
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-023-04841-3
Commun. Math. Phys. 404, 287–337 (2023) Communications in

Mathematical
Physics

The Fröhlich Polaron at Strong Coupling: Part I—The
Quantum Correction to the Classical Energy

Morris Brooks1, Robert Seiringer2

1 Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
E-mail: morris.brooks@math.uzh.ch

2 IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria. E-mail: rseiring@ist.ac.at

Received: 21 November 2022 / Accepted: 29 August 2023
Published online: 10 October 2023 – © The Author(s) 2023

Abstract: We study the Fröhlich polaron model in R
3, and establish the subleading

term in the strong coupling asymptotics of its ground state energy, corresponding to the
quantum corrections to the classical energy determined by the Pekar approximation.

1. Introduction and Main Results

This is the first part of a study of the asymptotic properties of the Fröhlich polaron,
which is a model describing the interaction between an electron and the optical modes
of a polar crystal [12]. In the regime of strong coupling between the electron and the
optical modes, also called phonons, it is a well known fact [1,7,20] that the ground state
energy of the Fröhlich polaron is asymptotically given by the minimal Pekar energy
[26], which can be considered as the ground state energy of an electron interacting with
a classical phonon field. This result is motivated by using appropriately scaled units, see
e.g. [28], which demonstrates that the strong coupling regime is a semi-classical limit in
the phonon field variables. In such units the Fröhlich Hamiltonian, acting on the space
L2
(
R
3
) ⊗ F

(
L2
(
R
3
))
, reads

H := −�x − a (wx ) − a† (wx ) +N , (1.1)

where the annihilation and creation operators satisfy the rescaled canonical commutation
relations

[
a( f ), a†(g)

] = α−2〈 f |g〉 for f, g ∈ L2
(
R
3
)
with α > 0 being the coupling

strength, the interaction is given bywx (x ′) := π− 3
2 |x ′−x |−2 andN is the corresponding

(rescaled) particle number operator, i.e.N := ∑∞
n=1 a

†(ϕn)a(ϕn)where {ϕn : n ∈ N} is
an orthonormal basis of L2

(
R
3
)
. The definition of the Fröhlich Hamiltonian in Eq. (1.1)

has to be understood in the sense of quadratic forms, see for example [28], due to the
ultraviolet singularity in the interactionwx . By substituting the annihilation and creation
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operators a and a† in Eq. (1.1) with a (classical) phonon field ϕ ∈ L2
(
R
3
)
, i.e. replacing

a( f ) with 〈 f |ϕ〉 and a†( f ) with 〈ϕ| f 〉, we arrive at the Pekar energy
E (ψ, ϕ) := 〈

ψ
∣
∣ − �x − 〈wx |ϕ〉 − 〈ϕ|wx 〉 + ‖ϕ‖2 ∣∣ψ 〉

=
∫

|∇ψ(x)|2 dx −
∫∫

wx (x
′)
(
ϕ(x ′) + ϕ(x ′)

)
|ψ(x)|2 dx ′dx

+
∫

|ϕ(x ′)|2dx ′, (1.2)

whereψ ∈ L2
(
R
3
)
is thewave-function of the electron.We further define the Pekar func-

tionalFPek(ϕ) := inf‖ψ‖=1 E (ψ, ϕ) and theminimalPekar energy ePek := infϕ FPek(ϕ).
It is known that the ground state energy Eα := inf σ (H), as a function of the coupling
strength α, is asymptotically given by theminimal Pekar energy ePek in the limit α → ∞
[1,7]. More precisely, one has ePek ≥ Eα = ePek + Oα→∞

(
α− 1

5

)
, as shown in [20].

In this work we are going to verify the prediction in the physics literature [2,3,30] that
the sub-leading term in this energy asymptotics is actually of order α−2 with a rather
explicit pre-factor

Eα = ePek − 1

2α2 Tr
[
1 −

√
HPek

]
+ oα→∞

(
α−2

)
, (1.3)

where ϕPek is a minimizer of FPek and HPek is the Hessian of FPek at ϕPek restricted to
real-valued functions ϕ ∈ L2

R

(
R
3
)
, i.e. HPek is an operator on L2

(
R
3
)
defined by

〈ϕ|HPek|ϕ〉 = lim
ε→0

1

ε2

(
FPek

(
ϕPek + εϕ

)
− ePek

)
(1.4)

for all ϕ ∈ L2
R

(
R
3
)
. The prediction in Eq. (1.3) has been verified previously for polaron

models either confined to a bounded region of R
3 [11] or to a three-dimensional torus

[9]. The methods presented there exhibit substantial problems regarding their extension
to the unconfined case, however. In this paper we present a new approach, which is partly
based on techniques previously developed in the study of Bose–Einstein condensation
and the validity of Bogoliubov’s approximation for Bose gases [5,15,16] in the mean-
field limit. We employ a localization method for the phonon field, which breaks the
translation-invariance and effectively reduces the problem to the confined case, allowing
for an application of some of the methods developed in [9,11]. Our main result is the
proof of Eq. (1.3) in the following Theorem 1.1.

Theorem 1.1. Let Eα be the ground state energy of H in (1.1). For any s < 1
29

Eα = ePek − 1

2α2 Tr
[
1 −

√
HPek

]
+ O

(
α−(2+s)

)
(1.5)

for all α ≥ α(s), where α(s) > 0 is a suitable constant.

As an intermediate result, which might be of independent interest, we will establish
the existence of a family of approximate ground states, by which we mean states whose
energy is given by the right side of (1.3), exhibiting complete Bose–Einstein condensa-
tion with respect to a minimizer ϕPek of the Pekar functionalFPek. We refer to Theorem
3.13 for a precise statement.
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In contrast to the lower bound, the proof of the upper bound on Eα in Eq. (1.3) is
essentially the same as for confined polarons [9,11] and can be obtained by the same
methods. It is also contained as a special case in [22], where it has been verified that the
ground state energy Eα(P) as a function of the (conserved) total momentum P can be
bounded from above by

Eα(P) ≤ ePek − 1

2α2 Tr
[
1 −

√
HPek

]
+

|P|2
2α4m

+ Cεα
− 5

2 +ε, (1.6)

where m := 2
3‖∇ϕPek‖2 and ε > 0, with Cε a suitable constant. Since Eα = Eα(0)

[8,13,23], Eq. (1.6) for the specific case P = 0 proves (1.5) as an upper bound, hence
to establish Theorem 1.1 it suffices to prove (1.5) as a lower bound. Combining (1.6)
with Theorem 1.1, one further obtains an upper bound on the increment Eα(P) − Eα ,
a quantity related to the effective mass of the polaron [4,14,18,29].

The proof of Eq. (1.3) for confined systems in [9,11] requires an asymptotically
correct local quadratic lower bound on the Pekar functional FPek(ϕ) for configurations
close to a minimizer, as well as a sufficiently strong quadratic lower bound valid for
all configurations. While our proof of Theorem 1.1 makes use of a local quadratic
lower bound as well, we believe that in the translation-invariant setting any globally
valid quadratic lower bound cannot be sufficiently strong, and therefore new ideas are
necessary. As we explain in the following, we circumvent this problem by constructing
an approximate ground state 	, which is essentially supported close to a minimizer of
the Pekar functional FPek, and consequently we only require a locally valid quadratic
lower bound.

Proof strategy of Theorem 1.1. Even though we want to verify a lower bound on Eα ,
let us first discuss how test functions providing an asymptotically correct upper bound are
expected to look like. In the following let (ψPek, ϕPek) denote a minimizer of the Pekar
energy E defined in Eq. (1.2). It has been established in [17] that all other minimizers
are given by translations ϕPek

x (x ′) := ϕPek(x ′ − x) and ψPek
x (x ′) := eiθψPek(x ′ − x) of

ϕPek and eiθψPek, where θ is an arbitrary phase. W.l.o.g. let us denote in the following
by (ψPek, ϕPek) the unique minimizer of E such that ϕPek is radial and ψPek is non-
negative. Then all the product states of the form ψPek

x ⊗ �ϕPek
x

with x ∈ R
3, where

�ϕPek
x

is the coherent state corresponding to ϕPek
x (defined by a(w)�ϕ = 〈w|ϕ〉�ϕ for

all w ∈ L2
(
R
3
)
), have the asymptotically correct leading term in the energy 〈ψPek

x ⊗
�ϕPek

x
| H |ψPek

x ⊗ �ϕPek
x

〉 = ePek. By taking convex combinations of these states on the
level of density matrices, we can construct a large family of low energy states

�μ :=
∫

R3
|ψPek

x ⊗ �ϕPek
x

〉〈ψPek
x ⊗ �ϕPek

x
|dμ(x)

for any given probability measure μ on R
3. Clearly, �μ exhibits the correct leading

energy 〈 H 〉�μ = ePek. Our proof of the lower bound given in Eq. (1.5) relies on the
observation that asymptotically as α → ∞, any low energy state 	 is of the form �μ

with a suitable probability measure μ on R
3. Since we only need this statement for the

phonon part of 	, we will verify the weaker statement

Trelectron
[|	〉〈	|] ≈

∫

R3
|�ϕPek

x
〉〈�ϕPek

x
|dμ(x)
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instead, see Theorem 3.2 for a precise formulation. This statement is analogous to a
version of the quantum de Finetti theorem used in [15] in order to verify the Hartree
approximation for Bose gases in a general setting. The main technical challenge of this
paper will be the construction of approximate ground states 	 where the corresponding
measure is a delta measure, μ = δ0, i.e. the construction of states where the phonon part
is essentially given by a single coherent state �ϕPek . The method presented here is based
on a grand-canonical version of the localization techniques previously developed for
translation-invariant Bose gases in [5], and in analogy to the concept of Bose–Einstein
condensation we say that such states satisfy (complete) condensation with respect to the
Pekar minimizer ϕPek. Heuristically this means that only field configurations ϕ close
to the minimizer ϕPek are relevant, hence the translational degree of freedom has been
eliminated and the system is effectively confined.

Based on this observation we can adapt the strategy developed for confined polarons
in [9,11], which starts by introducing an ultraviolet regularization in the interaction wx
with the aid of a momentum cut-off�, leading to the study of the truncated Hamiltonian
H�. Using a lower boundon the excitation energyFPek(ϕ)−ePek that is, up to a canonical
transformation, quadratic in the field variablesϕ and valid for allϕ close to theminimizer
ϕPek, one can bound the truncated Hamiltonian from below by an operator that is, up to
a unitary transformation, quadratic in the creation and annihilation operators. The lower
bound is only valid, however, if tested against a state satisfying (complete) condensation
in ϕPek. Finally an explicit diagonalization of this quadratic operator yields the desired
lower bound in Eq. (1.5).

The canonical transformation on the phase space L2
(
R
3
)
, respectively the corre-

sponding unitary transformation on the Hilbert space F
(
L2
(
R
3
))
, is one of the key

novel ingredients in our proof. It turns out to be necessary due to the presence of the
translational symmetry, which makes it impossible to find a non-trivial positive semi-
definite quadratic lower bound onFPek(ϕ)−ePek. This issue has already been addressed
in the study of a polaron on the three dimensional torus [9], where a different coordinate
transformation is used, however. The canonical/unitary transformation presented in this
paper is an adaptation of the one used in the study of translation-invariant Bose gases in
[5].

Outline The paper is structured as follows. In Sect. 2 we will introduce an ultravi-
olet cut-off as well as a discretization in momentum space, and provide estimates on
the energy cost associated with such approximations. Section3 then contains our main
technical result Theorem 3.13, in which we verify the existence of approximate ground
states satisfying (complete) condensation with respect to a minimizer ϕPek of the Pekar
functional FPek. Subsequently we will discuss a large deviation estimate for such con-
densates in Sect. 4, quantifying the heuristic picture that only configurations close to the
point of condensationmatter. In Sect. 5we then discuss properties of the Pekar functional
FPek. In particular, we will discuss quadratic approximations around the minimizer ϕPek

as well as lower bounds that are, up to a coordinate transformation, quadratic in ϕ. To-
gether with the error estimates from Sect. 2 and the large deviation estimate from Sect. 4,
applied to the approximate ground state constructed in Sect. 3, this will allow us to verify
our main Theorem 1.1 in Sect. 6. The subsequent Sect. 7 contains the proof of Theorem
3.2, which can be interpreted as a version of the quantum de Finetti theorem adapted to
our setting. Finally, Appendices A and B contain auxiliary results concerning the Pekar
minimizer ϕPek and the projections introduced in Sect. 2, respectively.

Outlook In the second part of this study of the asymptotic properties of the Fröhlich
polaron [6], the ground state energy Eα(P) of the operator H in the presence of a
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momentum constraint P = P will be investigated, where the total momentum operator
is defined as P := 1

i ∇ + α2
∫

R3 ka
†
k akdk, and the lower bound

Eα(P) ≥ ePek − 1

2α2 Tr
[
1 −

√
HPek

]
+ min

{ |P|2
2α4m

, α−2
}
+ o

(
α−2

)

will be established. Together with the upper bound in Eq. (1.6) derived in [22], one
observes that the energy-momentum relation of a polaron agrees asymptotically with
the one of a free particle having an effectively increased mass α4m, where α4m is the
celebrated Landau–Pekar formula for the mass of a polaron in the regime of strong
couplings.

2. Models with Cut-off

In this section we will estimate the effect of the introduction of an ultraviolet cut-off
� > 0, as well as a discretization in momentum space with box length � > 0, on the
ground state energy, following similar ideas as in [9,11,20]. We will eventually apply
these results for two different levels of coarse graining, a rough scale used in the proof of
Theorem 3.2 in Sect. 7, which applies to low energy states with energy ePek + oα→∞(1),
and a fine scale precise enough to yield the correct ground state energy up to errors of
order oα→∞

(
α−2

)
, see the proof of Theorem 1.1 in Sect. 6.

Definition 2.1. Given parameters 0 < � < �, let us define for z ∈ 2� Z
3\{0} the cubes

Cz := [z1 − �, z1 + �) × [z2 − �, z2 + �) × [z3 − �, z3 + �), and let z1, .., zN be an
enumeration of the set of all z = (z1, z2, z3) ∈ 2� Z

3\{0} such that Cz ⊂ B�(0), where
Br (0) is the (open) ball of radius r around the origin. Then we define the orthonormal
system en ∈ L2

(
R
3
)
as

en(x) := 1
√

(2π)3
∫
Czn

1
|k|2 dk

∫

Czn

ei k·x

|k| dk,

as well as the translated system ey,n(x) := en(x − y) and the orthogonal projection
�

y
�,� onto the space spanned by {ey,1, . . . , ey,N }. Furthermore we denote with �� the

projection onto the spectral subspace of momenta |k| ≤ �.

Lemma 2.2. Let wx (x ′) := π− 3
2 |x ′ − x |−2. Then we obtain for 0 < � < � and

x, y ∈ R
3 the following estimate on the L2 norm

∥∥∥��wx − �
y
�,�wx

∥∥∥ � |x − y|�√� +
√

�.

Proof. With ·̂ denoting Fourier transformation, we have

√
2π2 ̂�

y
�,�wx (k) =

N∑

n=1

1
∫
Czn

1
|k′|2 dk

′

∫

Czn

eik
′·(y−x)

|k′|2 dk′ 1

|k|1Czn (k),
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wherewehaveused that �̂�wx (k) = 1√
2π2|k|1B�(0)(k).Defining the functionσn(k, x, y)

:= 1∫
Czn

1
|k′|2 dk

′
∫
Czn

eik
′·(y−x)−eik·(y−x)

|k′|2 dk′, we further have

√
2π2

(
̂�
y
�,�wx (k) − �̂�wx (k)

)
=

N∑

n=1

σn(k, x, y)
1

|k|1Czn (k) − 1

|k|1A(k)

with A := B�(0)\
(⋃N

n=1 Czn
)
. Making use of the estimate |σn(k, x, y)|2 ≤ |y −

x |2 maxk′∈Czn
|k′ − k|2 ≤ 12|x − y|2�2 for k ∈ Czn , we therefore obtain

N∑

n=1

∫

Czn

|σn(k, x, y)|2 1

|k|2 dk ≤ 12|x − y|2�2
∫

|k|≤�

1

|k|2 dk = 48π |x − y|2�2�.

Since A ⊂ B2� ∪ B� \ B�−4� we consequently have
∫
A

1
|k|2 dk � �. ��

Definition 2.3. For y ∈ R
3, 0 < � < �, let us define the cut-off Hamiltonians

H
y
�,� := −�x − a

(
�

y
�,�wx

)
− a†

(
�

y
�,�wx

)
+N , (2.1)

H� := −�x − a (��wx ) − a† (��wx ) +N . (2.2)

These Hamiltonians can be interpreted as the restriction of H (in the quadratic form
sense) to states where only the phonon modes in �

y
�,�L

2
(
R
3
)
, respectively ��L2

(
R
3
)
,

are occupied. In particular, this implies that inf σ(H
y
�,�) ≥ Eα as well as inf σ(H�) ≥

Eα . In the following we shall quantify the energy increase due to the introduction of the
cut-offs.

Note that the α-dependence of the HamiltoniansH,Hy
�,� andH� only enters through

the rescaled canonical commutation relations
[
a( f ), a†(g)

] = α−2〈 f |g〉 satisfied by
the creation and annihilation operators a† and a, and we will usually suppress the α

dependency in our notation for the sake of readability. In the rest of this paper, we
will always assume that α is a parameter satisfying α ≥ 1 and, in case it is not stated
otherwise, estimates hold uniformly in this parameter for α → ∞, i.e. we write X � Y
in case there exist constants C, α0 > 0 such that X ≤ C Y for all α ≥ α0.

The proof of the subsequent Lemma 2.4 closely follows the arguments in [20,21],
where it was shown thatH is bounded from below and well approximated by an operator
containing only finitely many phonon modes. For the sake of completeness we will
illustrate the proof, which is based on the Lieb–Yamazaki commutator method, see [21].
In the following Lemma 2.4, we will use the identification L2

(
R
3
) ⊗ F

(
L2
(
R
3
)) ∼=

L2
(
R
3,F

(
L2
(
R
3
)))

, in order to represent elements 	 ∈ L2
(
R
3
) ⊗ F

(
L2
(
R
3
))

as
functions x �→ 	(x) with values in F

(
L2
(
R
3
))
, allowing us to define the support

supp (	) as the closure of {x ∈ R
3 : 	(x) �= 0} and to introduce a space cut-off L > 0.

Lemma 2.4. We have for all 0 < � < � ≤ K and L > 0, and states	 with supp (	) ⊂
BL(y) the estimate

∣
∣∣〈	|HK − H

y
�,�|	〉

∣
∣∣ �

(

L�
√

� +
√

� +

√
1

�
− 1

K

)

〈	| − �x +N + 1|	〉. (2.3)
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Furthermore, there exists a constant d > 0 such that

HK ≥ − d

t2
− t

(
N + α−2

)
, (2.4)

HK ≥ −d +
1

2
(−�x +N ) (2.5)

for all t > 0, K ≥ 0 and α ≥ 1.

Proof. Let us define the functions unx by û
n
x (k) := 1√

2π2
1BK (0)\B�(0)(k)

kneik·x
|k|3 . We have

a
(
∂xn u

n
x

) − a†
(
∂xn u

n
x

) = [
∂xn , a

(
unx
)−a†

(
unx
)]

and

± i
[
∂xn , a

(
unx
)−a†

(
unx
)] ≤ −2ε∂2xn+

1

ε

(
a(unx )

†a(unx )+a(unx )a(unx )
†
)

≤ −2ε ∂2xn +
‖unx‖2

ε

(
2N + α−2

)
= 2‖unx‖

(
−∂2xn +N +

1

2
α−2

)
,

where we have applied the Cauchy–Schwarz inequality in the first line and used the
specific choice ε := ‖unx‖ in the last identity. Note that the L2-norm ‖unx‖ is independent
of x , and furthermore we can express ±

(
H

y
�,� − HK

)
as

± a
(
��wx−�

y
�,�wx

)
±a†

(
��wx−�

y
�,�wx

)
± i

3∑

n=1

(
a
(
∂xn u

n
x

)− a†
(
∂xn u

n
x

))

≤ 2
∥∥∥��wx − �

y
�,�wx

∥∥∥ (1 +N ) + 2 max
n∈{1,2,3} ‖u

n
x‖

(
−�x + 3N +

3

2
α−2

)
.

This concludes the proof of Eq. (2.3), sincewe have
∥∥∥��wx − �

y
�,�wx

∥∥∥ � L�
√

�+
√

�

for all x ∈ supp (	) by Lemma 2.2 and ‖unx‖2 � 1
�

− 1
K . The other statements in

Eqs. (2.4) and (2.5) can be verified similarly, using the decomposition�Kwx = �K ′wx+∑3
n=1

1
i ∂xn g

n
x with ĝ

n
x (k) := 1√

2π2
1BK (0)\BK ′ (0)(k)

kneik·x
|k|3 where K ′ ≤ K is large enough

such that
∥∥gnx

∥∥ < 1
12 . ��

The subsequent Theorem 2.5 is a direct consequence of the results in [11] and [9,25],
where multiple Lieb–Yamazaki bounds as well as a suitable Gross transformation are
used in order to verify that the energy cost of introducing an ultraviolet cut-off � =
α

4
5 (1+σ) with σ > 0 is only of order oα→∞

(
α−2

)
. Combined with an application of

the IMS localization formula, as was also done in [20], one can furthermore introduce
a space cut-off at length scale L = α1+σ with an energy cost of order oα→∞

(
α−2

)
as

well.

Theorem 2.5. Given a constant 0 < σ ≤ 1
4 , let us introduce the momentum cut-off

� := α
4
5 (1+σ) as well as the space cut-off L := α1+σ . Then there exists a sequence of

states 	�
α satisfying 〈	�

α |H�|	�
α〉 − Eα � α−2(1+σ) and supp

(
	�

α

) ⊂ BL(0), where
Eα is the ground state energy of H.
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Proof. We start by arguing that

inf σ (H�) − Eα � �− 5
2 + α−1�− 3

2 + α−2�− 1
2 (2.6)

for large α. An analogous boundwas shown in [11, Prop. 7.1] in the confined case, where
additional powers of ln� appear due to complications coming from the boundary. In
the translation-invariant setting on a torus, (2.6) is shown [9, Prop. 4.5], and that proof
applies verbatim also in the unconfined case considered here (as has been worked out
also in [25]).

By our choice of� = α
4
5 (1+σ), we immediately obtain inf σ (H�)− Eα � α−2(1+σ).

Hence there exists a state 	 satisfying 〈	|H�|	〉 − Eα � α−2(1+σ). In order to
construct a state which is furthermore supported on the ball BL(0), let χ be a non-
negative H1

(
R
3
)
function with

∫
χ(y)2dy = 1 and supp (χ) ⊂ B1(0). We define

	y(x) := L− 3
2 χ

(
L−1(x − y)

)
	(x) for y ∈ R

3 and compute, using the IMS identity,
∫

〈	y |H�|	y〉 dy = 〈	|H�|	〉 + L−3
∫∫ ∣∣∣∇xχ

(
L−1(x − y)

)∣∣∣
2
dy ‖	(x)‖2dx

= 〈	|H�|	〉 + L−2‖∇χ‖2 = Eα + Oα→∞
(
α−2(1+σ)

)
,

see also [20] where an explicit choice of χ is used. Since
∫ ‖	y‖2dy = 1, there clearly

exists a y ∈ R
3 such that the state 	�

α := ‖	y‖−1	y satisfies 〈	�
α |H�|	�

α〉 − Eα �
α−2(1+σ). By the translation invariance of H� we can assume that y = 0. ��

3. Construction of a Condensate

The purpose of this section is to construct a sequence of approximate ground states
	α , i.e. states with 〈	α|H�|	α〉 = Eα + oα→∞

(
α−2

)
and � as in Theorem 2.5, that

additionally satisfy complete condensation with respect to a minimizer ϕPek of the Pekar
functionalFPek, i.e. the phonon part of 	α is in a suitable sense close to a coherent state
�ϕPek with �ϕPek := eα2a†

(
ϕPek

)−α2a
(
ϕPek

)
�, where � is the vacuum in F

(
L2
(
R
3
))
, see

Lemma 3.12 and Theorem 3.13. The construction will be based on various localization
procedures of the phonon field with respect to operators of the form F̂ defined in the
subsequent Definition 3.1.

3.1. Properties of the F̂ operators. In this subsection we are going to introduce a useful
class of operators on F

(
L2
(
R
3
))
, which we will refer to as F̂ operators, and provide

an asymptotic formula for their expectation value 〈	α|F̂ |	α〉 in Theorem 3.2 as well as
an estimate on the energy cost of localizing with respect to such an operator in Lemma
3.3.

Definition 3.1. Given a function F : M
(
R
3
) −→ R, where M

(
R
3
)
is the set of

finite (Borel) measures on R
3, let us define the operator F̂ acting on the Fock space

F
(
L2
(
R
3
)) =

∞⊕
n=0

L2
sym(R

3×n) as F̂
∞⊕
n=0

	n :=
∞⊕
n=0

Fn	n , where

(
Fn	n

)
(x1, . . . , xn) := F

(

α−2
n∑

k=1

δxk

)

	n(x
1, . . . , xn)
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and F0	0 = F(0)	0, i.e. F̂ acts component-wise on
∞⊕
n=0

L2
sym(R

3×n) by multiplication

with the real valued function (x1, . . . , xn) �→ F
(
α−2∑n

k=1 δxk
)
.

A particularly important example of an F̂ operator is the particle number N , which
can be written as N = F̂ with F(ρ) := ∫

dρ. More generally we can write, for any
bounded and measurable f,

∫
f (x)a†xaxdx = F̂ f with Ff (ρ) := ∫

f dρ. Since the
assignment F �→ F̂ is linear and multiplicative, we can represent any polynomial in
operators of the form

∫
f (x)a†xaxdx as an F̂ operator as well.

Note that in order to keep the notation simple, we will allow F : M (
R
3
) −→ R to

act on non-negative L1
(
R
3
)
functions q : R

3 −→ [0,∞) as well by identifying them
with the corresponding measure λ ∈ M

(
R
3
)
defined as dλ

dx = q(x).
Before we discuss the asymptotic formula for the expectation value 〈	α|F̂ |	α〉, let

us introduce a family of cut-off functions χε (a ≤ f (ρ) ≤ b) where ε ≥ 0 determines
the sharpness of the cut-off. In the following let α, β : R −→ [0, 1] be C∞ functions
such that α2 + β2 = 1, supp (α) ⊂ (−∞, 1) and supp (β) ⊂ (−1,∞). For a given
function f : M

(
R
3
) −→ R and constants −∞ ≤ a < b ≤ ∞, let us define the

function χε (a ≤ f ≤ b) : M (
R
3
) −→ [0, 1] as

ρ �→ χε (a ≤ f (ρ) ≤ b) :=
{

α
(

f (ρ)−b
ε

)
β
(

f (ρ)−a
ε

)
, for ε > 0

1[a,b] ( f (ρ)) , for ε = 0.
(3.1)

Note that
∑

j∈J χε
(
a j ≤ f (ρ) ≤ b j

)2 = 1 in case the intervals [a j , b j ) are a disjoint
partition of R with −∞ ≤ a j < b j ≤ ∞. Usually we will use functions f here that are
related to an integral over ρ, e.g. f (ρ) := ∫

dρ.
Similarly, we define the operatorχε (a ≤ T ≤ b) := ∫

χε (a ≤ t ≤ b) dE(t), where
T is a self-adjoint operator and E is the spectral measure with respect to T . Furthermore
we will write χ (a ≤ f ≤ b), respectively χ (a ≤ T ≤ b), in case ε = 0 as well as
χε (a ≤ f ), respectively χε (a ≤ T ), and χε ( f ≤ b), respectively χε (T ≤ b), in case
b = ∞ or a = −∞, respectively.

The proof of the following Theorem 3.2 will be carried out in Sect. 7. It is reminiscent
of the quantum de-Finetti Theorem, and establishes in addition that for low energy states
phonon field configurations are necessarily close to the set of Pekar minimizers given
by {ϕPek

x }x∈R3 .

Theorem 3.2. Givenm ∈ N,C > 0 and g ∈ L2
(
R
3
)
, we can find a constant T > 0 such

that for allα ≥ 1 and states	 satisfyingχ (N ≤ C)	 = 	 and 〈	|HK |	〉 ≤ ePek+δe

with δe ≥ 0 and K ≥ α
8
29 , there exists a probability measure μ on R

3, with the property
∣
∣∣∣
〈
	
∣∣F̂

∣∣	
〉 −

∫

R3
F
(
|ϕPek

x |2
)
dμ(x)

∣
∣∣∣ ≤ T ‖ f ‖∞ max

{√
δe, α− 2

29

}
(3.2)

for all F : M (
R
3
) −→ Rof the form F (ρ) = ∫

. . .
∫

f (x1, . . . , xm) dρ(x1) . . . dρ(xm)

with bounded f : R
3×m −→ R, and furthermore

∣∣∣∣
〈
	

∣∣∣W−1
g NWg

∣∣∣	
〉
−
∫

R3

∥∥∥ϕPek
x − g

∥∥∥
2
dμ (x)

∣∣∣∣ ≤ T max
{√

δe, α− 2
29

}
, (3.3)

where Wg is the Weyl operator characterized by W−1
g a(h)Wg = a(h) − 〈h|g〉.
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In the subsequent Lemma 3.3we introduce a generalized IMS-type estimate quantify-
ing the energy cost of localizing with respect to an F̂-operator, similar to the generalized
IMS results in [19, Theorem A.1] and [16, Proposition 6.1]. In order to formulate the
result, let us define for a given subset � ⊂ M

(
R
3
)
and a (quadratic) partition of unity

P = {Fj : M (
R
3
) −→ R : j ∈ J }, i.e. 0 ≤ Fj ≤ 1 and

∑
j∈J F

2
j = 1, the variation

of this partition on � as

V� (P) := α4 sup
ρ∈�,y∈R3

∑

j∈J

∣∣∣Fj

(
ρ + α−2δy

)
− Fj (ρ)

∣∣∣
2
.

Lemma 3.3. There exists a constant c > 0, such that for any partition of unityP = {Fj :
M

(
R
3
) −→ R : j ∈ J }, � ⊂ M

(
R
3
)
, K > 0, α ≥ 1 and state 	 with 1̂�	 = 	

∣∣∣∣∣∣

∑

j∈J

〈
F̂j	

∣∣HK
∣∣F̂j	

〉 − 〈	|HK |	〉
∣∣∣∣∣∣
≤ c

√
Kα−4V� (P)

〈
	
∣∣
√
N + α−2

∣∣	
〉
. (3.4)

Furthermore given M > 0, there exists a constant c′ > 0 such that we have for any
ϕ ∈ L2

(
R
3
)
satisfying ‖ϕ‖ ≤ M, partition of unity { f j : R −→ R : j ∈ J }, K ≥ 1,

α ≥ 1 and state 	
∣∣∣∣∣
∣

∑

j∈J

〈	 j |HK |	 j 〉 − 〈	|HK |	〉
∣∣∣∣∣
∣
≤ c′√Kα−4VM(R3)

(
P ′) 〈	

∣∣∣
√
N + 1

∣∣∣	
〉
,

where we define 	 j := f j
(
W−1

ϕ NWϕ

)
	 with Wϕ being the corresponding Weyl oper-

ator and P ′ := {F ′
j : M (

R
3
) −→ R : j ∈ J } with F ′

j (ρ) := f j (
∫
dρ).

Proof. By applying the IMS identity, we obtain

∑

j∈J

F̂jHK F̂j − HK = 1

2

∑

j∈J

[[
F̂j , HK

]
, F̂j

] = −
∑

j∈J

Re
[[
F̂j , a (�Kwx )

]
, F̂j

]
,

where we have used the fact that Fj commutes with −�x and N in the last identity.

Since a state 	 is a function with values in F
(
L2
(
R
3
)) =

∞⊕
n=0

L2
sym(R

3×n), we can

represent it as 	 = ⊕∞
n=0 	n where 	n(y, x1, . . . , xn) is a function of the electron

variable y and the n phonon coordinates xk ∈ R
3. In order to simplify the notation, we

will suppress the dependence on the electron variable y in our notation. By an explicit

computation, we obtain
[[
F̂, a (v)

]
, F̂

]⊕∞
n=0 	n = −⊕∞

n=0

√
n+1
α2 	 ′

n with

	 ′
n(x

1, . . . , xn)=
∫ [

F

(
α−2

n+1∑

k=1

δxk

)
−F

(
α−2

n∑

k=1

δxk

)]2
v(xn+1)	n+1(x

1, . . . , xn+1)dxn+1,

for v ∈ L2
(
R
3
)
and F : M (

R
3
) −→ R. By the definition of V� (P) we obtain that

σ(x1, . . . , xn+1) :=
∑

j∈J

[
Fj

(
α−2

n+1∑

k=1

δxk

)
− Fj

(
α−2

n∑

k=1

δxk

)]2
≤ α−4V� (P)
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for all xn+1 ∈ R
3 and every (x1, . . . , xn) ∈ R

3n with α−2∑n
k=1 δxk ∈ �. Hence we can

estimate
∣∣∣
〈
	

∣∣∣
∑

j∈J Re
[[
F̂j , a (v)

]
, F̂j

] ∣∣∣	
〉∣∣∣, using the notation X = (x1, . . . , xn),

by

∞∑

n=0

√
n+1

α2

∫
|	n(X)|

∫
σ(X, xn+1)|v(xn+1)	n+1(X, xn+1)|dxn+1dX

≤ α−5V� (P)

∞∑

n=0

√
n + 1

∫
|	n(X)|

∫
|v(xn+1)	n+1(X, xn+1)|dxn+1dX

≤ α−5V� (P) ‖v‖
∞∑

n=0

√
n + 1

∥∥	n
∥∥ ∥∥	n+1

∥∥ ≤ α−4V� (P) ‖v‖
〈
	

∣∣∣
√
N + α−2

∣∣∣	
〉
.

This concludes the proof of Eq. (3.4), using the concrete choice v := �Kwx , since
‖�Kwx‖2 = 1

2π2

∫
|k|≤K

1
|k|2 = 2

π
K .

In order to verify the second statement we apply the unitary transformation Wϕ to
the operator X := ∑

j∈J f j
(
W−1

ϕ NWϕ

)
HK f j

(
W−1

ϕ NWϕ

) − HK and compute

WϕXW−1
ϕ = 1

2

∑

j∈J

[[
f j (N ) ,WϕHKW

−1
ϕ

]
, f j (N )

]

=
∑

j∈J

Re
[[

f j (N ) , a (ϕ − �Kwx )
]
, f j (N )

]
=
∑

j∈J

Re
[[

F̂ ′
j , a (v)

]
, F̂ ′

j

]
,

where we defined v := ϕ − �Kwx and applied the definition F ′
j (ρ) = f j

(∫
dρ

)
. We

know from the previous estimates that

±
∑

j∈J

Re
[[

f j (N ) , a (v)
]
, f j (N )

]
≤ α−4VM(R3)

(
P ′) ‖v‖

√
N + α−2.

Clearly ‖v‖ ≤ ‖ϕ‖ + ‖�Kwx‖ �
√
K for K ≥ 1, and consequently

∣∣∣
∣∣∣

∑

j∈J

〈	 j |HK |	 j 〉 − 〈	|HK |	〉
∣∣∣
∣∣∣
�

√
Kα−4VM(R3)

(
P ′) 〈	

∣∣
∣
√
W−1

ϕ NWϕ + α−2
∣∣
∣	

〉

�
√
Kα−4VM(R3)

(
P ′) 〈	

∣∣∣
√
N + 1

∣∣∣	
〉
,

where we have used that W−1
ϕ NWϕ ≤ 2

(
N + ‖ϕ‖2) and the operator-monotonicity of

the square root. ��

3.2. Auxiliary localization procedures. In the following Eqs. (3.6) and (3.10), we will
apply localizations procedures to a given sequence	•

α in order to construct states having
additional useful properties, which we will use in Lemma 3.12 in order to construct a
sequence of approximate ground states satisfying complete condensation. Furthermore
we will quantify the energy cost of these localizations by 〈	α|H�|	α〉 − Ẽα � α−3

in the Lemmas 3.4 and 3.5. In Theorem 3.13 we will then apply a final localization
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procedure, in order to lift the (weak) condensation from Lemma 3.12 to a strong one,
following the argument in [16].

In the following let L := α1+σ and � := α
4
5 (1+σ) with 0 < σ ≤ 1

4 , and let 	•
α be a

sequence of states satisfying supp
(
	•

α

) ⊂ BL(0) and Ẽα − Eα � α− 4
29 , where

Ẽα := 〈	•
α|H�|	•

α〉. (3.5)

The exponent 4
29 is chosen for convenience, as it allows to simplify the right hand side of

Eq. (3.2) to ‖ f ‖∞α− 2
29 (using that Eα ≤ ePek). For the proof of Theorem 1.1 we shall

use the specific choice 	�
α from Theorem 2.5 for 	•

α , but it will be useful in the second
part to have the first two localization procedures in Lemma 3.4 and 3.5 formulated for
a more general sequence 	•

α .
Having Lemma 3.3 at hand, we can verify our first localization result in Lemma 3.4,

which allows us to restrict our attention to states 	 ′
α having a (rescaled) particle number

N between some fixed constants c− and c+. To be precise, for given c−, c+ and ε′ we
use the function F∗(ρ) := χε′ (

c− + ε′ ≤ ∫
dρ ≤ c+ − ε′) in order to define the states

	 ′
α := Z−1

α F̂∗	•
α, (3.6)

with the corresponding normalization constants Zα := ‖F̂∗	•
α‖. By construction we

have χ (c− ≤ N ≤ c+)	 ′
α = 	 ′

α as well as supp
(
	 ′

α

) ⊂ BL(0). In the following
Lemma 3.4 we derive an upper bound on the energy of 	 ′

α , and in addition we will
investigate the large α behavior of Zα , which will be useful in the second part.

Lemma 3.4. Let 	•
α be the sequence introduced above Eq. (3.5). Then there exist α-

independent constants c−, c+, ε′ > 0 such that the corresponding states 	 ′
α defined in

Eq. (3.6) satisfy 〈	 ′
α|H�|	 ′

α〉 − Ẽα � α− 7
2 . Furthermore, Zα −→

α→∞ 1.

Proof. In the following let F∗ be the function defined above Eq. (3.6) and let us complete
it to a quadratic partition of unity P := {F−, F∗, F+} with the aid of the functions
F−(ρ) := χε′ (∫

dρ ≤ c− + ε′) and F+(ρ) := χε′ (
c+ − ε′ ≤ ∫

dρ
)
. Making use of

Lemma 3.3 and � = α
4
5 (1+σ) ≤ α, we then obtain

Z2
α,−〈	α,−|H�|	α,−〉 + Z2

α〈	 ′
α|H�|	 ′

α〉 + Z2
α,+〈	α,+|H�|	α,+〉

≤ 〈	•
α|H�|	•

α〉 + c α− 7
2 VM(R3) (P)

〈
	•

α

∣
∣
√
N + α−2

∣
∣	•

α

〉
, (3.7)

where 	α,± := Z−1
α,± F̂(±)	

•
α , with corresponding normalization factors Zα,± :=

‖F̂(±)	
•
α‖. By Eq. (2.5) there exists a constant d s.t.

〈
	•

α

∣
∣N

∣
∣	•

α

〉 ≤ 〈
	•

α

∣
∣2H�+d

∣
∣	•

α

〉
�

d +α− 4
29 , where we have used the assumption

〈
	•

α

∣∣H�

∣∣	•
α

〉 = Ẽα ≤ Ẽα − Eα � α− 4
29 .

The first derivative of the functions χε′
(· ≤ c− + ε′), χε′

(c− + ε′ ≤ · ≤ c+ − ε′) and
χε′

(· ≤ c+ − ε′) is uniformly bounded by some ε′-dependent constant D, and con-
sequently we have for all finite measures ρ and ρ′ := ρ + α−2δy with y ∈ R

3, and
� ∈ {−, ∗,+},

∣∣F�
(
ρ′) − F� (ρ)

∣∣ ≤ D

∣
∣∣∣

∫
dρ′ −

∫
dρ

∣
∣∣∣ = Dα−2.
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This implies that VM(R3) (P) � 1, and therefore the right hand side of Eq. (3.7) is

bounded by 〈	•
α|H�|	•

α〉+Cα− 7
2 for a suitableC > 0. Since Z2

α,−+ Z2
α + Z

2
α,+ = 1, this

means that at least one of the terms 〈	α,−|H�|	α,−〉, 〈	 ′
α|H�|	 ′

α〉 or 〈	α,+|H�|	α,+〉
is bounded from above by 〈	•

α|H�|	•
α〉 + Cα− 7

2 = Ẽα + Cα− 7
2 . We can however rule

out that 〈	α,−|H�|	α,−〉, respectively 〈	α,+|H�|	α,+〉, satisfy this upper bound for all
small c−, ε′ and large α, c+, since Ẽα ≤ Eα +C ′α− 4

29 ≤ ePek +C ′α− 4
29 < ePek

2 < 0 for
α large enough and a suitable C ′, and since we have by Eqs. (2.4) and (2.5) for all t > 0

〈	α,−|H�|	α,−〉 ≥ 〈	α,−| − d

t2
− t

(N + α−2) |	α,−〉 ≥ − d

t2
− t

(
c− + 2ε′ + α−2) ≥ − ePek

2
,

(3.8)

〈	α,+|H�|	α,+〉 ≥ 〈	α,+| − d +
1

2
N |	α,+〉 ≥ −d +

1

2
(c+ − 2ε′) ≥ 0, (3.9)

where the last inequality in Eq. (3.8), respectively Eq. (3.9), holds for small c−, ε′ and

large α, c+ with the concrete choice t :=
(

d
c−+2ε′+α−2

) 1
3
. Using again that the right hand

side of Eq. (3.7) is bounded by 〈	•
α|H�|	•

α〉+Cα− 7
2 together with Eqs. (3.8) and (3.9),

and the fact that H� ≥ Eα and Eα ≤ ePek, yields furthermore

(1 − Z2
α)

(
Eα − ePek

2

)
+ Z2

αEα ≤ (1 − Z2
α)

ePek

2
+ Z2

αEα ≤ Ẽα + Cα− 7
2 ,

and therefore −(1 − Z2
α) e

Pek

2 ≤ Ẽα − Eα + Cα− 7
2 −→

α→∞ 0. Since ePek < 0, this

immediately implies Zα −→
α→∞ 1. ��

Regarding the next localization step in Lemma 3.5, let us introduce for given R and
ε > 0 satisfying R > 2ε the function KR (ρ) := ∫∫

χε (R − ε ≤ |x − y|) dρ(x)dρ(y),
which measures how sharply the mass of the measure ρ is concentrated. It will be
convenient in the second part to have KR defined for arbitrary ε ≥ 0 even though
we only need it for ε = 0 in the following. We also define the function FR (ρ) :=
χ

δ
3

(
KR (ρ) ≤ 2δ

3

)
for R, δ > 0, as well as the states

	 ′′
α := Z−1

R,α F̂R	 ′
α, (3.10)

where 	 ′
α is as in Lemma 3.4 and ZR,α := ‖F̂R	 ′

α‖. Since 	 ′
α satisfies supp

(
	 ′

α

) ⊂
BL(0), we have supp

(
	 ′′

α

) ⊂ BL(0) as well. Furthermore χ
(
K̂R ≤ δ

)
	 ′′

α = 	 ′′
α .

Heuristically this means that we can restrict our attention to phonon configurations that
concentrate in a ball of fixed radius R.

Lemma 3.5. Let 	 ′
α be the sequence from Lemma 3.4, and let ε ≥ 0 and δ > 0 be given

constants. Then there exists a α independent R > 0, such that the states 	 ′′
α defined

in Eq. (3.10) satisfy 〈	 ′′
α |H�|	 ′′

α〉 − Ẽα � α− 7
2 , where Ẽα is defined in Eq. (3.5).

Furthermore, ZR,α −→
α→∞ 1.
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Proof. Since P := {FR,GR} with GR :=
√
1 − F2

R = χ
δ
3
( 2δ
3 ≤ KR (ρ)

)
is a partition

of unity, we obtain by Lemma 3.3

〈F̂R	 ′
α|H�|F̂R	 ′

α〉 + 〈Ĝ R	 ′
α|H�|Ĝ R	 ′

α〉
≤ 〈	 ′

α|H�|	 ′
α〉 + c α− 7

2 V� (P)
〈
	 ′

α

∣∣
√
c+ + α−2

∣∣	 ′
α

〉
(3.11)

with � := {ρ : ∫ dρ ≤ c+}, where we have used χ (N ≤ c+)	 ′
α = 	 ′

α and � ≤ α.

Since d
dx χ

δ
3
( 2δ
3 ≤ x

)
and d

dx χ
δ
3
(
x ≤ 2δ

3

)
are bounded by some δ-dependent constant

D, we have for all ρ ∈ � and ρ′ := ρ + α−2δz with z ∈ R
3, and R > 2ε, the estimate

∣
∣FR

(
ρ′) − FR (ρ)

∣
∣ ≤ D

∣
∣KR(ρ′) − KR(ρ)

∣
∣ = 2Dα−2

∫
χε (R − ε ≤ |y − z|) dρ(y)

≤ 2Dα−2c+,

and the same result holds for GR . Therefore we have by Eq. (3.11) and Lemma 3.4

〈F̂R	 ′
α|H�|F̂R	 ′

α〉 + 〈Ĝ R	 ′
α|H�|Ĝ R	 ′

α〉 ≤ 〈	 ′
α|H�|	 ′

α〉 + C1α
− 7

2 ≤ Ẽα + C2α
− 7

2

(3.12)

for suitable constants C1,C2 > 0. Since ‖F̂R	 ′
α‖2 + ‖Ĝ R	 ′

α‖2 = 1, this means that

we either have 〈	 ′′
α |H�|	 ′′

α〉 ≤ Ẽα + C2α
− 7

2 or 〈	̃α|H�|	̃α〉 ≤ Ẽα + C2α
− 7

2 , where
	̃α := ‖Ĝ R	 ′

α‖−1Ĝ R	 ′
α . In the following we are going to rule out the second case for

R and α large enough, to be precise we are going to verify 〈	̃α|H�|	̃α〉 > Ẽα + dα− 4
29

for any d > 0 and large enough R and α by contradiction. In order to do this, let us

assume 〈	̃α|H�|	̃α〉 ≤ Ẽα + dα− 4
29 . Since Ẽα ≤ Eα + Cα− 4

29 ≤ ePek + Cα− 4
29 by

assumption for a suitable constant C , 	̃α satisfies the assumptions of Theorem 3.2 with

δe := (d + C)α− 4
29 . Hence there exists a measure μ such that Eq. (3.2) holds. By the

support properties of GR we obtain

δ

3
≤ 〈

	̃α

∣∣K̂R
∣∣	̃α

〉 =
∫

KR

(∣∣∣ϕPek
x

∣∣∣
2
)

dμ + Oα→∞
(
α− 2

29

)

= KR

(∣∣∣ϕPek
∣∣∣
2
)
+ Oα→∞

(
α− 2

29

)
. (3.13)

Since limR→∞ KR

(∣∣ϕPek
∣∣2
)

= 0, Eq. (3.13) is a contradiction for large R and α, and

consequently we have 〈	̃α|H�|	̃α〉 > Ẽα + dα− 4
29 for such R and α. In combination

with Eq. (3.12) this furthermore yields

Z2
R,αEα+(1−Z2

R,α)
(
Eα+dα− 4

29

)
≤ Z2

R,αEα+(1−Z2
R,α)

(
Ẽα+dα− 4

29

)
≤ Ẽα+C2α

− 7
2 ,

and therefore 1 − Z2
R,α ≤ α

4
29

d

(
Ẽα − Eα + C2α

− 7
2

)
≤ 1

d + C2
d α

4
29− 7

2 . Since this holds

for any d > 0 and α large enough, we conclude that ZR,α −→
α→∞ 1. ��
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3.3. Localization of the median. The previous localizations in the Lemmas 3.4 and 3.5
will allow us to control the energy error in the proof of Lemma 3.12, where we carry
out the main localization procedure with respect to the (regularized) median mq defined
in Definition 3.8. Before we come to the proof of Lemma 3.12, we are going to derive
Lemma 3.10, which provides an upper bound on the variation V� (P) for partitions
P = {Fj : j ∈ J } of the form Fj (ρ) = f j

(
mq(ρ)

)
. The following auxiliary Lemmas

3.6, 3.7 and 3.9 will be useful in proving Lemma 3.10.

Lemma 3.6. Let us define the set �reg as the set of all ρ ∈ M
(
R
3
)
satisfying

ρi ({t}) ≤ α−2

for all t ∈ R and i ∈ {1, 2, 3}, where ρ1, ρ2 and ρ3 are the marginal measures of ρ

defined by ρi (A) := ρ ([xi ∈ A]). Then 1̂�reg	 = 	 for all 	 ∈ F
(
L2
(
R
3
))
.

Proof. For given x = (x1, . . . , xn) ∈ R
3×n , define the measure ρx := α−2∑n

k=1 δxk .
Note that ρx /∈ �reg if and only if there exists an i ∈ {1, 2, 3} such that xki = xk

′
i for

indices k �= k′. Clearly the set of all such x ∈ R
3×n has Lebesgue measure zero. Hence

the multiplication operator by the function (x1, . . . , xn) �→ 1�reg (ρx ) is equal to the
identity on L2

sym

(
R
3×n

)
, which concludes the proof according to Definition 3.1. ��

Lemma 3.7. Let ν, ν′ be finite measures on R such that ν ({t}) ≤ ε and ν′ ({t}) ≤ ε for
all t ∈ R, and let xκ(ν) be the κ-quantile of the measure ν with 0 ≤ κ ≤ 1, to be precise
xκ (ν) is the supremum over all numbers t ∈ R satisfying

∫ t
−∞ dν ≤ κ

∫
dν, where

we use the convention that the boundaries are included in the domain of integration∫ b
a f dν := ∫

[a,b] f dν. Then

∣∣∣
∫ xκ(ν′)

−∞
dν −

∫ xκ (ν)

−∞
dν
∣∣∣ ≤ 2‖ν′ − ν‖TV + ε,

where ‖ν′ − ν‖TV := sup
‖ f ‖∞=1

∣∣∫ f dν′ − ∫
f dν

∣∣.

Proof. We estimate
∫ xκ(ν′)

−∞
dν −

∫ xκ (ν)

−∞
dν ≤

∫ xκ(ν′)

−∞
dν − κ

∫
dν

≤
∫ xκ(ν′)

−∞
dν′ + ‖ν′ − ν‖TV − κ

∫
dν

≤ κ

∫
dν′ + ε + ‖ν′ − ν‖TV − κ

∫
dν ≤ 2‖ν′ − ν‖TV + ε,

where we have used
∫ xκ (ν)

−∞ dν ≥ κ
∫
dν and

∫ xκ(ν′)
−∞ dν′ ≤ κ

∫
dν′ + ε. The bound from

below can be obtained by interchanging the role of ν and ν′. ��
Definition 3.8. Let xκ(ν) be the κ-quantile of a measure ν on R defined in Lemma 3.7

and let us denote Kq(ν) := [x 1
2−q(ν), x

1
2 +q(ν)] for 0 < q < 1

2 . Then we define

mq(ν) := 1
∫
Kq (ν)

dν

∫

Kq (ν)

t dν(t) ∈ R (3.14)



302 M. Brooks, R. Seiringer

for ν �= 0 andmq(0) := 0. Furthermore we define for a measure ρ onR
3 the regularized

median as mq(ρ) :=
(
mq(ρ1),mq(ρ2),mq(ρ3)

)
∈ R

3, where ρ1, ρ2 and ρ3 are the

marginal measures of ρ.

Note that xκ (ν) is the largest value, such that both
∫ xκ (ν)

−∞ dν ≥ κ
∫
dν and

∫∞
xκ (ν)

dν ≥
(1 − κ)

∫
dν hold. As an immediate consequence, we obtain that the expression in

Eq. (3.14) is well-defined for ν �= 0 and 0 < q < 1
2 , since

∫

Kq (ν)

dν =
∫ x

1
2 +q (ν)

−∞
dν +

∫ ∞

x
1
2−q

(ν)

dν −
∫

dν ≥ 2q
∫

dν > 0. (3.15)

In the following Lemma 3.9 we are going to show that the quantiles x
1
2±q are posi-

tioned in a ball of radius R around the median x
1
2 for all measures ρ that concentrate in

a ball of radius R around the median, in the sense that
∫ ∫

|x−y|≥R
dρ(x)dρ(y) ≤ δ, see also

the definition of FR above Eq. (3.10), where δ is a small enough constant depending on
q and the total mass

∫
dρ.

Lemma 3.9. Given constants R, c > 0 and 0 < δ < c2
2 , let ρ satisfy c ≤ ∫

dρ and∫ ∫

|x−y|≥R
dρ(x)dρ(y) ≤ δ and let q be a constant satisfying 0 < q ≤ 1

2 − δ
c2
. Then we

have for all i ∈ {1, 2, 3} that x 1
2 (ρi ) − R ≤ x

1
2−q(ρi ) ≤ x

1
2 +q(ρi ) ≤ x

1
2 (ρi ) + R.

Proof. Since xκ is translation covariant, i.e. xκ (ν(· − t)) = xκ (ν) + t , we can assume
w.l.o.g. that x

1
2 (ρi ) = 0 for i ∈ {1, 2, 3}. Then

δ ≥
∫ ∫

|x−y|≥R

dρ(x)dρ(y) ≥ 2
∫

xi≥0
dρ(x)

∫

yi≤−R
dρ(y) ≥

∫
dρ

∫

yi≤−R
dρ(y)

≥ c
∫

yi≤−R
dρ(y),

where we have used that x
1
2 (ρi ) = 0 and

∫
dρ ≥ c in the last two inequalities. Hence

∫

yi≤−R
dρ(y) ≤ δ

c
≤ δ

c2

∫
dρ ≤ κ

∫
dρ

for all κ ≥ δ
c2

and consequently we have −R ≤ xκ(ρi ) for all such κ by the definition

of xκ(ρi ). Similarly we obtain xκ(ρi ) ≤ R for all κ satisfying κ ≤ 1 − δ
c2
. Therefore

|x 1
2±q(ρi )| ≤ R for q ≤ 1

2 − δ
c2
. ��

Lemma 3.10. Given constants R, c > 0 and 0 < δ < c2
2 , let � be the set of ρ ∈ �reg

satisfying c ≤ ∫
dρ and

∫ ∫

|x−y|≥R
dρ(x)dρ(y) ≤ δ. Then

∣
∣∣mq

(
ρ + α−2δx

)
− mq (ρ)

∣
∣∣ � R

cα2q

for all ρ ∈ �, x ∈ R
3 and 0 < q < 1

2 − δ
c2
, where mq is defined in Definition 3.8.
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Proof. Sincemq acts translation covariant on anyρ �= 0, i.e.mq (ρ(· − y)) = mq(ρ)+y,

we can assume w.l.o.g. that x
1
2 (ρi ) = 0 for i ∈ {1, 2, 3}. By Lemma 3.9 we therefore

obtain |x 1
2±q(ρi )| ≤ R for ρ ∈ � and 0 < q ≤ 1

2 − δ
c2
. Note that the marginal measures

ρi and ρ′
i , where ρ′ := ρ + α−2δx , satisfy ρi ({y}) ≤ α−2 and ρ′

i ({y}) ≤ 2α−2 by our
assumption ρ ∈ �reg. Therefore xκ∗(ρi ) ≤ xκ (ρ′

i ) ≤ xκ∗
(ρi ) for ρ ∈ � and κ > 0,

with κ∗ := κ − 21
cα

−2 and κ∗ := κ +31
cα

−2. In particular, this implies |x 1
2±q(ρ′

i )| ≤ R
for 0 < q < 1/2 − δ/c2 and α large enough. In the following it will be convenient to
write the difference mq

(
ρ′
i

)−mq(ρi ) as
(

1
∫
Kq(ρ′

i)
dρ′

i
− 1
∫
Kq (ρi )

dρi

)∫

Kq (ρ′
i )

t dρ′
i (t)

+
1

∫
Kq (ρi )

dρi

(∫

Kq (ρ′
i )

t dρ′
i (t)−

∫

Kq (ρi )

t dρi (t)

)

. (3.16)

Making use of
∫
Kq (ρi )

dρi ≥ 2qc, see Eq. (3.15), and Kq(ρ
′
i ) ⊂ [−R, R] for all ρ ∈ �,

we can estimate the individual terms in Eq. (3.16) by
∣∣∣
∣∣

(
1

∫
Kq(ρ′

i)
dρ′

i
− 1
∫
Kq (ρi )

dρi

)∫

Kq (ρ′
i )

t dρ′
i (t)

∣∣∣
∣∣
≤ R

∣∣∣
∫
Kq(ρ′

i)
dρ′

i − ∫
Kq (ρi )

dρi
∣∣∣

2qc
,

∣∣∣∣
∣

1
∫
Kq (ρi )

dρi

(∫

Kq (ρ′
i )

t dρ′
i (t)−

∫

Kq (ρi )

t dρi (t)

)∣∣∣∣
∣
≤

∣∣∣
∫
Kq (ρ′

i )
t dρ′

i (t)−
∫
Kq (ρi )

t dρi (t)
∣∣∣

2qc
.

Note that Kq(ρi ) is contained in [−R, R] as well and consequently t is bounded by
R on the subset Kq(ρi ) ∪ Kq(ρ

′
i ). In order to verify the statement of the Lemma, it is

therefore sufficient to prove that
∣∣∣
∫
Kq (ρ′

i )
f (t) dρ′

i (t)−
∫
Kq (ρi )

f (t) dρi (t)
∣∣∣ � α−2‖ f ‖∞

for an arbitrary measurable and bounded f : R → R. We estimate
∣
∣∣∣
∣

∫

Kq (ρ′
i )

f (t) dρ′
i (t)−

∫

Kq (ρi )

f (t) dρi (t)

∣
∣∣∣
∣
≤
∣
∣∣∣
∣

∫

Kq (ρ′
i )

f (t) dρ′
i (t)−

∫

Kq (ρ′
i )

f (t) dρi (t)

∣
∣∣∣
∣

+

∣∣
∣∣
∣

∫

Kq (ρ′
i )

f (t) dρi (t)−
∫

Kq (ρi )

f (t) dρi (t)

∣∣
∣∣
∣

≤ ‖ f ‖∞

(

‖ρ′
i − ρi‖TV +

∫

Kq (ρ′
i )�Kq (ρi )

dρi

)

,

where A�B := (A ∪ B) \ (A ∩ B) is the symmetric difference. Note that ‖ρ′
i−ρi‖TV =

α−2. Furthermore we can estimate the expression
∫
Kq (ρ′

i )�Kq (ρi )
dρi by

∣∣∣∣
∣∣

∫ x
1
2−q

(ρ′
i )

−∞
dρi −

∫ x
1
2−q

(ρi )

−∞
dρi

∣∣∣∣
∣∣
+

∣∣∣∣
∣∣

∫ x
1
2 +q (ρ′

i )

−∞
dρi −

∫ x
1
2 +q (ρi )

−∞
dρi

∣∣∣∣
∣∣
.

Since the distributions ρi and ρ′
i satisfy the assumptions of Lemma 3.7 with ε := 2α−2,

we conclude that every term in the sum above is bounded by 2‖ρ′ − ρ‖TV + ε = 4α−2.
��
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Before we state the central Lemma 3.12, let us verify in the subsequent Lemma 3.11
that low energy states with a localized median necessarily satisfy (complete) condensa-
tion with respect to a minimizer of the Pekar functional.

Lemma 3.11. Given a constant C > 0, there exists a constant T > 0, such that
〈
	

∣∣
∣W−1

ϕPek NWϕPek

∣∣
∣	

〉
≤ T

(
α− 2

29 + q + ε
)

for all states 	 satisfying 〈	|HK |	〉 ≤ ePek + α− 4
29 with K ≥ α

8
29 and 1̂�∗	 = 	,

where �∗ is the set of all ρ satisfying
∫
dρ ≤ C and |mq(ρ)| ≤ ε with q, ε > 0.

Proof. Let us begin by defining the functions

Pε
i (ρ) :=

(
1

2

∫
dρ

)2

−
∫

xi≤ε

dρ(x)
∫

yi≥−ε

dρ(y). (3.17)

Observe that |mq(ρ)| ≤ ε implies −ε ≤ x
1
2 +q(ρi ) and x

1
2−q(ρi ) ≤ ε for all such ρ

which additionally satisfy ρ �= 0, see Definition 3.8. Therefore Pε
i (ρ) ≤ (∫

dρ
)2 ( 1

4 −
( 1
2 − q

)2 ) � q for all ρ ∈ �∗, and consequently the measure μ from Theorem 3.2

corresponding to the state 	 satisfies
∫
Pε
i

(∣
∣ϕPek

x

∣
∣2
)
dμ(x) ≤ 〈

	
∣
∣P̂ε

i

∣
∣	

〉
+ Dα− 2

29 �

q + α− 2
29 for a suitable D > 0, where we have used Eq. (3.2) in the first inequality.

Furthermore we know that ‖ϕPek
x − ϕPek‖2 �

∑3
i=1 P

ε
i

(∣∣ϕPek
x

∣∣2
)
+ ε by Lemma A.3,

hence

∫
‖ϕPek

x −ϕPek‖2 dμ(x) �
3∑

i=1

∫
Pε
i

(∣
∣∣ϕPek

x

∣
∣∣
2
)

dμ(x)+ε � q+α− 2
29 +ε.

Therefore Eq. (3.3) immediately concludes the proof of Eq. (3.18). ��
Lemma 3.12. Given 0 < σ ≤ 1

4 , let � and L be as in Theorem 2.5. Then there exist
states 	 ′′′

α satisfying 〈	 ′′′
α |H�|	 ′′′

α 〉 − Eα � α−2(1+σ), supp
(
	 ′′′

α

) ⊂ B4L(0) and
〈
	 ′′′

α

∣∣∣W−1
ϕPek NWϕPek

∣∣∣	 ′′′
α

〉
� α− 2

29 , (3.18)

where WϕPek is the Weyl operator corresponding to the Pekar minimizer ϕPek .

Proof. It is clearly sufficient to consider only the case α ≥ α0 for a suitable (large)
α0, since we can always re-define 	 ′′′

α := 	 for α < α0 where 	 is an arbitrary
state satisfying supp (	) ⊂ B4L(0). In the following let us use the concrete choice
	•

α := 	�
α for the sequence in Eq. (3.5), where 	�

α is defined in in Theorem 2.5, which
is a valid choice since it satisfies the assumptions supp

(
	�

α

) ⊂ BL(0) and Ẽα − Eα �
α−2(1+σ) ≤ α− 4

29 . Furthermore let {χz : z ∈ Z
3} be a smooth (quadratic) partition

of unity on R
3, i.e. 0 ≤ χz ≤ 1 and

∑
z∈Z3 χ2

z = 1, with χz(x) = χ0(x − z) and
supp (χ0) ⊂ B1(0). Then we define for z ∈ Z

3 and u, v ≥ 2
29 with u + v ≤ 1

4 the
function Fz(ρ) := χz

(
αu mα−v (ρ)

)
, as well as the states

	α,z := Z−1
α,z F̂z	

′′
α (3.19)
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with Zα,z := ‖F̂z	 ′′
α‖ and 	 ′′

α as in Lemma 3.5 for ε = 0 and 0 < δ < c2
2 , where

c := c− is as in Lemma 3.4. Applying Lemma 3.3 with respect to P := {Fz : z ∈ Z
3},

where the functions Fz are defined above Eq. (3.19) and � is defined as the set of all
ρ ∈ �reg satisfying c− ≤ ∫

dρ ≤ c+ and
∫ ∫

|x−y|≥R
dρ(x)dρ(y) ≤ δ, yields

∑

z∈Z3

Z2
α,z〈	α,z |H�|	α,z〉 ≤ 〈	 ′′

α |H�|	 ′′
α〉 + cα− 7

2 V� (P)
√
c+ + α−2, (3.20)

wherewe usedLemma3.6,� ≤ α and 1̂�	 ′′
α = 	 ′′

α by the definition of	 ′′
α in Eq. (3.10).

Since the support of χz only overlaps with the support of finitely many other χz′ , we
obtain for v > 0 and α large enough

V� (P) � α4supρ∈�,y∈R3 supz∈Z3

∣∣∣χz
(
αumα−v (ρ + α−2δy)

) − χz
(
αumα−v (ρ)

)∣∣∣
2

� α2u+4supρ∈�,y∈R3

∣∣
∣mα−v (ρ + α−2δy) − mα−v (ρ)

∣∣
∣
2

� α2(u+v),

where we have used supz∈Z3 |χz (y) − χz (x)| ≤ ∥∥∇χ0
∥∥∞|y − x | in the first inequality

and Lemma 3.10 in the second one. Combining this with Eq. (3.20) and the fact that
u + v ≤ 1

4 yields
∑

z∈Z3

Z2
α,z〈	α,z |H�|	α,z〉 − 〈	 ′′

α |H�|	 ′′
α〉 � α−3. (3.21)

Since
∑

z∈Z3 Z2
α,z = 1, this in particular means that there exists a zα ∈ Z

3 such that
〈	α,zα |H�|	α,zα 〉 − Eα � α−2(1+σ), and by the translation invariance of H� we ob-
tain 〈	 ′′′

α |H�|	 ′′′
α 〉 − Eα � α−2(1+σ) where 	 ′′′

α = T−α−u zα	α,zα . Using the fact that
1�∗	 ′′′

α = 	 ′′′
α , where �∗ is the set of all ρ satisfying

∫
dρ ≤ c+ and |mα−v (ρ)| ≤ α−u ,

together with Lemma 3.11, immediately concludes the proof of Eq. (3.18).
Finally let us verify that supp

(
	 ′′′

α

) ⊂ B4L(0). By definition of	 ′′′
α = T−α−u zα	α,zα ,

and the fact that supp
(
	α,zα

) ⊂ BL(0), it is clear that supp
(
	 ′′′

α

) ⊂ BL(−wα)

with wα := α−uzα . In the following we show that |wα| ≤ 3L by contradiction
for α large enough, and therefore supp

(
	 ′′′

α

) ⊂ BL+|wα |(0) ⊂ B4 L(0). Assuming
|wα| > 3 L , we obtain supp

(
	 ′′′

α

) ⊂ R
3\B2 L(0) and Corollary B.7 consequently yields

〈	 ′′′
α |H�|	 ′′′

α 〉 ≥ Eα + 〈	 ′′′
α |NBL (0)|	 ′′′

α 〉 −
√

D
L , whereNBL (0) denotes the number op-

erator in the ball BL(0) (as defined in Cor. B.7). Defining ϕL(x) := χ (|x | ≤ L) ϕPek(x),
we further have

〈	 ′′′
α |NBL (0)|	 ′′′

α 〉 =
〈
	 ′′′

α

∣∣∣W−1
ϕPek

(
NBL (0) + a(ϕL) + a†(ϕL) + ‖ϕL‖2

)
WϕPek

∣∣∣	 ′′′
α

〉

≥ −
〈
	 ′′′

α

∣∣∣W−1
ϕPekNWϕPek

∣∣∣	 ′′′
α

〉
+
1

2
‖ϕL‖2 ≥ −D′α− 2

29 +
1

2
‖ϕL‖2

for a suitable constant D′, where we have used the operator inequalityNBL (0) + a(ϕL)+
a†(ϕL) + ‖ϕL‖2 ≥ −N + 1

2‖ϕL‖2 as well as Eq. (3.18). Therefore we obtain

〈	 ′′′
α |H�|	 ′′′

α 〉 − Eα ≥ 1

2
‖ϕL‖2 − D′α− 2

29 −
√

D

L
−→
α→∞

1

2
‖ϕPek‖2 > 0,
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where we have used that L = α1+σ −→
α→∞ ∞. This, however, is a contradiction to

〈	 ′′′
α |H�|	 ′′′

α 〉 − Eα � α−2(1+σ). ��
Following the method in [16], we are going to lift the weak condensation derived in

Lemma 3.12 to a strong one in the subsequent Theorem 3.13, which represents the main
result of this section.

Theorem 3.13. Given 0 < σ ≤ 1
4 and h < 2

29 , let � and L be as in Theorem 2.5. Then
there exist states 	α with 〈	α|H�|	α〉 − Eα � α−2(1+σ) and supp (	α) ⊂ B4L(0),
satisfying

χ
(
W−1

ϕPek NWϕPek ≤ α−h
)

	α = 	α (3.22)

for large enough α.

Proof. Using the states 	 ′′′
α from Lemma 3.12, we define for 0 < ε < 1

2

	α := Z−1
α χε

(
αhW−1

ϕPekNWϕPek ≤ 1

2

)
	 ′′′

α

where Zα is a normalizing constant. Clearly the states	α satisfy the strong condensation

property χ
(
W−1

ϕPekNWϕPek ≤ α−h
)

	α = 	α . In order to control the energy cost of the

localization with respect to the operator W−1
ϕPekNWϕPek , note that the partition P ′ :=

{F ′,G ′} with F ′(ρ) := χε
(
αh

∫
dρ ≤ 1

2

)
and G ′(ρ) := χε

( 1
2 ≤ αh

∫
dρ

)
satisfies

κ := VM(R3)

(
P ′) � α4supρ,x∈R3

∣
∣∣∣α

h
∫

d
(
ρ + α−2δx

)
− αh

∫
dρ

∣
∣∣∣

2

= α2h,

where we used
∣∣χε

(
y ≤ 1

2

) − χε
(
x ≤ 1

2

)∣∣ ≤ ∥∥ d
dx χε

(
· ≤ 1

2

)∥∥∞|y − x | and the corre-

sponding estimate for χε
( 1
2 ≤ ·). Therefore we obtain by Lemma 3.3, using � ≤ α,

Z2
α〈	α|H�|	α〉+(1−Z2

α)〈	̃α|H�|	̃α〉≤〈	 ′′′
α |H�|	 ′′′

α 〉+c′ α− 7
2 κ
〈
	 ′′′

∣∣
∣
√
N +1

∣∣
∣	 ′′′〉

≤ Eα + Oα→∞
(
α−2(1+σ)

)
+ Oα→∞

(
α2h− 7

2

)
= Eα + Oα→∞

(
α−2(1+σ)

)
,

(3.23)

with 	̃α := √
1 − Z2

α

−1
χε

(
1
2 ≤ αhW−1

ϕPekNWϕPek

)
	 ′′′

α .Making use of the trivial lower

bound Eα ≤ 〈	̃α|H�|	̃α〉, Eq. (3.23) implies 〈	α|H�|	α〉 ≤ Eα+Z−2
α Oα→∞

(
α−2(1+σ)

)
,

which concludes the proof since

1 − Z2
α =

〈
	 ′′′

α

∣∣∣χε

(
1

2
≤ αhW−1

ϕPekNWϕPek

)2 ∣∣∣	 ′′′
α

〉

≤ 1
1
2 − ε

αh
〈
	 ′′′

α

∣∣∣W−1
ϕPekNWϕPek

∣∣∣	 ′′′
α

〉
� 1

1
2 − ε

αhα− 2
29 −→

α→∞ 0.

��
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4. Large Deviation Estimates for Strong Condensates

In this Section we will derive a large deviation principle for states with suitably small
particle number (compared to α2), which can be interpreted as complete condensation
with respect to the vacuum. We will show that such states are, up to an error which
is exponentially small in α2, contained in the spectral subspace

∣∣a( f ) + a†( f )
∣∣ ≤ ε,

see Eq. (4.6). Note that taking the point of condensation to be the vacuum is not a real
restriction, since this is the case after applying a suitable Weyl transformation. Before
we can formulate the main result of this section in Proposition 4.2, we need to introduce
some notation.

For 0 < σ < 1
4 let us define the momentum cut-off � := α

4
5 (1+σ) and the discretiza-

tion parameter of the momentum space � := α−4(1+σ), and the associated projection

� := �0
�,�, (4.1)

see Definition 2.1, and let us identify F
(
�L2

(
R
3
))

with L2
(
R

N
)
using the representa-

tion of real functions ϕ = ∑N
n=1 λnϕn ∈ �L2

(
R
3
)
by points λ = (λ1, . . . , λN ) ∈ R

N ,
where N := dim�L2

(
R
3
)
and {ϕ1, . . . , ϕN } is a real orthonormal basis of �L2

(
R
3
)
.

We choose this identification such that the annihilation operators an := a (ϕn) read

an = λn +
1

2α2 ∂λn , (4.2)

where λn is the multiplication operator by the function λ �→ λn on L2
(
R

N
)
. From the

construction one readily checks that N � (�/�)3 ≤ α p for suitable p > 0.
In the following we will verify a large deviation principle for the density function

ρ(λ) := γ (λ, λ) corresponding to a density matrix γ on F
(
�L2

(
R
3
))

that satisfies the
strong condensation condition

χ

(
N∑

n=1

a†nan ≤ α−h

)

γ = γ (4.3)

for some condensation rate h > 0. This result is comparable to [5, Lemma C.2]. For this
purpose, we define a convenient norm | · |� on R

N in the subsequent Definition.

Definition 4.1. Let |λ| :=
√∑N

n=1 λ2n denote the standard norm on R
N and let us define

the norm | · |� on R
N , using the identification ϕ = ∑N

n=1 λnϕn , as

|λ|� := 2 sup
x∈R3

√∫

B1(x)

∣∣
∣
(
(−�)− 1

2 ϕ
)

(y)
∣∣
∣
2
dy. (4.4)

The norm | · |� will again appear naturally in Sect. 5 where we investigate properties of
the Pekar functional FPek (see Eq. (5.2) and the subsequent comment). In the following
Proposition 4.2 we establish a large deviation like estimate on the ε-tail of the probability
distributionρ in the limit ofα → ∞,where ε is even allowed to go to zero simultaneously
as α goes to infinity, as long as ε ≥ Dα−s for a h and σ dependent constant s.
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Proposition 4.2. Let 0 < s < min
{ h
2 , 1

5 (1−4σ)
}
and D > 0. Then there exist constants

β, α0 > 0, such that we have for all α ≥ α0, ε ≥ Dα−s and γ satisfying Eq. (4.3)

∫

|λ|�≥ε

(
1 + |λ|2

)
ρ(λ)dλ ≤ e−βε2α2

, (4.5)

where ρ(λ) := γ (λ, λ) is the density function corresponding to the state γ . Furthermore
for all ζ ∈ R

N and β < 1
|ζ |2 , there exists a constant α(β, |ζ |) such that

∫

|〈ζ |λ〉|≥ε

(
1 + |λ|2

)
ρ(λ)dλ ≤ e−βε2α2

(4.6)

for all α ≥ α(β, |ζ |) and ε ≥ Dα−s .

The restriction to the finite dimensional space�L2
(
R
3
)
will be essential in the proof

of Proposition 4.2, to be precise we will make use of the fact that N � α p for a suitable
p > 0, which in particular implies that N � eαt

, uniformly in α, for any t > 0. Before
we prove Proposition 4.2, we first need auxiliary results concerning the | · |� norm.

Definition 4.3. For x ∈ R
3 and r > 0, let us defineTxλ := −2χ (| · −x | ≤ 1) (−�)− 1

2 ϕ

and T≥rλ := −2χ (| · | ≥ r) (−�)− 1
2 ϕ with the above identification ϕ = ∑N

n=1 λnϕn .

Furthermore let us define the operators Ax :=
√
T †
x Tx and A≥r :=

√
T †

≥r T≥r , as well

as the constant β0 := inf x∈R3 ‖Ax‖−2.

Using the operators Ax we can write |λ|� = supx∈R3 |Axλ|, which is bounded by

|λ|� ≤ 65max

{
sup

z∈Z3:|z|≤r+1
|Azλ|, |A≥rλ|

}
(4.7)

for any r > 0. In order to see this, note that for any y ∈ R
3 there exists a z ∈ Z

3

with |y − z| < 1. In case y ∈ Br (0) ∩ B1(x), where x ∈ R
3, we see that z satisfies

|z| ≤ r + 1 and |x − z| < 2. Denoting the set of such z by M(x, r) ⊂ Z
3, we obtain

B1(x) ⊂ ⋃
z∈M(x,r) B1(z) ∪ (

R
3\Br (0)

)
. Consequently

|λ|� ≤ sup
x

∑

z∈M(x,r)

|Azλ| + |A≥rλ|

≤ sup
x

(
|M(x, r)| + 1

)
max
x

{
sup

z∈M(x,r)
|Azλ|, |A≥rλ|

}
.

This concludes the proof of Eq. (4.7), since there are at most 64 elements z ∈ Z
3

satisfying |x − z| < 2.

Lemma 4.4. The constantβ0 fromDefinition4.3 is positive, uniformly inα, and‖Ax‖HS �
� uniformly in x ∈ R

3, where � is defined above Eq. (4.1). Furthermore there exists a
constant v > 0 such that ‖A≥r‖HS � αv√

r
for all α ≥ 1 and r > 0.
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Proof. Note that the space �L2
(
R
3
)
is contained in the spectral subspace −� ≤ �2,

hence � ≤ (
1 + �2

)
(1 − �)−1, and therefore

‖Ax‖2HS=4
∥∥∥χ (| ·−x | ≤ 1) (−�)−

1
2 �

∥∥∥
2

HS

≤4
(
1+�2

)∥∥∥χ (| ·−x | ≤ 1) (−�)−
1
2 (1 − �)−

1
2

∥∥∥
2

HS

= 4
(
1 + �2

) ∥∥
∥χ (| · | ≤ 1) (−�)−

1
2 (1 − �)−

1
2

∥∥
∥
2

HS
.

Applying Eq. (B.5) with ψ = χ (|.| ≤ 1) yields that χ (| · | ≤ 1) (−�)− 1
2 (1 − �)− 1

2 is
Hilbert-Schmidt, hence ‖Ax‖HS � �. In order to prove the uniform lower boundβ0 > 0,
it is enough to verify the boundedness of χ (|.| ≤ 1) f (−�), where f (t) := χ(|t |≤1)√

t
.

An explicit computation in Fourier space yields for ϕ ∈ L2
(
R
3
)

〈ϕ| f (−�)χ (|.| ≤ 1) f (−�)|ϕ〉 =
∫

|k|≤1

∫

|k|≤1

̂χ (| · | ≤ 1)(k − k′)ϕ̂(k)ϕ̂(k′)
|k| |k′| dkdk

≤
∥∥
∥ ̂χ (| · | ≤ 1)

∥∥
∥∞

∣∣
∣∣

∫

|k|≤1

|ϕ̂(k)|
|k| dk

∣∣
∣∣

2

� ‖ϕ‖2.

Finally we are going to verify ‖A≥r‖HS � αv√
r
, using that

‖A≥r‖HS = 2

√√
√√

N∑

n=1

∥∥∥χ (| · | ≥ r) (−�)− 1
2 ϕn

∥∥∥
2

�
√
N

αv

√
r

for a suitable constant v > 0 by Corollary B.2, where N is the dimension of �L2
(
R
3
)
.

This concludes the proof, since N � α p for some p > 0. ��
Proof of Proposition 4.2. Making use of Eq. (4.7) and defining ε∗ := ε

65 , we obtain
∫

|λ|�≥ε

(
1+|λ|2

)
ρ(λ)dλ≤

∑

|z|≤r+1

∫

|Azλ|≥ε∗

(
1+|λ|2

)
ρ(λ)dλ +

∫

|A≥rλ|≥ε∗

(
1+|λ|2

)
ρ(λ)dλ,

where the sum runs over z ∈ Z
3 with |z| ≤ r + 1. In the following we are going

to verify that every contribution of the form
∫
|Axλ|≥ε∗

(
1+|λ|2)ρ(λ)dλ is exponentially

small uniformly in x ∈ R
3. As a consequence of Eq. (4.3), we have for t ≥ 0 the estimate

γ ≤ χ

(
N∑

n=1

a†nan ≤ α−h

)

≤ e
t
(
α−h−∑N

n=1 a
†
nan

)

.

By our assumption on s, there exists a h′ such that 2 s < h′ < h. Consequently we
obtain for t := α2+(h−h′), using Mehler’s kernel,

ρ(λ)=γ (λ, λ)≤eα2−h′
e−t

∑N
n=1 a

†
nan (λ, λ)=eα2−h′( 1

1 − e−αh−h′

)N(
α2wα

π

) N
2

e−α2wα |λ|2 ,

(4.8)
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with wα := coth
(
αh−h′) − cosech

(
αh−h′)

. Since Ne−αh−h′ −→
α→∞ 0, it is clear that

(
1

1−e−αh−h′

)N

is bounded uniformly in α. Since wα ≥ 0 is strictly increasing in α,

we can choose 0 < β ′ < β0 infα≥1 wα , where β0 is the constant from Definition 4.3.

Consequently ‖ β ′
wα

|Ax |2‖ < 1 uniformly in x ∈ R
3 and α ≥ 1, and in particular

(
1 − β ′

wα
|Ax |2

)−1
is a bounded operator. Hence we obtain for x ∈ R

3

∫

|Axλ|≥ε∗

(
1 + |λ|2

)
ρ(λ)dλ � eα2−h′ (α2wα

π

) N
2
∫

|Axλ|≥ε∗

(
1 + |λ|2

)
e−α2wα |λ|2dλ

≤ eα2−h′ (α2wα

π

) N
2
∫

RN

(
1 + |λ|2

)
e−α2

(
wα |λ|2+β ′ε2∗−β ′|Axλ|2)dλ

= eα2−h′ wα + α−2Tr
(
1 − β ′

wα
|Ax |2

)−1

wα det
√
1 − β ′

wα
|Ax |2

e−β ′ε2∗α2
.

Furthermore, for a suitable, x-independent, constant μ

eα2−h′ wα+α−2Tr
(
1− β ′

wα
|Ax |2

)−1

wα det
√
1− β ′

wα
|Ax |2

�eα2−h′ α p

det
√
1− β ′

wα
|Ax |2

= e
α2−h′

+p ln α− 1
2 Tr ln

(
1− β′

wα
|Ax |2

)

≤ eα2−h′
+p ln α+μ‖Ax‖2HS ≤ eα2−h′

+p ln α+μC�2
,

(4.9)

where we have used the rough estimate wα + α−2Tr
(
1 − β ′

wα
|Ax |2

)−1
� 1 + α−2N �

α p for a suitable exponent p > 0 in the first inequality and Lemma 4.4 in the last

inequality. Note that the exponent in Eq. (4.9) is of order α
max

{
2−h′, 85 (1+σ)

}
� ε2∗α2

since �2 = α
8
5 (1+σ) and ε ≥ Dα−s with s < min

{ h′
2 , 1

5 (1 − 4σ)
}
.

Defining r := α2q with q > v, where v is the constant from Lemma 4.4 and making
use of the fact that the number of z ∈ Z

3 with |z| ≤ r +1 is of order r3 = α6q , we obtain
∑

|z|≤r+1

∫

|Azλ|≥ε∗

(
1 + |λ|2

)
ρ(λ)dλ dx � α6qeα2−h′

+p ln α+μC�2−β ′ε2∗α2 ≤ e−βε2∗α2

for β < β ′ and α large enough. We have ‖A≥r‖HS −→
α→∞ 0 by Lemma 4.4 and our choice

r = α2q with q > v. Using Eq. (4.8), and an argument similar to the one in Eq. (4.9),
we can therefore estimate

∫
|A≥rλ|≥ε∗

(
1 + |λ|2) ρ(λ)dλ by

∫

|A≥rλ|≥ε∗

(
1 + |λ|2

)
ρ(λ)dλ � eα2−h′ (α2wα

π

) N
2
∫

|A≥rλ|≥ε∗

(
1 + |λ|2

)
e−α2wα |λ|2dλ

� eα2−h′ α p

det
√
1 − β ′

wα
|A≥r |2

e−β ′ε2∗α2 � eα2−h′
+p ln α+μ‖A≥r‖2HS−β ′ε2∗α2

.
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Again we observe that the exponent α2−h′
+ p ln α + μ‖A≥r‖2HS is small compared to

ε2∗α2, which concludes the proof of Eq. (4.5).
The proof of Eq. (4.6) can be carried out analogously with the help of the operator

Aζ λ := 〈ζ |λ〉 ζ
‖ζ‖ using the fact that‖Aζ ‖HS = ‖Aζ ‖ = |ζ | and the assumptionβ < 1

|ζ |2 .
More precisely we obtain for β < β ′ < 1

|ζ |2

∫

|〈ζ |λ〉|≥ε

(
1 + |λ|2

)
ρ(λ)dλ � eα2−h′ (α2wα

π

) N
2
∫

|Aζ λ|≥ε

(
1 + |λ|2

)
e−α2wα |λ|2dλ

� eα2−h′ α p

det
√
1 − β ′

wα
|Aζ |2

e−β ′ε2α2 � eα2−h′
+p ln α+μ‖Aζ ‖2HS−β ′ε2α2 ≤ e−βε2α2

.

��

5. Properties of the Pekar Functional

In this section we are going to discuss essential properties of the Pekar functional FPek,
and we are going to verify an asymptomatically sharp quadratic approximation for
FPek(ϕ), which is valid for all field configurations ϕ close to a minimizer ϕPek. It
has been proven in [11] that a suitable quadratic approximation of FPek holds for all
configurations ϕ satisfying ‖Vϕ−ϕPek‖ � 1, where

Vϕ := −2 (−�)−
1
2 Reϕ. (5.1)

In the following we are showing that this result is still valid, in case we substitute the
L2-norm with the weaker ‖ · ‖� norm, which is a hybrid between the L2 and the L∞
norm defined as

‖V ‖� := sup
x∈R3

√∫

B1(x)
|V (y)|2 dy, (5.2)

where B1(x) is the unit ball centered at x ∈ R
3. This will be the content of Lemma 5.2

and Theorem 5.4, respectively. We have ‖Vϕ‖� = |λ|� for ϕ = ∑N
n=1 λnϕn , where | · |�

is the norm defined in Eq. (4.4). Before we come to the proof of Lemma 5.2, we first
need the subsequent auxiliary Lemma 5.1.

Lemma 5.1. There exists a constant C > 0 such that the operator inequality

V 2 ≤ C‖V ‖2� (1 − �)2 (5.3)

holds for all (measurable) V : R
3 −→ R, where V 2 is interpreted as a multiplication

operator.

Proof. As a first step, we are going to verify that Eq. (5.3) holds in case we use the
L2 norm ‖V ‖ instead of ‖V ‖�. This follows from V 2 ≤ ∥∥V (1 − �)−1

∥∥2
HS (1 − �)2,

where ‖ · ‖HS is the Hilbert-Schmidt norm, and
∥∥∥V (1 − �)−1

∥∥∥
2

HS
=
∫ ∫

V (x)2K (y − x)2 dxdy =
∫

K (y)2dy ‖V ‖2
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with K (y− x) being the kernel of the operator (1−�)−1. Note thatC ′ := ∫
K (y)2dy is

finite, which concludes the first step. In order to obtain the analogue statement for ‖V ‖�,
let χ be a smooth, non-negative, function with supp (χ) ⊂ B1(0) and

∫
R3 χ(y)2 dy = 1.

Defining χy(x) := χ(x − y) for y ∈ R
3 and using the previously derived inequality

V 2 ≤ C ′‖V ‖2 (1 − �)2, which holds for any V ∈ L2
(
R
3
)
, we obtain

V 2 =
∫

χyV
2χy dy =

∫
χy

(
1B1(y)V

)2
χy dy ≤ C ′

∫
‖1B1(y)V ‖2 χy (1 − �)2 χy dy

≤ C ′‖V ‖2�
∫

χy (1 − �)2 χy dy = C ′‖V ‖2�
∫ ∣∣(1 − �)χy

∣∣2 dy,

where |A|2 = A†A. Furthermore (1−�)χy = χy(1−�)−2
(∇χy

)∇ −(
�χy

)
, which

yields together with a Cauchy–Schwarz inequality the estimate
∫ ∣∣(1 − �)χy

∣∣2dy ≤ 3
∫ (

(1 − �)χ2
y (1 − �) − 4∇ ∣∣∇χy

∣∣2 ∇ + |�χy |2
)
dy

= 3(1 − �)2 − 12∇
(∫ ∣∣∣∇χ2

y

∣∣∣ dy
)

∇ + 3
∫

|�χy |2dy � (1 − �)2 ,

where we have used that
∫ |∇χ(y)|2 dy and

∫ |�χ(y)|2 dy are finite. ��
In the following we are going to use that we can write the Pekar energy as

FPek(ϕ) = ‖ϕ‖2 + inf σ
(−� + Vϕ

)
, (5.4)

where Vϕ is defined in Eq. (5.1). As an immediate consequence of Eq. (5.3) we have
±V ≤ √

C‖V ‖� (1 − �) and consequently there exists a δ0 > 0 and a contour C ⊂
C, such that C separates the ground state energy inf σ (−� + V ) from the excitation
spectrum of HV := −� + V for all V with ‖V − VϕPek‖� < δ0, see also the proof of
Proposition 3.1 in [11]. This allows us to further identify FPek(ϕ) as

FPek(ϕ) = ‖ϕ‖2 + Tr
∫

C
z

z − HVϕ

dz

2π i
(5.5)

for all ϕ satisfying ‖Vϕ−ϕPek‖� < δ0. Following the strategy in [11], wewill use Eq. (5.5)
to compare FPek(ϕ) with ePek = FPek

(
ϕPek

)
. Before we do this let us introduce the

operators

K Pek := 1 − HPek = 4 (−�)−
1
2 ψPek 1 − |ψPek〉〈ψPek|

HV Pek − μPek ψPek (−�)−
1
2 , (5.6)

LPek := 4 (−�)−
1
2 ψPek (1 − �)−1 ψPek (−�)−

1
2 , (5.7)

where HPek is defined in Eq. (1.4), μPek := ePek − ‖ϕPek‖2 and ψPek is the, non-
negative, ground state of the operator HV Pek with V Pek := VϕPek , which we interpret as a
multiplication operator in Eqs. (5.6) and (5.7). The following Lemma 5.2 can be proved
in the same way as [11, Proposition 3.3], using Lemma 5.1.

Lemma 5.2. There exist constants c, δ0 > 0 such that for all ϕ with ‖Vϕ−ϕPek‖� < δ0
∣∣
∣FPek (ϕ) − ePek − 〈ϕ − ϕPek|1 − K Pek|ϕ − ϕPek〉

∣∣
∣

≤ c‖Vϕ−ϕPek‖�〈ϕ − ϕPek|LPek|ϕ − ϕPek〉. (5.8)
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Proof. By taking δ0 small enough, we can assume for all V with ‖Vϕ−ϕPek‖� < δ0 that

sup
z∈C

∥∥
∥∥Vϕ−ϕPek

1

z − HV Pek

∥∥
∥∥
op

< 1, (5.9)

where ‖ · ‖op denotes the operator norm. This immediately follows from

∥∥∥∥Vϕ−ϕPek
1

HV Pek − z

∥∥∥∥

2

op
�
∥∥∥
(
Vϕ − V Pek

)
(1 − �)−1

∥∥∥
2

op
≤ C‖Vϕ−ϕPek‖2�,

where we used Eq. (5.3) and the fact that the spectrum of HV Pek has a positive distance
to the contour C, allowing us to bound the operator norm of (1 − �) 1

HVPek−z uniformly

in z ∈ C. Given Eq. (5.9), it has been verified in the proof of [11, Proposition 3.3] that
∣∣∣∣∣
‖ϕ‖2 + Tr

∫

C
z

z − HVϕ

dz

2π i
− ePek − 〈ϕ − ϕPek|1 − K Pek|ϕ − ϕPek〉

∣∣∣∣∣

� ε〈ϕ − ϕPek|LPek|ϕ − ϕPek〉

for ε := supz∈C
{ ∥∥∥ A

1−A

∥∥∥
op
+
∥∥∥ B
1−B

∥∥∥
op
+
∥∥∥(1 − �)

1
2 1

z−HVPek

A
1−A (1 − �)

1
2

∥∥∥
op

}
, where

we denote A := (
Vϕ−ϕPek

) 1
z−HVPek

and B := (
1 − |ψPek〉〈ψPek|) A†. In the following

wewant to verify that ε � ‖Vϕ−ϕPek‖�,which concludes the proof byEq. (5.5). Since (1−
�) 1

z−HVPek
is uniformlybounded in z,

∥
∥∥ A
1−A

∥
∥∥
op

≤ ‖A‖op
1−‖A‖op �‖ (Vϕ−ϕPek

)
(1−�)−1 ‖op�

‖Vϕ−ϕPek‖� by Eq. (5.3). Similarly
∥∥
∥ B
1−B

∥∥
∥
op

� ‖Vϕ−ϕPek‖�. Regarding the final term in

the definition of ε, note that (1− �)
1
2 1
z−HVPek

(1− �)
1
2 is uniformly bounded in z, and

therefore
∥∥∥
∥(1−�)

1
2

1

z−HV Pek

A

1−A
(1−�)

1
2

∥∥∥
∥
op

�
∥∥∥
∥(1−�)−

1
2

A

1−A
(1−�)

1
2

∥∥∥
∥
op

=
∥∥∥
∥

A′

1−A′

∥∥∥
∥
op

,

with A′ :=(1 − �)− 1
2 A (1 − �)

1
2 . Furthermore

∥∥∥ A′
1−A′

∥∥∥
op
≤ ‖A′‖op

1−‖A′‖op and

‖A′‖op �
∥∥
∥(1 − �)−

1
2
(
Vϕ−ϕPek

)
(1 − �)−

1
2

∥∥
∥
op

≤ ‖ (Vϕ−ϕPek
)
(1 − �)−1 ‖op

� ‖Vϕ−ϕPek‖�.

��
Lemma 5.2 gives a lower bound on FPek

(
ϕPek + ξ

) − ePek in terms of a quadratic
function ξ �→ 〈ξ |1 − (

K Pek + εLPek
) |ξ 〉 for ξ satisfying ‖Vξ‖� < min{ ε

c , δ0}. Due to
the translation invariance of FPek, this lower bound is however insufficient, since we
have for all ξ ∈ span{∂y1ϕPek, ∂y2ϕ

Pek, ∂y3ϕ
Pek}\{0}

〈ξ |1 −
(
K Pek + εLPek

)
|ξ 〉 = Hess|ϕPekFPek[ξ ] − ε〈ξ |LPek|ξ 〉 = −ε〈ξ |LPek|ξ 〉 < 0,

(5.10)
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i.e. the quadratic lower bound is not even non-negative. In order to improve this lower
bound, wewill introduce a suitable coordinate transformation τ in Definition 5.3. Before
we can formulate Definition 5.3 we need some auxiliary preparations.

In the following let � be the projection defined in Eq. (4.1) and let us define the real
orthonormal system

ϕn := �∂ynϕ
Pek

‖�∂ynϕ
Pek‖ (5.11)

for n ∈ {1, 2, 3}, whichwe complete to a real orthonormal basis {ϕ1, .., ϕN } of�L2
(
R
3
)
.

Furthermore let us write ϕPek
x (y) := ϕPek(y − x) for the translations of ϕPek and let us

define the map ω : R
3 −→ R

3 as

ω (x) :=
(
〈ϕn|ϕPek

x 〉
)3

n=1
∈ R

3. (5.12)

Since ϕPek ∈ H1
(
R
3
)
, ω is differentiable. Moreover, since ϕPek is invariant under the

action of O (3) and since the operator � commutes with the reflections yi → −yi and
permutations yi ↔ y j , it is clear thatω(0) = 0. By the same argument we see that D|0ω
has full rank and therefore there exists a local inverse t �→ xt for |t | < δ∗ and a suitable
constant δ∗ > 0.

Definition 5.3. We define the map τ : �L2
(
R
3
) −→ �L2

(
R
3
)
as

τ (ϕ) := ϕ − f (tϕ),

where tϕ := (〈ϕ1|ϕ〉, 〈ϕ2|ϕ〉, 〈ϕ3|ϕ〉) ∈ R
3 and f (t) is defined as

f (t) := χ
(|t | < δ∗

)
(

�ϕPek
xt −

3∑

n=1

tnϕn

)

.

The map τ is constructed in a way such that it “flattens” the manifold of Pekar
minimizers {ϕPek

x : x ∈ R
3}. More precisely, we have that τ

(
�ϕPek

x

)
is for all small

enough x ∈ R
3 an element of the linear space spanned by {ϕ1, ϕ2, ϕ3}. A similar

construction appears in [5] and, in a somewhat different way, in [9].
Recall the operators K Pek and LPek from Eqs. (5.6) and (5.7), and let Tx be the

translation operator defined by (Txϕ)(y) := ϕ(y − x). Then we define the operators
K Pek
x := Tx K Pek T−x and LPek

x := Tx LPek T−x , as well as for |t | < ε with ε < δ∗

Jt,ε := π
(
1 − (1 + ε)

(
K Pek
xt + εLPek

xt

) )
π, (5.13)

where π : L2
(
R
3
) −→ L2

(
R
3
)
is the orthogonal projection onto the subspace spanned

by {ϕ4, . . . , ϕN }. Furthermore we define Jt,ε := π for |t | ≥ ε. In contrast to the operator
1−(

K Pek + εLPek
)
fromEq. (5.10), the operator Jt,ε is non-negative for ε small enough,

as will be shown in Lemma B.5. With the operator Jt,ε and the transformation τ at hand
we can formulate a strong lower bound for FPek(ϕ) − ePek in the subsequent Theorem
5.4, where we use the shorthand notation Jt,ε

[
ϕ
] := 〈ϕ|Jt,ε |ϕ〉.
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Theorem 5.4. There exist constants C > 0, 0 < ε0 ≤ δ∗ and 0 < D ≤ 1 such that

FPek(ϕ) ≥ ePek + Jtϕ,ε

[
τ(ϕ)

] − C

ε

∥∥∥(1 − �)ϕPek
xtϕ

∥∥∥
2

(5.14)

for all 0 < ε < ε0 and ϕ ∈ �L2
(
R
3
)
satisfying

∥∥Vϕ−ϕPek

∥∥� < εD and |tϕ | < εD,
where Jt,ε is defined in Eq. (5.13).

Proof. In the following we use the abbreviation t := tϕ . Since
∥∥VϕPek−ϕPek

x

∥∥� � |x |
and |xt | � |t | for |t | ≤ δ∗

2 , we have for all ϕ satisfying
∥∥Vϕ−ϕPek

∥∥� < Dε and |t | <

min{Dε, δ∗
2 }
∥∥VT−xt ϕ−ϕPek

∥∥� = ∥∥Vϕ−ϕPek
xt

∥∥� ≤ ∥∥Vϕ−ϕPek

∥∥� +
∥∥VϕPek−ϕPek

xt

∥∥�
�
∥∥Vϕ−ϕPek

∥∥� + |t | � Dε.

By taking D small enough we obtain
∥∥VT−xt ϕ−ϕPek

∥∥� ≤ ε
c where c is the constant from

Lemma 5.2. Let us define ε0 := min
{
cδ0,

δ∗
2D , δ∗

}
. Using the translation-invariance of

FPek and applying Lemma 5.2 yields

FPek(ϕ)−ePek =FPek(T−xtϕ
)−ePek ≥〈T−xtϕ−ϕPek|1−

(
K Pek+εLPek

)
|T−xtϕ−ϕPek〉

= 〈ϕ − ϕPek
xt |1 −

(
K Pek
xt + εLPek

xt

)
|ϕ − ϕPek

xt 〉
≥ ‖ϕ − �ϕPek

xt ‖2 − 〈ϕ − ϕPek
xt |K Pek

xt + εLPek
xt |ϕ − ϕPek

xt 〉
≥ ‖ϕ − �ϕPek

xt ‖2 − (1 + ε) 〈ϕ − �ϕPek
xt |K Pek

xt + εLPek
xt |ϕ − �ϕPek

xt 〉
−
(
1 + ε−1

)
〈(1 − �)ϕPek

xt |K Pek
xt + εLPek

xt | (1 − �)ϕPek
xt 〉, (5.15)

where we have used the positivity of K Pek
x and LPek

x , and the Cauchy–Schwarz inequality
in the last estimate. Note that by construction of xt as the local inverse of the function
ω from Eq. (5.12), we have 〈ϕn|ϕ − �ϕPek

xt 〉 = 0 for n ∈ {1, 2, 3} and therefore

ϕ − �ϕPek
xt = π

(
ϕ − �ϕPek

xt

)
= π (ϕ − f (t)) = π (τ (ϕ))

with π being defined below Eq. (5.13), where we used |t | < δ∗. This concludes the
proof with C := (1 + ε0)

(‖K‖op + ε0‖L‖op
)
. ��

6. Proof of Theorem 1.1

In the following we will combine the results of the previous sections in order to prove
the lower bound on the ground state energy Eα in Theorem 1.1. We start by verifying the
subsequent Lemma 6.1, which provides a lower bound on Eα in terms of an operator that
is, up to a coordinate transformation τ and a non-negative term, a harmonic oscillator.

Let us again use the identificationF
(
�L2

(
R
3
)) ∼= L2

(
R

N
)
utilizing the representa-

tion of real functions ϕ = ∑N
n=1 λnϕn ∈ �L2

(
R
3
)
by points λ = (λ1, . . . , λN ) ∈ R

N ,
such that the annihilation operators an := a (ϕn) are given by an = λn + 1

2α2 ∂λn , where

λn is the multiplication operator by the function λ �→ λn on L2
(
R

N
)
, see also Eq. (4.2),
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where � is the projection from Eq. (4.1) and {ϕ1, . . . , ϕN } is the orthonormal basis of
�L2

(
R
3
)
constructed around Eq. (5.11). Let us also use for functions ϕ �→ g(ϕ) de-

pending on elements ϕ ∈ �L2
(
R
3
)
the convenient notation g(λ) := g

(∑N
n=1 λnϕn

)
,

where λ ∈ R
N .

Lemma 6.1. Let C > 0 and 0 < σ ≤ 1
4 , and assume s, h and σ satisfy 2 s < h and

σ < 1−5 s
4 . Furthermore let us define � := α

4
5 (1+σ) and L := α1+σ . Then we obtain for

any state 	 satisfying 〈	|H�|	〉 ≤ C, supp (	) ⊂ B4L(0) and

χ
(
W−1

ϕPekNWϕPek ≤ α−h
)

	 = 	, (6.1)

that

〈	|H�|	〉 ≥ ePek +
〈
	

∣∣
∣ − 1

4α4

N∑

n=1

∂2λn + Jtλ,α−s

[
τ(λ)

]
+N −

N∑

n=1

a†nan
∣∣
∣	

〉
− N

2α2

+ O
(
αs− 12

5 (1+σ) + α−2(1+σ)
)

, (6.2)

where tϕ and τ(ϕ) are defined in Lemma 5.3 and Jt,ε is defined in Eq. (5.13). Fur-

thermore, there exists a β > 0, such that 〈	|1 − B|	〉 ≤ e−βα2(1−s)
, where B is the

multiplication operator by the function λ �→ χ
(|tλ| < α−s

)
.

Proof. Applying Eq. (2.3) with � and � as in the definition of �, see Eq. (4.1), and
K := �, and utilizing Eq. (2.5), we obtain for a suitable C ′

〈	|H�|	〉 ≥ 〈	|H0
�,�|	〉 − C ′α−2(1+σ). (6.3)

Making use of
∑N

n=1 a
†
nan = ∑N

n=1

(
− 1

4α4 ∂
2
λn

+ λ2n

)
− N

2α2 and an + a†n = 2λn , we

further have the identity

H
0
�,� = −�x − 2

N∑

n=1

〈ϕn|wx 〉λn +
N∑

n=1

(
− 1

4α4 ∂2λn + λ2n

)
− N

2α2 +N −
N∑

n=1

a†nan

= −�x + Vλ(x) +
N∑

n=1

(
− 1

4α4 ∂2λn + λ2n

)
− N

2α2 +N −
N∑

n=1

a†nan,

with Vϕ defined in Eq. (5.1). Clearly −�x + Vλ ≥ inf σ (−�x + Vλ) = FPek(λ) −
∑N

n=1 λ2n , which yields the inequality H
0
�,� ≥ K +N − ∑N

n=1 a
†
nan with

K := − 1

4α4

N∑

n=1

∂2λn + FPek(λ) − N

2α2 . (6.4)

Combining Eqs. (6.3) and (6.4), we obtain

〈
	

∣∣∣H� − N +
N∑

n=1

a†nan
∣∣∣	

〉
+ C ′α−2(1+σ) ≥ 〈	|K|	〉 = 〈K〉γ , (6.5)
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where γ is the reduced density matrix on the Hilbert space F
(
�L2

(
R
3
)) ∼= L2

(
R

N
)

corresponding to the state 	, i.e. we trace out the electron component as well as all the
modes in the orthogonal complement of �L2

(
R
3
)
,

γ := TrL2(R3)⊗F(L2(R3))→F(�L2(R3)) [ |	〉〈	| ] .

Note that we have the inequality W−1
�ϕPek

(∑N
n=1 a

†
nan

)
W�ϕPek ≤ W−1

ϕPek NWϕPek . The

operators on the left and right hand side commute, and consequently (6.1) implies that

χ
(
W−1

�ϕPek

(∑N
n=1 a

†
nan

)
W�ϕPek ≤ α−h

)
	 = 	. This in particular means that the

transformed reduced density matrix γ̃ := W�ϕPekγW−1
�ϕPek satisfies

χ

(
N∑

n=1

a†nan ≤ α−h

)

γ̃ = γ̃ . (6.6)

Using the identification ϕ = ∑N
n=1 λnϕn as before, the Weyl operator W�ϕPek acts

as
(
W�ϕPek	

)
(λ) = 	

(
λ + λPek

)
with λPek := (〈ϕ1|ϕPek〉, . . . , 〈ϕN |ϕPek〉). Due to

Eq. (6.6), and the fact that 2 s < h and σ < 1−5 s
4 , the assumptions of Proposition 4.2

are satisfied, and therefore we obtain for any D > 0 the existence of a constant β > 0
such that for α large enough

∫

|λ−λPek|�≥α−s D

(
1 + |λ − λPek|2) ρ(λ)dλ =

∫

|λ|�≥α−s D

(
1 + |λ|2) ρ̃(λ)dλ ≤ e−βα2(1−s)

,

(6.7)
∫

|tλ|≥α−s D

(
1 + |λ − λPek|2) ρ(λ)dλ ≤

3∑

n=1

∫

|λn |≥ α−s√
3
D

(
1 + |λ − λPek|2) ρ(λ)dλ

=
3∑

n=1

∫

|λn |≥ α−s√
3
D

(
1 + |λ|2) ρ̃(λ)dλ ≤ e−βα2(1−s)

,

(6.8)

where ρ and ρ̃ are the density functions corresponding to γ and γ̃ , respectively, and
where we have used tλ = (λ1, λ2, λ3) ∈ R

3. For the concrete choice D := 1, Eq. (6.8)
immediately yields the claim 〈	|1 − B|	〉 = ∫

|tλ|≥α−s ρ(λ)dλ ≤ e−βα2(1−s)
.

In order to verify Eq. (6.2), we need to find a sufficient lower bound for the ex-
pectation value 〈K〉γ , where K is the operator from Eq. (6.4). Recall the definition of
the transformation τ : �L2

(
R
3
) −→ �L2

(
R
3
)
from Definition 5.3 and the opera-

tor Jt,ε from Eq. (5.13). As a first step we will provide a lower bound on 〈FPek(λ)〉γ ,
using Eq. (5.14) and the fact that sup|t |≤t0

∥∥(1 − �)ϕPek
xt

∥∥2 � α− 12
5 (1+σ) for t0 small

enough, which follows from Lemma A.1 together with xt −→
t→0

0. We define the operator

A := χ
(|λ − λPek|� < α−s D

)
χ
(∣∣tλ

∣∣ < α−s D
)
, where D is as in Theorem 5.4, and
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estimate

〈FPek(λ)〉γ = 〈FPek(λ) A〉γ + 〈FPek(λ) (1 − A)〉γ
≥
〈(
ePek + Jtλ,α−s

[
τ(λ)

])
A

〉

γ
+ 〈FPek(λ) (1 − A)〉γ + O

(
αs− 12

5 (1+σ)
)

=
〈
ePek+ Jtλ,α−s

[
τ(λ)

]〉

γ
+
〈
X
〉

γ
+O

(
αs− 12

5 (1+σ)
)

(6.9)

with X := (
FPek(λ) − ePek − Jtλ,α−s

[
τ(λ)

])
(1 − A). Using Eqs. (6.7) and (6.8) as

well as the fact that 1 − A ≤ χ
(|λ − λPek|� ≥ Dα−s

)
+ χ

(∣∣tλ
∣∣ ≥ Dα−s

)
, we obtain〈

X
〉

γ
� e−βα2(1−s)

, where we have used that FPek(λ) and Jtλ,α−s

[
τ(λ)

]
are bounded by

C(1+|λ|2) for suitableC > 0. By Eq. (6.9) we therefore have the estimate 〈FPek(λ)〉γ ≥〈
ePek+ Jtλ,α−s

[
τ(λ)

]〉

γ
+O

(
αs− 12

5 (1+σ)
)
, and consequently

〈K〉γ ≥ ePek+
〈
− 1

4α4

N∑

n=1

∂2λn + Jtλ,α−s

[
τ(λ)

]〉

γ
− N

2α2 + O
(
αs− 12

5 (1+σ)
)

. (6.10)

Since
〈
− 1

4α4

∑N
n=4 ∂2λn + Jtλ,α−s

[
τ(λ)

]〉

γ
=

〈
	

∣∣∣− 1
4α4

∑N
n=4 ∂2λn + Jtλ,α−s

[
τ(λ)

]∣∣∣	
〉
,

this concludes the proof together with Eq. (6.5). ��
In the following, let 	α be the sequence of states constructed in Theorem 3.13,

satisfying 〈	α|H�|	α〉 − Eα � α−2(1+σ), supp (	α) ⊂ B4L(0) with L = α1+σ and

strong condensation with respect to ϕPek, i.e. χ
(
W−1

ϕPek NWϕPek ≤ α−h
)

	α = 	α ,

and furthermore let s < 1
29 be a given constant and let us choose σ and h such that

2 s < h < 2
29 and s

2 ≤ σ < 1−5 s
4 . Note that h < 2

29 makes sure that the assumption
of Theorem 3.13 is satisfied, while 2 s < h and σ < 1−5 s

4 are necessary in order to
apply Lemma 6.1. The final assumption s

2 ≤ σ will be useful later in Eq. (6.15) in

order to make sure that α−2(1+σ) ≤ α−(2+s). Making use of − 1
4α4

∑3
n=1 ∂2λn ≥ 0 and

N ≥ ∑N
n=1 a

†
nan , we obtain by Lemma 6.1 that

Eα ≥ ePek+
〈
	α

∣
∣∣− 1

4α4

N∑

n=4

∂2λn + Jtλ,α−s

[
τ(λ)

]∣∣∣	α

〉
− N

2α2 +O
(
α−2(1+σ)

)
(6.11)

for a suitable C ′, where we have used αs− 12
5 (1+σ) ≤ α−2(1+σ) and Eα −〈	α|H�|	α〉 �

−α−2(1+σ). In order to further estimate the expectation value in Eq. (6.11), let us define

the unitary transformation (U	) (λ) := 	
(
τ ′ (λ)

)
with τ ′ (λ) :=

(〈
ϕn|τ (λ)

〉)N

n=1
∈

R
N . Since τ ′ acts as a shift operator on each of the planes Xt := {λ : (λ1, λ2, λ3) = t}

for t ∈ R
3, it is clear that det D|λτ ′ = 1, which in particular means that the operator U

is indeed unitary, and we have ∂λn = U−1∂λnU for n ≥ 4. Furthermore we define the
operator

Qt,ε := − 1

4α4

N∑

n=4

∂2λn +
N∑

n,m=1

(
Jt,ε

)
n,m λnλm
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with
(
Jt,ε

)
n,m := 〈ϕn|Jt,ε |ϕm〉. Note that

(
Jt,ε

)
n,m = (

Jt,ε
)
m,n = 0 in case n ∈

{1, 2, 3}, i.e. the operatorQt,ε depends only on the variables λn for n ≥ 4 and not on tλ =
(λ1, λ2, λ3), hence it acts on the Fock space F

(
span{ϕ4, . . . , ϕN }) ∼= L2

(
R

N−3
)
only.

Utilizing the fact that U−1 Jtλ,α−s

[
τ(λ)

]
U = Jtλ,α−s

[
λ
] = ∑N

n,m=1

(
Jtλ,α−s

)
n,m λnλm ,

where we used that U−1tλU = tλ, we obtain

U−1

(

− 1

4α4

N∑

n=4

∂2λn+ Jtλ,α−s

[
τ(λ)

]
)

U = Qtλ,α−s ≥ Qtλ,α−sB ≥ inf
|t |<α−s

inf σ
(
Qt,α−s

)
B,

where B is as in Lemma 6.1. Here we have used Qtλ,α−s ≥ 0, which follows from
Lemma B.5, as well as the fact that 1 − B is non-negative and commutes with Qtλ,α−s .
Applying this inequality with respect to the state 	̃α := U−1	α yields

〈
	α

∣
∣∣ − 1

4α4

N∑

n=4

∂2λn + Jtλ,α−s

[
τ(λ)

]∣∣∣	α

〉
≥ inf

|t |<α−s
inf σ

(
Qt,α−s

) 〈
	̃α

∣∣B
∣∣	̃α

〉

≥ inf
|t |<α−s

infσ
(
Qt,α−s

)− N

2α2

〈
	̃α

∣∣1 − B
∣∣	̃α

〉
(6.12)

wherewe have used Jt,ε ≤ 1, and therefore inf σ
(
Qt,ε

) ≤ N
2α2 . By Lemma 6.1, we know

that
〈
	̃α

∣
∣1 − B

∣
∣	̃α

〉 = 〈
	α

∣
∣1 − B

∣
∣	α

〉 ≤ e−βα2−2 s
. Combining Eqs. (6.11) and (6.12),

and making use of the fact that N � α p for some p > 0, yields

Eα ≥ ePek + inf
|t |<α−s

inf σ
(
Qt,α−s

) − N

2α2 + O
(
α−2(1+σ)

)
. (6.13)

Since the operator Qt,α−s is quadratic in ∂λn and λn , we have an explicit formula for its
ground state energy, given by

inf σ
(
Qt,α−s

) − N

2α2 = −Tr�L2(R3)

[
1 − √

Jt,α−s
]

2α2 , (6.14)

where we used the fact that Jt,α−s ≥ 0 for α large enough, as shown in Lemma B.5.
Using Eq. (B.7), we can approximate this quantity by

sup
|t |<α−s

∣∣
∣Tr�L2(R3)

[
1 − √

Jt,α−s

]
− Tr

[
1 −

√
HPek

]∣∣
∣ � α−s + α− 1

5 ,

where HPek is defined in Eq. (1.4). Consequently Eq. (6.13) yields

Eα−ePek+
1

2α2 Tr
[
1−

√
HPek

]
�−α−2(1+σ)−α−(2+s)−α

−
(
2+ 1

5

)

, (6.15)

which concludes the proof, since all the terms on the right side are of order α−(2+s).
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7. Approximation by Coherent States

This section is devoted to the proof of Theorem 3.2, which states that asymptotically
the phonon part of any low energy state is a convex combination of the coherent states
�ϕPek

x
with x ∈ R

3, where the convex combination is taken on the level of density
matrices. As a central tool we will verify in Lemma 7.2 an asymptotic formula for the
expectation value

〈
	
∣∣F̂

∣∣	
〉
in terms of the lower symbol Py corresponding to the state

	, see Eq. (7.6). Furthermore we will make use of the inequality

inf
x∈R3

‖ϕ − ϕPek
x ‖2 � FPek(ϕ) − ePek (7.1)

derived in [10, Lemma 7], which implies that the only coherent states �ϕ with a low
energy have their point of condensation ϕ close to the manifold of Pekar minimizers
{ϕPek

x : x ∈ R
3}.We start with the subsequent Lemma 7.1, which provides an asymptotic

formula for F̂ operators in terms of creation and annihilation operators.

Lemma 7.1. Let m ∈ N and C > 0 be given constants, {gn : n ∈ N} an orthonormal
basis of L2

(
R
3
)
and let us denote an := a(gn). Then there exists a constant T > 0 such

that for all functions F of the form

F (ρ) =
∫

. . .

∫
f (x1, . . . , xm) dρ(x1) . . . dρ(xm), (7.2)

with f : R
3×m −→ R bounded, and states 	 satisfying χ (N ≤ C) 	 = 	, we can

approximate the operator F̂ from Definition 3.1 by
∣∣∣
∣∣∣

〈
	
∣
∣F̂

∣
∣	

〉 −
∑

I,J∈Nm

f I,J
〈
	
∣
∣a†I1 . . . a†Im aJ1 . . . aJm

∣
∣	

〉
∣∣∣
∣∣∣
≤ T ‖ f ‖∞α−2, (7.3)

where we interpret f as a multiplication operator on L2
(
R
3
)⊗m ∼= L2

(
R
3×m

)
and

denote the matrix elements f I,J := 〈gI1 ⊗ · · · ⊗ gIm | f |gJ1 ⊗ · · · ⊗ gJm 〉.
Proof. By the assumption χ (N ≤ C) 	 = 	, we can represent the state 	 as 	 =⊕

n≤Cα2 	n where 	n(y, x1, . . . , xn) is a function of the electron variable y and the
n phonon coordinates xk ∈ R

3. As in the proof of Lemma 3.3, we will suppress the
dependence on the electron variable y in our notation. Using the definition of F̂ in
Definition 3.1, as well as the notation X = (x1, . . . , xn), we can write

〈
	
∣∣F̂

∣∣	
〉 =

∑

n≤Cα2

∫

R3n
F

(

α−2
n∑

k=1

δxk

)

|	n(X)|2dX

= α−2m
∑

n≤Cα2

∑

k∈{1,...,n}m

∫

R3n
f (xk1 , . . . , xkm )|	n(X)|2dX.

Defining K as the set of all k ∈ {1, . . . , n}m satisfying ki �= k j for all i �= j , we can
further express the operator

∑
I,J∈Nm f I,J a

†
I1

. . . a†Im aJ1 . . . aJm as

∑

I,J∈Nm

f I,J
〈
	
∣∣a†I1 . . . a†Im aJ1 . . . aJm

∣∣	
〉 = α−2m

∑

n≤Cα2

∑

k∈K

∫

R3n
f (xk1 , . . . , xkm )|	n(X)|2dX.
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Consequently we can identify the left hand side of Eq. (7.3) as
∣∣∣∣∣
∣
α−2m

∑

n≤Cα2

∑

k∈{1,...,n}m\K

∫

R3n
f (xk1 , . . . , xkm )|	n(X)|2dX

∣∣∣∣∣
∣

≤ ‖ f ‖∞
∑

n≤Cα2

⎛

⎝
∑

k∈{1,...,n}m\K
α−2m

⎞

⎠
∫

R3n
|	n(X)|2dX.

Since
∑

k∈{1,...,n}m\K α−2m =
(
nm − n!

(n−m)!
)

α−2m ≤ m2mnm−1α−2m � α−2 for

n ≤ Cα2 and since
∑

n≤Cα2

∫
R3n |	n(X)|2dX = ‖	‖2 = 1, this concludes the proof.

��
In the following we are going to define the lower symbol Py corresponding to a

state 	 ∈ L2
(
R
3,F

(
L2
(
R
3
) ))

. Since we consider the Fock space over the infinite

dimensional Hilbert space L2
(
R
3
)
, we need to modify the usual definition of the lower

symbol by introducing suitable localizations. For 0 < s ≤ 4
27 and y ∈ R

3, let us define

�∗ := α− 5
2 s and �∗ := α2 s , and the projection

�y := �
y
�∗,�∗ , (7.4)

see Definition 2.1. We have N∗ := dim�y L2
(
R
3
)

� (�∗/�∗)3 ≤ α2 by our as-
sumption s ≤ 4

27 . Using the notation {ey,1, . . . , ey,N∗} for the orthonormal basis of
�y L2

(
R
3
)
from Definition 2.1, we introduce for ξ ∈ C

N∗ the coherent states �y,ξ :=
eα2a†(ϕy,ξ )−α2a(ϕy,ξ )�, where � is the vacuum in F

(
�y L2

(
R
3
))

and ϕy,ξ :=
∑N∗

n=1 ξney,n ∈ �y L2
(
R
3
)
. Furthermore we define wave-functions 	y localized in the

electron coordinates x as

	y(x) := L
− 3

2∗ χ

(
x − y

L∗

)
	(x), (7.5)

where y ∈ R
3 and L∗ := α

s
2 , and χ is a smooth non-negative function with supp (χ) ⊂

B1(0) and
∫

χ(y)2 dy = 1. For the following construction, note that we can identify

L2
(
R
3,F

(
L2
(
R
3
) )) ∼= F

(
�y L2

(
R
3
))⊗ L2

(
R
3,F

(
�y L2

(
R
3
)⊥ ))

. Let us now de-

fine measures Py on C
N∗ ∼= R

2N∗ corresponding to the state 	y as

dPy

dξ
:= 1

πN∗
∥∥�y,ξ	y

∥∥2 , (7.6)

where �y,ξ is the orthogonal projection onto the set spanned by elements of the form

�y,ξ ⊗ 	̃ with 	̃ ∈ L2
(
R
3,F

(
�y L2

(
R
3
)⊥ ))

. Note that the coherent states �y,ξ

provide a resolution of the identity 1
πN∗

∫
CN∗ |�y,ξ 〉〈�y,ξ |dξ = 1F(�y L2(R3)), see for

example [20], and consequently the projections �y,ξ satisfy 1
πN∗

∫
CN∗ �y,ξ dξ = 1. In

particular we see that the total mass of the measure Py is
∫
dPy = ‖	y‖2 and therefore

∫∫
dPydy =

∫
‖	y‖2dy = ‖	‖2 = 1.
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In the following Lemma 7.2 and Corollary 7.3 we will provide an asymptotic formula
for the expectation value

〈
	y

∣∣F̂
∣∣	y

〉
, respectively

〈
	
∣∣F̂

∣∣	
〉
, in terms of the measures

Py .

Lemma 7.2. Given m ∈ N, C > 0 and g ∈ L2
(
R
3
)
, there exists a T > 0 such that for

all F of the form (7.2), y ∈ R
3 and ε > 0, and states 	 satisfying χ (N ≤ C) 	 = 	

1

T ‖ f ‖∞

∣∣∣
∣
〈
	y

∣∣F̂
∣∣	y

〉−
∫

F
(
|ϕy,ξ |2

)
dPy(ξ)

∣∣∣
∣≤

(
N∗
α2 + ε

)
‖	y‖2+ε−1〈	y

∣∣N y
>N∗

∣∣	y
〉
,

(7.7)

with N y
>N∗ := N − ∑N∗

n=1 a
†
y,nay,n and ay,n := a

(
ey,n

)
, and furthermore

1

T

∣∣
∣∣
〈
	y

∣
∣W−1

g NWg
∣
∣	y

〉−
∫

‖ϕy,ξ −g‖2dPy(ξ)

∣∣
∣∣≤

(
N∗
α2 +ε

)
‖	y‖2+ε−1〈	y

∣
∣N y

>N∗
∣
∣	y

〉
,

(7.8)

where Wg is the corresponding Weyl transformation.

Proof. Let {gn : n ∈ N} be a completion of {ey,1, . . . , ey,N∗} to an orthonormal basis of
L2
(
R
3
)
and let us define an := a (gn). We further introduce an operator F̃ as

F̃ :=
∑

I,J∈{1,...,N∗}m
f I,J a

†
I1
. . . a†Im aJ1 . . . aJm =

∑

I,J∈Nm

(
�⊗m

y f �⊗m

y

)

I,J
a†I1 . . . a

†
Im
aJ1 . . . aJm .

(7.9)

In the following we want to verify that both ‖ f ‖−1∞
∣∣〈	y

∣∣F̂
∣∣	y

〉 − 〈
	y

∣∣F̃
∣∣	y

〉∣∣ and
‖ f ‖−1∞

∣∣〈	y
∣∣F̃

∣∣	y
〉 − ∫

F
(|ϕy,ξ |2

)
dPy (ξ)

∣∣ are, up to a multiplicative constant,
bounded by the right hand side of Eq. (7.7). Applying the Cauchy–Schwarz inequal-
ity, we obtain for all ε > 0

±
(
f −�⊗m

y f �⊗m

y

)
= ± f

(
1−�⊗m

y

)
±
(
1−�⊗m

y

)
f �⊗m

y

≤ ε‖ f ‖∞+ε−1‖ f ‖∞
(
1−�⊗m

y

)

≤ ε‖ f ‖∞+ε−1‖ f ‖∞
(
(1−�y)1+. . .+(1−�y)m

)
,

where (1 − �y) j means that the operator 1 − �y acts on the j-th factor in the tensor
product. Consequently we have the operator inequality

±
⎛

⎝
∑

I,J∈Nm

f I,J a
†
I1

. . . a†Im aJ1 . . . aJm − F̃

⎞

⎠ ≤ ε‖ f ‖∞Nm + ε−1‖ f ‖∞mN y
>N∗N

m−1.

Making use of Eq. (7.3) and the fact that χ (N ≤ C) 	y = 	y further yields
∣∣∣
∣∣∣
〈	y |F̂ |	y〉 −

∑

I,J∈Nm

f I,J 〈	y |a†I1 . . . a†Im aJ1 . . . aJm |	y〉
∣∣∣
∣∣∣
≤ dα−2‖ f ‖∞‖	y‖2
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for a suitable constant d > 0. We have thus shown the bound

1

‖ f ‖∞
∣∣〈	y |F̂ |	y〉−〈	y |F̃ |	y〉

∣∣≤
(
dα−2+εCm

)
‖	y‖2+ε−1mCm−1〈	y

∣∣N y
>N∗

∣∣	y
〉

(7.10)

which is of the desired form.
In order to verify that 1

‖ f ‖∞
∣∣〈	y

∣∣F̃
∣∣	y

〉 − ∫
F
(|ϕy,ξ |2

)
dPy (ξ)

∣∣ is of the same

order as the right hand side of Eq. (7.7) as well, we will first compute F̃ with reversed
operator ordering, i.e. we compute

∑

I,J∈{1,...,N∗}m
f I,J aJ1 . . . aJma

†
I1

. . . a†Im =
∑

I,J∈{1,...,N∗}m
f I,J a

†
I1
. . . a†Im aJ1 . . . aJm

+
m∑

n=1

1

α2nn!
∑

σ,τ∈Sm,n

⎛

⎝
∑

I ′,J ′
f σ,τ
I ′,J ′

∏

k /∈{σ1,...,σn}
a†I ′

k

∏

�/∈{τ1,...,τn}
aJ ′

�

⎞

⎠ (7.11)

where Sm,n is the set of all sequences σ = (σ1, . . . , σn) without repetitions having
values σk ∈ {1, . . . ,m} and the coordinate matrices f σ,τ are defined as

f σ,τ
I ′,J ′ :=

∑

I,J∈{1,...,N∗}m
f I,J δIσ1 ,Jτ1

. . . δIσn ,Jτn

∏

k /∈{σ1,...,σn}
δIk ,I ′

k

∏

�/∈{τ1,...,τn}
δJ�,J ′

�

for I ′ ∈ {1, . . . , N∗}{1,...,m}\{σ1,...,σn} and J ′ ∈ {1, . . . , N∗}{1,...,m}\{τ1,...,τn}. One can ver-
ify Eq. (7.11) either by iteratively applying the (rescaled) canonical commutation rela-

tions [ai , a†j ] = α−2δi, j , or by using the fact that the operator e
α−2∇ξ̄ ∇ξ , which is well de-

fined on polynomials in ξ and ξ̄ , transforms the upper symbol into the lower symbol (see
e.g. [27]), and computing its action on P(ξ) := ∑

I,J∈{1,...,N∗}m f I,J ξI1 . . . ξIm ξJ1 . . . ξJm
as

eα−2∇ξ̄ ∇ξ (P) (ξ) = P(ξ) +
m∑

n=1

1

α2nn!
∑

σ,τ∈Sm,n

⎛

⎝
∑

I ′,J ′
f σ,τ
I ′,J ′

∏

k /∈{σ1,...,σn}
ξI ′

k

∏

�/∈{τ1,...,τn}
ξJ ′

�

⎞

⎠ .

In order to identify the left hand side of Eq. (7.11), we will make use of the resolution
of identity 1

πN∗
∫

CN∗ �y,ξ dξ = 1, where �y,ξ is defined below Eq. (7.6), which allows

us to rewrite the anti-wick ordered term aJ1 . . . aJma
†
I1

. . . a†Im as

1

πN∗

∫

CN∗
aJ1 . . . aJm�y,ξa

†
I1

. . . a†Im dξ = 1

πN∗

∫

CN∗
ξJ1 . . . ξJm ξI1 . . . ξIm�y,ξ dξ.

Here we have used that ai�y,ξ = ξi�y,ξ for all i ∈ {1, . . . , N∗}. By the definition of Py
in Eq. (7.6) we can therefore rewrite the expectation value of the first term on the left
hand side of Eq. (7.11) with respect to the state 	y as

∑

I,J∈{1,...,N∗}m
f I,J

〈
	y

∣∣aJ1 . . . aJma
†
I1

. . . a†Im
∣∣	y

〉=
∑

I,J∈{1,...,N∗}m
f I,J

∫
ξJ1 . . . ξJm ξI1 . . . ξImdPy(ξ)

=
∫ 〈

ϕ⊗m

y,ξ

∣∣ f
∣∣ϕ⊗m

y,ξ

〉
dPy(ξ) =

∫
F
(∣∣ϕy,ξ

∣∣2
)
dPy (ξ) . (7.12)
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In order to control the terms in the second line of Eq. (7.11), we can estimate the norm
‖ f σ,τ‖op ≤ ‖ f ‖∞Nn∗ for all σ, τ ∈ Sm,n , which follow from

〈v| f σ,τ |w〉 =
∑

I,J∈{1,...,N∗}m
f I,J δIσ1 ,Jτ1

. . . δIσn ,Jτn vI ′wJ ′ =
∑

k∈{1,...,N∗}n

〈
vk
∣∣ f
∣∣wk 〉

≤ ‖ f ‖∞
∑

k∈{1,...,N∗}n
‖vk‖‖wk‖ ≤ ‖ f ‖∞Nn∗ ‖v‖‖w‖,

where I ′ denotes the restriction of I to {1, . . . ,m}\{σ1, . . . , σn} and vk is defined as(
vk
)
I := δIσ1 ,k1 . . . δIσn ,knvI ′ , and J ′ and wk are defined analogue. Hence we obtain

∣
∣∣∣∣∣

1

α2n

∑

I ′,J ′
f σ,τ
I ′,J ′

〈
	y

∣∣
∏

k /∈{σ1,...,σn}
a†I ′

k

∏

�/∈{τ1,...,τn}
aJ ′

�

∣∣	y
〉
∣
∣∣∣∣∣
≤ ‖ f ‖∞

(
N∗
α2

)n

〈	y |Nm−n|	y〉

for n ≥ 1. Since χ (N ≤ C)	y = 	y and N∗ � α2, see the comment below Eq. (7.4),
this is a quantity of order ‖ f ‖∞ N∗

α2 ‖	y‖2. Combing this estimate with Eq. (7.11) and

Eq. (7.12) yields that 1
‖ f ‖∞

∣∣〈	y
∣∣F̃

∣∣	y
〉 − ∫

F
(|ϕy,ξ |2

)
dPy (ξ)

∣∣ is, up to a multiplica-
tive factor, bounded by the right hand side of Eq. (7.7). Together with Eq. (7.10), this
concludes the proof of Eq. (7.7).

In order to verify Eq. (7.8), let us define G(ρ) := ∫
dρ. Note that W−1

g NWg =
N−a(g)−a†(g)+‖g‖2 = Ĝ −a(g)−a†(g)+‖g‖2. Furthermorewe have

〈
	y

∣∣a(�yg)+
a†(�yg)

∣∣	y
〉 = ∫ (〈g|ϕy,ξ 〉 + 〈ϕy,ξ |g〉

)
dPy (ξ), where we used that a(g) + a†(g) is

anti-Wick ordered, and
∣∣∣
〈
	y

∣∣∣a(g) + a†(g) − a(�yg) − a†(�yg)
∣∣∣	y

〉∣∣∣ ≤ ε−1〈	y |N y
>N∗ |	y〉 + ε‖g‖2‖	y‖2.

Hence, applying Eq. (7.7) with respect to the function G and using that
∫‖ϕy,ξ −

g‖2dPy = ∫ (
G
(|ϕy,ξ |2

)
+ 〈g|ϕy,ξ 〉 + 〈ϕy,ξ |g〉

)
dPy (ξ) + ‖g‖2‖	y‖2 concludes the

proof of Eq. (7.8). ��
Corollary 7.3. Given constants m ∈ N,C > 0 and g ∈ L2

(
R
3
)
, there exists a constant

T > 0 such that for all F of the form (7.2) and states 	 satisfying χ (N ≤ C) 	 = 	

and 〈	|HK |	〉 ≤ ePek + δe, with δe ≥ 0 and K ≥ �∗ = α2 s ,

1

T ‖ f ‖∞

∣∣∣
∣
〈
	
∣∣F̂

∣∣	
〉 −

∫∫
F
(∣∣ϕy,ξ

∣∣2
)
dPy (ξ) dy

∣∣∣
∣ ≤ √

δe + α− s
2 + α

27
2 s−2, (7.13)

and furthermore

1

T

∣∣
∣∣
〈
	

∣∣
∣W−1

g NWg

∣∣
∣	

〉
−
∫∫

‖ϕy,ξ − g‖2dPy (ξ) dy

∣∣
∣∣ ≤ √

δe + α− s
2 + α

27
2 s−2.

(7.14)

Proof. Using the fact thatwehave
〈
	
∣∣F̂

∣∣	
〉 = ∫ 〈

	y
∣∣F̂

∣∣	y
〉
dy and

〈
	
∣∣W−1

g NWg
∣∣	

〉 =∫ 〈
	y

∣∣W−1
g NWg

∣∣	y
〉
dy, and applying Eq. (7.7), respectively Eq. (7.8), immediately

yields that the left hand sides of Eqs. (7.13) and (7.14) are bounded by

N∗
α2 + ε + ε−1

∫
〈	y |N y

>N∗ |	y〉dy (7.15)
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for any ε > 0. In order to bound
∫〈	y |N y

>N∗ |	y〉dy from above, let us first apply
Eq. (2.3) together with Eq. (2.5), which provides the auxiliary estimate

∫
|〈	y |Hy

�∗,�∗ |	y〉 − 〈	y |HK |	y〉|dy � α−s
∫

〈	y | − �x +N + 1|	y〉dy

≤ α−s
∫

〈	y |2HK + d + 1|	y〉dy.

Note that the assumptions ofEq. (2.3) are indeed satisfied, since K ≥ �∗ and supp
(
	y

) ⊂
BL∗(y). In combination with the IMS identity

∫ 〈	y |HK |	y〉dy = 〈	|HK |	〉 +
L−2∗ ‖∇χ‖2, where χ is the function from Eq. (7.5), this furthermore yields

∣∣
∣∣

∫
〈	y |Hy

�∗,�∗ |	y〉dy − 〈	|HK |	〉
∣∣
∣∣ � α−s (〈	|HK |	〉 + d + 1) , (7.16)

where we have used L−2∗ = α−s . Furthermore 〈	|HK |	〉 ≤ ePek + δe by assumption,
and consequently | ∫ 〈	y |Hy

�∗,�∗ |	y〉dy − 〈	|HK |	〉| ≤ Dα−s(δe + 1) for a suitable
D. Consequently

〈	|HK |	〉 ≥
∫

〈	y |Hy
�∗,�∗ |	y〉dy − Dα−s(δe + 1)

≥ Eα +
∫

〈	y |N y
>N∗ |	y〉dy − Dα−s(δe + 1). (7.17)

where we have used thatHy
�∗,�∗ ≥ Eα +N y

>N∗ in the second inequality. Using Eq. (7.17)

as well as the fact that Eα −ePek � −α− 1
5 ≥ −α−s , see [20], we obtain the upper bound

∫
〈	y |N y

>N∗ |	y〉dy � 〈	|HK |	〉 − ePek + α−s(δe + 1) � δe + α−s . (7.18)

Choosing ε := √
δe + α−s in Eq. (7.15) therefore concludes the proof together with the

observation that N∗
α2 � α

27
2 s−2. ��

In the following Lemma 7.4 we are investigating the support properties of the lower
symbol Py . In particular we derive bounds on the associated moments and verify that
ϕy,ξ is typically close to the manifold of minimizers {ϕPek

x : x ∈ R
3}.

Lemma 7.4. Given constants m ∈ N and C > 0, there exists a T > 0, such that∫∫ |ξ |2mdPy (ξ) dy ≤ T for all 	 satisfying χ (N ≤ C) 	 = 	, and furthermore we
have for all K ≥ �∗, where �∗ is as in the definition of �y in Eq. (7.4),

1

T

∫∫
inf
x∈R3

‖ϕy,ξ − ϕPek
x ‖2dPy (ξ) dy ≤ 〈	|HK |	〉 − ePek + α−s + α

27
2 s−2. (7.19)
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Proof. For m ∈ N, let us define the function G(ρ) := (∫
dρ(x)

)m = ∫
. . .

∫
dρ(x1) . . .

dρ(xm), which is clearly of the form given in Eq. (7.2). Consequently by Lemma 7.2
∫

|ξ |2mdPy (ξ) =
∫

G
(
|ϕy,ξ |2

)
dPy (ξ)

�
〈
	y

∣∣Ĝ
∣∣	y

〉
+

(
N∗
α2 + 1

)
‖	y‖2 + 〈	y |N y

>N∗ |	y〉

= 〈
	y

∣∣N 2m
∣∣	y

〉
+

(
N∗
α2 + 1

)
‖	y‖2 + 〈	y |N y

>N∗ |	y〉

≤
(
C2m +

N∗
α2 + 1 + C

)
‖	y‖2,

which concludes the proof of the first part, since N∗ � α2 and
∫ ‖	y‖2dy = ‖	‖2 = 1.

Regarding the proof of Eq. (7.19), we have the simple bound

H
y
�∗,�∗ =−�x−a

(
�ywx

)−a†
(
�ywx

)
+N

≥−�x−a
(
�ywx

) −a†
(
�ywx

)
+

N∗∑

n=1

a†y,nay,n

= −�x − a
(
�ywx

) − a†
(
�ywx

)
+

N∗∑

n=1

ay,na
†
y,n − N∗

α2 . (7.20)

Since all terms in Eq. (7.20) are represented in anti-Wick ordering, we can follow [20]
and express, similar as in the proof of Lemma 7.2, their expectation value as

〈
	y

∣∣∣−�x−a
(
�ywx

)−a†
(
�ywx

)
+
N∗∑

n=1

ay,na
†
y,n

∣∣∣	y

〉

=
∫(

〈ψξ
y |−�x +Vϕy,ξ |ψξ

y 〉+‖ϕy,ξ‖2
)
dPy(ξ)

≥
∫ (

inf σ
(−�x + Vϕy,ξ

)
+ ‖ϕy,ξ‖2

)
dPy (ξ) =

∫
FPek(ϕy,ξ

)
dPy (ξ) , (7.21)

with ψ
ξ
y := �y,ξ 	y

‖�y,ξ 	y‖ where �y,ξ is defined below Eq. (7.6), FPek is the Pekar func-
tional and Vϕ is defined in Eq. (5.1). Making use of Eq. (7.1) we obtain together with
Eqs. (7.16), (7.20) and (7.21)

∫ ∫
inf
x∈R3

‖ϕy,ξ − ϕPek
x ‖2dPy (ξ) dy �

∫
〈	y |Hy

�∗,�∗ |	y〉dy − ePek +
N∗
α2

� 〈	|HK |	〉 − ePek +
N∗
α2 + Dα−s (〈	|HK |	〉 + d + 1) ,

for a suitable D > 0. This concludes the proof, since we have N∗ � α
27
2 s . ��

The bound in Eq. (7.19) suggests that ϕy,ξ is close to ϕPek
x y,ξ

with a high probability,

where x y,ξ is the minimizer of x �→ ‖ϕy,ξ − ϕPek
x ‖. Motivated by this observation
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we expect
∫∫

F
(∣∣ϕy,ξ

∣∣2
)
dPydy ≈ ∫∫

F

(∣∣∣ϕPek
x y,ξ

∣∣∣
2
)
dPydy for measures Py for low

energy states 	, and therefore it seems natural to define the measure μ in Theorem

3.2 as
∫

f dμ := ∫∫
f
(
x y,ξ

)
dPydy, allowing us to identify

∫∫
F

(∣∣∣ϕPek
x y,ξ

∣∣∣
2
)
dPydy =

∫
F
(∣
∣ϕPek

x

∣
∣2
)
dμ. This expression is however ill-defined, since the infimum

inf x∈R3 ‖ϕy,ξ − ϕPek
x ‖ is not necessarily attained and it is not necessarily unique. In

order to avoid these difficulties, we will slightly modify the definition of the measure μ

in the proof of Lemma 7.5.

Lemma 7.5. Given m ∈ N,C > 0 and g ∈ L2
(
R
3
)
we can find a constant T > 0, such

that for all states 	 satisfying χ (N ≤ C) 	 = 	 and 〈	|HK |	〉 ≤ ePek + δe, with
δe ≥ 0 and K ≥ �∗, there exists a probability measure μ on R

3 with the property

1

T ‖ f ‖∞

∣
∣∣∣

∫∫
F
(∣∣ϕy,ξ

∣∣2
)
dPy(ξ) dy −

∫
F

(∣
∣∣ϕPek

x

∣
∣∣
2
)
dμ(x)

∣
∣∣∣ ≤ √

δe + α− s
2 + α

27
4 s−1,

(7.22)

for all F of the form (7.2), and furthermore

1

T

∣∣∣∣

∫∫
‖ϕy,ξ − g‖2dPy(ξ) dy −

∫
‖ϕPek

x − g‖2dμ(x)

∣∣∣∣ ≤ √
δe + α− s

2 + α
27
4 s−1.

(7.23)

Proof. For ε > 0, let
⋃∞

n=1 Aε,n = C
N∗ be a partition of C

N∗ consisting of non-empty
measurable sets Aε,n having a diameter bounded by d(Aε,n) ≤ ε. Furthermore choose
ξε,n ∈ Aε,n and xε,n ∈ R

3 satisfying ‖ϕ0,ξε,n − ϕPek
xε,n

‖ ≤ infx∈R3 ‖ϕ0,ξε,n − ϕPek
x ‖ + ε.

Then

‖ϕy,ξ −ϕPek
y+xε,n

‖ = ‖ϕ0,ξ −ϕPek
xε,n

‖ ≤ ‖ϕ0,ξε,n −ϕPek
xε,n

‖+‖ϕ0,ξ −ϕ0,ξε,n‖
≤ ‖ϕ0,ξε,n −ϕPek

xε,n
‖+ε

≤ inf
x∈R3

‖ϕ0,ξε,n −ϕPek
x ‖+2ε ≤ inf

x∈R3
‖ϕ0,ξ −ϕPek

x ‖+3ε = inf
x∈R3

‖ϕy,ξ −ϕPek
x ‖+3ε.

(7.24)

Let us now define the probability measure μ on R
3 by specifying its action on functions

f ∈ C
(
R
3
)
as

∫
f dμ :=

∞∑

n=1

∫
f
(
y + xε,n

)
Py
(
Aε,n

)
dy =

∞∑

n=1

∫ ∫

Aε,n

f
(
y + xε,n

)
dPydy.

Since
∫
F
(∣
∣ϕy,ξ

∣
∣2
)
dPy(ξ) = ∑∞

n=1

∫
Aε,n

F
(∣
∣ϕy,ξ

∣
∣2
)
dPy(ξ), we can estimate the left

hand side of Eq. (7.22) with the aid of the triangle inequality by

∞∑

n=1

∫ ∫

Aε,n

∣∣∣∣F
(∣∣ϕy,ξ

∣∣2
)

− F

(∣∣∣ϕPek
y+xε,n

∣∣∣
2
)∣∣∣∣ dPy(ξ) dy. (7.25)
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From the concrete form of the function F given in Eq. (7.2), as well as the facts that
‖ϕPek

y+xε,n
‖ = ‖ϕPek

0 ‖ is finite and ‖ϕy,ξ‖ = |ξ |, one readily concludes that
∣∣∣∣F

(∣∣ϕy,ξ
∣∣2
)

− F

(∣∣∣ϕPek
y+xε,n

∣∣∣
2
)∣∣∣∣ � ‖ f ‖∞

∥∥∥ϕy,ξ − ϕPek
y+xε,n

∥∥∥ (1 + |ξ |)2m−1 .

Using Eq. (7.24) we further obtain for any κ > 0 and ξ ∈ Aε,n

∥∥∥ϕy,ξ − ϕPek
y+xε,n

∥∥∥ (1 + |ξ |)2m−1 ≤
(
inf
x∈R3

‖ϕy,ξ −ϕPek
x ‖ + 3ε

)
(1 + |ξ |)2m−1

≤ κ−1 inf
x∈R3

‖ϕy,ξ −ϕPek
x ‖2 + κ

4
(1 + |ξ |)4m−2 + 3ε (1 + |ξ |)2m−1 ,

and therefore the expression in Eq. (7.25) can be bounded from above by

‖ f ‖∞
(

κ−1
∫∫

inf
x∈R3

‖ϕy,ξ −ϕPek
x ‖2dPy(ξ) dy +

κ

4

∫∫
(1 + |ξ |)4m−2 dPy(ξ) dy

+ 3ε
∫∫

(1 + |ξ |)2m−1 dPy(ξ) dy

)
.

By Lemma 7.4 this concludes the proof of (7.22) with ε := κ :=
√

δe + α−s + α
27
2 s−2.

Equation (7.23) can be proven analogously, using the estimate

∣∣∣‖ϕy,ξ − g‖2 − ‖ϕPek
y+xε,n

− g‖2
∣∣∣ �

∥∥∥ϕy,ξ − ϕPek
y+xε,n

∥∥∥ (1 + |ξ |)

for ξ ∈ Aε,n . ��
CombiningEq. (7.13), respectivelyEq. (7.14),withEq. (7.22), respectivelyEq. (7.23),

immediately yields that the left hand side of Eq. (3.2), respectively Eq. (3.3), is of the

order
√

δe+α− s
2 +α

27
4 s−1. Optimizing in the parameter 0 < s ≤ 4

27 concludes the proof
of Theorem 3.2 with the concrete choice s := 4

29 .
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A. Properties of the Pekar Minimizer

In the following section we derive certain useful properties concerning the minimizer
ϕPek of the Pekar functionalFPek in (5.4). We start with Lemma A.1, where we quantify
the error of applying the cut-off � to a minimizer, where � is the projection defined in
Eq. (4.1) for a given parameter 0 < σ < 1

4 . The subsequent Lemmas A.2 and A.3 then

concern the concentration of the density
∣
∣ϕPek

∣
∣2 around the origin.

Lemma A.1. For all r > 0 we have the estimates sup|x |≤r

∥
∥(1 − �)ϕPek

x

∥
∥ � α− 6

5 (1+σ).

Moreover,
∥
∥(1 − �) ∂xnϕ

Pek
∥
∥ � α− 2

5 (1+σ) for n ∈ {1, 2, 3}.
Proof. We can write ϕPek = 4

√
π (−�)− 1

2
∣∣ψPek

∣∣2 where ψPek is the ground state of
the operator HV Pek . Consequently ϕPek

x = 4
√

π ( fx + gx ) with the definitions f̂x (k) =
1B�(k)

̂|ψPek|2(k)
|k| eik·x and ĝx (k) = 1R3\B�

(k)
̂|ψPek|2(k)

|k| eik·x , where ·̂ denotes the Fourier
transform. In the first step we are going to estimate ‖ (1 − �) gx‖ = ‖gx‖ by

‖gx‖2=
∫

|k|≥�

∣∣∣
̂∣∣ψPek

∣∣2(k)
∣∣∣
2

|k|2 dk≤
∥∥∥
∥|k|2

̂∣∣ψPek
∣∣2(k)

∥∥∥
∥

2

∞

∫

|k|≥�

1

|k|6 dk � 1

�3 =α− 12
5 (1+σ),

(A.1)

wherewehaveused thatψPek ∈ H2
(
R
3
)
, [17,24] and therefore

∥∥
∥∥|k|2

̂∣∣ψPek
∣
∣2(k)

∥∥
∥∥∞

<∞.

In order to estimate the remaining part ‖ (1 − �) fx‖, let us first compute

fx (y)= 1
√

(2π)3

∫

|k|≤�

̂∣∣ψPek
∣
∣2(k)

|k| eik·(x−y)dk

= 1

(2π)3

∫

|k|≤�

eik·(x−y)

|k|
∫

R3

∣∣∣ψPek(z)
∣∣∣
2
eik·zdzdk

= 1

(2π)3

∫

R3

∣∣
∣ψPek(z)

∣∣
∣
2
∫

|k|≤�

eik·(x+z−y)

|k| dk dz

= 1√
4π

∫

R3

∣∣∣ψPek(z)
∣∣∣
2
��wx+z(y) dz

using the projection �� from Definition 2.1 and the function wx from Lemma 2.2.
Consequently we obtain by Lemma 2.2

‖ (1 − �) fx‖ ≤ 1√
4π

∫

R3

∣∣∣ψPek(z)
∣∣∣
2 ‖��wx+z − �wx+z‖ dz

� �
√

�

∫

R3
|z|

∣
∣∣ψPek(z)

∣
∣∣
2
dz + �

√
�|x | + √

�,

where we have used (1 − �)�� = ��−� and
∫

R3

∣∣ψPek(z)
∣∣2 dz = 1. This concludes

the proof of the first part, since the terms �
√

� and
√

� are all bounded by α− 6
5 (1+σ),

and the state ψPek satisfies
∫

R3 |z|p ∣∣ψPek(z)
∣∣2 dz < ∞ for any p ≥ 0, see [24].
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In order to verify the second part, we write again ∂xnϕ
Pek = 4

√
π
(
∂xn f0 + ∂xn g0

)
. In

analogy to Eq. (A.1) we have ‖∂xn g0‖2 � 1
�

= α− 4
5 (1+σ). Furthermore

∂xn f0(x) = − 1√
4π

∫
R3 ∂zn

(∣∣ψPek(z)
∣∣2
)

��wz(x) dz, hence proceeding as above yields

‖ (1 − �) ∂xn f0‖ � �
√

�

∫

R3
|z|∣∣∂zn

(∣∣∣ψPek(z)
∣∣∣
2
)∣∣ dz

+
(
�
√

�|x | + √
�
) ∫

R3

∣∣∂zn

(∣∣∣ψPek(z)
∣∣∣
2
)∣∣ dz.

This concludes the proof, since

∫

R3
|z|
∣∣∣∂xn

(∣∣∣ψPek(z)
∣∣∣
2
)∣∣∣ dz = 2

∫

R3
|z||ψPek(z)||∂znψPek(z)| dz

≤
∫

R3
|z|2|ψPek(z)|2 dz +

∫

R3
|∇ψPek(z)|2 dz < ∞

and similarly with |z| replaced by 1. ��

Lemma A.2. There exists a constant C such that
∫

t≤xi≤t+ε

∣∣ϕPek(x)
∣∣2 dx ≤ C ε for all

t ∈ R, ε > 0 and i ∈ {1, 2, 3}.
Proof. By the reflection symmetry of the Pekar minimizer, it is enough to prove the
statement for i = 1. For this purpose, let us define the function D : R → R as

D(t) :=
∫

R2

∣∣∣ϕPek(t, x2, x3)
∣∣∣
2
dx2dx3

In order to prove the Lemma, we are going to show that D is a bounded function. Since
D(t) −→

t→±∞ 0, we have ‖D‖∞ ≤ ∫ |D′(t)|dt and furthermore

∫
|D′(t)|dt ≤

∫ ∫

R2

∣∣
∣∣∂t

∣∣
∣ϕPek(t, x2, x3)

∣∣
∣
2
∣∣
∣∣ dx2dx3dt ≤

∫

R3

∣∣
∣∣∇x

∣∣
∣ϕPek

∣∣
∣
2
∣∣
∣∣ dx

= 2
∫

R3
ϕPek(x)

∣∣
∣∇xϕ

Pek
∣∣
∣ dx ≤ ‖ϕPek‖2 + ‖∇ϕPek‖2 < ∞,

where we have used that ϕPek ∈ H1
(
R
3
)
. ��

Lemma A.3. ThePekarminimizersϕPek
x satisfy

∥∥ϕPek
x − ϕPek

∥∥2 �
∑3

i=1 P
ε
i

(∣∣ϕPek
x

∣∣2
)
+

α−u, where Pε
i is defined in Eq. (3.17).

Proof. Since
∥∥ϕPek

x − ϕPek
∥∥ ≤ ∥∥ϕPek

x

∥∥ +
∥∥ϕPek

∥∥ = 2
∥∥ϕPek

∥∥ and
∥∥ϕPek

x − ϕPek
∥∥2 ≤

|x |2 ∥∥∇ϕPek
∥∥2, we have

∥∥ϕPek
x − ϕPek

∥∥2 � min{|x |2, 1}. Therefore it is enough to show
that we have min{x2i , 1} � Pε

i

(∣∣ϕPek
x

∣∣2
)
+ ε. By the reflection symmetry of ϕPek, we
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can assume w.l.o.g. that i = 1. We identify 1
‖ϕPek‖4 P

ε
1

(∣∣ϕPek
x

∣∣2
)
as

1

4
− 1
∥∥ϕPek

∥∥2

∫

y1≤x1+ε

∣∣
∣ϕPek(y)

∣∣
∣
2
dy

(
1 − 1

∥∥ϕPek
∥∥2

∫

y1≤x1−ε

∣∣
∣ϕPek(y)

∣∣
∣
2
dy

)

=
(
1

2
−F(x1)

)2

+ F(x1)
(
F(x1−ε)−F(x1)

)
+
(
F(x1)−F(x1+ε)

)(
1−F(x1 − ε)

)

≥
(
1

2
−F(x1)

)2

+
(
F(x1−ε)−F(x1)

)
+
(
F(x1)−F(x1+ε)

)

≥
(
1

2
−F(x1)

)2

− 2C ε

with F(t) := 1
‖ϕPek‖2

∫
y1≤t

∣∣ϕPek(y)
∣∣2 dy, where C is the constant from Lemma A.2.

Since ϕPek is radially decreasing, see [17], it is clear that |ϕPek(x)|2 ≥ c > 0 for all
x ∈ [−δ, δ]3 where δ, c > 0 are suitable constants. Assuming x1 > 0 w.l.o.g. we
conclude that

∥∥ϕPek
∥∥2 (F(x1) − 1

2

) ≥ c
∫
0≤y1≤x1

1[−δ,δ]3(y) dy = 4cδ2min{x1, δ} �
min{x1, 1}. ��

B. Properties of the Projection �

In the following section we discuss properties of the Projections � defined in Eq. (4.1)
and �K defined in Definition 2.1. The first two results in Lemma B.1 and Corollary B.2
concern the space confinement of elements in the range of �, to be precise we show
that the associated potentials Vϕ defined in Eq. (5.1) are concentrated in a ball of radius
αq for a suitable q > 0. While Lemma B.3 is an auxiliary result, we will show in the
subsequent LemmasB.4 andB.5 that the operator Jt,ε is an approximation of theHessian
Hess|ϕPekFPek, where Jt,ε is the operator defined in Eq. (5.14). Finally, we will show in
Lemma B.6 that the functions �Kwx , which appear in the definition of HK in Eq. (2.2),
are confined in space around the origin. We will then use this result in order to quantify
the energy cost of having the electron and the phonon field localized in different regions
of space, see Corollary B.7.
The proof of the following auxiliary Lemma B.1 is an easy analysis exercise and is left

to the reader.

Lemma B.1. There exists a constant C > 0 such that for f ∈ C3
(
R
3
)
and K :=

(k1, k′
1) × (k2, k′

2) × (k3, k′
3) ⊂ R

3 with ki < k′
i < ki + 2

∣∣∣(̂1K f )(x)
∣∣∣ ≤ C

‖ f ‖C3(K )

(1 + |x1|) (1 + |x2|) (1 + |x3|)
for all x = (x1, x2, x3) ∈ R

3, where ‖ f ‖C3(K ) := max|α|≤3 supx∈K |∂α f (x)| and ·̂
denotes the Fourier transform.

Corollary B.2. There exists a constant v > 0, such that for all r > 0 and ϕ ∈ �L2
(
R
3
)

∥∥1R3\Br (0)Vϕ

∥∥ � αv‖ϕ‖√
r

, (B.1)

where � is defined in Eq. (4.1) and Vϕ is defined in Eq. (5.1).
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Proof. Let en be the basis from Definition 2.1 corresponding to concrete choices of �

and � defined above Eq. (4.1). Given ϕ = ∑N
n=1 λnen ∈ �L2

(
R
3
)
, λn ∈ C, we have

the rough estimate

∥∥1R3\Br (0)Vϕ

∥∥ ≤
N∑

n=1

|λn|
∥∥1R3\Br (0)Ven

∥∥ ≤ √
N‖ϕ‖ sup

n∈{1,...,N }
∥∥1R3\Br (0)Ven

∥∥ .

Since N ≤ α p for a suitable constant p, it is enough to verify Eq. (B.1) for ϕ =
en . Making use of Ven = 1̂Kn f with Kn := (

zn1 − �, zn1 + �
) × (

zn2 − �, zn2 + �
) ×(

zn3 − �, zn3 + �
)
and f (k) = −2√

(2π)3
∫
Kn

1
|k|2 dk

1
|k|2 , and the fact that (z

n
k + �)− (znk − �) =

2� ≤ 2, we obtain by Lemma B.1

∥∥1R3\Br (0)Ven
∥∥2 � α2p′

∫

|x |>r

1

(1 + |x1|)2(1 + |x3|)2(1 + |x3|)2 dx � α2p′ 1

r
,

where we have used Kn ⊂ R
3 \ B2�(0) and therefore ‖ f ‖C3(K ) � �− 3

2 �(�)−5 = α p′

for a suitable p′ > 0. ��
Lemma B.3. For ψ ∈ L2

(
R
3
)
and T > 0,

∫ ∫

|k′|≤T

|ψ̂(k − k′)|2
(1 + |k|2) |k′|2 dk

′dk � ‖ψ‖2T, (B.2)

∫ ∫

|k′|>T

|ψ̂(k − k′)|2
(1 + |k|2) |k′|2 dk

′dk � ‖ψ‖2√
T

. (B.3)

Furthermore, interpreting ψ as a multiplication operator we have
∥∥∥(1 − �)−

1
2 ψ (−�)−

1
2

∥∥∥
HS

� ‖ψ‖, (B.4)
∥∥
∥(1 − �)−

1
2 (−�)−

1
2 ψ

∥∥
∥
HS

= √
2π‖ψ‖. (B.5)

Proof. Equations (B.2) and (B.3) immediately follow from the estimates
∫ ∫

|k′|≤T

|ψ̂(k − k′)|2
(1 + |k|2) |k′|2 dk′dk ≤

∫ ∫

|k′|≤T

|ψ̂(k − k′)|2
|k′|2 dk′dk = ‖ψ‖24πT,

∫ ∫

|k′|>T

|ψ̂(k − k′)|2
(1 + |k|2) |k′|2 dk′dk ≤ 1

2

∫ ∫

|k′|>T

(
1√

T (1 + |k|2)2 +
√
T

|k′|4
)

|ψ̂(k − k′)|2 dk′dk

≤ 1

2

(∫
1

(1 + |k|2)2 dk + 4π

) ‖ψ‖2√
T

.

By making use of the fact that the integral kernel of (1 − �)− 1
2 ψ (−�)− 1

2 in Fourier

space is given as ψ̂(k−k′)√
1+|k|2|k′| , Eq. (B.4) immediately follows from Eqs. (B.3) and (B.2)

with the concrete choice T = 1. Finally Eq. (B.5) follows from the fact that the corre-

sponding integral kernel is given by ψ̂(k−k′)√
1+|k|2|k| and the identity

∫ ∫ |ψ̂(k−k′)|2
|k|2(1+|k|2) dk

′dk =
∫ 1

|k|2(1+|k|2) dk ‖ψ‖2 = 2π2‖ψ‖2. ��
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Lemma B.4. We have Tr
[
(1 − �) LPek

x (1 − �)
]

� α− 2
5 for |x | � 1, where LPek

x is the
operator defined above Eq. (5.13).

Proof. With the definition ψPek
x (y) := ψPek(y − x), we can express the operator LPek

x

as LPek
x = 2

∣∣∣(1 − �)− 1
2 ψPek

x (−�)− 1
2

∣∣∣
2
. Since the integral kernel of (1 − �)− 1

2 ψPek
x

(−�)− 1
2 is given by ψ̂Pek

x (k−k′)√
1+|k|2|k′| in Fourier space and since the one of � reads

∑N
n=1

1Czn
(k)1Czn

(k′)
∫
Czn

1
|q|2 dq |k| |k′| , where Czn is as in Definition 2.1, we can further express the

integral kernel of the operator (1 − �)− 1
2 ψPek

x (−�)− 1
2 (1 − �) as

N∑

n=1

∫
Czn

ψ̂Pek
x (k−k′)−ψ̂Pek

x (k−q)√
1+|k|2|k′|

1
|q|2 dq

∫
Czn

1
|q ′|2 dq

1Czn (k
′) + ψ̂Pek

x (k − k′)
√
1 + |k|2|k′|1R3\(⋃n Czn )(k

′). (B.6)

In the following we need to show that the L2
(
R
3 × R

3
)
norm of the expression in

Eq. (B.6) is of order α− 1
5 . As in the proof of Lemma 2.2, we will use R

3\ (⋃n Czn
) ⊂

B2� ∪ (
R
3\B�−4�

)
, where � and � are defined above Eq. (4.1). Applying Eq. (B.2) with

T = 2� and Eq. (B.3) with T = � − 4� yields
∫ ∫

R3\(⋃n Czn )

|ψ̂Pek
x (k − k′)|2

(1 + |k|2)|k′|2 dk′dk � 2� +
1√

� − 4�
� α− 2

5 .

In order to estimate the L2 normof f (k, k′) :=∑N
n=1

∫
Czn

ψ̂Pek
x (k−k′)−ψ̂Pek

x (k−q)√
1+|k|2 |k′ |

1
|q|2 dq∫

Czn
1

|q|2 dq
1Czn(k

′),

let us define ψx,s,η(y) := η
|η| · yeisη·yψPek

x (y) for s ∈ R, η ∈ R
3 and ξ := q − k′, and

compute

ψ̂Pek
x (k−k′)−ψ̂Pek

x (k−q) =
∫ 1

0
ξ · ∇ψ̂Pek

x (k−k′ + sξ)ds = |ξ |
∫ 1

0
ψ̂x,s,ξ (k−k′)ds.

Making use of the inequality
1

|q|2∫
Czn

1
|q′ |2 dq ′ � �−3 for q ∈ Czn and the fact that ξ =

q − k′ ∈ K := (−2�, 2�)3 for all k′, q ∈ Czn , yields

∣
∣ f (k, k′)

∣
∣2 �

N∑

n=1

1Czn (k
′)�−4

∣∣∣
∣∣

∫

K

∫ 1

0

∣∣ψ̂x,s,ξ (k − k′)
∣∣

√
1 + |k|2|k′| dsdξ

∣∣∣
∣∣

2

≤
N∑

n=1

1Czn (k
′)8�−1

∫

K

∫ 1

0

∣∣ψ̂x,s,ξ (k − k′)
∣∣2

(1 + |k|2)|k′|2 dsdξ

≤ 8�−1
∫

K

∫ 1

0

∣∣ψ̂x,s,ξ (k − k′)
∣∣2

(1 + |k|2)|k′|2 dsdξ,

where we have applied the Cauchy–Schwarz inequality. An application of Lemma B.3
with T = 1 then yields

∫∫ ∣∣ f (k, k′)
∣∣2 dk′dk � �−1

∫

K

∫ 1

0
‖ψx,s,ξ‖2dsdξ ≤ C�2 � α−8,
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where we used that ‖ψx,s,η‖ ≤ C for all |x | � 1 and a suitable constant C < ∞. ��
Lemma B.5. Recall the operator HPek fromEq. (1.4). Then there exists a constant c > 0
such that Jt,ε ≥ c π for ε small enough and α large enough. Furthermore

∣∣∣Tr�L2(R3)

[
1 − √

Jt,ε
]

− Tr
[
1 −

√
HPek

]∣∣∣ � ε + α− 1
5 (B.7)

for |t | < ε, ε small enough and α large enough.

Proof. Recall the definition of π and Jt,ε in, respectively below, Eq. (5.13) for |t | <

ε < δ∗, where δ∗ is defined before Definition 5.3. In the following we are going to verify
that ‖(1 + ε)π

(
K Pek
xt + εLPek

xt

)
π‖op ≤ 1 − c for a suitable constant c > 0, small ε and

|t | < ε, which immediately implies Jt,ε ≥ c π . Let πx be the orthogonal projection onto
{∂x1ϕPek

x , ∂x2ϕ
Pek
x , ∂x3ϕ

Pek
x }⊥ and let ϕn be defined in Eq. (5.11). Then we estimate

Tr [|π0 − πx |] ≤ 2
3∑

n=1

∥∥∥∥ϕn − ∂xnϕ
Pek
x

‖∂xnϕPek
x ‖

∥∥∥∥

≤ 2
3∑

n=1

∥∥∥∥
∂xnϕ

Pek

‖∂xnϕPek‖ − ∂xnϕ
Pek
x

‖∂xnϕPek
x ‖

∥∥∥∥ + 2
3∑

n=1

∥∥∥∥ϕn − ∂xnϕ
Pek

‖∂xnϕPek‖
∥∥∥∥

� |x | + α− 2
5 , (B.8)

wherewe have used LemmaA.1 in order to obtain ‖∂xnϕPek−�∂xnϕ
Pek‖ � α− 2

5 and the
fact that ϕPek ∈ H2

(
R
3
)
, which yields ‖∂xnϕPek

x − ∂xnϕ
Pek‖ ≤ |x | ∥∥∇∂xnϕ

Pek
∥∥ � |x |.

Hence Tr
[∣∣π0 − π±xt

∣∣] � |t | + α− 2
5 for t small enough. It is a straightforward conse-

quence of (7.1) that the operator norm of π0K Pekπ0 is bounded by ‖π0K Pekπ0‖op < 1
(see also [22, Lemma 1.1]). Therefore we obtain, using π = �π0 = π0�,
∥
∥∥(1+ε)π

(
K Pek
xt +εLPek

xt

)
π

∥
∥∥
op

≤
∥
∥∥(1+ε)π0

(
K Pek
xt +εLPek

xt

)
π0

∥
∥∥
op

=
∥
∥∥π0K

Pek
xt π0

∥
∥∥
op
+ O (ε)

=
∥
∥∥π−xt K

Pekπ−xt

∥
∥∥
op
+ O (ε) =

∥
∥∥π0K

Pekπ0

∥
∥∥
op
+ O (ε) + O

(
α−2/5) ≤ 1−c (B.9)

for a suitable constant c > 0, ε small enough, |t | < ε and α large enough.
In order to verify Eq. (B.7), let |t | < ε and ε be small enough such that Jt,ε ≥ 0, and

let us compute

Tr�L2(R3)

[
1 − √

Jt,ε
]

= Tr

[
1 + π⊥

0 −
√
1 − (1 + ε)π

(
K Pek
xt + εLPek

xt

)
π

]
,

Furthermorewehave the identityTr
[
1 − √

1 − K Pek
]

= Tr
[
1 + π⊥

0 − √
1 − π0K Pekπ0

]

= Tr
[
1 −

√
1 − πxt K

Pek
xt πxt

]
+ Tr

[
π⊥
0

]
. Using the definition of K Pek in Eq. (5.6), we

can express Tr�L2(R3)

[
1 − √

Jt,ε
] − Tr

[
1 − √

HPek
]
as

Tr

[
1 −

√
1 − (1 + ε)π

(
K Pek
xt + εLPek

xt

)
π

]
− Tr

[
1 −

√
1 − πxt K

Pek
xt πxt

]
. (B.10)
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In the following let f be a smooth function with compact support satisfying f (x) =
1 − √

1 − x for 0 ≤ x ≤ 1 − c, where c is as in Eq. (B.9), and let us define the
operators A := (1+ε)π

(
K Pek
xt +εLPek

xt

)
π and B := πxt K

Pek
xt πxt . Using Eq. (B.10) and∥

∥(1 + ε)π
(
K Pek
xt + εLPek

xt

)
π
∥
∥
op

≤ 1 − c for t and ε small enough, we obtain

∣∣∣Tr�L2(R3)

[
1 − √

Jt,ε
]

− Tr
[
1 −

√
HPek

]∣∣∣ = |Tr [ f (A) − f (B)]|

≤ ‖ f (A) − f (B)‖1 ≤ 1√
2π

∫

R

|t f̂ (t)| dt ‖A − B‖1 , (B.11)

where ‖ · ‖1 is the trace norm and f̂ is the Fourier transformation of f . In order to
estimate the right hand side of Eq. (B.11), we write A− B = T1 +π0T2π0 +πT3π with
T1 := (π0−πxt )K

Pek
xt π0 +πxt K

Pek
xt (π0−πxt ), T2 := (�−1)K Pek

xt �+K Pek
xt (�−1) and

T3 := ε
(
K Pek
xt + (1 + ε)LPek

xt

)
. Clearly we have the estimates ‖πT3π‖1 ≤ ‖T3‖1 � ε

and ‖T1‖1 � ‖π0−πxt ‖1 � t +α− 2
5 by Eq. (B.8), using the fact that K Pek

xt is trace-class,
which follows from K Pek

xt � LPek
xt and the fact that LPek

xt is trace-class, see Eq. (B.4) with
ψ := ψPek. Using Lemma B.4 together with a Cauchy–Schwarz estimate for the trace
norm, we can bound the final contribution π0T2π0 by

‖π0T2π0‖1 ≤ ‖T2‖1 ≤ 2Tr
[
�K Pek

xt �
] 1
2
Tr

[
(1 − �) K Pek

xt (1 − �)
] 1
2 � α− 1

5 .

��
The following Lemma B.6 is an auxiliary result, which we will use to quantify the

energy cost of having the electron and the phonon field localized in different regions of
space, see Corollary B.7.

Lemma B.6. Let w0(y) = π− 3
2 1

|y|2 and let �K be the projection defined in Definition
2.1. Then there exist a constant D such that

‖1R3\Br (0)�Kw0‖ ≤ D√
r

for all K , r > 0.

Proof. The Fourier transform of �Kw0 is given by χ(|k|≤K )√
2π2|k| . Defining the function u

via its Fourier transform as û(k) := χε(2ε≤|k|≤K )√
2π2|k| , where ε > 0 and χε is defined in

Eq. (3.1), we have

‖�Kw0 − u‖2 ≤ 1

2π2

∫

|k|≤3ε

1

|k|2 dk +
1

2π2

∫

K−ε≤|k|≤K+ε

1

|k|2 dk = 6ε

π
,

and consequently ‖1R3\Br (0)�Kw0‖ ≤
√

6ε
π
+ ‖1R3\Br (0)u‖. Making use of the obser-

vation that 1
|y|1R3\Br (0)(y) ≤ 1

r yields

‖1R3\Br (0)u‖2 ≤ 1

r2

∫

R3
|y|2|u(y)|2dy = 1

r2
∥∥∇k û

∥∥2 = 1

2π2r2
‖ f1 − f2‖2
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with f1(k) := χε(2ε≤|k|≤K )

|k|2 and f2(k) := ∇kχ
ε(2ε≤|k|≤K )

|k| . Clearlywe canbound‖ f1‖2 ≤
∫
|k|≥ε

1
|k|4 dk = 4π

ε
. Furthermore we obtain, using ‖∇kχ

ε (2ε ≤ |k| ≤ K )‖∞ � 1
ε
,

‖ f2‖2 � 1

ε2

(∫

ε≤|k|≤3ε

1

|k|2 dk +
∫

K−ε≤|k|≤K+ε

1

|k|2 dk
)

= 4

ε
.

In combination this yields ‖1R3\Br (0)�Kw0‖2 � ε + 1
r2ε

, which concludes the proof

with the concrete choice ε := 1
r . ��

Corollary B.7. Given A ⊂ R
3, let us define the operator NA := D̂A with DA(ρ) :=∫

A dρ(y), using the notation of Definition 3.1, i.e. α2NA counts the number of particles
in the region A. Furthermore let A′ ⊂ R

3. Then given a constant C > 0, there exists a
constant D > 0 such that for all states 	 with supp (	) ⊂ A′ and χ (N ≤ C) 	 = 	

〈	|HK |	〉 ≥ Eα + 〈	|NA|	〉 −
√

D

dist(A, A′)
,

where K > 0.

Proof. Let us define the function vx := 1A�Kwx and rewrite HK − NA as

HK − NA = −�x − a (�Kwx − vx ) − a† (�Kwx − vx ) +N − NA − a (vx ) − a† (vx ) .

Identifying L2
(
R
3,F

(
L2
(
R
3
) )) ∼= L2

(
R
3,F

(
L2
(
R
3\A)

))
⊗ F

(
L2(A)

)
, we ob-

serve that −�x − a (�Kwx − vx ) − a† (�Kwx − vx ) +N − NA is the restriction (in
the sense of quadratic forms) ofHK to states of the form	 ′ ⊗�, where� is the vacuum

inF
(
L2(A)

)
, and therefore we have the operator inequality −�x −a (�Kwx − vx )−

a† (�Kwx − vx ) +N − NA ≥ Eα . Consequently

〈	|HK − NA|	〉 ≥ Eα − 〈	|a (vx ) + a† (vx ) |	〉 ≥ Eα − sup
x∈A′

‖vx‖ (1 + C) ,

where we have used the operator inequality a (vx ) + a† (vx ) ≥ −‖vx‖ (1 +N ), as well
as the assumptions supp (	) ⊂ A′ andχ (N ≤ C) 	 = 	, in the second inequality. This
concludes theproof, since‖vx‖2=

∫
A |�Kw0(y−x)|2 dy≤ ∫

|y|≥dist(A,A′) |�Kw0(y)|2 dy
for all x ∈ A′ and

∫
|y|≥dist(A,A′) |�Kw0(y)|2 dy � 1

dist(A,A′) , see Lemma B.6. ��
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