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Abstract: We study the Frohlich polaron model in R3, and establish the subleading
term in the strong coupling asymptotics of its ground state energy, corresponding to the
quantum corrections to the classical energy determined by the Pekar approximation.

1. Introduction and Main Results

This is the first part of a study of the asymptotic properties of the Frohlich polaron,
which is a model describing the interaction between an electron and the optical modes
of a polar crystal [12]. In the regime of strong coupling between the electron and the
optical modes, also called phonons, it is a well known fact [1,7,20] that the ground state
energy of the Frohlich polaron is asymptotically given by the minimal Pekar energy
[26], which can be considered as the ground state energy of an electron interacting with
a classical phonon field. This result is motivated by using appropriately scaled units, see
e.g. [28], which demonstrates that the strong coupling regime is a semi-classical limit in
the phonon field variables. In such units the Frohlich Hamiltonian, acting on the space
L*(R*) ® F (L*(R?)), reads

H:=—A, —a(wy) —a' (wy)+N, (L.1)

where the annihilation and creation operators satisfy the rescaled canonical commutation
relations [a(f), aT(g)] =a 2(f|g) for f, g € L? (R3) with ¢ > 0 being the coupling

strength, the interaction is given by wy (x') := 72 |x'—x|~% and \V is the corresponding
(rescaled) particle number operator, i.e. N := foil aT(wn)a(go,,) where {¢, : n € N}is
an orthonormal basis of L2 (R3). The definition of the Frohlich Hamiltonian in Eq. (1.1)
has to be understood in the sense of quadratic forms, see for example [28], due to the

ultraviolet singularity in the interaction w,. By substituting the annihilation and creation
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operators a and a'in Eq. (1.1) with a (classical) phonon field ¢ € L2 (R3), i.e. replacing
a(f) with (fle) and af(f) with (g| f), we arrive at the Pekar energy

EW.0) = (V] = Ar — (wilg) — (plwe) + llol*[¥)
- / P = [0 (00 +500) 1w 0o ar'as

+/ lp(x)|2dx’, (1.2)

where y € L? (R3 ) is the wave-function of the electron. We further define the Pekar func-
tional F*K (¢) := inf lwii=1 € (¥, @) and the minimal Pekar energy ePek .= =infy, F Pek ().
It is known that the ground state energy E, := inf o (H), as a function of the coupling
strength «, is asymptotically given by the minimal Pekar energy e”°* in the limit o — oo

Pek

[1,7]. More precisely, one has ePek > Ey =%+ Oy—o0 (oz_S), as shown in [20].

In this work we are going to verify the prediction in the physics literature [2,3,30] that
the sub-leading term in this energy asymptotics is actually of order @ % with a rather
explicit pre-factor

1

Ey = - Ty [1 — HPek] + Ous o (ofz) , (1.3)
202

where ¢P°X is a minimizer of 7P and HP°X is the Hessian of F°K at P°X restricted to

real-valued functions ¢ € L2 (R?), i.e. HP* is an operator on L?(R3) defined by

<§0|HPCk| ) . hn})_z (;-Pek( Pek+6§0) _ePCk) (14)
—0 €

forall p € LﬂzK (R3 ) The prediction in Eq. (1.3) has been verified previously for polaron
models either confined to a bounded region of R3 [11] or to a three-dimensional torus
[9]. The methods presented there exhibit substantial problems regarding their extension
to the unconfined case, however. In this paper we present a new approach, which is partly
based on techniques previously developed in the study of Bose—Einstein condensation
and the validity of Bogoliubov’s approximation for Bose gases [5,15,16] in the mean-
field limit. We employ a localization method for the phonon field, which breaks the
translation-invariance and effectively reduces the problem to the confined case, allowing
for an application of some of the methods developed in [9,11]. Our main result is the
proof of Eq. (1.3) in the following Theorem 1.1.

Theorem 1.1. Let E,, be the ground state energy of H in (1.1). For any s < %

! Tr[l x/ﬁ] +0 (a—@”)) (1.5)

_ ,Pek __
E,=¢ 702

forall o > «a(s), where a(s) > 0 is a suitable constant.

As an intermediate result, which might be of independent interest, we will establish
the existence of a family of approximate ground states, by which we mean states whose
energy is given by the right side of (1.3), exhibiting complete Bose—Einstein condensa-
tion with respect to a minimizer ¢ of the Pekar functional 7k, We refer to Theorem
3.13 for a precise statement.
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In contrast to the lower bound, the proof of the upper bound on E, in Eq. (1.3) is
essentially the same as for confined polarons [9,11] and can be obtained by the same
methods. It is also contained as a special case in [22], where it has been verified that the
ground state energy E, (P) as a function of the (conserved) total momentum P can be
bounded from above by

1 P|?
Eq(P) < Pk — ﬁTr [1 - HPek] + 2|ot4|m + Cea_%“, (1.6)

where m = %HV(/)P"I‘HZ and € > 0, with C¢ a suitable constant. Since E, = E,(0)
[8,13,23], Eq. (1.6) for the specific case P = 0 proves (1.5) as an upper bound, hence
to establish Theorem 1.1 it suffices to prove (1.5) as a lower bound. Combining (1.6)
with Theorem 1.1, one further obtains an upper bound on the increment E, (P) — Ey,
a quantity related to the effective mass of the polaron [4,14,18,29].

The proof of Eq. (1.3) for confined systems in [9,11] requires an asymptotically
correct local quadratic lower bound on the Pekar functional FF°K(¢) for configurations
close to a minimizer, as well as a sufficiently strong quadratic lower bound valid for
all configurations. While our proof of Theorem 1.1 makes use of a local quadratic
lower bound as well, we believe that in the translation-invariant setting any globally
valid quadratic lower bound cannot be sufficiently strong, and therefore new ideas are
necessary. As we explain in the following, we circumvent this problem by constructing
an approximate ground state W, which is essentially supported close to a minimizer of
the Pekar functional "¢, and consequently we only require a locally valid quadratic
lower bound.

Proof strategy of Theorem 1.1. Even though we want to verify a lower bound on E,
let us first discuss how test functions providing an asymptotically correct upper bound are
expected to look like. In the following let (P, ¢Pk) denote a minimizer of the Pekar
energy &£ defined in Eq. (1.2). It has been established in [17] that all other minimizers
are given by translations <px‘3k () 1= K (x’ — x) and wfek (x) = e yYPK(x' — x) of
@ and /% yPK where 6 is an arbltrary phase. W.Lo.g. let us denote in the following
by (¥PK, 9FK) the unique minimizer of £ such that @K is radial and ¥ is non-
negative. Then all the product states of the form ! @ Q pPek with x € R?, where

Q pPek is the coherent state corresponding to (pxek (defined by a(w)Q‘/, = (wl|g)L2, for
all w e L? (]R3)) have the asymptotically correct leading term in the energy (wpek

bk | H [P k@ Q oPek) = Pk By taking convex combinations of these states on the
level of density matrlces we can construct a large family of low energy states

Ly = /R3 lyPk @ wae”(w;ek ® Qgpek [dpa(x)

for any given probability measure y on R3. Clearly, ", exhibits the correct leading
energy (H)r, = P Our proof of the lower bound given in Eq. (1.5) relies on the
observation that asymptotically as « — 00, any low energy state W is of the form I',
with a suitable probability measure 1 on R3. Since we only need this statement for the
phonon part of W, we will verify the weaker statement

Trelectron [ |¥) (W] ~ /R% €2 peic) (€2 peic [d e (x)
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instead, see Theorem 3.2 for a precise formulation. This statement is analogous to a
version of the quantum de Finetti theorem used in [15] in order to verify the Hartree
approximation for Bose gases in a general setting. The main technical challenge of this
paper will be the construction of approximate ground states W where the corresponding
measure is a delta measure, ;© = §o, i.e. the construction of states where the phonon part
is essentially given by a single coherent state €2 pex. The method presented here is based
on a grand-canonical version of the localization techniques previously developed for
translation-invariant Bose gases in [5], and in analogy to the concept of Bose—Einstein
condensation we say that such states satisfy (complete) condensation with respect to the
Pekar minimizer ¢"°¥. Heuristically this means that only field configurations ¢ close
to the minimizer <pPek are relevant, hence the translational degree of freedom has been
eliminated and the system is effectively confined.

Based on this observation we can adapt the strategy developed for confined polarons
in [9,11], which starts by introducing an ultraviolet regularization in the interaction wjy
with the aid of a momentum cut-off A, leading to the study of the truncated Hamiltonian
H . Using alower bound on the excitation energy FF* (¢) —eP°X thatis, up to a canonical
transformation, quadratic in the field variables ¢ and valid for all ¢ close to the minimizer
¢k one can bound the truncated Hamiltonian from below by an operator that is, up to
a unitary transformation, quadratic in the creation and annihilation operators. The lower
bound is only valid, however, if tested against a state satisfying (complete) condensation
in Pk Finally an explicit diagonalization of this quadratic operator yields the desired
lower bound in Eq. (1.5).

The canonical transformation on the phase space L2(R3), respectively the corre-
sponding unitary transformation on the Hilbert space F (L2 (]R3 )) is one of the key
novel ingredients in our proof. It turns out to be necessary due to the presence of the
translational symmetry, which makes it impossible to find a non-trivial positive semi-
definite quadratic lower bound on FF () — Pk This issue has already been addressed
in the study of a polaron on the three dimensional torus [9], where a different coordinate
transformation is used, however. The canonical/unitary transformation presented in this
paper is an adaptation of the one used in the study of translation-invariant Bose gases in
[51.

Outline The paper is structured as follows. In Sect.2 we will introduce an ultravi-
olet cut-off as well as a discretization in momentum space, and provide estimates on
the energy cost associated with such approximations. Section 3 then contains our main
technical result Theorem 3.13, in which we verify the existence of approximate ground
states satisfying (complete) condensation with respect to a minimizer ¥ of the Pekar
functional FP°K, Subsequently we will discuss a large deviation estimate for such con-
densates in Sect. 4, quantifying the heuristic picture that only configurations close to the
point of condensation matter. In Sect. 5 we then discuss properties of the Pekar functional
FPK In particular, we will discuss quadratic approximations around the minimizer ¢
as well as lower bounds that are, up to a coordinate transformation, quadratic in ¢. To-
gether with the error estimates from Sect. 2 and the large deviation estimate from Sect. 4,
applied to the approximate ground state constructed in Sect. 3, this will allow us to verify
our main Theorem 1.1 in Sect. 6. The subsequent Sect.7 contains the proof of Theorem
3.2, which can be interpreted as a version of the quantum de Finetti theorem adapted to
our setting. Finally, Appendices A and B contain auxiliary results concerning the Pekar
minimizer ¢ and the projections introduced in Sect. 2, respectively.

Outlook In the second part of this study of the asymptotic properties of the Frohlich
polaron [6], the ground state energy E,(P) of the operator H in the presence of a
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momentum constraint P = P will be investigated, where the total momentum operator
is defined as P := }—.V +a? ng ka,iakdk, and the lower bound

1 P|?
Ea(P)zePek—ﬁTr[l— HPek]+min{2| 4| ,a_2}+0(a_2>
o a'm

will be established. Together with the upper bound in Eq. (1.6) derived in [22], one
observes that the energy-momentum relation of a polaron agrees asymptotically with
the one of a free particle having an effectively increased mass ar*m, where a*m is the
celebrated Landau—Pekar formula for the mass of a polaron in the regime of strong
couplings.

2. Models with Cut-off

In this section we will estimate the effect of the introduction of an ultraviolet cut-off
A > 0, as well as a discretization in momentum space with box length £ > 0, on the
ground state energy, following similar ideas as in [9,11,20]. We will eventually apply
these results for two different levels of coarse graining, a rough scale used in the proof of
Theorem 3.2 in Sect. 7, which applies to low energy states with energy e”* + 0 o0 (1),
and a fine scale precise enough to yield the correct ground state energy up to errors of
order 0y— 0o (01_2), see the proof of Theorem 1.1 in Sect. 6.

Definition 2.1. Given parameters 0 < ¢ < A, let us define for z € 2¢ Z3\{0} the cubes
C, =[nn—4,z21+8) X [z2—4,z0+%£) X [z3—{,z3+¥), and let z', .., zV be an
enumeration of the set of all z = (z1, z2, z3) € 24 Z3\{O} such that C, C Bx (0), where
B, (0) is the (open) ball of radius » around the origin. Then we define the orthonormal
system e, € L? (IR3) as

1 ei k-x
ep(x) = ] K| dk,
3 n
(27'[) -[Czn W dk JC;
as well as the translated system ey ,(x) := e,(x — y) and the orthogonal projection
Hf\ , onto the space spanned by {ey 1, ..., ey v}. Furthermore we denote with IT, the

projection onto the spectral subspace of momenta |k| < A.

Lemma 2.2. Let w,(x') = n*%|x’ — x|72. Then we obtain for 0 < € < A and
x,y € R3 the following estimate on the L* norm

<x —y|€\/X+\/Z.

H Hwa — Hi\’gwx
Proof. With™denoting Fourier transformation, we have

N i
—— I iK=x)

Vo2 I ) = 3 / ‘ K’ —T ¢, (k)

Con

1 12
=i Je, wrdk K ]
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where we have used that m (k) = —=——13, () (k). Defining the function o, (k, x, y)

F Ikl

dk’, we further have

1 oK -(y=2) _ pik-(y—=x)
/ fC n

1 /12
Je 2k g

N
272 (nf\,gwx(k) _ l'Iwa(k)) =Y oulk.x, M lea®) = a)
n=1

with A := B (0)\ (U,Ilvzl Czn). Making use of the estimate |o,(k, x, y)|> < |y —

x?maxpec., |k —k|? < 12|x — y|?€? for k € C.n, we therefore obtain

N

1 1
Z/ 0wk, x, )P —dk < 12]x — y|2£2/ —dk = 487 |x — y[*(?A.
— Jca Ik ki<a K12

Since A C By¢ U B \ Ba—4¢ we consequently have fA #dk <¢ O
Definition 2.3. For y € R3,0 < £ < A, let us define the cut-off Hamiltonians
B, = = A —a (T ) —a' (I ywi) + A, @1
Hp = —Ay —a (Mawy) —a’ (Mpawy) +N. (2.2)

These Hamiltonians can be interpreted as the restriction of H (in the quadratic form
sense) to states where only the phonon modes in IT}, ,L?(RR?), respectively IT» L*(R?),

are occupied. In particular, this implies that inf U(]HI z) > E, as well as inf o (Hp ) >
E, . In the following we shall quantify the energy increase due to the introduction of the
cut-offs.

Note that the o-dependence of the Hamiltonians H, Hf\ ¢, and H; only enters through
the rescaled canonical commutation relations [a( ), aT(g)] = a 2(f|g) satisfied by
the creation and annihilation operators a' and a, and we will usually suppress the «
dependency in our notation for the sake of readability. In the rest of this paper, we
will always assume that « is a parameter satisfying @ > 1 and, in case it is not stated
otherwise, estimates hold uniformly in this parameter for @ — 00, i.e. we write X <Y
in case there exist constants C, og > 0 such that X < CY for all @ > «y.

The proof of the subsequent Lemma 2.4 closely follows the arguments in [20,21],
where it was shown that H is bounded from below and well approximated by an operator
containing only finitely many phonon modes. For the sake of completeness we will
illustrate the proof, which is based on the Lieb—Yamazaki commutator method, see [21].
In the following Lemma 2.4, we will use the identification L?(R?) @ F (L*(R%)) =
L? (R3, F (LZ(R3))), in order to represent elements W e L? (]R3) Q F (LZ(R3)) as
functions x +> W(x) with values in F (L?(R?)), allowing us to define the support
supp (W) as the closure of {x € R? : W(x) # 0} and to introduce a space cut-off L > 0.

Lemma 2.4. We have forall0 < £ < A < K and L > 0, and states V with supp (V) C
B (y) the estimate

<W|HK—H§M|\IJ‘ (LK«/_+«/_+,/——%)(\Pl—Ax+N+l|\D). (2.3)
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Furthermore, there exists a constant d > 0 such that

v

Hy —ti—t(./\/+a ). 2.4)

Hg

v

—d + 5 (—=Ax +N) (2.5)

forallt >0, K >0anda > 1.

Proof. Let us define the functions u’} by @(k) = F]l Bx (0)\Ba (0) (k) ”‘ k‘; . We have
(8xnu§) (BXHMX) [8x,,» a (uj’c)—cfr (u’;)] and

j:i[axn,a(uj;)—aT (u;)]< —260% + 1(a(u")Ta(u")+a(u")a(u"))

2 ||“;||2 -2 n 2 1
< =202 + 2 (2N +a?) = 2)u] (03 +N 4507,
n 6 n

where we have applied the Cauchy—Schwarz inequality in the first line and used the
specific choice € := ||u’} || in the last identity. Note that the L?-norm [lu% || is independent

of x, and furthermore we can express + (Hf\ .= HK) as

3
+a (Hwa—Hf\’ewx):l:aT (Hwa—Hf\’[wx):I: i Z ( (8xnux) (axnux))

<2 Hnwa — T,y

3
(1 +N)+2n€1*{1112’12>fS} (74 (—Ax +3N + ¢ )

This concludes the proof of Eq. (2.3), since we have H I u)x — I'IX Wy

S LEVA+VE
for all x € supp (V) by Lemma 2.2 and |Ju’f 12 < % — % The other statements in

Egs. (2. 4) and (2.5) can be verified similarly, using the decomposmon Mgw, = Hgrw,+
Zn 17 19, " with g (k) := \/713,((0)\3[(,(0) (k)& ”lklg where K’ < K islarge enough
such that | g || < 11—2 O

The subsequent Theorem 2.5 is a direct consequence of the results in [11] and [9,25],
where multiple Lieb—Yamazaki bounds as well as a suitable Gross transformation are
used in order to verify that the energy cost of introducing an ultraviolet cut-off A =

@30%) with ¢ > 0 is only of order 0g—s oo («~2). Combined with an application of
the IMS localization formula, as was also done in [20], one can furthermore introduce
a space cut-off at length scale L = «!*” with an energy cost of order 04, oo (a_z) as
well.

Theorem 2.5. Given a constant 0 < o < %, let us introduce the momentum cut-off

A = @30+ as well as the space cut-off L = a'*°. Then there exists a sequence of
states W satisfying (WS|HA|WS) — Eq < a™21%) and supp (US) C BL(0), where
E, is the ground state energy of H.
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Proof. We start by arguing that
. B - N S |
info(Hp) —Ey SA 2+ A 2+a “A™2 (2.6)

for large . An analogous bound was shown in [11, Prop. 7.1] in the confined case, where
additional powers of In A appear due to complications coming from the boundary. In
the translation-invariant setting on a torus, (2.6) is shown [9, Prop. 4.5], and that proof
applies verbatim also in the unconfined case considered here (as has been worked out
also in [25]).

By our choice of A = a%(“"), we immediately obtain inf o (Hp) — Ey S o
Hence there exists a state W satisfying (W|Hp V) — E, < 2049 In order to
construct a state which is furthermore supported on the ball B (0), let x be a non-
negative H'! (R3) function with f x(»?dy = 1 and supp (x) C B1(0). We define

Wy (x) := L’%X (L7!'(x — y)) (x) for y € R and compute, using the IMS identity,

/<wy|HA|wy>dy = (W|Hp|W) + L3 ff

= (W|HA|W) + L2 Vx> = Eq + Og—s o0 (a—2(1+0)) ’

—2(1+0)

Vor (L7 - »)[ ay 1w Pax

see also [20] where an explicit choice of x is used. Since f Wy [2dy = 1, there clearly
exists a y € R3 such that the state e = ||\I!y||’1\11y satisfies (WS |HA WS — Ey S
a~20+9) By the translation invariance of H 5 we can assume that y =0. 0O

3. Construction of a Condensate

The purpose of this section is to construct a sequence of approximate ground states
W, i.e. states with (W, |HA |Wy) = Eq + 04— 00 (a_z) and A as in Theorem 2.5, that
additionally satisfy complete condensation with respect to a minimizer ¢ of the Pekar
functional 7K, i.e. the phonon part of W,, is in a suitable sense close to a coherent state
Q. pec with ©_pex 1= @4 (#7%)=2a(¢"¥ ) \where Q is the vacuum in F (L*(R?)), see
Lemma 3.12 and Theorem 3.13. The construction will be based on various localization
procedures of the phonon field with respect to operators of the form F defined in the
subsequent Definition 3.1.

3.1. Properties of the F operators. In this subsection we are going to introduce a useful
class of operators on F (LZ(R3)) which we will refer to as F operators, and provide

an asymptotic formula for their expectation value (\V, | F |W, ) in Theorem 3.2 as well as
an estimate on the energy cost of localizing with respect to such an operator in Lemma
3.3.

Definition 3.1. Given a function F : M (R3) —> R, where M (Rz) is the set of
finite (Borel) measures on R3, let us deﬁne the operator F acting on the Fock space

‘F(Lz(RS)) @ Lsym(]R:ixn) as F @ \I’n = @ Fn\pn, where
n=0 n=0

n
(F”\IJn) ', ..., x"):=F (05_2 Z(Sxk> w,(x! . X
k=1
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2 _(R3>*™) by multiplication

~ o
and Fo\Wy = F(0)Wy, i.e. F acts component-wise on P LSym
=0

n—
with the real valued function (x', ..., x") — F (oz_2 Yoot 8xk).

A particularly important example of an F operator is the particle number N, which
can be written as N = F with F(p) := f dp. More generally we can write, for any

bounded and measurable f, ff(x)aiaxdx = 1/7} with F¢(p) := [ fdp. Since the
assignment F' +— F is linear and multiplicative, we can represent any polynomial in
operators of the form f f (x)a;ax dx asan F operator as well.

Note that in order to keep the notation simple, we will allow F : M (RS) —> Rto
act on non-negative L' (R%) functions g : R3 — [0, 0o) as well by identifying them
with the corresponding measure 1 € M (R3) defined as g—;‘ =q(x).

Before we discuss the asymptotic formula for the expectation value (\IJO,II? [Wy), let
us introduce a family of cut-off functions x€ (a < f(p) < b) where € > 0 determines
the sharpness of the cut-off. In the following let ., 8 : R — [0, 1] be C* functions
such that o + 2 = 1, supp (¢) C (—o0o, 1) and supp (8) C (—1, 00). For a given
function f : M (R¥) — R and constants —0co < a < b < oo, let us define the
function x€ (@ < f <b): M (R3) — [0, 1] as

o (f(pg)ib)ﬂ (f(pe)fa), fore > 0
Lia.p1 (f(p)), fore =0.

pr> x(a< f(p)<b) :={ (3.1)

Note that Z/EJ x€ (aj < f(p) < bj)2 = 1 in case the intervals [a;, b;) are a disjoint
partition of R with —oo < a j < bj < o0. Usually we will use functions f here that are
related to an integral over p, e.g. f(p) := [dp.

Similarly, we define the operator x€ (a < T < b) := [ x¢ (a <t < b) dE(r), where
T is a self-adjoint operator and E is the spectral measure with respect to 7'. Furthermore
we will write x (@ < f < b), respectively x (a < T <b), in case ¢ = 0 as well as
x€ (a < f), respectively x€ (a < T),and x€ (f < b), respectively x€ (T < b), in case
b = oo or a = —00, respectively.

The proof of the following Theorem 3.2 will be carried out in Sect. 7. It is reminiscent
of the quantum de-Finetti Theorem, and establishes in addition that for low energy states
phonon field configurations are necessarily close to the set of Pekar minimizers given

by {q’fek}xeR3~

Theorem 3.2. Givenm € N,C > Oand g € L? (]R3), we can find a constant T > 0 such
that forall o > 1 and states W satisfying x (N < C) W = W and (¥ |Hg |¥) < eP*k+5e
withde > 0and K > « 2% there exists a probability measure w on R3, with the property

‘(\PIFM—/ F (1g71) dux)
R3

forall F : M (R®) — RoftheformF (p) = [ ... [ f(x1,....xn)dp(x1)...dp(xn)
with bounded f : R3*™ —s R, and furthermore

'<xy‘wg—1/\/wg‘xp> - /W

where Wy is the Weyl operator characterized by Wg]a(h)W =a(h) — (h|g).

< TIIfIIoomax{«/E, a—z%} 3.2)

orek — gH2 du (x)

< T max {«/S_e,oz_Z%}, (3.3)
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In the subsequent Lemma 3.3 we introduce a generalized IMS-type estimate quantify-
ing the energy cost of localizing with respect to an F'-operator, similar to the generalized
IMS results in [19, Theorem A.1] and [16, Proposition 6.1]. In order to formulate the
result, let us define for a given subset 2 C M (R3) and a (quadratic) partition of unity
P={(Fj:M(R’) — R:jeJ}ie0<F;<land}
of this partition on 2 as

je FJ2 = 1, the variation

2
Vo(P):=a* sup Y ‘F,- (,0 +a—25y) —F; (p)‘ .
peQ,yeR3 jEJ

Lemma 3.3. There exists a constant ¢ > 0, such that for any partition of unity P = {Fj :
M(R3) — R:jeJ}, CM(R3), K > 0, a > 1 and state ¥ with 1qW¥ = ¥

> (Fjw|Hg |F;w) — (WHg W) | < cvV/Ka Vo (P) (U|[VN +a~2|¥).  (3.4)

jeJ

Furthermore given M > 0, there exists a constant ¢’ > 0 such that we have for any
Q€ LZ(R3) satisfying |loll < M, partition of unity {fj :R — R :j e J}, K > 1,
o > 1 and state ¥

(W Hx W) — (WK W) | < Ve Vg (P) (9| VAT+T|w),

jelJ
where we define ¥ := f; (Ww_ N W(p) W with Wy, being the corresponding Weyl oper-
ator and P' := (F} : M (R?) — R: j € J} with Fi(p) := fi([ dp).
Proof. By applying the IMS identity, we obtain
—_ —_ 1 —_ —_ —_ —_
Y FjHkF; —Hg = 3 > OF . Hk]. Fi] ==Y %e [[Fj.a (Tkwo)]. Fj].
jet jeJ jeJ
where we have used the fact that F; commutes with —A, and N in the last identity.

o0
Since a state W is a function with values in F (LZ(]R3)) = &P Lgym(R3X"), we can
n=0

represent it as W = @Zozo v, where WV, (y, xt ., x") is a function of the electron
variable y and the 7 phonon coordinates x* € R3. In order to simplify the notation, we
will suppress the dependence on the electron variable y in our notation. By an explicit

computation, we obtain [[F, a (v)] , F] Bro¥n=—Bo2, 'L%lkll,/1 with

n+l

n 2
vt x")=/|:F<a_2 ZSxk) —F(ot_2 Zﬁxk)}v(x’m)\yml(xl, o xMhdem
k=1 k=1

forv e L? (R3 ) and F : M (R3) —> R. By the definition of Vg (P) we obtain that

n+l n 2
oix', . " = Z |:Fj (ofz ZSxk) —F; (a_2 Z(Sxk)i| <a *Vq (P)
k=1 k=1

jeJ
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forall x™*! € R? and every (x!, ..., x") € R with a2 Y i 8.+ € Q2. Hence we can

(0] e Bel[Froa )] £ )|

estimate
by

> [n+1 il
Doy oz [ 1O [ 0O ™) 0 G et (X, ) |1 dX
n=0

o0
<V (P) VI T [ 1,001 [ 10680 Bt (X 5l X
n=0

using the notation X = (x‘, con X,

< 0= Vo ) 1ol YN T, | [ W] = a~Va (P ol ([ VA a2 |w).

n=0

This concludes the proof of Eq (3.4), using the concrete choice v := Igw,, since
”Hwa” = 272 JIk|<K |k|2 = ;

In order to verify the second statement we apply the unitary transformation W, to
the operator X := Z/eJ fi ( l./\/'W(p) Hg f; ( l./\/'Ww) Hg and compute

WX W, = % S5 o werew, ] s o0 ]

jeJ
=Ziﬁe[[fj(N’),a(go—Hwa)],fj(N)] Z%e[[ a(v)] ]
jelt /e

where we defined v := ¢ — [1gw, and applied the definition F]/ () = fj (f d,o). We
know from the previous estimates that

+ Zme[[f,- W), a ) ] 1 (N)] < o Vg (P) VA +a2,

jeJ

Clearly [|v| < |lell + [TTgwy |l < VK for K > 1, and consequently

D (WK I) — (H )| S VR Vo) (P) (¥ ]y W 'NW, + a2 |w)
jeJ

<«/_Ol VM(R*) <‘11’«/—“~I1>

where we have used that W, NV W, <2 (N + ||<p||2) and the operator-monotonicity of
the square root. O

3.2. Auxiliary localization procedures. In the following Eqgs. (3.6) and (3.10), we will
apply localizations procedures to a given sequence W in order to construct states having
additional useful properties, which we will use in Lemma 3.12 in order to construct a
sequence of approximate ground states satisfying complete condensation. Furthermore
we will quantify the energy cost of these localizations by (W, |Hp |Wy) — Eqy <a?
in the Lemmas 3.4 and 3.5. In Theorem 3.13 we will then apply a final locahzatlon
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procedure, in order to lift the (weak) condensation from Lemma 3.12 to a strong one,
following the argument in [16].

In the following let L := «!'** and A := @30+ Wwith 0 < o < %, and let W2 be a

sequence of states satisfying supp (¥2) C BL(0) and Ey — Eq < @, where
Ey = (W3 |HA W), (3.5)

The exponent % is chosen for convenience, as it allows to simplify the right hand side of

Eq. (3.2) t0 || fllac@™ P (using that Eq < eP%). For the proof of Theorem 1.1 we shall
use the specific choice W from Theorem 2.5 for W}, but it will be useful in the second
part to have the first two localization procedures in Lemma 3.4 and 3.5 formulated for
a more general sequence Wj.

Having Lemma 3.3 at hand, we can verify our first localization result in Lemma 3.4,
which allows us to restrict our attention to states W/, having a (rescaled) particle number
N between some fixed constants ¢c_ and c,. To be precise, for given c_, ¢y and €’ we

use the function Fy(p) := XE/ (c_ +€e < fd,o <cy— e’) in order to define the states
v, =77 ' Fws, (3.6)

with the corresponding normalization constants Z, := ||1”7;\IJ(; |I. By construction we
have x (c- <N <c¢y) ¥, = W, as well as supp (\If(;) C Br(0). In the following
Lemma 3.4 we derive an upper bound on the energy of W/, and in addition we will

investigate the large « behavior of Z,, which will be useful in the second part.

Lemma 3.4. Let WV be the sequence introduced above Eq. (3.5). Then there exist o-
independent constants c_, ¢4, € > 0 such that the corresponding states V,, defined in

Eq. (3.6) satisfy (¥, |Ha |V, ) — Eq < a2, Furthermore, Zo, —> 1.

a—>00

Proof. Inthe following let F be the function defined above Eq. (3.6) and let us complete
it to a quadratic partition of unity P := {F_, Fy, Fy} with the aid of the functions

F_(p) := x¢ ([dp <c_+¢€) and Fi(p) := x¢ (c+ — €' < [dp). Making use of

Lemma 3.3 and A = a%(”") < «, we then obtain

Z2 (W [HA Wy, —) + Z2(W,HA W) + Z2 , (Vo [HA W )

o,—

1 ° _ .
< (WSIHAIWS) +ca™2 Vs (P) (W |[VN +a=2| ), (3.7)
where W, + = Z,. L:F\(i)“l’&’ with corresponding normalization factors Z, +

I Feey el By Eq. (2.5) there exists a constant d s.t. (W2 | N | W) < (We|2H, +d | W) <
d+a_%, where we have used the assumption (\IJ; ]HA ]\IJ;) = Ea < Ea —Ey < a_%.
The first derivative of the functions Xfl(- <c_+¢€), Xél(c_ +e <. <c;—¢€)and

X < ¢y —€)is uniformly bounded by some ¢’-dependent constant D, and con-
sequently we have for all finite measures p and p’ := p + a_ZSy with y € R3, and
O € {—, *x, +},

7o () - £ | = 0| [ a0’ = [ ag] = Da2
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This implies that VM(R3) (P) < 1, and therefore the right hand side of Eq. (3.7) is
bounded by (U8 [H |W2)+Ca~? forasuitable C > 0. Since Z3 _+Z1+7Z2, =1, this
means that at least one of the terms (W, — |Hp [We,—), (W), [Ha W, ) or (Vg 4 |HA | Vo +)
is bounded from above by (W3 |H [¥3) + Ca’% = Ea + Cof%. We can however rule
out that (W, _ |H [W,,—), respectively (Wq +|HA [V, +), satisfy this upper bound for all
small c_, €’ and large a, c,., since Ea <E,+ Cla—% < oPek 4 Cla=% < % < 0 for
«a large enough and a suitable C’, and since we have by Egs. (2.4) and (2.5) forall z > 0

ePek

(W, |HA W, ) > (W | - % — (N o), ) > —% —t(e-+2¢ +a7Y) = =,
(3.8)

(Vo + |HA [ Wo4) > (Vo i —d + %N|\I’a,+) > —d+ %(C+ —2€') >0, 3.9

where the last inequality in Eq. (3.8), respectively Eq. (3.9), holds for small c_, € and
1

_d
c_+2€/+a2

side of Eq. (3.7) is bounded by (Wg [HA W) + Cof% together with Egs. (3.8) and (3.9),
and the fact that Hp > E, and E, < P ek yields furthermore

large «, ¢4 with the concrete choice ¢ := ( ) . Using again that the right hand

Pek ePek

€ 2 2 2 = -1
5 )+ZaEa§(1—Za) 5 +Z,Ey < Eqy+Ca 2,

a—ﬁ%m—

and therefore —(1 — th)‘fpzCk < Ea — Ey + Ca_% —> 0. Since Pk < 0, this
o—> 00

immediately implies Z, — 1. O
o—>00

Regarding the next localization step in Lemma 3.5, let us introduce for given R and
€ > 0 satisfying R > 2¢ the function Kz (p) := ff XS (R—€ <|x—yDdpx)dp(y),
which measures how sharply the mass of the measure p is concentrated. It will be
convenient in the second part to have K defined for arbitrary ¢ > 0 even though
we only need it for ¢ = 0 in the following. We also define the function Fr (p) :=

X%<KR (p) < %) for R, 6 > 0, as well as the states

W) = Zg! Frv. (3.10)
where W/, is as in Lemma 3.4 and Zg o := || FgW,|. Since W/, satisfies supp (V)

B (0), we have supp (W) C B (0) as well. Furthermore x (Kg < 8) W, = .
Heuristically this means that we can restrict our attention to phonon configurations that
concentrate in a ball of fixed radius R.

Lemma 3.5. Let W), be the sequence from Lemma 3.4, and let € > 0 and § > 0 be given
constants. Then there exists a o independent R > 0, such that the states V|, defined
in Eq. (3.10) satisfy (W/|HA|W") — Eq < a2, where E, is defined in Eq. (3.5).

~Y
Furthermore, Zg o —> 1.
o—> 00
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Proof. Since P := {Fg, Gr} with Gg :=,/1 — F,% = X% (— < Kp (,0)) is a partition
of unity, we obtain by Lemma 3.3

(FRW,|HA|FRW,) + (G g, |HA|G W)
< (W |HA|W,) + caIVg P (W [Ver +a=2 W) (3.11)

with Q = {p : fd,o < ¢4}, Where we have used x (N < c¢;) ¥, = ¥/, and A < «.
Since & X3 (% <x)and Ly 3 (x < %) are bounded by some §-dependent constant

D, we have for all p € and o i=p +<)F28Z with z € R3, and R > 2e, the estimate

|Fr (p") — Fr (p)| < D |Kr(p") — Kr(p)| = 2D0Fz/x€ (R—e<l|y—zhdp(y)

< 2Da_2c+,

and the same result holds for G g. Therefore we have by Eq. (3.11) and Lemma 3.4

(FRW.[HA|FrW,) + (G W, HA|GRW,) < (W,HA|W,) + Cra™2 < Ey+ Coo ™7
(3.12)

for suitable constants Cq, C» > 0. Since ||fR\If& 1% + ||f}\R\II(;||2 = 1, this means that
we either have (W/|H|W/) < Eq + Coo™? or (Ug|Ha|Ty) < Eq + Coo?, where
Uy = [|GRrWY, 17'Gr W/ . In the following we are going to rule out the second case for

R and « large enough, to be precise we are going to verify (Ug [Hp |Wy) > Ey + do~
for any d > 0 and large enough R and « by contradiction. In order to do this, let us

~ ~ 4
assume (Wy|Hp |Wy) < Eq +do™ D, . Since Ey < Ey +Ca™ % < Pk 4 Cca™ % by
assumptlon for a sultable constant C, U, satisfies the assumptions of Theorem 3.2 with

=d+C)a™ 29. Hence there exists a measure w such that Eq. (3.2) holds. By the
support properties of G g we obtain

= Tl RefT) = [ ke (o

2

Pek

) du + Oy o (OFZ%>

) + Oy (o). (3.13)

Since limp_ 00 K (|¢Pek|2) = 0, Eq. (3.13) is a contradiction for large R and «, and

consequently we have (\TJa |H A |\TJO,) > Eo, +da~ for such R and «. In combination
with Eq. (3.12) this furthermore yields

7

4 ~ ~
Z%,aEa+(1—Z%’a)<Ea+da_®) < Z%,aEa+(1—Z%,a)<Ea+da_%) < E,+Coa?,

4
and therefore 1 — Z12?,<x < % (Ea — E, + Cz()l_%) < d + (;_,20129 2. Since this holds

for any d > 0 and « large enough, we conclude that Zg , — 1. O
o—> 00
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3.3. Localization of the median. The previous localizations in the Lemmas 3.4 and 3.5
will allow us to control the energy error in the proof of Lemma 3.12, where we carry
out the main localization procedure with respect to the (regularized) median m, defined
in Definition 3.8. Before we come to the proof of Lemma 3.12, we are going to derive
Lemma 3.10, which provides an upper bound on the variation Vg (P) for partitions
P ={F;:j e J}ofthe form F;(p) = f; (mq (,0)). The following auxiliary Lemmas
3.6, 3.7 and 3.9 will be useful in proving Lemma 3.10.

Lemma 3.6. Let us define the set Qrey as the set of all p € M (R3 ) satisfying

pi({t) <a™?

forallt € Randi € {1, 2,3}, where p1, p2 and p3 are the marginal measures of p
defined by p; (A) = p ([xi € Al). Then 1o, ,W =V forall W € F (L*(R%)).

Proof. For given x = (xl, xh e R3*"_define the measure Py = a2 Zzzl 8k
Note that py ¢ Qe if and only if there exists an i € {1, 2, 3} such that xf = xlk for
indices k # k’. Clearly the set of all such x € R3*" has Lebesgue measure zero. Hence

the multiplication operator by the function ' o x> Lo, (px) is equal to the
identity on LZym (R3X”), which concludes the proof according to Definition 3.1. O

Lemma 3.7. Let v, V' be finite measures on R such that v ({t}) < € and V' ({t}) < € for
allt € R, and let x* (v) be the k-quantile of the measure v withQ < k < 1, to be precise
x¥(v) is the supremum over all numbers t € R satisfying fioo dv < « [dv, where
we use the convention that the boundaries are included in the domain of integration

J2 fdvi= [, fdv. Then

x*() x¥(v)
’/ dv—/ dv‘§2||v/—v||TV+e,
—00 —00

where |V — vty := sup |[ fdv' — [ fdvl.
I flloo=1

Proof. We estimate

x€(v) x€(v) (V')
/ dv—/ dvg[ dv—/c/dv
—00 —00 —00

K (1

x4 ()
S/ dv/+||v/—v||TV—/</dv
—00

SK/dV/+€+||V/—V||Tv—K/dV§2||v/—v||Tv+6,

where we have used ff;(;)) dv >« [dvand ff;f” ) dv’ <« [ dv' +e. The bound from
below can be obtained by interchanging the role of v and v/. O

Definition 3.8. Let x“(v) be the k-quantile of a measure v on R defined in Lemma 3.7
and let us denote K, (v) := [x%_"(v), x%” )] for0 < g < % Then we define

1

my(v) i = ———
! qu(v) dv

/ tdv(t) eR (3.14)
Kqy)
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for v # 0 and m;(0) := 0. Furthermore we define for a measure p on RR3 the regularized

median as my(p) = (mq(,ol), mg(02), mq(p3)) € R3, where p1, p» and p3 are the
marginal measures of p.

Note that x* (v) is the largest value, such that both ff';év) dv >k [dvand fxof(v) dv >
1 —x) f dv hold. As an immediate consequence, we obtain that the expression in

Eq. (3.14) is well-defined forv 2 0 and 0 < ¢ < %, since

x%*‘f(v) 00
/ dv:/ dv+/I dv—/dv22q/dv>0. (3.15)
Ky (v) —00 x279)

In the following Lemma 3.9 we are going to show that the quantiles x2%9 are posi-

tioned in a ball of radius R around the median x> for all measures p that concentrate in

a ball of radius R around the median, in the sense that f f dp(x)dp(y) <4, see also
[x—y[=R

the definition of Fr above Eq. (3.10), where § is a small enough constant depending on

g and the total mass [ dp.

Lemma 3.9. Given constants R,c > 0and 0 < § < %, let p satisfy ¢ < fd,o and
[ [ dp(x)dp(y) < 8 and let q be a constant satisfying 0 < q < % — C%. Then we

[x—=y|=R

have for all i € {1,2,3) that x> (p;) — R < x2~9(p;) < x2*9(p;) < x2(p;) + R.

Proof. Since x* is translation covariant, i.e. x (v(- — t)) = x*(v) + ¢, we can assume
1

w.l.o.g. that x2(p;) = 0 fori € {1, 2, 3}. Then

sz/fmmmmwzg/dmm dmwz/@/ do(»)
x; >0 Vi<—R yi<—R

l[x—y[=R

ch do (),
yi<—R

where we have used that x2 (pi) = 0and f dp > c in the last two inequalities. Hence

s 8
/ dp(y)f—f—zfdpfxfdp
Yi=—R ¢ ¢

for all « > C% and consequently we have —R < x*(p;) for all such « by the definition

of x“(p;). Similarly we obtain x“(p;) < R for all « satisfying x < 1 — %. Therefore

1
X2 (p)| < Rforg <5 — 5. O

Lemma 3.10. Given constants R,c > 0and 0 < § < %, let Q2 be the set of p € Qeg

satisfyingc < [dpand [ [ dp(x)dp(y) < 8. Then
lx—y|=R

’mq ('0 * o:_zéx) M ('0)’ S ca’q

forallp e, x eR3and0 < q < % - L%, where m is defined in Definition 3.8.



The Frohlich Polaron at Strong Coupling 303

Proof. Since m acts translation covariantonany p # 0,i.e.my (p(- — y)) = mgy(p)+y,
we can assume w.l.o.g. that x% (pi) = 0fori € {1,2,3}. By Lemma 3.9 we therefore
obtain |x%i’1 (pi)] < Rforp e Qand0 < g < % — % Note that the marginal measures
pi and p], where p’ := p + a 28y, satisfy p; ({y}) < a2 and P ({y) < 2a~2 by our
assumption p € Qeg. Therefore x(p;) < x*(p!) < x*"(p;) for p € Qand k > 0,
with ky 1=k — 2%0[‘2 and k™ 1=« +3%a‘2. In particular, this implies |x%iq (P)I <R
for 0 < ¢ < 1/2 — 8/c? and « large enough. In the following it will be convenient to
write the difference m, (pl’ ) —mg(p;) as

1 1 /
- tdpj(t)
(fK,, ) dp; fkq(m) d,o,-) Koo

1
o / tdpl(t)— rdpi(n)) . (3.16)
qu(p,-) Pi \JK,(p}) Ky (pi)

Making use of qu(p,-) dp;i > 2gc, see Eq. (3.15), and K|, (,o{) C [—R, R]forall p € Q,
we can estimate the individual terms in Eq. (3.16) by

| | / /
- tdp; (1)
’(qu(ﬂf) o S, dpf) Koo

1
T / rdp;(t)— tdp; (1)
qu(pi) doi \J&, (o) K, (o)

Note that K, (p;) is contained in [—R, R] as well and consequently ¢ is bounded by
R on the subset K, (p;) U K, (,olf ). In order to verify the statement of the Lemma, it is

therefore sufficient to prove that ‘qu(p() f@)dpl (1) _qu(pi) f(®) dp; (t)‘ < a2 flloo
for an arbitrary measurable and bounded f : R — R. We estimate

Joo Jes

q q

’qu(P,-/) d'ol{ - qu(Pi)d’Oi

<R
- 2gc

)

‘qu(p;)tdp{(t) ~Jx, 00 ld,o,-(t)’
2qc ’

-

=

f(0)dp;(t)— / S (@) dpi (1) f(o)dp;(t)— / f@) dpi ()
) Kq(pi) ) Kq(pp)

+

/ S @) dpi(r)— S @) dpi (1)
K‘l(pi/> Kz/(Pi)

< 1 fllso ||p;—p;||Tv+/ o).
Ky (p))AKy(p;)

where AAB := (AU B)\ (A N B) is the symmetric difference. Note that ||,0i’—,o,~ v =
_2 . .
o~ *. Furthermore we can estimate the expression | Ky (o) AK, (o) dp; by

) 3 (p)) 30 x34 ()
/ dpi —/ dpi| + / dpi —/ dpi|.
—00 —00 —00 —00

Since the distributions p; and p! satisfy the assumptions of Lemma 3.7 with € := 2072,

we conclude that every term in the sum above is bounded by 2|0’ — p|lTy + € = 4a2.
O
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Before we state the central Lemma 3.12, let us verify in the subsequent Lemma 3.11
that low energy states with a localized median necessarily satisfy (complete) condensa-
tion with respect to a minimizer of the Pekar functional.

Lemma 3.11. Given a constant C > 0, there exists a constant T > 0, such that

<\I/ ‘ W(p}lek N Wpek

\IJ> <T (oz_T29 +q+6>

for all states V satisfying (¥|Hg |W¥) < ePek +a_% with K > a% andfgg\*\ll =V,
where Q* is the set of all p satisfying fdp < Cand|my(p)| < ewithq,e > 0.
Proof. Let us begin by defining the functions

1 2
Pf(p) := <§/dp) —/ dp(x) dp(y). (3.17)
X <€ yi=—€

Observe that |mg(p)| < € implies —e < x%+q (p;) and x%_q (pi) < € for all such p
which additionally satisfy p # 0, see Definition 3.8. Therefore Pf(p) < ([ d,o)2 (;11 -
(% - q)z) < g for all p € QF, and consequently the measure p from Theorem 3.2
corresponding to the state W satisfies [ Pf (!(pfek|2) du(x) < (W|Pf W)+ Da~» <
q+ @~ % for a suitable D > 0, where we have used Eq. (3.2) in the first inequality.
Furthermore we know that [P — gPek |2 < 33 pe (}gofek|2) +¢ by Lemma A.3,

X
hence

Pek
Px

3
/ oy =P |7 dpx) S / Pf(
i=1

Therefore Eq. (3.3) immediately concludes the proof of Eq. (3.18). O

2 2
) du(x)+e < g+a™ 2 +e.

Lemma 3.12. Given 0 < o < zlp let A and L be as in Theorem 2.5. Then there exist
states W]}’ satisfying (V) [Ha|W)) — Eq S o219 supp (V)) C B41(0) and
2

<xpg’ wg/) <a B (3.18)

—1
W(ppek N W pek

where W pex is the Weyl operator corresponding to the Pekar minimizer @Fek,

Proof. 1t is clearly sufficient to consider only the case « > o for a suitable (large)
oo, since we can always re-define W) := W for « < «p where W is an arbitrary
state satisfying supp (V) C Byr(0). In the following let us use the concrete choice
W = ¢ for the sequence in Eq. (3.5), where W¢ is defined in in Theorem 2.5, which
is a valid choice since it satisfies the assumptions supp (\I/,j ) C Br(0) and EO, —Ey S
o 20+0) < a_2i9. Furthermore let {x; : z € 73} be a smooth (quadratic) partition
of unity on R3,ie. 0 < x, < 1 and D ez’ XZZ = 1, with x,(x) = xo(x — z) and
supp (xo) € B1(0). Then we define for z € Z3 and u,v > 2% with u + v < JT the
function F;(p) := x.(a" my—v(p)), as well as the states

Wy, = Zy L F W) (3.19)
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2

with Z, , = ||ﬁzwg|| and W) as in Lemma 3.5 fore = 0 and 0 < § < &, where

¢ 1= c_ is as in Lemma 3.4. Applying Lemma 3.3 with respect to P := {F, : z € Z3},
where the functions F; are defined above Eq. (3.19) and 2 is defined as the set of all
p € Qeg satisfyingc— < [dp <cyand [ [ dp(x)dp(y) <8, yields

[x—y|=R

7
Z Ziz(wa,AHAwa,z) < (WIIHA W) +ca™ 2 Vo (P)Ver + a2, (3.20)
z€Z3

where we used Lemma 3.6, A < « and ToW// = W/ by the definition of W in Eq. (3.10).
Since the support of x, only overlaps with the support of finitely many other x., we
obtain for v > 0 and « large enough

2
Xe(mg-v(p +a728y)) = xe (@ mg- (p))‘

4
Va (P) 5 @ SUP,eq,yeR3 SUP;ez3

2
5 O[214+4 Mg (p +Ol_2(sy) — Mgy (p)‘ 5 Ol2(14+v)’

SUPyeq,yeR3

where we have used sup, 73 |xz () — xz (X)| < ||Vxo| |y — x| in the first inequality
and Lemma 3.10 in the second one. Combining this with Eq. (3.20) and the fact that
u+v < }‘ yields

D ZE (W [HA W ) — (W) [HA W) Sa. (3.21)

7€73

Since Y_..z3 Z2 . = 1, this in particular means that there exists a z, € Z* such that
(Wy. 2 [HA Wy 2,) — Ea S a~20%9) "and by the translation invariance of H, we ob-
tain (V) |HA|WY)) — Eq S o 20%9) where W) = T_,-u W, ., . Using the fact that
Lo+ W) = W/, where Q* is the set of all p satisfying [ dp < c; and |my—v(p)| < ™",
together with Lemma 3.11, immediately concludes the proof of Eq. (3.18).

Finally let us verify that supp (W) C Bz (0). By definition of W) = 7_-u, Wy 7.
and the fact that supp (\IJO(,Z‘X) C Br(0), it is clear that supp (\If(;”) C Br(—wy)
with wy = a “zy. In the following we show that |wy| < 3L by contradiction
for « large enough, and therefore supp (\Il,;”) C Brijwe(0) C Bs4p(0). Assuming

lwg| > 3 L, we obtain supp (W) C R3\B, 1 (0) and Corollary B.7 consequently yields
(W HA WY > Eq+ (V) | Np, )|V — \/g, where Ng, (9) denotes the number op-
erator in the ball Bz, (0) (as defined in Cor. B.7). Defining ¢ (x) := x (|x| < L) ok (x),
we further have

(W W01 vy) = (W | W

b (N +aton) +a @0 +lgn ) W[ )

v

21
(v W)+ Shonll = ~DlaH + Sl

—1
W(ppek./\/ W pex

for a suitable constant D’, where we have used the operator inequality Mg, (o) +a(¢L) +
a’(pp) + lleLl? = =N + %||§0L||2 as well as Eq. (3.18). Therefore we obtain

1 _2 D
(W IHAIYE) = Ea = Sllgrl? = D'a™® = [ = — 2||w"‘“"<||2 >0,
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where we have used that L = «'™® —> oo. This, however, is a contradiction to
oa—>00

(W HA|W)) — Eq S 07209 0

Following the method in [16], we are going to lift the weak condensation derived in
Lemma 3.12 to a strong one in the subsequent Theorem 3.13, which represents the main
result of this section.

Theorem 3.13. Given 0 < o < ‘l‘ and h < 2—29, let A and L be as in Theorem 2.5. Then
there exist states Wy, with (W [Hp |We) — Eq < a 2049 and supp (We) C Baz(0),

satisfying

X (ng—pik NWpe < ofh) W, = W, (3.22)

for large enough a.

Proof. Using the states \Il(/x” from Lemma 3.12, we define for 0 < € < %
Wy = 25 5 (o WAN W < &) 0
a = Ly X [07 (ppck (pPek = z a

where Z, is anormalizing constant. Clearly the states W, satisfy the strong condensation
property x (W(/}lkj\/' Wopek < a’h> W, = ¥,. In order to control the energy cost of the

localization with respect to the operator Wq}ik/\/' Wpek, note that the partition P =
{F', G'} with F'(p) := x¢ (¢" [dp < %) and G'(p) := x (5 < & [ dp) satisfies

ah/d(p+a725x) —oth/d,o

where we used [x€ (y < 5) — x€ (x = 3)| =< ||%X€(' < %) ||y — x| and the corre-

2

K= Vg(m) (P') < a*sup, cps =a",

sponding estimate for ¢ (% < ) Therefore we obtain by Lemma 3.3, using A < «,

Z2(We |Hp W)+ (1— Z2) T |H | T) < (\pg’|HA|wg/)+c/a—%K<\lﬂ” M(\W)
< Eq+ Ogssoo (ot_z(””)) + Oy o0 (oﬂh—%> = Ey+ Ogsoo (a—2(1+0)) ’
(3.23)

with Uy := /T — Zg_lxe (% <al W(;PikNW(pPek) W/” Making use of the trivial lower

bound Eq < (Uy|Ha|Wq),Eq. (3.23)implies (Vo |Ha|Wo) < Eq+Zy % 0gsoo (a7 21+),
which concludes the proof since

172 =(wy

o

1 2
x€ <§ <a W(/)_PlkNW(chk) ‘Wg’)
1

— €

1
< ah<‘~11(;” \I!(;”> < e — 0.

1 _ a—00
3 €

—1
W(ppek./\f W pek

=
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4. Large Deviation Estimates for Strong Condensates

In this Section we will derive a large deviation principle for states with suitably small
particle number (compared to o), which can be interpreted as complete condensation
with respect to the vacuum. We will show that such states are, up to an error which
is exponentially small in o, contained in the spectral subspace |a( f+a'(f )| < e,
see Eq. (4.6). Note that taking the point of condensation to be the vacuum is not a real
restriction, since this is the case after applying a suitable Weyl transformation. Before
we can formulate the main result of this section in Proposition 4.2, we need to introduce
some notation. .

For0 <o < ;11 let us define the momentum cut-off A := «5*) and the discretiza-

tion parameter of the momentum space £ := «~*(*%) and the associated projection
0
=11} 4, 4.1)

see Definition 2.1, and let us identify F (I'IL2 (R3)) with L2 (RN ) using the representa-
tion of real functions ¢ = YN | A,¢, € TIL?(R?) by points & = (A1, ..., Ay) € RV,
where N := dimI1L?*(R?) and {¢1, ..., ¢y} is a real orthonormal basis of TTL?(R?).
We choose this identification such that the annihilation operators a, := a (¢,) read

1
a, = Ay + —=0;,

52 4.2)

n’

where A, is the multiplication operator by the function A > A, on L? (RN ) From the

construction one readily checks that N < (A/£)? < a? for suitable p > 0.

In the following we will verify a large deviation principle for the density function
p(1) := y (A, 1) corresponding to a density matrix y on F (I1L*(RR?)) that satisfies the
strong condensation condition

N
X (Zaian < a”) y=v 4.3)
n=1

for some condensation rate iz > 0. This result is comparable to [5S, Lemma C.2]. For this
purpose, we define a convenient norm | - |, on RY in the subsequent Definition.

Definition 4.1. Let |A| := ,/ Zflv:l 12 denote the standard norm on R¥ and let us define

the norm | - |, on RY, using the identification ¢ = Zﬁlvzl An®n, as

Ao :=2 sup \//
xeR3 B (x)

The norm | - |, will again appear naturally in Sect. 5 where we investigate properties of
the Pekar functional FFek (see Eq. (5.2) and the subsequent comment). In the following
Proposition 4.2 we establish a large deviation like estimate on the e-tail of the probability
distribution p in the limitof @ — 0o, where € is even allowed to go to zero simultaneously
as « goes to infinity, as long as € > Da ™" for a & and o dependent constant s.

(a2 p) ] av. @4)
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Proposition 4.2. Let0 < s < min {%, %(1 —40)} and D > 0. Then there exist constants

B, ag > 0, such that we have for all « > ag, € > Da™" and y satisfying Eq. (4.3)
/ (14 1P) G < e, (4.5)
[Ao>€

where p(A) := y (X, A) is the density function corresponding to the state y. Furthermore
forall; € RN and B < R there exists a constant a (B, |¢|) such that

/ (1 + |x|2) p()dA < eBEX (4.6)
(e Ize

foralla > a(B,|¢|) and € > Da™".

The restriction to the finite dimensional space ITL> (R3) will be essential in the proof
of Proposition 4.2, to be precise we will make use of the fact that N < «a” for a suitable

p > 0, which in particular implies that N < e, uniformly in «, for any ¢ > 0. Before
we prove Proposition 4.2, we first need auxiliary results concerning the | - |, norm.

Definition 4.3. Forx € R3andr > 0, letusdefine Ty A := —2x(-—x| <1 (—A)_% 1)
and 75,4 == =2x (|- | >r) (—A)’% ¢ with the above identification ¢ = Zr}zv:l An®@n-

Furthermore let us define the operators A, := 4/ T; Ty and A>, ==/ T;r T>,, as well
as the constant B := inf, g3 [|Ax 2.

Using the operators A, we can write |A|, = sup, g3 |AxA|, which is bounded by

|Ale < 65maX{ sup  |AzAl, IAer} (4.7)

z€Z3:|z|<r+l1

for any r > 0. In order to see this, note that for any y € R3 there exists a z € Z°
with |y — z| < 1. Incase y € B,(0) N Bj(x), where x € R>, we see that z satisfies
|z| < r+1and|x — z| < 2. Denoting the set of such z by M(x,r) C 73, we obtain
B1(x) € U.cprr.y B1(2) U (R\B,(0)). Consequently

|Alo < sup E [AZAl +[A>rAl
X
ze€M(x,r)

5sup(|M(x,r)|+1)max{ sup | AZAl |AZ,A|}.
X

* zeM(x,r)

This concludes the proof of Eq. (4.7), since there are at most 64 elements z € 73
satisfying |x — z| < 2.

Lemma 4.4. The constant B from Definition 4.3 is positive, uniformly inc, and | A |lus <
A uniformly in x € R3, where A is defined above Eq. (4.1). Furthermore there exists a

constant v > 0 such that |As,|lus < O‘—Urfor alla > landr > 0.
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Proof. Note that the space HLZ(]R3) is contained in the spectral subspace —A < A2,
hence IT < (l + A2) (1- A)_l, and therefore

L2
lAcls=4]x d-—xl = Deaym|

54(1+A2>HX (I=xl = ) (=A)72 (1 =)™ ;s

:4(1+A2) Hx(l A<D (=) T - A is‘

Applying Eq. (B.5) with ¢y = x (].| < 1) yieldsthat x (| - | < 1) (—A)_% (1— A)_% is
Hilbert-Schmidt, hence || Ay |lgs < A.Inorder to prove the uniform lower bound By > 0,

it is enough to verify the boundedness of x (|.| < 1) f(—A), where f(t) := %

An explicit computation in Fourier space yields for ¢ € L?(IR¥)

1= Dk — K)PR)P(K')
kl<1 [k K|

WLF A (< 1) F(=D)lp) = /k| 1/k dkdk

<fra =0l | %dk‘ < llol’

Finally we are going to verify ||A>,|lus < f’ using that

N
| 2 a?
IAzrtis =2 | 2 [ 120 8 E | S VN
n=1

for a suitable constant v > 0 by Corollary B.2, where N is the dimension of HL2(]R3).
This concludes the proof, since N < «” for some p > 0. 0O

Proof of Proposition 4.2. Making use of Eq. (4.7) and defining €, := £, we obtain

2
/Ikloze(Hm ) (k)dx<z /A e 1+|)»| p(1)da +/|A3M|26(1+|M )p(x)dx,

|z|<r+1 *

where the sum runs over z € Z> with |z| < r + 1. In the following we are going
to verify that every contribution of the form [, ;. e*(1+|)L|2) p(L)dx is exponentially

small uniformly in x € R>. As a consequence of Eq. (4.3), we have for 7 > 0 the estimate

o i
Yy =X (Za;an < O{h) < et(a*h,Zr’Llanan).

n=1

By our assumption on s, there exists a &’ such that 2s < h’ < h. Consequently we
obtain for ¢ := oz2+(h_h/), using Mehler’s kernel,

—n' T —n' 1 N 2
PO =y <e " e Tami )= ( 7 ) (a wa>
1 —e*

T

a M=

—o?we A2

(4.8)
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. ’ . h—h' ..
with w, := coth (o/“”) — cosech (ah’h ) Since Ne™* — 0, it is clear that

o— 00
N
(ﬁ) is bounded uniformly in «. Since w, > 0 is strictly increasing in «,
—e o
we can choose 0 < B’ < Boinfy>1 wy, Where By is the constant from Definition 4.3.
Consequently ||£;|Ax|2|| < 1 uniformly in x € R? and & > 1, and in particular

/ -1
(1 — %MX |2) is a bounded operator. Hence we obtain for x € R3

2

N
—n 2
/ (1 + |,\|2> p(dr < e (a w“) / (1 + |x|2) e walAl gy
[Ax =€y T [AxA|>€x

N
/ 2 7
e e I IR R P e )
- T RN

, —1
e+ a2 Te (1= LA )

wadet‘/l—%mxﬁ

Furthermore, for a suitable, x-independent, constant p

=¢ epea’,

’ —1
e T (=B P)
St

wg det \J1— 2214, 2 det,/1— L2214, 2

20’ _1 ( _£ .2) 21 2 20 2
ot +plna—3Trin(1—=|Ax| < T+pIna+p] Acllfg < +plna+uCA ’

(4.9)

o2

=e

, -1
where we have used the rough estimate wg, + o~ >Tr (1 — 1%|Ax |2) <1+a?N <
af for a suitable exponent p > 0 in the first inequality and Lemma 4.4 in the last

5 .8
inequality. Note that the exponent in Eq. (4.9) is of order omar{2-H o} &« €2a?
8 ’
since A2 = o319 and € > Do~ with s < min{%, %(1 - 40’)}.
Defining r := «?? with ¢ > v, where v is the constant from Lemma 4.4 and making
use of the fact that the number of z € Z3 with |z] < r+1isof order r3 = a% we obtain

/ (1 + |A|2) p(}\.)d)\. dx < a6qea2’h/+plna+uCA2—ﬁ’e$a2 < e—ﬂegaz

lz|<r+l [AzA|=€x

for B < B’ and « large enough. We have ||A>, lus —> 0 by Lemma 4.4 and our choice
- o—> 00

r = a?? with ¢ > v. Using Eq. (4.8), and an argument similar to the one in Eq. (4.9),

we can therefore estimate '/iA>r)\|>€* (1 + |A|2) p(A)dx by

N
, 2 2
— o w
/ (1 + |x|2) p(dr < e ( “) f (1 + |)\|2) e~ walrl gy
‘AZVMZG* T |A2r)¥|26*

—n ap e_ﬁ/ 2.2

€xa <eaz_”/+plna+m|AZ,||]2_IS—/S’E£a2.
B 2 ~
det,/1 — —|A>r|
we 2

2
o
<e
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Again we observe that the exponent o plno + p||As, ||2HS is small compared to

€2a?, which concludes the proof of Eq. (4.5).

The proof of Eq. (4.6) can be carried out analogously with the help of the operator
Agh = (;M)ﬁ using the factthat || A; ||lus = [|A¢ |l = |¢]and the assumption 8 < #
More precisely we obtain for 8 < 8/ < #

N

g 2 7
/ (1 + |,\|2) p()dn < e (“ w") f (1 + |)\|2) e wali gy
[{C11)] =€ T |AgA|>e

W aP 122 122

’
o Fed’ < eaz_h +plno+p)|Ag g —B'e*a® e—ﬁezazl
1 B ia,.2 ~ B
det,/1 — £=|Ac|

2
o
<e

5. Properties of the Pekar Functional

In this section we are going to discuss essential properties of the Pekar functional F*ek,
and we are going to verify an asymptomatically sharp quadratic approximation for
FPK (), which is valid for all field configurations ¢ close to a minimizer @K, It
has been proven in [11] that a suitable quadratic approximation of ¥k holds for all
configurations ¢ satisfying || V,,_ e[| < 1, where

V, = —2(—A)"1 Reg. .1)

In the following we are showing that this result is still valid, in case we substitute the
L2-norm with the weaker || - ||, norm, which is a hybrid between the L? and the L®

norm defined as
IV]e := sup ‘// |V (y)? dy, (5.2)
xeR3 By (x)

where By (x) is the unit ball centered at x € R3. This will be the content of Lemma 5.2
and Theorem 5.4, respectively. We have ||V |lo = ||, for ¢ = Zflvzl An@n, Where | - |,
is the norm defined in Eq. (4.4). Before we come to the proof of Lemma 5.2, we first
need the subsequent auxiliary Lemma 5.1.

Lemma 5.1. There exists a constant C > 0 such that the operator inequality
VE<CIVIZ( - A)? (53)

holds for all (measurable) V : R® —s R, where V? is interpreted as a multiplication
operator.

Proof. As a first step, we are going to verify that Eq. (5.3) holds in case we use the
L? norm ||V | instead of ||V |o. This follows from V* < | V(1 — A)~! ”is (1—A)%,
where || - ||gs is the Hilbert-Schmidt norm, and

2
HV(l—ArlHHS ://V(x)zK(y—x)zdxdy:/K(y)zdy V2



312 M. Brooks, R. Seiringer

with K (y — x) being the kernel of the operator (1 — A)~!. Note that C’ := f K(y)zdy is
finite, which concludes the first step. In order to obtain the analogue statement for | V ||,
let x be a smooth, non-negative, function with supp (x) C B1(0) and fR3 x(»?2dy = 1.

Defining x,(x) := x(x — y) for y € R? and using the previously derived inequality
V2 < C'|IV|2 (1 — A)?, which holds for any V € Lz(R3), we obtain

2
V2 =/xyv2xy dy =fxy (1p,»V) xydy < C/fnﬂBl(y)vuz Xy (1= A)? xydy

2
sc/nVn%/xy (1—A)2xydy=6’||vnif|(1—A)xy| dy,

where |A|?> = ATA. Furthermore (1 — A) xy = xy(1—A) =2 (Vxy) V—(Axy), which
yields together with a Cauchy—Schwarz inequality the estimate

[10=2nfay <3 [ (0= 2220 - 2)-av |9, V125, R)dy
—3(1—A)?— 12v</ ‘fo,‘dy>v+3/ 1AxyPdy < (1— A2,

where we have used that [ |V (y)|*> dy and i [Ax(y)|* dy are finite. O

In the following we are going to use that we can write the Pekar energy as
FP () = llgl* +info (=A +V,), (5.4)

where V,, is defined in Eq. (5.1). As an immediate consequence of Eq. (5.3) we have

+V < J/C|V|o (1 —A) and consequently there exists a 89 > 0 and a contour C C
C, such that C separates the ground state energy inf o (—A + V) from the excitation
spectrum of Hy := —A + V for all V with |V — Vpe o < 80, see also the proof of

Proposition 3.1 in [11]. This allows us to further identify F(¢) as
i dz
Z— va 2mwi

Fr) = gl + e | 55)
for all ¢ satisfying || V,,_pex[lo < 8. Following the strategy in [11], we will use Eq. (5.5)
to compare FT(p) with eP* = FPek(pPek) Before we do this let us introduce the

operators

L — [P (g 7o

erk = ] _ HPCk — 4 (_A)f% wPek ok wPek (_A)f% , (5.6)

HvPek — U

L (G R A (VR A CYN R (5.7)
where HPX is defined in Eq. (1.4), uPk := Pk — ||oPK |12 and Pk is the, non-
negative, ground state of the operator Hypex with VoK := V,pe, which we interpret as a

multiplication operator in Egs. (5.6) and (5.7). The following Lemma 5.2 can be proved
in the same way as [11, Proposition 3.3], using Lemma 5.1.

Lemma 5.2. There exist constants c, 8o > 0 such that for all ¢ with ||V,,_ypex [|o < 80

< |V, _gpexllo(e — @"FILPH|p — oK), (5.8)
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Proof. By taking 8o small enough, we can assume for all V' with || V,,_pex[lo < 8o that

sup (| V,_ pek ———— <1, 5.9)
zecll ¥ z— Hypa op

where || - |lop denotes the operator norm. This immediately follows from
2

V_ Pek —————
¢—¢ Hvl’ek —Z op

where we used Eq. (5.3) and the fact that the spectrum of Hyrex has a positive distance
to the contour C, allowing us to bound the operator norm of (1 — A) Plk — uniformly
V €

2
< H(Vw _ VPek) (11— Hp < ClIV,_pel,

in z € C. Given Eq. (5.9), it has been verified in the proof of [11, Proposition 3.3] that

z dz
loll? +Tr/ ——— o — " — (= "M = KT — o)
¢ z— Hy, 2ni
< 6((/) _ ¢P6k|LPCk|(p _ ¢P6k>
for € := su {HA +H B ”(I—A)Z— (1—A)? } where
= SUp;ec =4 " IIT-B z—Hypek 1-A op )’
we denote A := (V(p_(pPek) m and B = ( |¢Pek)(1//f’ek|) A" In the following
we want to verify thate < ||V, _(pPek||<>,Wh1Ch concludes the proof by Eq. (5.5). Since(l—
. . Allo _
A)FH;1sun1f0rm1ybounded1nz, )1 AH < 1” ”LIHFOP Il (V,y—gper) (1= op S
[ Vy—gPek |0 by Eq. (5.3). Similarly H H oPek [lo. Regarding the final term in
the definition of €, note that (1 — A) > po H s (1-=A) > is uniformly bounded in z, and
therefore
1 A 1 1 A’
(1—A)2——(1—A)2 S|d=4a)72 A2l = A
Z—Hyprek 1—A op - 1-A op
with A":=(1 — A)_f Al — A)Z Furthermore H A _w nd
Iy 1=[A"[lop

_1 _1
14 op < (1= 8)7% (V) (1 = )73

o = 1 Vgra) (1= ) oy
S ”V(pf(ppekllo-

O

Lemma 5.2 gives a lower bound on FFek ((ppek + E) — ¢ in terms of a quadratic

function £ — (£]1 — (KP* + e LPk) |&) for & satisfying ||Vzllo < min{£, 8o}. Due to
the translation invariance of F Pek, this lower bound is however insufficient, since we
have for all £ € span{8yl<ppek, Byzgopek, 8),3¢Pek}\{0}

(€11 — (K™% + €L ) ) = Hessl,pa FP¥[E] — (€ |LP¥|g) = —e(61L718) <0,
(5.10)
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i.e. the quadratic lower bound is not even non-negative. In order to improve this lower
bound, we will introduce a suitable coordinate transformation t in Definition 5.3. Before
we can formulate Definition 5.3 we need some auxiliary preparations.

In the following let IT be the projection defined in Eq. (4.1) and let us define the real
orthonormal system

HayngoPek
On = W (5.11)

forn € {1, 2, 3}, which we complete to areal orthonormal basis {¢1, .., ¢x } of HL2(R3).

Furthermore let us write <p§‘“'k(y) := P (y — x) for the translations of ¢ and let us
define the map w : R? — R as
0 = (loalef™) <R (5.12)

Since gopek e H! (R3), w is differentiable. Moreover, since <ppek is invariant under the
action of O (3) and since the operator IT commutes with the reflections y; — —y; and
permutations y; <> y;, itis clear that @ (0) = 0. By the same argument we see that D|ow
has full rank and therefore there exists a local inverse ¢ — x; for |t| < J, and a suitable
constant 8, > 0.

Definition 5.3. We define the map 7 : [1L*(R3) — TL?*(R3) as
T(p) = — 1),

where 1 := ((¢119). (9219). (93])) € R? and £ (¢) is defined as

F@) = x(ltl <) ( ok an).

The map t is constructed in a way such that it “flattens” the manifold of Pekar
minimizers {¢g? ek . x e R3}. More precisely, we have that (H(pPek) is for all small
enough x € R? an element of the linear space spanned by {1, ¢2, ¢3}. A similar
construction appears in [5] and, in a somewhat different way, in [9].

Recall the operators K Pek and LPk from Egs. (5.6) and (5.7), and let 7y be the
translation operator defined by (Tx(p)(y) := @(y — x). Then we define the operators
KPek = 7, KPR T and LP* := T, LYK T_,  as well as for |¢| < € with e < &,

he=a(l=(+e (KI*+eLl) ), (5.13)

where 77 : L?(R?) — L?(R?) is the orthogonal projection onto the subspace spanned
by {4, ..., ¢n}. Furthermore we define J;  := m for |t| > €. In contrast to the operator
1— (kP + e LPeK) from Eq. (5.10), the operator J; . is non-negative for € small enough,
as will be shown in Lemma B.5. With the operator J;  and the transformation t at hand
we can formulate a strong lower bound for FP*(¢) — P in the subsequent Theorem
5.4, where we use the shorthand notation J; ¢ [¢] := (¢|J.c|¢).



The Frohlich Polaron at Strong Coupling 315

Theorem 5.4. There exist constants C > 0,0 < €y < 64 and 0 < D < 1 such that

2
FP ) 2 Pt [r) ] - © - m gl

X

(5.14)

forall0 < ¢ < € and ¢ € TIL*(R®) satisfying | V,_ e | < €D and |t?| < €D,
where J; ¢ is defined in Eq. (5.13).

Proof. In the following we use the abbreviation ¢ := t?. Since H Vigpek _ gPek ” o S lxl
and |x;| < |¢] for [¢] < %*, we have for all ¢ satisfying H Vi—pek ||<> < De and [t] <

min{De, cs—*}

S = ” Vt/)—wpek

o F ” V(pPek Pek

o ” |4 Pek —¢x

(p_(pxt
S| Voyrex ||, + 111 S De.

“ VT*X; (p_(pPek o

By taking D small enough we obtain H VTw(p_(ppek || o = ¢ where c is the constant from
Lemma 5.2. Let us define €y := min {c&), 2‘3—2*), 8*}. Using the translation-invariance of

FPeK and applying Lemma 5.2 yields
FPek () — Pek 2]_-Pek(T7x1 <p) — Pk > (T_., 0 — Pk |1 (KPek+6LPek> IT_y, 0 — gPek)

= (¢ — oFekI1 = (KP4 eLP) Jp — %)

> [l — TP, |2 — (@ — PR KP4+ e LEK | — pPek)

Xt

> |l — Ty ™)1 — (1+€) (¢ — ML | KL + €LY |p — TTp}X)

Xt Xt Xt

. (1 +e_1> (1 — 1) P KPR 4 e LPR| (1 — ) P%),  (5.15)

where we have used the positivity of K Kk and Lf:ek, and the Cauchy—Schwarz inequality
in the last estimate. Note that by construction of x; as the local inverse of the function
w from Eq. (5.12), we have (g, |¢ — ITgF) = 0 for n € {1, 2, 3} and therefore

Xt

0 —TIgl* = (9 = TIPP™) =7 (p = F(0)) =7 (x (@)

with 7 being defined below Eq. (5.13), where we used |f| < J.. This concludes the
proof with C := (1 + ¢p) (||K||0p + eo||L||0p). O

6. Proof of Theorem 1.1

In the following we will combine the results of the previous sections in order to prove
the lower bound on the ground state energy E,, in Theorem 1.1. We start by verifying the
subsequent Lemma 6.1, which provides a lower bound on E,, in terms of an operator that
is, up to a coordinate transformation t and a non-negative term, a harmonic oscillator.
Let us again use the identification F (TTL?(R?)) = L?(R") utilizing the representa-
tion of real functions ¢ = Zr}zvzl Ann € HLZ(R3) by points A = (A1, ..., Ay) € RN,
such that the annihilation operators a, := a (¢,) are given by a,, = A, + 20%23)»,, , where
A is the multiplication operator by the function A > A, on L*(R"), see also Eq. (4.2),
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where IT is the projection from Eq. (4.1) and {¢y, ..., ¢n} is the orthonormal basis of
HLZ(]R3) constructed around Eq. (5.11). Let us also use for functions ¢ — g(¢) de-

pending on elements ¢ € HLZ(R3) the convenient notation g(A) 1= g (lelvzl )»n%),
where A € RV,

Lemma6.1. Let C > 0and 0 < o < %, and assume s, h and o satisfy 2s < h and

o< lfs. Furthermore let us define A 1= a%(“") and L := a'*° . Then we obtain for
any state V satisfying (V|Hp |W¥) < C, supp (V) C Bar(0) and

X( N Wea < @™ )qz:\p, (6.1)
that
1o S N
(W|H, W) > Pk +<\I/‘ ~ 2o Zafn + Jp [T |+ N = Za,’lan ‘I’>— 22
n=1 n=1
40 <as—15—2(1+a) +a—2(1+a)) ’ (6.2)

where t? and t(p) are defined in Lemma 5.3 and J; ¢ is defined in Eq. (5.13). Fur-

thermore, there exists a B > 0, such that (V|1 — B|¥) < e_ﬂ"‘z“_ﬂ, where B is the
multiplication operator by the function A — x (|t*| < oz’s).

Proof. Applying Eq. (2.3) with A and ¢ as in the definition of IT, see Eq. (4.1), and
K := A, and utilizing Eq. (2.5), we obtain for a suitable C’

(W[HA|W) > (W[H) W) — Cla ), (6.3)

Making use of Z ]ana,, = ZN ( L 8)%” +A2) 2a2 and a, +aZ = 2X\,, We

n=1

further have the identity

N
N .
H(l)\l__A _ZZ (@n|wy) An'*'Z( )% )——2a2+/\/—2a,;an
n=1
N N
— A, +Vk(x)+2( LI )_mw—zagan,
n=1

with V,, defined in Eq. (5.1). Clearly —A, + Vy > info (—A)f +Vy) = FPk(p) —
Z’IlV: 1 )»,%, which yields the inequality H(z)\, =K+ N — Z,Ilv: 1 aya, with

- N
K=o Do +FEG) - 7 (6.4)
=1
Combining Egs. (6.3) and (6.4), we obtain
N
<\I/‘HA ~N+Y dla, w> +Cla™20%9) > (YK | W) = (K), ., 6.5)
n=1
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where y is the reduced density matrix on the Hilbert space F (TTL?(R?)) = L?*(RY)
corresponding to the state W, i.e. we trace out the electron component as well as all the
modes in the orthogonal complement of TTL? (R3),

y = TrLZ(R3)®}‘(L2(]R3))—>_7-‘(1'IL2(R3)) (W) (W]].

Note that we have the inequality Wr{ Pek (ZQ’:] azan) Wipgpek < W(/}ik N W pei. The
operators on the left and right hand 51de commute, and consequently (6.1) implies that
(Wl__[(ppek (Zﬁlzl aZan> Wigpek < a_h) W = W. This in particular means that the

transformed reduced density matrix y := Whgpek ¥ Wl__[;Pek satisfies

N
X (Z azan < ah> )7 = )7 (6.6)

n=1

Using the identification ¢ = 2;11\;1 Angn as before, the Weyl operator Wy pex acts
as (Wn(pPek\Ij) ) =v (A +APek) with APk = ((q) lpPeky, L, ((pN|(pPek)). Due to
—5s
4 b
are satisfied, and therefore we obtain for any D > 0 the existence of a constant 8 > 0
such that for « large enough

/ (1+ 11 — 2P P2) p(yda = / (1+1A2) FOydn < e P,
Jh—2Pek|,=a =D IMoza—s D
(6.7)
/ (1+ 12 — 2P P2) pyda < Z[ (1= AP pda
|t)‘|za*SD |>°‘

= Z/ (1+121%) BOodr < e P
Iz D

(6.8)

where p and p are the density functions correspondlng to v and ¥, respectively, and
where we have used t* = (A1, A2, A3) € R3. For the concrete choice D := 1, Eq. (6.8)

immediately yields the claim (¥|1 — B|¥) = flt*lzw*' p(W)dr < e

In order to verify Eq. (6.2), we need to find a sufficient lower bound for the ex-
pectation value (K),, where K is the operator from Eq. (6.4). Recall the definition of
the transformation t : TL*(R*) — TIL?*(R?) from Definition 5.3 and the opera-
tor J; ¢ from Eq. (5.13). As a first step we will provide a lower bound on (]—"Pek M)y,

using Eq. (5.14) and the fact that supj, -, H(l 1) gofek H S a” $1+9) for to small
enough, which follows from Lemma A.1 together with x;, —()) 0 We define the operator

A= x (In=2aP%|, < a7 D) x (|t*| < @™ D), where D is as in Theorem 5.4, and
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estimate
(f-Pek()\»y — (f-Pek()\) A>y + (fPEk()L) a _A»y
= (€™ + ST DA) +(FFEG) (1= M)y + 0 (2504
Y

= (P [T 1) ]>y+(x>y +0 (0275 0) 6.9)

with X = (FPkQ) — ePk — J1 ,—[r(M) ]) (1 — A). Using Egs. (6.7) and (6.8) as
well as the fact that 1 — A < y (|A — )»Pek|<> > Dot_s) + x (|t)‘| > Doz_s), we obtain

<X> < e \where we have used that FP (1) and Jix q—5[T() ] are bounded by
y
C (1+|2|?) for suitable C > 0. By Eq. (6.9) we therefore have the estimate (F Pek )y =
<ePek+th’a_s[r()\) ]> +0 (as_%(lJf")), and consequently

y

N _1
(K), > ePek+< a4 ZBA + T r@)])— 53+ 0 ( =5 (““)). (6.10)
Since (~ x DL 02, + Jp o [r0) 1) = (9] = e DL 02+ d o fr0) ]| 0)
this concludes the proof together with Eq. (6.5). O

In the following, let W, be the sequence of states constructed in Theorem 3.13,
satisfying (Wo |[HA[Wo) — Eq S a™20%), supp (W) C Ba(0) with L = o'+ and

strong condensation with respect to @K, ie. x (Wq}ik N Wopek < a’h> v, = ¥,

and furthermore let s < 2—19 be a given constant and let us choose o and % such that
1-5s
1

. Note that h < % makes sure that the assumption
1-5s

2 s
2s<h<@and§§a<

of Theorem 3.13 is satisfied, while 25 < h and o0 < are necessary in order to
S

apply Lemma 6.1. The final assumption 5 < o will be useful later in Eq. (6.15) in
order to make sure that o2(1*7) < ¢~@*). Making use of — ;1 Yo 192 >0and

N > Z aj,an, we obtain by Lemma 6.1 that

E, > ePek+<\Ila

N
1 N
T 4a* Z 8)%,I+Jﬂ,a*»?[f()¥)]“l’a>—T‘lz+0 (OI_Z(HJ)) (6.11)
n=4

for a suitable C’, where we have used @5 (140 < o720+ and E, — (Wo |Hp [We) >

—a~2U+9) 1n order to further estimate the expectation value in Eq. (6.11), let us define
N

the unitary transformation (UW) (1) := ¥ (r’ (k)) with T/ (L) = (((p,,|t ) )) 1 €
n=

RN . Since 7’ acts as a shift operator on each of the planes X; := {A : (A, A2, A3) = 1}
for r € R?, it is clear that det D|; z’ = 1, which in particular means that the operator I/
is indeed unitary, and we have 9, = U~'9;,U for n > 4. Furthermore we define the
operator

N

l,e = d i Za)\n Z J”f)n,m AnAm

n,m=1
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with (J;.¢) (@nlJr.el@m). Note that (Jre), ,

{1, 2, 3}, i.e. the operator Q;  depends only on the variables A, forn > 4 and noton t =
(X1, A2, A3), hence it acts on the Fock space f(span{qm, ol (pN}) = LZ(RN_3) only.

Utilizing the fact that U~ T [t () U = T o [A] = XN et (Jirams),  Ankoms
where we used that 17" U = t*, we obtain

nom = (Jt,e)m’n = Oincase n €

[t|<a™*

N
u*(-ﬁ D 07+ T ) ])u =Qpgs = QugsB> inf info(Q 4)B,
n=4

where B is as in Lemma 6.1. Here we have used Q. ,—s > 0, which follows from
Lemma B.5, as well as the fact that 1 — B is non-negative and commutes with Q. ,,—s.

Applying this inequality with respect to the state Uy =U"'W, yields

N
1 SO
(\ya -7 a§n+1ﬂ,a_x[r()\)]‘\ya>z ‘tliilofﬂinfo(Q,ya—s)<\lla|]B3|\Ila>
n=4
. N ~ ~
> ‘tllil‘fi}nfa (Qro—)— ﬁ(\ya |1 — B|Y,) (6.12)

where we have used J; ¢ < 1, and therefore inf o (Q;,¢) < 21;’—2

that (T |1 — B|Ty) = (We|1 — B|W,) < e #*" ", Combining Egs. (6.11) and (6.12),
and making use of the fact that N < «” for some p > 0, yields

By Lemma 6.1, we know

N
oz ™+ inf info (Qus) = 505 +0 (a720%). (6.13)
o

|t|<a™*

Since the operator Q; ¢~ is quadratic in 9,,, and ,, we have an explicit formula for its
ground state energy, given by

] N Troawrai|l — /Jra—s
1nfa(@,’a—s)—m=— HL( )[2(12 Lo ], (614)

where we used the fact that J, ,-s > 0 for o large enough, as shown in Lemma B.5.
Using Eq. (B.7), we can approximate this quantity by

Tran(Rz)[l — T ] Ty [1 - HPek]‘ <a~S+a7s,

sup
[t|<a™*

where HP®X is defined in Eq. (1.4). Consequently Eq. (6.13) yields
E, —ePek+L2Tr [1 —VHPk ] S 20 =)~ (24) (6.15)
2a ~ ’ '

which concludes the proof, since all the terms on the right side are of order @),
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7. Approximation by Coherent States

This section is devoted to the proof of Theorem 3.2, which states that asymptotically
the phonon part of any low energy state is a convex combination of the coherent states
Q(pPek with x € R3, where the convex combination is taken on the level of density
matrices. As a central tool we will verify in Lemma 7.2 an asymptotic formula for the
expectation value <\If | F | \Il) in terms of the lower symbol [Py, corresponding to the state

W, see Eq. (7.6). Furthermore we will make use of the 1nequahty

inf flg — @17 S F ) — (7.1

derived in [10, Lemma 7], which implies that the only coherent states 2, with a low
energy have their point of condensation ¢ close to the manifold of Pekar minimizers
{g? k:xe R3 }. We start with the subsequent Lemma 7.1, which provides an asymptotic
formula for F operators in terms of creation and annihilation operators.

Lemma 7.1. Let m € N and C > 0 be given constants, {g, : n € N} an orthonormal
basis ofL2 (R3) and let us denote a, 1= a(gn). Then there exists a constant T > 0 such
that for all functions F of the form

F (p) =/u-/f(m,---,xm)dp(m)---dp(xm), (1.2)

with f : R¥>*™ — R bounded, and states W satisfying x (N < C) W = ¥, we can
approximate the operator F from Definition 3.1 by

(W|Flw)— > frs(Wla) ...a) aj...as,|¥)] < TI|f o™, (7.3)
1,JeNm

where we interpret f as a multiplication operator on LZ(R3)® = LZ(R3X”1) and
denote the matrix elements f1 j = (g, ® - - Q g1,1 flgs, ® --- gy,

Proof. By the assumption x (N < C) WV = W, we can represent the state W as W =
@ngctxz v, where ¥, (y, x' x™) is a function of the electron variable y and the

n phonon coordinates x* € R3. As in the proof of Lemma 3.3, we will suppress _the
dependence on the electron variable y in our notation. Using the definition of F in

Definition 3.1, as well as the notation X = (xl, ..., x™), we can write
n
= -2 2
(w|Flw)= )" /IR3” (a Zaxk>|\yn()()| dx
n<Ca? k=1
=g " koo xby e, (x0)12dX.
> Z o £ O
n<Ca? ke{l,..

Defining K as the set of all k € {1, ..., n}" satisfying k; # k; foralli # j, we can
further express the operator Y ; ;cnm f1.4 a}l ...a; ay, ...ay, as

. fr(¥la) .. a) ag . ag,|¥)=a7 Y Zf FeR L xRy, (X0 2dX.

I,JeNm” n<Ca? kek
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Consequently we can identify the left hand side of Eq. (7.3) as

a—2m Z Z f(xkl,...,ka)|\yn(x)|2dx

R3n
nfCo[z ke{l ..... n}m\IC

<ifle | 3 /R}nwn(xnzdx.

n<Ca? \k€{l,..,n}"\KC

Since Y e gmpc @ 2" = (nm - (nfi,,),)a_zm < m2mp" "l 72m < o2 for

n < Ca? and since anCoﬂ fR3n |W,(X)|?dX = ||W||? = 1, this concludes the proof.
O
In the following we are going to define the lower symbol [Py corresponding to a
state W € L2<R3, F (L2 (R3) )) Since we consider the Fock space over the infinite
dimensional Hilbert space L? (R3 ), we need to modify the usual definition of the lower
symbol by introducing suitable localizations. For 0 < s < 24—7 and y € R?, let us define
£y = oz_%‘Y and A, := ¥, and the projection
M, =TT, ., (7.4)

see Definition 2.1. We have N, := dimI1,L?(R?) < (A+/ly)® < &? by our as-
sumption s < 24—7. Using the notation {ey 1, ..., ey y,} for the orthonormal basis of

HyLZ(R3) from Definition 2.1, we introduce for & € CV+ the coherent states Qy e =
e“z‘ﬂ (‘p>'-5)_“2”(9">‘-5)$2, where  is the vacuum in F (I'I_VL2 (R3)) and ¢, ¢ =

SN &neyn € TTyL2(R?). Furthermore we define wave-functions Wy localized in the
electron coordinates x as

W00 = L2 iy <XL_ y) W(x), (1)

where y e R3and L,, := «?,and X is a smooth non-negative function with supp (x) C
Bi(0) and [ x (y)*>dy = 1. For the following construction, note that we can identify
12(R3, F(L(RY))) = F (1, L2(R%)) @ LR, F(1, L2 (R%)" ) ). Let us now de-
fine measures Py on CN+ = RN+ corresponding to the state W, as

dPy 1

dE - |©y,6 %y
where Oy, ¢ is the orthogonal projection onto the set spanned by elements of the form
Qye® U with U € L? <R3, }'(l'lyL2(R3)J‘)). Note that the coherent states 2 ¢

provide a resolution of the identity HLN* Jon 192y,6)(R2y61dE =1 F(1,LY(R3)) see for

2

(7.6)

example [20], and consequently the projections ®, ¢ satisty JTIT* f(CN* Oyedé =1.In
particular we see that the total mass of the measure PPy is f dP, = ||¥, % and therefore

/f dP,dy =/||wy||2dy = ¥|* = 1.
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In the following Lemma 7.2 and Corollary 7.3 we will prov1de an asymptotic formula
for the expectation value (W ( y|F |\Il ) respectively (\IJ’F |\Il) in terms of the measures
Py.

Lemma 7.2. Given m € N, C > 0and g € LZ(R3), there exists a T > 0 such that for
all F of the form (1.2), y € R3 and € > 0, and states WV satisfying x (N < C) ¥ = ¥

1 ~ N
T ’(\IJy|F |xpy)—/ F (|(py,’§|2> < <—a; +e>||\1/y||2+e‘(wy|/\/> V)
. o0

(7.7)
with ./\/ZN* =N - Zy],vi] aj;,nay,,, and ay , == a (ey,,,), and furthermore
1 -1 Ny 2, 1
T <‘I’y}Wg NW, |¥y)- = 2 Wy 1> +e ™ {wy | V)
(7.8)
where Wy is the corresponding Weyl transformation.
Proof. Let{g, : n € N} be acompletion of {ey 1, ..., ey y,} to an orthonormal basis of

L2(Rg) and let us define a, := a (g,). We further 1ntr0duce an operator F as

®" ® T T
Z fljall 1,4 aJm_Z<H fa ) Jall...almajl...ajm.

LJE(l, .., Ny}m I1,JeNm
(7.9)

In the following we want to verify that both ||f||go1 |<wy|ﬁ|\yv) — (\Ily|14~” |\IJy>| and
£ (W) |F [9y) = [ F (19y6]?) dPy (€)| are, up to a multiplicative constant,
bounded by the right hand side of Eq. (7.7). Applying the Cauchy—Schwarz inequal-
ity, we obtain for all € > 0

®m ®"‘l _ ®m ®m ®)‘I‘l
j:(f—l'ly fme )_if<1—1'[y )i(l—ny )fl‘[y
< €l flloote ™ I flloo (1-115")

< ellflloote N flloo((I=TT) 4. ..+ (1=TT1,)p),

where (1 — I1y); means that the operator 1 — I, acts on the j-th factor in the tensor
product. Consequently we have the operator inequality

£ X sl afancan, = F | < elflaN™ 4 flloom N A

I,JeNm

Making use of Eq. (7.3) and the fact that x (N < C) ¥, = W, further yields

(U F1y) — Y fra(Wyla; . a) ag, .. a;,|%)| < de?|| flleol Wyl
1,JeNm
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for a suitable constant d > 0. We have thus shown the bound

(W | F W) — (0, | F|w,)| < (doz_2+6Cm)||\IJ P4 mCm Wy N, |Wy)
(7.10)

L
£ loo

which is of the desired form. ] N
In order to verify that = |(\Ily|F |\IJy> — f F (|goy,g|2) dp, (E)| is of the same

order as the right hand side of Eq. (7.7) as well, we will first compute F with reversed
operator ordering, i.e. we compute

frra ay al al = f ai...dla a
Lsdan.-.-dpdy -..dp = Lyay- 1,41 -y

1,J€{l,...,Ny}m 1,Jefl,..., ym

+ZW o\ 11 ay [T ey (7.11)

n=1 T o,reSmn\ 1, ]! ké{o1,....on} L{ty,. ...t}

where S™" is the set of all sequences 0 = (o1, ..., 0,) without repetitions having
values oy € {1, ..., m} and the coordinate matrices 7 are defined as

o,T .__
5= > f1abig S0 | LI I1 81,

forl’ € {1, ..., Nmi\otonkang g7 e 1, ..., N Jb-m\tit} Ope can ver-
ify Eq. (7.11) either by iteratively applying the (rescaled) canonical commutation rela-

tions [a;, a;] = ot_28,-, j»or by using the fact that the operator e‘szé Ve , which is well de-
fined on polynomials in & and &, transforms the upper symbol into the lower 1€ lower symbol (see

e.g.[27]), and computing its actionon P(§) := Z,’je{] AN NINIIEE élméjl &,
as

R CTCEVIGES S S DIF/A 2 § B | B
n=1 '

o,7eSmn\1',J’ ké¢{ol,....on} Lé¢{t),.... T}

In order to identify the left hand side of Eq. (7.11), we will make use of the resolution
of identity —- fcv, Oy d& = 1, where © ¢ is defined below Eq. (7.6), which allows

us to rewrite the anti-wick ordered term ay, ...a Jma;l ...ay as
m

1
N«

/ aj...a;Oy¢a; ...a, dE = f Ej .. E5Er .. El, O, dE.
T« T«

Here we have used thata;©, ¢ = §;0, ¢ foralli € {1, ..., N,}. By the definition of P,
in Eq. (7.6) we can therefore rewrite the expectation value of the first term on the left
hand side of Eq. (7.11) with respect to the state Wy, as

N«

S oo (lan - apd), ..al [w)= qu/éjl. & BB P, (€)

IJe{l,...,NJm 1Jell, ...,

:/<¢§g|f|¢§g)dﬂ"y($)=fF(|</>y,s| ) dPy ©). (7.12)
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In order to control the terms in the second line of Eq. (7.11), we can estimate the norm
Ifer lop < I fllooN} forall o, T € S™", which follow from

(l f7Tlw) = Z J1,0815,,00, -+ - 81y VT Wy = Z (o] £ |w")

I,Je(l,...,N ™ ke{l,...,Nx}"

k k
Il Y IO < 1 f oo N2V 0l

IA

where I’ denotes the restriction of I to {1,...,m}\{oy,...,0,} and v¥ is defined as
(vk)I ‘=081, ky - - - 01y, .k, V1> and J' and w* are defined analogue. Hence we obtain

T Ny " m—n
a2n2f’l’ [1 a,‘k/ [T aylw) fllflloo<;) (W [N W)

r.J k¢{0']w~:¢7n} {1, T}

forn > 1. Since x (N < C) W, =W, and N, < a2, see the comment below Eq. (7.4),
this is a quantity of order IIf ||oo " sy |>. Combing this estimate with Eq. (7.11) and
Eq. (7.12) yields that 7 (W, |F [W,) = [ F (Igy.el?) dPy (£)] is, up to a multiplica-
tive factor, bounded by the right hand side of Eq. (7.7). Together with Eq. (7.10), this
concludes the proof of Eq. (7.7).

In order to verify Eq. (7 8), let us define G(p) := [ dp. Note that W, NW, =
N—a(g)—a'(g)+|gl> = G —a(g)—a'(g)+g|/* Furthermore we have (W, |a(TT,g)+

a'(Tyg) |¥y) = [ ((gley.e) + (¢y.£18)) dPy (§), where we used that a(g) +a'(g) is
anti-Wick ordered, and

(¥ ]ate)+a'@) —ayg) =My [9)] = e N2y 193+ ellgl 2wy

Hence, applying Eq. (7.7) with respect to the function G and using that [[lgy s —

gIPAPy = [ (G (Igy.cl?) + (lgy.c) + (@y.618)) APy (€) + i8> [Wy > concludes the
proof of Eq. (7.8). O

Corollary 7.3. Given constantsm € N, C > O and g € L* (]R3 ), there exists a constant
T > 0 such that for all F of the form (71.2) and states V satisfying x (N < C) ¥ = ¥
and (U |Hg |W¥) < ek + Se, with e > 0 and K > A, = o?%,

1 jal s 2
TIfI ’<W|F|W)_//F(|¢y£}2> dPy (§)dy| < Vde+a™ 2 +a77s_2, (7.13)
and furthermore

<Voe+a 3 +a?s 2,
(7.14)

‘(w‘w W) - / lgy.c — gI2dP, &) dy

Proof. Usingthe factthat we have (W|F W) = [ (W, |F |W,)dy and (¥ |W; ' N'W, |¥) =
S (W, | W I N'W, | Wy )dy, and applying Eq. (7.7), respectively Eq. (7.8), immediately
yields that the left hand sides of Egs. (7.13) and (7.14) are bounded by

&+e+e f(qz IV, 1W))dy (7.15)

o?
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for any € > 0. In order to bound [{W, INi ~,|Wy)dy from above, let us first apply
Eq. (2.3) together with Eq. (2.5), which provides the auxiliary estimate

/ |(\py|Hf\*,(*|qu> - ("py|HK|‘I’y)|dy 5 a’ /(lpy| — Ay + N+ 1|‘ij)dy
<o /(\Ily|2HK +d+1|\Wy)dy.
Note that the assumptions of Eq. (2.3) are indeed satisfied, since K > A, and supp (\I/y) C

Br,(y). In combination with the IMS identity f(\Ily|HK|\Ily)dy = (V|Hg|¥) +
L2 Vx|, where x is the function from Eq. (7.5), this furthermore yields

’ / (Wy B, [Wy)dy — <\IJ|HK|\IJ>’ Sot (WHk[W) +d+1),  (1.16)

where we have used L 2 = o~*. Furthermore (W|Hg |W¥) < ¢ + §e by assumption,
and consequently |f(\Ily|Hy*’l*|\Ify)dy — (V|Hg|¥)| < Da—5(8e + 1) for a suitable
D. Consequently

(WIEW) = [ (9,1, 19,)dy - Da™Ge+ 1)

> Ey+ /(qjyp\/;’N*npy)dy — Da ¥ (e +1). (7.17)

where we have used that Hi\* 0, = Ea + - i v, in the second inequality. Using Eq. (7.17)

as well as the fact that E, — ek > —— > —a~*, see [20], we obtain the upper bound
/(\Ily INfN*|Wy)dy S (W[Hg|W) — P raBe+1) <Se+a™. (7.18)

Choosing € := v/de + «~* in Eq. (7.15) therefore concludes the proof together with the
observation that % < a?2. o

In the following Lemma 7.4 we are investigating the support properties of the lower
symbol PPy. In particular we derive bounds on the associated moments and verify that
@y.¢ is typically close to the manifold of minimizers {gF° : x € R3}.

Lemma 7.4. Given constants m € N and C > 0, there exists a T > 0, such that

[[1E?mdPy (§)dy < T for all W satisfying x (N < C)V = W, and furthermore we
have for all K > A, where A is as in the definition of T1” in Eq. (7.4),

1 )
- / / inf llpy.e — P I2dPy ) dy < (W[Hk W) — P* 4™ +2 2572 (7.19)
x€R3 :
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Proof. Form € N, let us define the function G(p) := ([ dp(x))" = [ ... [dp(x1)...
dp(x;,), which is clearly of the form given in Eq. (7.2). Consequently by Lemma 7.2

[1eenar, @ = [ 6 (10,4P) a2, @
< G N y
S([G [Wy)+ (=5 + 1) 1017 + (I 19y)
2m N y
= (W, [V |y )+ { — Wy 117+ (W IV 1wy
N,

2 * 2

< <C ’”+¥+1+C) Wy 7,
which concludes the proof of the first part, since Ny < o? and [ ||lIJy||2dy =|v)>=1

Regarding the proof of Eq. (7.19), we have the simple bound

Hi\* o, =—Ax—a (Hywx)—aT (I'Iyu)x)+/\/

N
>—-A,—a (Hywx) —af (Hywx)+2 a;nay "

n=1

=—Ay —a(Myw,) —a' (Mywy) Zay nal , — a—. (7.20)

Since all terms in Eq. (7.20) are represented in anti-Wick ordering, we can follow [20]
and express, similar as in the proof of Lemma 7.2, their expectation value as

N,
(WA —a (M) —a® (M) ) ay.a], )
n=1

(051 -804 Vo 1051+l 1) B, )
z/(info(—Ax+VW)+||%,,§||2) dp, (g):/fpek(goy,g)dﬁvy &), (1.21)

with wé = ”SV;\P” where ©, ¢ is defined below Eq. (7.6), FPek s the Pekar func-

tional and Vj, is defined in Eq. (5.1). Making use of Eq. (7.1) we obtain together with
Eqgs. (7.16), (7 20) and (7.21)

, N.
[ [ int o = oPRRap, @ dy s [owim wdy e T
Pek Ny -5
< (W[Hg | W) — e +— + Do (V[Hg|W)+d +1),
o

. . . 27
for a suitable D > 0. This concludes the proof, since we have N, S «2®. O

The bound in Eq. (7.19) suggests that ¢, ¢ is close to goP ek with a high probability,
where x-¢ is the minimizer of x > loye — (pxek||. Motivated by this observation
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we expect ffF(|<pyg| )dP dy ~ [[F (’fppek

energy states WV, and therefore it seems natural to define the measure © in Theorem
32as [ fdu = [[ f (x*¥)dPydy, allowing us to identify [ F (‘(ppek )dIP’ydy =

f F (|¢)§ek| )du. This expression is however ill-defined, since the infimum

) dPydy for measures [Py for low

inf g3 l@ye — (pfekn is not necessarily attained and it is not necessarily unique. In
order to avoid these difficulties, we will slightly modify the definition of the measure
in the proof of Lemma 7.5.

Lemma 7.5. Givenm e N,C > Oand g € LZ(R3) we can find a constant T > 0, such
that for all states V satisfying x (N < C)W = W and (V|Hg |¥) < Pk + Se, with
Se > 0and K > A, there exists a probability measure jn on R? with the property

T||Jlf||oo V/F(|*"y’§|2)dpy(g)dy _/F<

for all F of the form (7.2), and furthermore

Pek

<+de+a T L
(7.22)

)du(x)

< e+ a7+ 052477‘“1.
(7.23)

‘ f loy.c — gIPdBy (&) dy — /ngo"ek ¢IPdu(x)

Proof. Fore > 0,let | 2| Ac.» = C"+ be a partition of C+ consisting of non-empty
measurable sets A , having a diameter bounded by d(A¢ ,) < €. Furthermore choose
Sen € Acpand xepy € R3 satisfying |lgo.z. , — (pxek” < inf,cps lpos, — ‘prk” +e.
Then

lloy,e— </)y+x€,,|| = llgo,e — wx 11 < g, sé,l—¢x5n||+||</)os @o,e.,
< 0.6, —Pron ll+€
< inf llgog., —¢31+2€ = inf llgoe =g 43¢ = inf lloy.c =0, [ +3€.
(7.24)

Let us now define the probability measure 1 on R3 by specifying its action on functions
f€C (R as

/fdu—Z/f Y+ Xen)Py(Acn dy—Z// [ (y+xen) dPydy.

Since [ F (|goy,5 ’z)dIP’y(é) =30l fu F <‘g0y,§ ‘2>d]P’y(§), we can estimate the left
hand side of Eq. (7.22) with the aid of the triangle inequality by

2
Z// ’ |‘Py$’ (“pgil;e,n

) ’ dPy (&) dy. (7.25)
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From the concrete form of the function F given in Eq. (7.2), as well as the facts that

||<pyP$§E = llofe | is finite and [y £ || = |€[, one readily concludes that

(1+]ep>t.

2 2
‘F (\(py,s\ ) ~F (\soi?i‘;e,,, S oo Hwy,g — oy

Using Eq. (7.24) we further obtain forany x > O and § € A,

Pek
”(Py,s - Wy-?—xé,n

(1+]gp>! < ( inf gy —@r | + 3e) (1+]&)>m!
xeR3
1 . K _ _
<« hinf [lgy e =@y K17+ £ (L4 1D +3e (1+ 15D,
xeR3 4

X

and therefore the expression in Eq. (7.25) can be bounded from above by

11 (6 [ i =gt itar @ 0y + 5 [ @ iep2ap, @0y
+3e// (1+g)>m~! dPy(g)dy>.

By Lemma 7.4 this concludes the proof of (7.22) with € := « := \/ée ta—S+a?s2,
Equation (7.23) can be proven analogously, using the estimate

Pek Pek

v = gI? = 1975, — 82| S |ove — olk,, | A+ 16D

for§ € Acp. O

Combining Eq. (7.13), respectively Eq. (7.14), with Eq. (7.22), respectively Eq. (7.23),
immediately yields that the left hand side of Eq. (3.2), respectively Eq. (3.3), is of the
order vSe+a~3 +a o1, Optimizing in the parameter 0 < s < 24—7 concludes the proof
of Theorem 3.2 with the concrete choice s := 24—9.
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A. Properties of the Pekar Minimizer

In the following section we derive certain useful properties concerning the minimizer
@"°k of the Pekar functional 7K in (5.4). We start with Lemma A.1, where we quantify
the error of applying the cut-off IT to a minimizer, where IT is the projection defined in
Eq. (4.1) for a given parameter 0 < o < }T. The subsequent Lemmas A.2 and A.3 then

. : 2 .
concern the concentration of the density |¢P*|” around the origin.

Lemma A.1. Forallr > 0 we have the estimates SUP | <, || (1-1I) q; Pek ” <a" (1+<7).
) 84, 0" | < =304 forn € {1,2,3).

Moreover,

Proof. We can write ¢ = 4./7 (— A)_% |1ﬂpek|2 where ¥P°K is the ground state of
the operator Hyrec. Consequently <pPek = 4\/_ (fx + gx) with the definitions f (k) =

Pek Pek
1p, (k) —p— Vel N0} | ®) pikx and g gx(k) = ]le\BA k) —— W | ®) pikx , where ™~ denotes the Fourier
transform. In the first step we are going to estlmate I (1 —T1) gl = llgx|l by
‘|1//Pek| k ’ 1 1 12
lg ||2=/ ——dk< H|k| yrPek (k)H —dk < — =q 3 1+,
! Ik|=A k|2 | | k|>A k|6~ A3
(A.1)

-

where we have used that Pk € H?(R?),[17,24] and therefore H |k|2|wP"k]2(k) H <00.
o0

In order to estimate the remaining part || (1 — IT) f ||, let us first compute

w"ek| ®) ikG-n gy

fx(y)= ,;(27[)3 /k<A

1 oik=y)
- (@2n)? /k|<A k| /Jlﬁ

Pek lk (x+z—y)
(277)3[ ’W )) /k<A dhdz

= ﬁ /R 3 \wl’ek<z>\ MWz (y) dz

using the projection ITp from Definition 2.1 and the function w, from Lemma 2.2.
Consequently we obtain by Lemma 2.2

2.
e*2dzdk

1 2
1= fil = = /R (WP @[ T Awese — Mgl dz

< eﬁ/3 2l [P az v eVALx +VE
R

where we have used (1 — IT) [Ty = ITp —ITand ng |1ﬁpek(z)|2 dz = 1. This concludes
the proof of the first part, since the terms £+/A and +/¢ are all bounded by a’g(“(’),
and the state "X satisfies ng |z|P |1//Pek(z)|2 dz < oo forany p > 0, see [24].
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In order to verify the second part, we write again 0y, o'k =4/ (3x,, fo+ 0y, go). In
analogy to Eq. (A.1) we have |d,,g0l> < % — o5+ Furthermore

~

dx, folx) = — \/% fR3 9z, (|¢Pek (2) |2> ITA w,(x) dz, hence proceeding as above yields

2
1=, ol < VA [ el ([val ) oz

+ (E«/Xlxl +~/Z) /R} |0z, (‘l/fpek(z)‘2>|dz.

This concludes the proof, since

/ N
R3

2
o, (\w"ekm\ )\dz = 2fR} 21y @) 10, ¥ () dz

5/ |z|2|w"ek(z>|2dz+/ IVyPE(2)[2 dz < oo
R3 R3

and similarly with |z| replaced by 1. O

Lemma A.2. There exists a constant C such that [ ‘(pPek (x) |2 dx < Ce forall
t<x;<t+e

teR e>0andi € {1,2,3}.

Proof. By the reflection symmetry of the Pekar minimizer, it is enough to prove the
statement for i = 1. For this purpose, let us define the function D : R — R as

Pek 2
D(1) I=/ ‘(ﬂ K(t, x2, x3)| dxpdxs
RZ

In order to prove the Lemma, we are going to show that D is a bounded function. Since
D(t) P 0, we have | D]lco < f |D’(t)|dt and furthermore
—> 00

/|D/(r>|dr s//
RZ

— 2/ (pPCk(x)
R3

where we have used that ¢"* € H! (R3). i

2
0 ‘¢Pek(f, xz,x3)‘ dx

Vx ‘(pPek

2
dX2d)C3 dr < f ‘
R3

Pek Pek |12 Pek |12
Ve | dx < [l 17 + [V |7 < oo,

Lemma A.3. The Pekar minimizers gofek satisfy ||gofek — Pek ||2 < Z?:l Pf <|<p§’ek|2)+

a~", where Pf is defined in Eq. (3.17).

Proof. Since [ — ¥ | < [ + k| = 2 P and [[f —pPK|* <

Pk ||V<pP°k ||2, we have ||<pfek — pPek ||2 < min{|x|?, 1}. Therefore it is enough to show

that we have min{x?, 1} < Pf (‘(pfek}z) + €. By the reflection symmetry of ¢, we
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, . . 2
can assume w.l.o.g. that i = 1. We identify WPIE (|¢fek| ) as
@

1 1 / NG ( 1 / Pek (|2 )
ire— ()| dy (1 - @ (y)| dy
4 ||¢Pek||2 ‘ ‘ H(pPekHZ ‘ ‘

YI=X1+e€ YI=X1—€

1 2
=(§—Fuo> + F))(F(ri—€) = F )+ (F(x) — F (i +6) (1— F(x1 — €))

| 2
> (E_F(xl)) +(F(x1—€)—=F(x1)) + (F(x1)— F (x1+¢))

1 2
> (E—F(x1)> —2Ce

with F (1) := W yi<t |Pek (y)|2 dy, where C is the constant from Lemma A.2.
(p C) Jl=

Since @Pek is radially decreasing, see [17], it is clear that |¢P k(x)?2 > ¢ > 0 for all
x € [=8,8]° where §,¢c > 0 are suitable constants. Assuming x; > 0 w.l.o.g. we

conclude that ||gPe* Hz (F(xp) — %) > ¢ Jo<y <y Lms.5p (1) dy = 4c8’minfxy, 8} 2
min{xy, 1}. O

B. Properties of the Projection I1

In the following section we discuss properties of the Projections IT defined in Eq. (4.1)
and [Tk defined in Definition 2.1. The first two results in Lemma B.1 and Corollary B.2
concern the space confinement of elements in the range of I, to be precise we show
that the associated potentials V, defined in Eq. (5.1) are concentrated in a ball of radius
af for a suitable ¢ > 0. While Lemma B.3 is an auxiliary result, we will show in the
subsequent Lemmas B.4 and B.5 that the operator J; ¢ is an approximation of the Hessian
HeSSl(pPek FPek where Ji ¢ 1s the operator defined in Eq. (5.14). Finally, we will show in
Lemma B.6 that the functions ITx w,, which appear in the definition of Hg in Eq. (2.2),
are confined in space around the origin. We will then use this result in order to quantify
the energy cost of having the electron and the phonon field localized in different regions
of space, see Corollary B.7.

The proof of the following auxiliary Lemma B.1 is an easy analysis exercise and is left
to the reader.

Lemma B.1. There exists a constant C > 0 such that for f € C3 (R3) and K :=
ki, k) x (ko ky) x (k3, k) C R withk; < k| < k; +2

I flle3exy
(1 +xr ) (1 +[x2]) (1 + [x3])

(@ Hw|=c
for all x = (x1,x2,x3) € R3, where I fllc3k) = maxjq|<3sup,cg (0% f(x)] and™
denotes the Fourier transform.

Corollary B.2. There exists a constant v > 0, such that for allr > 0 and ¢ € T1L> (R3)

v
[0 < “ @

where Il is defined in Eq. (4.1) and V,, is defined in Eq. (5.1).
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Proof. Let e, be the basis from Definition 2.1 corresponding to concrete choices of A
and ¢ defined above Eq. (4.1). Given ¢ = Y %,e, € TIL? (R*), A» € C, we have
the rough estimate

| Te\5,0 Vel = ZM 5,0 Veu | < VNl e [ Te\5,0 Ve -
n=1 =l

Since N < «? for a suitable constant p, it is enough to verify Eq. (B.1) for ¢ =

en. Making use of V,, = 1k, f with K, := (2] =€, 2] +£) x (5 — €, 25 +¢) x

(2% — ¢, 22 +¢) and f(k) = ———=2——L; and the fact that (z} +¢) — (z}! — ) =

J@n) [, i ak K

2¢ < 2, we obtain by Lemma B.1

2 2 1 2p
T3 Ve, gal’/ dx Sa? -,
[teos,.0 Ve wler (L e D21+ xs))2(1+ [x3))2 r

where we have used K, C R\ By(0) and therefore Iflle3 k) < 2_%A 0™ = al
for a suitable p’ > 0. O

Lemma B.3. For i € LZ(R3) and T > 0,

k— k')
/ / <t (|11//+( k) |1)c|/|2 dK'dk < (¥ ]1°T. (B.2)
¥k — k)P 45
/\//|>T (1+|k|2) |k/|2 dkde \/_ (B3)

Furthermore, interpreting \ as a multiplication operator we have
_1 _1
[a-»7 v 73| sivl, (B.4)

[ -8 a by = Ve, (B.5)

Proof. Equations (B.2) and (B.3) immediately follow from the estimates

W&k =K k=K
f/w arwp e //w T k= Iy |1?4n T,
|1ﬁ(k k)|2 / /f 1 \/T -~ N2 /
dk'dk < — —_———t— k — k)|~ dk'dk
//’w (L+ k) [k =2 Jei\Fa s T I ( )|

1 1 Iy II*
1

By making use of the fact that the integral kernel of (1 — A)_% Y (—A)™2 in Fourier

space is given as \)/fl(k\_kk&/ Eq. (B.4) immediately follows from Eqgs. (B.3) and (B.2)

with the concrete choice 7' = 1. Finally Eq. (B.5) follows from the fact that the corre-

. S Y=k ; ; ¥ (k=KD —
sponding integral kernel is given by W and the identity [ [ WD dk’dk =
dk [y 11? =272y 1% O

1
f [k [> (1+k[%)
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Lemma B.4. We have Tr [(1 —1I0) Liek (1- H)] < a_%for x| < 1, where L)l:ek is the
operator defined above Eq. (5.13).

Proof. With the definition v ek(y) := Pk (y — x), we can express the operator LPek
as LPK =2 ‘(1 — APk (—A)S

L, UPek(k—k') . . .
(—A)72 is given by % in Fourier space and since the one of IT reads

SN tep Btey )
"= e i da KT

integral kernel of the operator (1 — A)_% xpfek (—A)_% (1 —T1I) as

2
. Since the integral kernel of (1 — A)~2 ek

where C;» is as in Definition 2.1, we can further express the

.‘I/Pek(k k/ I[/Pek(k —q) 1
N fC * I Pek /
n k|? k| g k
\/1+| 7] ]1C7n (k/) W (k )

T 2
- Jen mrmda Naorerl
In the following we need to show that the L?(R? x R?) norm of the expression in

Eq. (B.6) is of order a3, As in the proof of Lemma 2.2, we will use R3\ (Un Czn) -
By U (IR{3\B A_4¢), where A and ¢ are defined above Eq. (4.1). Applying Eq. (B.2) with
T = 2¢ and Eq. (B.3) with T = A — 4/ yields

7 Pek N2
k—k 1
// Vs (2 )2| dk'dk <20+ ——— Sa75.
R\, Cn) L+ I1kID)IK] NINEY
WU TK =) 1y

. C.n 7] 2
In order to estimate the L% norm of f (k, k') := Z,]zv=1 : fV ”"‘i/('lq lgl Le..(k"),
Cen |2

let us define Yy 5.y () = ;- yelS1Yy Pk () fors e R, p e R¥and & := g — K/, and
compute

Lgs\ (U, ey ®). (B.6)

i

1 1
PP e~k — PP (k—q) = /0 £ VYR —k' +s58)ds = |g] /0 Vrse(k—k')ds.

Making use of the inequality ﬁ < €73 for ¢ € C,n and the fact that & =
Con

lg'12

g —k € K :=(=2¢,20)3 forall k', g € Cn, yields
// [Frsg e —K)] dg
K V1 k21K
N
— Ipxsé(k k)‘
< ]1,,158@1//‘— d
=2 e ® T+ rDRp %

- [V =)
=5 // “ae PR

where we have applied the Cauchy—Schwarz inequality. An application of Lemma B.3
with T = 1 then yields

1
/ / k) dk'dk < ¢! fk /0 e Pdsds < CE < a®,

N
[ f KO <D Lo, ke
n=1
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where we used that ||, s || < C for all |x| < 1 and a suitable constant C < oo. O

Lemma B.5. Recall the operator HY® from Eq. (1.4). Then there exists a constant ¢ > 0
such that J; ¢ > cm for € small enough and o large enough. Furthermore

‘Tran(Rz)[l — Ve ] Ty [1 - vHPek]‘ <eta s (B.7)

for |t| < €, € small enough and o large enough.

Proof. Recall the definition of 7 and J; ¢ in, respectively below, Eq. (5.13) for |7| <
€ < 84, where 8, is defined before Definition 5.3. In the following we are going to verify
that [|(1 + €)m (K)}:[ek + eLE{ek) 7 |lop < 1 — c for a suitable constant ¢ > 0, small € and
|t| < €, which immediately implies J; . > ¢ 7. Let 7, be the orthogonal projection onto
{8y, 0P, 8y, 0P 9., 0Pk )L and let ¢, be defined in Eq. (5.11). Then we estimate
a)Cn @561{

w _——,

T 110, Fkl

3
Tr{lmo — 71 <2)
n=1

3 Pek Pek 3 Pek
Ox, @ Oy, ® ‘ Ox, ¥
f 2 n _ n1 X + 2 (0 _ M
,,Zzl 100, 0P 118, 0P| ,,Z=1 " 10, P
2
Sl +a 3, (B.3)

where we have used Lemma A.1 in order to obtain || 9y, Pk — 19y, | < a_% and the
fact that ™ € H?(R?), which yields [|dx, oP* — 9y, P || < |x] || Vo, P || < Ixl.
Hence Tr Hno — Ty, H < e+ =3 for ¢ small enough. It is a straightforward conse-
quence of (7.1) that the operator norm of 7o K Pek 7 is bounded by [0 K™ k10 lop <1
(see also [22, Lemma 1.1]). Therefore we obtain, using m = Ilmrg = oI,

|a+erm (kP*reLH)

< |a+ermo (K< +eLlH)m
op

op
Pek
— Hnonf o Hop+ 0 ()

Pek
= HJT_X,K T_y,

+0(e) = Hnoerkno H +0()+0( ) <l—c (BY)
op op

for a suitable constant ¢ > 0, € small enough, |¢| < € and « large enough.
In order to verify Eq. (B.7), let |[¢| < € and € be small enough such that J; . > 0, and
let us compute

Tran(Rz)[l — Ve ] =Tr [1 + g — \/1 — (1+€)m (KPek + e LPeK) n] ’

Furthermore we have the identity Tr [1 — 1= erk] =Tr [1 +my — /1 — noKPekno]

=Tr [1 — /1 —m, KPkmy, ] +Tr [n(ﬂ Using the definition of KX in Eq. (5.6), we

can express Tran(R3)[l — Ve ] —Tr [1 — HPek] as

Tr [1 - \/1 — (1+€)m (KD + e LPeK) ni| —Tr [1 e ngknx,] . (B.10)
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In the following let f be a smooth function with compact support satisfying f(x) =
1 —+/1—-xfor0 < x < 1— ¢, where c is as in Eq. (B.9), and let us define the

operators A := (l+¢€)m (Kftek+eLEtek) wand B 1= my, Kfteknxt. Using Eq. (B.10) and
|1 +e)m (K};ek + eLEfk) bia ”Op < 1 — ¢ for t and € small enough, we obtain

Tenp |1 = Ve | = Te[1 = VEPR ]| = 1T 7 ca) - £(B1)

1 _
<IIfA) = fB; = —/ tf@|de|[A—Bl, (B.11)
f FB)lly T Rl f @] 1
where || - |1 is the trace norm and fis the Fourier transformation of f. In order to

estimate the right hand side of Eq. (B.11), we write A — B = T + moT> o + 7 T3 with
Ty := (o — 7x ) KL mo+ 710, KY™ (0 — 71y,), T := (IT— DK F*TT+ K (M — 1) and
T3 := € (K™ + (1+ €)LE®). Clearly we have the estimates |7 T37||; < [|T3]l1 < €
and |71l S llwo—7, 11 S t+a~3 by Eq. (B.8), using the fact that K};ek is trace-class,
which follows from K < LPek and the fact that LP®* is trace-class, see Eq. (B.4) with
¥ := P Using Lemma B.4 together with a Cauchy—Schwarz estimate for the trace
norm, we can bound the final contribution 77> by

1 1
lzoTomoll < 1Tl < 2T [IKFST]* e [(1 = ) KF* (1 - ) |* S0t
O

The following Lemma B.6 is an auxiliary result, which we will use to quantify the
energy cost of having the electron and the phonon field localized in different regions of
space, see Corollary B.7.

Lemma B.6. Let wo(y) = 3 # and let T1x be the projection defined in Definition
2.1. Then there exist a constant D such that

D
I Mgwol < —
[ R3\B,(0) ' 'K oll < «/7

forallK,r > 0.

X(Jk|<K)
V2m2 k|

, where € > 0 and x€ is defined in

Proof. The Fourier transform of ITgwyg is given by

X Qe<|k|<K)
V22 k|

. Defining the function u

via its Fourier transform as u(k) :=
Eq. (3.1), we have

I 2 <t L gs / L=
KWo — U = A9 0 A_9 ) = >
272 Jik<ze 1kI? 272 JK—e<ikj=k+e [kI? T

and consequently [ 1g3\ g o) [Tk woll </ ?T—E + [[Lgs3\ g, oyu |l. Making use of the obser-
vation that DL;|]1R3\ B0 = % yields

1 1 2 1
2 2 24, _ NTE 2
Mg\, ul” = 3 A@ IyFlut)ifdy = = |Viia]|” = 32,2 11— fal
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with £y (k) := % and (k) 1= W.Clearlywecanbound Il <
4 1

f|k|>e ﬁdk = ?’T Furthermore we obtain, using || Vi x€ 2¢€ < |k] < K)o < -

, 1 1 1 4
12017 S = Tzdk+ —dk ) =—.
€= \Je<ik<ze Ikl K—e<|k|<K+e Kl €

In combination this yields [ L3\ g, o)1k woll? < €+ i, which concludes the proof
with the concrete choice € := % O

Corollary B.7. Given A C R3, let us define the operator Ny := 5?4 with Da(p) :=
fA dp(v), using the notation of Definition 3.1, i.e. «>* N4 counts the number of particles

in the region A. Furthermore let A’ C R3. Then given a constant C > 0, there exists a
constant D > 0 such that for all states ¥ with supp (¥) C A’ and x N < C)¥ = ¥

D

(WIHK W) = Bo+ (WINaIY) — om0

where K > 0.

Proof. Let us define the function v, := 14T g w, and rewrite Hg — Ny as
Hg —Na=—Ay —a([gwy —vy) —a’ gwe —v) + N = Na —a(v) —a’ (v).

Identifying L2(R°, F(L2(R?))) = L2(R?, F(L*(®\A) ) ) @ F(L2(4) ), we ob-

serve that — A, — a (TIgwy — vy) — a’ (Mgwy — vy) + N — Ny is the restriction (in
the sense of quadratic forms) of H to states of the form ¥’ ® 2, where Q2 is the vacuum

in F (LZ(A) ), and therefore we have the operator inequality —A, —a (TTxw, — vy) —
a’ (Mgwy — vy) + N — Ny > E,. Consequently

(W[Hg — Na|W¥) = Eq — (Wa (v) +a" (0) |W) = Ey — sup [Jve]| (1+C),

xeA’

where we have used the operator inequality a (ve) +a’ (vy) = —|lv. || (1 +N), as well
as the assumptions supp (W) C A’and x (N < C) ¥ = ¥, inthe second inequality. This
concludes the proof, since || v, [|>= [, ITTx wo(y—x)[*dy< f\y|3dist(A,A’) Mg wo(y)|*dy

forall x € A’ and f|y\zdist(A,A/) I gwo(y)>dy < m, see Lemma B.6. O
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