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Rotor lattice model of ferroelectric large polarons
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We present a minimal model of ferroelectric large polarons, which are suggested as one of the mechanisms
responsible for the unique charge transport properties of hybrid perovskites. We demonstrate that short-ranged
charge–rotor interactions lead to long-range ferroelectric ordering of rotors, which strongly affects the carrier
mobility. In the nonperturbative regime, where our theory cannot be reduced to any of the earlier models, we
reveal that the polaron is characterized by large coherence length and a roughly tenfold increase of the effective
mass as compared to the bare mass. These results are in good agreement with other theoretical predictions for
ferroelectric polarons. Our model establishes a general phenomenological framework for ferroelectric polarons
providing the starting point for future studies of their role in the transport properties of hybrid organic-inorganic
perovskites.
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I. INTRODUCTION

The quasiparticle framework [1,2] offers a large degree
of simplification in understanding the properties of interact-
ing many-body systems. In particular, polaron models have
been extremely successful in unveiling the transport proper-
ties of several classes of technologically relevant materials
[3]. These include polar semiconductors [4–7] and transi-
tion metal oxides [8,9], as well as impurities in superfluid
He [10–14] and ultracold atom Bose-Einstein condensates
[15–20]. The general properties of these systems depend on
the type of interaction providing the dressing of the impurities
by their environment. Well-known types of electron–phonon
coupling include the Fröhlich [21], Holstein [22,23], and
Peierls [24–27] interactions, each of which gives rise to a
distinct class of polaronic states. Recently, an alternative type
of coupling has been proposed to explain the transport in
hybrid organic-inorganic perovskites (HOIP) [28,29]. In this
case, the carriers couple to the dipole moment fluctuations of
their host, giving rise to the so-called ferroelectric polarons.

HOIP are highly relevant for applications, including their
excellent performance as building blocks of solar cells
[30–38]. However, their physical properties are notoriously
complex due to their soft structure [39], ionic mobility
[40,41], and the interplay between the rotational dynamics of
the molecular cations and their structural and (photo)electric
properties [42–45]. Earlier studies have attributed their trans-
port properties to the collective orientation of organic cations
[46] and spin-orbit coupling effects [47–49]. However, several
recent studies [28,29,50–59] hold polarons responsible for
the screening of carriers from charged defects, other carriers,
and phonons, explaining the experimentally observed long
carrier lifetimes and diffusion lengths [60]. Among these,
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ferroelectric polarons are particularly promising [28,29], as
they are expected to provide substantially enhanced screening
compared to Fröhlich polarons [3,21]. However, the complex
structure of the host material makes quantitative predic-
tions for such quasiparticles difficult [28], hindering their
unambiguous experimental verification. This necessitates the
development of a reduced and general framework that can
capture the key physical properties of these structures, as
this would enable the identification of their relevance for
explaining the transport properties of HOIP or possibly other
molecular materials.

In this work we show that the formation of ferroelectric
large polarons takes place already in a minimal model, where
charge carriers interact with a one-dimensional array of planar
rotors; see Fig. 1(a). The dipolar rotors model the reorientation
dynamics of organic molecular cations, A+, in the ABX3

perovskite structure. Molecules interact with charge carriers
hopping on the inorganic sublattice made of octahedral BX−

6

FIG. 1. (a) Tight binding model. Blue empty (filled) circles label
empty (occupied) electron sites. Red circles show the dipole posi-
tions modeled by planar rotors. The distances between the sites and
the orientations of the rotors/dipoles are also shown, where α is
the lattice constant. (b) Illustration of the Gross-Hartree ansatz. The
electron possesses quasimomentum, q, while the rotor states relative
to it are described by the single-rotor states, ϕ j (φ). Arrows show the
orientations of the rotors.
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cages, which we represent by discrete sites. Due to screen-
ing [61], we assume charge–dipole interactions to be short
ranged and dipole–dipole interactions to be absent. As we
demonstrate, this model captures the formation of local ∼10
nm-sized ferroelectric order [58,62,63] and the crossover be-
tween a large light polaron (associated with ferroelectrically
polarized dipoles) and a small heavy polaron regime charac-
terized by charge carrier localization at the boundary of two
misaligned ferroelectrically ordered domains [29,64].

This ferroelectric order significantly increases the ef-
fective mass of the carriers even within the light polaron
regime, in accordance with the modest but not negligible
mobilities observed in HOIP [60], but in contrast to other po-
laron models, e.g., the Holstein polaron, which predict much
larger renormalization [65,66]. When the domain wall forms,
the effective mass grows exponentially, suggesting high
anisotropy of the mobilities and diffusion constants of large
ferroelectric polarons in two and three dimensions. These
transport anisotropies are the main signatures of the emer-
gence of ferroelectric polarons. Note that such anisotropies
along different crystallographic directions have been recently
experimentally identified [67–69], hinting towards the rele-
vance of our model for HOIP. The strength of our model is
that our results depend only on the characteristic energy scales
of tunneling, rotation, and interaction and thus our results
hold for all cases where ferroelectric polarons emerge from
local rotor–electron interactions irrespective of the underlying
microscopic mechanisms.

Our work is structured as follows. Section II introduces our
model, the relevant parameter scales for HOIP, and the vari-
ational Gross-Hartree (vGH) approach we employ to probe
the properties of the system. Section III presents our main re-
sult, namely the crossover between the polarized ferroelectric
phase and the state characterized by misaligned ferroelectric
domain walls. In Sec. IV we evaluate coherence and trans-
port properties of ferroelectric polarons within our model and
analyze their parametric dependence. Section V presents the
summary of our findings and provides perspectives for further
studies. Appendix A outlines the Lang-Firsov approach ap-
plicable to our model and shows why the development of the
vGH approach is important to address the polaron structures
in HOIP. Describing the development and benchmarking of
the latter approach is the focus of Appendix B. Finally, Ap-
pendix C provides the derivations of the perturbative results
employed within Secs. III and IV.

II. EFFECTIVE MODEL

The Hamiltonian of our model, cf. Fig. 1(a), reads

Ĥ = − t
M∑

i=1

(â†
i+1âi + H.c.) − B

M∑
i=1

∂2

∂φ2
i

− V0

M∑
i=1

â†
i âi

[
cos

(
φi + π

4

)
+ cos

(
φi−1 − π

4

)]
,

(1)
where âi (â†

i ) are the electron annihilation (creation) operators,
angles φi define the dipole orientations and B their rotational
constants (in what follows we use the terms dipoles and rotors
interchangeably), t is the tunneling rate of the electron, V0 is

the electron–dipole interaction strength, and M is the number
of rotors in the lattice. For simplicity we neglect the activation
energy of molecular rotations, Eact, as its presence effectively
inhibits rotor–electron interactions for Eact � V0 [44,70]. Note
that we employ periodic boundary conditions, i.e., â†

M+ j = â†
j

and φM+ j = φ j , for all j = 1, . . . , M. Although the model can
be trivially extended to hole carriers by assuming V0 < 0, here
we focus on electrons, V0 > 0. Note that the Hamiltonian (1)
is quite general concerning the type of polar rotors and rotor–
electron interactions. Thus similar models might be applicable
in the case of fully inorganic perovskites, where the polar
fluctuations are generated by deformations of inorganic cages
containing Cs atoms [71].

Note that the Hamiltonian of Eq. (1) neglects some
important effects occurring in HOIP materials, such as
electron–phonon interactions [72,73] and induced polariza-
tion by halogen-metal hybridization [74,75], since these
effects are not essential for ferroelectric polaron formation.
Therefore, in this work we are not able to provide fair quanti-
tative comparisons of our results with HOIP experiments nor
explanations of the transport properties of HOIP alternative to
ferroelectric polarons [76]. Nevertheless, the generality and
extendability of our model opens the potential for future in-
vestigations, see Sec. V that addresses these questions.

In HOIP the molecular rotational energy B ∼ 1 meV is
the lowest energy scale since V0, t ∼ 0.1–1 eV [70,77]. To
generate an appropriate rotor basis for B � t , we variationally
optimize the state of the rotors relative to the electron, ϕ j (φ),
cf. Fig. 1(b), based on the following ansatz:

|�q(φ1, . . . , φM )〉 =
M∑

j=1

ei 2πq
M j

√
M

M∏
k=1

ϕI (k, j)(φk )â†
j |0〉, (2)

where |0〉 and â j are the electron vacuum and creation oper-
ators and q = 0, . . . , M − 1 gives the quasimomentum of the
polaron state. We will refer to this approach as the variational
Gross-Hartree method (vGH). The indices of ϕ j (φ) appearing
in Eq. (2) read I (k, j) = 1 + [(M + k − j) mod M] and are
selected such that the rotor state depends only on the relative
distance between the rotor and the electron. For instance,
ϕ1(φ) and ϕM (φ) refer to the state of the rotor on the right and
left of the electron, respectively, independent of the position
of the latter; cf. Fig. 1(b).

Note that, while the ansatz of Eq. (2) generalizes the basis
generated via the Lang-Firsov transformation [3,78], see also
Appendix A, as it allows for t-dependent modifications of
the rotor state, it neglects dipole–dipole correlations. These
are not expected to limit the applicability of vGH, since no
direct interaction between dipoles appears in Eq. (1). Thus
only dipole–dipole correlations mediated by the electron can
take place, which result in small corrections in related polaron
models (except for strong coupling) [79]. The applicability of
the vGH approximation has been justified through comparison
with exact diagonalization for small M; see Appendix B.

III. CROSSOVER FROM POLARIZED TO DOMAIN-WALL
FERROELECTRIC ORDER

The order emerging in the rotor lattice can be eluci-
dated by considering the rotor–electron correlation function at
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distance j,

Cj (φ) = M
∫

· · ·
∫ π

−π

M∏
l=1
l �= j

dφl 〈�0(φ1, . . . , φ j−1, φ, φ j+1, . . . , φN )|â†
1â1|�0(φ1, . . . , φ j−1, φ, φ j+1, . . . , φN )〉

= |ϕ j (φ)|2, (3)

where the translational invariance of the system, see Eq. (2),
allows us to fix the electron at the first site without loss
of generality. The correlation function is shown in Fig. 2(a)
for a small system with M = 4. In Fig. 2(b) we provide the
average polarization of the rotors, 〈φ j〉 = ∫ π

−π
dφ φCj (φ) for

M = 1024, which is large enough to achieve convergence
towards the M → ∞ limit.

In the case of small B = 10−3t , relevant for HOIP, we
observe the emergence of two distinct interaction regimes.
For V0 < 2t the rotors become strongly polarized towards the
electronic lattice, φ ≈ 0, and an almost perfect ferroelectric
order emerges [see Fig. 2(a) and the left panel of Fig. 2(c)].
Similarly, Fig. 2(b) shows 〈φ j〉 ≈ 0, for all j within this V0

range. For V0 > 2t , on the other hand, we observe domain
formation in the rotor system; see Fig. 2(a) and the right
panel of Fig. 2(c). The rotors to the left of the electron,
M/2 < j � M, polarize with φ ≈ π/4, while the rotors at
1 � j � M/2 polarize towards φ ≈ −π/4. Thus the electron
acts as a ferroelectric domain wall, with rotors on each side
of the electron pointing towards it. From Fig. 2(b) we can see
that although this rotor ordering is local, it is quite extensive,
involving ∼50 rotors in each side of the electron. Note that
this change in ferroelectric order with varying V0 is gradual, of
typical crossover character [80,81], as the rotors neighboring
the electron from either side possess slightly different average
orientations even for V0 < 2t ; see Fig. 2(b).

The interaction dependence of the local ferroelectric order,
Fig. 2, provides an intuitive picture for the role of molecular
dipole moments in the formation of polarons at ferroelectric
domain boundaries, proposed in Ref. [29]. That work suggests

FIG. 2. (a) Rotor-electron correlation function, Cj (φ), for j = 1
and j = M = 4, as a function of the electron–rotor interaction, V0.
The electron is fixed at the first site. (b) Average rotor orientation,
〈φ j〉, depending on the electron–rotor distance and V0 for M = 1024.
In both cases B = 10−3t . (c) Schematic illustration of the ferroelec-
tric orders involved.

that the carriers are confined to and move along a two-
dimensional ferroelectric domain wall, whereas the hopping
perpendicular to it is much slower due to the distortion of the
inorganic lattice. In our model this distortion corresponds to a
reduced t along the distortion direction, resulting in an effec-
tively higher V0/t that can exceed the threshold for formation
of ferroelectric domain walls, V0 ≈ 2t , in one dimension. In
contrast, along the directions where no distortion takes place,
V0/t remains smaller than the threshold, which stabilizes an
almost perfectly polarized rotor state.

The origin of the emerging order can be elucidated by
examining the polaron energy, E0. First, let us analyze its
scaling with V0; see Fig. 3(a). For small V0, the polaron energy
follows the pertubative result,

E0 = −2t − V 2
0√

B(B + 4t )
+ O

(
V 2

0

)
, (4)

independent of B; see Appendix C. With increasing V0, how-
ever, the energy of the polaron diverges from this scaling,
with the strongest deviations observed for smaller B’s. This
behavior stems from the breakdown of perturbation theory
for V0 > 2

√
Bt , where the rotor–electron interaction creates

a large number of rotor excitations.
The fact that the ferroelectric dressing of the electron ob-

served in Fig. 2 takes place beyond the regime of validity of
perturbation theory implies that it originates from the col-
lective excitations of the rotor array and their coupling to
the electron. Since the spectrum of rotors is different from
that of harmonic oscillators, the nonperturbative physics of
the ferroelectric polaron given by Eq. (1) is fundamentally
different from the traditional models such as the Holstein
polaron [3,22,23].

The fundamental difference between the B < 10−2t and
B ≈ t regimes is directly observable by comparing the polaron
energies for different B’s near the crossover point, V0 ∼ 2t ;
see Fig. 3(b). For B < 10−2t and V0 < 2t , the polaron en-
ergy features an almost linear decrease, E0 ≈ −2t − √

2V0,

FIG. 3. (a), (b) Polaron energy, E0, for different values of B as a
function of V0. Panel (a) compares the vGH results (solid lines) with
perturbation theory (dashed lines). The dashed line in (b) is an eye
guide to estimate E0 (see the text). In all cases M = 1024.
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FIG. 4. (a) Variance of the rotor orientations, σφ ( j)/σ0, for different B and V0/t = 0.5. Inset: V0 dependence of σφ ( j)/σ0 for B = 10−3t .
(b), (c) Polaron size, Mp, derived from exponential fits of σφ ( j)/σ0 as a function of (b) B and (c) V0. (d), (e) The ratio of the polaron and free
electron effective masses, m∗

p/m∗
0 for different values of B, as a function of V0. (e) Comparison of vGH results (solid lines) to perturbation

theory (dashed lines). (f) The ratio m∗
p/m∗

0 as a function of B. The dashed line in (b) and (f) serves as an eye guide to estimate the scaling with
B. In all cases M = 1024.

stemming from strong polarization of the rotors (φ ≈ 0)
in the vicinity of the electron. This results in the po-
tential energy contribution ∼V0[cos(π/4) + cos(−π/4)] =
−√

2V0. For stronger interactions, V0 > 2t , the polaron en-
ergy decreases faster than ∝ −√

2V0 due to the domain-wall
formation at the electron positions, which increases the rotor–
electron attraction. For B ∼ t , the behavior of the system
changes and the polaron energy decreases quadratically. This
is due to the large amount of energy required to create rotor
excitations which hinders their polarization and the associated
potential energy benefit, thereby precluding the formation of
ferroelectric order.

IV. COHERENCE, TRANSPORT PROPERTIES,
AND PARAMETER DEPENDENCE

Having discussed the basic properties of the polaronic
states based on energetic arguments, let us focus on their
coherence and transport properties and their relation to HOIP
experiments. The polaron size, or, equivalently, the polaron
coherence length, is associated with the extent of the ferro-
electric order in the vicinity of the electron; see also Fig. 2(b).
This property can be expressed through the variance of the
rotor angle,

σφ ( j) =
[ ∫ π

−π

dφ (φ − 〈φ j〉)2Cj (φ)

]1/2

, (5)

over the variance of the uniform distribution, σ0 = 2π/
√

12.
The value of σφ ( j)/σ0 = 1 corresponds to a uniform den-
sity profile, where the dipoles are unaffected by the electron
motion. The values 0 � σφ ( j)/σ0 < 1 correspond to the po-
larization of the jth rotor typical for ferroelectric order.

The localization of ferroelectric order is demonstrated by
the exponential trend of σφ ( j)/σ0 which rapidly saturates to
unity as rotors far away from the electron remain not ori-
ented; see Fig. 4(a). For fixed V0, a larger number of rotors
can be excited at smaller B, giving rise to a more extensive
dressing cloud around the electron. Inversely, for t = B, the
polaron is strongly localized in the vicinity of the electron,
j → 0, and thus cannot be called a large polaron. This is fully
consistent with the energetic arguments presented above, cf.
Fig. 3(b), and is further illustrated in Fig. 4(b). Here we use an

exponential fit,

σφ ( j)

σ0
= 1 +

(
σφ (1)

σ0
− 1

)
e− j−1

Mp , (6)

for j < M/2, to extract the polaron size Mp. We find that,
almost independent of V0, the polaron size grows as ∝ B−1/2

with decreasing B.
In contrast, for a constant B, the spatial extent of the

polaron depends weakly on V0; see the inset of Fig. 4(a), espe-
cially within the polarized regime, V0 < 2t . This observation
is confirmed by Fig. 4(c), which shows that Mp is independent
of V0 even for very small V0’s. This can be explained along
the lines of perturbation theory: electron–rotor interactions
result in virtual rotor excitations localized in the vicinity of
the electron, whose momentum shifts from q to q′. These
excitations are characterized by an energy B and thus a life-
time ∼h̄/B. Consequently, the maximum distance between the
electron and an excitation depends solely on the distribution
of available q′ and the excitation lifetime, both of which are
independent of V0 controlling the excitation probability. For
V0 > 2t , where the ferroelectric domain wall forms, the spatial
extent of the polaron decreases by a factor of ∼2; see the inset
of Fig. 4(a). In this regime, the perturbative argumentation is
invalid, since, as argued below, the electron becomes rigidly
attached to its dressing cloud of rotor excitations. In summary,
although the ferroelectric dressing is found to be large at the
level of the unit cell, its spatial extent, Mp × α ≈ 30 × 5 Å ≈
15 nm, is much smaller than the diffusion lengths of > 1 μm
observed in HOIP experiments [82–84]. This implies that the
semiclassical treatment of diffusion lengths, frequently used
in the literature [60], is well justified also when ferroelectric
polarons are present.

The ferroelectric order crucially affects the polaron mass,
Fig. 4(d). Note that the mass scale for V0 = 0 is m∗

0 =
h̄2/(2tα2) ≈ 0.15 me (for α ≈ 5 Å and t ≈ 1 eV relevant for
HOIP). For smaller B, the effective mass features a strong
overall increase. For B < 10−2t the initial growth of m∗

p =
(h̄2/α2)(∂2E0/∂q2)−1 at smaller V0 is followed by a plateau at
V0 ∼ t . This can be rationalized by considering how m∗

p scales
with B and V0. From Fig. 4(e) we see that for small V0 the
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effective mass increases following the perturbative result,

m∗
p

m∗
0

= 1 + B + 2t

[B(B + 4t )]3/2
V 2

0 + O
(
V 4

0

)
, (7)

see Appendix C, and saturates at larger V0. The saturation
of m∗

p can be thought of as an almost rigid attachment of
the ferroelectric polarization cloud to the electron at strong
interactions. For B ∼ t the attachment is precluded by rapid
rotation of the rotors, resulting in no saturation of m∗

p. The
scaling of m∗

p with B, Fig. 4(f), demonstrates significant de-
viations from the perturbative result, m∗

p/m∗
0 − 1 ∝ B−3/2, in

the region where the ferroelectric polaron forms, V0 ∼ t � B.
The B scaling is found to be significantly less steep: m∗

p/m∗
0 −

1 ∝ B−0.6 for V0 = 0.5t, 4t , and m∗
p/m∗

0 − 1 ∝ B−0.5 in the
crossover region V0 = 2t . Importantly, m∗

p is a decreasing
function of B in all of the considered cases.

Thus, although the polaron for V0 < 2t is large, it features
low but non-negligible mobility [85], μ ∝ τ/m∗

p, which is
consistent with HOIP experiments [60]. Here, τ corresponds
to the mean scattering time which is large in HOIP [86]
and is expected to increase due to polaron screening. The
mean scattering time depends on the scattering cross sec-
tion of the polaron with other polarons and charge defects
and therefore its calculation requires a separate detailed study.
For this reason below we comment on the dependence of μ

on the effective mass. The effective mass predicted for the
ferroelectric polaron, m∗

p = 1.5–6me see Fig. 4(d), is large as
compared to ARPES experiments [87], which yield effective
masses close to the bare one, thereby challenging the polaron
formation. However, recent experimental studies [88,89] have
shown a ten- to hundredfold carrier mass increase after pho-
toexcitation. This allows us to conjecture that ferroelectric
polarons can only be formed after an initial relaxation step
following photoexcitation, similar to the process described in
Ref. [29]. Also, we would like to emphasize that the simulta-
neous power-law increase of the polaron size, Mp, and of its
effective mass, m∗

p, with decreasing B, see Figs. 4(b) and 4(f),
is the behavior that sets our model apart from the well-known
Holstein and Fröhlich polarons, where larger effective masses
are associated with smaller polaron sizes [3,22,23,90] or ex-
tremely heavy polarons with negligible mobilities [65,66].
This indicates that the framework of rotor lattices introduced
here has the potential to explain the apparently contradicting
features of carrier dynamics in HOIP.

For V0 > 2t , m∗
p grows exponentially with V0, Fig. 4(d), as

a consequence of the reduced mobility due to the domain wall
comoving with the electron. This is consistent with strong
anisotropy of the effective mass along vs perpendicular to the
ferroelectric domain wall once it forms [67–69]. Our results
further suggest that the anisotropy in coherence length is much
less pronounced; see the inset of Fig. 4(a). Thus the study of
the relation between the coherence and mobility anisotropies
might be important for the experimental detection of ferro-
electric polarons in HOIP or other materials.

V. CONCLUSIONS AND OUTLOOK

In conclusion, we proposed a minimal, tractable, and
extendable rotor lattice model describing the formation of

ferroelectric polarons [28,29,58]. The model captures several
features of ferroelectric polarons such as their modest mo-
bility but large coherence length. Furthermore, it provides
intuition for the mechanism behind large polaron formation at
ferroelectric domain boundaries, proposed in Ref. [29]. Our
model lays the groundwork for realizing a top-down approach
to the carrier dynamics in HOIP, complementary to the ex-
isting density functional theory studies [48,91–93] and other
ab initio approaches [94–96].

Possible extensions include studying the phase diagram of
the two-dimensional lattice system where signatures of carrier
localization along different directions can be identified. The
study of electron–hole interactions mediated by the rotors can
elucidate the impact of the molecules on the observed long
carrier lifetimes. Note that accounting for finite temperature,
e.g., by using the techniques of Ref. [97], is quite straightfor-
ward. Moreover, our study suggests an interesting interplay
of mobility inhomogeneity and exciton lifetime which might
provide quantitative predictions for the diffusion length. Ex-
tensions to account for electron–phonon coupling can be done
based on recent approaches [73,98]. This will allow one to
fully capture the dressing of the carrier by the excitations
present in HOIP materials [73,76], as well as to account for
vibrational relaxation of the ferroelectric domain wall state
[29]. In addition, studies that connect the abstract model pa-
rameters with realistic material properties will be crucial. The
possibility of angulon formation affecting molecular mobility
[99–103] and of the halogen-metal hybridization which can
introduce polarization of the BX−

6 cages [74,75] might also be
relevant for reliable modeling of HOIP properties with rotor
lattice setups.
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APPENDIX A: LANG-FIRSOV TRANSFORMATION

The Lang-Firsov transformation has been successfully
used to describe polarons in the Holstein model [3,22,23,78].
Within the Lang-Firsov transformation one diagonalizes the
Hamiltonian, ĤV0→∞ for t = 0, and then uses the unitary ma-
trix Û obtained by the diagonalization to obtain the hopping
term in the transformed frame. Since in the case of the Hol-
stein polaron the phonon–electron interaction has the simple
form of a potential gradient, the operator Û corresponds to
a displacement operator for the phonons and therefore the
transformation can be performed analytically.

In our case, however, ĤV0→∞ yields the Mathieu equa-
tion [104] and therefore the operator Û has no simple analytic
form. To describe how a pseudo-Lang-Firsov transformation
can be performed in our case, let us assume that the electron
is localized at position j. This allows us to diagonalize the
rotor sector of the strong-coupling Hamiltonian by solving
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FIG. 5. Schematic illustration of the dipole-state-dependent cor-
related tunneling process described within the pseudo-Lang-Firsov
transformation formalism. Blue empty (filled) circles label empty
(occupied) electron sites. Red circles show the dipole positions
modeled by planar rotors. The arrows and notation ns, 
s show the
employed basis type (see legend) and state for the particular rotor
site, s = ±1, . . . , ±M/2. The tunneling of the electron from site j
to j + 1 couples the states of the rotors within the dashed rectangle,
while for the remaining sites 
′

s−1 = 
s holds.

the corresponding Mathieu and free-rotor equations. Note that
within its eigenbasis the strong-coupling Hamiltonian reads

ĤV0→∞ =
M∑

j=1

∞∑
k=1

εk| j〉〈 j| ⊗ ∣∣�rotors
j,k

〉〈
�rotors

j,k

∣∣, (A1)

where εk , |�rotors
j,k 〉 are the eigenenergies and eigenstates of the

rotor system, respectively. Here we have used the fact that due
to translational invariance εk is independent of the position
of the electron. Furthermore, the electronic and rotor wave
functions are in a product state but |�rotors

j,k 〉 depends on the
electron position, j, since only the dipoles next to the electron
interact with it. The eigenstates of ĤV0→∞ form a complete
basis and thus the identity operator can be expanded as Î =∑

j,k | j〉〈 j| ⊗ |�rotors
j,k 〉〈�rotors

j,k |. This allows us to express the
dipole–electron Hamiltonian of Eq. (1) as

Ĥ = − t
∞∑
j=1

∑
k,l

(〈
�rotors

j,k

∣∣�rotors
j+1,l

〉| j〉〈 j + 1|

⊗ ∣∣�rotors
j,k

〉〈
�rotors

j+1,l

∣∣ + H.c.
)

+
∞∑
j=1

∑
k

εk| j〉〈 j| ⊗ ∣∣�rotors
j,k

〉〈
�rotors

j,k

∣∣. (A2)

By appropriately selecting the many-rotor state indices k and
l and by making use of the translational invariance we can
simplify Eq. (A2) further; see Fig. 5. Here, the indices nk

±1 =
0, 1, . . . parametrize the single particle eigenstate of the
dipoles neighboring the electron, |ψM

nk
±1

〉, which solves the cor-

responding Mathieu equation. Furthermore, 
k
j = 0,±1, . . . ,

with j = ±2,±3, . . . , are the indices of the angular momen-
tum eigenstates, L̂z|ψAM


k
j

〉 = 
k
j |ψAM


k
j

〉, for the dipoles further

than the neighboring ones.
Note that within this framework each different many-

rotor state k corresponds to a unique configuration
{nk

±1, 

k
±2, 


k
±3, . . . } of the above mentioned single-rotor

states. With these definitions the overlaps of the many-rotor

states contributing to tunneling read

〈
�rotors

j,k

∣∣�rotors
j+1,l

〉 =
⎛
⎝ ∏

j′=−2,±3,±4,...

δ
k
j′ 


l
j′−1

⎞
⎠

× 〈
ψM

nk
−1

∣∣ψAM

l
−2

〉〈
ψM

nk
+1

∣∣ψM
nl

−1

〉
× 〈

ψAM

k
+1

∣∣ψM
nl

+1

〉 ≡ OR
k,l , (A3)

which are independent of j and thus translationally invari-
ant. Also, OL

kl = 〈�rotors
j+1,k|�rotors

j,l 〉 = (OR
lk )∗ holds. By trans-

forming to the momentum basis for the electron, |q〉 =
1√
M

∑M
j=1 ei 2πq

M j | j〉, Eq. (A2) reduces to Ĥ = ∑M−1
q=0 Ĥq ⊗

|q〉〈q|, with

Ĥq = − t
∑
k,l

(
OR

k,l e
i 2πq

M
∣∣�rotors

k

〉〈
�rotors

l

∣∣ + H.c.
)

+
∑

k

εk

∣∣�rotors
k

〉〈
�rotors

k

∣∣ (A4)

describing the t-dependent effective interactions among the
rotors when the electron lies in a particular |q〉 state. The
energy of the kth many-rotor state is the sum of the energies
of the constituent single-rotor states, namely

εk = B

4

[
fnk

+1

(
2V0

B

)
+ fnk

−1

(
2V0

B

)]
+B

M/2∑
j=2

[(

k

j

)2 + (

k

− j

)2]
,

(A5)

with fn(q) given in terms of the Mathieu characteristic num-
bers, namely fn(q) = an(q) for even n and fn(q) = bn(q) for
odd n.

For B � t and V0 ∼ B it follows that t � εk − εk′ , for
any k, k′, and the t-mediated interaction does not affect the
state of the rotors to a large degree. Thus the different tun-
neling channels |�rotors

k 〉 do not interfere with one another.
This defines different bands of the polaron with energies
εk (q) = εk − 2t |OR

kk| cos[ 2πq
M + arg(OR

k,k )]. For small V0 < B,
states with nk

±1 �= nk′
±1 but 
k

j = 
k′
j for all j = ±2,±3, . . . are

coupled, implying local fluctuations of the rotor state in the
vicinity of the electron, leading to interference of the above
mentioned tunneling channels. However, the number of such
coupled states is independent of M and the pseudo-Lang-
Firsov approach can efficiently describe the polaron state.

In contrast, for B � t , which is the relevant case for appli-
cations in perovskites, t � εk − εk′ holds independent of V0 at
least in the cases where nk

±1 = nk′
±1 and

M∑
j=2

[(

k

j

)2 − (

k′

j

)2] +
M∑

j=2

[(

k

− j

)2 − (

k′

− j

)2] � t

B
. (A6)

Therefore, in this case an extensive number of different
|�rotors

k 〉 states are strongly coupled by t-dependent effective
interactions, provided that V0 �= 0 and thus OR

kl �= δkl hold.
Consequently, the description of the system in this pseudo-
Lang-Firsov basis becomes complicated. That is the main
reason for the development of the vGH ansatz approach of
Eq. (2), see also Appendix B, allowing for the construction of
a Lang-Firsov-type basis that takes into account the effect of
t-mediated interactions in a variational optimal manner.
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APPENDIX B: DETAILS ON THE vGH APPROACH

1. vGH equations of motion

To variationally evaluate the polaron ground state of the
rotor lattice model described by Eq. (1) we resort to the Dirac-
Frenkel variational formalism, E [ϕ1(φ; τ ), . . . , ϕM (φ; τ )] =
〈�(τ )|Ĥ − ih̄ ∂

∂τ
|�(τ )〉 [105,106]. The Dirac-Frenkel varia-

tional principle is a time-dependent variational technique,
widely employed in quantum chemistry (see, e.g., Ref. [107]),
that allows the dynamical explorations of complex systems
in a variationally optimal manner in addition to their ground
state properties. Note that we have chosen the Dirac-Frenkel
variational principle solely based on the fact that our analysis
becomes more transparent. Indeed, it can be shown that our
variationally obtained equations of motion can be obtained
by the Langrangian [108,109] or McLachlan [110] variational
principles. This is a consequence of the fact that the Gross-
Hartree ansatz of Eq. (2) is a linear combination of Hartree
products and therefore it defines an analytic function, namely
a linear combination of exponentials, due to the Thouless
theorem [111,112].

The energy functional stemming from the Gross-Hartree
ansatz reads

E [ϕ1(φ; τ ), . . . , ϕM (φ; τ )]

= −t

(
ei 2πq

M

M∏
j=1

∫
dφ ϕ∗

j+1(φ; τ )ϕ j (φ; τ )

+ e−i 2πq
M

M∏
j=1

∫
dφ ϕ∗

j (φ; τ )ϕ j+1(φ; τ )

)

− B
M∑

j=1

∫
dφ ϕ∗

j (φ; τ )
∂2

∂φ2
ϕ j (φ; τ )

− ih̄
M∑

j=1

∫
dφ ϕ∗

j (φ; τ )
∂

∂τ
ϕ j (φ; τ )

+ V0

[ ∫
dφ cos

(
φ + π

4

)
|ϕ1(φ; τ )|2

+
∫

dφ cos

(
φ − π

4

)
|ϕM (φ; τ )|2

]

+
M∑

j=1

λ j (τ )

(
1 −

∫
dφ |ϕ j (φ; τ )|2

)
, (B1)

with λ j referring to the Lagrange multipliers ensuring the
normalization of ϕ j (φ; τ ).

The equations of motion are obtained via varying
E [ϕ1(φ; τ ), . . . , ϕM (φ; τ )] with respect to ϕ∗

j (φ; τ ) and read

ih̄
∂

∂τ
ϕ j (φ; τ ) = [Ĥj − λ j (τ )]ϕ j (φ; τ )

− t ei 2πq
M T jL(τ )ϕ j−1(φ; τ )

− t e−i 2πq
M T jR(τ )ϕ j+1(φ; τ ), (B2)

where Ĥj = −B ∂2

∂φ2 + δ j1V0 cos(φ + π
4 ) + δ jMV0 cos(φ − π

4 )
and the nonlinearity of the above equations stems
from the mean-field tunneling couplings T jL(τ ) =

∏
k �= j

∫
dφ ϕ∗

k (φ; τ )ϕk−1(φ; τ ) and T jR(τ ) = ∏
k �= j

∫
dφ

ϕ∗
k (φ; τ )ϕk+1(φ; τ ), which are analogous to the OR

k,l
appearing in the Lang-Firsov formalism; see Eq. (A3).
Finally, in order to calculate the Langrange coefficients
we demand that the ϕ j (φ; t ) functions remain normalized
and employ the fact that the Hamiltonian is Hermitian to
obtain

λ j (τ ) =
∫

dφ ϕ∗
j (φ; τ )Ĥjϕ j (φ; τ )

− t
(
ei 2πq

M TL(τ ) + e−i 2πq
M TR(τ )

)
, (B3)

where TL(τ ) = ∏M
k=1

∫
dφ ϕ∗

k (φ; τ )ϕk−1(φ; τ ) and TR(τ ) =∏M
k=1

∫
dφ ϕ∗

k (φ; τ )ϕk+1(φ; τ ). The above expression implies
that λ j (t ) is always real and thus, even if the λ j (τ )ϕ j (φ; τ )
term of Eq. (B2) is neglected, the magnitude of the single
rotors’ states is conserved, since

d

dτ

[∫
dφ

∣∣ϕ j (φ; τ )
∣∣2

]
= 2

h̄
I (λ j (τ )) = 0. (B4)

Therefore, the Lagrange multipliers are not per se needed for
dynamical investigations, e.g., to study polaron dynamics.

However, herewith we are mainly interested in the ground
state properties of the system, which can be calculated by
imaginary time propagation. Within this approach we perform
the transformation τ → −iτ in Eq. (B2) resulting in a diffu-
sion equation. This equation has an important property that
the energy of the propagated state monotonically decreases in
time according to ∼e−(E (τ )−E0 )τ , where E0 is the true ground
state energy, and therefore the ground state is obtained in the
limit of τ → ∞. In our implementation we perform finite
imaginary time propagation up to the point that the right-hand
side of Eq. (B2) is smaller than a tolerance of 10−12B, thus
ensuring that the final state is stationary with a confidence
comparable to the machine error.

2. Comparison with exact diagonalization for small systems

As discussed in Sec. II, the vGH ansatz of Eq. (2) neglects
dipole–dipole correlations stemming from the effective rotor–
rotor interactions due to electron tunneling. We expect that
these corrections are small and as such they do not signifi-
cantly affect the behavior of the system. Accounting for such
correlations is a nontrivial task, as they involve multiple con-
figurations of rotor states. In the absence of approximations,
i.e., within exact diagonalization (ED), there are MM such
different configurations, where M is the number of single-
rotor states considered. To ensure the convergence of the ED,
M should be large enough so that the observables of interest
become independent of its increase. This implies an expo-
nential increase of the numerical complexity with the system
size and consequently the ED treatment is computationally
prohibitive for large M. Therefore, to obtain a numerical es-
timate of the error in the vGH results due to neglecting these
correlations, we have to rely on small systems where ED is
feasible.
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FIG. 6. Percentage deviation of the ground state energy within
the ED and vGH approaches, (EvGH − EED)/|EED|, as a function of
V0 for (a) M = 4 and (b) M = 6 for different B/t (see legend).

In particular, for our ED calculations we used M = 21
resulting in 194 481 and 85 776 121 rotor configurations for
M = 4 and M = 6, respectively. The individual single-rotor
states correspond to the eigenstates of the L̂z operator, with
eigenvalues |
z| < (M − 1)/2. This choice of the many-rotor
basis is sufficient for the ED energies to converge at the 10−5

level.
The percentile deviation of the vGH and ED ground state

energies, (EvGH − EED)/|EED|, is shown in Fig. 6. Here it is
verified that the energy contribution of the rotor-rotor correla-
tions is indeed small, lying in the few % range. In particular,
we observe that the deviation is the largest in the interac-
tion regime where the ferroelectric domain-wall forms, V0 >

2t . In this regime (EvGH − EED)/|EED| additionally exhibits
an increasing tendency with decreasing B. In contrast, the
rotor-rotor correlations seem to become less significant as B
decreases for interactions supporting the polarized state, V0 <

2t . Our results further suggest that the correlation corrections
become less pronounced for increasing M, compare Fig. 6(a)
and Fig. 6(b), provided that B � 10−2.

To demonstrate that our results are robust to the inclusion
of rotor-rotor correlations, Fig. 7 compares Cj (φ) within ED
and vGH. The behavior of Cj (φ) for the different approaches
is nearly identical qualitatively, but there are a few notable
quantitative differences. In particular, while both approaches
capture the crossover from the almost perfectly ferroelectri-
cally polarized to the domain-wall state, the threshold shifts
to a lower V0 value within ED. In addition, within the V0 >

2t where the domain-wall forms, vGH shows significantly
larger values of C2(φ) and C3(φ) than ED for φ = π/4
and φ = −π/4, respectively. The above indicates that the
overlap of adjacent rotors decreases when accounting for
rotor-rotor correlations, which can be associated with a re-
duction of the mean-field tunneling integrals T jL and T jR.
Therefore, rotor–rotor correlations might induce further in-
crease of the polaron effective mass when the domain wall
forms.

In conclusion, rotor–rotor interactions do not substantially
alter the polaron state; however, properly accounting for them
might be beneficial for obtaining high-accuracy predictions
for the polaronic properties.

FIG. 7. Rotor–electron correlation functions, Cj (φ), with j =
1, . . . , M (see row labels) as a function of V0 within the exact di-
agonalization (left column) and vGH (right column) approaches. In
both cases a small system with M = 4 and B = 10−3t is considered.

APPENDIX C: PERTURBATIVE TREATMENT
OF THE ROTOR-LATTICE HAMILTONIAN

In order to get an insight into the polaron state let
us now consider the case where V0 is much smaller than
the rest of the system parameters and can thus be treated
perturbatively. To this end, within this section we apply
the Brillouin-Wigner (BW) perturbation theory [113], which
as we will see below can be used to infer the results
of other commonly used theoretical approaches in polaron
physics.

Note that for V0 = 0 the rotational and translational de-
grees of freedom decouple and as such we can define their
eigenstates as |m = (m1, m2, . . . , mM )〉 and |k〉, respectively.
Here, k denotes the quasimomentum of the electron. The
corresponding eigenenergies are εrot

m = B
∑M

i=1 m2
i and εtr

k =
−2t cos(k). The interaction Hamiltonian acting here as the
perturbation, see also Eq. (1), reads

ĤI = − V0

M∑
j=1

â†
j â j cos

(
φ j + π

4

)

− V0

M∑
j=1

â†
j â j cos

(
φ j−1 − π

4

)
. (C1)

Given that all interaction terms appearing in the rotor-electron
interaction Hamiltonian are of the form â†

nâne±iφ j , implies that
only the states |k; m〉 and |k; m ± ê j〉, where ê j is the unit
vector of the jth axis, are directly coupled by the interaction.
Therefore, within the second-order BW perturbation theory
the wave function expansion reads

|�(k, m)〉 =αk,m|k; m〉 +
∑

k′

M∑
j=1

(βk,k′,m, j |k′; m + ê j〉

+ γk,k′,m, j |k′; m − ê j〉), (C2)
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where the wave function coefficients ak,m, βk,k′,m, j , and
γk,k′,m, j are expressed in terms of the total energy of the
system, E , as

αk,m =
√

Z,

βk,k′,m, j = −
√

Z
〈k′; m + ê j |ĤI |k; m〉

εtr
k′ + εrot

m+ê j
− E

,

γk,k′,m, j = −
√

Z
〈k′; m − ê j |ĤI |k; m〉

εtr
k′ + εrot

m−ê j
− E

. (C3)

Note that the wave function renormalization of the pertur-
bative state is performed via the insertion of the polaron
residue, Z . This factor is calculated by demanding that
〈�(k, m)|�(k, m)〉 = 1. The above lead to the following
equation for the polaron energy:

E = εtr
k + εrot

m − �k,m(E ), (C4)

where �k,m(E ) denotes the so-called self-energy of the system

�k,m(E ) =
∑

k′

M∑
j=1

(
|〈k; m|ĤI |k′; m + ê j〉|2

εtr
k′ + εrot

m+ê j
− E

+ |〈k; m|ĤI |k′; m − ê j〉|2
εtr

k′ + εrot
m−ê j

− E

)
. (C5)

Importantly, Eq. (C4) can also be derived by using Eq. (C2)
as a variational ansatz and minimizing the energy functional
E = 〈�(k, m)|Ĥ |�(k, m)〉, under the constraint of normal-
ized |�(k, m)〉. This approach is commonly referred to as
the Chevy ansatz approach [114] and has applications in
Fermi polarons emerging in ultracold atomic Fermi gases
[115–118]. Since Eq. (C4) is derived within BW perturbation
theory, it features, in principle, multiple solutions correspond-
ing to the analytic continuation of each of the participating
V0 = 0 eigenstates, |k; m〉. In addition, since it can be de-
rived within the Chevy ansatz, the lowest in energy solution
of Eq. (C4) is an upper bound to the true ground state en-
ergy of the system, corresponding to the polaron. Within
this framework we can identify several polaronic properties
such as the above mentioned residue Z , the polaron energy
Ep = E − εtr

k = −�k,0(Ep + εtr
k ), and the polaronic effective

mass m∗ = ( ∂2E
∂k2 )−1.

To proceed note that the matrix elements of ĤI read

〈k′; m + ê j |ĤI |k; m〉 = −V0ei(k−k′ )( j− 1
2 )

M
cos

(
k − k′

2
+ π

4

)
,

〈k′; m − ê j |ĤI |k; m〉 = −V0ei(k−k′ )( j− 1
2 )

M
cos

(
k − k′

2
− π

4

)
,

(C6)

and, consequently, the self-energy for m = 0 reads

�k,0(E ) = V 2
0

M

∑
k′

1

B − E − 2t cos k′

=

⎧⎪⎨
⎪⎩

− V 2
0√

(B−E )2−4t2
for E > B + 2t,

V 2
0√

(B−E )2−4t2
for E < B − 2t .

(C7)

In the intermediate range B − 2t < E < B + 2t the self-
energy becomes imaginary, indicating that no polaron exists
in this regime. This stems from the extrapolation to the ther-
modynamic limit by substituting

∑
k → M

2π

∫
dk. In this limit,

the bands corresponding to the rotor excitations become a con-
tinuum of states in the energy interval B − 2t < E < B + 2t .
Thus any discrete state that couples to this continuum of
excitations becomes exponentially damped in time explaining
its imaginary self-energy.

Having an exact expression for �k,m(E ) we can identify
the minimum of the polaron band. To find the minimum of the
energy we differentiate E with respect to k for E < B − 2t ,
yielding (

1 + ∂�k,0

∂E

)
dE

dk
= dεtr

k

dk
− ∂�k,0

∂k
. (C8)

Therefore, k = 0 is an extremal point since ∂�k,0/∂k = 0,
dεtr

k /dk = 0, and ∂�k,0/∂E > 0. Using the above and by
differentiating once more with k we find(

1 + ∂�k,0

∂E

)
d2E

dk2
= d2εtr

k

dk2
. (C9)

Thus we conclude that k = 0 is the minimum of the polaron
band for all values of B, V0, and t > 0.

The above allows us to evaluate the polaron characteristics
by focusing on k = 0. First, the polaron energy is the lowest
in energy solution of the algebraic equation

Ep = − V 2
0√

(B + 2t − Ep)2 − 4t2
, (C10)

which up to fourth order in V0 yields

Ep = − V 2
0√

B(B + 4t )
+ B + 2t

B2(B + 4t )2
V 4

0 + O(V 6
0 ). (C11)

By substituting E = εtr
k in the right hand size of Eq. (C4) it can

be shown that the above expansion up to order ∝ V 2
0 agrees

with the second-order Rayleigh-Schrödinger perturbation the-
ory. For this reason we compare the second order correction
with the vGH results in Sec. III; see Eq. (4). Note that here
by employing Eq. (C10) it can be proven that within the
Chevy ansatz Ep + V 2

0 /
√

B(B + 4t ) > 0 holds for all values
of the parameters B, V0, and t . In addition, explicit numerical
solutions of Eq. (C10), see Fig. 8, show that the vGH value
of Ep is always significantly smaller than the Chevy ansatz
result. demonstrating that the vGH approach is a significant
improvement to the Chevy ansatz.

Nevertheless, Eq. (C11) indicates that the characteristic
interaction scale obtained via BW perturbation theory is
V0/

√
B(B + 4t ). Indeed, it can be seen that the vGH results
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FIG. 8. (a), (b) Comparison of the polaron energy, E0, ob-
tained by the vGH approach and Brillouin-Wigner and Rayleigh-
Schrödinger perturbation theory for different values of B as a
function of V0. The vGH results correspond to M = 1024, while
perturbation theory refers to M → ∞.

presented in Sec. III begin to deviate when this dimensionless
scale becomes of order ∼1. Finally, let us derive the value
of the effective mass within the above-mentioned perturbation
theories. Within the BW perturbation theory/Chevy ansatz the

effective mass is a function of the polaron energy, Ep,

m∗
p

m∗ = 1 − B + 2t − Ep

V 4
0

E3
p . (C12)

And thus a substitution of Eq. (C11) to Eq. (C12) yields up to
fourth order in V0:

m∗
p

mp
= 1 + B + 2t

[B(B + 4t )]3/2
V 2

0

− 2(B2 + 4Bt + 6t2)

B3(B + 4t )3
V 4

0 + O
(
V 6

0

)
.

(C13)

The same evaluation within the Rayleigh-Schrödinger pertur-
bation theory results in

m∗
p

mp
= 1 + 2t

[B(B + 4t )]3/2
V 2

0 + O
(
V 4

0

)
. (C14)

Therefore, the results for the effective mass agree up to
quadratic order for B � t . In the main text we employ the
second-order correction within BW, Eq. (C13), as the pertur-
bative result to compare with vGH; see Eq. (7). The BW result
provides improved agreement with vGH even in the case of
B = t .
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