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Mechanistic insight on water dissociation on
pristine low-index TiO2 surfaces from
machine learning molecular dynamics
simulations

Zezhu Zeng 1, Felix Wodaczek 1, Keyang Liu2, Frederick Stein 3,4,
Jürg Hutter3, Ji Chen 2,5,6 & Bingqing Cheng 1

Water adsorption and dissociation processes on pristine low-index TiO2

interfaces are important but poorly understood outside the well-studied
anatase (101) and rutile (110). To understand these, we construct three sets of
machine learning potentials that are simultaneously applicable to various TiO2

surfaces, based on three density-functional-theory approximations. Here we
show the water dissociation free energies on seven pristine TiO2 surfaces, and
predict that anatase (100), anatase (110), rutile (001), and rutile (011) favor
water dissociation, anatase (101) and rutile (100) have mostly molecular
adsorption, while the simulations of rutile (110) sensitively depend on the slab
thickness and molecular adsorption is preferred with thick slabs. Moreover,
using an automated algorithm, we reveal that these surfaces follow different
types of atomisticmechanisms for proton transfer andwater dissociation: one-
step, two-step, or both. These mechanisms can be rationalized based on the
arrangements of water molecules on the different surfaces. Our finding thus
demonstrates that the different pristine TiO2 surfaces react with water in
distinct ways, and cannot be represented using just the low-energy anatase
(101) and rutile (110) surfaces.

Titanium dioxide (TiO2) interfaces with water have paramount tech-
nological importance in photocatalysis, catalyst support and medical
applications1–3, and also serve as a prototype system in surface
science4. However, even for defect-free stoichiometric interfaces,
water dissociation is far frombeingwell-understood, let alone surfaces
with defects5,6, polaronic effect7, or reconstructions8.

Past studies exclusively focus on anatase (101) and rutile (110), as
they have the lowest surface energy for each phase and are thus most
abundant in nature2. There remainmany controversies. For rutile (110),

scanning tunneling microscopy (STM) studies indicated that water
dissociation happens at defect sites9, while x-ray photoelectron
spectroscopy10 found water dissociation on the hydrated stoichio-
metric surface at various coverages and temperatures. Experiments
using both supersonic molecular beam and STM revealed a dynamic
equilibrium of water dissociation at low temperature and water
coverage11, although oxygen vacancy is inevitable on the sample sur-
face. From the theory side, static density functional theory (DFT)
calculations12,13, molecular dynamics (MD) simulations based on DFT12
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ormachine learning potentials (MLPs)14,15 have debated severely about
the exact fraction of water dissociation on rutile (110) surface, and the
results are sensitive to the underlying functionals and simulation set-
ups. For instance, very recently, MD using PBE-D3 MLP predicted a
fractionofonly 2%14, while SCANMLPobtained22%15. For anatase (101),
previous STM experiment suggested that water adsorbs molecularly
on almost defect-free surface16 or reduced surface with subsurface
defects17 in ultrahigh vacuum, but synchrotron radiation photoelec-
tron spectroscopy18 observed awatermonolayer on the stoichiometric
surface involves bothmolecular and dissociative adsorption, andX-ray
diffraction experiments19 also showed water dissociation on reduced
surfaces with both ultrathin and bulk water. In simulations, BLYPMD20

and DFT MD21 with optB86b-vdW functional both predicted that bulk
water adsorbs molecularly on (101) surface, while static DFT calcula-
tions with PBE functional showed the coexistence of dissociated and
molecular water at monolayer coverage22. Recently, Andrade et al.23

used a combination of MLPs with SCAN functional and enhanced
sampling MD, and predicted a water dissociation fraction of 5.6%. Li
et al.24 reported a slightly higher fraction of 7.8% using DFT MD with
PBE functional.

For other high-energy surfaces, studies are relatively rare and
even less is clear regarding water dissociation2, although these sur-
faces are crucial to investigate as they may have higher catalytic
activity than the stable surfaces25. As with the stable surfaces, different
functionals provide different pictures for surface energy and water
absorption, for example, for the rutile (100) surface26–28. In addition,
surfaces with high reactivity such as anatase (110) and rutile (001)
decrease rapidly during the crystal growth process2, and surfaces
including anatase (001)29, and rutile (011)30 can have spontaneous
reconstructions in vacuum, both of which greatly hinder the pre-
paration of the pristine surfaces. On the other hand, a reconstructed
surface can be lifted to the unreconstructed state at aqueous envir-
onments, for example for rutile (011)31, establishing the importance of
studying the high-energy pristine surfaces.

Understanding water interactions with pristine TiO2 interfaces is
difficult: In experiments, preparing pristine surfaces32, preventing
contamination in dipping experiments33, and step-by-step character-
izing water adsorption34 on pristine surfaces in aqueous environments
are all challenging. High-energy surfaces are even more difficult to
investigate experimentally due to the high surface activity and low
stability3. In simulations, empirical forcefields lack qualitative accuracy
anddonot allowwater dissociation35. DFT calculations are restricted in
system size, time scale, and the approximation of the exchange-
correlation functional. Machine learning potentials36,37 allow con-
verged MD simulations with ab initio accuracy, but previous MLPs
workonly for either anatase (101)23 or rutile (110)14,15,38. Thus a complete
description for the interactions between water and various low-index
TiO2 is still missing, along with a mechanistic understanding of water
dissociation.

Herein, we constructed MLPs that can simultaneously describe
bulk anatase, rutile, bulk water, and bulk water-TiO2 and vacuum-TiO2

interfaces for anatase (001), (100), (101), (110) and rutile (001), (100),
(011), (110) surfaces. We considered three different DFT functionals,
and exploited committee models39 to provide error estimates of the
MLPs. We then computed the free energies of water dissociation at
various interfaces, providing a quantitative estimate of how much
water dissociation occurs. Finally, we developed a machine-learning-
based algorithm to identify the dissociation mechanism and proton
transfer pathways automatically, and rationalized the different
mechanisms based on the atomic structures of the interfaces.

Results
Water adsorption and dissociation
We systematically investigate the influence of the underlying DFT
functionals on water interactions with the TiO2 surfaces. We first fitted

a committee model38 made of four fits of the MLP trained on the
optB88-vdW DFT functional. We then fitted a set of Δ-learning com-
mittee MLPs based on the difference between the SCAN and the
optB88-vdW potential energy surfaces, and another set based on the
difference between the PBE and the optB88-vdW potential energy
surfaces for the bulk TiO2-water interface systems. One can then use
these Δ-learning potentials on top of the optB88-vdW baseline to
obtain the atomic interactions at the PBE or SCAN level of theory. In
MD simulations, we employed the three sets of committeeMLPs based
on the SCAN, PBE, and optB88-vdW functionals.

To reversibly sample water dissociation, we employed well-
tempered metadynamics40 simulations with adaptive bias41. The col-
lective variable (CV) is theminimal distance SO-H of a surface oxygen to
any hydrogen in the system, which is the same as ref. 23. During a
metadynamics run, a time-dependent bias potential V(SO-H(t)) is added
to the Hamiltonian of the system H, i.e. Hbiased =H+V ðSO�HðtÞÞ. This
bias distorts the equilibriumprobability distribution, and the unbiased
ensemble averages for an observable O can be obtained with a
reweighting procedure42:

<O>=
<OeβV ðtÞ>biased

<eβV ðtÞ>biased
, ð1Þ

where < � > indicates the ensemble average sampled using the corre-
sponding Hamiltonian. The free energy surfaces (FES) with respect to
the CV can thus be calculated from the unbiased histogram of S.

In the metadynamics simulations, each system contains 128 water
molecules and about 200 TiO2 atoms. The bulk water in the center of
the simulation box has a density 1 gmL−1. In simulations using the
optB88-vdW or the SCAN MLPs, the temperature was kept at 330K,
which is 30K higher than room temperature in order to roughly
account for the nuclear quantumeffects in room-temperaturewater as
used in ref. 23. For the PBE MLPs, the simulation temperature was
elevated to 370K to avoid water freezing, as PBE water has a high
melting point of about 417 K43. We performed simulations on pristine
anatase (001), (100), (101), (110) surfaces and rutile (001), (011), (100),
(110) surfaces. The metadynamics simulations for the anatase (001)
surface show a lot of hysteresis so the computed FES lacks con-
vergence, probably due to that the CV neglects certain degrees of
freedom relevant to water dissociation on this surface, so we removed
it from further analysis.

For rutile (110), previous calculations predicted that water inter-
action with the slab has an odd-even oscillation behavior with respect
to the number of O-Ti-O trilayers12,14,15. As detailed in the Supplemen-
tary Information, we observed the same oscillation in the MLP MD
simulations, and thus used 10 trilayers in the productions runs to
ensure the convergence with respect to the slab thickness. For the
anatase (100), (101), (110) surfaces and rutile (001), (011), (100), no
evident dependence of water dissociation on slab thickness was
observed in our simulations using different number of layers (Sup-
plementary Information).

Snapshots of atomic configurations for the seven TiO2-water
interfaces from the optB88-vdW MLP metadynamics simulations are
shown in Fig. 1a. On anatase (110) and rutile (001), twowatermolecules
are adsorbed simultaneously by each surface undercoordinated four-
fold (Ti4c) site. For the other five surfaces, one water molecule is
adsorbed on each five-fold (Ti5c) site. The O atoms in these adsorbed
water molecules occupy the missing oxygen sites of TiO2 while the H
atoms point away from the surface. We thus classify adsorbed water
molecules (H2O-Ti) when the Ti-O distance is within 2.65 Å. We also
define the first-layer water (H2O

(1)) as non-adsorbed water molecules
close to the surface, here classified based on within 3.5 Å of the
undercoordinated two-fold O2c sites. Surface O2c atoms can accept
protons to form the bridging hydroxyl groups (H-Ot), and terminal
hydroxyl groups on surface Ti atoms can emerge (HO-Ti). For liquid
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water farther from the surface, no isolated OH or H3O groups are
observed.

Water adsorptionon these surfaces is characterizedby thedensity
profiles ρ, as shown in Fig. 1b. Comparing the density profiles com-
puted using the MLPs based on the three DFT functionals, the differ-
ences are relatively small between SCANMLPs and optB88-vdWMLPs,
while PBE MLPs consistently predict weaker water adsorption sug-
gested by the lower height of the first peak. Each density profile
exhibits a prominent first peak near the surface, and lower subsequent

peaks. This suggests a highly structured arrangement in the water
close to the surfaces, with decaying order going into the bulk. Such
interface-induced structuring can affect the water up to about 10 Å
away from the surface. The first water density peak is more pro-
nounced on the four rutile surfaces than for the three anatase surfaces.
For anatase (100), (110), and rutile (001), the tiny bumps in the density
profiles close to the surfaces are due to hydroxyls formed on O2c sites.

The atomic configurations in Fig. 1a help to rationalize water
structuring near the interfaces. For most surfaces, the first and the

Fig. 1 | Adsorption and dissociation of water on pristine low-index TiO2 sur-
faces. a Snapshots of atomic positions for anatase (100), (101), (110) and rutile
(001), (011), (100), (110) surfaces in water. Surface undercoordinated four-fold Ti4c,
undercoordinated five-fold Ti5c, undercoordinated two-fold O2c (also known as
oxygen bridge site), and coordinated three-fold O3c sites are indicated. b Thewater
density profiles ρ as a function of the vertical height h from the outmost Ti layer on
surfaces. c The orientation distributions of water molecules near the surface, for
the water adsorbed on surface Ti (solid curves) and first-layer water (dashed

curves).θ is the anglesbetween thewater dipole vector and the surface norm.dThe
free energy surface (FES) as a function of the minimal distance SO-H (marked as
green solid lines) of a surface O2c atom to any hydrogen in the system. The two
valleys on the FES correspond to molecular and dissociated water states as sche-
matically indicated. In (b–d), results are from three committee machine learning
potentials (MLPs) based on SCAN, PBE and optB88-vdW density functionals. Each
committee MLP has 4 individual MLPs, and the thick lines show the average esti-
mate from the four, while the shaded areas show their standard deviations.
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second peaks in the density profiles (Fig. 1b) correspond to the
adsorbed water (H2O-Ti) and first-layer water (H2O

(1)), respectively.
However, for the anatase (100), both the H2O-Ti and H2O

(1) contribute
to the first peak, due to the relatively large gaps between the surface
Ti5c sites, which provides adequate spaces for H2O

(1) to be closely
attracted toO2c sites. The same reason explains the proximity between
the first two density peaks in anatase (101). For rutile (001), the second
density peak is particularly far from the surface (~5 Å). This is because
twowatermolecules with different orientations can be simultaneously
adsorbed onto the same surface Ti4c atom (as shown in Fig. 1a). These
water molecules form a close and dense H2O-Ti layer and hinder the
surface attraction for the H2O

(1) layer.
We further characterize the structure of interfacial water via their

orientations, defined as the dipole directions - the angles (θ) between
the dipole vector (oxygen pointing to themid-point of two hydrogens)
and the surface norm. Figure 1c shows the orientation distribution for
H2O-Ti and H2O

(1) separately: The solid curves are for H2O-Ti, and
dashed curves are forH2O

(1). ForH2O-Ti, as hydrogen atomspoint away
from the nearest Ti atoms, the distributions of θ are dominated by
acute angles. θ for rutile (001), (011) and (100) have double peaks, as
the dipole vectors of H2O-Ti can point along both sides of the surface.
This double-peak feature was also reported in a MD study using an
empirical forcefield from Kavathekar et al.44, suggesting that it is
probably insensitive on the underlying potential surfaces assumed. For
H2O

(1), the dipole vectors usually point downwards, inducing an
obtuse-angle-dominated distribution for the θ. As we will later show,
such downwards orientations may be relevant for proton transfers.

The equilibrium ratio between surface hydroxyl and molecular
water at an O2c site can be determined as f = expð�βΔGÞ, where ΔG is
their free energy difference. This is revealed by the free energy surface
as a function of the CV (shown in Fig. 1d). SO-H≈ 1 Å means a surface
oxygen has formed a hydroxyl group with a hydrogen atom from
water, and SO-H ≈ 1.75 Åmeans the closestwater remainsmolecular. All
three sets of MLPs based on the different functionals give quite con-
sistent results for the FESofwater dissociationon seven surfaces,while
different surfaces have distinct FES for water dissociation and
adsorption. Comparing ΔG for anatase TiO2 facets at SO-H = 1 Å and
1.75 Å, we conclude that on (100) and (110) dissociative adsorption is
preferred, while on (101) molecular adsorption is more common. Our
conclusion for anatase (101) is consistent with previous
calculations23,24. For rutile, on (001) and (011) dissociation is favorable,
and on (100) molecular adsorption is highly preferred. For rutile (110),
with the thick slab of 10 trilayers, the ΔG between dissociated water
and molecular water is 5.2 ± 0.6 kJmol−1 (with molecular state being
more stable) at the optb88-vdwMLP level, 2.6 ± 1.2 kJmol−1 at the SCAN
MLP level, and 5.1 ± 0.6 kJmol−1 at the PBE MLP level. Our results thus
agree with previous simulations that rutile (110) favors molecular
adsorption12,14,15, and are also consistent with STM11 and x-ray photo-
electron spectroscopy10 experiments which suggest that the energy
difference between the molecular and the dissociated state is small.

Figure 1d also shows the free energy activation barrier (G⋆) for
molecular water to dissociate. For example, for anatase (101) (see
Table S3 for the G⋆ of other surfaces), the G⋆ is 23 ± 2 kJmol−1, in good
agreement with the value from G(SO-H(t)) in ref. 23. This G⋆ is about 10
times the thermal energy at room temperature. AIMD simulations are
restricted to the picosecond timescale, which is probably inadequate
to overcome the large G⋆ and obtain reliable statistics regarding water
dissociation. In contrast, Our metadynamics simulations can freely
diffuse across the barrier and reliably estimate the FES.

Pathway for proton transfer and water dissociation
The atomic pathway of proton transfer is important for understanding
water dissociation on TiO2, but the analysis is nontrivial and generally
needs a case-by-case consideration exploiting physical and chemical
insights. For anatase (101), Andrade et al.23 provided a detailed proton

transfer mechanism, using hand-crafted CVs inspired by earlier com-
puter simulations of proton diffusion in aqueous solutions45. For other
surfaces, however, the proton transfer pathway is largely unknown,
and it is unclearwhether afixed set of CVs is sufficient to capture all the
possible mechanisms.

To investigate water dissociation mechanism in a general and
automated way, we develop a machine-learning-based method. We
take the last part of the trajectories from the optB88-vdW MLP meta-
dynamics simulations with slow bias depositions, each contains
10,000 snapshots with a time step of 0.1 ps. The analysis focuses on
the different atomic environments of hydrogen atoms in the system.
Specifically, for a H atom in a certain frame of the metadynamics tra-
jectory, we first compute a list of features χ, including the H to its
closest Ti distance (H-Ti), H to its closest neighboring H (H-H) and the
second closest H distance, H to its closest O in TiO2 (H-Ot) and its
closest O in water, the surface normal of the displacement between H
and its closest O, three proton transfer coordinates determined by the
positions of the hydrogen, a donor oxygen atom O and an acceptor O0

(i.e. v=dðOHÞ � dðO0HÞ, μ=dðOHÞ+dðO0HÞ, rOO =dðOO0Þ)46. We then
use sparsified kernel Principal Component Analysis (kPCA) based on
these features χ: we build support vectors by selecting a small set of H
environments using farthest point sampling, build the kPCAmap using
cosine kernel, and finally project the χ of all the H environments onto
the saved support vectors. The kPCA maps visualize the similarity
between different hydrogen atomic environments, and the axes of the
maps capture the most important variance within the data points47.
Such procedures allow us to compare the H environments of different
systems with various TiO2 surfaces on the same footing. The whole
procedure is streamlined by the ASAP package48.

In Fig. 2 we show the kPCA plots of the hydrogen atomic envir-
onments inwater-rutile (110) system, and the plots for other facets can
be found in the Supplementary Information. Each dot on the plot
indicates the environment of each hydrogen atom. The kPCA plots can
be rationalized using different color coding based on the various fea-
tures. Four selected panels are shown in the Fig. 2, and the rest of the
kPCA plots are provided in the Supplementary Information. Thewhole
set of H environments forms well-separated clusters, and each cluster
corresponds to a H in a specific state (see Fig. 2a): e.g. H adsorbed on
the surface O (H-Ot), OH adsorbed on Ti (HO-Ti), adsorbed H2O (H2O-
Ti), first-layer H2O (H2O

(1)), and H2O farther from the surface (H2O
(>1)).

These different states are illustrated in Fig. 2e, and the classification
scheme is described in the Supplementary Information. Whether a
hydrogen atom is in a hydroxyl rather than a water molecule is sug-
gested by a large value of the H-H distance greater than about 1.8 Å
(Fig. 2b). The hydrogen-bonded complexes appear at the indicated
places on the edge of the clusters. Within each cluster, the variability
mainly comes from the orientation of the water molecule. For exam-
ple, the H atoms in H2O-Ti can point towards or away from surface
oxygen atoms (see Fig. 1a), causing the gradients in theH toOtdistance
(see Fig. 2d). H2O

(1) can have hydrogen up or down (see Fig. 1a), which
explains the variance (see Fig. 2c) in the H-Ti distances within the
corresponding cluster.

From the kPCA coordinates and the weighted frequency count,
one can build FES for these generalized coordinates using Eqn. (1), as
shown in Fig. 2e, which demonstrates the relative probability of the H
in different states. Note that, for the free energy difference between
surface OH and H2O, this FES is different from the one in Fig. 1d as the
former also considers the configurational entropy coming from the
number of possible sites.

We then consider the time dependence of the H environments, in
order to reveal hydrogen transition pathways during the MD simula-
tions. In Fig. 3a–b, two representative systems, rutile (001) and anatase
(101), are used to show two different transition pathways between
different states (illustrated in Fig. 2e). If a hydrogen atom transits
between different states, a gray line is drawn between the initial and
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Fig. 2 | Analysis and visualization for the hydrogen environments in water-
rutile (110). a–d kernel Principal Component Analysis (kPCA) maps of all the
atomic environments of hydrogens in the system, colored according to different
attributes: classification of H environments (a), the distance of H to its closest
neighboring H (H-H) (b), the distance of H to its closest Ti (H-Ti) (c), the distance of
H to its closest O in TiO2 (H-Ot) (d). e The free energy surface (FES) as a function of

the two principal axes of the kPCA map of the hydrogen environments. Repre-
sentative atomic configurations are illustrated in the insets, with the hydrogen
atom associated with the indicated H environment highlighted in orange circles. H
atoms in the water layers farther away from the surface are annotated as H2O

(2),
H2O

(3) and H2O
(>3). The dashed bonds indicate a water molecule or hydroxyl (OH) is

adsorbed onto a surface Ti, and the gray bonds denote hydrogen bonds.

Fig. 3 | Proton transfer mechanism in water dissociation on pristine low-index
TiO2 surfaces. a–b kernel Principal Component Analysis (kPCA) plots for
hydrogen environments in water-rutile (001) (a) and water-anatase (101) (b),
colored according to the proton transfer coordinates v. A high v indicates that a
proton is in the middle of being transferred. The one-step and the two-step
mechanisms are indicated using the red and the cyan arrows, respectively. c A
schematic of one-step water dissociation (red solid arrows), two-step water

dissociation (cyan solid arrows) and proton transfer (cyan dashed arrows)
mechanisms. d H transition probability between different states, computed from
10,000 metadynamics snapshots that are 0.1 ps apart. The red stars indicate the
matrix elements that are signature of the one-step transitionmechanisms, H from
H2O-Ti becomes Ot; The cyan triangles indicate the signature element for the two-
step process, H from H2O becomes H2O

(1). Only elements in the lower triangle of
the matrix are marked.
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the final environments. For clarity, we only plot the transition lines for
hydrogens near the surface, i.e. in H-Ot, HO-Ti, H2O-Ti, or H2O

(1) states,
because fartherwatermolecules (H2O

(>1)) do not participate in thewater
dissociation reactions. The two surfaces reveal two distinct modes
for water dissociation and proton transfer. Rutile (001) has an one-step
water dissociation process illustrated by the solid red arrows Fig. 3c: a
water molecule adsorbed in surface Ti directly splits into a surface OH
on Ti and a H on O2c. The transition state is a H2O-Ti that is hydrogen-
bonded to a surface O2c. For anatase (101), the gray transition lines are
consistent with a two-step proton transfer process, marked using thick
cyan arrows. This two-step process is schematically illustrated using the
solid cyan arrows in Fig. 3c: a water molecule adsorbed in surface Ti
(H2O-Ti) donates a H to a first-layer water molecule (H2O

(1)), and the
latter transfers another H to a surface O2c site to form a surface
hydroxyl. The transition state has an intermediate water molecule that
forms hydrogen bonds to both O2c and H2O-Ti. The analogous
mechanism also serves for proton transport between different O2c sites,
indicated using the dashed blue arrows in Fig. 3c. In the Supplementary
Information, we supply an algorithm that can further distinguish
between the recombination/dissociation events and pure proton
transport that does not change the amount of surface hydroxyl cov-
erage. Andrade et al.23 reported the same two-step mechanism for
anatase (101) in MLP MD simulations. For both the one-step and two-
step mechanisms, the transitions of hydrogen happen via proton
transfer, as revealed by the proton transfer coordinate v used as the
color scale in Fig. 3a–b. The critical difference between the two
mechanisms is the participation of H2O

(1). Another distinction is that,
after an one-step dissociation event the H-Ot andHO-Ti are next to each
other, while after a two-step dissociation the separation can be larger.

To quantify proton transition rates, we assume quasi-equilibrium
in the dynamics49 of the metadynamics simulations with slow bias
depositions. The unbiased transition probability from one state xa to
another state xb after time Δt is

Kðxb,Δtjxa,0Þ=
<δðxðt +ΔtÞ � xbÞδðxðtÞ � xaÞeβV ðt +ΔtÞ>

<δðxðtÞ � xaÞeβV ðtÞ>
, ð2Þ

where the Dirac delta functions δ(x(t) − xa) and δ(x(t +Δt) − xb) select
the segment of trajectories that are starts from xa in time t and ends at
xb in time t +Δt, respectively. Here the Δt = 0.1 ps is the time between
two subsequent MD snapshots.

Figure 3d shows the transition matrices between different states
of hydrogen atoms for the seven TiO2 surfaces. The color scale of the
matrix element in row xa and column xb indicates the probability of a
hydrogen atom that is in state xa at t going to state xb at t +Δt. Most
hydrogen atoms remain in their original state within the Δt =0.1 ps, so
the diagonal element of the transition matrix is typically close to one.
The off-diagonal matrix elements correspond to hydrogen transits,
from which one can infer the underlying mechanisms. To show this
clearly, the red stars and cyan triangles in Fig. 3d indicate the signature
matrix elements for the one-step and two-step transitionmechanisms,
respectively. These markers indicate whether the H atoms in H-Ot are
proton-transferred from H2O-Ti or H2O

(1).
As we discuss below, for all the TiO2 surfaces, different proton

transfer and water dissociation mechanisms are related to the atomic
arrangement: The one-step mechanism requires a close distance
between surface O2c and the protons in water absorbed by surface Ti
(H2O-Ti), and the two-step mechanism needs the proximity of first-
layer water (H2O

(1)) to the surface.
Anatase (100) and (101) have only two-step transition process. The

lack of the one-step process on these two anatase surfacesmay be due
to that the hydrogen atoms in H2O-Ti point upwards (Fig. 1a), so θ in
Fig. 1c adopt mostly acute angles and the distances between these H
atoms and O2c are relatively large. Meanwhile, the H2O

(1) (Fig. 1a) are
close to the surface with many H atoms pointing downwards,

facilitating the two-step proton transition mechanism. Anatase (110) is
observed tohave infrequent one-stepprocess, as this surface is already
densely covered by dissociated water in the metadynamics simula-
tions, as also revealed from the FES in Fig. 1d.

Rutile (001), (011) and (100) surfaces exhibit relatively high rates,
and the mechanisms are exclusively one-step. On these three facets,
surfaceTi atomshave strong adsorptionofwater, andmanyHatoms in
H2O-Ti point sideways as suggested by the double-peak feature of θ in
Fig. 1c, which facilitates theH-bond formation andproton transferwith
O2c sites. Meanwhile, H2O

(1) are relatively far from the surface, making
clear gaps between the first and the second peaks in the density pro-
files (Fig. 1b) as previously discussed. The dense H2O-Ti layer and the
far H2O

(1) layer make the one-step process favorable and the two-step
process unlikely. Rutile (110) has a coexistence of one-step and two-
step processes, which may be explained by the intermediate Ti
adsorption strength and H2O

(1) distances. The coexistence of both
mechanisms was also observed in a recent MLP MD study on rutile
(110) byWen et al.15. Overall, rutile (001), (011) and (100) exhibits faster
proton transit rates. The rate is strongly related to the free energy
barrier from molecular water to surface hydroxyl as shown in Fig. 1d.
Rutile (001) and (011) surfaces both own a relatively low G⋆ of about
13 kJmol−1, which implies that water dissociation may happen faster.
Rutile (011) has a unique corrugated surface structure with humps
consisting of proton-accepting O2c sites (see Fig. 1a), which may help
promoting water dissociation.

In summary, we constructed the firstMLP that can simultaneously
describe the interfaces between water and various anatase and rutile
TiO2 facets, pushing the limit of the capability of machine learning
potentials for complex chemical systems.

Water dissociation fraction, free energy barrier and proton
transfer on surfaces are key features for investigating the reactivity of
TiO2-water interfaces in chemical or photochemical settings, which is
relevant for numerous practical applications1,2. Based on enhanced
sampling MD simulations using the MLPs trained on three different
DFT functionals, we resolved the long-standing debate about the state
ofwater atdifferent pristineTiO2 surfaces: dissociative ormolecular. In
contrast to previous studies which almost exclusively focus on the
anatase (101) and rutile (110) surfaces, we comprehensively elucidate
water adsorption and dissociation processes on seven low-index sur-
faces in aqueous environments for the first time. We show that dif-
ferent pristine TiO2 surfaces react with water in distinct ways, and
cannot be represented using just the low-energy anatase (101) and
rutile (110) surfaces. Surfaces such as anatase (100), (110) and rutile
(001), (011) may be more reactive in photochemical water splitting
than the stable surfaces as they favor more water dissociations. Our
results thus imply that, in order to better understand the photo-
catalysis, catalysis and biomedical applications of TiO2 (nano)particles,
the high-energy surfaces need to be taken into account.

We further used a general and automated way to visualize and
understandwater dissociation andproton transfermechanisms, based
on the chemical features of protons. We rationalized the mechanisms
based on the water arrangements on different surfaces. This not only
allows a microscopic understanding of water interaction with these
pristine interfaces, but also paves the way towards more complex
surfaces with defects, polarons and reconstructions. Theworkflow can
also be applied to other complex aqueous systems. For example, most
solid surfaces under ambient conditions are covered by a thin film of
water50. Other technologically relevant systems include: corrosion of
steels, electrolysis of water on metal plates, confinement of water in
two-dimensional materials51.

Methods
DFT calculations
We used the CP2K package52 for both DFT MD and single-point DFT
calculations. The typical system size contains 64 water molecules and
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about 200 TiO2 atoms. For the optB88-vdW functional, we used a
planewave energy cutoff of 350 Rydberg. We also tested a higher
cutoff of 600 Rydberg: the difference in relative total energy is
0.25 meV/atom and the difference in force components is 20meVÅ−1

for configurations with about 300–400 atoms. Such differences are
much smaller than the typicalMLP training errors. For the single-point
calculations using the SCAN functionals, we used a planewave cutoff of
1200 Rydberg, and for the PBE functional we used 600 Rydberg. The
CP2K input files are provided in the SI repository.

MLP
We generated flexible and dissociable MLPs based on optB88-vdW for
the TiO2/water system. The total number of configurations for the
training set is 18930. We include pure water, and various flat and
defective interfaces for anatase/rutile in vacuum and in bulk water. To
effectively include configurations along transition paths of water dis-
sociation and proton transfer, we performed 4 iterative rounds in
constructing the MLPs: configurations were selected from the meta-
dynamics simulation trajectories generated by a previous generation
of theMLP, and then recomputedusingoptB88-vdWDFTandadded to
be training set. The training errors for energy and atomic force com-
ponents are 1.5meV/atom and 133meVÅ−1, respectively. The testing
errors for energy and atomic force components are 1.6meV/atom and
130meVÅ−1, respectively. This set of MLPs work for: (i) Bulk water
and water/vapor interface; (ii) Pristine anatase (101), (001), (110), (100)
and rutile (011), (110), (001), (100) surfaces, in vacuum and in bulk
water; (iii) These eight surfaces with some simple stoichiometric sur-
face defects, in vacuum and in bulk water.

The surface defects are restricted to the type by removing a
multiple of TiO2 formula units, so no polaronic effects that stem from
oxygen vacancies are considered. Although the present study focuses
on pristine surfaces, the benchmarks for the MLPs on defected sur-
faces in bulk water are included in the Supplementary Information to
demonstrate the generality of the MLPs and to facilitate the usage of
the potentials. TheMLPs are not applicable for gas water molecules or
gas molecules adsorpted on surfaces.

We employed the Behler-Parrinello artificial neural network36, and
using the N2P2 code53. The committee model39 with four individual
MLPs was used to improve accuracy and provide uncertainty
estimations.

We also constructedΔ-learning potentials54 for fitting to the SCAN
and the PBE functionals. We used 3090 configurations for the Δ-
learning to get the SCAN MLP, although the learning curves suggest
that even 20% of these are sufficient. the training and testing errors for
energies are 0.24 and 0.28meV/atom, and training and testing errors
are 50meVÅ−1 and 49meVÅ−1 for the atomic force components,
respectively. For theΔ-learning PBEMLP, we used 3226 configurations.
The training and testing errors for energies are 0.38 and 0.40meV/
atom, respectively. The training and testing errors for atomic force
components are 60 and 70meVÅ−1, respectively. The SCAN and the
PBE Δ-learning MLPs are applicable to bulk water and the eight sur-
faces that are either pristine or with simple stoichiometric surface
defects in water.

Benchmark of the MLP
The accuracy of our MLPs was validated by the following benchmarks
as detailed in the Supplementary Information: The predicted lattice
constants of bulk anatase/rutile TiO2 using the optB88-vdW MLPs
agree well with the previous DFT calculations and experiments. The
relaxed surface energies of eight pristine surfaces (anatase
(001), (100), (101) and (110); rutile (001), (011), (100) and (110)) are in
good agreement with our optB88-vdW DFT calculations as well as
previous DFT results. Comparing the optB88-vdW DFT MD and
optB88-vdWMLPMDsimulations for the interfaces betweenwater and
various TiO2 facets with and without surface defects, we get a good

agreement for the density profiles of the oxygen and hydrogen atoms,
the oxygen-oxygen radial distribution functions of water molecules,
and the orientation distribution of water on the surfaces. The water
density profile based on our optB88-vdWMLP agrees well with Schran
et al.39 for rutile (110) using the same simulation setup, and our SCAN
MLP water density profile agrees well with Andrade et al.23 for anatase
(101) with the SCAN functional. Moreover, for all the seven interfaces
reported in Fig. 1, MLP and DFT energies and atomic forces at the
optB88-vdW level agree well for configurations generated from the
MLP metadynamics simulations.

MLP MD simulation details
All MD simulations were performed in LAMMPS55 with a MLP
implementation56. The timestep is 1 fs throughout.

The metadynamics calculations of free energy surfaces of water
dissociation were performed using LAMMPS55 patched with the
PLUMED code57. The PLUMED input file with the specification of the
CV is provided in the SI repository. NVT simulations were used with
Nosé-Hoover thermostat, with the fixed volume of the simulation
box set such that the water density at the center kept at 1 gmL−1. The
cross-section of the simulation box is commensurate with the
experimental lattice parameter of TiO2. For using the PBE MLPs and
SCAN MLPs, we used the hybrid pairstyle in LAMMPS in order to
apply the original optB88-vdW MLP simultaneously with the Δ-
learning potentials. We performed one independent metadynamics
run for each MLP (3 DFT functional times 4 committee MLP models)
and for each surface (8 surfaces). Each independent metadynamics
run lasts 5 ns.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The machine learning potentials, training sets, sample DFT and
metadynamics input files, PYTHON data analysis scripts and other
necessary source data files generated for this study are available in the
SI repository (https://github.com/BingqingCheng/TiO2-water)58.

Code availability
The MD simulations were performed using the LAMMPS code55 with a
MLP implementation56. The ASAP package is publicly available at
https://github.com/BingqingCheng/ASAP59.
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