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Abstract

Intercellular signaling molecules, known as morphogens, act at a long range
in developing tissues to provide spatial information and control properties
such as cell fate and tissue growth. The production, transport, and removal
of morphogens shape their concentration profiles in time and space. Down-
stream signaling cascades and gene regulatory networks within cells then
convert the spatiotemporal morphogen profiles into distinct cellular re-
sponses. Current challenges are to understand the diverse molecular and
cellular mechanisms underlying morphogen gradient formation, as well as
the logic of downstream regulatory circuits involved in morphogen inter-
pretation. This knowledge, combining experimental and theoretical results,
is essential to understand emerging properties of morphogen-controlled
systems, such as robustness and scaling.
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INTRODUCTION

The formation of multicellular organisms requires the spatially and temporally organized gener-
ation of multiple distinct cell types. One way this is achieved is through the action of intercellular
signals, known as morphogens. The concept of morphogens as organizers of developing tissues
and providers of positional information dates back more than a century and remains one of the
most influential ideas in developmental biology (for a summary of this history, see Simsek &
Özbudak 2022 and Stapornwongkul & Vincent 2021).

The initial identification of molecules responsible for tissue patterning (Driever & Nüsslein-
Volhard 1988, Steward et al. 1988) led to the view that morphogens are molecules that spread
from localized sources to form concentration gradients and control cell fate in a concentration-
dependent manner. Subsequent advances in our understanding of tissue development suggest a
more versatile picture of how morphogen gradients are established and function. For example,
morphogen gradients can form from distributed sources, be interpreted in a concentration-
independent manner, and control cell behaviors other than cell fate specification. Here, we adopt
a broad view of morphogens as molecules that act at a long range to control cell properties and
provide spatial information for tissue development.

It is apparent that a relatively small number of signals are used repeatedly as morphogens to
coordinate the development of multiple tissues, and much of our current understanding is based
on studies of a selection of these examples (Figure 1).We use these examples to discuss the mech-
anisms by which morphogen gradients form and how receiving cells transduce morphogen signals
and transform them into distinct and precise cellular responses. We compare examples from dif-
ferent species and molecular systems to identify shared features as well as highlight distinctions
between commonly studied systems. In doing this, we emphasize the insight that is gained from
the application of new technology and the importance of a dialogue between experimental and
theoretical work.

MORPHOGEN GRADIENT FORMATION

The hallmark of a morphogen is that it conveys information about position to a tissue. In contrast
to Turing-like reaction-diffusion systems, which are not inherently oriented, morphogens form
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Figure 1

Example model systems and key morphogen gradients. (a) Drosophila blastoderm patterning is controlled by
a Dorsal (Dl, blue) morphogen gradient along the dorsal-ventral axis and a Bcd (green) anterior-posterior
gradient. The upper panel represents a cross section through the embryo (dashed line in lower panel). The
lower panel represents a lateral view. (b) Morphogen gradients in the Drosophila wing imaginal disc are shown
(top). Hh (blue) is expressed in the posterior compartment and forms a gradient along the anterior-posterior
axis. Dpp (green) is expressed in response to the Hh gradient in the anterior compartment and forms an
anterior-posterior concentration gradient. Wg (yellow) is expressed along the dorsal-ventral boundary in
third-instar larvae. (c) Pattern formation along the dorsal-ventral axis of the vertebrate neural tube depends
on opposing morphogen gradients. Ligands from the BMP and Wnt families (green) produced in the
ectoderm and roof plate form a dorsal to ventral gradient. Shh (blue) produced from the notochord and floor
plate forms a ventral to dorsal gradient. (d) Zebrafish embryo development at stages just prior to and during
gastrulation depends on gradients of Nodal and Fgf (blue) emanating from the margin of the embryo. An
orthogonal ventral to dorsal gradient of BMP activity (green) determines patterning along the dorsal-ventral
axis. Abbreviations: FP, floor plate; RP, roof plate.

concentration gradients and act along a defined axis within a tissue (Green & Sharpe 2015). The
shape and spatiotemporal dynamics of amorphogen concentration profile depend on three factors:
production, transport, and removal.

1. Morphogen production can occur from a localized or a distributed source (Figure 2a).
Production from a localized source generates a flux of morphogen across the boundary
from the source to the target tissue. In mathematical models, this can be captured by the
boundary conditions of the morphogen transport equation or by explicitly incorporating
the morphogen source (reviewed in Wartlick et al. 2009). In contrast, for a distributed
source, an explicit understanding of the processes that govern the formation, and thereby
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Localized source

t1

t2

Distributed source

Production relay

t1

t2

Localized sink

Distributed sink (uniform)

Distributed sink (nonuniform)

Extracellular di�usion

Advection and dilution

Recycling

Shuttling

Receptor and ECM component binding

Cytonemes

a

b

cFigure 2

Cellular mechanisms
of morphogen
production, transport,
and removal in
developing tissues.
(a) Morphogen
production can occur
in a restricted group of
cells (localized source),
throughout the tissue
(distributed source), or
via a relay mechanism
that leads to a
continuous expansion
of the source. t1 and t2
are time 1 and 2,
respectively.
(b) Morphogen
degradation can be
localized or distributed
and occur with
uniform or variable
rates across the tissue.
(c) Morphogens can
spread
nondirectionally via
extracellular diffusion.
Diffusion is often
hindered by the
binding of
morphogens to
receptors and
components of the
ECM, as well as to
secreted proteins and
chaperones, which
may affect morphogen
diffusion and activity.
Intracellular
trafficking
mechanisms, such as
recycling and
cytoneme localization,
can influence
morphogen gradient
formation. Tissue
growth leads to
directional
displacement
(advection; blue arrow)
and dilution of
morphogen molecules
upon cell division.
Abbreviation: ECM,
extracellular matrix.
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the spatiotemporal characteristics of the source, is needed (Dalessi et al. 2012, Teimouri &
Kolomeisky 2015).

2. Morphogen transport can take place via directional or nondirectional mechanisms
(Figure 2b). Most known cases of morphogen transport involve nondirectional spreading,
typically a randomly oriented diffusion-like motion of molecules through the tissue. Direc-
tional spreading occurs when morphogen molecules are actively transported in a specific
direction. This can occur, for instance, in a growing tissue, where morphogen molecules
are transported away from a fixed point by tissue growth (a process known as advection).
Both directional and nondirectional factors may contribute to the overall spreading of
morphogen. Regardless of whether spreading is directional or not, the speed with which
molecules traverse a certain distance may be constant or vary in space or time. This has
consequences for the shape of the morphogen concentration profile.

3. Morphogen can be removed from the tissue via a localized sink or across the tissue
(Figure 2c). Removal can occur at a constant or variable rate at different positions across the
tissue.Although clearance is often associated with the degradation ofmorphogenmolecules,
any mechanism that reduces the amount of morphogen is relevant for gradient formation.
This may include internalization or movement into compartments where the morphogen
molecules are immobilized or unavailable for further signaling. In addition, dilution of
morphogen concentration can occur due to cell division and tissue growth.

Knowledge of these three factors (production, transport, and removal) allows tissue-scale bio-
physical quantitative descriptions of the changes in morphogen concentration in time and space
(Bollenbach et al. 2007, Umulis & Othmer 2015,Wartlick et al. 2009). For morphogens secreted
from a localized source, spreading nondirectionally, and being degraded uniformly throughout the
tissue, this has become known as the synthesis, diffusion, and degradation (SDD) model (Gregor
et al. 2007b, Kicheva et al. 2007, Shvartsman & Baker 2012). It yields steady-state gradients with
an exponential shape, characterized by an amplitude (the concentration at the source boundary)
and a decay length (the position at which the concentration decays to 1/e of the amplitude). In such
models, the diffusion coefficient and rates of production and degradation represent the combined
behavior of all contributing cellular and molecular processes. A key challenge in studying mor-
phogen gradient formation is understanding how the individual cellular processes give rise to these
effective parameters and hence the tissue-scale behavior of the morphogen. Below, we review the
current understanding of how morphogen production, spreading, and degradation are controlled.

Regulation of Morphogen Production

Morphogen production most often occurs from a spatially restricted source defined by a develop-
mental prepattern.Morphogen-producing cells can be localized to a dedicated tissue: For example,
the vertebrate notochord produces Shh, which patterns adjacent tissues (Figure 1c) (Echelard
et al. 1993). Alternatively,morphogen-producing cells can be specified within the tissue being pat-
terned. The continuous specification of morphogen-producing cells and tissue growth can lead to
an increase in the size of the source. Examples include the Dpp- and Hh-producing domains in
the fly wing disc (Wartlick et al. 2011) and the floor plate of the neural tube (Kicheva et al. 2014).
An increasing source size may contribute to an increase in the overall amount of morphogen pro-
duced in the tissue; however, the production rate that is relevant to gradient formation in the
target tissue also depends on the tissue geometry and the production rate per cell.

A morphogen source can also expand or move via a relay mechanism in which morphogen sig-
naling induces its own expression. In such cases, the range of morphogen distribution depends on
how effectively morphogen signaling stimulates morphogen production (Dickmann et al. 2022).
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Stronger coupling increases the range of morphogen production and can result in very long-range
gradients. Hence, relay mechanisms may be particularly relevant in adult or regenerating tissues,
such as salamander limbs and flatworms, which are substantially larger than developing tissues
patterned by embryonic morphogen gradients. Nevertheless, relays have been described in devel-
oping tissues. In the Drosophila eye imaginal disc, Hh induces its own expression in adjacent cells,
producing a traveling wave of morphogen expression that sweeps across the tissue to trigger pho-
toreceptor cell differentiation (Míguez et al. 2022). A relay mechanism has also been demonstrated
forNodal in an in vitromodel of human germ layer patterning. In this system, comprising colonies
of embryonic stem cells grown on micropatterns, Nodal activity spreads by inducing neighboring
cells to express Nodal (Liu et al. 2022). The simultaneous induction of the Nodal inhibitor Lefty
restricts the range of Nodal signaling.

While in many cases morphogen sources grow over time, the converse has also been observed.
For instance, Wg is initially expressed throughout the Drosophila wing disc and then gradually
constricts to the dorsal-ventral boundary. This generates a temporal gradient of Wg such that
cells at the lateral edge of the pouch receive Wg for a shorter period than cells at the dorsal-
ventral boundary (Klein & Arias 1998). This suggests an explanation for the surprising result that
a membrane-tethered version ofWg can substitute for the endogenous secreted factor (Alexandre
et al. 2014). A similar strategy also appears to contribute to the dynamics of BMP signaling in the
early zebrafish embryo. Several BMP ligands are initially ubiquitously expressed in the blastula
but are progressively repressed from dorsal tissue to become restricted to the ventral side of the
embryo (Ramel & Hill 2013).

Amorphogen source can also appear tomove across a tissue through an inheritancemechanism
in which cell division carries the morphogen ligand or messenger RNA encoding the morphogen
away from its site of deposition, progressively diluting it at every division. This has been observed
forWg in theDrosophila embryo (Pfeiffer et al. 2000) and for FGF in vertebrate presomitic meso-
derm (Dubrulle & Pourquié 2004). A similar principle also operates in plant roots. As the root
grows, cells containing auxin are displaced away from the tip, and the levels of auxin decline to
produce a gradient of activity (Mähönen et al. 2014). High levels of auxin in the root tip are main-
tained by a reflux loop in which PIN proteins transport auxin back towards the tip (Blilou et al.
2005, Galinha et al. 2007, Grieneisen et al. 2007).

Cellular Mechanisms of Morphogen Transport

Nondirectional morphogen transport can be described as a diffusion-like process, and it can be
modeled using a diffusion equation in which the diffusion coefficient (D) represents how fast
morphogen molecules move in the tissue (Wartlick et al. 2009). At the nanometer/millisecond
scale, the diffusion coefficient of molecules in liquids is well described by the Stokes-Einstein
equation (D = kBT

6πηr ), where kB is the Boltzmann constant. Thus,D depends on the temperature T,
the size of the diffusing molecule r, and the viscosity η of the environment. However, at the scale
of the tissue (micrometers to millimeters), morphogen movement is affected by multiple factors.
These include the tortuosity of extracellular space resulting from cell packing, the binding and
unbinding of morphogen to cell surface receptors and extracellular matrix (ECM) components,
and the trafficking of morphogens in to and out of cells (Figure 2b). The result is an effective
diffusion coefficient, reflecting all events that affect morphogen spreading (for a summary, see
Müller et al. 2013).

Different methods for measuring morphogen spreading, such as fluorescence correlation spec-
troscopy (FCS) and fluorescence recovery after photobleaching (FRAP), provide estimates at
different temporal and spatial scales (reviewed in Kicheva et al. 2012). The short length scales
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(femtoliter) and timescales (seconds) of FCS mean that it captures the local diffusivity of indi-
vidual molecules. By contrast, FRAP quantifies the movement of a population of morphogen
molecules across larger distances (micrometers) over longer timescales (minutes to hours). Be-
cause of their different length scales and timescales, FCS and FRAP often yield different estimates
of the diffusion coefficient and degradation rate. For instance, when measured with FRAP, the
diffusion coefficient of Bicoid (Bcd) was estimated as ∼0.3 µm2 s−1. This is an order of magni-
tude slower than a similarly sized molecule that diffuses freely in water (Gregor et al. 2007b).
In contrast, measurements using FCS (Abu-Arish et al. 2010) indicated that Bcd diffused at
5–10 µm2 s−1.

The interaction of morphogens with the complex environment of tissues creates pools of
molecules with different mobilities. Molecules that are bound to cell surface receptors, for ex-
ample, are temporarily immobilized. For FGF8 in the early zebrafish embryo, FCS indicated that
the majority of FGF8a molecules (92%) displayed fast movement with D = 56 µm2 s−1, while
a second population moved an order of magnitude slower, D = 4 µm2 s−1 (Harish et al. 2022).
Removing extracellular glycoproteins from the tissue decreased the amount of morphogens in
the slow-moving fraction and broadened the range of FGF8a activity. This supports the idea that
FGF8a spreads via diffusion through the extracellular space and is hindered by interactions with
glycoproteins. Fast- and slow-moving fractions of Bcd have also been observed in the cytoplasm
and nucleus of the Drosophila blastoderm (Athilingam et al. 2022). In the nucleus, the slow pool of
Bcd emerged due to DNA binding. In the cytoplasm, it is unclear what slows Bcdmovement—one
possibility could be interactions with cytoskeletal components. Below we discuss typical examples
of morphogen binding proteins that affect morphogen movement.

Morphogen binding proteins.Morphogens bind to receptors that slow morphogen movement
as they spread through tissue (for a review, see Stapornwongkul & Vincent 2021). For example, in
the early zebrafish embryo,monitoring individual morphogenmolecules in real time revealedmo-
bile and immobile fractions of TGFβ superfamily members Nodal and Lefty (Kuhn et al. 2022).
The diffusion coefficient of the mobile fractions was similar for Nodal and Lefty, consistent with
their similar size.However,Nodal ligands stayed bound to cell surfaces for tens of seconds,whereas
Lefty ligands had fewer and shorter binding events. The overexpression of the Nodal cell sur-
face receptor One Eyed Pinhead (OEP) increased the proportion of immobile Nodal molecules,
suggesting that OEP was partly responsible for hindering Nodal movement. This was further
confirmed by experiments that indicated that the range of endogenous Nodal signaling is set by
OEP (Lord et al. 2021). This suggests that the differential binding of Nodal and Lefty proteins
to extracellular binding partners alters their effective diffusivity and explains the shorter range of
Nodal activity compared to that of Lefty (Müller et al. 2012).

The expression of receptors can be controlled by morphogen signaling, introducing feedback.
This can profoundly affect the shape of morphogen gradients over time (Eldar et al. 2003). For
example, Hh signaling induces the expression of Hh receptors such as Ptch1. This results in in-
creased sequestration and degradation of the ligand. This mechanism dampens Hh signaling over
time and shortens its range ( Jeong &McMahon 2005), but it also increases the robustness to fluc-
tuations in morphogen production (Eldar et al. 2003). A similar effect was observed in a synthetic
system in which a gradient of Shh was reconstituted inNIH3T3 cells (Li et al. 2018). In contrast to
Hh, Dpp andWg in theDrosophila wing disc downregulate their receptor expression, and this has
been proposed to minimize sequestration near the morphogen source to allow increased diffusion
(Cadigan et al. 1998, Lander et al. 2009, Lecuit & Cohen 1998).

Besides high-affinity receptors, morphogens also bind with lower affinities to ECM compo-
nents. Transmembrane glycoproteins, particularly heparan sulfate proteoglycans (HSPGs), are
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central to morphogen transport in many tissues. They influence the spread of members of the
Wnt, BMP, Hh, and FGF families (Häcker et al. 1997, Haerry et al. 1997, The et al. 1999, Yayon
et al. 1991). Some HSPGs (e.g., perlecan and collagen XVIII) are secreted into the extracellular
space, whereas others are associated with the cell membrane either via a transmembrane domain
(syndecans) or via a glycosylphosphatidylinositol (GPI) anchor (glypicans) (Nakato & Li 2016).
The negatively charged glycosaminoglycan chains on HSPGs provide many low-affinity bind-
ing sites (Cardin &Weintraub 1989), which mediate transient interactions that slow the effective
morphogen diffusion.

How the combination of high-affinity signaling receptors and low-affinity nonsignaling mor-
phogen binding proteins contributes to shaping the gradients of morphogen signaling activity is
a key question. Beside altering the kinetics of movement, low-affinity interactions with HSPGs
can serve to internalize morphogens into the endocytic pathways (Romanova-Michaelides et al.
2022). HSPGs can also act as coreceptors to increase intracellular signaling either by form-
ing a stable complex between ligand, HSPG, and receptor, as is the case for FGF (Nugent &
Edelman 1992), or by increasing the local concentration of a ligand at the cell surface (Akiyama
et al. 2008). A recent study in which GFP was repurposed as a synthetic morphogen in Drosophila
wing discs showed that the binding affinity of surface proteins for themorphogen determined both
the total amount of morphogen accumulating in the tissue and the range of morphogen spread-
ing (Stapornwongkul et al. 2020). The higher the affinity of ligand binders, the less was lost from
the tissue but the shorter the range of the gradient. The relative importance of retaining versus
slowing morphogen molecules could explain the opposing roles ascribed to HSPGs in different
tissues. For example, HSPGs have been implicated in restricting the signaling range of BMPs in
vertebrate tissues (Hu et al. 2004, Ohkawara et al. 2002), but in Drosophila imaginal discs, HSPGs
appear to extend the signaling range of the BMP ortholog Dpp (Bornemann et al. 2004, Fujise
et al. 2003).

Morphogens also bind to secreted molecules. For instance, BMP binds to Chordin, which
blocks its interaction with the BMP receptor. The Chordin–BMP complex is thought to be highly
diffusible and is degraded by the extracellular protease Tolloid, allowing BMP to signal (Umulis
et al. 2009). This led to the idea that the movement of Chordin–BMP complexes results in the
shuttling of complexes to regions of Chordin degradation where BMP becomes immobile and sig-
naling can occur (Eldar et al. 2002). The shuttling of Dpp has been proposed to play a crucial role
in concentrating DPP into a peak at the dorsal midline of the Drosophila embryo (Shimmi et al.
2005). Similar mechanisms have been proposed for Chordin–BMP in frog (Ben-Zvi et al. 2008)
and zebrafish embryos (Pomreinke et al. 2017, Zinski et al. 2017). In zebrafish embryos, quantita-
tive imaging and mathematical modeling indicated that BMP and Chordin diffuse rapidly to form
extracellular protein gradients, as anticipated (Pomreinke et al. 2017, Zinski et al. 2017).However,
Chordin did not appear to change the diffusivity or spread of BMP. This ruled out a major con-
tribution for shuttling. Instead, the BMP gradient appears to form by a source-sink mechanism in
which BMP spreads by extracellular diffusion and is antagonized by Chordin, emanating from the
opposite side of the embryo, which functions as a sink. Consistent with this, a membrane-tethered
version of Chordin, unable to diffuse, is sufficient to substitute for wild-type Chordin (Tuazon
et al. 2020). Hence, despite the apparent equivalence of molecular components and organization,
similar systems can function in different ways in different tissues.

Intracellular trafficking. In addition to binding and unbinding to extracellular proteins, the
internalization of cell surface–bound morphogen influences morphogen movement. Morphogen
endocytosis is followed by intracellular trafficking, which may include degradation and recy-
cling of the morphogen. In the Drosophila wing disc, recycling of Dpp has been observed by
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photoconverting the intracellular fraction of morphogen and tracking its spread away from the
site of photoconversion (Romanova-Michaelides et al. 2022). In this system, the relative contri-
bution of recycling and extracellular diffusion to Dpp transport is determined by the expression
level of the extracellular molecule Pentagone, which modulates the binding of Dpp to surface
receptors and its extracellular diffusivity. Quantitative analysis of the distinct cellular processes
showed that the relative contribution of recycling increases over the course of development as
the wing disc grows (Romanova-Michaelides et al. 2022). This allows the Dpp gradient to expand
over time and scale with tissue size. Besides its implications for scaling, morphogen recycling
can create nonlinear dynamics in morphogen transport in certain regimes and could increase the
robustness of gradient formation (Bollenbach et al. 2007).

Cytonemes. Anothermechanism proposed to affectmorphogen spread involves specialized actin-
based filopodia termed cytonemes (Brunt et al. 2021, Du et al. 2018, Mattes et al. 2018, Patel
et al. 2022, Ramírez-Weber & Kornberg 1999, Sanders et al. 2013). Secreted morphogens and
components of their signaling pathways have been observed in cytonemes (Bischoff et al. 2013,
Mattes et al. 2018, Sanders et al. 2013, Stanganello et al. 2015), and cytoneme-mediated inter-
action between source and target cells has been suggested to allow the transfer of morphogens
through specific contacts termed morphogenetic synapses (Kornberg 2017). For example, in ze-
brafish embryos,Wnt8a has been observed on the tips of actin-based filopodia activating signaling
in adjacent cells (Stanganello et al. 2015). Cytoneme formation and morphogen signaling range
have been shown to decrease or increase in response to blocking or promoting actin cytoskeleton
activity, respectively (Bischoff et al. 2013, Roy et al. 2014, Stanganello et al. 2015). In this view,
cytonemes, similar to HSPGs, extend morphogen activity range. Moreover, live imaging of cy-
tonemes in Drosophila has revealed periods of extension and contraction. This has been suggested
to generate a distribution of cytoneme lengths that could underlie formation of an Hh concen-
tration gradient (Aguirre-Tamaral & Guerrero 2021, Bischoff et al. 2013). However, quantitative
data that address whether cytonemes can transport sufficient amounts of morphogen at sufficient
distances to generate the observed gradients are needed. More specific means to interfere with
cytoneme formation would also test the significance of cytonemes in morphogen gradient forma-
tion. Broadly blocking cytoskeletal activity is likely to have pleiotropic effects. Targeting reagents
to block cytoneme formation just in the appropriate region of a cell, perhaps using optogenetic
tools, would provide better functional assays.

Lipid-modified morphogens. Lipid-modified morphogens, such as Hh and Wnt family mem-
bers, require specific mechanisms that allow them to move through the aqueous extracellular
space. Hh proteins have been suggested to assemble into higher-order multimeric micelle struc-
tures with a lipophilic core secluded from the hydrophilic surface (Chen et al. 2004, Zeng et al.
2001). Alternatively, lipidated morphogens might insert their lipid moiety into the outer mem-
branes of exosomes or lipoprotein particles (Gross et al. 2012, Korkut et al. 2009, Liégeois et al.
2006, Matusek et al. 2014, Panáková et al. 2005, Vyas et al. 2014), which then allow these ligands
to be transported through tissues. It has, however, been difficult to establish the contribution
of these mechanisms to morphogen spread. The size of the proposed higher-order structures
would be expected to substantially reduce their diffusion. Visualizing and testing the role of these
complexes have been challenging. In the wing imaginal disc, imaging alleles ofWg tagged with dif-
ferent markers argued against the involvement of multiprotein complexes (McGough et al. 2020).
Further experiments, such as fluorescence cross-correlation spectroscopy to determine if two
molecules labeled with different fluorophores move together, are needed to determine whether
morphogen molecules move as complexes or as individual molecules.
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Specific chaperone proteins that facilitate morphogen spreading by shielding the lipid moi-
eties have also been identified. In Drosophila, Wnt family members are chaperoned by Secreted
Wingless-Interacting Molecule (SWIM) and Carrier of Wingless (Cow), while Wnt inhibitory
factor (WIF) and Afamin have been identified in vertebrates (Chang & Sun 2014, Hsieh et al.
1999, Leyns et al. 1997, Mihara et al. 2016, Mulligan et al. 2012). HSPGs also appear to con-
tribute to lipid shielding. The GPI anchor of HSPGs, such as Dlp, retains Wnt family members
within the tissue but allows diffusion along the cell membrane. This assists Wnt spreading and
interaction with signaling receptors (McGough et al. 2020). For Hh family members, Shifted has
been identified inDrosophila (Gorfinkiel et al. 2005). In vertebrates, the spread of Shh requires two
solubilizing factors: the membrane protein Dispatched1 (Disp1) (Burke et al. 1999, Caspary et al.
2002, Kawakami et al. 2002, Ma et al. 2002), which promotes the release of lipidated Shh from
producing cells, and Scube2 (Hollway et al. 2006, Kawakami et al. 2005, Woods & Talbot 2005),
which chaperones Shh after release by shielding the lipid adducts (Tukachinsky et al. 2012). Shh
bound to Scube2 is unable to signal. A mechanism involving the cell surface proteins Cdon, Boc,
and Gas1 is responsible for dissociating Shh from Scube2 and transferring the ligand to Ptch1,
which initiates signaling (Wierbowski et al. 2020).

Effects of tissue growth on gradient formation.Tissue growth or morphogenesis can af-
fect morphogen transport by displacing cells, and consequently the morphogen molecules they
contain,with respect to themorphogen source.This is known as advection. Furthermore, cell pro-
liferation leads to a dilution of the morphogen molecules. Advection and dilution occur alongside
other mechanisms that shape morphogen gradient profiles, and therefore, biophysical descrip-
tions of morphogen gradient formation in growing tissues take these effects explicitly into account
(Averbukh et al. 2014, Bittig et al. 2009, Fried & Iber 2014, Fulton et al. 2022). The contribution
of advection and diffusion to gradient formation depends on the rates of growth and kinetic pa-
rameters of morphogen transport andmay change over developmental time. For instance, a model
capturing cell movements during zebrafish epiboly suggests that advection is likely to have a sig-
nificant contribution to BMP gradient formation after 50% epiboly (Li et al. 2022). Similarly, the
motility and rearrangement of cells in the presomitic mesoderm have been suggested to influence
the dynamics of FGF and Wnt signaling in individual cells and thereby the pattern of differen-
tiation (Fulton et al. 2021, 2022). Tissue morphogenesis may result in specific tissue architecture
that influences morphogen spread, for instance, by confiningmorphogenmolecules within a given
space. An example of this has been reported in the developing vertebrate intestine, where Shh is
uniformly expressed in the endoderm but the curved villus tip is proposed to increase the local
Shh concentration close to the tip (Shyer et al. 2015).

Regulation of Morphogen Degradation

The degradation rate of morphogens has a critical influence on the timescale of morphogen gra-
dient formation, as well as on the shape of the gradient (Berezhkovskii et al. 2010, Wartlick et al.
2009). In the SDD model, a spatially uniform degradation rate yields a steady-state exponential
gradient (Gregor et al. 2007b, Kicheva et al. 2007). Yet, studies in several systems reveal that the
degradation rate is often regulated and can vary in both space and time. For instance, the degra-
dation rate of Bcd in the Drosophila embryo has been shown to be high (∼25 min) at a specific
point of blastoderm development [nuclear cycle (NC) 14], and this is essential for the gradient
shape (Durrieu et al. 2018, Little et al. 2011). However, the shape of the Bcd gradient changes
dramatically over time: From NC 10 to 13, Bcd levels increase early on; they then decline at NC
13–14 (Bergmann et al. 2007, Gregor et al. 2007b, Little et al. 2011). A tandem fluorescent timer
variant of Bcd, in which the difference in the maturation rate between two fluorophores fused
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to Bcd acts as a protein age sensor, revealed that the production rate decreased and degradation
rates increased after NC 13, which could explain the observed dynamics in Bcd levels (Durrieu
et al. 2018). This is in line with previous results in which the Bcd degradation rate was shown
to substantially increase from NC 14 onwards (Drocco et al. 2011). A consequence is that pat-
tern formation in the blastoderm occurs when the Bcd gradient is not in steady state (Bergmann
et al. 2007). Such a mechanism can reduce patterning errors caused by fluctuations in the rate of
morphogen production.

Temporal changes in morphogen degradation rates have also been observed for Dpp in the
fly wing disc (Romanova-Michaelides et al. 2022,Wartlick et al. 2011). The changes in the effec-
tive Dpp degradation over time account for the observed temporal changes in the gradient decay
length and amplitude. This allows the gradient to scale to the growing area of the tissue (Wartlick
et al. 2011).

Feedback through the morphogen regulation of receptor expression can result in position-
dependent internalization and degradation rates. This type of mechanism (self-enhanced ligand
degradation) is predicted to result in the formation of a gradient that follows a power law rather
than an exponential shape (Bollenbach et al. 2005, Eldar et al. 2003, Li et al. 2018), and this has
useful properties that would be expected to increase the robustness of the morphogen gradient
shape to fluctuations in morphogen production. Testing these predictions experimentally remains
challenging, in part because high-resolution imaging with low levels of experimental variabil-
ity is necessary to confidently distinguish between a power-law and exponential distribution of a
morphogen ligand.

SCALING MORPHOGEN GRADIENTS

Patterning mechanisms need to be sufficiently robust to differences in tissue size between in-
dividuals. One possibility for how pattern scaling could be achieved is by scaling the morphogen
gradient itself (Figure 3). Implicit in this idea is the assumption that target gene expression bound-
aries are positioned at constant thresholds of morphogen concentration. Thus, scaling would
require the positions of the concentration thresholds to scale with the tissue size. For an exponen-
tial gradient, scaling the decay length to tissue size while maintaining a constant amplitude would
result in perfect scaling of the concentration thresholds (Figure 3a). In several cases where scaling
has been studied, however, it appears that the amplitude of the morphogen gradient changes. This
would result in deviations from perfect scaling that vary in magnitude depending on the position
within the tissue (Figure 3b) (Umulis & Othmer 2013). Nevertheless, mechanisms in which the
amplitude changes may still produce nearly perfect scaling throughout much of the tissue. For in-
stance, the amplitude of Bcd inDrosophila eggs with different volumes scales with egg size, resulting
in scaling of the Bcd gradient throughout broad regions of the embryo (Cheung et al. 2011).

In contrast to intraspecies scaling, scaling of the Bcd gradient between different dipteran
species has been attributed to changes in the decay length, rather than amplitude (Gregor et al.
2005). Because the decay length of an exponential gradient depends on the effective diffusion
coefficient and degradation rate, scaling implies that these parameters change in a way that is de-
pendent on the tissue size (for a review, see Čapek & Müller 2019). A way of achieving this is
via an accessory molecule that modulates morphogen diffusion or degradation and is itself highly
diffusive, so that its concentration rapidly adjusts to tissue size (Rasolonjanahary & Vasiev 2016).
A potential weakness of such a mechanism is that it is sensitive to fluctuations in the production
of the accessory molecule, which would decrease the accuracy of scaling.

Coupling morphogen signaling to the regulation of an accessory molecule via a feedback loop
provides a way to adjust morphogen spread to tissue size dynamically. The expansion-repression
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Figure 3

Morphogen gradient scaling and its relationship to pattern scaling. An exponential morphogen gradient in
tissues with three different sizes is shown. Left panels show morphogen concentration as a function of the
absolute distance x from the source boundary; right panels show x relative to the tissue size L (insets show the
morphogen concentration on a log scale). The color bars on the right show three gene expression domains
with boundaries positioned at constant morphogen concentration thresholds. (a) The decay length λ is
proportional to tissue size, while the amplitude C0 stays constant (left). In this case, the pattern scales
perfectly with tissue size. (b) C0 is proportional to L, and λ is constant. The blue domain boundary occurs
always at a similar relative position, while the red domain boundary position varies significantly with tissue
size. (c) Both λ and C0 scale with L. In this case, boundary positions vary with tissue size across the entire
tissue. Abbreviations: L, large; M, medium; S, small.
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mechanism (Ben-Zvi & Barkai 2010) exemplifies this. In this mechanism, a morphogen represses
the expression of a secreted expander molecule. The expander in turn facilitates the spread of the
morphogen by, for example, reducing its trapping or degradation. This sets up a feedback loop in
which the expander promotes morphogen spread. The spread of the morphogen then shuts off
expander production, leading to a decrease in morphogen spread. For Dpp in the Drosophila wing
disc, Pentagone has been shown to support scaling of Dpp signaling in a manner consistent with
an expander mechanism (Ben-Zvi et al. 2011, Hamaratoglu et al. 2011, Vuilleumier et al. 2010).
Molecularly, Pentagone has been proposed to function by modifying the binding of Dpp to the
ECM and cell surface receptors to increase the amount of Dpp being recycled and thus extend the
range of Dpp (Romanova-Michaelides et al. 2022). However, other mechanisms have also been
proposed to contribute to Dpp scaling in the wing disc, including Dpp-mediated downregulation
of its receptors, which extends the gradient range (Zhu et al. 2020), as well as the contribution of
cell death to correcting the mismatch between the gradient range and tissue size (Merino et al.
2022). Expansion-repression mechanisms have also been proposed to scale morphogen gradients
in vertebrate systems, for instance, the BMP gradient in the pectoral fin (Mateus et al. 2020) as well
as the Shh gradient in the ventral neural tube (Collins et al. 2018). Scube2 promotes Shh spread
by shielding its lipid moieties, but Shh signaling represses Scube2 expression, thereby establishing
an expansion-repression feedback loop.

An equivalent contraction-induction mechanism, in which a contractor molecule is activated
by the morphogen and decreases morphogen spread, also provides a way to scale a morphogen
gradient.WntD, a secreted protein induced by Toll-dependent signaling during dorsoventral pat-
terning of the Drosophila embryo, appears to act as a contractor as it binds to and inhibits the Toll
receptor (Rahimi et al. 2020). A related mechanism has been proposed to scale Nodal-dependent
endoderm and mesoderm induction in zebrafish (Almuedo-Castillo et al. 2018). The Nodal sig-
naling gradient is controlled by the inhibitor Lefty, which is itself induced by Nodal signaling.
Because of the high diffusivity of Lefty, its concentration is lower in larger embryos, which allows
the range of Nodal activity to increase. Although this appears to correspond to the contraction-
inductionmechanism, theoretical and experimental decoupling of the induction of Lefty byNodal
indicated that direct regulation of Lefty by Nodal was not necessary for scaling, suggesting that
the system represents a simpler example of control by an accessory molecule (Almuedo-Castillo
et al. 2018).

To fully understand the relevance and consequences of morphogen gradient scaling, the mech-
anism of morphogen interpretation also needs to be considered. For instance, if the temporal
dynamics of morphogen signaling are important, then a constant gradient amplitude may not be
necessary (and might be inconsistent) with scaling. In the case of Dpp, temporal changes in signal-
ing have been proposed to regulate the rate of proliferation in the Drosophila wing disc (Wartlick
et al. 2011). In this scenario, the scaling of both the amplitude and decay length of the gradient
is important for a spatially uniform proliferation rate. This requires feedback between gradient
formation and tissue growth—the gradient amplitude and decay length change with tissue size
and at the same time drive tissue growth. The scaling behavior introduced by such feedback de-
pends on the coupling strength between the change in morphogen levels and the division rate
(Aguilar-Hidalgo et al. 2018, Averbukh et al. 2014).

The mechanism of morphogen interpretation may also be sensitive to tissue size. For instance,
the expression levels of gap genes at the mid-embryo appear to be size dependent (Wu et al. 2015).
This emphasizes the importance of considering the interpretation mechanism in understanding
how patterns scale between individuals.Given the complexity ofmechanisms that are being uncov-
ered, this is an important future research direction. The mechanisms that are emerging begin to
explain the function of some of the molecules implicated in the control of morphogen spread and
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suggest why complexities in the transport mechanisms have evolved. Studies of morphogen scaling
thus increasingly emphasize the importance of quantitative data and rigorous theoretical analysis.

MORPHOGEN RECEPTION AND TRANSDUCTION

In a few cases, such as Bcd in Drosophila (Driever & Nüsslein-Volhard 1988) and retinoic acid in
vertebrate tissues (Bernheim & Meilhac 2020), the morphogen is intracellular and directly regu-
lates gene expression.However, inmost cases,morphogen ligands initiate an intracellular signaling
cascade by binding to cell surface receptors, which culminates in the regulation of transcription
effectors mediating gene expression. A frequent assumption is that morphogen concentration is
proportional to the level of intracellular signaling activity. This appears to be the case for some
morphogens. A threefold difference in the number of activated Activin receptors results in a
threefold difference in the amount of the transcription effector Smad2 in the nucleus in Xenopus
blastula cells (Shimizu &Gurdon 1999). Likewise, in the wing disc, a gradient of Dpp is converted
into a similarly shaped gradient of phosphorylated Mad effector in the nuclei of responding cells
(Bollenbach et al. 2008).However, such linear or monotonic relationships are not always observed.
A striking example can be seen in vertebrate somitogenesis, where an Fgf gradient generates an
oscillatory gradient of ppErk by interacting with an oscillator comprising the Her1–Her7 tran-
scription factors during the periodic formation of segments (Simsek et al. 2023). This raises
questions about how the mechanism of signal transduction contributes to the interpretation of
morphogen signaling.

In some cases, signal transduction mechanisms can introduce temporal delays. The transcrip-
tional effectors of the Wnt and Hh pathways are irreversibly proteolyzed in the absence of a
signal (Barolo & Posakony 2002). Pathway activation depends on the de novo synthesis of new
full-length transcriptional effectors and the degradation of previously formed repressors. This
results in a delay between changes in ligand levels and downstream transcriptional output. Simi-
larly, the retention of ligand-receptor complexes in endosomes can sustain signaling for extended
periods of time (Bökel et al. 2006, Jullien & Gurdon 2005). A consequence of these mechanisms
is that transient fluctuations in external ligand concentration are buffered and averaged out.

Signal transduction pathways can also introduce nonlinear signal amplification. For example,
the cascade of MAP kinases activated by several tyrosine kinase receptors, including EGF, can am-
plify a signal, creating a threshold-like response (Huang & Ferrell 1996). This results in ultrasen-
sitivity in which a small change in the input creates an all-or-none change in the output. This has
been implicated in converting a graded input from the EGF ligand Sptiz in the Drosophila epider-
mis into a sharp on/off output in the downstream transcriptional effector Yan (Melen et al. 2005).

Conversely, in many signaling pathways, inhibitors of signaling are induced by pathway activa-
tion (e.g., Ptch1 forHh signaling,Axin2 andNotum forWnt signaling, Sprouty for FGF signaling,
and Smad6 and -7 for TGFβ signaling). This introduces negative feedback and leads to pathway
adaptation in which the intracellular signaling in cells exposed to constant amounts of morphogen
gradually decreases. For instance, Shh signaling initiates negative feedback by inducing the expres-
sion of Ptch1 and Hhip1, which sequester and inhibit Shh activity (Briscoe et al. 2001, Jeong &
McMahon 2005), and by downregulating Shh coreceptors Gas1, Boc, and Cdon (Allen et al. 2007,
Tenzen et al. 2006). In the neural tube, cells are initially sensitive to Shh, which allows low Shh
concentrations to activate gene expression, including the negative feedback components. As nega-
tive feedback increases, higher levels of Shh ligand are necessary to sustain intracellular signaling.
Consequently, cells close to the source of Shh, which are exposed to higher ligand concentra-
tions, signal for longer than those further away that are exposed to lower ligand concentrations.
TGFβ signaling, in an in vitro model of human germ layer specification, also appears to undergo
adaptation (Sorre et al. 2014, Warmflash et al. 2012).
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Signal adaptation provides a mechanism to convert morphogen concentration into a duration
of signaling. For both Shh and TGFβ signaling, signal duration is important for cell fate decisions.
For Shh signaling, ex vivo assays indicated a role for temporal integration with the cell types
associated with higher levels of Shh morphogens requiring longer durations of signaling (Dessaud
et al. 2007, 2010). In zebrafish embryos, the timed inhibition of Nodal signaling indicated that cell
fate specification also depended on the duration of exposure to Nodal ligands (Hagos & Dougan
2007).Moreover, the use of photoactivatable Nodal receptors revealed that the duration of Nodal
signaling in embryos determined the cell fate outcomes with longer durations of signaling favoring
the induction of prechordal plate mesoderm over endodermal tissue (Sako et al. 2016).

The importance of signaling duration is a widespread feature of morphogen interpretation.
Assays using an optogenetically controlled Bcd protein revealed that cells exposed to the highest
Bcd concentration require Bcd for the longest duration (Huang et al. 2017). The duration of
BMP signaling has also been implicated in controlling whether differentiating human embryonic
stem cells remain pluripotent or adopt mesodermal or extraembryonic fates (Camacho-Aguilar
et al. 2022). Temporal integration is not observed in all situations, however. By analyzing the
effect of changing the dynamics of signaling in mutant zebrafish embryos, the duration of BMP
signaling and the slope of the gradient were ruled out as determining the differential response of
target genes (Greenfeld et al. 2021). Instead, target genes responded to distinct levels of the BMP
transcriptional effector to establish the spatial pattern of gene expression.

Signal transduction and interpretation may also provide a mechanism to sense the fold change
in ligand concentration over time (Adler & Alon 2018). In theDrosophila wing disc, the amplitude
and decay length of the Dpp gradient increase over time and lead to an increase in signaling.
Cell division occurs when Dpp signaling levels in cells have increased by 50%. This suggests
that cells use the temporal fold change in morphogen signaling levels to control tissue growth
(Wartlick et al. 2011). Sensing of fold change in ligand concentrations has also been reported for
Wnt (Goentoro & Kirschner 2009), EGF (Cohen-Saidon et al. 2009), and Nodal (Liu et al. 2022).
In the case of Nodal, only rapid increases in Nodal levels efficiently induced Bra expression and
mesoderm differentiation in an in vitro model of human gastrulation, whereas slow increases in
Nodal were inefficient in eliciting a response (Sorre et al. 2014). In vivo,Nodal appears to increase
rapidly andmanipulation of the level ofNodal signaling suggested concentration effects (Gritsman
et al. 2000), but whether the rate of change of Nodal is spatially uniform in vivo and whether this
could be used directly to define the boundaries of gene expression domains are unclear.

Taken together, these studies are refining our view of how morphogens impart positional in-
formation and control gene expression. Although there are examples where the concentration of
extracellular morphogens is transduced downstream in a relatively linear fashion, this is not al-
ways the case. Signaling pathways often introduce nonlinearities in the dynamics of the response.
In some cases, the temporal features introduced by the signalingmechanism appear to be exploited
by responding cells. Moreover, the mechanism by which a specific morphogen is interpreted can
differ between tissues and species.

MORPHOGEN-DEPENDENT GENE REGULATION

How do developing tissues convert morphogen signaling into spatially discrete domains of
gene expression? Addressing this question requires an understanding of the mechanisms by
which target gene expression is regulated. Much of this regulation occurs at the level of the cis
regulatory elements (CREs), also known as enhancers. Several aspects of this regulation have
been investigated: the properties of binding sites for morphogen effectors, the combinatorial
activity of morphogen effectors and other factors bound to the CREs, and cross-interactions
between morphogen target genes.
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A straightforward mechanism that could result in distinct target gene expression domains is
for CREs to harbor different numbers or affinities of binding sites for the morphogen transcrip-
tional effector. In this way, targets with fewer or lower affinity sites would require higher levels of
morphogen signaling, and consequently, their expression would be restricted to regions close to
the morphogen source. However, although CRE affinity can influence sensitivity to morphogen
(Driever et al. 1989, Jiang & Levine 1993,Wharton et al. 2004), it does not appear to be the case
in general, as multiple studies have failed to find a correlation between the strength of morphogen
effector binding and activity (Ochoa-Espinosa et al. 2005, Oosterveen et al. 2012, Peterson et al.
2012). Moreover, several morphogen effectors (e.g., in the Wnt and Hh pathways) are bifunc-
tional, acting as repressors in the absence of a signal and as activators in the presence of a signal
(Barolo & Posakony 2002). Since both isoforms bind the same CREs, the affinity or number of
binding sites affects both activator and repressor binding equally.

For Bcd, more than 60 CREs have been identified (Chen et al. 2012). These do not show
a correlation between Bcd binding site number, or affinity, and their responsiveness. Instead, the
binding of other transcription factors, including ubiquitously expressed factors, plays an important
role in establishing the differential response of different CREs. For instance, the transcription
factor Zelda is broadly distributed in the blastoderm. It binds to the CREs of many Bcd targets
where it acts as a pioneer factor to potentiate the ability of Bcd to activate gene expression (Foo
et al. 2014,Harrison et al. 2011).Moreover, Zelda is found in so-called nuclear hubs together with
Bcd (Mir et al. 2018), and it has been suggested to contribute to reducing the time required for
Bcd to activate target genes (Fernandes et al. 2022).

Zelda also interacts with targets of Dorsal, the morphogen effector that patterns the dorsal
ventral axis of the blastoderm and is proposed to play a similar role (Li &Eisen 2018). In the neural
tube, members of the SoxB1 family of transcription factors (Sox1–3) appear to play a similar role
to Zelda. SoxB1 factors are expressed in all neural progenitors, bind to Shh-responsive CREs, and
appear to facilitate the Shh responsiveness of these CREs (Bergsland et al. 2011,Cohen et al. 2014,
Oosterveen et al. 2012, Peterson et al. 2012). These examples illustrate how the responsiveness of
a morphogen target gene can be modified independent from the simple binding affinity of CREs
for the morphogen effector itself (Kanodia et al. 2012).

Besides uniformly expressed regulators, other inputs into morphogen-regulated CREs also
play an important role. These include transcriptional activators and inhibitors that are themselves
morphogen target genes. An example of this is the Bcd target gene Hunchback (Hb). A CRE that
regulates Hb depends on binding by Bcd and Zelda and the repressors Runt and Capicua (Chen
et al. 2012), but in addition it also binds Hb itself (Fernandes et al. 2022). In this view,morphogen-
responsive CREs act to integrate the different inputs to regulate gene expression. Since different
CREs bind to different combinations of inputs, there is no consistent correlation between the
binding affinity of the morphogen effector and the sensitivity of a specific target gene. For each
gene it is the combination of positive and negative inputs that determines how the associated gene
responds, and these inputs can affect the threshold sensitivity of a gene to morphogen input or
properties such as the kinetics of gene induction (Dubrulle et al. 2015).Thus,CREs are responsible
for the molecular implementation of the combinatorial logic of transcriptional regulation.

GENE REGULATORY NETWORKS IN MORPHOGEN
INTERPRETATION

The transcriptional networks that result from the regulation of morphogen target genes by other
morphogen target genes play a central role in spatial and temporal patterning (Davidson 2010).
Even relatively simple transcriptional networks can produce complex gene expression dynamics
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Figure 4

The positions of target gene boundaries are determined by the dynamics of morphogen-regulated GRNs.
(a) In the vertebrate neural tube, a GRN sets up three ventral domains of gene expression (Nkx2.2, Olig2,
and Pax6) in response to Shh signaling (top). In Pax6 mutants (bottom), the domains of Nkx2.2 and Olig2
expression shift along the dorsal-ventral axis compared to WT (middle), although the Shh morphogen
gradient remains unchanged. (b) A GRN that sets up the boundaries of gap gene expression in the Drosophila
embryo in response to Bcd and Cad gradients (top). Strong repressive interactions are shown in black and
weak ones in gray. In zygotic hunchback mutants (bottom), the anterior domains of Gt, Kr, and Kni
expression shift compared to WT (middle), although the Bcd gradient remains unchanged. Abbreviations:
GRNs, gene regulatory networks; WT, wild type. Figure based on Jaeger (2011).

(Alon 2007). In silico studies of such small transcriptional subnetworks, comprising as few as two
or three transcription factors, have identified several ways to generate morphogen-like spatial
patterns (Cotterell & Sharpe 2010, Perez-Carrasco et al. 2018, Schaerli et al. 2014).The principles
emerging from these studies are also observed in experimental analyses of real tissues.

Perhaps the two most studied examples of morphogen-regulated transcriptional networks are
the anterior-posterior patterning of the Drosophila blastoderm and dorsal-ventral patterning of
the neural tube. In both systems, networks of mutually inhibitory transcription factors expressed
in neighboring domains create a series of bistable switches (Briscoe et al. 2000, Clyde et al. 2003,
Ericson et al. 1997,Kraut&Levine 1991) (Figure 4).These allow cells to convert the graded input
into a sharply delineated output to establish and stabilize all-or-nothing gene expression bound-
aries between cells with distinct regional identities. These transcriptional interactions influence
the sensitivity of target genes to the morphogen and the position of gene expression boundaries.
In the neural tube, the transcription factor Nkx2.2 is expressed in a region with high levels of
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Shh signaling, adjacent to cells expressing another transcription factor, Pax6. In embryos lack-
ing Pax6, Nkx2.2 is induced by lower levels of Shh and its expression expands, indicating that
Pax6 represses Nkx2.2 and sets the boundary of Nkx2.2 expression (Balaskas et al. 2012, Ericson
et al. 1997) (Figure 4a). Similarly, in the Drosophila blastoderm, Hb restricts the expression of
the transcription factor Knirps (Kni) (Clyde et al. 2003, Pankratz et al. 1992, Yu & Small 2008)
(Figure 4b). In mutants lacking Hb, Kni expression expands anteriorly into regions that have
levels of Bcd that normally repress its expression ( Jaeger 2011). These examples illustrate how
transcriptional networks are crucial for morphogen interpretation, decoupling the absolute level
of morphogen signaling from the positional identity adopted by cells.

The use of mathematical models, based on experimental data, has offered further insight
into how the architecture and dynamics of transcriptional networks interpret morphogen gra-
dients. In the Drosophila blastoderm, this analysis indicated that asymmetry in the strength of
cross-repression between transcription factors expressed in adjacent regions leads to a cascade of
feedback that sharpens and shifts the gene expression pattern relative to the Bcd gradient as de-
velopment proceeds ( Jaeger et al. 2004, Manu et al. 2009, Verd et al. 2018). In the neural tube,
a transcriptional circuit comprising Shh-regulated transcription factors (the ACDC circuit) has
been explored (Balaskas et al. 2012, Cohen et al. 2014, Panovska-Griffiths et al. 2013). In this case
too, the cross-repressive interactions between the transcription factors play a central role in posi-
tioning the boundaries of gene expression in the tissue and account for the temporal sequence of
gene expression observed in neural progenitors.

The neural tube gene regulatory network explains several additional features of patterning
(Balaskas et al. 2012). Adaptation to Shh signaling in the neural tube generates a gradient of signal-
ing levels that declines over time. The expression of downstream transcription factors is initiated
at the early stages of neural tube development in a manner that depends on the levels of signaling.
However, target gene expression boundaries do not correspond to constant signaling thresholds
over time. This is because the initial state of the transcriptional network influences its subsequent
dynamics: In this case, by initially triggering the repression of repressors, target genes are main-
tained in an active state. This effect is time dependent—signaling levels need to be maintained for
long enough for repression to take effect. This explains both why the levels and duration of signal-
ing matter for Shh-mediated patterning in the neural tube and why target genes are expressed in
a temporal, not just spatial, order. Taken together, therefore, the Shh morphogen-controlled gene
regulatory network is responsible for converting the continuous graded morphogen input into
sharply delineated boundaries of gene expression, positioning these boundaries within the tissue,
and integrating both the amount and duration of morphogen signaling into gene expression.

Three principles emerge (Briscoe & Small 2015). First, the morphogen provides a spatial
cue to the tissue but does not determine positional identity alone. The level and duration of
morphogen signaling are important, but these act together with tissue-specific transcription
factors. Second, CREs associated with target genes integrate various inputs to control gene
expression. Hence, CREs encode the logic of the gene regulatory network and set the activity
of each gene. Third, the dynamics of the transcriptional network is responsible for generating
sharp and stable patterns of genes and for correctly positioning the boundaries of gene expression
within the tissue. In this view, the morphogen gradient provides the spatially polarized input
into the system, but it is the downstream transcriptional network that interprets the gradient and
establishes the patterning outcome.

One consequence of this view is that new analytical frameworks are needed to investigate the
behavior of morphogen patterned systems. Most current modeling approaches consider mor-
phogen gradient formation, signaling, and cellular response as separate constituents. This can
mean that the function of the transcriptional network is treated as subordinate to the morphogen
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instead of as an integral part of the system. One approach is to combine tools from dynamical
systems (Sáez et al. 2022) and control theory (Pezzotta & Briscoe 2022), which can accommodate
morphogen spread, signaling, and response on an equal footing to develop analytical methods to
dissect and understand the contribution of different parts of the system to the overall behavior.
This could complement current methods aimed at explaining gene regulation by making mor-
phogen gradient formation, cellular signaling, and transcription network integrated parts of a
whole decision-making system.

PRECISION OF PATTERN FORMATION

Although molecular noise is a universal feature of biological processes (Raj & van Oudenaarden
2008, Raser & O’Shea 2005), morphogen-mediated patterning is remarkably reproducible and
precise.For instance, along the anterior-posterior axis of theDrosophila blastoderm, the boundaries
of gene expression are strikingly sharp and positioned with an accuracy of 99% or more (Petkova
et al. 2019). This raises the question of how the precision of pattern formation is achieved.

A first step in addressing this question is to ask whether the morphogen gradient itself is
sufficiently accurate to encode precise positional information for the generation of downstream
patterning. This usually assumes direct information flow from extracellular morphogen to target
gene expression and involves comparing the variation in morphogen concentration to the vari-
ation in gene expression at a particular position at a given time point (Tkačik & Gregor 2021).
Spatiotemporal variability inmorphogen production, spreading, and degradation gives rise to fluc-
tuations in the morphogen concentration profiles between individuals. The specific mechanism
and kinetics of morphogen gradient formation define the spatial profile of gradient imprecision.
Typically, the uncertainty increases at large distances from the morphogen source and may be
lowest at a specific set distance away from the source (Bollenbach et al. 2008). At the position of
highest precision, morphogen gradients are generally found to be very precise, with positional
uncertainty corresponding to less than three cell diameters (Bollenbach et al. 2008, Gregor et al.
2007a, Zagorski et al. 2017). The specific mechanism of gradient formation also determines the
robustness of the mean morphogen concentration profile to fluctuations in the morphogen pro-
duction rate. Mechanisms of gradient formation that maximize the gradient precision are not
necessarily optimal for achieving robustness. Theoretical studies have suggested that complex
pathway architecture (e.g., involving feedback on receptor production) could contribute to alle-
viating this trade-off and extend the range over which morphogen gradients can confer precise
positional information, while at the same time being robust to fluctuations (Lo et al. 2015).

Additional patterning cues that provide independent input into target gene expression can
also contribute to precision. The Bcd gradient is complemented by an antiparallel gradient con-
sisting of the transcription factor Caudal from the posterior pole of the embryo (Macdonald &
Struhl 1986,Mlodzik &Gehring 1987). Similarly, in the neural tube, the ventral gradient of Shh is
matched by an antiparallel BMP signaling gradient from the dorsal neural tube (Barth et al. 1999,
Mizutani et al. 2006, Zagorski et al. 2017). Theoretical analyses indicate that using information
from antiparallel gradients can increase precision (Morishita & Iwasa 2009).One way that this can
be achieved is through the downstream transcription network opposing gradients that induce the
expression of opposing mutually repressing transcription factors (Manu et al. 2009, Sokolowski
et al. 2012, Zagorski et al. 2017).

Features of the morphogen gene regulatory network can contribute to the precision of its
patterning in various ways (Perez-Carrasco et al. 2016). For instance, having multiple redundant
CREs for the same gene (so-called shadow enhancers) or having multiple alleles of the gene can
help reduce randomness and increase the precision of gene expression (Cannavò et al. 2016, Perry
et al. 2011). Additionally, the behavior of the gene regulatory network itself can impact gene
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expression accuracy. One well-studied example is Hb, which responds rapidly to form a sharp and
precise boundary in the Drosophila blastoderm at a specific concentration of Bcd (Gregor et al.
2007a). This accuracy is achieved in part because Zelda and Hb also regulate Hb transcription
and function with Bcd to ensure timely and precise expression (Fernandes et al. 2022). Similarly,
deletion of a CRE in the neural tube regulatory network suggests the way in which the dynamics
of gene expression produced by the gene regulatory network minimizes the effects of random
fluctuations and contributes to the precision of gene expression (Exelby et al. 2021).

Finally, mechanisms downstream of the initial morphogen patterning, including differential
adhesion, mechanical differences, and juxtacrine signaling, have been identified that correct er-
rors and increase precision. Differential cell adhesion between cells with different identities can
refine initially disordered patterns through cell sorting (Tsai et al. 2020, Xiong et al. 2013). Sim-
ilarly, differences in Hedgehog signal transduction between cells in the anterior and posterior
compartments of the fly wing disc contribute to the straightness of this boundary (Rudolf et al.
2015). By increasing the mechanical tension specifically at junctions of cells located between the
anterior and posterior interface, cellular rearrangements that would result in cells intruding across
the boundary are precluded, thus keeping the boundary straight.

MORPHOGENS AND THE REGULATION OF TISSUE GROWTH
AND MORPHOGENESIS

Although their role in tissue patterning is extensively studied, morphogens also play a crucial role
in cell survival and tissue growth in various tissues. In the developing limb bud, Shh has been
shown to control both the proliferation and survival of mesenchyme cells (Zhu et al. 2008). Sim-
ilarly, in the neural tube, Shh is necessary for cell survival and the formation of the correct tissue
size (Chiang et al. 1996). In the Drosophila wing and eye discs, Dpp regulates tissue growth by
adjusting the proliferation rate (Wartlick et al. 2011, 2014; Zecca et al. 1995). Several mechanisms
have been suggested to explain this, including a mechanism in which Dpp levels need to be main-
tained above a threshold to inhibit the expression of the repressor Brinker (Barrio & Milán 2020,
Bosch et al. 2017). Other studies indicate that cell division depends on the temporal changes in
Dpp levels (Wartlick et al. 2011). Because the Dpp gradient scales with tissue size, the relative
changes in signaling are uniform in space, translating the Dpp gradient into a spatially uniform
proliferation rate. Nevertheless, Dpp expression outside of the stripe of producing cells along the
anterior-posterior compartment boundary may be relevant for wing disc growth in some areas
of the wing after a given developmental time point (Matsuda et al. 2021). Furthermore, Dpp is
not the only signal that promotes growth in the wing disc. For instance, ecdysone signaling has
been shown to be necessary for imaginal discs to respond to morphogens (Parker & Struhl 2020).
These studies highlight the complexities of growth regulation and the challenge of determining
the precise mechanism by which morphogens control growth. Progress will require methods to
precisely modulate and measure signaling in space and time.

Morphogen signaling has also been shown to regulate cell behaviors that affect tissue mor-
phogenesis. Some studies indicate that such roles for morphogen signaling are independent of
cell identities. For example, in the zebrafish embryo, Nodal signaling specifies mesendoderm cell
identities before the initiation of gastrulation movements (Hagos & Dougan 2007), while during
gastrulationNodal regulates the extent of protrusion formation and adhesiveness ofmesendoderm
cells (Pinheiro et al. 2022). This leads to the specification of a fraction of highly motile leader cells
that can internalize beneath the ectodermal layer, pulling the remaining follower cells. Preferen-
tial adhesion between leaders and their followers ensures the orderly internalization of cells. FGF
signaling gradients in the developing anterior-posterior body axis have also been linked to tissue

110 Kicheva • Briscoe

A
nn

u.
 R

ev
. C

el
l D

ev
. B

io
l. 

20
23

.3
9:

91
-1

21
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.a
nn

ua
lr

ev
ie

w
s.

or
g

 A
cc

es
s 

pr
ov

id
ed

 b
y 

In
st

itu
te

 o
f 

Sc
ie

nc
e 

an
d 

T
ec

hn
ol

og
y 

A
us

tr
ia

 o
n 

11
/0

6/
23

. S
ee

 c
op

yr
ig

ht
 f

or
 a

pp
ro

ve
d 

us
e.

 



CB39CH05_Briscoe ARjats.cls September 26, 2023 20:11

morphogenesis and cell motility. The position of somite formation within the developing paraxial
mesoderm is determined by FGF signaling, and it has also been suggested to control cell motility
(Bénazéraf et al. 2010, Oginuma et al. 2017). Furthermore, BMP signaling in the zebrafish tail
bud has been linked to the control of cell motion in the forming neural tube (Das et al. 2019).
Together, these findings suggest that morphogens control cell mechanical properties in parallel
with tissue patterning to ensure coordinated specification of cell fates and morphogenesis.

OUTLOOK

Recent years have seen considerable progress in understanding morphogen gradient formation
and interpretation. Major questions remain, however (see the Future Issues). A variety of mech-
anisms, from the control of morphogen binding receptors to shuttling, trafficking, and growth,
have evolved to regulate the spread of morphogens through tissues. An open question is to deter-
mine the quantitative contribution of each process to the spatiotemporal changes in the gradient
shape. Studies that combine theoretical descriptions with quantitative assays of specific transport
parameters at a subcellular scale are beginning to reveal how transport modes are integrated to de-
termine gradient shape. Synthetic systems, which provide the means to engineer and manipulate
specific scenarios, are also a powerful way to probe the logic of morphogen transport. Similarly,
our understanding of howmorphogens are interpreted to generate precise patterns of gene expres-
sion has advanced. Comparison between morphogens and tissues is revealing general principles,
but quantitative models that incorporate these ideas are needed. There is increasing awareness
of the role of morphogen signaling in coordinating growth and morphogenesis by controlling
the cell cycle and mechanical properties of cells. This highlights the vital role of morphogens in
determining tissue size and shape. However, challenges remain. Our ability to visualize directly
and live image endogenous morphogen ligands and signaling remains limited in many model sys-
tems. This means that quantitative data are lacking, making it difficult to understand in detail
how morphogen gradients form and control cellular responses. As our understanding of mor-
phogen activity becomes increasingly fine grained, there is a need for sophisticated computational
models that can integrate molecular, cellular, and tissue scales. Combining theory and experiment
will provide deeper insight into the mechanisms and the underlying logic of the control of tissue
development by morphogen gradients.

FUTURE ISSUES

1. While SDD appears to be the main mechanism for morphogen gradient formation, the
molecular and cellular basis for this process is still unclear. In addition, the contribution
of other mechanisms, including active transport and feedback, needs to be addressed.
New quantitative live-imaging techniques will likely provide insight into these questions.

2. How do morphogen gradients change over time and how do these changes affect tis-
sue patterning? Morphogen gradients are dynamic, yet the underlying mechanisms are
not well understood. It is unclear whether different mechanisms apply to different mor-
phogens and/or tissues.How such mechanisms contribute to gradient scaling with tissue
size or contribute to the robustness of gradients to fluctuations in production or spread
remains unclear.

3. What are the gene regulatory mechanisms that control the expression of genes re-
sponding directly to morphogens? What is the molecular and genomic basis for the
control of target genes? How do the morphogen transcriptional effectors bring about
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changes in transcription, and what role do other transcriptional regulators play? High-
resolution quantitative data from new molecular and genomic tools will help answer
these questions.

4. How do cells interpret morphogen signals to produce complex gene expression pat-
terns? What are the mechanisms that convert graded morphogen input into specific
changes in gene expression at precise spatial locations? What morphogen features, such
as level, duration, or change, are important for pattern formation? New technologies
such as single-cell transcriptomics will need to be complemented with new theoretical
approaches to integrate and interpret increasingly complex data.

5. What are the sources and effects of biological noise in ligand spread, signal transduction,
and gene regulation? Quantitative data and theoretical frameworks that provide multi-
scale descriptions of tissue patterning are needed to determinewhether noise necessitates
downstream correction mechanisms or whether noise is buffered by the system.

6. How is morphogen-controlled pattern formation integrated with growth and morpho-
genesis? Coordinating tissue patterning across different scales, from individual cells to
whole organs, as well as in in vitro systems, requires an understanding of howmorphogen
signaling affects and is affected by cell proliferation, tissue growth, and mechanical
forces. Investigating the role of these factors in tissue patterning and morphogenesis
is an active area of research.
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