for j € {1,2,3,4}. By symmetry under (z2,73) — —(22,72)
and (rq, z2) — (29,72) we have

4
j=1

For each j € {1,2,3,4} we write

<17H%61j> = (1, (K%g—AV(T))j)—F@, (AV(r )X|22|<\T2\+)‘V<T17ZZ)X\T2\<\Z2|) ) —(L, AV (r1, 22) j)

(6.84)
We shall prove that
15%2 (K32 — AV (r))j) =0, (6.85)
Ly = P—%Z Xjzal<lral T V(11s 22) Xjral<)221)3) (6.86)
and A
Ly = —li_{% Z:(l, V(ry, 29) 7). (6.87)

In particular, it follows that lim, (¢, UHQQUTw/Q = ALy + Ly).

6.4.1 Proof of (6.85):

We argue that all summands vanish as ¢ — 0.

j=1: We first show that

2

1 —~
2 2
(L (R =2V = 5 [ 51830, 1) Palpdg

(2 +¢3)
(6.88)

Using eigenvalue equation K%I(U)XQICI’A = AV xg, P together with the expressions (6.17)
and (6.19) for K3 and K+(q,), respectively, we observe that

By (p, (@1, 2n)) =By (0, (1, 1))

(L, (K7 = AV(r)1)

1

~ (20t x(r, 20)t(p, q1, 1, 21) /B_1 ,q)elnm @)z =)=zl g
(2m)4 /(leR)2xR3 A(rs 20)t(p, qi, 1y 1) L P (p,q)e "

— Bill (p, (q1,n))e 221275 ( 2, — zé)] t(p,q1, 7", 21)®x(r, z1)drdzdr'dz'dpdg;  (6.89)

We shall carry out ther r', z, 2 integrations. With [ e’1—®@)z2=dzldy) =  2¢ _ or [ 262l =

€24+(n—g2)?’
= Jr @ 0= ,7 ) dq2 and (6.36) we obtain

62

(€ +(n—q)?)

1

(1L(KL=AV(r)1) = %/W [Bill(p, q9)=Bzi (p, (q1,m))

51 @5(p, 1) |*dpdg

(6.90)
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and substituting ¢ — g2 + 1 we arrive at (6.88).

For |g2| > 1, we bound the integrand in (6.88) by m@ (p,q1)|* using Lemma 6.2.1.
Since @, € H'(R?), the integral vanishes as ¢ — 0. For |g2| < 1 substitute go — €qy

and use that qgl(B;cll(pa (QI7 q2 + 77) - B;cll(]% (QIu 77))) - _f(p7 (QIJ 77)7 q2)BEC11(p7 ((Jh q2 +
n)Byi (p, (q1,m)) where f is defined as in Lemma 6.2.2. The integral then equals

1

o @5 (p, ¢1)|2dpdg.
Y[

(6.91)
By Lemma 6.2.2 and Lemma 6.2.1 the integrand is bounded above by the integrable function

- - 42
Rt Xlazl<e 1f(p: (q1,m), EqQ)BTCll(p? (Q1aEQ2‘H7)BTcll(pa ((]1,77))W

c+p* + @) —2_i5 . 6.92
(1+p +q1)(1+q) @A(p 1) (6.92)
Thus by dominated convergence, continuity of f and By and since jR dq2 = 0 we have

lim,_,0(1, KCQFS AV (r)1) = 0.

j=2: We distinguish the cases n(A) = 0 and n(\) # 0. If n(A) = 0, ®,(r,2) is either
even or odd in r5. The term for j = 2 hence agrees with the term for 7 = 1 or its negative
and hence vanishes in the limit. For n(\) # 0, the intuition is that integration over 2, 2
approximately gives a product of delta functions §(¢2 — 17)d(g2 + 1) = 0. Using (6.36) and

t(p, q1, (11, —72), 21) = t((p1, —p2), @1, 7, 21) we have
(1. (K3~ AV (r)2)
1 AR i ; ’ N~
= & /RG D, (p, Q1)B;Fc11 (p, q>e—l(77_‘I2)22—2(77+‘J2)22—E(|Z2|+\Z2D(I),\((pl, —ps), q1)dzed2,dpdg

- B (r, 20) AV (1) B (ry, —rg, 21 )e 2722l drd 2 (6.93)

Ql xR

Carrying out the 23 and z) integrations gives
(1, (K7x — AV (r))2)

1 _— 2
=—/ @ B!
27r/R4 (P, @1) By (p,q)(

= @) Gy gy P @)l

_ /le D\ (1, 20) AV (1) D\ (11, —7‘2,21)62_’_6772d7‘d21 (6.94)

Using the Schwarz inequality in the 7y variable, we bound the absolute value of the sec-
ond term by %fﬁl V(r)|®x(r, z1)2drdz < ;—’2\||V||1||(I>,\||%?OL§. According to Lemma 6.3.4,
| @1l ooz < 00 and hence the term vanishes for € — 0 . To bound the absolute value of the
first term in (6.94), we first use Lemma 6.2.1 and the Schwarz inequality in the p, variable,
and then use symmetry to restrict to ¢o > 0 and distinguish the cases |¢; — | S €

c| €149’ +¢)

Rt (€2 + (0 — q2)?) (€ + (N + ¢2)?)

<20 (/Oo [X|QZ77<6(1 +p2 + q2) X|q2777\>€€2(1 + p2 + qz)
R3 0

1D, (p, q1)dpdg

qz) |®5(p, ¢1)|*dpda.

(6.95)

(1 — q2)* + (n + q2)? (1 — q2)*(n + q2)*
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There is a constant C'(n) such that the first term in the square brackets is bounded above by

C _ni<e(1 4 p? + ¢?), and the second term is bounded by C X'”_"'”e?(l?zﬂ%). This
) Xlgz—n|< p a7 y Cn 1—a2)
gives the upper bound

2
= o X| 2— |>6€ 2
0( / [qum« DR s } d%) LN (6.96)

The remaining integral is of order O(e) as € — 0, and thus the term vanishes in the limit
e — 0.

j=3,4: Using the eigenvalue equation K}l(/\)(n)XQIQJ,\ = AV xgq, @\ and (6.36) we have

(L, (K7s = AV (r))j)]

1

- /R6 Dy (p, q1) (Bill (p,q) — Bt (p. ((hﬂ?))) o~ t(n—a2)z2—i(Fntp2)rh—e(|z2|+|rh|)

~

X ®x((p1, £¢2), q1)dzedrydpdg| (6.97)

where the upper signs correspond to j = 3 and the lower ones to j = 4, respectively. Carrying
out the integration over 74, and zy and substituting go — €g2 + 17, p2 — €pa = 1 we obtain

(L, (K7 = AV (1))J)]

1 — 1 1
— ) + —s T
3 Jo s ) )

B (v ), (v, ez + )

— B ((p1,ep2 £ 1), (a1, n))} ®x((p1, +(eq2 +1)), ¢1)dpdg| (6.98)
With the definition of g+ as in Lemma 6.3.6, the latter equals

’1 g+ (ep2 £ 1, eq2 + 1)
2m Jrez (1 +p3)(1+g3)

dpodg, (6.99)

With Lemma 6.3.6 it follows by dominated convergence that lim (1, (K7 — AV/(r))j) = 0.

6.4.2 Proof of (6.86):
We have

4
Jj=

(1, (V) Xzal<lral HV (11, 22) X o] <221 )7) :/ (V(r) Xzl <fra| V(715 22) Xro| <20 ) PA (75 21)

1 QlXR

X (CID,\(T, z)e 22l LBy (1, =1y, 21)e” 22720 £ By (1), 2o, 2y )ecr2H 2D Nz )
F Oa(r1, —22, zl)ee(“'?'*'”)i”(”*’“?))drdz (6.100)
The claim follows from dominated convergence provided that

/]R4(V(7“)Xlz2|<lr2| + V(r1, 22)Xiral <22 ) | A (1, zl)](|<I>A(r, 21)| 4+ [Pa(r1, =12, 21

+ | D (11, 20, 21)| + |Pa(71, —29, zl)])drdz (6.101)
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is finite. Using the Schwarz inequality in z; and carrying out the integration over 2z, this is
bounded above by

4 [ (V(r)Xjml<iral + V(715 22) Xjra|<|oa ) | Pl oo 2drd 2o < 16 /RQ V(r)|ra|dr(|®all Loz

R3
(6.102)

This is finite by Lemma 6.3.4 and since | - |V € L' by assumption.
6.4.3 Proof of (6.87):
j=1,2: We have

(1,V(r1,29)1) :/Q V (1, 22)| @ (r, 21 ) [2e 242l drd (6.103)

1><R

and

(1,V(r1,22)2) = [ V (1, 22) @ (1, 21) P (11, =12, 21 e~ 202217222 (6.104)
leR

In both cases we can apply dominated convergence by Lemma 6.3.5 (and the Schwarz inequality
in the second case) and obtain the first two terms in L.

j=3,4: We start with the case of Neumann boundary conditions. Rewriting the expression in
momentum space we have

<17 V(T17 Z2)j> == /4 V<T1, ZQ)Xqu))\(T, Zl)q))\<7’1, :l:Zg, Zl>676|Z2‘7in22€7€|T2|iinr2drdz
R

62

e+ (p2 F1)2) (€ + (py F1)?)
9
== /R2 go(epa £, epy £ 1)

2 =
= — /R4 (I))\(pa CI1)VXQ1<I)/\(Z717PIQ>Q1)( dpldp2dp/2dql

™

dpodp, (6.105
(v i+ pp) et (0109

where the upper/lower signs correspond to j = 3 and j = 4, respectively, and gy is defined as
in Lemma 6.3.6. It follows from Lemma 6.3.6, dominated convergence and [ 1+%dac =7
that

yggﬂ, V(r1, 22)j) = 2mgo(£n, £n) (6.106)

For Dirichlet boundary conditions this comes with a minus sign.

6.5 Weak coupling asymptotics

In this section we shall prove Lemma 6.1.9. We prove the desired asymptotic bounds for I,
and Ly in Sections 6.5.1 and 6.5.2, respectively.

6.5.1 Asymptotics of [,

The goal is to show that L, defined in (6.7) is of order O(1) as A — 0. By the Schwarz inequal-
ity, it suffices to prove that [5 g X|z(<ira|V (1) (|®A(r1, 72, 21)[* + [PA(r1, 22, 21)[?)drdz =
O(1). Furthermore, since ®) = ®§ F &< F O~ (see (6.38) and (6.39) for the definitions),
again by the Schwarz inequality it suffices to prove

L Xt VIR (1,72, 20) Frdz = O(1) (6.107)

174



6.5. Weak coupling asymptotics

and
/Q NafetrlV ()@ (11, 2, 20) Pdrdz = O(1) (6.108)
for j € {d, (ex, <), (ex,>)}.

Case j € {d, (ex,>)}: According to Lemma 6.3.4, sup, g Jr |®4(r, 21)|?dz = O(1). Both
(6.107) and (6.108) follow since |- |V € L.

Case j = (ex, <): Let Wi(r) := 2|ra|V(r) and Wa(r) := [g V (71, 22) X|ra|<|zs|d22. We have
Wy, Wy € LY(R?). Note that

/Q - Xafelra V(1) @57 (1,72, ) Pz = /Q W (F) |57 (1, 79, 21) | 2drdz (6.109)
1 1

and

/Q sV (DO (11, 20, 2) Pz = /Q Wa(r)| 85 (r, 72, 21)|*drdz1,  (6.110)
1 X 1

where we renamed 2y <+ 5. For any L'-function W > 0 we have
1/2
([ Wolor =t zPdrds ) = W20 = sup [, W)
Q

YEL2(), |l ll2=1
<V2) sup / L (W2 01(p, 1) Bry (p, (01,m)) Xp<ap
1,2 EL2(RS), |1 | =2 |=1 /R

><V1/2¢2((Q1,p2)ap1)’dpdq1 (6.111)

where we used (6.39) and the normalization ||¥,|| = 1 in the last step. We bound

W21 (p,q1)| < WY Fatr (- @1)l|2, and similarly for [VY/24s(p, q1)]. Thus (6.111)
is bounded above by

VEXIW 2V BE ()] (6.112)
where BS¥(qs) is the operator on L*(R) with integral kernel
B (¢2)(p1, 1) = /]R Br(p, ) Xpz<2,dD2- (6.113)

It was shown in [60, Proof of Lemma 6.1] (see Eq. (6.16) and rest of argument), that

sgpsupHB:ep’“"(qg)H < 0. (6.114)
q2

In particular, we conclude that [5, Wi(r)|®5"=(r1, 2, z1)[2drdz = O(X?) for k € {1,2}.

6.5.2 Asymptotics of [,

The goal is to prove that L, defined in (6.8) diverges like —A~! to negative infinity as A — 0.
We shall prove that the second line in (6.8) is of order O(1) as A — 0. For the first line in
(6.8) we shall prove that it is bounded above by —cA™! for some ¢ > 0 as A — 0.

Second line of (6.8): Let £ € {1, —n}. Combining (6.40), (6.69) and the definitions of L°
and S at the beginning of Section 6.3.4 we have

—

‘/RQ ®x(p1, &, 01)Vxa@a(p1, & @1 )dprdaqy| < A/RQ(IVXQICDA(M,E,q1)|+|VXQfI>A(—p1,€, —q)|

+|VXQ?)\(QI7 §)p1)|>+’VXQfD>\(_q17 57 _p1)|)BTC1((p17 5)7 (QIJ 77))|VXQICI)>\(]917 57 Q1)|dp1d(h
(6.115)
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—

Using the Schwarz inequality and |V/X§§,\(p1,§,q1)| < [[Vxa@a(+, ¢1)|ls this is bounded
above by

4N /R2 Bri((p1,€), (a1, M) IV xa@r(-, 1) |12 dprdg

< 4A Slé]]% RBT;((Pl,f)a (Q17n))dplHVXfllq))\HQL%(R)L‘l’O(RQ)? (6.116)
q1

where in the second step we used that [p By ((p1,€),(q1,n))dp: acts as multiplication
operator on ||[Vxa®(-,¢1)[c- By Lemma 6.3.3 and since ||[V/2yq @,|2 = 1 we have

HVXQfI),\H%g(R)L?o(RQ) < |IV|l. The following Lemma together with Remark 6.3.1 and
Lemma 6.3.21 implies that (6.116) is of order O(1).

Lemma 6.5.1. Let {(T),&'(T) be functions of T with limy_,o&(T') = limyp—0 &' (T) = 0.
Then asT — 0,

sup | Br((p1,¢(T)), (1, (T)))dpr = O(ln p/T). (6.117)

The proof can be found in Section 6.7.4.

First line of (6.8): Recall from Section 6.3 that @y = &3 + &< F ®5"~. By Lemma 6.3.5
the L2-norms of V'V2(r)®3 (rq, 29, z1), VV2(r)®T<(r1, 29, z1), and VI2(1) 55 (ry, 29, z1)
are of order O(\), O(A~/2), and O(A\!/?), respectively. It follows with the Schwarz inequality
that the first line of Ly in (6.8) equals

[ V() (|(I)CAL<(T1, z0,21)° + ‘P?\K(Tl’ 29, 21)¢§’<(T17 — 2o, Zl)e_gin(k)r2) drdz + O(1)
Q1><R

(6.118)
Note that %< ri,29,21) = P —1ry, 29, —21). We rewrite the expression in (6.118) as
A A

1

=5 V()Y (ry, 29, 1) (Cbg\K(rl, 2, 21) + PP (11, —29, zl)e_%”m”) Xri| <]z |drdz

1 .
— V(T)®§’<(7‘1, 29,21) (@i‘(ﬁ, 29, 21) + @§’<(7‘1, — 29, 21)6_2“7(>\)T2) drdz

2 g

]' —2i r
+ 3 /R4 V(T)(I)g\l’<(7“1, 29,21) (@§’<(r1, 29,21) + ®§’<(T1, —2y,21)e2 1Y) 2) Xz |<|r | drd2z

(6.119)

We first consider the last line in (6.119) with the restriction to |z;| < |r1|. We prove that this
term is of order O(1) as A — 0. Second, we will prove that the expression on the second line
in (6.119) is bounded above by —cA™! for some constant ¢ > 0 as A — 0.

Asymptotics of third line in (6.119): Define W € L'(R?) by W(r, z1) := V() X|z1|<|r]-
By the Schwarz inequality it suffices to prove that [ra W (r, 21)|®F< (71, 25, 21 )|*drdz = O(1)
for A — 0. Using the definition of ®"~ we have

22 —~
/11&4 W(7°> 21)\®§’<(7’1, Z2, 21)’2d7”d2 = W /R5 W((Pl —P’1>0),Q1 - QQ)BTg(Z% (CI1>77))

xV12W5(p, q1) Bra ((p1, p2), (41, m)VV2UA(PL, P2, 61) Xp2 1 g2 <o X2 13 42 <2udpdpi didgy
(6.120)
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Using |V (p, q1)| < 2k and [VI/20,(, 1) oo < [VIL*[|F2®(-, 01)]|2 we bound this from

above by

)\2
22 WV /]R5 Bra(p, (q1,m) Brz (91 p2)s (€1, 1)) X2 <20 X202+ 2 <20
X [ F2UA(-, @) 2| F2 @A ¢1) l2dpdp| dgidg)

)\2
< —[IWhllVih
SV VI sup

sup_ /]R , Brx (v, (q1,m) Bra ((p1, p2), (a1, 77))xpg2+q;2+pg<zuxp2+qg<zudpdp’1]

2
X </R“F?‘I’A('?Q1)||2Xq§<2udq1> (6.121)

By Lemma 6.3.7 and Remark 6.3.1, the term in the square bracket in (6.121) is of order
O(X™3). Splitting the domain of integration into |¢:|//i 2 (T)}/p)? for some 0 < 3 < 1
and using the Schwarz inequality we observe that

/RHFQ\P)\('?Q1)||2qu<2,ud(h < (T )P 22 + (2320) 2 FeUaX g, s 2
(6.122)
By Lemma 6.3.23, || F5W X4,/ =12 /7 2 = O(A/?) and by Remark 6.3.1 we have (T7}/p)?/? <
2
O((In /TH1) = O(\). Thus, (fRHFZ\IJ,\(~,ql)ngq%deql) — O()) and (6.121) is of
order O(1).
Asymptotics of second line in (6.119): Analogously to (6.58) we have

/4 ‘/(,r,)q)§,<(,r17 22’ 21)®§\’<(T17 _227 Zl)e—Qiﬁ(/\)TQdeZ = 2A2 \/4 ‘7<p1+p/1’ 277)BT01 (p, (q1, 77))

R R

X V1/2\I])\(p7 QI)BTC1 ((plla p2)7 <QI7 n))vl/Q\I})\ (pll y P2, QI)Xp2+qf<2,uXp’12+p§+qf<2,udpdp,1dq1
(6.123)

We can thus write

1 )
3 /]1@4 V(r)@f’d(rl, 29, zﬁ(@f’d(rl, 29, zl)—i—(I)f’d(rl, — 29, zl)e_m"(k)”)drdz = (FyWy, My FoWy),

(6.124)
where M), is the operator acting on L?(R?) given by

(th, Myp) = N° /R4(‘7(p1 — 4, 0) + V(p1 + 14, 20)) Bra (p, (g1, M) FL VY2 (D, 1) X g2 <o

X BTcl ((paa p2)7 (Q17 n))Xp’12+p§+q§<2uF1V1/2w(p/17p27 ql)dpdplldql (6125)

By the same argument as in the proof of [fui V (1)|®F<(r1, 25, 21)|?drdz = O(A™!) in
Lemma 6.3.5 (see (6.62)) we have ||[M,]| = O(A™!). Recall the projections P and Qg
from Section 6.3. Let T be the projection T = PQpg for some 0 < 3 <1 and T+ =1 —T.
We have

(R, My, U,) = (TR Wy, MyTEY,) + (TR, MAT FoW,) + (T FU,, My FaUy)
(6.126)
Since P and Q3 commute, we have |[T*FW,|| = [|QF oV, + QPR W,|| = O(A/?)
according to Lemma 6.3.22 and 3. In particular, the last two terms in (6.126) are of order
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O(A~Y/2). The remaining term in (6.126) is bounded below by
(TEWUy, M\TF,V,)

: 2 i/ R % / T
=Y SR /R?)(V(pl p1,0) +V(p1 401, 20) Bry ((pr, p2)s (41, M)V 2 (D) X2+ 3 <20

X Bra((py, p2), (@1:1)Xp2 +p2+02<2,V 2(PL p2)dpdp! [ TR0 3]V 215 (6.127)

The remainder of the proof follows the same ideas as the proof of [60, Lemma 4.11]. Since
V > 0 we have V(0) > 0. Furthermore, the eigenvalue equation ¢,V'/2j, = 0,V/2j, =
‘73\2(\19] Vi)VY2j, implies that VJQ(]p| Vi) = e, > 0. By continuity of V and
ng and Lemma 6.3.21, there exist A > 0, 0 < § < i and ¢; > 0 such that for all
VIE—0 < pa < I+ 0,p? <46, p% < 45 and X < X we have

[

(V(pr = 91,0) + Vpr + 91 20)Vi2(9)V 52 (B, P2) X2 <o Xtz <oV 22157 > ca.

(6.128)

Using the second part of Lemma 6.3.7, Lemma 6.3.21 and the boundedness of 17,\73\2 it
follows that up to an error of order O(\?(Inu/T})*/?) = O(A"'/2) we may restrict the

domain of integration in (6.127) to /u—0 < py < Vu+0,p? < 40,p < 46 . Since
ITFP,3 =1—O(X) > 5 for small A, we obtain

(T Uy, MATE, W) > inf N [ Bri((p1,p2), (q1,m))

C
2 |qil/vr<(T} /)P JR?
X By (01, 12), (41, M) Xums<ppapssXp2<asXp2<asdpdp) + O(A™?) (6.129)

Using Lemma 6.3.7 once more, we may leave away the characteristic functions at the expense
of an error of order O(A~'/2). Since n(\) = O(T}(\)), there is a ¢, > 0 such that
n? + (VT )P)? < Gu(T}/p)?P for T} < p. The following Lemma, whose proof is given
in Section 6.7.5, thus concludes the proof of Lemma 6.1.9.

Lemma 6.5.2. Let p,co >0, 0 < 3 <1 and e := co\/u(T/p)? for T > 0. Then there are
constants Ty, C' > 0 such that

inf (/R Br(p, q)dp1)2 dps > C(Inu/T)? (6.130)

lgl<e JR

for all 0 < T < Ty.

6.6 Proof of Theorem 6.1.5

This Section is dedicated to the proof of Theorem 6.1.5, which states that the relative
difference of T2 and T2 vanishes in the weak coupling limit. It has been shown in [60, Theorem
1.7] that the relative difference of T! and T vanishes in the weak coupling limit and we
follow the same proof strategy here. We first switch to the Birman-Schwinger picture. Recall
the Birman- Schwmger operator A9 corresponding to H$° defined in (6.20). Furthermore,
recall the notation #, {2, and the representation of UHTQUT in (6.79) from Section 6.4. The
corresponding Birman-Schwinger operator A2 : L2(Q),) — L?(Q,) is given by

2

W A7 ¢> BT b, q ‘/ pl,fhﬂ‘l,21>75~(p27Q2,T2,Z2)V1/2(7")¢(7”7 z)drdz‘ dpdg
(6.131)
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and it follows from the Birman-Schwinger principle that sgninf o (HY?) = sgn(1/\ —
supo(A%)). Let af = supo(A%). It is a straightforward generalization of [34, Lemma
4.1] that the claim (6.4) is equivalent to

lim (a} — a3) =0 (6.132)

T—0
and we refer to [34] for the proof.

To verify (6.132), the first step is to argue that a3 > a3 for all T > 0. Lemma 6.1.1
together with [60, Lemma 2.3] imply that inf o(H$?) < inf o(H$°) for all A\, T > 0. Using
the Birman-Schwinger principle, it follows that a2 > a9 for all T' > 0. For details we refer to
the proof of [60, Theorem 1.7].

It remains to show that limy_,o(af — a7) > 0. We decompose A% in the same spirit as we
decomposed Al (gz) in (6.26). For AL, the decomposition consisted of the “unperturbed" term
AY. and the “perturbation term" G, where the first components of the momentum variables
were swapped. For A% we additionally get the terms arising from swapping the variables in
the second component, which leads to four terms in total. Let 7 : L*(€) — L*(R?) be the
isometry

W(r,z) = ;<¢(7“> Z)Xﬁg(ﬁ z) + (=71, 72, — 21, Zz)XQZ(—Tlﬂ"% —21, %2)

+ (11, —ra, 21, —22) Xq, (11, =72, 21, —22) + U (=7, —2)xq, (T, —z)). (6.133)

Using the definition of # and evenness of V in 7, and 75 we rewrite (6.131) as

—

(¥, A7) = /W Br(p, Q)B(@(n q) F V20 ((q1, p2), (p1, 2))

— o — 2
F V20((p1, @), (¢, p2)) + VI20p(q,p))| dpdg (6.134)

Define the self-adjoint operators G, G2, and Ny on L?*(R?) through

(), Gryp) = /R4 E\V24((q1,p2), (p1, 42)) Br(p, ) LV 20(p, ¢)dpdg, (6.135)
(), Gr9) = /R FVY20((p1, 2). (a1, 2)) Br(p, ) LV 0 (p, q)dpdg, and  (6.136)
(¢, Nryp) = /R V20 (q,p) Br(p, ) 1 VY20 (p, q)dpdg. (6.137)

We slightly abuse notation and write F, for the Fourier transform in the second variable
also when the second variable has two components, i.e. Fot)(r,q) = 5= [pe € %9(r, z)dz. It
follows from (6.134) and Br(p. q) = Br((¢1,p2), (p1,42)) = Br(q,p) that

AZ = iT(AY — FIRr )i, (6.138)

where Ry = +GL + G% — Ny. Let Br(-,q) : L*(R?*) — L?(R?) denote multiplication by
Br(p, q) in momentum space and define the function Er(q) on R? through

Er(q) == ay — |[VY2By(-, )V (6.139)

Note that a} = sup,cg: [|V?Br(:,q)V/?|| and therefore Er(q) > 0. For i € L*(R?) let
Erp(r,q) = Er(q)¢(r,q). We get the operator inequality a%l — A% > FJEpF,, where
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I denotes the identity operator on L?*(R%). Using (6.138), the above inequality and that
| Foi)||2 = ||10||2 we obtain

ad—aZ > inf Fyip, (Br+Ry) Fyl inf (Er+R . (6.140
T T_weLg(Qz),II¢||2=1< o0 (Ertln) i) 2 o, (0 (Bt Be). (6.140)

Therefore, it suffices to show that limy_,ginf o(Er + Ry) > 0. The proof relies on the
following three Lemmas.

Lemma 6.6.1. Let o > 0 and let V' satisfy Assumption 6.1.2. Then supp. || Rr| < oc.

Lemma 6.6.2. Let u > 0 and let V satisfy Assumption 6.1.2. Let I, act on L*(R*) as
T<ctb(r,q) = ¥(r,@)X|q<e- Then lime o suppollI<cRrl<e|= 0

Lemma 6.6.3. Let ;1 > 0 and let V satisfy Assumption 6.1.2. Let 0 < e < \/j1. There are
constants ¢y, ca, Ty > 0 such that for 0 < T < Ty and |q| > € we have Er(q) > ¢1|In(c2/T)|.

The first two Lemmas are extensions of [60, Lemma 6.1 and Lemma 6.2] and proved in
Sections 6.7.6 and 6.7.7, respectively. The third Lemma is contained in [60, Lemma 6.3].

With these Lemmas, the claim follows completely analogously to the proof of [34, Theorem
1.2 (ii)] and we provide a sketch for completeness. Using that Er(g) > 0, we write

1 1
E R 0 =\/F 0L R E 1) 6.141
T+ R + \ Er + <+\/ET‘|’5 T\/ET+5>V T+ ( )

for any 0 > 0. It suffices to prove that for all 6 > 0 the norm of the second term in the
bracket vanishes in the limit 7" — 0. With the notation from Lemma 6.6.2 we estimate for all

0<e</p

1 1 1
R < |« R I,
H\/ET+5 T\/ET+5H— “VEr+to "Er+to =
1 1 1 1
I, Isll + || Tse R . (6.142
“VErto "VErto~ “VEr+9 TVET+6H ( )
Lemma 6.6.3 and E7 > 0 imply
I L gt <5 ~ l<cRrle] + Jin 2 |Rall. (6.143)
1im u ¢ c 1m . (6.
70| /Er+0  VEr+0 p sTs =0 (6c1|In(cg/T)])1/2 g

The first term can be made arbitrarily small by Lemma 6.6.2 and the second term vanishes by
Lemma 6.6.1. Hence, Theorem 6.1.5 follows.

6.7 Proofs of Auxiliary Lemmas

6.7.1 Proof of Lemma 6.2.2

Proof of Lemma 6.2.2. Using the Mittag-Leffler series (as in [34, (2.1)]) one can write

f(p,q,z)=2T Z =1 [(QQQ +2)(2u — 2¢* — 2p* — 2% 4+ 2(py — q2)7)

neE”L

+ 2py(4p - ¢ — 2w, + 2(p2 — @) — 2*)| (6.144)
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where

== ((p+q+(0,2) = p—iwy) (p— g = (0,2))* = p + iwy,)
x (0" —p—iw,) (0= ) =i+ iwy) (6.145)

and w, = (2n + 1)7T. Continuity of f follows from dominated convergence. For z > /j1/4
the bound on f follows from (6.12). Let Q; = @ + \/ii/4. For x < /pi/4 we have

0
|f(p.q,2)] < sup [——Br(p,q)| = sup [f(p,q,0)|. (6.146)
lg21<Q2 G2 la2|<Q2
To bound | f(p, q,0)]|, first note that for z = 0 with the notation y = (p+q)?—u, 2 = (p—q)*—p
and v = max{(|ps] + [a1])* + (|pa| = Iga[)* — 1. 0},
Bl = (v* +w2) (2 +w?) > (v +w?) (max{(lpa| — |g2|)? — 1, 0})* + w?) . (6.147)
Furthermore,
4ﬁUnp2

max{(|pz| = |g2[)* =, 0})* + w3

4
< sup 2| =1 < oo (6.148)

" pa)eR al<@2 \/max{(|ps| — [q2])2 — . 0})2 + w3

sup
(p,9)€ERY,|q2|<Q2

There is a constant ¢ > 11 depending only on i and Q3 such that |ps|* < 4(min{y, 2} + ¢2)
for |g2| < Q2 and all p1, ¢ € R. One obtains that for [g2| < Q-

2Q2|y + 2| +4\/min{y,z}+02|y—z| c1
0| < 2T 2T 6.149
|f(p.q,0)] < Té (2 + w2) (22 + w2) + T%:Zfzﬂ + w2 ( )

Since the summands are decreasing in n, we can estimate the sums by integrals. The second
term is bounded by

o0 1 1 arctan (LT)
AdTc; | — / —————dz| =4T T
“ L}Q + w3 * 1/2 V2 + 421222 x} ey wh * 2T

C

< 6.150
1+pi+q?+p3 ( )

. : L+pi+ai+p3
for some constant C' independent of p and ¢i, since Sup, ;)er,jg.<@» T < 0. The
first term in (6.149) is bounded by

1
(y? + wg) (22 + wg)

16T(Qa + 2y/min{y], |2[} + c2) max{y], |2}

00 1
d 6.151
T /1/2 (42 + 472T222) (22 + An2T222) x] ( )
Note that y + 2 +2u + 1 = 1 + 2p? + 2¢%. The claim thus follows if we prove that for ¢z > 0

1

1 [e%e]
sup (1+y+2)(1+vz+ 1)y S 1)+/63 )2+

y>z>0

)dx] < oo (6.152)
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The supremum over the first summand is obviously finite. The supremum over the second
summand is bounded by

(1+2y)yl+vz+1 o 1

>0 Y+ (4G e 2P

dz < oc. (6.153)

6.7.2 Proof of Lemma 6.3.7
Proof of Lemma 6.3.7. Using (6.53) and substituting p1 + ¢1 — p1,p} £ ¢4 — p} , we have

1
/Rs Br(p, ) Br((pr: p2), ¢ )dprdprdps < 4 /RS(BT((pl,pz +2),0) + Br((p1;p2 = 2), 0))
X (Br((ph,p2 + ¢3),0) + Br((p}, p2 — 5),0))dpidpidp,  (6.154)
One can bound this from above by

sup e (/R Br((p1,p2 + ¢2), O)dpl) (/R Br((p}, p2 + ¢5), 0>dpl1> dps

92,95€R

< sup | Br((pr,p2 +2), 0)Br((ph p2 + ¢2), 0)dprdprdpe
q2€

:/]RS Br((p1,p2), 0)Br((p, p2), 0)dpidpdps  (6.155)

where in the second step we used the Schwarz inequality in po. The latter expression is of
order O(In(p/T)?) for T — 0, as was shown in the proof of [60, Lemma 4.10].

To prove the second statement, we shall use that for fixed 0 < § < u

/R (L= Xy s<pi<nXpi <a5Xp2<25) Br(p, 0) Br((p}, p2), 0)dpidpidps = O((Inp/T)?) (6.156)

for T'— 0 as was shown in the proof of [60, Lemma 4.10]. We choose d, and § small enough,
such that for all ¢*> < 0, if p? > 40, we have (p; +q1)* > 20 and if p3 < u—3d; or p3 > u+4;
we have (p2 + ¢2)> < — 6 or (p2 + q2)? > p, respectively. Using (6.53) as above, we have

SUp | (1 = Xps, <p2epirsn Xp2<as, Xp2 <as, ) Br(p: @) Br (), p2), ¢')dp1dp)dps

q2,4'2<52 R3
< 2Sgp(S - (1= Xu-s, <p3<p+81 Xp3<4d Xp2<4é, )Br(p+q,0)Br((py, p2) + ¢, 0)dp1dpdpa
q%,q'* <62
(6.157)
Note that 1 — Xp—61<p2<p+8 Xp? <451 Xp2 <46, < Xp—81>p2 T Xpto1<p2 T Xp2>as, T Xpi2>16, - Using

the Schwarz inequality in p; we bound (6.157) above by

sup Rs(Xﬂ—51>p% + Xpso,<p2) Br((p1 + q1,p2 + ¢2),0) Br((Ph + @1, p2 + g2), 0)dp1dp’dpa
q°<02

1/2
+2 sup (/R?’ BT((P1+CJ1,Z?2+Q2),O)BT((p/1+Q17P2+CI2)>O)Xp§>451Xp'12>451d271dp/1dp2>

q2,q'? <52

1/2
X (/R3 Br((p1,p2 + ¢2),0)Br((p1, p2 + ¢2). O)dpldpﬁdm) (6.158)
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Substituting p; + ¢; — p; and by choice of d; and 4, this is bounded above by
/R3 (Xp—s5p3 + Xpu<pz) Br(p, 0) Br((p}, p2), 0)dpr1dp dps
1/2
+ 2( /R , Br(p, O)BT((p’hpg),0)Xp1>2axpf2>25dp1dp1dpz)

1/2
< ([, Br(o.0)Br((whopa). Odmdpidps) - (6:159)

By (6.156) and the first part of this Lemma, this is of order O((In 1/T)%)+O((In /T (In 1/ T)%/?) =
O((In 1¢/T)*?). O

6.7.3 Proof of Lemma 6.3.8

Proof of Lemma 6.3.8. For ps,qs € R let Br((+,p2), (-, ¢ )) denote the self-adjoint operator on

L2((—V/2, v/211)) acting as (b, Br((-,pa), (- @2))) = [V 1Y 0(p1) Br(p, ¢)v (1) dprdas.

Enlarging the domain of integration for (ql,pQ) from a d|sk to square we have

IBF*(©)] < sup

Sup /(_ o LB (P p2), (01,€) Br(p, (01, €)) (p1)dprdpidgudps

= sup [ Br((p). (. €)0)dpa. (6.160)
[lla=1/—v2u

By the triangle inequality,

2 V2 2
1B < [ 1Br(.€). (o)) Pdpe (6.161)

For fixed ps, g2 we derive two bounds on || Br((+, p2), (-, g2))||*. For the first bound we estimate
the Hilbert-Schmidt norm using (6.12):

1Br((- p2), ( @)I” < [1Brpu((,p2), (- 22)) P
1

< dp1dq
o] it s g ey

2V T 1 47
<2/ ar < /—d — 2T (6.162
S e e BN S e ey oy S )

where we first switched to angular coordinates and then substituted = = r2 + p2 + ¢2 — p.

For the second bound the idea is to apply [60, Lemma 6.5]. For p, 1o € R let D, ,, be the
operator on L%(R) with integral kernel

2

D, (1, q1) = . 6.163
(P, 0) |(p1 + q1)? — pa| + [(p1 — @1)* — 2] ( )
It was shown in [34, Lemma 4.6] that
2
Br(p,q) < . 6.164
R TP o sy (6.164)
In particular, we have || Br((-,p2), (; @)l < [|1Dy—(ps+q2)211—(p2—a)2 || @nd
V2p 47
ex,2 .
1B (€] < /_mmm{TaIIDu—<s+qz>2,u—<s—q2)2||2}dQ2 (6.165)
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According to [60, Lemma 6.5], for pu1, 1o < i there is a constant C' > 0 such that

max{j1, pi2} )
| min{p, p2}]

(6.166)
The condition 11— (|g2| + 1€])* < 0 < . — (Jgo| — [£])? can only be satisfied for /it — |¢| <
|q2] < /1t + [€]. We get the bound

Cﬂl/2
| min{su, pio } [/

||D;L1,,u2|| S C + 1+ Xmin{u1,u2}<0<max{u1,u2} In (1 +

1
sup ||B2(9)] < c( / d

7442
lgl<cT g2|—ya<2er T

V2u

+ sup X _ 2¢T [1 +
E|<cT o llg2]—~/1z|>

1
1= (lgz| + €]

)2|1/2rdQ2) <C(1+1Inp/T) (6.167)

O

6.7.4 Proof of Lemma 6.5.1
Proof of Lemma 6.5.1. Applying (6.53), we have

sup [ Br((pr, £T), (1, € (7))

< ; [/RBT,H((pl,ﬁ(T)+§’(T)),0)dp1+/RBT,H((p1,§(T)—5’(T)),0)dp1 (6.168)

The first integral equals
/]R Bry—(e(ry+e 2 (1, 0)dpy, (6.169)

where here Br, is understood as the function defined through (6.11) on R x R instead
of R? x R?. For the second integral replace ¢'(T') by —¢'(T'). The claim follows from the
asymptotics

Bt 00dpr = /T + 0(1) (6170

for T/ — 0, see e.g. [34, Lemma 3.5]. O

6.7.5 Proof of Lemma 6.5.2

Proof of Lemma 6.5.2. Let v = p(T/u)??. By invariance of Br(p,q) under (pj,q;) —
—(pj, q;) for j € {1,2}, we may assume without loss of generality that ¢ € [0, 00)?. For a lower
bound, we restrict the integration to py, p; > 0, p5 < pu—e*—v and p? > (\/u+€)*+T—p3. For
p,q € [0,00)* with |g| < eand p* > (\/i+€)*+ T, we have (p—q)*—p > |[p| —[q||* —p > 0
and (p+q)* — pu > p* +¢*> — > T. Therefore, in this regime

Br(p.q) > 1 tanh(1/2)

S 6.171
2P+ - (0171)

b
for a > b > 0, the left hand side of (6.130) is bounded below by

This is minimal if |q’ = ¢. Since faoo p%%l)?dpl — artanh(b/a) _ %artanh <\/1 — (a2 — bz)/a2)

2
2,/me+2e24+T
tanb(1/2 e wtanh (1 = A

4 N w— €2 — p3
184
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6.7. Proofs of Auxiliary Lemmas

By monotonicity of artanh, the artanh term in the integrand is minimal for ps = \/u — €2 — 7.

Since f\/—”“e —t—dpy = HEEZ (artanh(\/l — (2 +)/u) —artanh(y/1 — 6/u)), the left

p—e2—p3

hand side of (6.130) is bounded below by

2
2 2 2 2 T 2

M artanh 1— Ve £ 2¢ F artanh 1— cta —artanh 1— ﬁ
A(p —€) 2y/pe+2e2+ T+ f ft

(6.173)
With artanh(v/1 — z) = $In(4/z) + o(1) as & — 0, we have for ' — 0

artanh (J | Aper2e AT ) _ B gy + 001) (6.174)

2\ /1€ + 262 + T+~ 4
and
2
artanh( ‘ :7> ﬁmm/T) +0(1). (6.175)
Hence, the left hand side of (6.130) is bounded below by tanhiigl,/w%g(ln 1/T)+O(Inu/T)?,
and the claim follows. ]

6.7.6 Proof of Lemma 6.6.1

Proof of Lemma 6.6.1. According to [60, Lemma 6.1], sup;||G%|| < oo for j € {1,2} and it
suffices to prove supy||Nz| < co. We have || Nz|| < ||N5|| + || NZ ],

(¢, Npip) = /R FVIY20(q,p) Br(p, 4) X2 g2 <0 F1 V0 (p, q)dpdg (6.176)

and for Nz replace the characteristic function by 1 — x,2 2<2,.
To bound || N7 ||, we first use the Schwarz inequality to obtain
INF < sup / L Br(0,)(1 = Xp22<00) [V 20 (p, g)Pdpdg - (6.177)
YEL?(RY),[[¢]2=1 /R

By (6.12), there is a constant C' > 0 independent of T such that |N7 || < C||M]||, where
M := V221 V1/2on L*(R?). The Young and Hélder inequalities imply that M is a bounded
operator [50].

To bound || N5 |, we use that || F;V2(-, ¢)llso < |[VII72(|00(-, q)|> by the Schwarz inequality
and (6.164) to obtain

[9C D202, p)l2

i (p+q)? —pl+1(p—q)? -
from (6.163), this is further bounded by

(¥, Nry) <2V Xp2.q2 <2udpdg (6.178)
l

Recalling the definition of the operator D, ,,

2HVH / H¢ 42 )H HD,M (p2+g2)2,1 pz—qz)ﬂ‘”¢(7(7p2)>H2Xp§7q§<2udpdq (6179)

It follows from (6.166) that for any o > 0 there is a constant C,, independent of ps, g such
that | Dy (pyra0)2. - (me—g2)2 || < Cal1+|p—(Ip2] +ga])?|7/*7®). Let D, denote the operator

(p2—
on L2((—+/2, /21)) with integral kernel Do (qa, p2) = (14 | — (|pa| + |g2])?|~/>~). Then
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we have ||N5| < 2C,||V|I1]|Dall and it remains to prove that ||D,|| < oo for a suitable
choice of a.. Applying the Schur test with constant test function gives

~ V2 2|-1/2—a
|1Dall < sup (14 |pe = (o] + la2))7] )dpe, (6.180)
a2l <2/ V20
which is finite for o < 1/2. O

6.7.7 Proof of Lemma 6.6.2

Proof of Lemma 6.6.2. It was shown in [60, Lemma 6.2] that lim,_,q supp||T<cGHl<||= 0
for j € {1,2} and it remains to prove lim._,o sup;-¢||l<cN7l<||= 0. We use the Schwarz
inequality twice to bound

[M<eNrleel[< [V sup MG Br(p, )xipljai<c [ (- a)ll2dpdg
veL2(RY),|p]l2=1 /R

<V s | Bra)ielvC.a)l3dpdg < Viswp [ Briv.a)dp

YELZ(RY),[|¢h]|2=1 la|<e
(6.181)
Applying (6.12), for € < \/11/2 one can bound the right hand side uniformly in 7" by
V]l / L 4 (6.182)
sup ———dp, .
Haizewize = p? = @2
which vanishes as ¢ — 0. The claim follows. O
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