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ABSTRACT

We prove the following quantitative Borsuk–Ulam-type result (an equi-

variant analogue of Gromov’s Topological Overlap Theorem): Let X be a

free Z/2-complex of dimension d with coboundary expansion at least ηk
in dimension 0 ≤ k < d. Then for every equivariant map F : X →Z/2 Rd,

the fraction of d-simplices σ of X with 0 ∈ F (σ) is at least 2−d
∏d−1

k=0 ηk.

As an application, we show that for every sufficiently thick d-dimen-

sional spherical building Y and every map f : Y → R2d, we have

f(σ) ∩ f(τ) 6= ∅ for a constant fraction µd > 0 of pairs {σ, τ} of d-simplices

of Y . In particular, such complexes are non-embeddable into R2d, which

proves a conjecture of Tancer and Vorwerk for sufficiently thick spherical

buildings.

We complement these results by upper bounds on the coboundary ex-

pansion of two families of simplicial complexes; this indicates some limita-

tions to the bounds one can obtain by straighforward applications of the

quantitative Borsuk–Ulam theorem. Specifically, we prove

• an upper bound of (d+1)/2d on the normalized (d−1)-th cobound-

ary expansion constant of complete (d + 1)-partite d-dimensional

complexes (under a mild divisibility assumption on the sizes of the

parts); and

• an upper bound of (d + 1)/2d + ε on the normalized (d − 1)-th

coboundary expansion of the d-dimensional spherical building asso-

ciated with GLd+2(Fq) for any ε > 0 and sufficiently large q. This

disproves, in a rather strong sense, a conjecture of Lubotzky, Meshu-

lam and Mozes.

1. Introduction

Crossing numbers of graphs (which provide a quantitative measure of non-

planarity) are a fundamental and extensively studied notion in graph theory and

discrete and computational geometry (see, e.g., [38, Chs. 4–5] and [41]). The

goal of this paper is to present a general approach to study crossing numbers—

of graphs as well as of higher-dimensional simplicial complexes—through the

lens of high-dimensional expansion properties of natural configuration spaces

associated with the crossing number problem, deleted joins.

Let X be a finite d-dimensional simplicial complex with underlying

polyhedron (also called geometric realization) |X |, and let X(k) denote

the set of k-dimensional simplices of X , −1 ≤ k ≤ d.1 Given a continuous

1 All simplicial complexes in this paper are assumed to be finite.
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map f : |X | → R2d we define its independent pair crossing number as

ipcr(f) :=
1

2
|{(σ, τ) ∈ X(d) ×X(d) : σ ∩ τ = ∅, f(σ) ∩ f(τ) 6= ∅}|,

and the independent pair crossing number of X as

ipcr(X) := min{ipcr(f) : f : |X | → R2d continuous}.

Every d-dimensional complex X can be embedded into R2d+1 (by mapping the

vertices to points in general position and extending linearly on each simplex,

see, e.g., [33, Theorem 1.6.1]), but there are d-dimensional complexes that do

not embed into R2d (e.g., the complete d-dimensional complex on 2d+3 vertices,

by the van Kampen–Flores theorem [33, Theorem 5.1.1]); thus, embeddability

of d-complexes into R2d is the first non-trivial instance of the embeddability

problem.

Clearly, ipcr(X) > 0 implies that X is not embeddable into R2d. (Moreover,

the converse holds for the case d = 1 of graphs, and for d ≥ 3, by completeness of

the classical van Kampen obstruction, see, e.g., [13].) We are interested in prov-

ing lower bounds for ipcr(X), as a quantitative measure of non-embeddability.

A classical approach to study embeddability problems is via deleted joins

and induced equivariant maps (this is a special instance of the more general

configuration space/test map method, see [33, 46] for a detailed introduction

and further background). For finite simplicial complexes X and Y , let X ∗ Y
denote their join (the simplicial complex whose simplices are joins σ ∗τ of pairs

of simplices σ of X and τ of Y , where dim(σ ∗ τ) = dim(σ) + dim(τ) + 1).2

The deleted join X∗2
∆ of a simplicial complex X is the subcomplex of

X∗2 := X ∗X given by

X∗2
∆ := {σ ∗ τ : σ, τ ∈ X, σ ∩ τ = ∅}.

Points x ∈ |X∗2
∆ | can be written as formal convex combinations

x = tx1 ⊕ (1 − t)x2,

where t ∈ [0, 1] and x1, x2 ∈ |X | lie in disjoint simplices of X .3

2 If we view simplicial complexes abstractly, as finite set systems closed under inclusion,

the simplices of the join are disjoint unions σ ⊎ τ of pairs of simplices of X and Y ,

respectively (this is the notation used in [33]).
3 Here, by convention, 0x1 ⊕ 1x2 = 0x′

1 ⊕ 1x2 and 1x1 ⊕ 0x2 = 1x1 ⊕ 0x′

2 for all

x1, x′

1, x2, x′

2 ∈ |X|.
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The group Z/2 acts on the deleted join X∗2
∆ by interchanging components,

ν : |X∗2
∆ | → |X∗2

∆ |
x = tx1 ⊕ (1 − t)x2 7→ ν(x) = (1 − t)x2 ⊕ tx1.

This action is free (has no fixed points) and simplicial (i.e., the involution ν

is a simplicial map), turning the deleted join into a free Z/2-complex.

Given a continuous map f : |X | → R2d we obtain a map F : |X∗2
∆ | → R2d+1

given by

tx1 ⊕ (1 − t)x2 7→
(

1 − 2t

tf(x1) − (1 − t)f(x2)

)

.

This map is equivariant, i.e., F (ν(x)) = −F (x) for all x ∈ |X∗2
∆ |. Moreover,

F (tx1 ⊕ (1 − t)x2) = 0 if and only if t = 1/2 and f(x1) = f(x2). Thus,

ipcr(f) =
1

2
|{σ ∗ τ ∈ X∗2

∆ : dim(σ ∗ τ) = 2d+ 1, 0 ∈ F (σ ∗ τ)}|.

A well-known generalization of the classical Borsuk–Ulam Theorem (see, e.g.,

[45]) asserts that if X is a nonempty free Z/2-complex with vanishing reduced

cohomology groups H̃k(X ;F2) = 0 for 0 ≤ k < d, then every equivariant

map F : |X | → Rd has a zero.4 Our first result is a quantitative version of this

theorem, formulated in terms of the coboundary expansion properties of X .

The notion of coboundary expansion, which arose independently in the work of

Linial, Meshulam and Wallach [27, 34] and of Gromov [16], is a generalization

of edge expansion of graphs and provides a quantitative measure of vanishing

cohomology.

To define this notion, let X be a pure d-dimensional simplicial complex (i.e.,

all inclusion-maximal simplices of X have dimension d). Endow X with the

weight function w : X → R≥0 on its simplices given by

σ 7→ w(σ) =
|{τ ∈ X(d) : σ ⊆ τ}|

(

d+1
|σ|

)

|X(d)|
.

These weights, often called Garland weights, induce a norm ‖ · ‖ on the

simplicial cochain groups Ck(X ;F2) (see Definition 7 below) by

‖c‖ =
∑

σ∈X(k),c(σ) 6=0

w(σ).

4 The Borsuk–Ulam Theorem is the case where X is (an antipodally symmetric triangula-

tion of) the sphere Sd, with the antipodal action.
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We get an induced quotient norm ‖[·]‖ on Ck(X ;F2)/B
k(X ;F2) given by

‖[c]‖ = min{‖c+ b‖ : b ∈ Bk(X ;F2)}.

Definition 1 (Coboundary expansion): The k-th coboundary expansion con-

stant ηk(X) of X (with respect to ‖ · ‖-norm and F2-coefficients) is defined as

ηk(X) := min
c∈Ck(X;F2)\Bk(X;F2)

‖δc‖
‖[c]‖ .

Note that ηk(X) > 0 if and only if H̃k(X ;F2) = 0. We are now ready to

state our first result.

Theorem 2 (Quantitative Borsuk–Ulam theorem): Let d ∈ N. Let X be a d-

dimensional free Z/2-complex. Then for any equivariant map F : |X | →Z/2 Rd

we have

|{σ ∈ X(d) : 0 ∈ F (σ)}| ≥
∏d−1

i=0 ηi(X)

2d
|X(d)|.

In particular, whenever we can prove good lower bounds for the expansion

constants of the deleted join X∗2
∆ of a d-dimensional complex X then we get a

lower bound on the independent pair crossing number ipcr(X) of the complex,

and hence in particular a proof that X is not embeddable into R2d. Therefore,

it is natural to ask for conditions on X that guarantee lower bounds on the

expansion constants of X∗2
∆ . In particular, can we bound the coboundary ex-

pansion constants of the deleted join X∗2
∆ in terms of the coboundary expansion

constants of X? We are still quite far from a fully satisfying answer to this

question in general. One particular family of simplicial complexes for which we

know how to show expansion for the deleted join are spherical buildings (whose

definition we recall in Section 5 below), provided they are sufficiently thick;

here, by definition, a d-dimensional simplicial complex X is δ-thick if every

(d− 1)-simplex of X is contained in at least δ d-simplices of X .

Theorem 3 (Quantitative non-embeddability for sufficiently thick spherical

buildings): For every d there exist δd > 0 and µd > 0 such that for every

d-dimensional δd-thick spherical building X

ipcr(X) ≥ µd ·
(|X(d)|

2

)

.

Vorwerk and Tancer [43, Conjecture 8.1] conjectured that no d-dimensional 3-

thick spherical building embeds into R2d. Theorem 3 shows that this is true, in
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a strong quantitative sense, under the stronger assumption of sufficiently large

thickness. It is worth mentioning here that spherical buildings of arbitrary large

thickness do indeed exist (e.g., the spherical buildings Ad(Fq) described below

are (1 + q)-thick, where q can be any prime power).

One initial motivation for the present work was to use Theorem 2 to attack

various old problems regarding crossing numbers of graphs. Arguably the oldest

and most prominent of these is Turán’s Brick Factory Problem (see, e.g., [38,

Ch. 5] or [41, Ch. 1]), which asks for the crossing number cr(Km,n) of the

complete bipartite graph Km,n. A classical construction due to Zarankiewicz

shows that

cr(Km,n) ≤
⌊m

2

⌋⌊m− 1

2

⌋⌊n

2

⌋⌊n− 1

2

⌋

∼ m2n2

16
(1)

and it is a long-standing conjecture (known as Zarankiewicz’s conjecture) that

equality holds in (1), but even the asymptotics of cr(Km,n) as m,n → ∞
remains elusive.

The deleted join of the complete bipartite graph is

(Km,n)∗2∆ = ([m]∗2∆ ) ∗ ([n]∗2∆ ).

For large m and n, this complex is roughly the complete 4-partite complex

Λ3
m,m,n,n = [m]∗2 ∗ [n]∗2, in the sense that the two complexes differ only in

an asymptotically negligible number of faces, and it is easy to show that their

expansion constants are asymptotically the same (see Proposition 21 below for

a general result of this flavor). Thus, Theorem 2 would imply the asymptotic

version of Zarankiewicz’s conjecture

cr(Km,n) ≥ ipcr(Km,n) ≥
( 1

16
+ o(1)

)

m2n2,

if we could show that ηk(Λ3
m,m,n,n) ≥ 1 for 0 ≤ k ≤ 2.

Unfortunately, this turns out to be false (at least for k = 2). To state this

result, let us fix some notation. For integers d ≥ 1 and n0, n1, . . . , nd ≥ 2,

let Λd
n0,n1,...,nd

= [n0]∗· · ·∗ [nd] denote the complete (d+1)-partite complex

with parts of size n0, n1, . . . , nd−1, nd. More concretely, Λd
n0,...,nd

has vertex

set V = V0 ⊔ V1 ⊔ · · · ⊔ Vd, where the Vi are pairwise disjoint sets of cardi-

nality |Vi| = ni, and σ ⊆ V forms a simplex in Λd
n0,...,nd

iff |σ ∩ Vi| ≤ 1 for

0 ≤ i ≤ d. (We remark that Λd
n0,...,nd

is the simplicial complex of indepen-

dent sets of the so-called partition matroid associated with [n0], . . . , [nd].)



Vol. 256, 2023 SIMPLICIAL COMPLEXES 681

If n0 = n1 = · · · = nd = n, we will write Λd
n instead of Λd

n0,...,nd
. With this

notation, we have

Theorem 4 (Upper bound on ηd−1(Λd
n)): If 2d divides ni for all 0 ≤ i ≤ d,

then

ηd−1(Λd
n0,n1,...,nd

) ≤ d+ 1

2d
.

The proof of Theorem 4 is by an explicit construction of a family of d-

coboundaries with some extra algebraic structure (closely related to the notion

of sum complexes [28]).

By a probabilistic argument, this construction also yields an upper bound

on the (d − 1)-th expansion constant of the spherical building Ad(Fq) associ-

ated with GLd+2(Fq) for sufficiently large q. We recall that, given a prime

power q, Ad(Fq) is the simplicial complex whose vertices are the non-trivial,

proper subspaces of Fd+2
q and whose k-simplices correspond to chains

{0} 6= U0 ( U1 ( · · · ( Uk ( Fd+2
q

of subspaces. In particular, A1(Fq) is the points vs. lines graph of the Desargue-

sian projective plane of order q. It is known that the edge expansion of A1(Fq)

satisfies

η0(A1(Fq)) ≥ 1 − 2
√
q

q + 1

(see [29, Section 8.3]). Lubotzky, Meshulam and Mozes conjectured in [31,

Conjecture 5.1] that, more generally, ηd−1(Ad(Fq)) = 1 + o(1) as q → +∞ for

any d ≥ 2. Our final result disproves this conjecture for any d ≥ 2.

Theorem 5 (Upper bound ηd−1(Ad(Fq))): For any dimension d and ε > 0

there is a positive integer Q = Q(d, ε) such that for all prime powers q ≥ Q we

have

ηd−1(Ad(Fq)) ≤ d+ 1

2d
+ ε.

Previously, it was known that (see [31, Claim 3.4]) ηd−1(Λd
n) ≤ 1 whenever n

is divisible by d + 1. (For ηd−1(Ad(Fq)) we are not aware of any upper bound

explicitly stated in the literature, but Theorem 5.3 in [26] is applicable to Ad(Fq)

and yields that ηd−1(Ad(Fq)) ≤ 1 + o(1) as q → +∞.)
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As for lower bounds, it is known (see [10, Proposition 5.7] and [31, Theo-

rem 3.3]) that for any dimension d ≥ 1 and n ≥ 2 we have5

ηd−1(Λd
n) ≥ d+ 1

3 · 2d−1 − 1
.

For Ad(Fq) it is known ([26, Corollary 3.9], building up on the work in [16] and

in [31]) that

ηd−1(Ad(Fq)) ≥ 1
∑d+1

j=1 j!
.

Thus, our new upper bounds in Theorem 4 and Theorem 5 make significant

progress in closing the gap between the known upper and lower bounds

on ηd−1(Ad(Fq)) and ηd−1(Λd
n).

Remarks 6: (i) A remarkable result due to Gromov [16], known as Gromov’s

Topological Overlap Theorem, asserts, informally speaking, that for ev-

ery d ∈ N and every vector η = (η0, . . . , ηd−1) of positive real numbers,

there exists a constant cd = cd(η) depending only on d and η such

that every sufficiently large d-dimensional simplicial complex X with

coboundary expansion ηk(X) ≥ ηk, 0 ≤ k < d, satisfies the following

overlap property: For every continuous map F : |X | → Rd, there exists

a point p ∈ Rd such that

|{σ ∈ X(d) : p ∈ F (σ)}| ≥ cd · |X(d)|

(see, e.g., [11] for the precise statement of the result and a streamlined

proof). Theorem 2 and its proof are inspired by this result and can be

seen as an analogue of Gromov’s result in the setting of free Z/2-spaces

and equivariant maps.

(ii) Our proof of Theorem 2 is quite robust (and arguably simpler than the

proof of the non-equivariant overlap theorem, partly because the origin 0

is a canonical candidate for the heavily covered point in the equivariant

setting). In particular, one can use other norms (Definition 7 below)

than the Garland norm to measure the size of cochains (see Theorem 14

below for a more general statement).

5 Strictly speaking the bound stated here is slightly stronger than the bound given in [10]

and [31]. But for instance in [10] a recursion (page 511 under item (5)) is not solved

exactly. Taking a bit more care, one can easily obtain the lower bound claimed here.
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(iii) Moreover, Theorem 2 can be generalized to the setting where a more

general groupG acts freely and simplicially on X and by linear transfor-

mations on Rd, e.g., to the caseG=Z/p, p a prime, which plays an impor-

tant role in the study of Tverberg-type problems (see [33, 46] for more

background); we plan to present these results in a companion paper.

Related work on high-dimensional expansion. The present paper fits

into the broader context of high-dimensional expanders (HDXs), an emerging

research area that aims to generalize the well-developed theory of expander

graphs to higher dimensions.6 One interesting aspect is that even the def-

inition of higher-dimensional expansion is not at all obvious and, unlike in

the case of graphs, there is a rich array of mutually non-equivalent notions of

high-dimensional expansion, each of interest in its own right and with its own

applications. While still in a formative stage, the theory of high-dimensional

expanders has already led to a number of striking results over the past decade,

of which we will just highlight a few here (referring to [30] for a more thorough

survey, including many aspects that we will neglect).

One striking application of the study of HDX is a fully polynomial-time ran-

domized approximation scheme for sampling and counting bases of matroids

due to Anari, Liu, Gharan and Vinzant in [3], building upon earlier work on

random walks on simplicial complexes by Dinur, Kaufman, Mass and Oppen-

heim among others (see, e.g., [9, 23, 36] and [24]). A key role is played by

local-to-global arguments that allow one to deduce global expansion properties

from local ones, such as expansion of links. This method can be traced back to

the work of Garland [14].

Another, very recent, breakthrough coming out of the study of HDXs is the

construction of locally testable codes with constant rate, constant distance and

constant number of queries due to Dinur, Evra, Livne, Lubotzky and Mozes in

[7] and independently by Panteleev and Kalachev in [39]. These works can be

seen as part of a whole line of research which links HDXs to computer science,

in particular to property testing, error correcting codes and probabilistically

checkable proofs (see [22, 9, 6, 2, 8], to name a few results in this direction).

6 This, in turn, can be seen as part of an even more general program of developing high-

dimensional combinatorics (a term coined by Nati Linial), i.e., of generalizing the com-

binatorial theory of graphs and other 1-dimensional objects, such as permutations, to

higher-dimensional objects such as simplicial complexes/hypergraphs, Latin squares and

designs, etc.
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The aforementioned results mainly focus on notions of high-dimensional ex-

pansion formulated in terms of spectral gaps for combinatorial Laplacians and

related operators. By contrast, the notion of coboundary expansion has a more

combinatorial flavor and is, at the same time, more closely attuned to certain

topological applications, including overlap properties of continuous maps as in

Gromov’s work [16] and as in Theorem 2 or for measuring the geometric com-

plexity of embeddings as in [17], and to the thresholds for the vanishing of the

(co)homology of random complexes in the work of Linial, Meshulam, and Wal-

lach [27, 34]. We hope that the present paper might stimulate more research

into topological aspects and applications of high-dimensional expanders.

We remark that the connection between coboundary expansion and spectral

expansion is quite subtle; it is known that neither one implies the other, [18, 42],

but nonetheless, ideas originating in the theory of spectral expansion, in par-

ticular partial analogues of local-to-global arguments, play a central role in the

proof of existence of simplicial complexes (d-skeleta of (d+ 1)-dimensional Ra-

manujan complexes) with uniformly bounded degree that have the topological

overlap property [12, 21].

Outline of paper. The structure of the remaining parts is as follows: After

reviewing some preliminaries and fixing some notation in Section 2, we present

the proof of Theorem 2 in Section 3. The lower bound for the pair-crossing

number for spherical buildings is proved in Section 5; as a technical tool, we

relate expansion properties of the join X∗2 and the deleted join X∗2
∆ of a simpli-

cial complex X in Section 4. The upper bounds on ηd−1(Λd
n) and ηd−1(Ad(Fq))

are proven in Section 6 before we close with some final remarks in Section 7.
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2. Preliminaries

We refer the reader to the textbook [33] for a detailed introduction to simpli-

cial complexes and many of the notions used in the present paper. Here, we

review some definitions and facts not covered in [33], and fix some notation

and conventions that we will use throughout (in particular, some that deviate

from [33]).

Throughout this paper, all simplicial complexes will be considered finite and

to include the empty face ∅ as the unique (−1)-dimensional simplex. Given an

(abstract) simplicial complex X and a simplex σ ∈ X , the link Xσ of X at σ

is the simplicial complex

Xσ := {τ \ σ : τ ∈ X, σ ⊆ τ}.

Note that X∅ = X . A simplicial complexX is s-partite, for a positive integer s,

if there is a labeling

λ : X(0) → {1, . . . , s}

of the vertices such that for every σ ∈ X and 1≤ i≤s we have |σ ∩ λ−1({i})|≤1.

2.1. (Co)cochains, (co)homology, norms, and coboundary expansion.

Let X be a d-dimensional finite simplicial complex, and let −1 ≤ k ≤ d. We

denote by Ck(X) = F
X(k)
2 the vector space of k-dimensional simplicial cochains

of X with coefficients in the field F2 with two elements. Thus, a k-dimensional

simplicial cochain is a function c : X(k) → F2. There is a one-to-one cor-

respondence between k-cochains and subsets S ⊆ X(k): we identify each k-

cochain c with its support supp(c) = {σ ∈ X(k) : c(σ) 6= 0}; conversely, we

associate to every S ⊆ X(k) the k-cochain 1S ∈ Ck(X) given by

1S(σ) =







1 if σ ∈ S,

0 otherwise.

Occasionally, we will abuse notation and simply write S instead of 1S .

For a pair (σ, τ) ∈ X(k+1)×X(k) we set [σ : τ ] = 1 if τ ⊆ σ and 0 otherwise.

The coboundary operator δk : Ck(X) → Ck+1(X) is defined by

δkc(σ) :=
∑

τ∈X(k)

[σ : τ ]c(τ)
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for c ∈ Ck(X) and σ ∈ X(k + 1). Thus, given S ⊆ X(k), the support of δk1S

are precisely those (k + 1)-simplices that have an odd number of boundary k-

simplices in S. In what follows, we will often omit the subscript k in δk and

write δ instead of δk.

The image Bk(X) = Imδk−1 is the space of k-coboundaries of X , and the

kernel Zk(X) = ker δk is called the space of k-cocycles of X . Given β∈Bk(X)

we call α ∈ Ck−1(X) a cofilling of β if δα = β. It is easy to check

that δk ◦ δk−1 = 0, i.e., Bk(X) ⊆ Zk(X). Thus, we can define the k-th

(reduced) cohomology group H̃k(X) of X (with F2-coefficients) as

H̃k(X) := Zk(X)/Bk(X).

Note that given a Z/2-complex X with Z/2-action ν there is an induced

Z/2-action on the cochain group Ck(X) given by (νc)(σ) = c(νσ) for

all σ ∈ X(k), c ∈ Ck(X). This action commutes with the coboundary oper-

ators, i.e., νδc = δ(νc) for all c ∈ Ck(X).

Dually to the spaces of cochains, we have the spaces of k-chains

Ck(X) = F
X(k)
2 ,7 which we identify with subsets (or, equivalently, as formal

F2-linear combinations) of k-simplices, and boundary maps

∂k : Ck(X) → Ck−1(X)

given on basis vectors σ ∈ X(k) by

∂k(σ) =
∑

τ∈X(k−1),τ⊆σ

τ.

As for the coboundary maps, we will usually drop the subscript and write ∂

instead of ∂k. The spaces Bk(X) = Im∂k+1 and Zk(X) = ker ∂k are called

the spaces of k-boundaries and k-cycles of X , respectively. They satisfy

Bk(X) ⊆ Zk(X), and the quotient H̃k(X) is the k-th reduced homology of X .

Since we work with coefficients in a field (and all complexes considered in this

paper are assumed to be finite), we have H̃k(X) ∼= H̃k(X) (see [40, Theo-

rem 1.15] for an elementary proof of this fact).

As mentioned in the introduction, the notion of coboundary expansion, which

quantifies the vanishing of the cohomology groups H̃k(X), can be defined when-

ever we have a suitable way of measuring the “size” of cochains. The formal

definition is as follows:

7 Formally, chains and cochains are dual vector spaces, which we identify here due to our

choice of a fixed basis corresponding to the k-dimensional simplices.
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Definition 7 (Norm on cochains): A norm on Ck(X) is a function

‖ · ‖ : Ck(X) → R≥0 such that

(i) ‖0‖ = 0,

(ii) ‖c+ c′‖ ≤ ‖c‖ + ‖c′‖ for all c, c′ ∈ Ck(X),

(iii) ‖ · ‖ is monotone in the sense that ‖c‖ ≤ ‖c′‖ whenever c, c′ ∈ Ck(X)

with supp(c) ⊆ supp(c′),

(iv) ‖c‖ > 0 for all c ∈ Ck(X) \Bk(X).

If X is a free Z/2-complex with Z/2-action ν, we will additionally require that

the norm is invariant, i.e., ‖c‖ = ‖νc‖ for all c ∈ Ck(X).

Note that any norm ‖ · ‖ on Ck(X) induces a function ‖[·]‖ on the quotient

Ck(X)/Bk(X) by

‖[c]‖ := min
b∈Bk(X)

‖c+ b‖,

which we will sometimes refer to as the quotient norm.

We are ready to define coboundary expansion constants.

Definition 8 (Coboundary expansion constant): Let X be a d-dimensional sim-

plicial complex and 0 ≤ k ≤ d− 1. Let ‖ · ‖ be a norm on Ck(X) and Ck+1(X).

The k-th coboundary expansion constant η
‖·‖
k (X) of X (with respect to

F2-coefficients and the norm ‖ · ‖) is defined as

η
‖·‖
k (X) := min

c∈Ck(X)\Bk(X)

‖δc‖
‖[c]‖ .

Let us mention various common choices for a norm ‖ · ‖. A standard way

to get a norm on Ck(X) is by fixing a weight function w : X(k) → R>0 and

defining

‖c‖w =
∑

σ∈X(k),c(σ) 6=0

w(σ).

If X is a Z/2-complex with Z/2-action ν, we additionally require that

w(σ) = w(νσ) for all σ ∈ X(k) to ensure that the resulting norm is invari-

ant.

If w(σ) = 1 for all σ ∈ X(k), then ‖c‖w is the Hamming norm of c, which

we will simply denote by |c|.
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For most of the paper, however, it will be convenient to work with the Garland

weights and the resulting Garland norm, as defined in the introduction,8 and

unless explicitly stated otherwise, the notation w and ‖ · ‖ will refer to the Gar-

land weights and the Garland norm throughout this paper. Moreover, we will

write wσ for the Garland weights on the link Xσ of X at a simplex σ and ηk(X)

instead of η
‖·‖
k (X) for the coboundary expansion constant with respect to the

Garland norm.

For some of our computations, it will be helpful to work with the norm ‖ · ‖w
on Ck(X∗2

∆ ) induced by the weights on X∗2
∆ obtained by restricting the Garland

weights w : X∗2 → R≥0 to X∗2
∆ . In order to distinguish these weights and this

norm from the norm induced by Garland weights on X∗2
∆ , we will denote these

weights by w∗, the induced norm by ‖ · ‖∗ and the corresponding coboundary

expansion constants by η∗k(X) instead of η
‖·‖∗

k (X).

Remarks 9: (i) For the Garland norm, we have ηk(X) > 0 if and only if

H̃k(X) = 0. Thus, ηk(X) quantifies the vanishing of H̃k(X). (In-

tuitively, the larger ηk(X) is, the more (k + 1)-simplices we have to

remove in order to create a non-trivial k-cocycle.) More generally, Con-

ditions (iv) and (i) in Definition 7 ensure that for an arbitrary norm,

η
‖·‖
k (X) > 0 implies H̃k(X) = 0.

(ii) Note that ηk(X) ≥ η for some η > 0 is equivalent to the statement

that H̃k(X) = 0 and that for every coboundary β ∈ Bk+1(X) there is

α ∈ Ck(X) with δα = β and ‖α‖ ≤ 1
η ‖β‖.

(iii) Given β ∈ Bk(X) we call α ∈ Ck−1(X) a minimal cofilling of β if α

has the smallest norm among all cofillings of β (for some previously

fixed norm). Note that for a minimal cofilling α we have ‖[α]‖ = ‖α‖.

(iv) Let G = (V,E) be a graph. Recall that the edge expansion or

Cheeger constant of G is

h(G) := min
∅6=S(V

|E(S, V \ S)|
min{|S|, |V \ S|} .

Here E(S, V \S) denotes the set of edges of G with one vertex in S and

one vertex in V \S. If we view G as a 1-dimensional simplicial complex,

then h(G) = η
|·|
0 (G). Moreover, if G is d-regular, then η0(G) = 2

dh(G).

Thus, coboundary expansion generalizes edge expansion.

8 We note that we restrict ourselves to pure complexes when working with Garland weights,

to avoid technical difficulties.



Vol. 256, 2023 SIMPLICIAL COMPLEXES 689

3. Proof of the quantitative Borsuk–Ulam theorem

For our proof of Theorem 2, we approximate an arbitrary continuous map by

a piecewise-linear map in general position, which allows us to define and work

with algebraic intersection numbers (as in the streamlined proof of Gromov’s

topological overlap theorem in [11]), and we combine this with the idea of using

the standard Z/2-invariant cell structure on spheres (similarly to Walker’s proof

of the Borsuk–Ulam theorem for Z/2-spaces in [45]).

3.1. Approximation by a PL map. Given a finite simplicial complex X and

a continuous map F : |X | → Rd, by compactness, the image F (|X |) is contained

in the interior of some closed ball Bd = B(0, R) of finite radius R.

We will use special triangulations of Bd which refine a particular CW -complex

structure on the boundary sphere Sd−1 = ∂Bd. This structure has two cells in

each dimension and can be inductively obtained by decomposing a d-dimensional

sphere into a (d− 1)-dimensional equitorial sphere with two d-dimensional cells

(upper and lower hemisphere) attached. We illustrate this cell structure for Sd,

d ∈ {0, 1, 2}, in Figure 1.

Figure 1. The cell structure for Sd, d ∈ {0, 1, 2} with 2 cells in

each dimension. For d = 1 we attach two semicircles σ−
1 and

σ+
1 to the two points σ−

0 and σ+
0 . For d = 2 we start with the

cell structure for S1 and attach two hemispheres σ−
2 and σ+

2

along this S1.
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Given Sd−1 and 0 ≤ i ≤ d− 1 we write σ+
i and σ−

i for the two cells in dimen-

sion i in this decomposition. This cell structure gives rise to a cell structure

on Bd by adding the origin 0 as an additional 0-cell and then coning each σ+
i

and σ−
i with 0. In other words, we add all cells of the form τεi+1 = 0 ∗ σε

i for

all 0 ≤ i ≤ d−1, ε ∈ {−,+}. Below we will only consider triangulations T of Bd

which subdivide the cell structure on Bd given by the cells

{0} ∪ {σε
i : 0 ≤ i ≤ d− 1, ε ∈ {−,+}} ∪ {τεi : 1 ≤ i ≤ d, ε ∈ {−,+}}

and such that T is a Z/2-complex with respect to the antipodal map on Bd. We

call such a triangulation T of Bd good.

The first step in the proof of Theorem 2 is a (standard) limiting argument

that allows us to replace arbitrary continuous maps by piecewise-linear maps

in general position; for completeness, we include the details of this argument.

Let X be a finite simplicial complex. We recall that a map f : |X | → Rd

is piecewise-linear (PL) if there is a subdivision X ′ of X on which f is

simplexwise affine (i.e., the restriction of f to every simplex of X ′ is an affine

map).

We need the following notion of general position of affine spaces, points in

Euclidean maps and PL maps:

Definition 10 (General position): Two affine spaces A1, A2 ⊆ Rd are in general

position if dim(A1 ∩ A2) = max{−1, dim(A1) + dim(A2) − d}. A subset of

points S ⊆ Rd is in general position if for any two disjoint subsets S1, S2 ⊆ S

the affine hulls aff(S1) and aff(S2) are in general position. A simplexwise affine

map f : |X | → Rd is in general position if it is injective on the vertices of X

and {f(v) : v ∈ Y (0)} ⊆ Rd is in general position.

Let X be a d-dimensional simplicial complex and T a triangulation of

Bd = B(0, R). Let f : |X | → Rd be a piecewise-linear map such that f(X) is con-

tained in the interior of Bd. We say that f is in general position with respect

to T if f as a simplexwise affine map f : |X ′| → Rd is in general position and

for all σ ∈ X ′ and τ ∈ T we have dim(f(σ)∩τ) ≤ max{−1, dimσ+dim τ−d}.9

Lemma 11: Let X be a d-dimensional free Z/2-complex. Let f : |X | →Z/2 Rd

be an equivariant map such that f(|X |) is contained in the interior of the closed

ball Bd = B(0, R). Let T be a good triangulation of Bd. Then for any ε > 0

9 Note that both f(σ) and τ are geometric simplices in Rd, so their intersection is a convex

polytope (possibly empty), whose dimension is that of its affine hull.



Vol. 256, 2023 SIMPLICIAL COMPLEXES 691

there is an equivariant piecewise-linear map g : |X | →Z/2 Rd such that the image

of g is contained in the interior of Bd, g is in general position with respect to T ,

and dist(f(x), g(x)) ≤ ε for all x ∈ X .10

Proof. It is not difficult to see that the classical simplicial approximation theo-

rem extends to the equivariant setting considered here (see [40, Theorem 3.49] or

[5, I, Exercise 6]). Thus, there is an equivariant piecewise-linear map

g̃ : |X | →Z/2 Rd such that dist(g̃(x), f(x)) ≤ ε/2 for all x ∈ X and the im-

age of g̃ is contained in the interior of Bd. Let X ′ be a subdivision of X on

which g̃ is simplexwise affine. The map g̃ might not yet be in general position

with respect to T . In order to fix this, we partition X ′(0) = V+(X ′) ⊔ V−(X ′)

such that V+(X ′) contains precisely one vertex from each ν-orbit (here we

use that X is a free Z/2-complex). For each v ∈ V+(X ′) we pick a vec-

tor εv in Bd
ε/2(0) = {x ∈ Rd : dist(x, 0) ≤ ε/2} uniformly at random. Let

g : |X ′| →Z/2 Rd be the simplexwise affine map given by

g(v) =







g̃(v) + εv if v ∈ V+(X ′),

g̃(v) − ενv if v ∈ V−(X ′).

Since ν acts freely, we have σ ∩ νσ = ∅ for all σ ∈ X ′. In particular, every

simplex σ contains at most one vertex from each ν-orbit and the added noise εv

(or −ενv) is independent for the vertices of a given simplex. This implies that

with probability 1, g is in general position with respect to T . Since g and g̃ are

both simplexwise affine and dist(g(v), g̃(v)) ≤ ε/2 for all v ∈ X ′(0) we get by

triangle inequality that for x ∈ X

dist(f(x), g(x)) ≤ dist(f(x), g̃(x)) + dist(g̃(x), g(x)) ≤ ε/2 + ε/2 = ε,

as desired.

Combining this with the following lemma, we see that it suffices to prove

Theorem 2 for PL maps F : X →Z/2 Rd in general position with respect to a

good triangulation T of Bd.

Lemma 12: Let X be a Z/2-complex and let F : |X | →Z/2 Rd be an equi-

variant map. Let Fn : |X | →Z/2 Rd be a sequence of equivariant maps with

limn→+∞ supx∈X dist(F (x), Fn(x)) = 0, i.e., Fn converges uniformly to F .

10 Here, for a, b ∈ Rd we write dist(a, b) for the Euclidean distance between a and b.
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Let ‖ · ‖ be a norm on Cd(X). If there is µ ≥ 0 such that

‖{σ ∈ X(d) : 0 ∈ Fn(σ)}‖ ≥ µ

for all n ∈ N then

‖{σ ∈ X(d) : 0 ∈ F (σ)}‖ ≥ µ.

(Here, as before, we identify S⊆X(k) with its characteristic function 1S∈Ck(X).)

Proof. By compactness the infimum in

ρ := inf{dist(F (x), 0) : σ ∈ X(d), x ∈ σ, 0 /∈ F (σ)}

is attained and ρ > 0. Let n be large enough such that dist(Fn(x), F (x)) < ρ

for all x ∈ X . Then let σ ∈ X(d) with x ∈ σ such that Fn(x) = 0. We get

dist(F (x), 0) = dist(F (x), Fn(x)) < ρ. By choice of ρ this implies 0 ∈ F (σ).

We have shown that

{σ ∈ X(d) : 0 ∈ Fn(σ)} ⊆ {σ ∈ X(d) : 0 ∈ F (σ)}

from which the conclusion of the lemma follows by monotonicity of the norm

‖ · ‖ (Property (iii) in Definition 7).

3.2. Intersection numbers. The advantage of working with PL maps in gen-

eral position with respect to a good triangulation of Bd is that it allows to define

(algebraic) intersection numbers. Indeed, let X be a d-dimensional simplicial

complex, T a good triangulation of Bd. Given a PL map F : |X | → Bd in general

position with respect to T , we have that σ ∩ F−1(τ) is a set of finitely many

points for any k-simplex σ ∈ X and (d − k)-simplex τ ∈ T .11 We define the

intersection number

F (σ) · τ := |σ ∩ F−1(τ)| mod 2 ∈ F2

and extend this (bi)linearly to define F (a)·b ∈ F2 for arbitrary chains a ∈ Ck(X)

and b ∈ Cd−k(T ). For any 0 ≤ k ≤ d the intersection number induces an

intersection homomorphism F⋔ : Ck(T ) → Cd−k(X) by

c 7→ F⋔(c)(σ) := F (σ) · c.
11 To see this, consider a finite subdivison X′ of X such that F is simplexwise affine on X′.

If σ is subdivided into σ = σ0 ∪ · · · ∪ σl, then by general position with respect to T the

image of every σi intersects τ in at most one point. Hence, σ ∩ F−1(τ) contains at most

l + 1 points.
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The following lemma asserts that F⋔ is a so-called chain-cochain map and is

a well-known fact (see [32, Section 2.2] for a detailed review on intersection

numbers).

Lemma 13: For any 1 ≤ k ≤ d and c ∈ Ck(T ) it holds that

F⋔(∂c) = δF⋔(c).

3.3. Pagodas and the proof of Theorem 2. In this section we prove the

following generalization of Theorem 2.

Theorem 14 (Quantitative Borsuk–Ulam): Let (X, ν) be a d-dimensional free

Z/2-complex. Let ‖ · ‖ be an invariant norm on cochains of X (i.e., we assume

‖c‖ = ‖νc‖ for all cochains c). Then for any equivariant map F : |X | →Z/2 Rd

we have

‖{σ ∈ X(d) : 0 ∈ F (σ)}‖ ≥ ‖1X(0)‖
2d

d−1
∏

i=0

η
‖·‖
i (X).

The statement of the theorem is trivial if η
‖·‖
k (X)=0 for some k∈{0, . . . , d−1}.

Thus, we may assume that η
‖·‖
k (X) > 0 and hence

H̃k(X) = 0

for all 0 ≤ k ≤ d− 1.

By the discussion above, it suffices to prove Theorem 14 for PL maps

F : |X | →Z/2 Rd such that F (|X |) is contained in the interior of Bd and such

that F is in general position with respect to a good triangulation T of Bd.

Let us fix such a map F : |X | →Z/2 T and denote by ν : |X | → |X | the Z/2-

action on X . Recall that we assume that the origin 0 is a vertex of the good

triangulation T . Clearly,

{σ ∈ X(d) : F⋔(0)(σ) = 1} ⊆ {σ ∈ X(d) : 0 ∈ F (σ)}.
Thus, it suffices to give a lower bound on ‖F⋔(0)‖. (Here, we again use

monotonicity of the norm ‖ · ‖, i.e., Property (iii) in Definition 7.) To this

end, the notion of a pagoda will be useful. We call a sequence of cochains

(b(d), a(d−1), b(d−1), . . . , a(0), b(0)) a pagoda for F if the following conditions hold:

(i) b(d) = F⋔(0),

(ii) b(i), a(i) ∈ Ci(X) for all 0 ≤ i ≤ d− 1,

(iii) b(i) = a(i) + νa(i) for 0 ≤ i ≤ d− 1,

(iv) b(i) = δa(i−1) for 1 ≤ i ≤ d.
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There is always a pagoda coming from pulling-back the special cell decomposi-

tion of the good triangulation of Bd. We illustrate this pagoda for an equivariant

PL map from the octahedron Λ2
2 to B2 in Figure 2.

Lemma 15: There exists a pagoda for F with b(0) = 1X(0) ∈ B0(X).

Proof. To keep notation simple, let us also write σε
i or τεi , ε ∈ {−,+}, for the

i-chain corresponding to the subsets of i-simplices in T refining the i-cell σε
i

or τεi , respectively.

Now, define b(d) := F⋔(0) and for 0 ≤ i ≤ d− 1 let

a(i) := F⋔(τ+d−i) and b(i) := a(i) + νa(i).

Since the image of F is contained in the interior of T , we have F⋔(σ+
k ) = 0 for

all 0 ≤ k ≤ d− 1. Using this and Lemma 13, we compute

δa(d−1) = δF⋔(τ+1 ) = F⋔(∂τ+1 ) = F⋔(0) + F⋔(σ+
0 ) = F⋔(0) = b(d)

and for 1 ≤ i ≤ d− 1 we get

δa(i−1) = δF⋔(τ+d−i+1) = F⋔(∂τ+d−i+1)

= F⋔(σ+
d−i + τ+d−i + τ−d−i) = F⋔(τ+d−i) + νF⋔(τ+d−i) = b(i).

Finally

b(0) = F⋔(τ+d ) + F⋔(τ−d ) = 1X(0),

since every vertex ofX is mapped to the interior of a unique d-simplex of T .

Lemma 16: Every pagoda (b(d), a(d−1), b(d−1), . . . , a(0), b(0)) for F satisfies

b(0) = 1X(0).

Proof. Let (b
(d)
∗ , a

(d−1)
∗ , b

(d−1)
∗ , . . . , a

(0)
∗ , b

(0)
∗ ) be a pagoda for F with b

(0)
∗ = 1X(0)

whose existence is guaranteed by the previous lemma. Recall that we assume,

without loss of generality, that H̃k(X) = 0 for 0 ≤ k ≤ d− 1. Given any other

pagoda (b(d), a(d−1), b(d−1), . . . , a(0), b(0)), we use this to argue by downward

induction on i that for all 0 ≤ i ≤ d, b(i) + b
(i)
∗ is the coboundary of an (i− 1)-

cochain of the form c(i−1) + νc(i−1) for some c(i−1) ∈ Ci−1(X). For i = 0,

the only (−1)-dimensional cochain of the form c(−1) + νc(−1) is the cochain

0 ∈ C−1(X); thus we must have b(0) + b
(0)
∗ = 0, hence b(0) = b

(0)
∗ = 1X(0), as

desired.
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Figure 2. We illustrate the pagoda as constructed in the proof

of Lemma 15 for an equivariant PL map F : X →Z/2 B2 in

general position with respect to a good triangulation T where

X = Λ2
2 is an octahedron. In blue we show the image of X

under F . At the top left, we have that F⋔(0) are the two tri-

angles u+v−w+ and u−v+w− marked in red. At the top right,

we depict b(1) = F⋔(τ−1 )+F⋔(τ+1 ) in red and the chain τ−1 +τ+1
in green. We see that the support of b(1) consists of all edges

in F (X) that the green line intersects an odd number of times.

Finally, at the bottom we have b(0) = 1X(0) = F⋔(1T (2)).
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The base case (i = d) of the induction is clear since b(d) = b
(d)
∗ = F⋔(0) by

the definition of a pagoda, hence b(d) + b
(d)
∗ = 0 = δ(0 + ν0).

Assume now that 0 ≤ k ≤ d− 1 and, inductively, that there exists a cochain

c(k) ∈ Ck(X) with b(k+1) + b
(k+1)
∗ = δ(c(k) + νc(k)). Thus,

δ(a(k) + a
(k)
∗ + c(k) + νc(k)) = 0.

Using H̃k(X)=0, we find c(k−1)∈Ck−1(X) with δc(k−1) =a(k)+a
(k)
∗ +c(k)+νc(k),

hence

a(k) + a
(k)
∗ = c(k) + νc(k) + δc(k−1).

Thus,

b(k) + b
(k)
∗ = a(k) + νa(k) + a

(k)
∗ + νa

(k)
∗

= (c(k) + νc(k) + δc(k−1)) + ν(c(k) + νc(k) + δc(k−1))

= δ(c(k−1) + νc(k−1)),

as desired.

With all these preparations we can wrap-up the proof of Theorem 14 by induc-

tively constructing a pagoda using minimal cofillings along the way. Cobound-

ary expansion then guarantees that F⋔(0) is large.

Proof of Theorem 14. We construct a pagoda for F by inductively defining

a(i) ∈ Ci(X). Then b(i) is determined through the condition b(i) = a(i) + νa(i).

We know that b(d) := F⋔(0) is a coboundary. We choose a(d−1) ∈ Cd−1(X)

to be a minimal cofilling of b(d). Assume that a(i) has already been constructed.

Then b(i) = a(i) + νa(i) satisfies

δb(i) = δa(i) + νδa(i) = b(i+1) + νb(i+1) = 0.

Since H̃i(X) = 0, b(i) is a coboundary and we choose a(i−1) ∈ Cd−1(X) to

be a minimal cofilling of b(i). By construction ‖b(i)‖ ≥ η
‖·‖
i−1(X)‖a(i−1)‖ for all

1 ≤ i ≤ d. Also,

‖b(i)‖ = ‖a(i) + νa(i)‖ ≤ 2‖a(i)‖
by the triangle inequality and the invariance of ‖ · ‖ under ν. By Lemma 16 we

have b(0) = 1X(0). Combining all these we conclude that

‖1X(0)‖ = ‖b(0)‖ ≤ 2‖a(0)‖ ≤ 2

η
‖·‖
0 (X)

‖b(1)‖ ≤ · · · ≤ 2d
∏d−1

i=0 η
‖·‖
i (X)

‖b(d)‖,

as desired.
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4. Expansion of join versus expansion of deleted join

It seems that the expansion properties of the join X∗2 of a simplicial complex X

with itself are a bit easier to analyze than the expansion properties of the deleted

join X∗2
∆ . In fact, X∗2 has vanishing cohomology provided that the cohomology

groups of X vanish. More precisely, we have the following (simple) special

case of the Künneth theorem (see for instance [19, Chapter V] for the general

Künneth theorem for products and [35] for the relation between products and

joins).

Theorem (Künneth theorem): Let X be a d-dimensional complex. Then for

all 0 ≤ k ≤ 2d+ 1

H̃k(X∗2) =
⊕

i+j=k−1

H̃i(X) ⊗ H̃j(X).

In particular, if H̃i(X) = 0 for all 0 ≤ i ≤ d − 1 then H̃k(X∗2) = 0 for all

0 ≤ k ≤ 2d.

We do not know how to prove a quantitative version of this result in general.

But assuming we could prove strong lower bounds on ηk(X∗2), we would ex-

pect to be able to deduce lower bounds for ηk(X∗2
∆ ). Intuitively speaking, (at

least for large complexes) X∗2 and X∗2
∆ look alike and it is reasonable to think

that ηk(X∗2) and ηk(X∗2
∆ ) do not differ by too much.

The goal of this section is to make this intuition precise and give a quan-

titative relation between ηk(X∗2) and η∗k(X∗2
∆ ), using the notion of thickness

that was mentioned in the introduction. Recall that a d-dimensional simplicial

complex X is called δ-thick if every (d − 1)-simplex of X is contained in at

least δ d-simplices. We define the thickness δ(X) to be the maximal integer δ

such that X is δ-thick.

By definition, if X is δ-thick, then for all σ ∈ X(d − 1) and v ∈ Xσ(0), we

have

wσ(v) =
1

|Xσ(0)| ≤
1

δ
.

For our estimates below, we will need such a bound for all −1 ≤ k ≤ d − 1,

σ ∈ X(k) and v ∈ Xσ(0). Fortunately, δ-thickness implies such bounds, as the

following lemma shows.
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Lemma 17: Let X be a pure d-dimensional simplicial complex. Assume that X

is δ-thick for some δ > 0. Then

(i) for any σ ∈ X(k),−1 ≤ k ≤ d−1 the link Xσ is a (d−|σ|)-dimensional,

δ-thick simplicial complex,

(ii) for every v ∈ X(0) we have w(v) ≤ 1
δ ,

(iii) for every σ ∈ X(k), −1 ≤ k ≤ d− 1 and v ∈ Xσ(0) we have wσ(v) ≤ 1
δ .

Proof. For (i) we simply observe that for τ ∈ Xσ(d− |σ| − 1) we have

|(Xσ)τ (0)| = |Xσ∪τ (0)| ≥ δ,

since X is δ-thick.

For (ii) we first note that since X is δ-thick

δ|X(d− 1)| ≤
∑

σ∈X(d−1)

|Xσ(0)| = (d+ 1)|X(d)|.

Then for v ∈ X(0) we compute

w(v) =
|Xv(d− 1)|

(d+ 1)|X(d)| ≤
|Xv(d− 1)|
δ|X(d− 1)| ≤

1

δ
,

where we used Xv(d− 1) ⊆ X(d− 1) for the last inequality.

Finally, (iii) follows by combining (i) and (ii).

Let us provide some intuition for the condition that wσ(u) ≤ ε for u ∈ Xσ(0)

and some ε > 0. To this end, we first note that for σ ∈ X(k), u ∈ Xσ(0) we

have

w(σ) =
1

k + 2

∑

v∈Xσ(0)

w(σ ⊔ v) and wσ(u) =
w(σ ⊔ u)

(k + 2)w(σ)
.

Thus, the condition wσ(u) ≤ ε for some ε > 0 is equivalent to

1

k + 2
w(σ ⊔ u) ≤ εw(σ).

That is to say, that every (k+ 1)-simplex containing σ contributes only a small

fraction to the weight of σ.

The following consequence of δ-thickness will help us to relate the expansion

properties of X∗2 to the expansion properties of X∗2
∆ .
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Lemma 18: Let X be a pure d-dimensional simplicial complex. Assume that X

is δ-thick for some δ > 0. Then for all 0 ≤ k ≤ 2d and τ ∈ X∗2
∆ (k) we have

∑

σ∈X∗2(k+1)\X∗2
∆ (k+1),τ⊆σ

w(σ) ≤ 1

δ
(k + 2)(k + 1)w∗(τ).

For the proof of Lemma 18 we need the following identities.

Claim 19: Let X be a d-dimensional simplicial complex. For −1 ≤ i, j ≤ d let

ci,j =

(

d+1
i+1

)(

d+1
j+1

)

(

2d+2
i+j+2

) .

Then:

(i) For all σ, τ ∈ X we have for σ ⊎ τ ∈ X∗2 that

w(σ ⊎ τ) = c|σ|−1,|τ |−1w(σ)w(τ).

(ii) For all −1 ≤ i, j ≤ d we have

ci,j = cj,i.

(iii) For all −1 ≤ i ≤ d, 0 ≤ j ≤ d we have

ci,j
ci,j−1

=
d+ 1 − j

j + 1

i+ j + 2

2d− i− j + 1
.

Also, if σ ∈ X and v ∈ Xσ(0) we have

w(σ ⊔ v) = wσ(v)w(σ)(|σ| + 1).

The proof of this claim is a straightforward computation which we omit. We

turn to the proof of Lemma 18.

Proof of Lemma 18. Let τ = τ ′ ⊎ τ ′′ ∈ X∗2
∆ (k) with τ ′, τ ′′ ∈ X, τ ′ ∩ τ ′′ = ∅. It

will be convenient to extend the weight function w to arbitrary subsets of X∗2(0)

and set w(s) = 0 for s ⊆ X∗2(0) if s /∈ X∗2. Similarly, for u ∈ X(0) we

interpret wσ(u) as 0 if u is not a vertex of Xσ. Write τ ′ = {v0, . . . vl} (we allow

l = −1 if τ ′ = ∅) and τ ′′ = {vl+1, . . . , vk}. Using the identities in Claim 19 and
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Lemma 17 (iii), we compute

∑

σ∈X∗2(k+1)\X∗2
∆ (k+1),τ⊆σ

w(σ)

=

l
∑

i=0

w(τ ′ ⊎ (τ ′′ ∪ vi)) +

k
∑

i=l+1

w((τ ′ ∪ vi) ⊎ τ ′′)

=

l
∑

i=0

cl,k−lw(τ ′)wτ ′′(vi)w(τ ′′)(|τ ′′| + 1)

+

k
∑

i=l+1

cl+1,k−l−1wτ ′(vi)w(τ ′)(|τ ′| + 1)w(τ ′′)

≤ 1

δ
((|τ ′′| + 1)cl,k−l(l + 1) + (|τ ′| + 1)cl+1,k−l−1(k − l))w(τ ′)w(τ ′′)

=
1

δ

(l + 1)(k − l + 1)cl,k−l + (l + 2)(k − l)cl+1,k−l−1

cl,k−l−1
w∗(τ)

=
1

δ

((l + 1)(k + 2)(d− k + l + 1) + (k + 2)(d− l)(k − l)

2d− k + 1

)

w∗(τ)

≤ 1

δ

k + 2

2d− k + 1
((k + 1)(d− k + l+ 1 + (d− l))w∗(τ)

=
1

δ
(k + 2)(k + 1)w∗(τ).

This finishes the proof.

We need one last lemma before we are ready to relate η∗k(X∗2
∆ ) to ηk(X∗2).

Lemma 20: Let X be a d-dimensional simplicial complex. Let c ∈ Ck(X∗2
∆ ) be

such that ‖c‖∗ ≤ ‖c + δa‖∗ for all a ∈ Ck−1(X∗2
∆ ). Let c̄ ∈ Ck(X∗2) be the

extension by 0 of c, i.e., c̄(σ) = c(σ) for σ ∈ X∗2
∆ (k) ⊆ X∗2(k) and 0 otherwise.

Then c̄ satisfies ‖c̄‖ ≤ ‖c̄+ δa‖ for all a ∈ Ck−1(X∗2).12

Proof. Write i : X∗2
∆ → X∗2 for the inclusion map and i♯ : C•(X∗2) → C•(X∗2

∆ )

for the induced restriction map on cochains. Let a ∈ Ck−1(X∗2). Since ‖ · ‖∗ is

obtained by restricting the Garland weights on X∗2 to X∗2
∆ , we have

‖c̄+ δa‖ ≥ ‖i♯(c̄+ δa)‖∗.

12 Here it is crucial that we do not use the norm on X∗2
∆ induced by Garland weights on

X∗2
∆ but by the weights obtained by restricting the Garland weights on X∗2.
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Note that i♯ is linear, i♯(c̄) = c and that i♯δa = δi♯a. Hence,

‖i♯(c̄+ δa)‖∗ = ‖c+ δi♯a‖∗.

By assumption ‖c + δi♯a‖∗ ≥ ‖c‖∗. Finally, ‖c‖∗ = ‖c̄‖, by definition. We

conclude that ‖c̄+ δa‖ ≥ ‖c̄‖, as desired.

With all these preparations we can finally show:

Proposition 21 (η∗k(X∗2
∆ ) vs. ηk(X∗2)): Let X be a pure d-dimensional sim-

plicial complex. Assume that X is δ-thick for some δ > 0. Then for 0 ≤ k ≤ 2d

we have

η∗k(X∗2
∆ ) ≥ ηk(X∗2) − (k + 2)(k + 1)

1

δ
.

Proof. Let c ∈ Ck(X∗2
∆ ) with ‖c + δa‖∗ ≥ ‖c‖∗ for all a ∈ Ck−1(X∗2

∆ ). As in

the previous lemma, let c̄ ∈ Ck(X∗2) be the extension by 0 of c. By Lemma 20,

c̄ satisfies ‖c̄‖ ≤ ‖c̄+ δa‖ for all a ∈ Ck−1(X∗2). Thus

‖δc̄‖ ≥ ηk(X∗2)‖c‖∗.

Let ∆(k + 1) = X∗2(k + 1) \X∗2
∆ (k + 1). We have

‖δc̄‖ = ‖δc‖∗ + ‖(δc̄)|∆(k+1)‖.

We estimate

‖(δc̄)|∆(k+1)‖ ≤
∑

τ∈c

∑

σ∈∆(k+1),τ⊆σ

w(σ)

≤
∑

τ∈supp(c)

1

δ
(k + 2)(k + 1)w∗(τ) =

1

δ
(k + 2)(k + 1)‖c‖∗,

where we used Lemma 18 and that X is δ-thick. Combining these we get

ηk(X∗2)‖c‖∗ ≤ ‖δc‖∗ +
1

δ
(k + 2)(k + 1)‖c‖∗.

The proposition follows after rearranging.

We close this section with the remark that it is likely that in some situa-

tions or with a more careful analysis one can tighten the relationship between

η∗k(X∗2
∆ ) and ηk(X∗2). But this would most likely introduce quite an amount

of technicalities and additional parameters. We preferred to stick with a po-

tentially looser but simple to state relationship between η∗k(X∗2
∆ ) and ηk(X∗2)

involving a single, fairly natural parameter—the thickness δ(X) of X .
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5. Quantitative non-embeddability of spherical buildings

We give a very brief introduction to spherical buildings. Buildings are highly

symmetric (combinatorial) structures that have been extensively studied since

their introduction by Jacques Tits in the 1960s. We will only need very few

basic facts and refer the interested reader to the books [1], [15] or [44]. We start

with the definition of a (spherical) building.

Definition 22 (Building): A d-dimensional (thick) building X is a d-dimen-

sional simplicial complex X for which there is a family A of subcomplexes,

called apartments, such that

(i) X is pure and every σ ∈ X(d − 1) is contained in at least three d-

simplices.

(ii) Any two simplices of X are contained in a common apartment A ∈ A.

(iii) Any (d − 1)-simplex in an apartment A is contained in precisely two

d-simplices of A.

(iv) For any two d-simplices σ, σ′ in an apartment A there is a sequence of

d-simplices σ0, . . . , σn ∈ A such that σ = σ0, σ
′ = σn and |σi∩σi+1| = d

for all 0 ≤ i ≤ n− 1.

(v) If σ, τ ∈ X are contained in apartments A,A′ ∈ A then there is a

simplicial isomorphism φ : A→ A′ which fixes σ and τ pointwise.

A building is spherical if every apartment is finite.

It turns out that for a given building X (see [1, Theorem 4.131]) there is a

Coxeter system (W,S) such that every apartment A is isomorphic to the Coxeter

complex associated with (W,S).13 In particular, every apartment of X has the

same number of d-simplices, namely |A(d)| = |W |. We will denote this number

by wd(X) and call it the width of X . Elaborating on the work of Gromov

in [16] the following lower bound on the coboundary expansion constants of

spherical buildings was shown in [31].

13 It is not important to us what these exactly are. Let us just mention that a Coxeter

system (W,S) is a group W with a generating set S satisfying special types of relations.

The associated Coxeter complex (W,S) is a triangulation of a (|S|−1)-dimensional sphere

if W is finite and reflects the group structure of W geometrically.
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Theorem 23 (Expansion of spherical buildings (Corollary 3.6 in [31])): Let X

be a d-dimensional spherical building. Then for any 0 ≤ k ≤ d− 1 we have

ηk(X) ≥ 1
(

d+1
k+2

)2
wd(X)

.

It is not hard to see that the join X∗2 of a d-dimensional spherical building

X with itself is a (2d+ 1)-dimensional spherical building with width

w2d+1(X∗2) = wd(X)2.

Indeed, given apartments A for X , let A∗A be the set of subcomplexes of X∗2

of the form A ∗A′ with A,A′ ∈ A. Now, it is a straightforward (but somewhat

tedious) exercise to check that A∗A satisfies properties (i)–(v) in Definition 22.

We immediately deduce

Corollary 24: Let X be a d-dimensional spherical building. Then for all

0 ≤ k ≤ 2d we have

ηk(X∗2) ≥ 1
(

2d+2
k+2

)2
wd(X)2

.

We are ready to prove the following slightly refined version of Theorem 3

from the introduction.

Theorem 25 (Quantitative non-embeddability spherical buildings): Let X be

a d-dimensional building such that δ(X) > (k + 2)(k + 1)
(

2d+2
k+2

)2
wd(X)2 for all

0 ≤ k ≤ 2d. Then

ipcr(X) ≥
(

1

22d+1

2d
∏

k=0

(

1
(

2d+2
k+2

)2
wd(X)2

− (k + 2)(k + 1)
1

δ(X)

))(|X(d)|
2

)

.

Proof. We apply the quantitative Borsuk–Ulam theorem (Theorem 14) to X∗2
∆

where we use the norm on cochains obtained by restricting the Garland weights

on X∗2 to X∗2
∆ . Then the result follows by plugging-in the bounds from Corol-

lary 24 and Proposition 21.

We remark that there is some constant wd such that wd(X) ≤ wd for all

d-dimensional spherical buildings. Thus, if one wished, one could make the as-

sumption on the thickness ofX in the previous theorem not to depend on wd(X).
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6. Upper bounds on expansion constants for Λd
n and Ad(Fq)

In this section we prove the upper bounds on ηd−1(Ad(Fq)) and ηd−1(Λd
n0,...,nd

).

We start with some preparations including a characterization of coboundaries

in terms of cycles and a basis for the d-dimensional cycles of the complete

(d+ 1)-partite d-dimensional complex. Then we give the construction of many

coboundaries in Λd
n with some extra algebraic structure. We use these cobound-

aries to deduce our upper bounds on ηd−1(Ad(Fq)) and ηd−1(Λd
n0,...,nd

).

6.1. Cycles vs. coboundaries. There is a nice characterization of cobound-

aries using a pairing between chain and cochains. This bilinear pairing

〈·, ·〉 : Ck(X) × Ck(X) → F2 is given by

(c, σ) 7→ (〈c, σ〉 := c(σ))

extended linearly to all of Ck(X) × Ck(X). Note that 〈δc, a〉 = 〈c, ∂a〉 for

all c ∈ Ck−1(X) and a ∈ Ck(X). The following lemma is an easy consequence

of standard facts from linear algebra:

Lemma 26: Let c ∈ Ck(X). Then the following are equivalent:

(i) c ∈ Bk(X).

(ii) 〈c, z〉 = 0 for all cycle z ∈ Zk(X).

(iii) 〈c, z〉 = 0 for z ∈ Z where Z ⊆ Zk(X) is a generating set.

A basis for Zd(Λd
n0,...,nd

) is easy to describe.

Lemma 27: Let Λd
n0,...,nd

= U0 ∗ U1 ∗ · · · ∗ Ud with |Ui| = ni. Given pairwise

distinct vertices u+i , u
−
i ∈ Ui, 0 ≤ i ≤ d, let

✸
d((u+i , u

−
i )0≤i≤d) := {u+0 , u−0 } ∗ · · · ∗ {u+d , u−d }

be the octahedral sphere spanned by these vertices. We think of

✸
d((u+i , u

−
i )0≤i≤d)(d)

as a chain in Cd(Λd
n0,...,nd

). Then for any fixed u+i ∈ Ui, 0 ≤ i ≤ d the set

{✸d((u+i , u
−
i )0≤i≤d)(d) ∈ Cd(Λd

n0,...,nd
) : u−i ∈ Ui \ {u+i }, 0 ≤ i ≤ d}

is a basis for Zd(Λd
n0,...,nd

).
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Proof. Fix u+i ∈ Ui, 0 ≤ i ≤ d and let

Z = {✸d((u+i , u
−
i )0≤i≤d)(d) ∈ Cd(Λd

n0,...,nd
) : u−i ∈ Ui \ {u+i }, 0 ≤ i ≤ d}.

Clearly, every z ∈ Z is a cycle.

Note that for any choice of u−i ∈ Ui \ {u+i }, 0 ≤ i ≤ d, there is precisely

one z ∈ Z which contains {u−0 , . . . , u−d } in its support. This implies that the

cycles in Z are linearly independent.

Note that |Z| =
∏d

i=0(ni − 1).

On the other hand, it is well-known that H̃k(Λd
n0,...,nd

)=0 for all −1≤k≤d−1.

This can be deduced from [33, Proposition 4.4.3] concerning the connectivity

of joins; alternatively, it also follows from the fact that Λd
n0,...,nd

is the matroid

complex of a partition matroid and hence shellable (see, e.g., [4, Theorem 7.3.3]).

We get by the rank–nullity theorem that

dimZd(Λd
n0,...,nd

) =

d+1
∑

i=0

(−1)i dimCd−i(Λ
d
n0,...,nd

)

=

d+1
∑

i=0

(−1)i
∑

0≤i0<···<id−i≤d

d−i
∏

l=0

nil =

d
∏

i=0

(ni − 1).

Thus, Z generates all of Zd(Λd
n0,...,nd

).

6.2. A wealth of coboundaries. The following proposition provides us with

a wealth of coboundaries.

Proposition 28: Let d ∈ Z>0 be a dimension. Let n0, n1, . . . , nd ∈ Z

with ni ≥ 2 for all 0 ≤ i ≤ d. Let X = Λd
n0,...,nd

. Given ϕ : X(0) → Fd
2

define cϕ ∈ Cd(X) by

cϕ({v0, . . . , vd}) :=







1 if
∑d

i=0 ϕ(vi) = 0 ∈ Fd
2,

0 otherwise.

Then cϕ is a coboundary, i.e., cϕ ∈ Bd(X).

Proof. Write X = V0 ∗ · · · ∗ Vd with Vi = [ni]. By Lemma 26 and Lemma 27

it suffices to check that for every collection of pairs {u+i , u−i } ∈
(

Vi

2

)

, 0 ≤ i ≤ d,

the crosspolytope ✸
d = {u+0 , u−0 } ∗ · · · ∗ {u+d , u−d } contains an even number of

d-simplices from cϕ.
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So let us fix a choice of pairs {u+i , u−i } ∈
(

Vi

2

)

, 0 ≤ i ≤ d, and consider the

corresponding crosspolytope ✸
d = {u+0 , u−0 }∗ · · · ∗ {u+d , u−d }. First we reduce to

the case when

ϕ(u+0 ) = ϕ(u+1 ) = · · · = ϕ(u+d ) = 0.

If ✸
d does not contain a d-simplex from cϕ, we are done. Otherwise we can

assume (after relabeling the vertices in ✸
d) that

d
∑

i=0

ϕ(u+i ) = 0.

Now consider ϕ̃ : X(0) → Fd
2 given by

ϕ̃(vi) = ϕ(vi) + ϕ(u+i )

for any vi ∈ Vi, 0 ≤ i ≤ d. Note that
∑d

i=0 ϕ(u+i ) = 0 implies that cϕ̃ = cϕ.

Moreover ϕ̃(u+i ) = 0 for all 0 ≤ i ≤ d by construction. Hence, we are left with

the case when ϕ(u+i ) = 0 for all 0 ≤ i ≤ d. In this case there is a one-to-one cor-

respondence between d-simplices in ✸
d from cϕ and vectors (α0, . . . , αd) ∈ Fd+1

2

for which
d
∑

i=0

αiϕ(u−i ) = 0.

The number of such vectors equals 2dimkerA where A ∈ F
d×(d+1)
2 is the matrix

with columns ϕ(u−0 ), . . . , ϕ(u−d ). Note that dim kerA ≥ 1 (we consider linear

dependencies of d + 1 vectors in the d-dimensional vector space Fd
2), hence

2dimkerA is even. This finishes the proof.

6.3. Upper bound for the spherical building Ad(Fq). In this subsection

we prove Theorem 5. Recall that for a given prime power q, Ad(Fq) is the d-

dimensional simplicial complex whose vertices correspond to non-trivial, proper

subspaces of a (d+2)-dimensional vector space Fd+2
q over the finite field Fq with q

elements and whose k-simplices correspond to flags 0 6=U0(U1( · · ·(Uk(Fd+2
q

of subspaces.

We will need a few very basic combinatorial properties of Ad(Fq). To state

them, we need some notation. For k ≥ 1 let

[k]q =

k−1
∑

i=0

qi and [k]q! = [k]q · [k − 1]q · · · · · [1]q.

We have
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Lemma 29: Let d ∈ N, q a prime power.

(i) |Ad(Fq)(d)| = [d+ 2]q!.

(ii) The number Nl,d,q of l-dimensional subspaces of Fd
q is

[d]q!
[l]q ![d−l]q!

.

Proof. For (i) we note that picking a d-simplex in Ad(Fq) corresponds to picking

a chain of non-trivial subspaces 0 6= U0 ( U1 ( · · · ( Ud ( Fd+2
q . The 1-

dimensional space U0 is spanned by a non-zero vector of Fd+2
q . There are qd+2−1

non-zero vectors in Fd+2
q but each 1-dimensional space U0 contains q−1 of them.

Hence, there are qd+2−1
q−1 = [d+ 2]q choices for U0. Once we have chosen U0, we

can choose U1 by choosing any vector in Fd+2
q \ U0. There are qd+2 − q of such

vectors and any 2-dimensional subspace of Fd+2
q containing U0 has q2−q vectors

not in U0. Hence, there are qd+2−q
q2−q = qd+1−1

q−1 = [d+1]q choices for U1 containing

a fixed U0. Continuing this argument, we see that given U0 ( U1 ( · · · ( Uk

there are [d+ 1 − k]q choices for Uk+1. The expression for |Ad(Fq)(d)| follows.

For (ii) we note that Nl,d,q is equal to the number of ordered l-tuples of linear

independent vectors in Fd
q divided by the number of ordered basis in Fl

q. Note

that the number of ordered k-tuples of linear independent vectors in Fn
q is given

by (qn− 1)(qn− q) · · · (qn− qk−1). Indeed, for the first vector we have to pick a

non-zero vector. There are qn − 1 choices. For the second vector we can choose

any of the qn − q in the complement of the span of the first vector and so on.

It follows that

Nl,d,q =
(qd − 1)(qd − q) · · · (qd − ql)

(ql − 1)(ql − q) · · · (ql − ql−1)
=

(qd − 1)(qd−1 − 1) · · · (qd−l − 1)

(ql − 1)(ql−1 − 1) · · · (q − 1)
.

Now, every factor in the numerator and denominator is divisible by q − 1.

Dividing out these factors, we get

Nl,d,q =
[d]q[d− 1]q · · · [d− l]q

[l]q[l − 1]q · · · [1]q
=

[d]q!

[d− l]q![l]q!
,

as desired.

Note that every (d− 1)-simplex of Ad(Fq) is contained in precisely q+ 1 (the

number of 1-dimensional subspaces in a 2-dimensional vector space over Fq)

d-simplices. Thus, using Lemma 29(i),

|Ad(Fq)(d− 1)| =
d+ 1

q + 1
[d+ 2]q!
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which is a polynomial in q with leading term (d + 1)q
d(d+3)

2 . In particular, for

sufficiently large q (q ≥ (d+ 2)! suffices) we have

|Ad(Fq)(d − 1)| ≤ 2(d+ 1)q
d(d+3)

2 .

Note that the map λ : Ad(Fq)(0) → {1, 2, . . . , d+ 1} given by

U 7→ λ(U) := dim(U)

is a labeling of the vertices of Ad(Fq) showing that Ad(Fq) is (d + 1)-partite.

In particular, there is an embedding ι : Ad(Fq) → Λd
n0,...,nd

where, according

to Lemma 29(ii), nk =
[d+2]q!

[k+1]q ![d+1−k]q!
is the number of (k + 1)-dimensional

subspaces of Fd+2
q .

Outline of proof of Theorem 5. We first observe that since the restriction of a

coboundary to a subcomplex is a coboundary, Proposition 28 also provides a

wealth of coboundaries in Ad(Fq).

Corollary 30: Let ϕ : Ad(Fq)(0) → Fd
2. Let c

ϕ ∈ Cd(Ad(Fq)) be given by

cϕ({u0, . . . , ud}) =







1 if
∑d

i=0 ϕ(ui) = 0 ∈ Fd
2,

0 otherwise.

Then cϕ is a coboundary, i.e., cϕ ∈ Bd(Ad(Fq)).

Now the idea is to pick ϕ uniformly at random and consider cϕ. That is for

every vertex v ∈ Ad(Fq)(0) we choose ϕ(v) ∈ Fd
2 independently and uniformly

at random. It will turn out that as q → +∞, with positive probability, there is

a coboundary b = cϕ for which every (d− 1)-simplex in Ad(Fq) is contained in

at most q+1
2d

+ o(q) d-simplices of b. Thus, every cofilling c of b must satisfy

(q + 1

2d
+ o(q)

)

|c| ≥ |b|

giving us a cochain c ∈ Cd−1(Ad(Fq)) for which

|δc|
|[c]| ≤

q + 1

2d
+ o(q).

Normalizing, we get

ηd−1(Ad(Fq)) ≤ d+ 1

q + 1

(q + 1

2d
+ o(q)

)

=
d+ 1

2d
+ o(1)

as q → +∞.
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Proof of Theorem 5. We add some more details to the proof outline above. To

this end, let (Ω,B,P) be the probability space with Ω = (Fd
2)Ad(Fq)(0), i.e.,

the set of maps ϕ : Ad(Fq)(0) → Fd
2, B = 2Ω and P the uniform distribution.

For ω ∈ Ω we let

b(ω) := cω ∈ Bd(Ad(Fq))

as defined in Corollary 30. For τ ∈ Ad(Fq)(d) let b(τ) : Ω → R be given by

b(τ)(ω) :=







1 if b(ω)(τ) = 1,

0 otherwise.

For σ ∈ Ad(Fq))(d− 1) let d(σ) : Ω → R be given by

d(σ)(ω) :=
∑

τ∈Ad(Fq)(d),σ⊆τ

b(τ)(ω),

i.e., d(σ)(ω) is the number of d-simplices incident to σ which are contained

in b(ω). We have

Lemma 31: (i) P(b(τ) = 1) = E[b(τ)] = 1
2d

for all τ ∈ Ad(Fq)(d).

(ii) E[d(σ)] = q+1
2d for all σ ∈ Ad(Fq)(d− 1).

Proof. (i) follows from the fact that for any fixed a0, a1, . . . , ad−1 ∈ Fd
2 the

equation

a0 + a1 + · · · + ad−1 + x = 0

has precisely one solution for x. (ii) then follows from (i) by linearity of expec-

tation using that every (d − 1)-simplex of Ad(Fq) is contained in exactly q + 1

d-simplices.

The following observation is crucial, since it will allow us to use Hoeffding’s

inequality for d(σ).

Lemma 32: Fix σ ∈ Ad(Fq)(d − 1). Let τ1, . . . , τq+1 be the q + 1 d-simplices

incident to σ. Then the random variables b(τ1), . . . , b(τq+1) are independent.

Proof. Let σ = {v0, . . . , vd−1}. When randomly picking ϕ : Ad(Fq)(0) → Fd
2 we

can think that the values of ϕ on the vertices of σ have already been picked.

Then the value of b(τi) solely depends on the choice of ϕ on the remaining

vertex v ∈ τi \ σ. These choices are independent.
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Recall Hoeffding’s inequality

Theorem 33 (Hoeffding’s inequality, [20, Theorem 1] ): Let X1, . . . , Xn

be {0, 1}-valued independent identically distributed (i.i.d.) random variables

with p = EXi. Then for any t ≥ 0 we have

P

( n
∑

i=1

Xi ≥ (p+ t)n

)

≤ e−2t2n.

By Lemma 31(i) and Lemma 32, d(σ) is a sum of {0, 1}-valued i.i.d. random

variables with success probability p = 1
2d . Thus, we can apply Hoeffding’s

inequality to d(σ) with

n = q + 1, p =
1

2d
, t =

√

(d(d+ 3) + 2) log q

4(q + 1)

and combine it with a union bound over all (d− 1)-simplices σ ∈ Ad(Fq)(d− 1)

to get (for q ≥ (d+ 2)!) that

P
(

∃σ ∈ Ad(Fq)(d− 1) with d(σ) ≥
( 1

2d
+ t
)

(q + 1)
)

≤ |Ad(Fq)(d− 1)|e−2t2(q+1)

≤ 2(d+ 1)q
d(d+3)

2 e−( d(d+3)
2 +1) log q

=
2(d+ 1)

q
.

For the last inequality we used that |Ad(Fq)(d− 1)| ≤ 2(d+ 1)q
d(d+3)

2 whenever

q ≥ (d + 2)!. In particular, for q ≥ (d + 2)! there is some ω ∈ Ω such that for

all σ ∈ Ad(Fq)(d− 1) it holds that

d(σ)(ω) ≤ q + 1

2d
+ (q + 1)

√

(d(d + 3) + 2) log q

4(q + 1)

=
q + 1

2d
+

1

2

√

(d(d+ 3) + 2)(q + 1) log q.

As we noticed earlier, this implies that every c ∈ Cd−1(Ad(Fq)) with δc = b(ω)

must satisfy

(q + 1

2d
+

1

2

√

(d(d + 3) + 2)(q + 1) log q
)

|c| ≥ |b(ω)|.
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It follows that

ηd−1(Ad(Fq)) ≤
d+ 1

2d
+

(d+ 1)
√

(d(d+ 3) + 2)(q + 1) log q

2(q + 1)
.

Since

lim
q→+∞

(d+ 1)
√

(d(d+ 3) + 2)(q + 1) log q

2(q + 1)
= 0

this finishes the proof of Theorem 5.

6.4. Upper bound for complete multipartite complexes. Let d ∈ N be

a dimension, n0, n1, . . . , nd ≥ 2 integers. Recall that we write Λd
n0,n1,...,nd

for the

complete (d+1)-partite d-dimensional complex with parts of sizes n0, n1, . . . , nd.

In this subsection we prove the following slightly refined version of Theorem 4.

Theorem 34 (Upper bound on ηd−1(Λd
n)): If 2d divides ni for all 0 ≤ i ≤ d,

then

ηd−1(Λd
n0,n1,...,nd

) ≤ d+ 1

2d
.

Moreover, let ε > 0. If min{n0, . . . , nd} ≥ 2d + d+1
ε , then

ηd−1(Λd
n0,n1,...,nd

) ≤ d+ 1

2d
+ ε.

Proof. Let X = Λd
n0,n1,...,nd

. We have

X = V0 ∗ V1 ∗ · · · ∗ Vd
with Vi = [ni]. Write ni = li2

d + ri with 0 ≤ ri < 2d, li ∈ Z≥0, 0 ≤ i ≤ d.

Partition Vi =
⊔2d

j=1 Vij as equally as possible, i.e., such that ||Vij | − |Vij′ || ≤ 1

for all j, j′ ∈ {1, . . . , 2d}. Let ψ : [2d] → Fd
2 be a bijection. Define ϕ : X(0) → Fd

2

by ϕ(v) := ψ(j) for v ∈ Vij , 1 ≤ j ≤ 2d, 0 ≤ i ≤ d. Let b = cϕ ∈ Bd(X) as

defined in Proposition 28.

Given σ ∈ X(d− 1) there is a unique i ∈ {0, 1, . . . , d} for which σ ∩ Vi = ∅.

We call this i the type of σ.

First assume that ri = 0 for all 0 ≤ i ≤ d, i.e., that 2d divides ni for all

0 ≤ i ≤ d. Then every (d − 1)-simplex of type i is contained in exactly li d-

simplices in the support of b. So, if c ∈ Cd−1(X) with δc = b and we decompose

c =
∑d

i=0 c
(i) where supp(c(i)) = {σ ∈ c : σ has type i}, then

d
∑

i=0

li|c(i)| ≥ |b|.
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Note that a (d− 1)-simplex σ of type i has Garland weight w(σ) = ni

(d+1)|X(d)| .

It follows that

‖c‖ =

d
∑

i=0

ni

(d+ 1)|X(d)| |c
(i)|

=
2d

(d+ 1)|X(d)|

d
∑

i=0

li|c(i)|

≥ 2d

(d+ 1)|X(d)| |b|

=
2d

d+ 1
‖b‖.

This shows that

ηd−1(Λd
n0,...,nd

) ≤ d+ 1

2d
,

whenever 2d divides all ni, 0 ≤ i ≤ d.

The second part follows by a similar analysis using that even if not all of

the ni’s are divisible by 2d, we still have that every (d− 1)-simplex σ of type i

is contained in at most li + 1 d-simplices from b.

7. Concluding remarks

We presented a quantitative Borsuk–Ulam theorem, Theorem 2, and illustrated

its potential for applications to quantitative non-embeddability questions by

giving a lower bound on the pair-crossing number of sufficiently thick spherical

buildings.

At the same time, we noted that for some applications to classical crossing

number problems, such as Turán’s Brick Factory problem, where we care about

exact bounds (at least up to lower-order terms), there are limits to the lower

bounds we can obtain by applying Theorem 2 in a straightforward way, due to

the fact that the expansion constants of the relevant deleted join are strictly

less than 1 in dimension 2.

In general, it would be interesting to achieve a better understanding of the

expansion constants of the join X∗2 = X ∗X of a d-dimensional complex with

itself. The Künneth formula guarantees that if H̃k(X) = 0 for 0 ≤ k < d then

H̃k(X∗2) = 0 for 0 ≤ k ≤ 2d. Is there a quantitative version of this?
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Question 35: Is it possible to prove lower bounds for the expansion constants

ηk(X∗2), 0 ≤ k ≤ 2d, in terms of the expansion constants ηk(X), 0 ≤ k < d?

At the moment, we do not know the answer even for the case d = 1 of

graphs. Even this special case would be of interest: A classical lower bound

for the crossing number in terms of bisection width [37] implies that for a

bounded-degree expander graph X on n vertices, the crossing number of X

satisfies cr(X) = Ω(n2). A positive answer to Question 35 would imply that

ipcr(X) = Ω(n2) as well, which is an open problem—the best lower bound in the

literature seems to be ipcr(X) = Ω(n2/ log(n)2), due to Kolman and Matoušek

[25].14 Building on the ideas presented in this paper, we can improve this lower

bound to ipcr(X) = Ω(n2/ logn), but currently we do not know whether the

remaining factor of 1/ logn can be removed as well.

We remark that if the answer to Question 35 is positive, the proof might

be quite subtle and will not generalize further to joins X ∗ Y of two different

complexes: We can construct infinite families of graphs (Xn)n∈N and (Yn)n∈N

for which

lim
n→+∞

η2(Xn ∗ Yn)

η0(Xn)η0(Yn)
= 0.

These examples are very unbalanced though, in the sense that Yn has exponen-

tially many more vertices than Xn, so they do not provide a negative answer

to Question 35.

Another natural question is to what extent the assumptions in Theorem 2 can

be weakened. For instance, for Gromov’s Topological Overlap Theorem, the as-

sumption of coboundary expansion can be relaxed to the weaker property of X

being a cosystolic expander, which means that there are constants η, θ > 0

such that the following conditions are satisfied for 0 ≤ k ≤ d − 1: For ev-

ery β ∈ Bk+1(X) there exists α ∈ Ck(X) with δα and ‖α‖ ≤ 1
η‖β‖, and for

every z ∈ Zk(X) \ Bk(X) we have ‖z‖ ≥ θ. It is easy to see that cosystolic

expansion is not a suitable replacement for coboundary expansion as an as-

sumption in Theorem 2: For instance, if the coboundary expansion constants

of X are bounded away from zero, then the disjoint union X ⊔X of two copies

14 We remark that the results in [25] are stated for the pair crossing number pcr(X), which

also counts crossings between pairs of edges that share vertices. However, for bounded

degree graphs, pcr(X) ≤ ipcr(X) + O(n) (and pcr(X) ≥ ipcr(X) for all graphs), so the

difference does not matter for the present discussion.
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of X is a cosystolic expander and a free Z/2-complex (with respect to the ac-

tion that interchanges the two copies of X), yet at the same time X admits

an equivariant map to R1 without zeros by mapping one copy of X to +1 and

the other to −1. On the other hand, if G = (V,E) is a graph with a free

Z/2-action ν such that every subset S ⊂ V of vertices with precisely one ver-

tex of each ν-orbit is expanding then |E ∩ f−1(0)| has to be large for every

equivariant map f : G →Z/2 R. This is a much weaker condition than G to be

an expander graph. It would be interesting to find such weaker conditions in

higher dimensions, too.

In a different direction, while our upper bounds on ηd−1(Ad(Fq)) and ηd−1(Λ
d
n)

make significant progress in closing the gap between the best known upper and

lower bounds of these coboundary expansion constant, finding their exact value

remains challenging. We are happy to conjecture that

ηd−1(Λd
n0,...,nd

) ≥ d+ 1

2d

for all n0, . . . , nd ∈ Z>0, d ≥ 2.

Our construction yielding the upper bound on ηd−1(Λd
n) can be extended to

show that (for n divisible by 2d) ηk(Λd
n) ≤ k+2

2⌊(k+1)/(d−k)⌋ . In particular, for

constant codimension d−k, ηk(Λd
n) is exponentially small in d. The exact value

of ηk(Λd
n) for 0 < k < d − 1 seems even more elusive and we do not even dare

to make a precise conjecture.
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