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Abstract: Recent work has paid close attention to the first principle of Granger causality, according to which cause precedes effect. In this
context, the question may arise whether the detected direction of causality also reverses after the time reversal of unidirectionally coupled
data. Recently, it has been shown that for unidirectionally causally connected autoregressive (AR) processes X → Y , after time reversal of
data, the opposite causal direction Y → X is indeed detected, although typically as part of the bidirectional X ↔ Y link. As we argue here,
the answer is different when the measured data are not from AR processes but from linked deterministic systems. When the goal is the usual
forward data analysis, cross-mapping-like approaches correctly detect X →Y , while Granger causality-like approaches, which should not be
used for deterministic time series, detect causal independence X ⊥⊥Y . The results of backward causal analysis depend on the predictability of
the reversed data. Unlike AR processes, observables from deterministic dynamical systems, even complex nonlinear ones, can be predicted
well forward, while backward predictions can be difficult (notably when the time reversal of a function leads to one-to-many relations).
To address this problem, we propose an approach based on models that provide multiple candidate predictions for the target, combined
with a loss function that consideres only the best candidate. The resulting good forward and backward predictability supports the view that
unidirectionally causally linked deterministic dynamical systems X → Y can be expected to detect the same link both before and after time
reversal.
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1. INTRODUCTION

Detecting causality between two deterministic dynamical
systems or autoregressive (AR) processes is an open prob-
lem with an active community. Probably the best-known con-
cept in this field is Granger causality. We say that process X
Granger causes process Y if it is possible to obtain a better
prediction of Y using both past values of X and Y than using
only Y [1]. Considering the first principle of Granger causal-
ity that cause precedes effect, one might expect a change
of the direction of causality from X → Y to Y → X when
unidirectionally coupled systems and their time-reversals are
analysed. It might even seem like a good idea to try to re-
verse the time to confirm the conclusion about the direction
of the causal link. Since this issue is closely related to impor-
tant open physical questions about the arrow of time and the
mentioned change of causality direction would have a num-
ber of interesting applications in the analysis of real data,
time-reversing approaches have received much attention re-
cently [2–7]. Results have shown that there is no consensus
on basic questions, such as whether detected causality should
actually change for time-reversed data or whether the direc-
tions of the links may differ depending on the time series and
the method of detection.

In articles [3, 4] the properties of Granger causality for re-
versed time were introduced and studied. Then in [6] the di-

rection of information flow was studied for stochastic data
defined by vector AR processes. It was shown that for AR
processes X and Y connected in the X → Y way, and for the
Granger causality test, we cannot expect to detect the oppo-
site unidirectional Y →X link when we analyze time-reversed
data. In fact, what we usually detect is a bi-directional X↔Y
link. Contrary to some expectations, a solely unidirectional
Y → X is detected only when the product of the connection
strength and the ratio of the predictive errors of the driver rel-
ative to the recipient is below a certain level [6]. The much
more frequent X ↔Y result is quite surprising when it comes
to the arrow of time associated with causality.

When we begin to investigate other processes than AR, fur-
ther complications arise. In article [2], examples of different
types of systems were used to illustrate the behaviour of the
causal methods for time-reversed data. The paper has drawn
attention to the fact that in the case of deterministic dynam-
ical systems, the result of comparing forward and backward
causal analysis is different than in the case of AR processes,
which is interesting in the context of the first principle of
Granger causality about the cause preceding the effect.

The question, then, is what to expect from a causal analysis
of forward and time-reversed data when it comes to the inter-
connection of deterministic dynamical systems. In address-
ing this question, we will focus on unidirectionally coupled
discrete dynamical systems, but the findings will have more
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general validity.
In causality detection methods, we can identify two basic

approaches:

• Granger causality-like (GC-like) approaches – based on
the ability to improve the fit of the original data with
information from other variables (time series). These in-
clude, for example, Granger causality [1], kernel non-
linear Granger causality [8], and the predictability im-
provement method [9].

• Cross-mapping-like (CM-like) approaches – based on
the ability to express one variable (time series) from
other variables (time series). These include, for exam-
ple, measures L and M [10], convergent cross-map-
ping [11], and the cross-prediction method [12].

In the first part of this study (Section 2), we discuss the the-
oretical expectations for forward and backward causal anal-
ysis of deterministic dynamical systems. We point out the
inconsistency in causality detection after reversing the time
for different systems. The problem we identify is the inabil-
ity to learn one-to-many relations arising from the reversal of
many-to-one functions, such as a Logistic map. In Section 2,
we show how this problem can affect causality detection in
reversed time. Then, in Section 3, we propose an approach
to deal with one-to-many relations. The proposed approach is
based on a multi-output model and a newly defined adaptive
mean squared error (AMSE) loss (Section A). It illustrates the
ability of the multi-output model and AMSE loss to overcome
the problem of learning one-to-many relations that occur in
causality detection in reversed time.

Consequently, based on the numerically achieved good for-
ward and backward predictability, we conclude that for unidi-
rectionally coupled deterministic dynamical systems X → Y ,
the same X → Y link will be detected both for the direct and
reversed data, using CM-like causal methods.

2. FORWARD AND BACKWARD CAUSALITY IN DYNAMI-
CAL SYSTEMS

Consider a dynamical system (DS), which is a unidirec-
tional coupling X → Y of two discrete systems:

x(t +1) = f (x(t), . . . ,x(t− τx)),

y(t +1) = g(y(t), . . . ,y(t− τy),x(t)),
(1)

where τx and τy are integers.
The following definitions are useful mainly for backward

analysis. We say that variable x is expressible from variable y
if there exists a function h such that

x(t +1) = h(y(t), . . . ,y(t− τk)).

We call variable x self-expressible if it can be expressed as
a function of its own previous values (e.g., variable x from
(1)):

x(t +1) = f (x(t), . . . ,x(t− τx)).

The variable x, given by the function f :

x(t +1) = f (x(t), . . . ,x(t− τa),y(t), . . . ,y(t− τb)),

is called reversible if there exists a function g such that

x(t +1) = g(x(t +2), . . . ,x(t + τc),y(t +2), . . . ,y(t + τd)).

In the following sections, we will use examples of three
coupled chaotic systems of Hénon and Logistic maps.

Hénon map→ Hénon map:

x(t +1) = 1.4− x2(t)+0.3x(t−1),

y(t +1) = 1.4− (Cx(t)y(t)+(1−C)y2(t))+0.3y(t−1),
(2)

where C is the coupling strength and is equal to 0.4.
Hénon map→ Logistic map with linear coupling coupling:

x(t +1) = 1.4− x2(t)+0.3x(t−1),
y(t +1) = 3.7y(t)(1− y(t))−0.3x(t).

(3)

Hénon map→ Logistic map with square coupling:

x(t +1) = 1.4− x2(t)+0.3x(t−1),

y(t +1) = 3.7y(t)(1− y(t))−0.3x2(t).
(4)

Let us break down the equations to determine which vari-
ables are expressible, self-expressible, and reversible. These
properties play a role in explaining the diverse results of the
causal analysis of dynamical systems.

First, we focus on DS given by (2), and show that not only
x but also y is self-expressible. Each y(t) can be expressed as
a function of previous values y(t−1), · · · :

y(t +1) = 1.4− (Cx(t)y(t)+(1−C)y2(t))+0.3y(t−1),

where

x(t) = 1.4− x2(t−1)+0.3x(t−2),

x(t−1) =
1.4− y(t)− (1−C)y2(t−1)+0.3y(t−2)

Cy(t−1)
,

x(t−2) =
1.4− y(t−1)− (1−C)y2(t−2)+0.3y(t−3)

Cy(t−2)
.

Now we show that the variable x is expressible from the
variable y:

x(t +1) = 1.4− x2(t)+0.3x(t−1),

where

x(t) = 1.4− x2(t−1)+0.3x(t−2),

x(t−1) =
1.4− y(t)− (1−C)y2(t−1)+0.3y(t−2)

Cy(t−1)
,

x(t−2) =
1.4− y(t−1)− (1−C)y2(t−2)+0.3y(t−3)

Cy(t−2)
.
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Table 1. Forward causality analysis of unidirectional coupling X →
Y of deterministic dynamical systems. Expected outcomes of GC-
like and CM-like approaches when using single-output prediction
methods.

GC-like CM-like

X ⊥⊥ Y X → Y

For DS given by (3) and (4), we can derive the same proper-
ties: variable y (Logistic map) is self-expressible and variable
x is expressible from variable y in both cases.

Both variables are reversible:

x(t−1) =
−1.4+ x2(t)+ x(t +1)

0.3
,

y(t−1) =
−1.4+(Cx(t)y(t)+(1−C)y2(t))+ y(t +1)

0.3

and it is easy to see that both time-reverted variables are self-
expressible (x by definition) and the variable x is expressible
from the variable y:

y(t−1) =
−1.4+(Cx(t)y(t)+(1−C)y2(t))+ y(t +1)

0.3
,

where

x(t) =
−1.4+ x2(t +1)+ x(t +2)

0.3
,

x(t +1) =
0.3y(t)+1.4− y(t +2)− (1−C)y2(t +1)

Cy(t +1)
,

x(t +2) =
0.3y(t +1)+1.4− y(t +3)− (1−C)y2(t +2)

Cy(t +2)
.

The systems given by (3) and (4) include the non-reversible
Logistic map.

In this paper we consider the unidirectional coupling X →
Y (1) of two deterministic systems, where the representative
variable x of system X is expressible from variable y and both
x and y are self-expressible in the forward analysis. We would
like to point out how the outputs of individual causal methods
are influenced by these assumptions. We will apply causality
detection to both forward and time-reversed data and deduce
what may happen under the given conditions.

Table 1 summarises the obvious expectations in forward
causal analysis of deterministic systems by the GC-like and
the CM-like methods, which are as follows:

Forward 1 (GC-like) Since variable y is self-expressible,
GC-like methods theoretically fail to detect X → Y
causality, since there is no reason to expect an improve-
ment in the prediction of y after adding information from
variable x. The expected result would be the detection of
independence X ⊥⊥ Y .

Forward 2 (CM-like) Since variable x is expressible from
variable y, we can correctly detect the X→Y causal link

with CM-like methods. The essence of the method is
that the driving variable x can be expressed as a func-
tion of previous observations of the driven variable y,
and therefore, it is possible to find a function that trans-
forms Y to X .

The next step is to discuss the expectations of the reversed-
time causal analysis. Recall that our ultimate goal is to de-
termine whether, given an X → Y coupling of deterministic
systems, the detected causality changes to Y → X after the
time reversal of the observables.

Backwards 1 (GC-like) If the reversed variables x and y are
self-expressible, then GC-like methods, analogous to the
forward direction, theoretically find no improvement in
prediction and thus no causal link. Thus, the theoretical
result of GC-like methods for the reversed data should
be X ⊥⊥Y . As an example, see DS in (2) (Hénon map→
Hénon map).

Backwards 2 (GC-like) If variable y is not reversible, but
variable x is reversible, then the GC-like methods can
detect causality Y → X because they can find an im-
provement in the backward prediction of y after adding
information from x. The example DS can be found in (3)
(Hénon map→ Logistic map).

Backwards 3 (CM-like) If the reversed x is expressible from
the reversed y, we can detect causality X → Y with CM-
like methods. Thus, using this method, the observed
causality does not change for the reversed data. DS in
(2) (Hénon map → Hénon map) can serve as an exam-
ple.

Backwards 4 (CM-like) If the reversed variable x is not ex-
pressible from the reversed variable y, we detect no
causality with CM-like methods. Let us take (4) as an
example (Hénon map→ Logistic map with square cou-
pling).

Backwards 5 (GC-like) It can be deduced that blind appli-
cation of GC-like methods for irreversible x - depend-
ing on various conditions - can lead to any causal de-
tection. For completeness, they are all listed in Table 2,
but we will not discuss them in more detail because, as
we have already emphasised, GC-like methods are actu-
ally inappropriate for application to data from dynamical
systems.

In Table 2 we summarise the possible outcomes of causal-
ity detection for X → Y coupling of deterministic dynamical
systems in the backward direction. Theoretically, as argued
above, the conclusion of GC-like methods should be that the
systems are detected as causally independent if both variables
are reversible. If one or both variables are not reversible, the
result may be different from the forward analysis. As sum-
marised in Table 2, for the case of X → Y (in the forward
sense), the inappropriate backward GC-like analysis can lead
to any outcome.
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Table 2. Backward causality analysis of unidirectional coupling X → Y of deterministic dynamical systems. Outcomes of GC-like and
CM-like approaches when using single-output prediction methods.

CM-like

x is expressible from reversed y X → Y

x is not expressible from reversed y X ⊥⊥ Y

GC-like

reversed x and y are self-expressible X ⊥⊥ Y

not reversible y and reversible x X → Y

other options X ⊥⊥Y , X→Y , X←Y , X↔Y

Proper use of CM-like methods, on the other hand, will de-
tect X → Y in the backward analysis if variable x is express-
ible from reversed variable y. Otherwise, CM-like methods
will conclude that the systems are causally independent.

The theoretically expected results of the backward causal
analysis, shown in Table 2, follow directly from the concepts
behind CM-like and GC-like methods applied to data from
deterministic systems. For clarity, let us illustrate them with
our examples of coupled Hénon and Logistic maps - (2), (3)
and (4).

A. Single-output model

Both GC-like and CM-like bivariate causal methods rely
on the ability to predict observables using their own past (self-
predictions) and the past of the second observable (cross-
predictions) or to improve the self-prediction using the past
of the other observable. Therefore, for our three coupled test
systems given by (2), (3) and (4), we evaluated the predictions
for direct and time-reversed variables in a standard manner.

As a single-output prediction model, we used a 3-layer
neural network with 10 nodes on each layer and the hyper-
bolic tangent activation function tanh(x) = ex−e−x

ex+e−x (there is no
nonlinearity in the output layer). We estimated x(t) based on
three preceding (for forward prediction), or three succeeding
(for backward prediction) observations. Therefore, there were
three input nodes for self-predictions and six input nodes for
mixed predictions. We trained the model with the MSE ob-
jective function on the first 10000 data points.

The numerical results for DS given by (2), (3) and (4) are
presented in Table 3.

Since variable y is self-expressible, in the connection X →
Y of deterministic dynamical systems, the prediction of the
observable from Y cannot be improved by adding information
from X , and GC-like methods are not theoretically appropri-
ate to analyse these data. This is also evidenced by the numer-
ical results in Table 3, where the forward self-predictions of
the variables are not improved after adding information from
the other time series - in all cases the prediction errors are
smaller than 10−4. This was already stated in Table 1, say-
ing that the forward Granger causal analysis of the X → Y
interconnection of the tested dynamical systems theoretically
leads to an incorrect X ⊥⊥ Y conclusion [6]. The numerical
results in Table 3 are consistent with the theoretical expecta-

tions given in Table 1.
As for the CM-like methods, in the forward analysis,

the numerical results in Table 3 show the successful cross-
prediction of the observable from X and thus the detection of
X →Y in all tested examples (prediction error is smaller than
10−4). In the backward analysis, Table 2 shows that a CM-
like method for different systems with the same coupling ar-
row X→Y can theoretically lead to the conclusions X→Y or
X ⊥⊥Y for time-reversed data. For example, in testing systems
with Logistic map involved, the cross-prediction was not suc-
cessful and the conclusion of the CM-like method was X ⊥⊥Y
(prediction error is significant - 0.018). Thus, with the CM-
like methods used for causal analysis, the numerical results
in Table 3 were again consistent with the expectations pre-
sented in Tables 1 and 2.

The ambiguity of numerical results is related to the difficult
backward predictability of irreversible time series. In what
follows, we propose a procedure for modifying the backward
prediction process, that eliminates the irreversibility problem
and the associated inconsistency in the conclusions of back-
ward causal analysis.

3. MULTI-OUTPUT PREDICTION

The inconsistent results of the backward causal analysis
in Table 2 are related to the problems in predicting time-
reversed data. Forecasting models (such as various types of
regression) usually provide single-output results, although for
processes that are not reversible in time (many-to-one func-
tion), predicting in the reverse direction should consider more
different possible outcomes. The function x 7→ x2, for ex-
ample, yields the value 1 for both x = 1 and x = −1, but in
the backward direction we cannot unambiguously determine
from which value (1 or -1) we obtained the outcome 1. In this
case, the single-output approaches that minimise the MSE ex-
pect 0 to be the best prediction. That is why, even in the case
of Logistic map, it is not possible to express x(t) simply as a
function of x(t +1) from (3) and (4).

As we can see in Table 3, the prediction improvement
varies by system type. The reversibility of the variable is cru-
cial for backward causality detection.

Let us now return to the example of x2. If it were possible
to predict both the value 1 and the value -1, the prediction er-
ror in one of these cases would be 0. If we take only the value
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Table 3. Mean squared error (MSE) of forward and backward prediction of 2000 points of the studied observables and conclusions derived
for causal detection. The size of the error ∼ 0 (in our case < 10−4) depends on the number of data and the number of optimisation iterations.

Hénon→ Hénon Hénon→ Logistic
Hénon→ Logistic
with square coupling

forward backward forward backward forward backward

X from X ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0

X from X and Y ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0

Y from Y ∼ 0 ∼ 0 ∼ 0 0.018 ∼ 0 0.018

Y from X and Y ∼ 0 ∼ 0 ∼ 0 0.013 ∼ 0 0.014

GC-like result X ⊥⊥ Y X ⊥⊥ Y X ⊥⊥ Y X → Y X ⊥⊥ Y X → Y

X from Y ∼ 0 ∼ 0 ∼ 0 ∼ 0 ∼ 0 0.018

Y from X 0.02 0.02 0.018 0.018 0.018 0.018

CM-like result X → Y X → Y X → Y X → Y X → Y X ⊥⊥ Y

with the smaller prediction error, the backward prediction re-
sult should be close to the true value. This is the main idea for
the adaptive mean squared error objective function presented
here.

A. Adaptive mean squared error

Let X ∈ Rn×Q be the input matrix and Y ∈ Rn be the n-
dimensional observation vector. Our goal is to estimate the
one-to-many relationship between X and Y. We denote by
Ŷ ∈ Rn×P the estimates of Y, where each row of Ŷ contains
the P different candidate predictions of Y for a given X.

We use an L-layer multi-output neural network as our
model:

Ŷ[i, :]ᵀ = bL +Wᵀ
Lσ
(
. . .σ

(
b1 +Wᵀ

1X[i, :]ᵀ
))

, (5)

where σ is an activation function, W j is the weight matrix for
the j-th layer, and b j is the bias vector for the j-th layer.

We propose to train the model with the following objective,
which we refer to as adaptive mean squared error (AMSE):

P

∑
p=1

1
|Sp| ∑

s∈Sp

s, (6)

where for p = 1, . . . ,P, we define the sets Sp as

Sp =
{
(Ŷ[i, p]−Y[i])2 :

p = argmin
p′∈{1,...,P}

(Ŷ[i, p′]−Y[i])2}.
Intuitively, AMSE splits the training data into p subsets, each
consisting of data points best predicted by the p-th model out-
put. The AMSE loss is then calculated as the sum of the mean
squared errors for the p subsets.

This multi-output design combined with the AMSE loss al-
lows for better fitting of one-to-many data. For example, if we
want to “invert” the quadratic function, as in the Logistic map

examples (3) and (4), one of the output nodes fits the “lower”
part of the estimated function and the other output node fits
the “upper” part of the estimated function (see Fig. 1).

In addition to the standard hyperparameters of the predic-
tion model (in our case, the multi-output model), we have one
more hyperparameter – the number of outputs. In the Logistic
map example, the correct number of output nodes is obvious,
but for real data (such as the German electricity consumption
data [13] used in Section B) we choose the number of output
nodes based on a validation set.

We consider two different validation metrics for choosing
the number of output nodes. The natural first choice is the
AMSE, as defined in (6). It turns out that this metric often
decreases with the number of outputs, so we (heuristically)
choose the number of outputs using an elbow diagram [14].

The second metric we propose is the adaptive mean abso-
lute error (AMAE), given by

P

∑
p=1

1
|Ap| ∑

a∈Ap

a, (7)

where for p = 1, . . . ,P, we define the sets Ap as

Ap =
{∣∣Ŷ[i, p]−Y[i]

∣∣ :

p = argmin
p′∈{1,...,P}

∣∣Ŷ[i, p′]−Y[i]
∣∣}.

This metric is similar to the AMSE, but based on absolute
error instead of squared error. We find that this metric does
not prefer a large number of outputs (like the AMSE does), so
we choose the optimal number by minimising the validation
AMAE. An intuitive argument for why AMSE prefers a large
number of outputs and AMAE does not is that for P outputs,
the absolute error is roughly of order 1/P, while the squared
error is of order 1/P2. If you sum over p in (7) and (6), we
find that AMAE is of order 1 and AMSE is of the order 1/P.
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Table 4. Mean and standard deviation for repeated (over 100 repeti-
tions) experiment with multiple-output nodes models for validation
data from German daily electricity consumption.

AMAE AMSE

output nodes mean ±
√

var mean ±
√

var

1 0.2733± 0.0094 0.1833 ± 0.0117

2 0.2071± 0.0106 0.0409 ± 0.0075

3 0.2501± 0.0082 0.0378 ± 0.0019

4 0.2692± 0.0140 0.0330 ± 0.0046

B. Examples

We will illustrate our method with two examples of irre-
versible data. The first one is the chaotic Logistic map:

x(t +1) = 3.7x(t)(1− x(t)) (8)

and the second is the real data example of country-wide totals
of daily German electricity consumption for the years 2006-
2017 [13].

We used the same approach as described in Section A, ex-
cept that we used the multi-output model and instead of the
MSE objective function we used the AMSE objective func-
tion.

Logistic map

For the Logistic map, we generated a time series X of
length n = 12000 according to (8). We modelled the func-
tion f :

x(t−3) = f (x(t),x(t−1),x(t−2)),
with a neural network (5) with two hidden layers and ten
nodes per layer. The number of inputs was three, the number
of outputs was two, and the activation function was the hyper-
bolic tangent. The objective function was AMSE. For opti-
misation, we used stochastic gradient descent with a learning
rate of 0.1 and a momentum of 0.9. We performed 5000 op-
timisation steps. We trained the model with the training data
and then evaluated it with the test data. The results can be
found in Section C.

German daily electricity consumption data

We used German electricity consumption measurements
not in a causal context, but only as an example of a single
real-time series where backward prediction requires consid-
eration of multiple outputs. For these data, we considered
time series with a length of 4383. We normalised the data to
zero mean and unit variance, reverted the time, and split the
data into a training set (2500), a validation set (500), and a
test set (1383). We varied the number of output nodes from
1 to 4 and selected the best number based on the validation
AMAE. Otherwise, we used the same experimental setup as
described above and repeated the entire experiment 100 times
for each number of output nodes. The results can be found
in Section C.

C. Results of multi-output prediction

Logistic map

In Fig. 1, we present the predictions for each output node
of both the two-output model and single-output model and
compare them to the ground truth. The multi-output model
fits both parts of the curve, forming an upper and a lower
envelope of the data. Additionally, this example shows that
our method can handle “imbalanced” data, where the differ-
ent parts of the series have different sizes. As expected, the
single-output model focused on the upper branch (see the left
bottom part of Fig. 1), but could not fit the non-bijective part
of the function (the lower branch and values around 0.7). The
multi-output model fits both the upper part (red - second out-
put) and the lower part (yellow - first output) of the function.
For the causality detection process, we use the smaller pre-
diction errors of the two output nodes.

German daily electricity consumption data

The results for the electricity consumption data can be
found in Fig. 2. We present the predictions for each out-
put node of both the two-output model and the single-output
model and compare them to the ground truth. The results for
the electricity consumption data in Table 4 show the valida-
tion AMSE and AMAE for the different number of outputs.
We report the mean and standard deviation over 100 repeti-
tions. The lowest AMAE value (and the greatest difference
in AMSE) value is obtained for the two-output models, indi-
cating that this type of model is preferable for the particular
dataset. For the visualisation of the test data, we selected the
two-output model with the lowest AMAE value; the results
are shown in Fig. 2. The single-output model fails to predict
some lower values (see the left upper part of Fig. 2). The
multi-output model fits both the upper part (red - second out-
put) and the lower part (yellow - first output) of the function.

4. RESULTS OF BACKWARD CAUSAL ANALYSIS USING
MULTI-OUTPUT PREDICTION

In contrast to the single-output prediction errors in Table 3
(see backward results of causality detection), the multi-output
prediction extension and AMSE resulted in very low (< 10−4)
prediction errors even for systems with many-to-one func-
tions (Logistic map).

As a result, the conclusions of forward and backward
causal analysis for the GC-like methods became the same
X ⊥⊥ Y , because for many-to-one functions, the backward
self-prediction error of multi-output models would be as
small as the forward self-prediction error and incorporating
additional information from other variables would not en-
hance the predictions.

The results from CM-like methods would also be the same
X → Y for forward and backward analysis since multi-output
models make finding transformations for many-to-one func-
tions equally good in the backward and forward directions.

Thus, with multi-output models, we move away from the
inconsistent causal conclusions obtained with classical pre-
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Fig. 1. Logistic map (Section B). Visualisation of the time series and the backward predictions corresponding to the single-output (left top)
and two-output nodes (right top), and the one-to-many relationship between x(t) and x(t− 1), and how it is fitted by the single-output (left
bottom) and two-output nodes (right bottom).

Table 5. Forward and backward causality analysis of unidirectional
coupling X → Y of deterministic dynamical systems. Outcomes of
GC-like and CM-like methods when using the multi-output predic-
tion method.

GC-like CM-like

forward X ⊥⊥ Y X → Y

backward X ⊥⊥ Y X → Y

diction methods (Tables 1 and 2) and get to the causal detec-
tions given in Table 5.

5. CONCLUSION

The study of causality in time-reversed data is related to
questions surrounding the so-called arrow of time and efforts
to use Granger’s first principle of causality for more reliable
causality detection. The nature of these questions leads us
to focus on the study of unidirectionally connected processes
and their temporal reversals. However, before accepting the
rationale for such efforts, we need to clarify whether the di-
rection of detected causality should actually reverse after the
data has been reversed.

It turns out that this cannot be unambiguously expected
even with the standard Granger analysis of AR processes. Al-

though the change in causality has been shown to occur in the
backward analysis of AR models where there is stochasticity
and thus irreversibility of processes, the original causal link
is usually observed [6] as well.

As we have shown here, the situation is different in the
case of the time series originating in deterministic dynami-
cal systems X → Y . GC-like methods are unsuitable for de-
terministic systems and produce erratic results unrelated to
true causality (Tables 1 and 2). On the other hand, with CM-
like methods applied to unidirectionally linked deterministic
systems, it should be theoretically possible to correctly de-
tect X → Y in the forward direction. The question remains
as to what we can expect in the backward analysis. There,
we may face the problem of being unable to predict irre-
versible processes, which is related to predicting one-to-many
relationships. In Section A, we propose an approach to ad-
dress this issue based on the multi-output models and AMSE.
Our results show that the improvement in prediction (as mea-
sured by AMAE) can be quite significant. For deterministic
data, even for complex nonlinear data, retrospective predic-
tion used to detect backward causality is only about overcom-
ing technical problems.

Thanks to the presented multi-output prediction technique,
even irreversible time series of deterministic systems, includ-
ing dissipative chaotic systems, become practically tractable.
As a consequence, for unidirectionally interconnected X→Y
deterministic processes, the direction of the detected causal-
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Fig. 2. German daily electricity consumption data (Section B). Visualisation of the time series and the backward predictions correspond-
ing to the single-output (left top) and two-output nodes (right top), and the one-to-many relationship between x(t) and x(t−1), and how it is
fitted by the single-output (left bottom) and two-output nodes (right bottom)

ity does not change after a data reversal. If we use CM-like
methods with improved prediction techniques, we can con-
sistently detect X → Y in both forward and backward causal
analysis.

The main conclusion can be summarised as follows. If
X → Y is valid for the time series, we should not expect GC-
like and CM-like methods to detect X ← Y after the time re-
versal of the data. In fact, for AR modelable data and Granger
causality test, we should expect X ↔ Y [6] and for reversible
deterministic time series and CM-like methods, we should ex-
pect X → Y , just as for forward analysis.

In this study, we have drawn attention to symmetry, which
is that deterministic time series can be well predicted back
and forth. Consequently, for deterministic systems, causal
methods based on prediction errors do not help to detect the
arrow of time. If we want to look for asymmetry, we can,
for example, try to examine the computational complexity
of backward prediction compared to forward prediction. But
that is a topic for future research.

In future work, it should also be possible to extend the the-
oretical results to continuous dynamical systems using Tak-
ens’s theorem [15], which can possibly stand as expressibility
and self-expressibility.
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