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Abstract

Payment channel networks are a promising approach to improve the scalability bottleneck
of cryptocurrencies. Two design principles behind payment channel networks are
efficiency and privacy. Payment channel networks improve efficiency by allowing users
to transact in a peer-to-peer fashion along multi-hop routes in the network, avoiding
the lengthy process of consensus on the blockchain. Transacting over payment channel
networks also improves privacy as these transactions are not broadcast to the blockchain.

Despite the influx of recent protocols built on top of payment channel networks and
their analysis, a common shortcoming of many of these protocols is that they typically
focus only on either improving efficiency or privacy, but not both. Another limitation
on the efficiency front is that the models used to model actions, costs and utilities of
users are limited or come with unrealistic assumptions.

This thesis aims to address some of the shortcomings of recent protocols and algorithms
on payment channel networks, particularly in their privacy and efficiency aspects. We
first present a payment route discovery protocol based on hub labelling and private
information retrieval that hides the route query and is also efficient. We then present
a rebalancing protocol that formulates the rebalancing problem as a linear program
and solves the linear program using multiparty computation so as to hide the channel
balances. The rebalancing solution as output by our protocol is also globally optimal.
We go on to develop more realistic models of the action space, costs, and utilities of
both existing and new users that want to join the network. In each of these settings,
we also develop algorithms to optimise the utility of these users with good guarantees
on the approximation and competitive ratios.
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CHAPTER 1
Introduction

Quiet pond
a frog leaps into
the sound of water.

Matsuo Bashō

1.1 Prologue
In 2008, a mysterious, unknown entity named Satoshi Nakamoto created the Bitcoin
protocol, which presents a completely decentralised solution that achieves distributed
consensus. Since then, blockchains and cryptocurrencies have been rapidly gaining in
popularity – just in the summer of 2022 the author of this thesis could pay for her
coffee at a random cafe in Islington, London using Bitcoin.

Apart from becoming more mainstream and "cool", there are also some unique aspects
of blockchain solutions that make them particularly useful for the betterment of society.
Here, we highlight a few salient examples:

• the decentralised and private aspect of blockchains and cryptocurrencies make
these solutions a necessary part of the lives of individuals living in societies where
there is a lack of trust in the government or economic systems

• the transparency and security of blockchains makes it easy to achieve democracy
and reduce corruption

1



1. Introduction

• blockchains that support advanced smart contracts help streamline financial
systems by automating the verification of complex financial protocols

Although blockchain protocols are certainly important and useful for society as a whole,
these protocols, however, are notoriously inefficient. This is mainly due to the need to
achieve consensus among all the participants in the blockchain, which can be a lengthy
process, especially when compared to competing protocols in centralised finance. For
instance, Bitcoin can only process an average of 7 transactions per second (compared to
Visa’s processing rate of 24000 transactions on average per second) [PD15]. As such,
this presents a clear impediment to the adoption of blockchain solutions in everyday
life situations.

In the light of these inefficiencies of blockchains, recent work have proposed solutions
to address the scalability issue of blockchains, and can be broadly classified into two
categories. Layer 1 solutions, as the name suggests, work directly on the blockchain
layer and aim to improve the efficiency of the blockchain either by developing more
efficient consensus protocols [KRDO17], or by sharding [LNZ+16, CDE+16]. Layer
2 solutions typically act as an overlay on top of the blockchain network, and aim to
transfer the bulk of the payment load from the blockchain to the overlay layer, using
the blockchain only as a last resort to settle disputes. Examples of layer 2 solutions
are payment channel networks [PD15, DSW16, Rai17], which will be the focus of this
thesis.

1.2 Payment Channel Network Analysis
Payment channel networks improve the scalability of blockchains by shifting the trans-
action load off-chain to payment channels. A payment channel acts as a ledger between
two parties. However, instead of tracking the transaction history between the two
parties, the payment channel simply records changes in the balances of both parties,
debiting the balance of the payer and crediting the balance of the payee by the payment
amount every time a payment is made from one party to the other. In this way, instead
of achieving consensus among all participants of the blockchain for every transaction,
only the two parties that are involved in each payment channel would need to agree on
any new state of the channel, thus making it a lot faster to agree on transactions as
compared to the blockchain. Additionally, transacting frequently over payment channels
can be a lot cheaper compared to transacting on the blockchain. This is due to the fact
that apart from the fees involved in opening and closing a payment channel, there are
no fees involved when directly transacting with another party across a payment channel.
This makes it potentially a lot cheaper compared to transacting on the blockchain,
where every transaction incurs a transaction fee.

2



1.2. Payment Channel Network Analysis

Although the analysis of payment channel networks spans several dimensions – pri-
vacy [TM20, PSSY21b, ABM+21], efficiency [RBS16, PZS+16b, RMSKG17, SVA+18,
ABWW19, APS+22c, TYA+22], conceptual [DEFM19, AEE+20], game theoretic [AKWZ21a,
ERE20b, ALW20, AHWW20, GHS21] etc. – two of the most important dimensions
of payment channel network analysis are privacy and efficiency, which will also be the
focus of this thesis. In the following, we summarise the main research directions, prior
work, as well as important challenges on both the privacy and efficiency frontiers.

1.2.1 Privacy
Network monitoring and probing attacks. By design, payment channels are
intended to be transaction private. This definition is best illustrated by the following
example: consider two users u and v that open a payment channel between themselves
and an eavesdropping adversary that can only monitor the blockchain. Apart from
knowing that u and v are transacting with each other, as well as when the payment
channel between u and v is initialised and closed (and accordingly, the respective
balances of the users when these events happen), which are published on the blockchain,
the adversary should not know any other transactions that occur between u and v
off-chain over their channel as they are not published on the blockchain.

However, the same conclusion cannot be made if the adversary is allowed to additionally
monitor or probe the network, especially if such actions are essentially cheap [KYP+20].
For instance, although channel balances are typically private, an adversary with nodes
in the network can send out transactions of various sizes between adversarial nodes
(in the guise of "transaction routing") to probe and estimate the balances of channels
in the network [HNR+19, KYP+20, BNT22]. Moreover, the adversary does not even
need to send out transactions in order to gather information about routing patterns
and channel balances. Indeed, an adversary monitoring and routing payments in
the network can also learn information about the source and receiver of transactions
simply by tracing the hash used to lock payments when payments are routed using
HTLCs [MMSK+17, KYP+20, TZS20a, TZS20b, KER21]. Even in the case where
knowing the source or receiver of a transaction is arguably benign, for instance in
the case of rebalancing where the source and the receiver have to be the same node,
knowing some information about the transaction path reveals information about depleted
channels, the transaction rate along certain channels, and consequently, the overall
transaction demand in the network.

Private routing. To counter probing attacks, [BNT22] suggest creating multiple
parallel channels between any two nodes and splitting transactions among these channels.
In this way, the prober will only know the sum of all the channel balances but not
how these balances are split among these parallel channels. Another approach is to
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add some noise to channel balances and publish these noised channel balances in
response to a routing query [TWFO20, DTZG22]. The amount of noise has to be
cleverly selected so as to balance between privacy as well as utility, as too much
noise could give false information to senders and ultimately hinder transaction routing.
Thus, the protocol presented in [DTZG22] adds noise in a way such as to guarantee
differential privacy against all probing queries in any given time window. Information
leakage of the payment path typically occurs during the transaction execution phase,
especially if routing is conducted using HTLCs. To counter this, several works have
proposed some form of hashlock decorelation by rerandomisation of secrets along the
payment path during the transaction execution phase [MMSK+17, MMS+19, TM20].
Finally, to address route discovery in an unknown or private network, where channels
might be completely hidden, [ABM+21] proposed exploratory probing with message
rerandomisation to improve unlinkability.

Private rebalancing. There are currently two main approaches to rebelancing pay-
ment channels in payment channel networks. The first method, and currently the main
approach in the Lightning Network, finds cycles starting and ending with the user that
wants to initiate the rebalancing process [Gitb]. This cycle-finding method is private in
the sense that exact channel balances are not revealed to users outside of the channel.
However, cycle-finding might ignore globally optimal rebalancing solutions. The second
method introduced in [KG17a] formulates the rebalancing problem as a linear program
and sends the linear program together with channel balance constraints to a randomly
selected user or an external third party to solve for the globally optimal rebalancing.
Although doing so achieves the globally optimal rebalancing solution, this method
exposes private channel balances, resulting in a serious privacy violation.

1.2.2 Efficiency
Efficient routing. As mentioned previously, payment channel networks were designed
with efficient payment making in mind, and indeed efficient transaction routing is one of
the most well-studied areas in payment channel network research. Efficient transaction
routing algorithms aim to address the problem of finding shortest (i.e., cheapest) paths
in the network while ensuring a high transaction success probability. The difficulty
of this problem lies in the fact that although the topology of the payment network,
the total capacity of each channel, and the fee functions on each channel are publicly
available, the way the channel capacity is split on both ends of the channel is private.
As such, some transaction routes might fail during the execution simply because some
channels do not have sufficient balance on one end to forward the transaction. Hence,
it is common for senders in the network to try several transaction paths sequentially
until one of them succeeds.
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One approach to ensuring transactions occur with high success probability is to split
payments into smaller amounts and send each unit individually, as smaller transaction
units have a higher probability of being accepted by more channels. This is the
approach adopted by [SVA+18] which also propose a multi-path routing algorithm to
route these smaller payment units. Another approach is to shift the focus to the route
discovery process and use well-connected nodes to perform the search, the idea being
that well-connected nodes typically lie on many shortest paths. This method is used
by [RBS16, MMSKM17, RMSKG17] which all employ landmark routing using these
well-connected nodes as landmarks, as well as multiparty computation to secret share
the balances of the channels to the landmarks. A similar technique is also employed
by [PZS+16b] using beacon nodes. Finally, [DEFM19] introduces virtual channels as a
way to bypass intermediaries in the routing process altogether.

Optimisation of decisions. Another important facet of efficiency in payment channel
networks is optimisation, in particular, the optimisation of the decision making process
faced by users in the network. Examples of some decisions a user in the network would
have to face would be deciding how much funds to inject into the channel during
channel creation, which transactions to accept to forward and which to reject, when to
rebalance channels, and what fee function to allocate to channels so as to maximise
profits. These decisions typically come with associated costs, and impact the future
decision making process of not only the user that makes these decisions, but also
the whole network. For instance, a myopic user that decides to impose larger fees
on their channels compared to the network average in order to maximise short-term
revenue might end up deterring potential senders from routing transactions through
their channels and hence lose out on larger long-term revenue. In this thesis, we study
this optimisation problem from two perspectives: (1) from the perspective of a user
that is already inside the network, and (2) from the perspective of a new user that
wants to join the network.

The problem of optimising some set of decisions of users that are already inside
payment channel networks has been studied in the online setting against various classes
of adversaries by [ABWW19]. Another approach to the problem is to look at the
offline setting, where the goal is to design an optimal scheduler that schedules certain
decisions in advance. This is the approach taken by [FNS21] where the scheduler
decides when to close and reopen channels with more funds, and by [PN20a] where
rebalancing is scheduled periodically based on a measure of the imbalance of channels.
The study of the optimisation problem for a new user that wants to join the network
has roots in network creation games by [FLM+03a], where the goal is to find a network
connection strategy that optimises the utility of the new user. The model and analysis
in [FLM+03a] was adapted in both [AHWW20] and [ERE20b] with different cost models
and objectives that captures various aspects of the utility of users in payment channel
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networks. Finally, an orthogonal but complementary direction to both these optimisation
perspectives is the development and study of richer cost models. This is the case for
channel costs in the work of [GHS21] which proposes a model that takes into account
opportunity costs and interest rates, and also provides an analysis on when to create
channels given the cost model and the transaction demand along a channel.

1.2.3 Challenges
Privacy vs. efficiency. Most existing routing and rebalancing algorithms in payment
channel networks focus on either privacy or efficiency but not both. This problem
is especially prominent when observing the proposed solutions for route discovery.
The method proposed by [PZS+16b] using beacon nodes to discover paths leaks
the source and destination to these beacon nodes, as well as the available channel
balances for nodes on the payment path. The methods that employ landmark routing as
proposed by [RBS16, MMSKM17, RMSKG17] find routes between senders and receivers
efficiently. Nevertheless, the way these methods achieve privacy of channel balances
and the endpoints of the path either rely extensively on multiparty computation, which
is expensive, or strong assumptions about the amount and location of adversarially
controlled nodes in the network. Finally, although the exploratory probing approach as
proposed by [ABM+21] works well to discover shortest paths in a completely unknown
or private network, it is inefficient as it potentially involves a significant portion of the
network with every query.

The same challenge is also observed in rebalancing. Although the cycle-finding rebal-
ancing procedure [Gitb] achieves privacy, it is extremely inefficient as users have to
query each cycle sequentially to check if users in the cycle are willing and have sufficient
funds to participate in rebalancing. The solution found by this method also lacks global
optimality. On the other hand, the method proposed by [KG17a] achieves a globally
optimal rebalancing solution, however it exposes a serious privacy loophole by leaking
the balances of channels to a third party.

Modelling actions and costs. On the optimisation frontier, a crucial challenge is
developing a model of actions and costs that strikes the balance between being realistic
and efficiently solvable – an extremely rich model that accounts for a large action space
and detailed costs would certainly conform better to real-life decision making in payment
channel networks, but the corresponding optimisation problem would be completely
intractable. For optimisation problems that focus on the setting of an existing user in
the network, a common limitation among the proposed solutions is the restricted action
space. For instance, [ABWW19] only focus on accepting or rejecting transactions and
do not consider rebalancing or reopening channels with more funds. Additionally, the
cost model for rejecting transactions in [ABWW19] only assigns a constant unit cost
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of rejection for transactions of any size. This is unrealistic as the rejection cost of a
transaction should take into account the opportunity cost of rejecting the transaction
and consequently missing out on the associated transaction fee, which is a function of
the transaction size. Similarly, [FNS21] and [PN20a] only focus on optimising a single
action: when to optimally schedule reopening channels with more funds and rebalancing
respectively.

Similar drawbacks can be observed in the case of optimisation problems that focus
on the setting of a new user that wants to join the network. A common limitation of
the models proposed in [AHWW20] and [ERE20a] is the assumption that users in the
network transact uniformly at random with other users in the network. This assumption
is often justified by tractability reasons as well as the fact that the distribution of
transactions is hidden in payment channel networks. Nevertheless, this does not make
this assumption any less unrealistic. Additionally, the model of channel creation costs
in both [AHWW20] and [ERE20a] is also limited in the sense that they do not account
for opportunity cost of the locked funds in the channels. In contrast, [GHS21] proposed
a detailed model of channel creation costs which accounts for factors like opportunity
costs and interest rates. However, their model of the utility of new users is incomplete
as they do not take into account potential profits the new user can gain from routing
transactions as well as expected fees from routing to other users that are not directly
connected to the new user.

1.3 Thesis Goal
Given the aforementioned challenges, the goal of this thesis is twofold: the first goal
seeks to address the shortcomings in existing routing and rebalancing algorithms in
payment channel networks that either focus on efficiency or privacy but not both. The
second goal of the thesis is to extend prior models for the optimisation of decisions
for existing and new users in meaningful ways, as well as develop efficient optimisation
algorithms for these models that achieve good approximation and competitive ratios.

To achieve the first goal, we eschew focusing on privacy during transaction execution
as there already exist many efficient solutions that address this problem [MMSK+17,
MMS+19, TM20]. Rather, we focus on route discovery, in particualar, the question of
how to efficiently and privately discover shortest paths in payment channel networks.
We first make the crucial observation that hub-labelling algorithms combine well with
private information retrieval and can be used in tandem to achieve a solution that is
both private, and has good asymptotic guarantees on efficiency. Additionally, we also
propose a rebalancing protocol that is private (users only know the predecessor and
successor in their rebalancing cycle, and no information about any channel’s balances is
known to users outside of the channel), and achieves a more optimal solution compared
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to previous rebalancing proposals like [Gitb, KG17a].

For the second goal, we first propose an enlarged model of the action space that
includes rebalancing channels as well as reopening channels with more funds injected in
the setting of optimising the utility of an existing user in the network. We also account
for the opportunity cost of rejecting transactions in our cost model. In the setting of
optimising the utility of new users that want to join the payment channel network,
we also extend prior models of transactions and utilities in a more realistic fashion by
dropping the uniform assumption on the transaction distribution as well as adding the
opportunity cost of locked funds. In both of these settings, we show that even when
working with these realistic and more complex models, we can still develop efficient
algorithms with good guarantees on the approximation or competitive ratios.

1.4 Outline and Contributions
Roadmap. Chapter 2 provides the necessary preliminaries crucial to the analysis of
payment channel networks in this thesis. The main body of the thesis can be broken
down into two parts. The first part, comprising of Chapters 3 and 4, study the problem
of efficient and private routing and rebalancing on payment channel networks. The
second part, comprising of Chapters 5 and 6, focus on the developing realistic models
of the utility, action space, and costs faced by users that are already inside a payment
channel network and new users that are not yet inside the network respectively. These
chapters also develop competitive algorithms for optimising the utility of these users.
Each of these chapters is pretty much self-contained and can be read independently.
Finally, we conclude the thesis by contextualising our contributions as well as outlining
future research directions in Chapter 7.

Contributions. Contributions in each of the main technical chapters of this thesis
can be summarized as follows:

• Chapter 3 considers the problem of both efficient and private payment route
discovery in payment channel networks. This goal of this chapter is to present a
solution for efficiently finding the cheapest path for routing transactions, but also
ensuring that no information about the shortest path query is leaked. To the best
of our knowledge, prior work on this topic focuses on only either the efficiency
or privacy aspect but not both. Thus, we present the first efficient and privacy-
preserving route discovery mechanism for payment channel networks. Our protocol
uses techniques from hub-labelling to boost efficiency, and private information
retrieval to guarantee privacy, and we show that the precise combination of both
of these techniques is critical to boosting the asymptotic efficiency of our protocol.
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We also present an empirical evaluation of the efficiency of our approach on
real-world Lightning Network snapshots.

• Chapter 4 considers the problem of efficient and private rebalancing of channels
in a payment channel network. Unlike the majority of rebalancing approaches
that use cycle-finding, which could potentially ignore globally optimal solutions,
we present a protocol that is both privacy-preserving and also finds globally
optimal rebalancing solutions. The main idea behind our protocol is to formulate
the rebalancing optimisation problem as a linear program. The resulting flow
computed from the linear program is further decomposed into cycles which can
be efficiently executed using HTLCs. Finally, we use multiparty computation
(MPC) to solve the linear program and decompose the flow into cycles so as to
preserve the privacy of channel balances.

• Chapter 5 considers the optimisation problem an existing user in a payment
channel network would face: how should a user handle incoming transactions
and manage the funds in their channels to avoid channel depletion? We study
the problem in both the offline and online setting. In the offline setting, we
focus on the decision problem of how much capacity to inject into a channel
and, given the capacity injected as well as a transaction stream along a single
link as input, whether to accept or reject transactions over the link. We show
that the this problem is NP-hard. Our main result in the offline setting is an
efficient algorithm that decides on the capacity injected into the channel as well
as which transactions to accept or reject that approximates the optimal solution
with a constant approximation ratio. In the online setting, we still focus on the
problem over a single link, but we expand the action space to include reopening
the channel with more funds injected, as well as rebalancing the channel. Our
main result is a 7 + 2⌈log C⌉-competitive online algorithm, where C denotes the
length of the rebalancing cycle (≤ 4 in most cases in the Lightning Network).
The offline and online variants of the problem are also intrinsically connected – a
fundamental component of our main online algorithm is that it uses an optimal
offline algorithm as an oracle, and our offline approximation algorithm shows
precisely how to approximate this.

• Chapter 6 considers a complementary optimisation problem to the problem posed
in Chapter 5: how does a new user optimise their utility when connecting to a
payment channel network? Unlike in Chapter 5, the focus of the optimisation
problem is not transaction handling and channel management, but rather channel
creation (i.e., who to connect to, how many channels to create, how much
funds to lock into each channel etc.). The main contribution in this chapter
is a novel and realistic model of utilities, which takes into account a realistic
transactions distribution in the network. We also prove some theoretical limitations
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in Theorems 6.4.1, 6.4.2, and 6.4.3 regarding the objective function, and show
that these limitations render the objective function impossible to optimise with
good guarantees on the approximation ratio with the available optimisation
algorithms. However, we also show that with some meaningful constraints, we
can develop optimisation algorithms with good guarantees on the approximation
ratio in these constrained optimisation settings. Our secondary contribution in
this chapter is a topological study of stable networks under our realistic model of
utilities and transactions distribution, and we show in Theorem 6.5.2 that the
star topology is stable under some reasonable conditions.
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CHAPTER 2
Preliminaries

This chapter presents the requisite information regarding blockchains and payment
channels, which will be assumed as background knowledge throughout the rest of
the thesis. We start by fixing mathematical notation, and then briefly describe some
underlying cryptographic primitives. Then we present a brief overview of blockchains,
payment channel networks, and related protocols.

2.1 Mathematical Preliminaries
We begin by defining set and vector notation that will be used throughout the thesis.
We will then define two useful properties (submodularity and monotonicity) of functions
that aid in constructing efficient optimisation algorithms with strong approximation
guarantees. These notions will be used heavily in the technical sections of Chapter 6.

Sets and sequences. We use N, N0, R, R≥0 to denote the natural numbers, natural
numbers extended with 0, reals, and nonnegative reals respectively. For n ∈ N, we use
[n] to denote the set {1, . . . , n}. For two sequences S1, S2, we write S1 ≺ S2 if S1 is
a prefix of S2.

Vectors. We use boldface symbols to denote vectors. For a set S, n ∈ N, and
x ∈ Sn, we use x[i] to denote the ith component of x, for 1 ≤ i ≤ n.

Monotone functions. Let S be some set of size n and let f be some real-valued
set function f : 2S ↦→ R. We say that the function f is monotone if for all sets
A ⊆ B ⊆ S, f(A) ≤ f(B).
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Submodular functions. Let S be some set of size n and let f be some real-valued set
function f : 2S ↦→ R. For a A ⊆ S and an element x /∈ A, we denote the marginal gain
of adding x to A by MGA(x) and define it as f(A∪x)−f(A). We say f is submodular
if for all sets A ⊆ B ⊆ S and for an element x /∈ B, MGA(x) ≥ MGB(x). Note
that if f is a utility function, submodularity captures the natural notion of diminishing
returns where the marginal gain of adding a new element to a given set is smaller when
the set is larger.

2.2 Cryptographic Preliminaries
In the protocols introduced in the next section, as well as for the rest of the thesis, we
assume all processes (honest and adversarial) are computationally-bounded. That is,
they are restricted to run in probabilistic polynomial time (PPT).

Negligible functions. Let f : N ↦→ R. We say f is negligible if for every c ∈ N,
there is an nc such that f(n) ≤ 1

nc for all n ≥ nc. That is, f approaches 0 faster than
any inverse polynomial.

Hash functions. Hash functions form the foundation of the protocols we will describe
in the next section, thus we will first define a hash function (taken from [KL07])

Defintion 2.2.1. (Hash function.) A hash function is a pair of probabilistic time
polynomial algorithms (Gen, H) fulfilling the following:

• Gen is a probabilistic algorithm that takes in a security parameter input 1n and
outputs a key s.

• there exists a polynomial ℓ such that H is a deterministic polynomial time
algorithm that takes in s and a string x ∈ {0, 1}∗ and outputs a string Hs(x) ∈
{0, 1}ℓ(n)

The key parameter s specifies a particular hash function Hs from a family of valid hash
functions. As the protocols presented in the rest of thesis are oblivious to the exact
hash function Hs (we simply assume that Hs is a valid hash function), we simply drop
the key s when we denote hash functions for the rest of the thesis in order to reduce
excessive notation. An important property that the hash functions used in the protocols
in the next section need to satisfy is collision resistance. That is, a computationally-
bounded adversary can find two distinct strings x, x′ such that H(x) = H(x′) only with
negligible probability. Formally, we define the following collision-finding game (taken
from [KL07]):
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Collision-finding game HashCollA,Π(n):

• A key is chosen: s←− Gen(1n)
• The adversary A is given s and needs to output a pair x, x′: (x, x′)←− A
• The output of the experiment is 1 if x ̸= x′ and H(x) = H(x′).

We say a hash function Π = (Gen, H) is collision resistant if for all PPT adversaries A
there exists a negligible function negl such that P[HashCollA,Π(n) = 1] ≤ negl(n).

2.3 Blockchain and PCN Preliminaries
Blockchain. A blockchain is a distributed ledger whereby data is aggregated into
blocks and then appended onto the ledger. Consensus over the state of the ledger is
achieved via consensus mechanisms such as proof of work [Nak08], proof of stake [DGKR18],
proof of space and time [CP19] etc. Note that the process of achieving consensus can
be time-consuming, as it potentially involves all parties in the blockchain.

Blockchain protocols should satisfy the following properties (taken from the Bitcoin
backbone protocol [GKL15]). Note that the following definitions assume synchronous
communication, hence, an underlying blockchain protocol that proceeds in rounds. Also,
all participants in the protocol are either honest or adversarial, and that the fraction of
adversarial participants is bounded.

Blockchain properties:

• Common prefix (parameterised by k ∈ N): for any two honest parties
P1, P2 that adopt chains C1, C2 at rounds t1 < t2 respectively, it holds that
C−k

1 ≺ C2, where C−k
1 denotes chain C1 with the most recent k blocks

removed. This property is also known as "persistence" – any block that is
k deep in an honest party’s chain should also "persist" in all other honest
parties’ chains.

• Chain quality (parameterised by µ ∈ [0, 1] and ℓ ∈ N): for any honest party
with chain C, it holds that for any sequence of consecutive blocks of length
ℓ, the fraction of honest blocks in the sequence is at least µ.

• Chain growth (parameterised by τ ∈ R and s ∈ N): for any honest party
with chain C, after any s consecutive rounds it should adopt a chain that is
at least τ · s longer than C.

Intuitively, the common prefix property states that there is some "common data history"
in the blockchain that all honest parties agree on. The chain quality property states
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that as long as an honest party looks at some subsequence of its chain that is long
enough, the number of adversarial data is bounded, thus the "quality" of the chain is
sufficient. Finally, chain growth states that the blockchain should grow at a sufficiently
fast rate.

Payment channels. Adding transactions to the blockchain can be slow as consensus
over the state of chain needs to be achieved among all honest parties in the blockchain.
Payment channels offer an alternative method for two parties to transact with each
other in an efficient, private, and secure manner. To open a payment channel, two users
u, v first need to make an initialisation transaction on the blockchain. This records the
amount of funds that u and v (say u locks a units and v locks b units) each contribute
as capital to fund the payment channel. Note that these funds are "locked" into the
channel in the sense that they can only be used between u and v to transact with each
other over this channel and they cannot be used somewhere else as long as the channel
remains open. At any point in time, the balance of u (resp. v) in the channel is simply
the amount of funds u (resp. v) has on their end in the channel, and we denote it
by balance(u, v). (resp. balance(v, u)). For example, the initial balance of u in the
channel is a and the balance of v in the channel is b. The state of the channel at any
point in time is simply the balance of both parties in the channel, and the capacity of
the channel refers to the sum a + b of these funds.

Once the payment channel is open, u and v can transact with each other by simply
updating the channel balances in favour of the other party by the transaction amount,
so long as balance(u, v) ≥ 0 and balance(v, u) ≥ 0. Concretely, any party that wants
to make a transaction would propose a new state of the channel which involves a
different split of the capacity on both ends. Both parties will then have to sign the new
state of the channel (2 of 2 multi-signature). If one of the parties does not sign a new
state, the state of the channel remains at its current one. Refer to Figure 2.1 for an
example of payments along a payment channel and the updated balances of each user
in the channel after each payment amount.

A payment channel can be closed at any point in time, releasing the locked funds in the
channel for use in some other application. This involves a closing transaction on the
blockchain to record the final balances of both parties in the payment channel. Thus,
with just two blockchain transactions, any two users can make an unlimited amount of
transactions with each other as long as the transactions respect the balances of each
user in the channel. Since the only transactions recorded on the blockchain are the
initialisation and closing transactions, payment channels offer users a large degree of
privacy as all their intermediate transactions in the channel are only known to both
users in the channel. Finally, payment channel security stems from the fact that both
users in the channel have to sign (and hence agree on) every new channel state.
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u v
bu = 10 bv = 7
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u v
bu = 0 bv = 17

x = 5

u v
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Figure 2.1: Example of payments (denoted by x) between users u, v along their payment
channel and their updated balances (denoted by bu and bv) in the channel after the
payments. The final payment amount of x = 15 cannot happen as it would result in a
negative balance of u in the channel.

Payment channel networks. A payment channel network (PCN) is simply a network
of payment channels. Typically, we represent a PCN as a directed graph G = (V, E)
where the vertices of G are the users in the PCN and the directed edges are payment
channels between two users. We represent bidirectional payment channels (where funds
can move in both directions along a payment channel) between two users u, v ∈ V
as two directed edges (u, v) and (v, u). Two examples of commonly used PCNs are
Bitcoin’s Lightning Network [JP], and Ethereum’s Raiden Network [Rai17].

Routing in PCNs. Users who are not directly connected by a channel in a PCN
can still transact with each other if they are connected by a path of payment channels.
This is done in a multi-hop fashion with the intermediary nodes along the payment
path forwarding the payment amount from sender to receiver. These intermediary users
typically charge a fee for forwarding the transaction that depends on the transaction
amount. For a transaction to be successful, the sender has to first send enough money
to cover both the desired payment amount and all the fees charged by each user on the
payment path. That is, suppose user s wants to send x coins to user r along a payment
path p = {(s, u1), ..., (uk, r)}. Then s must send x + ∑︁k

i=1 fee(ui). Secondly, the
balance of each user along the path must be large enough to forward the payment amount
together with fees. Then for each user ui on p, balance(ui, ui+1) ≥ x +∑︁k

j=i+1 fee(uj).
Although the channel capacities are typically public information, the individual balances
on each end are private; so senders typically have to try different payment paths until
one of them succeeds.
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a b

HTLC(a, b, x+ 0.2, h, 3)

c d

HTLC(b, c, x+ 0.1, h, 2) HTLC(c, d, x, h, 1)

Figure 2.2: Using HTLCs to enforce an atomic payment between users a and d.

Hash timelock contracts (HTLCs). A desired guarantee for payment routing
through a path in a PCN is atomicity, i.e., for all users along the path, either all of
them update their balances or none of the balances in the path get updated. This is
enforced in the Lightning Network using HTLCs [JP]. An HTLC (HTLC(u, v, x, h, t))
is a smart contract between any two users u and v that locks some amount of coins x
using a hash output h from a global hash function H(·) and a timelock t. To get the
locked funds, v has to produce the preimage r to the hash h = H(r) within time t,
upon which the locked funds will be released to v. If v cannot do so within the time
limit, u can claim the locked funds. Payment path atomicity is enforced using HTLCs
for each channel on the path with the same hash value (determined using a secret
chosen by the receiver on the path), but with decreasing timelock values from sender to
receiver to guarantee the security of funds. Figure 2.2 depicts an example of how two
users a and d who are not directly connected by a payment channel in the PCN can
use HTLCs to send an amount of x coins along the payment path {(a, b), (b, c), (c, d)}.
We assume the intermediate users on the payment path c and d each charge 0.1 coins
for forwarding the payment of size x. To do so, the receiver of the payment d first
samples a random secret r and sends h = H(r) to a. a creates a HTLC between a and
b, locking in x + 0.2 coins to account for the intermediate fees along the payment path.
The hashlock for this HTLC is h and the timelock is 3 units of time. Then, b creates a
HTLC between b and c with the same hashlock but with payment amount x + 0.1 and
timelock 2. Finally, c creates a HTLC with d with payment amount x and timelock 1.
To execute the payment, d simply reveals the secret r to c within 1 unit of time. c
then reveals the secret to b, who then reveals the secret to a. Note that intermediate
users are incentivised to reveal the secrets to the previous user on the payment path
within the time frame allocated by the timelock value as this allows them to enforce
the payments from the previous user, which consequently ensures that they do not lose
money.

Rebalancing depleted channels. We say a payment channel is depleted if the
balance of a user in the channel is close to or at 0. If the user with the depleted
balance in the channel does not wish to transact further with their channel partner,
they can simply close the channel and withdraw their funds. However, if they wish
to continue transacting with their channel partner, they would need some means of
increasing their balance in the channel. The most obvious way of doing so is simply to
close the channel and then reopen a new channel with more funds injected (note that
we call this "recharging" the channel in Chapter 5). However, this would involve two
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additional blockchain transactions (the closing and initialisation transactions), as well as
added latency from consensus in the blockchain. A more cost-efficient solution to this
problem is to rebalance the channel. Rebalancing involves shifting funds from channel
to channel in a cyclic fashion while maintaining the invariant that the total balance
of the involved users, that is, the sum of all their balances on their incident channels,
remain the same. Rebalancing is often coupled with HTLCs to ensure atomicity of the
procedure – either the rebalancing happens, or no rebalancing happens. Either way,
no user loses money in the process. As rebalancing is conducted entirely off-chain, it
provides an efficient alternative to reopening new channels. Refer to Figure 2.3 for an
example of how rebalancing is done among 3 users in a PCN. In this example, node u
can rebalance their close-to-depleted channel (u, v) by 10 coins by shifting the funds
in a cyclic fashion beginning with the (u, w) channel. That is, u first sends 10 coins
to w along (u, w). Then w sends the 10 coins to v along (w, v). Finally, v sends the
coins back to u along (v, u). Note that no involved user gains or loses any coins in the
process – they simply reallocate their funds to different channels.

u v
2 1010

10 10

w

15

20 30

4
u v

12 010

10 10

w

5

30 20

14

Figure 2.3: The graph on the left depicts three nodes u, v, w connected in a cycle in a
PCN. The red numbers by each channel represent the balance of a node in a certain
channel. The graph on the right depicts the updated balances of each node on each
channel after rebalancing.
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CHAPTER 3
Efficient and private routing on PCNs

The journey, not the destination
matters.

T.S. Eliot

This section is based on the following publication:

• Krzysztof Pietrzak, Iosif Salem, Stefan Schmid, Michelle Yeo.† LightPIR: Privacy-
Preserving Route Discovery for Payment Channel Networks. In IFIP Networking
2021.

3.1 Introduction
Scalable route discovery mechanisms. PCNs present a promising solution to the
scalability problem of blockchains. However, PCNs also introduce new challenges to
the issue of efficiently transacting with other users. In particular, since users determine
transaction forwarding fees in their channels, different transaction routes in the PCN
would result in different fees. Thus, nodes require scalable mechanisms to discover
"short” (i.e., low-cost) routes. To ensure scalability and support lightweight nodes
(e.g., wallets) in the network, these route discovery mechanisms must be efficient, both
in terms of disk space and control traffic. Especially since payment channel networks
can be more dynamic compared to classic communication networks (e.g., channels and

†Authors ordered alphabetically.
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liquidities can change over time) [GMSR+19], it is crucial that resource-constrained
nodes do not have to store and maintain the entire network topology to be able to
compute a route toward the transaction’s target. Thus, over the last years, several
innovative approaches for a more scalable routing in payment channel networks have
been proposed [PZS+16b, RMSKG17, Wee19, MMSKM17, SVA+18, TZS20b]. For
example, Lightning introduced the notion of trampoline nodes [Wee19] to provide route
discovery services to light-weight clients. The trampoline nodes are more powerful
nodes which know the entire topology (e.g., using gossiping); a wallet then just needs
to know how to reach the route server nodes in its neighborhood and can then request
the desired route.

Privacy. Besides scalability, payment channel networks also need to provide a high
degree of privacy: it is critical that other nodes in the payment channel networks cannot
learn who transacts with whom. In order to provide anonymity in the transaction routing,
payment channel networks typically implement onion routing [DMS04, RMSKG17,
MMSKM17]. However, while onion routing provides security for the routing process, it
does not provide security for the route discovery process. In particular, by requesting
shortest paths to certain destinations from the route discovery servers (e.g., the
trampoline nodes in Lightning), a node may reveal critical or sensitive information
about its planned financial transactions [TS20, NFSD20].

Prior approaches and drawbacks. Prior work on route discovery on paymwent
channels is typically only focus on either the efficiency [RBS16, RMSKG17, MMSKM17,
SVA+18, PZS+16b] or privacy [WZPM16, TM20] aspect of the problem. To the best
of our knowledge, the approach presented in this chapter is the first approach to address
both of these concerns simultaneously.

Contribution. Motivated by this shortcoming of state-of-the-art payment channel
networks, we initiate the study of the design of scalable privacy-preserving route discovery
mechanisms for payment channel networks in this chapter. The main contributions of
this chapter is the first scalable and privacy-preserving route discovery mechanism for
payment channel networks, LightPIR∗. LightPIR provides information theoretic security
guarantees, and is evaluated both analytically as well as empirically, using the Lightning
network. We show that our approach is efficient and practical, and may hence be useful
also in other networks where the security of route discovery is critical. Concretely, we
tested our approach with different snapshots of the Lightning network taken over a
period of two years and our heuristic produces a small hub database (about 2MB),
which at the moment is an improvement by an order of magnitude compared to the

∗The name stands for private information retrieval for Lightning-like networks.
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size of the complete network. With the growth of the network, this discrepancy will
change further in favor of approaches similar to ours.

3.2 Related Work
While the security of blockchains, e.g., related to the underlying consensus proto-
cols [GKW+16, WG16] but also related to the interconnecting network [GRKC15], has
been extensively investigated, much less is known about the security of the recent con-
cept of payment channel networks. The security aspects of payment channel networks
considered so far mainly revolve around connectivity [RMT19] and the multi-hop routing
of payments [TZS20b, MMSK+17]. We refer the reader to the survey [GMSR+20]
for an overview of specific threats related to hot wallets, mass exits, synchronizing
protocols, among others.

Prior work on route discovery primarily focused on efficiency. For example, SpeedyMur-
murs [RMSKG17] (which extends VOUTE [RBS16]) and SilentWhispers [MMSKM17]
rely on clever protocols to speed up route discovery by two orders of magnitude, while
maintaining the same success ratio. Another interesting approach is pursued in the
SpiderNetwork [SVA+18]: the payments are split into units and the route discovery
algorithm routes each of them individually (similarly to a packet-switched network).
This method however also does not account for privacy and cost effectiveness. To trade
off high throughput and probing overhead Flash [WXJW19] distinguishes between mice
and elephant payments, splitting elephant flows across multiple flows. Flare [PZS+16b]
proposes to improve scalability of route discovery by determining beacon nodes, an
approach which also motivates our model. To overcome the cost overheads of multi-hop
routing, thee off-chain channel network Perun [DEFM19] introduces a notion of virtual
payment channels; while this allows to avoid intermediaries for each payment, it does
not solve the discovery problem.

Private route discovery on street networks has been explored in [WZPM16]. Their work
is similar to ours in that they also use a PIR protocol to privately retrieve shortest
path entries in a database. The main difference is the database compression technique:
in [WZPM16] the authors develop a compression algorithm specific to the grid-like
structure of street networks in North America (i.e. each node has degree 4 corresponding
to the 4 cardinal directions), whereas we use hub labelling which has good compression
guarantees on generic networks and we develop an additional heuristic based on the
topology of the Lightning network to get small hubs set sizes.

Our work is motivated by recent empirical work demonstrating issues with confidentiality
during the route discovery process in the Lightning network [TS20, NFSD20]. To
the best of our knowledge, the only work suggesting a more secure route discovery
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mechanism is MAPPCN [TM20], which however does not account of the information
leaking problem addressed in this work.

Our work also builds upon classic works on efficient shortest path computations on
extremely large networks [GH05, Lau06, Gut04]. Of particular interest in our context are
algorithms based on transit node routing (TNR) [BFM+07], which focus on networks
in which a small set of vertices covers most shortest paths, i.e., networks with small
so-called highway dimension. Recently, Abraham et al. [AFGW10, ADF+11] proved
theoretical guarantees on the efficiency of common shortest path search algorithms for
graphs which satisfy this property. The hub-labelling algorithm [ADGW11, ADGW12]
is a variant of TNR and it was shown to be significantly faster compared to other state
of the art shortest path algorithms when tested on real world road networks [ADGW11].
In this chapter, we build upon this approach to scalable routing, tailoring it to the
specific topological properties of payment channel networks.

Information theoretic PIR protocols were first introduced by Chor et al. [CKGS98].
With 2 servers and a simple linear bit summation scheme, they achieve perfect privacy
with a communication complexity of O(n1/3). Since then, follow up work in this area
has mainly focused on lowering the communication complexity [BI01, BIKR02b, DG16,
Efr12, DHS14]. Recently, Beimel et al. [BIKR02a] achieved a communication complexity
of nO( log log k

k log k
) with k servers using locally decodable codes. Under the conjecture that

there are infinitely many Mersenne primes, Yekhanin [Yek08] removed the dependency
on large k in the communication complexity bound and achieved a communication
complexity of nO( 1

log log n
) for a 3 server PIR protocol. Although these newer protocols

achieve a much lower communication complexity compared to the original protocol, the
techniques used in these protocols are also much more complicated. As these benefits
from a lower communication complexity are not that pertinent to us, we focus on
simpler PIR protocols which are similar to [CKGS98] in this chapter.

PIR protocols have already been successfully deployed in many contexts, such as
DNS [ZHS07], private presence service [BDG15], and private retrieval of security
updates [Cap13]. However, we are not aware of any applications of PIRs in the context
of payment channel networks.

3.3 Problem Statement
We model a payment network by a public directed graph G = (V, E), where each edge
e ∈ E has some cost c(e) ≥ 0. The nodes are the clients and an edge e = (u, v)
means there’s a channel available from u to v with transaction cost c(e). We reserve
the letters n = |V | to denote the number of vertices, m = |E| to denote the number
of edges, δ = |E|/|V | to denote the average degree and d for the edge length of the
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longest shortest path in G (if all edge costs are identical this is just the diameter). We
assume the nodes are labelled by λ-bit strings, while λ = ⌈log n⌉ is sufficient, we leave
this as a parameter as one might want to use longer labels in practice.

Below we give our definition of a private route discovery mechanism. The definition
is very similar to the classic definition of private information retrieval (PIR): on the
one hand, is more restricted as we only consider the particular problem of retrieving
shortest paths; on the other hand it is more general as the client is not just supposed
to recover some database entry, but can perform a more general computation on the
retrieved answers to compute the path.

3.3.1 Private Route Discovery Mechanism (PRDM) Definition
The involved parties are a content provider CP , a set of servers S1, . . . ,Sk and a client
C.

The content provider CP gets as input a graph G = (V, E) and processes it into t
databases DB1, . . . , DBk. DBi is then sent to Si.

The client C on input two nodes s, t ∈ V can now interact with the servers and the
correctness property we require is that C’s final output is a shortest path from s to t in
G (assuming CP and the Si’s follow the protocol).

The security guarantee we require is (ℓ, k)-privacy: the view of any of the ℓ > 0 out of
the k servers should not reveal any information about the query source and target s, t.

We are interested in finding efficient schemes, that is, the scheme has to scale well
with the potential growth of the Lightning network.

Let us stress that once we learn a shortest path in a payment network like Lightning
(where shortest will typically mean the path with lowest fees), it’s not guaranteed that
we can actually route a payment through that path as one endpoint on a channel on
the path might not hold enough balance to perform the transfer. As the exact balances
on channels are typically private information (if they were not, one could learn about
transfers by just observing how balances at the endpoints change), we cannot solve
this problem by just using public information.

3.4 Possible Approaches and Drawbacks
We start by giving a description of several schemes that fulfill both the correctness
property and the security guarantee as described above but have varying degrees of
efficiency. Note that for this problem efficiency can be defined in terms of several costs,
namely, the amount of storage incurred by the server or the client, the amount of
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Server storage Communication Server computation Client computation Client storage
Trivial solution O(nλ∆) O(nλ∆) O(1) O(m + n log n) O(nλ∆)
APSP solution O(n2dλ) O(n2dλ) O(n3) O(1) O(n2dλ)
APSP + PIR O(n2dλ) O(n

√
dλ) O(n3 + n2dλ) O(n

√
dλ) O(1)

APSP + Hub Labelling (HL) O(nhdλ) O(nhdλ) O(n3 + n2 max(d, log n) log d) O(h) O(nhdλ)
Our solution O(nhdλ) O(

√
nhdλ) O(n3 + nhdλ O(h +

√
nhdλ) O(hdλ)

(APSP + PIR + HL) +n2 max(d, log n) log d)

Table 3.1: Asymptotic server and client side storage, communication, and computation
cost for the trivial solution, the APSP solution, the APSP solution with a PIR, the
APSP solution with Hub Labelling, and our solution which is the APSP solution with
a PIR and Hub Labelling. n is the number of vertices in the graph, m is the number
of edges, ∆ is the maximum degree of each vertex, λ is the length of the binary
representation of each vertex, d is the length of the longest shortest path in the graph,
and h is the maximal hub set size.

computation involved on the server or the client sides in order to get the final output,
and the amount of data communicated between the client and the server. The amounts
of storage incurred by the server and the client are most crucial parameters and our
main focus in the following. Another important cost is the amount of computation the
client incurs in order to retrieve the desired shortest path, as client-side machines are
typically not as powerful as server-side machines. We start with discussing the most
naive solutions, gradually augmenting them with simple strategies to improve their
efficiency. To provide a summary of the efficiency of each method, we present all the
relevant asymptotic costs described above for each method in Table 3.1.

3.4.1 Trivial Solution: Downloading Entire Graph

A trivial (1, 1)-private solution is to simply have the client download the entire graph
and compute the shortest path locally. Although the server does not need to perform
any computation for this solution, the communication from server to client is significant,
i.e., the entire graph of size ≈ λ · n · δ, and the client has to perform a non-trivial
computation (e.g., Dijkstra which is O(m + n log n)) to retrieve the desired shortest
path. In addition, the client also has to store the entire graph. Taking into account the
fact that in most cases clients only sporadically send small amounts of queries, and
also that the underlying network needs to be frequently updated to account for new
users and channels, it is useful to push the heavy computation and storage burden to
the server; the latter typically runs on machines with superior hardware and storage
capacity.
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3.4.2 Server Computes All Pairs Shortest Paths
A natural (1, 1)-private solution which pushes the burden of computation onto the
server is for the server to precompute and store all the all pair shortest paths (APSPs).
This solution gives a database with N = n(n− 1) ≈ n2 entries (every pair of nodes)
with entries of length L = λ · d, i.e., the λ bit labels of the ≤ d nodes for each path.

Naturally the amount of computation the server would have to do to compute these
APSPs (O(n3)) increases compared to the previous trivial (1, 1)-private solution where
the server does not have to perform any computation. Nevertheless this factor is not as
crucial as the stored database size (O(n2dλ)), which grows quadratically with n. Even
for the moderate sized Lightning network with n ≈ 7000, this gives an almost 2TB
database (with d = 9 and λ = 20 bit labels).

In addition, to maintain privacy, the client cannot simply query the server for the
desired index, as this blatantly reveals the path information. The client would therefore
have to download the entire database from the server to hide their query. Thus, the
price of a constant client-side computation cost is an additional client-side storage and
communication cost of O(n2dλ) (see Table 3.1).

3.4.3 Trivial PRDM from Private Information Retrieval (PIR)
Using APSPs

In a (ℓ, k)-private information retrieval (PIR) scheme we have k servers, each holding a
copy of a database DB which contains N entries, each L bits long. A client C who want
to learn DB[i] for some i, computes queries qi to every Si, and then can (efficiently)
compute DB[i] from the answers a1, . . . , ak. The security property (ℓ-privacy) requires
that any union of ℓ servers cannot learn anything about the query i.

The paper introducing PIR [CKGS98, Corollary 4.2.1.] has a particularly simple
(1, 2)-private PIR where the communication complexity is just 4 max{L,

√
N · L},

in particular, that’s 4L if L ≥ N .†

We can get a (ℓ, k)-private mechanism using a (ℓ, k)-private information retrieval on
top of the APSP solution. Using a PIR protocol similar to [CKGS98] and assuming
that the storage size of each shortest path is smaller that the total number of entries in
the database, i.e. d ·λ < n2, this solution reduces the communication cost between the
client and servers from O(n2dλ) to O(n

√
dλ) as shown in Table 3.1. In addition, the

client now does not need to download and store the database but just has to perform
†In this construction we think of DB as an L×N matrix when L ≥ N , q1 ∈ {0, 1}N is random

and q2 = q1 ⊕ ei where ei is the zero vector with the ith position set to 1. From the answers
ai = DB · qi the client computes a1 ⊕ a2 = DB · ei = DB[i] ∋ {0, 1}L. If L < N one does almost the
same but thinks of DB as a

√
N · L×

√
N · L matrix.
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O(n
√

dλ) XOR operations to get the desired shortest path so the client-side storage
cost is a constant.

From Table 3.1, we see that this solution incurs a larger asymptotic computation cost
on both the server and client side compared to the vanilla APSP solution. Specifically,
the server has to perform O(n2dλ) XOR operations upon each query from the client
in addition to the initial O(n3) computations to get the APSPs. These cost increases
are not too alarming as, firstly, server-side computation costs are not as important as
user-side computation and storage costs. More importantly, the length of the longest
shortest path in the Lightning network d is very small and unlikely to increase much as
the network grows due to the centralised nature of the network (see Section 3.5.2),
and we can reasonably assume λ≪ n.

The server-side storage requirements of this solution is unfortunately the same as the
vanilla APSP solution and is the main drawback of this approach. In addition, the PIR
protocol requires the servers to perform XOR computations linear in the size of the
entire database in response to every query. Thus it would be highly beneficial if the
database could be kept in memory. As outlined above, for Lightning that is already not
possible with this approach.

3.4.4 Hub Labelling
In a hub labelling scheme [ADGW11] one preprocesses a graph such that later, one can
efficiently find shortest paths in-between any two nodes. For some graphs, in particular
street networks, the preprocessed data is much smaller than storing all pairwise shortest
paths.

Concretely, given G = (V, E) the idea is to precompute APSPs. Then compute for
every vertex v ∈ V a set of hubs hub(v) ⊂ V such that for all u, v ∈ V , the shortest
path from u to v (if G is directed also from v to u) contains a vertex that lies in the
intersection of their hub sets hub(u) ∩ hub(v). This is the covering property of the
hub sets.

The preprocessed DB now contains, for every v ∈ V its hub set hub(v) and for every
u ∈ hub(v) the shortest path from v to u (and u to v).

If h = maxv∈V {|hub(v)|} is the size of the largest hub, we can think of the preprocessed
data DB as a database with n = |V | entries of length L = h · λ · d bits, i.e., for
every v ∈ V we have hub(v) ≤ h paths, each of length ≤ d, and thus the asymptotic
server-side storage drops from O(n2dλ) to O(nhdλ). For h≪ n, which is the case for
the Lightning network (see Section 3.6), this allows us to achieve at least an order of
magnitude reduction in server-side storage costs.
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Compared to the vanilla APSP solution, adding hub-labelling increases the asymptotic
server-side computation by an additive factor of n2 max(d, log n) log d. The increase
in computation cost is due to the hitting set computation for each radius. Nevertheless
we note that the increase is not big as d ≪ n in the Lightning network and so the
main cost is still the O(n3) from the APSP computation. In addition, server-side
computation is not as important as server-side storage, and these computations are also
not costs incurred with every query but need only to be be done relatively infrequently,
for instance every two weeks or so to take into account changes in the underlying
network topology.

The main drawback of this solution is that the client needs to download the entire
database to maintain the security guarantee. This would incur an asymptotic storage
cost of O(nhdλ) which is problematic as client-side machines have less storage capacity
compared to server-side machines.

3.5 The LightPIR Approach
Given the above considerations, we are now ready to present our proposed solution,
LightPIR.

3.5.1 Basic Approach
In a nutshell, our construction of a private route discovery mechanism augments
the basic APSP solution with both a PIR protocol (specifically a 2-server RAID-PIR
protocol [DHS14] which is similar in flavour to [CKGS98]) and hub labelling. A client
who wants to learn the shortest path from u to v will query the PIR servers for the
u, v entries, which will be the hub sets of u and v respectively. Then, the client should
perform a set intersection of the two hub sets, which will be non-empty by the covering
property of these hubs, and determine the w ∈ hub(u) ∩ hub(v) for which the length
of the path u→ w plus the length of w → v is minimized. The path u→ w → v is
the sought shortest path from u to v.

LightPIR reaps the benefit of a lower asymptotic storage cost of O(nhdλ) from hub
labelling and a lower asymptotic communication cost of O(

√
nhdλ) from the 2-server

PIR protocol. The composition of these two techniques also lowers the per query
asymptotic server-side computation due to the PIR protocol from O(n2dλ) XOR
operations to O(nhdλ). Compared to the vanilla APSP solution, the user now has to
perform some computation to determine the desired shortest path. This computation is
extremely simple, basically O(

√
nhdλ) XOR operations to privately recover the query

result from the servers and a set intersection on two moderately sized sets of at most
h ≪ n to get the shortest path, and thus can be performed by even the weakest
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Figure 3.1: A plot showing the number of nodes for each degree in the largest strongly
connected component (scc) of the Lightning network on January 2021. The distribution
of degrees is quite similar in Lightning network snapshots taken in dates within the past
two years.

clients. Finally we note that although the asymptotic server and user side computation
costs is higher in our solution compared to the APSP solution with hub labelling, the
asymptotic storage incurred by the user drops from O(nhdλ) to O(hdλ) since the user
just has to store the hub sets of the desired source and target nodes instead of all the
hub sets of all nodes. Again, since h≪ n in the case of the Lightning network, this is
at least an order of magnitude drop in client-side storage requirements.

3.5.2 Optimization of Hub Sets

In order to lower the database storage further, LightPIR relies on a heuristic which
leverages the specific topology of the Lightning network to optimize the size of hub
sets. We first begin with a brief description of the Lightning network topology and then
describe the heuristic.
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Network Topology Characteristics

To understand and exploit the specific topological characteristics of payment channel
networks, we downloaded a number of historical snapshots of the Lightning network
from the Lightning github repositories [Gita, Dec]. For instance, a representative
network snapshot on January 2021 comprises of 6,376 nodes, 39,993 channels, and
3,650 strongly connected components, although except for the largest one, almost all
of the rest components have only a very small number of nodes. We thus focus our
analysis on the largest connected component of each snapshot. The one of January 2021
has 2,707 nodes and comprises a majority (31,350) of the total number of channels.

As can be seen from Figure 3.1, the majority of the nodes in the largest component
of the Lightning network have very low degrees and about 100 nodes have degrees
of > 100. The largest component also has a relatively small diameter of 9. We can
therefore infer a large degree of centralisation in the Lightning network, with a few
central nodes of high degree connected to each other as well as connected to shorter
chains of vertices (see Figure 3.2).

A channel (i.e. an edge) between two nodes in the network is weighted by its channel
fee. This usually comprises of a base fee which is independent of the amount one wishes
to move through the channel, and an amount-specific rate fee which depends on the
amount sent across the channel. Table 3.2 includes a number of network characteristics
for a number of snapshots of the Lightning network over the past two years.

Hub Set Computation: Greedy Heuristic

One way of computing the hubs for each node in the network is to make use of the
highway dimension (HD) algorithm [AFGW10, ADF+11]. Intuitively, HD is a graph
metric that captures the size of a subset of nodes that intersects all shortest paths
of non-trivial length. In order to compute the HD, we compute sets of nodes that
intersect all paths of size (r, 2r] for a small set of radii and measure how sparse these
sets are in the network. In the following, we explain how we use these sets to compute
the hubs for each network node (Algorithm 3.1).

In [AFGW10], the authors give a definition of HD based on shortest-path covers and
also give an approximation algorithm to compute the HD of a network using this
definition. In [ADF+11], the authors present a modification that improves their earlier
work, which also applies to the shortest-path covers algorithm. We further modify this
approximation algorithm with a heuristic from observing the topology of the Lightning
network, as shown in Algorithm 3.1, to both return a hub set for each node in the
network, and also maintain an upper bound on the HD of the network. That is, we
always overapproximate the HD but never underapproximate it.
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radius = 2r = 4

Figure 3.2: A graph created from star graphs where the centers of the graphs form a
clique. A few paths of length in [r + 1, 2r] for r = 2 with a (red) cover point on each
path are shown. A ball (neighborhood) of radius 2r = 4 is shown, and it contains a
substantial fraction of the graph, and thus the cover points.

We present a heuristic for computing an upper bound of the highway dimension (HD)
in Algorithm 3.1. Our heuristic is a modification of the approximation algorithm derived
from the shortest-path cover definition of HD in [AFGW10].

We present a few necessary ingredients from [ADF+11, Section 4], before elaborating
on our heuristic. Let G = (V, E) be the network topology. The neighborhood Nx(u) of
a node u ∈ V for a radius x is the set of all nodes that appear in a path P , such that
v ∈ P and |P | ≤ x, where |P | denotes the length of the path P (Nx(v) contains the
same number of nodes as the ball with center u and radius x). Moreover, a set C of
nodes is a (k, r)-shortest path cover ((k, r)-SPC) of G if and only if (I) for each shortest
path P , such that r < |P | ≤ 2r, P ∩ C ̸= ∅ and (II) ∀u ∈ V , |C ∩ N2r(u)| ≤ k.
Then, if G has HD h, then for any r > 0 there exists an (h, r)-SPC of G. Thus, the
authors claim that by using the greedy O(log n) approximation for computing hitting
sets, we can combine the above into an algorithm that computes a bound of HD in
O(h log n), where h = HD(G) is the highway dimension of G. Specifically, given a
hitting set cover[r] of all pairs shortest paths of length in (r, 2r], they make sure that
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2r

2r

Figure 3.3: A street network with 4 shortest paths of length in (r, 2r] (for r ≈ 500m)
and a cover point of those paths (in red) highlighted. A ball (neighborhood) with radius
2r (one with center at the starting point of a path shown in purple) will only contain
cover points resulting from relatively few paths "in the neighbourhood".

condition I holds and then they can fulfill Condition II by taking all cover[r] ∩N2r(v)
intersections for all v ∈ V and setting k to be the maximum size of those intersections.
As mentioned in [ADGW11], it suffices to compute the above with the set of radii
r ∈ {2i | i ∈ N ∧ 2i ≤ diameter(G)} Of course, an exact hitting set algorithm would
give a smaller cover[r], but computing it is NP-hard.

Our heuristic is based on the key observation that, due to the centralised nature of
the network, high degree nodes in the Lightning network appear in a vast majority of
shortest paths, as opposed to the less dense and centralised road networks for which
HD was originally designed (Figure 3.3). Thus many neighborhoods for center u and
radius 2r include these high degree nodes, which work as gateways to many remote
nodes. We denote by base(ℓ) the set of the ℓ nodes with the highest degree (in
short, base). We noticed that for network topologies similar to the one of Lightning
removing the base nodes after computing the covers can significantly reduce the HD
(Figure 3.2). Specifically, we adapt the HD computation by first computing the cover
sets as in [AFGW10, ADF+11], but then removing the base nodes and all the edges
connected to the base nodes to obtain the topology G = G \ base, in which we
compute the per-node hubs as follows. That is the hub set of node u for radius 2r is
defined by hubs_in_neighb(u, r) = base ∪ (NG

2r(u) ∩ cover[r]), where NG
2r(u) is the

neighborhood N2r(u) computed in G. Note that [ADF+11] (in addition to [AFGW10])
requires that the path weights are unique integers, but this is easily achieved with
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insignificant perturbations of edge weights (in our case we initially set the weights to
be the channel base fees and then perturbed them). We illustrate this heuristic in
Algorithm 3.1 and show that it correctly computes an upper bound HD(G) of HD(G)
in Lemma 3.5.1.

Lemma 3.5.1. Algorithm 3.1 computes an upper bound of HD(G).

Proof. We prove that for any two communicating nodes s and d, there exists a hub
node in the set of hubs that lies on the shortest path between s and d, SP (s, d). Let
|SP (s, d)| = k and let r be the radius for which r < k ≤ 2r (there has to be at least
one such radius as our set of radii covers all shortest paths). If SP (s, d) ⊂ NG

2r(s),
i.e. if SP (s, d) entirely appears in the neighborhood with center s and radius 2r in
the resulting topology after removing base from G, then the hub for s and d is in
SP (s, d) ∩ cover[r], as cover[r] hits all shortest paths of length in (r, 2r]. Otherwise,
if SP (s, d) does not entirely appear in NG

2r(s), then there exist at least one node in
base that intersects SP (s, d). Since base is included in the set of hubs (Algorithm 3.1,
line 14), then the proof is complete.

Note that from the proof of Lemma 3.5.1, we guarantee the covering property and
hence correctness of the hub sets: the hub set of any node covers all shortest paths
from that node to any other node in the network. This means that any two hub sets in
a connected network must certainly have a non-empty intersection.

The time complexity of Algorithm 3.1 is computed as follows. The APSP step takes
O(n3) and the partitioning of APSP according to their length takes O(n2 log d). The
computation of covers, which includes the computation of hitting sets (greedy heuristic
costsO(n2 max(d, log n))), takesO((n2 max(d, log n)) log d) and the hub computation
takes O(n log d). Thus, in total O(n3 +n2 log d+(n2 max(d, log n)) log d+n log d) =
O(n3 + n2 max(d, log n) log d) (cf. Table 3.1). In practice, the diameters of the
Lightning network snapshots that we used to test Algorithm 3.1 were quite small, thus
the running time was dominated by the APSP computation (which was a matter of
minutes).

3.6 Empirical Evaluation
To provide a first empirical evaluation of our approach, we implemented LightPIR and
ran experiments on historical snapshots of the Lightning network from the Lightning
network gossip repository [Dec]. In general, we find that our approach indeed achieves
an improvement by an order of magnitude in terms of storage requirements and a
roughly 40% reduction in the highway dimension of each snapshot, which directly
translates to a reduced hubs database.
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Algorithm 3.1: LightPIR’s hub set optimization
Input: G = (V, E), the network topology and ℓ, the number of high degree

nodes to use as base
Output: HD(G) (bound on HD(G)) and hubs(u), ∀u ∈ V

1 APSP ← allPairsShortestPaths(G);
2 radii← {2i | i ∈ N ∧ 2i ≤ diameter(G)};
3 base← highDegreeNodes[0 : ℓ− 1];
/* compute shortest path sets */

4 for r ∈ radii do shortestPaths(r)← ∅; /* init */
5 for path ∈ APSP do
6 for r ∈ radii do
7 if r < |path| ≤ 2r ∧ base ∩ path = ∅ then
8 shortestPaths(r).add(path);

/* compute hitting sets and covers */
9 for r ∈ radii do

10 cover[r]← base ∪ hittingSet(shortestPaths(r));
/* compute NG

2r(u) ∩ cover[r] sizes & hubs */
11 G← G \ base;
12 for u ∈ V do hubs(u)← ∅; /* init hubs */
13 for (u, r) : u ∈ V ∧ r ∈ radii do
14 hubs_in_neighb(u, r)← base ∪ (NG

2r(u) ∩ cover[r]);
15 hubs(u)← hubs(u) ∪ (hubs_in_neighb(u, r));
16 HD(G) = maxu,r |hubs_in_neighb(u, r)|;

Setup In our experiments, we used a virtual machine with 24 cores (Intel Xeon
CPUs E5-2650 v4 at 2.20GHz) and 16 GB RAM, running Ubuntu 18.04.1 LTS. Our
experiments were implemented in Python (version 3.7.6) using networkx [HSS08] among
other libraries.

Data The extracted snapshots range from March 2019 to the current state (January
2021) with the smallest snapshot having 3,480 nodes and the largest having 6,376 nodes.
We ignore earlier snapshots as they have too few nodes. We performed our empirical
evaluation on the largest strongly connected component (SCC) in the snapshot and we
found that although the network size almost doubles from March 2019 to January 2021,
the number of nodes in the largest SCC remains pretty consistent across all snapshots
(≈ 2500 nodes). The first seven columns of Table 3.2 give a complete view of the
datasets used.
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Table 3.2: Lightning Network Snapshot Characteristics and Evaluation Results (scc
stands for strongly connected component(s))

largest scc
date nodes channels scc baseline heuristic base max hub hub DB exec.

nodes channels diam. HD bound HD bound size set size size (MB) time (h)
13-03-2019 3480 45071 994 2480 42025 7 386 209 100 271 1.5 2.03
13-07-2019 4469 53084 1804 2661 46733 7 312 191 100 248 1.4 1.41
13-09-2019 4733 51508 2027 2706 45774 7 389 228 100 304 2.1 2.64
13-11-2019 4598 44784 2158 2422 38011 6 306 186 110 235 1.2 1.31
13-03-2020 5070 48340 2356 2712 41571 6 368 212 100 270 1.7 2.67
13-05-2020 5557 49569 2570 2985 42093 8 347 196 100 257 1.6 1.98
13-07-2020 5888 51932 2748 3136 44005 7 361 211 100 286 1.8 2.27
13-09-2020 5972 51783 2800 3171 43844 7 373 220 112 285 1.8 2.47
13-11-2020 6074 48361 2978 3089 40695 8 419 253 103 315 2.3 2.96
13-01-2021 6376 39993 3650 2707 31350 9 422 259 106 314 1.8 1.83

Results We computed the optimal base size for the largest SCC in each snapshot by
running a binary search to find the size of the base set that minimises the approximate
highway dimension of the SCC as computed by our algorithm (ℓ in Algorithm 3.1’s
input). The baseline algorithm of [AFGW10, ADF+11] is the one where ℓ = 0, i.e., there
the base set is empty. As shown in Figure 3.4, for most Lightning network snapshots a
base size of around 100 nodes minimises the approximate highway dimension of the
largest SCC. In fact, the reduction in highway dimension is around 40% across all
snapshots when compared to the baseline (see Table 3.2 baseline HD bound vs heuristic
HD bound).

Across all snapshots the median hub set size as computed by our algorithm is between
150 to 200 nodes, with the maximum hub set size being 315 nodes. The distribution
of hub sizes for each snapshot is shown in Figure 3.5. Given that the average size for
storing each snapshot is about 13MB, our method provides an overall reduction of an
order of magnitude in terms of the hub set sizes (cf. second last column of Table 3.2).
Due to the inclusion of the base, the minimum hub set size is at least 100. Specifically,
as shown in Table 3.2, the average database size across all snapshots is 1.65MB.

The running time for each snapshot is about two hours (last column of Table 3.2).
This includes the search for the base size that minimizes the HD (and thus the hubs
database). Thus, it is possible to run our algorithm periodically to update the hub sets
as the lightning network topology changes.

3.7 Future Directions
We would like to highlight three interesting directions extend our work on private and
efficient routing on PCNs.

Firstly, when shortest paths are not unique, most available algorithms for selecting a
shortest path out of a set of paths of equal length just select a random one from the set.
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Figure 3.4: The x-axis shows the different base set sizes tested (a base with size ℓ
includes the ℓ nodes with the highest degree) and the y-axis shows the corresponding
highway dimension bound. The baseline computation corresponds to the values for base
size 0, which are the highest. We run our heuristic with the base size that minimizes
the highway dimension bound (thus also the hub database) and reported the results in
Table 3.2.

In terms of reducing the size of the hub set, one can design smarter algorithms that
do not select the path randomly, but optimise for paths with a larger vertex overlap
with the set of other paths already selected. This ensures that when we greedily select
vertices to be in the hub set, we would select vertices that cover a larger set of paths
and so could potentially decrease the size of the hub set.

Secondly, our current heuristics to calculate the highway dimension of the network and
to reduce the size of the hub sets are heavily inspired by the topology of the Lightning
network. It would be interesting to track the topology of the Lightning network as the
network grows in size, to see if there are significant changes and to think about how to
incorporate these changes in the network topology to further optimise the hub set sizes.
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Figure 3.5: Box plots of hub sizes (in number of nodes) for a number of snapshots of
the Lightning network. The green line shows the second quartile (median), the bottom
and top of each box show the first and third quartiles, respectively, and the extended
lines out of each box (whiskers) end at the min (bottom) and max (top) values of the
datasets.

Lastly, we note that the network topology and thus the hub sets change with the
amount of Bitcoins a user wants to send, e.g., due to the capacity limitation of channels
in the network (i.e. the amount of Bitcoins each channel can forward). For instance the
shortest path from Ahad to Ben might go through Charlotte when Ahad wants to send
1 Btc but the path might have to go through Djordje when Ahad wants to send 10 Btc
because Charlotte cannot forward more than 1 Btc. Additionally, the topology could
also change due to the way the fees are calculated. The fees on channels comprise of a
base fee and a rate fee which depends on the amount sent over the channel and thus
the shortest path information could change drastically between sending small or large
amounts of Bitcoin. Since we do not yet take into account fees, our current work can
be seen as optimised for sending a fixed amount of Bitcoin and thus an interesting
future direction would be to take into account the amount of Bitcoins a user wants to
send and design a similarly efficient and private method of extracting shortest paths.
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CHAPTER 4
Efficient and private rebalancing on

PCNs

A kettle had beans inside,
And stalks of the beans made a
fire;
When the beans to the
brother-stalks cried,
“We sprang from one root, why
such fire?”

Cao Zhi

This section is based on the following publication:

• Zeta Avarikioti, Krzysztof Pietrzak, Iosif Salem, Stefan Schmid, Samarth Tiwari,
Michelle Yeo. † Hide & Seek: Privacy-Preserving Rebalancing on Payment Chan-
nel Networks. In Financial Cryptography and Data Security - 26th International
Conference, FC 2022

4.1 Introduction
Depleted payment channels. As users transact more frequently in a PCN, the
likelihood that their balance in their channels gets depleted consequently increases.

†Authors ordered alphabetically.
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Unlike a classic bank account where users can always top up their account with more
funds if necessary, a major drawback of payment channels is that users cannot simply
top up their balance in the channel off-chain once it is depleted. Instead, they have to
go on-chain to close and then re-open a new payment channel with more funds injected.
As transacting on the blockchain is expensive (in the form of added transaction fees
and delays), it is imperative for nodes to avoid on-chain solutions as much as possible.

Rebalancing as a solution to channel depletion. A solution to extend the
lifetime of payment channels that circumvents the blockchain altogether is rebalancing.
Rebalancing updates payment channels off-chain with the crucial condition that the
overall balance of each node is unchanged (see Figure 2.3 in Chapter 2 for an example
of rebalancing among 3 nodes in a PCN). Although it is not possible to shift funds
from one payment channel to another off-chain, the effect of rebalancing is precisely
that: funds from well-funded payment channels transfer to depleted ones.

Current rebalancing approaches and drawbacks. There are two predominant
approaches to rebalancing. The first involves a local search of rebalancing cycles (i.e.,
transactions of a fixed amount that begin and end with the same user) initiated by a
single user. This is the current rebalancing approach in the Lightning Network [Gitb].
The second approach (introduced in [KG17a] and termed "Revive") is global instead
of local: nodes looking to rebalance specify a maximum amount of rebalancing flow
along each of their channels, where the rebalancing transactions are determined by a
global evaluation of the state of the network.

A drawback of single-user based cycle finding is it overlooks other rebalancing requests
across the network, leading to local solutions. Figure 4.1 illustrates one such consequence
which we call the "cancelling out” effect. Suppose a user Charlotte wants to move 10
coins from her channel with Ben to his channel with Ahad. If Charlotte utilises the
cycle finding approach, she will only manage to rebalance 6 coins as depicted in the
graph on the right. The channel between Ben and Ahad would be ignored because of
the lack of sufficient balance on Ben’s end. In a globally optimal solution, however, the
entire rebalancing in the graph on the left can be executed, as it takes into account
that transactions in both directions can be above the capacity of a channel, as long as
they "cancel out" and the resulting transaction is within the capacity.

Furthermore, users must check if the other users on the cycle are willing to forward
the rebalancing transaction amount, even after finding rebalancing cycles. This could
lead to a prolonged and laborious search for cycles with willing participants. Lastly, this
approach requires users to have global knowledge of the network topology which can
be unrealistic in terms of storage as the size of the network increases.

38



4.1. Introduction

Charlotte

Ahad

Djordje

Ben

10 10

4

6 6

Charlotte

Ahad

Djordje

Ben

6 6

6 6

Figure 4.1: The cancelling out effect. The weighted, directed edges on the graph on
the left specifies the maximum coins a user can forward along the direction of the edge.
The graph on the right shows the maximum rebalancing cycle Charlotte can achieve
using the cycle finding approach.

The second approach does not suffer from local limitations such as the canceling
out effect, and theoretically achieves the global optimal rebalancing. Revive [KG17a]
implemented this method by assigning a random delegate, either a trusted external
third party or someone from the set of participants, to receive channel constraints and
solve a linear program that models rebalancing. This is a serious privacy loophole,
since the delegate now has information on the concerned payment channels. Moreover,
the delegate has control over the rebalancing output; for instance, the delegate may
compute the rebalancing transactions in a malicious or suboptimal way, favouring some
transactions over others. Although the authors proposed a method for any participant
to challenge the rebalancing transactions, the process is lengthy and requires giving the
challenger access to the balances of all participants.

Contribution. In the light of these drawbacks of current rebalancing approaches on
PCNs, we present Hide & Seek, the first opt-in rebalancing protocol that is both
private and achieves a globally optimal rebalancing. Each party that is interested in
rebalancing specifies the maximum amount to be forwarded in each of the party’s
channel. We employ selected delegates that receive the maximum amounts per channel,
calculate and share with each party the exact amount to be moved in each channel. We
formulate our problem as a linear program and set our objective function to maximize
the total amount of funds to be rebalanced in the network. Our protocol does not
involve transaction fees.

On the other hand, we leverage multi-party computation (MPC) to obtain a fully private
solution. Specifically, the participants in Hide & Seek only learn the information
they would have learned if a trusted third party computed the optimal rebalancing and
returned to each participant the amount to be moved along each of their channel. No
sensitive information such as the channel balances is leaked.
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Private Globally optimal Opt-in Network locality
Cycle finding solution ✓ ✗ ✗ ✗

Revive ✗ ✓ ✓ ✓

Our solution ✓ ✓ ✓ ✓

Table 4.1: Summary of main approaches for rebalancing. Private solutions are solutions
that do not leak balance information. Globally optimal refers to the optimality of the
rebalancing solution. Opt-in refers to solutions where willing users choose to participate
in the protocol and non-willing users are not involved at all. Network locality refers to
solutions that only require local knowledge of the PCN.
Finally, we guarantee the rebalancing can be securely and efficiently executed. We
propose a simple way to decompose the optimal rebalancing circulation into a set of
transaction cycles. As a result, the transactions of each cycle are easy to execute
atomically using HTLCs. We note that atomicity is limited to each rebalancing cycle,
therefore increasing the protocol’s robustness; any cycle can be executed successfully
regardless of the success of other cycles.

We highlight the advantages of our approach in Table 4.1.

4.2 Related Work
Rebalancing PCNs. There are several payment channel primitives proposed in
literature [Spi, PD15, DW15, AKWZ21a, ALW20, MBB+19b]. Regardless of the
primitive, a challenge all PCNs share is how to route transactions in the PCN while
maintaining balanced channels for as long as possible. Classic routing studies in PCNs
like SilentWhispers [MMSKM17], SpeedyMurmurs [RMSKG17], and others [PZS+16b]
ignore that channels may be slowly depleting. A promising approach to avoid channel
depletion and prolong the network availability for transaction routing is to maintain
balanced channels or occasionally perform rebalancing. But transaction routing is a
challenging task on its own because the channel balances remain secret for privacy
purposes [KG17a, SVR+20a, YXK+18], let alone avoiding channel depletion on-top.

Khalil and Gervais introduce the first channel rebalancing protocol, called Revive [KG17a].
They formulate the problem as an LP, similarly to our work. Then, a delegate is elected
to solve the LP and return the solution to the rebalancing participants. Although
our work lies close to Revive, it also differs in several aspects. First, Revive considers
rebalancing as an LP as well, but Hide & Seek employs faster and more specific
min-cost flow algorithms. Second, Revive relies on a single delegate to compute the
optimal rebalancing which leaks private information about balances to the delegate. In
contrast, Hide & Seek uses MPC to achieve full privacy guarantees. Finally, atomic
execution of the rebalancing transactions in Revive requires the transaction language of
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the underlying blockchain to be Turing-complete, and thus it is not suitable for Bitcoin.
Hide & Seek avoids this issue by first decomposing the optimal rebalancing into cycles,
and then executing these cycles atomically using HTLCs. The cycle decomposition in
Hide & Seek also ensures that, as long as the channel is not part of all cycles, some
rebalancing can still occur if individual HTLCs fail on a channel.

From a practical perspective, rebalancing in the Lightning Network currently utilises
a brute force search for rebalancing cycles with sufficient capacity. An automated
approach for doing so using the imbalance measure was proposed by [PN20a]. Unlike
Hide & Seek, these methods do not leverage other rebalancing requests to find
the globally optimal rebalancing. These methods also require nodes to have global
knowledge of the network whereas nodes in Hide & Seek only need to have local
knowledge of the PCN.

Recently some works introduce routing protocols that attempt to maintain balanced
channels. In particular, Spider [SVR+20a] is a payment routing algorithm that maximizes
the throughput while maintaining the original channel balances, without providing
rebalancing however. Li et al. [LMZ20a] propose to extend the lifetime of payments
channels by estimating payment demand, and using this estimate to decide on the
initial balance of channels. Engelshoven and Roos [vER20], on the other hand, leverage
routing fees to incentivize the balanced use of payment channels. All these works are
orthogonal and complementary to ours, as we introduce an opt-in rebalancing protocol.

Network flows and MPC. The general problem of solving network flow problems
via MPC is considered in [Aly15]. Various privacy preserving implementations of
combinatorial optimization problems are presented. The author acknowledges that
the cost for privacy is very high even for the simplest of problems. Roughly speaking,
their MPC implementations must iterate for the theoretical worst-case number of
iterations to maintain privacy. For the practical problem of rebalancing though, we
do not choose to implement extra iterations. On the other hand, we believe that
suboptimal rebalancing is better than no rebalancing, and recommend terminating the
min-cost flow solution prematurely if needed. Both scaling algorithms and network
simplex algorithms monotonically generate better solutions in each iteration, leaving
the participants with a feasible solution if they stop early.

4.3 Preliminaries
In this section, we summarise some relevant background information and standard
algorithms regarding network flows which will be useful for the rest of this chapter.

Consider a directed graph G = (V, E) and the associated |E|-dimensional Euclidean
space of non-negative flow along each edge. A circulation is a flow f = (f(u, v))(u,v)∈E
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such that the net flow through each vertex is zero: ∑︁
v∈V

f(u, v) = ∑︁
v∈V

f(v, u),∀u ∈
V . Two circulations f1, f2 can be added to get yet another circulation: f1 + f2 =
(f1(u, v) + f2(u, v))(u,v)∈E. A cycle is a sequence of vertices v1, v2 . . . vk such that
(vi, vi+1) ∈ E,∀1 ≤ i ≤ k − 1 and (vk, v1) ∈ E as well. We may equivalently refer to
this cycle as (e1, e2 . . . ek) where ei = (vi, vi+1), ∀1 ≤ i ≤ k− 1 and ek = (vk, v1). We
call k the length of this cycle. A cycle flow f of weight w on cycle C is a circulation
where f(e) = w,∀e ∈ C and f(e) = 0 otherwise.

A standard result of network flow theory is that any circulation may be expressed as a
sum of at most |E| cycles. We refer the reader to the textbook of Ahuja, Magnanti
and Orlin( [AMO93]) for a detailed treatment.

4.4 Protocol Overview and Model

4.4.1 System model
Payment network topology. We model the PCN as a graph G̃ = (Ṽ , Ẽ), with
a vertex for each node and an edge between u and v if there is a payment channel
between them. Let V ⊂ Ṽ be the users in the PCN that are interested in rebalancing
and let G = (V, E) be the subgraph of G̃ induced by V . We denote |V | = n, |E| = m.
We assume each user u has only local knowledge of the PCN topology, i.e., only knows
the capacities and balances on the edges incident to u.

Cryptographic assumptions. We assume the existence of secure communications
channels, hash functions and signatures. We follow [DN03] and assume the concept of
an arithmetic black box for MPC FABB, in particular with functionalities like secret
sharing, storage, retrieval, addition, multiplication, and comparisons.

Blockchain & network model. We assume a synchronous network, i.e., there is
known bounded message delay. We further assume the underlying blockchain satisfies
persistence and liveness as defined in [GKL15].

4.4.2 Protocol overview
In a nutshell, our proposed protocol Hide & Seek consists of two phases: an
exploration phase and an execution phase. Firstly, the goal of the exploration phase is
to discover rebalancing cycles privately and efficiently. Then, the goal of the execution
phase is to guarantee that the rebalancing transactions are executed in a secure manner.
At the same time we want to maximise the efficacy of our protocol, that is, we want as
many rebalancing cycles to go through as possible.
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Exploration phase. The exploration phase first formulates the rebalancing problem
as a linear program. Then we randomly select k delegates out of the participants
to perform an MPC protocol to jointly solve the linear program. Next, any set of
participants that wish to participate in the rebalancing protocol prepares the shared
inputs to the delegates. The output of the exploration phase is a rebalancing circulation.

Execution phase. We first efficiently decompose the rebalancing circulation output
of the exploration phase into a set of cycle flows. These cycle flows have the property
that they are sign-consistent, i.e. they are consistent with the direction of the flows in
the rebalancing circulation. This makes executing these cycles incentive-compatible, as
no user would have to execute transactions which violate their specified rebalancing
capacity and direction along channels. Once this is done, we enforce atomicity of these
cycles by creating an HTLC for each cycle which ensures either transactions along the
entire cycle goes through or none at all.

4.4.3 Desired properties & threat model

In general, we assume a computationally bounded adversary, i.e., runs in probabilistic
polynomial time. The properties Hide & Seek should guarantee are the following:

1. Balance conservation (security): The total balance of each node, which is
the sum of the node’s balances on each incident channel, must remain the same
before and after Hide & Seek, even when all other participants are corrupted
by the adversary.

2. Privacy: The information revealed during Hide & Seek should be not exceed
the minimum required to execute rebalancing: (a) the participants must only learn
the transaction amounts for each of their payment channels; (b) the delegates
of MPC should not be able to determine private financial information of the
participants. Both (a) and (b) should hold as long as one of the delegates is not
corrupted.

3. Optimality (completeness): Assuming every participant is honest, the result
should be optimal in that no other rebalancing yields greater total change over
all payment channels.
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4.5 The Hide & Seek Protocol

4.5.1 Exploration phase
Linear programming for rebalancing

The practical problem of rebalancing has many facets, including keeping participants’
financial information private and facilitating coordination. We overlook these considera-
tions momentarily to present the underlying optimization problem of rebalancing.

For a payment channel between (u, v), the users would like to move the state
balance(u, v) towards a desired state balance∗(u, v). If balance∗(u, v) > balance(u, v)
then rebalancing would involve u transferring funds to v, and we model this as a
directed edge from u to v with capacity m(u, v) := balance∗(u, v)− balance(u, v). If
balance∗(u, v) < balance(u, v) then there is a directed edge from v to u with capacity
m(v, u) := balance(u, v)− balance∗(u, v).

The capacities m(u, v) represent the most flow that can occur through each channel
during rebalancing. If m(u, v) = 0 the edge from u to v is either non-existent or
equivalently, a zero-capacity edge. We also enforce that if m(u, v) > 0, then necessarily
m(v, u) = 0.

Let us denote a potential rebalancing by f ∈ R|E| on this directed graph, where f(u, v)
denote the flow from u to v. Since rebalancing should not result in a net financial gain
or loss for any participant, we require f to be a circulation. Recall that it means the
net flow through each vertex is zero:∑︂

v:(u,v)∈E

f(u, v) =
∑︂

v:(v,u)∈E

f(v, u).

Not only must the flows be non-negative, but they must also satisfy the capacity
constraints as specified by participants:

0 ≤ f(u, v) ≤ m(u, v).

Thus, the set of valid rebalancings is a polytope in m-dimensional Euclidean space
defined by n + 2m linear constraints: n zero flow constraints for each vertex and m
pairs of flow capacity constraints for each edge.

We wish to compute a rebalancing that maximizes the linear objective ∑︁
(u,v)∈E

f(u, v).

We call the linear program so specified the rebalancing problem. This choice of objective
function amounts to maximizing the total change in each payment channel’s balance
towards its desired state.
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Solving the rebalancing problem

One can apply any linear programming algorithm of preference to solve the rebalancing,
such as any from the family of simplex methods. In fact, the rebalancing problem can
be reduced to the min-cost flow problem, a specialization of linear programming which
can be solved more easily. For instance, the min-cost flow problem admits a strongly
polynomial algorithm, meanwhile the corresponding question for linear programming is
a major open problem in the field. [APS+22a] illustrates how the rebalancing problem
is equivalent to a min-cost flow problem with the same number of vertices and edges.
Henceforth, we refer to the rebalancing problem as a min-cost flow problem.

Delegate selection and multi-party computation

Delegate selection can be done using a simple version of cryptographic sortion as in
[GHM+17]. Each of the k delegates involved in the MPC gets n + 2m inputs which
are shares of each of the n participant’s zero flow constraints and the 2m rebalancing
capacity constraint along the m directed edges (for each edge we have two constraints:
one which specifies the maximum rebalancing flow in one direction, and another which
specifies the flow has to be 0 in the other direction). The objective function is also
shared and given as an input to the delegates. The delegates jointly compute the
optimal solution to the rebalancing LP problem and each delegate outputs a share of
the final flow on each edge at the end of the protocol.

4.5.2 Execution phase

Cycle decomposition

The exploration phase concludes with a solution to the rebalancing linear program
obtained through multi-party computation. This solution f∗ is in fact encoded as shared
secrets given to individual participants. Instead of directly sending each f ∗(u, v) to u,
we decompose the circulation into a sum of cycle flows. This makes the execution of
rebalancing via HTLCs easier; instead of the entire network committing their funds to
a large atomic rebalancing transaction, each cycle only requires coordination between
nodes constituting the cycle.

As mentioned earlier, each circulation can be expressed as a sum of cycle flows. We briefly
describe a standard algorithm to compute this decomposition efficiently. Algorithm 4.1
uses depth-first search as a subroutine to detect cycles and then induce cycle flows on
them. Figure 4.2 depicts a circulation and its decomposition into cycle flows.
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Algorithm 4.1: Depth-first Search Cycle Decomposition
input : Circulation f on directed graph G = (V, E)
output : A set of cycle flows S that sum to f

1 initialize i = 1
2 initialize R←− {e ∈ E : f(e) ̸= 0} set of active edges
3 while R ̸= ∅ do
4 pick an edge e1 ∈ R
5 run depth first search to find a cycle Ci = (e1, e2, . . . ek) in R
6 wi ←− min f(e), e ∈ Ci

7 initialize fi ←− 0
8 for e ∈ Ci do
9 fi(e) = wi

10 f(e)←− f(e)− fi(e)
11 if f(e) = 0 then
12 delete e from R

13 i←− i + 1
14 return S = {f1, f2 . . . fi}
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Figure 4.2: The graph on the left depicts a circulation. The weight of each edge is the
transaction amount to send along the edge. The cycles in the graph on the right is a
sign consistent decomposition of the the circulation.

HTLC commitments per cycle

Given such a decomposition, we need to enforce atomicity of each cycle flow by creating
an HTLC for each cycle c in the set. This can be done by first selecting a user in
each cycle at random to initiate the cycle. This user has to choose a random secret
rc from some domain X and create a hash of the secret hc = H(rc). The timelock
for the initiator of the cycle and the next user is set equal to the length of the cycle.
The transaction amount to send along each cycle is the weight of the cycle wc. Every
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Algorithm 4.2: HTLC creation for cycles
input : S set of directed cycles

1 for c ∈ S do
2 select starting user uc at random from users in c
3 timelock tc ←− len(c)
4 uc chooses random secret rc and creates hash hc = H(rc)
5 for ec = (u, v) ∈ c starting from uc do
6 u creates HTLC(u, v, wc, hc, tc)
7 decrement tc by 1

subsequent user in the cycle decrements the timelock value by 1 and looks up the next
user in the cycle they should create an HTLC with (determined by the vertex order in
the cycle). They then create an HTLC with that user with the decremented timelock
value (lines 5-7 in Algorithm 4.2).

Finally we note that Algorithm 4.1 and Algorithm 4.2 can be computed privately using
MPC. To prevent any two users on a cycle c from sharing their hash hc with each other
and thus finding out they are in the same cycle, one can use MAPPCN [TM20] to
preserve user anonymity.

4.6 Analysis

4.6.1 Desired Properties
An execution of Hide & Seek satisfies the desired properties as stated in Section
4.4.3. Let us study each of the properties in order.

Balance Conservation. Suppose there is a node v that enjoys net financial gain
through the execution of Hide & Seek under a malicious adversary. Hide & Seek
specifies a set of cycle flows that the nodes may execute, and v must have participated
in some subset of these. Note that by atomicity of cycle flows ensured through HTLCs,
it is not possible for a cycle to be executed partially (even when parties act maliciously).
If v’s balance increased, that means there must be at least one cycle flow with net
positive flow through v. But this contradicts the definition of cycle flows, since they
must satisfy zero flow through each node:

∑︂
(u,v)∈E

f(u, v) =
∑︂

(v,u)∈E

f(v, u) ∀v ∈ V.
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Privacy. The sensitive data used in the exploratory phase of Hide & Seek remains
private as long as at least one delegate of the MPC is honest (inherited by the
MPC). In the execution phase, users do not know the other users in their cycle except
their predecessors and successors in their cycles as we use MAPPCN to preserve user
anonymity.

Optimality. Assuming the delegates compute the solution correctly, the circulation
returned by the min-cost flow algorithm maximizes the total flow through each edge.
Under the same assumption, the cycle decomposition algorithm would result in an
equivalent (and thus also optimal) set of cycle flows.

4.6.2 Efficiency
We break the analysis of the efficiency of Hide & Seek into three parts: (1) solving
the rebalancing problem, (2) cycle decomposition, and (3) MPC.

Solving the rebalancing problem. Solving the underlying min-cost flow problem
is the most computationally intensive aspect of Hide & Seek. Fortunately we can
leverage the vast body of algorithms for this problem being asymptotically optimal
in different parameter regimes. The complexity of these algorithms is analyzed in
terms of n, m, the largest capacity U and the largest cost W of an edge. We may
presently ignore the term W as each edge has identical cost 1. For the parameter
regime of rebalancing, we recommend the double scaling algorithm of Ahuja, Goldberg,
Orlin and Tarjan with computes the optimal solution in time O(nm log nW log log U)
([AGOT92]).

An alternative is to use a network simplex algorithm. This family of algorithms are
excellent in practice, although theoretical analysis of their effectiveness is an active area
of research in optimization. Simplex algorithms are also incredibly simple, and for this
reason they have been recommended in Toft’s framework for privately solving linear
programs([Tof09] despite the somewhat poorer theoretical guarantees. We recommend
the network simplex algorithm of Orlin ([Orl96]) for the rebalancing problem, which
terminates in at most O(nm log n) pivots. Generally, the amortized cost per pivot is
O(n), but Orlin presents a modification with total runtime O(nm log n log nW ).

Cycle decomposition. If the rebalancing circulation obtained by solving the min-cost
flow contains n′ vertices and m′ edges, then the cycle decomposition algorithm as
detailed in Algorithm 4.1 terminates in O(n′m′) time, which is O(nm) at worst. Every
loop iteration removes at least one edge, and each iteration visits at most n′ vertices
before finding a cycle. The pre-processing of G to obtain the subgraph induced by the
circulation takes O(n + m) time.
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Also note that the timelocks used in the execution of a cycle flow are bounded by the
length of the cycle.

MPC. Although MPC implementations of optimization algorithms incur a penalty in
speed, there are multiple methods to speed up the implementation of Hide & Seek:

Firstly, the rebalancing problem, much like many other min-cost flow problems, satisfies
the Hoffman-Gale conditions: the optimal solution, along with the vertices of the
polytope, is guaranteed to be integral. This means the MPC can be performed over
faster integer arithmetic rather than slower floating point arithmetic.

Hide & Seek can be implemented even faster by reducing the number of bits per
variable. This quantity is governed by the maximum capacity per edge as well as the
granularity of rebalancing, so that the number of bits required depends on the specific
cryptocurrency. For instance, an implementation of Hide & Seek for Bitcoin with
just 20 bits per variable may restrict all quantities to multiples of 210 = 1024 satoshis
up to 230 satoshis which is approximately 10 bitcoins.

The number of delegates chosen to compute the MPC also contributes to the commu-
nication cost during rounds, and here we note that Hide & Seek does not place any
limitations on this number. In fact, it can be as low as two delegates as long as one of
them is honest.

Finally, the efficiency of our protocol inherently depends on the MPC primitives used.
This is a wide and active area of research, with a lot of new developments in making
efficient MPC primitives [CFIK03, Aly15, CdH10, BOSS20].

4.7 Limitations and Extensions
In this section, we identify the limitations of our protocol and discuss possible extensions.

4.7.1 1 HTLC per channel
The first limitation of the cycle decomposition method in the execution phase of our
protocol is that the funds on any edge which is a part of multiple (say k) cycles is split
into k smaller transaction amounts. This could incur a higher cost in terms of larger
number of UTXOs on the underlying blockchain (larger bloat) if the channel is closed.
In what follows, we propose an alternative method which creates only 1 HTLC for each
channel and thus overcomes this limitation.

We can decompose G into a set of cycles S using any standard cycle decomposition
algorithm (for instance using Algorithm 4.1 to decompose G into cycles).
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For each cycle c ∈ S, we sample a random secret preimage rc and compute a hash
of this secret hc = H(rc). This hash value would be given to all the edges in cycle c
as input to their HTLC. For an edge e which is part of multiple cycles, say c1, ..., ck,
instead of creating k HTLCs as in Algorithm 4.2, we can create 1 HTLC locked with the
k hash values hc1 , ..., hck

with a total transaction amount being the weight of e ∈ G
and with a single timelock t (we discuss how to choose this later). The sender and the
receiver of the HTLC at an edge e is determined by the direction of e ∈ G. That is, if
e = (u, v) ∈ G then the sender in the HTLC is u and the receiver is v and vice versa.
Figure 4.3 top row highlights the difference between these two methods.
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Figure 4.3: 1 vs multiple HTLCs per edge

Let ch denote the cycle c ∈ S that uses the hash h for all edges in the cycle. We define
the owner of h to be the first user in the directed edge that e corresponds to in the
cycle ch. In the graph on the top right of Figure 4.3 for instance, the owner of both h
and h′ on edge (A, B) is A. In the graph in the bottom right of Figure 4.3, the owner
of h on edge (C, A) is C but the owner of h′ on the same edge (C, A) is A.

Algorithm 4.3 describes how to create an HTLC for a transaction amount x on a
directed edge e = (u, v) between a sender u and a receiver v and a given timelock t
but locked with multiple hash values. The main idea is to include with each hash value
h an additional piece of information I which is an indicator function indicating which
user (either u or v) "owns" the hash. The user who owns the hash would require the
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Algorithm 4.3: HTLC with multiple hashes
input : users u, v, transaction amount x, set of hashes tuples H, timelock t

1 initialise R ←− ∅
2 while current time < t do
3 for (h, I) ∈ H do
4 if I(h) = v then
5 check if u can produce preimage r | H(r) = h and if so add r to R

check if v can produce preimage r | H(r) = h and if so add r to R
6 else
7 check if v can produce preimage r | H(r) = h and if so add r to R

8 if |R| = |H| then
9 allow v access to locked funds x

10 refund locked funds x to u

other user to produce the preimage r such that H(r) = h within the time limit of t.
This check is done for all hash values. If all the preimages are received within the time
limit t, then x will be unlocked for the receiver v. Otherwise, the sender u can demand
a refund of x.

Let G be the circulation output of the exploration phase. An important constraint for
assigning timelocks on E is that, for any directed path p ∈ G, the timelocks of the
edges in p have to be either strictly monotone decreasing, or there is only one point in
the path where strict monotone decreasing timelocks does not hold (where the cycle
closes). We say an assignment of timelocks on E is valid if it fulfils this constraint. For
instance, in Figure 4.4, the graph on the left is the circulation output of the exploration
phase and the graph on the right is a valid assignment of timelocks to this circulation.
The timelocks on all the edges of all directed paths in the graph (for instance the cycle
(C, F, A, B, C)) are strictly monotonic decreasing except at F . An interesting question
is the maximum timelock in a valid assignment (as this specifies the maximum time
some user would have to wait for the funds locked in their channel to be unlocked) and
Lemma 4.7.1 shows that this is at most |E|.

Lemma 4.7.1. There exists a valid assignment of timelocks to the edges e ∈ E such
that the maximum timelock is at most |E|.

Proof. Let G = (V, E) be a directed graph. First we show, if G is acyclic, that any
topological ordering of G induces a valid timelock assignment to the edges of the graph.
Second, for the case of a general directed graph G, we show that we can "cut" cycles
in G by selecting at most one vertex on each cycle and obtain an acyclic graph G′ from
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Figure 4.4: The graph on the left is a rebalancing circulation where each edge (u, v) is
labelled with the total transaction amount u has to send to v. The graph on the right
is a valid assignment of timelock values to the circulation on the left. The values on
the edges depict one assignment of timelock values to execute the entire rebalancing
atomically in our alternative proposal.

G. We then show that any topological ordering of G′ gives rise to a valid timelock
assignment on G.

Suppose G is acyclic. Consider the reverse graph Gr which has the same vertices as
G but with the direction of every edge reversed. Since G is acyclic, Gr is also acyclic.
Let T = (v1, ..., v|V |) be a topological ordering of the vertices of Gr. Then define a
timelock assignment on G by assigning to any edge (v, u) ∈ G the index/position of u
in the topological ordering T of Gr. Then a simple induction on the length of a path
in G shows that, for any path in G, the vertex assignments along the path defined by
this timelock assignment are monotonically decreasing.

Suppose now that G is not acyclic. We need to show that we can cut every cycle in G
at exactly 1 location to make G acyclic. Let Ṽ be a set of vertices such that every
simple cycle in G has exactly 1 vertex in Ṽ . Note that such Ṽ always exists. Indeed,
let {c1, ..., cs} be the set of all simple cycles in G. We can then define Ṽ by choosing
exactly 1 vertex vi from each cycle starting from c1 to cs. The existence of this tuple
Ṽ can be proved through induction: for the case of one cycle, it is clear that one can
select a vertex arbitrarily. Now suppose the claim is true for k cycles. Consider a set
of k + 1 cycles. There must exist a vertex vi which lies in exactly 1 cycle Ci, so we
can assign vi to Ci and remove Ci from the set, so we are left with a set of k cycles.
Then consider the subgraph with vi removed, and apply induction to obtain the other
vertices.

We construct another graph G′ as follows. For each vertex v in Ṽ , replace v with k
vertices v1, ..., vk where k is the number of edges e1, . . . , ek incident to v. Then, for
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each 1 ≤ i ≤ k, connect the vertex vi to the edge ei while keeping the direction of ei

as in G. By construction, G′ = (V ′, E ′) is an acyclic graph as every simple cycle in G
is cut by a vertex v ∈ Ṽ . Observe that G′ has potentially more vertices than G but
has the same number of edges.

Since G′ is acyclic, there is a topological ordering and hence a valid timelock assignment
for E ′. This topological ordering has maximum timelock value of min(|V ′|, |E|) ≤ |E|.
This assignment of timelocks can also be used for G as the edges are the same. Hence,
the claim of the lemma follows.

As a remark, we can use integer programming to construct the set Ṽ by assigning each
vertex a value of 0 or 1 and imposing the constraint that the sum of vertices on each
cycle is exactly 1.

While this approach creates only 1 HTLC per edge, it also has two drawbacks compared
to the cycle decomposition method. First, splitting transactions into different HTLCs
could potentially increase the total amount of rebalancing at the end of the protocol.
With 1 HTLC per edge, if any user fails to forward the secret preimage along their edge
within the time limit, the entire rebalancing circulation would fail. Every user is thus a
single point of failure. With multiple HTLCs per edge, as in the cycle decomposition
method, the only way to prevent the entire rebalancing circulation from occurring is
if one user on each cycle (or a user participating in all cycles) does not forward their
preimage. Any other user (not on all cycles) can only fail the rebalancing cycles they
are part of. There is thus a much higher probability that some rebalancing occurs in
the cycle decomposition method compared to this method.

Second, this method is less efficient compared to the cycle decomposition method. In
particular, in this method the funds in the circulation have to be locked for up to |E|
time-steps as opposed to l time-steps in the cycle decomposition method, where l is
the length of the largest cycle in the decomposition S. If |E| >> l, this presents a
significant increase in opportunity cost for the participants in the protocol with regards
to their locked funds.

Due to these drawbacks, we recommend using the cycle decomposition method in
the execution phase. Nevertheless, we present this alternative method as we believe
overcoming these limitations is an interesting direction for future work.

4.7.2 Optimality with corrupted participants
Participants’ sensitive financial data, such as existence of a payment channel and its
capacity for rebalancing, is not verified in the protocol, nor does our threat model
consider falsification of this data with respect to optimality.

53



4. Efficient and private rebalancing on PCNs

Unfortunately, this lack of verification can prevent any rebalancing to occur: an adversary
with knowledge of the payment channel network can falsify edge data so that each
cycle passes through one of their edges. The adversary can then refuse to participate
in the execution phase and prevent others from rebalancing, even when cycle flows
between honest parties exist.

To defend against such adversary, we propose that parties submit a zero knowledge
proof of validity along with their edge constraint data. Although one cannot force
participants to participate in rebalancing cycles, this modification certainly increases
the success rate of rebalancing cycles in Hide & Seek even under an active adversary.
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CHAPTER 5
Algorithms for optimising decisions

for existing users in PCNs

You once told me that the human
eye is god’s loneliest creation.
How so much of the world passes
through the pupil and still it holds
nothing. The eye, alone in its
socket, doesn’t even know there’s
another one, just like it, an inch
away, just as hungry, as empty.

Ocean Vuong

This section is based on the following publications:

• Stefan Schmid, Jakub Svoboda, Michelle Yeo.† Weighted Packet Selection for
Rechargeable Links in Cryptocurrency Networks: Complexity and Approximation.
In Structural Information and Communication Complexity - 30th International
Colloquium, SIROCCO 2023 (best paper award)

• Mahsa Bastankhah, Krishnendu Chatterjee, Mohammad Ali-Maddah Ali, Stefan
Schmid, Jakub Svoboda, Michelle Yeo.† R2: Online Admission Control and
Rebalancing in Payment Channel Networks.. In Financial Cryptography and Data
Security - 27th International Conference, FC 2023

†Authors ordered alphabetically.
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5.1 Introduction
Decision making for an existing user in a PCN. An existing user in a PCN faces
a myriad of decisions. Some decisions concern transaction forwarding, e.g., whether to
forward a transaction or not so as to profit from the transaction fee. Some decisions
involve maintaining the lifetime of their payment channels, whether by rebalancing
or closing and reopening channels with more funds. These decisions are typically
also highly correlated – a user that forwards transactions indiscriminately would find
themselves in a position where their balance in their channels rapidly deplete and
thus have to find a solution to their depleted channels. These decisions become even
more consequential for users who join the network specifically to play the role of an
intermediary node that routes transactions, creating channels and fees optimally and
selecting the most profitable transactions to maximise their profit from transaction
fees [AHWW20, ERE20b].

Offline setting. In this chapter, we analyse and present algorithms to optimise this
decision making problem of an existing user in a PCN, over a single channel. We
begin our analysis of this problem in the offline setting. The input to the problem in
this setting is a sequence of transactions that stream along the given channel in both
directions. We also define a set of available actions that can be played as a response to
each element in the transaction sequence, as well as their associated costs. The goal
is design an algorithm that outputs a sequence of actions as a response to the input
transaction sequence, such that the total costs incurred by the algorithm is minimised.

Online setting. In addition to analysing the problem in the offline setting, we also
look at the problem in the online setting, where the algorithm now has to process the
transaction input sequentially and provide the actions to play after each sequential
input. The study of the problem in the online setting is important if we want our
analysis to be robust (i.e., does not depend on any knowledge or assumptions on the
transaction demand in the PCN). Accordingly, we assume that transactions can arrive
in an arbitrary order at a channel, and the aim is to design online algorithms which
provide worst-case guarantees. We are in the realm of competitive analysis, and assume
that an adversary with knowledge of our algorithms chooses the most pessimal online
transaction sequence. Our objective is to optimise the competitive ratio [BEY05]: we
compare the performance of our online algorithms (to which the transaction sequence
is revealed over time) with the optimal offline algorithm that has access to the entire
transaction sequence in advance.

Contribution. We first introduce and formalise the transaction selection for a channel
problem in the offline setting, and show that the problem is NP-hard. Then, we provide
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a constant approximation algorithm for the transaction selection for a channel problem
which achieves an approximation ratio of (1 + ε)(1 +

√
3). In the online setting, we

also start by formally defining our main problem and problem setting, as well as two
more restrictive sub problems. The algorithms and analysis designed to address these
sub problems are eventually used as building blocks for our main algorithm and main
theorem for our main problem setting. Our main algorithm achieves a competitive ratio
of 7 + 2⌈log C⌉ where C + 1 is the length of the rebalancing cycle used to replenish the
funds on the channel off-chain. We also show a connection between our analysis of the
problem in the offline setting as well as the online setting by using the approximation
algorithm in the offline setting as an oracle for our main online algorithm in the online
setting. Finally, we complement our theoretical worst-case analysis by performing
an empirical evaluation of the performance of our algorithm on randomly generated
transaction sequences. We show empirically that our algorithm performs much better
on average compared to our theoretical worst-case bound.

5.2 Related Work
Capacitated communication networks. Our analysis in the offline setting bears
some resemblance to problems on optimising flows and throughput in typical capacitated
communication networks [CKS04, RT85]. However, there is a crucial difference in
our problem setting compared to these other problems. In traditional communication
networks, the capacity is usually independent in the two directions of a link in the
network [GK00]. In our case, however, the amount of transactions a user u sends to
their neighbour v in a payment channel (u, v) directly affects v’s capability to send
transactions, as each transaction u send to v increases v’s balance on (u, v).

Maintaining balanced payment channels. As channel balances are typically private,
classic transaction routing protocols on payment channel networks like Flare [PZS+16a],
SilentWhispers [MMKM17] and SpeedyMurmurs [RMKG18] focus mainly on throughput
and ignore the issue of balance depletion. Recently, several works shift the focus
on maintaining balanced payment channels for as long as possible while ensuring
liveness of the network. Revive [KG17b] initiated the study of rebalancing strategies,
Spider[SVR+20b] uses multi-path routing to ensure high transaction throughput while
maintaining balanced payment channels, the Merchant[vER21a] utilises fee strategies
to incentivise the balanced use of payment channels, and [LMZ20b] uses estimated
payment demands along channels to plan the amount of funds to inject into a channel
during channel creation, to just give a few examples. This chapter focuses on minimising
costs incurred in the process of handling transactions across a channel and thus we
also indirectly seek to maintain balanced payment channels. Moreover, in contrast to
previous works which typically assume some form of offline knowledge of the transaction
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flow in the network, we provide online algorithms which comes with provable worst-case
guarantees.

Off-chain rebalancing. Off-chain rebalancing has been studied as a cheaper al-
ternative to refunding a channel by closing and reopening it on the blockchain. In
the Lightning Network, there are already several off-chain rebalancing plugins for
c-lightning∗ and lnd†. An automated approach to performing off-chain rebalancing
using the imbalance measure as a heuristic has been proposed in [PN20b]. Our work
similarly studies when to rebalance payment channels, however we make the decision in
tandem with other decisions like accepting or rejecting transactions. Recently, [APS+21]
and [KG17b] propose a global approach to off-chain rebalancing where demand for
rebalancing cycles is aggregated across the entire network and translated to an LP which
is subsequently solved to obtain an optimal rebalancing solution. These approaches
are orthogonal and complementary to ours as our focus concerns decision making in a
single payment channel and not the entire network.

Online algorithms for payment channel networks. Online algorithms for payment
channel networks have also been studied in [ABWW19] and [FNS21]. Avarikioti et al.
[ABWW19] establish impossibility results against certain classes of adversaries, however
they only consider a limited problem setting where their algorithms can only accept or
reject transactions (with constant rejection cost). Fazli et al. [FNS21] considers the
problem of optimally scheduling on-chain recharging given a sequence of transactions.
In contrast to previous work, we consider a more general problem setting in our online
analysis where our algorithms can not only accept or reject transactions, but also
recharge and rebalance channels off chain. We also extend the cost of rejection to take
into account the size of the transaction.

Relationship to classic communication networks. Admission control problems
such as online call admission [AAF+97, LS15] are fundamental and have also received
much attention in the context of communication networks. However, in classic commu-
nication networks the available capacity of a link in one direction is independent of the
flows travelling in the other direction, and moreover, link capacities are only consumed
by the currently allocated flows. In contrast, the capacities of links in payment-channel
networks are permanently reduced by transactions flowing in one direction, but can
be topped up by flows travelling in the other direction. The resulting rebalancing
opportunity renders the underlying algorithmic problem significantly different.

∗https://github.com/lightningd/plugins/tree/master/rebalance
†https://github.com/bitromortac/lndmanage
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5.3 Offline setting
We begin by analysing our problem in the offline setting. For clarity, we will term the
problem in this offline setting "transaction selection for a channel". We first show in
Section 5.3.2 that the problem is generally NP-hard. Then, we proceed to describe
a procedure in Section 5.3.3 to approximate the optimal capacity in a channel using
binary search and use this approximation to derive a lower bound on the cost of the
optimal algorithm. We then describe a linear program in Section 5.3.4 that fractionally
accepts transactions (i.e. part of a transaction can be accepted) given a fixed channel
capacity M and show that the solution of the linear program given M is a lower bound
on the cost of the optimal algorithm given M . These results are used as building blocks
for our main algorithm and theorem in Section 5.3.6. Nevertheless, we also present a
simpler example of how to use the solution of the linear program that also comes with
some guarantees in Section 5.3.5 which may be of independent interest.

5.3.1 Model
Transaction sequence. Let (u, v) be a channel in a PCN. We denote an ordered
sequence of transactions by Xt = (x1, . . . , xt). Each transaction xi ∈ Xt has a size
(i.e., the amount of the transaction) and a direction. We simply use xi ∈ R+ to denote
the size of the transaction xi. We say a transaction xi goes in the left to right direction
(resp. right to left) if it goes from u to v (resp. from v to u). Let X→ denote the
subsequence of Xt that consists of transactions going from left to right and X← the
subsequence of Xt that consists of transactions going from right to left.

User actions and costs. First, we note that creating a channel incurs an initial cost
of the amount the user allocates in the channel. That is, if node u allocates bu in
channel (u, v), the cost of creating the channel (u, v) for u would be bu. Consider a
channel (u, v) in the PCN and a transaction going from u to v along the channel. User
u can choose to do the following to the transaction:

• Accept transaction. User u can accept to forward the transaction if their
balance in (u, v) is at least the size of the transaction. The result of doing so
decreases their balance by the transaction size and increases the balance of v by
the transaction size. Note that apart from gradually depleting a user’s balance,
accepting transactions does not incur any cost.

• Reject transaction. User u can also reject the transaction. This could happen
if u’s balance is insufficient, or if accepting the transaction would incur a larger
cost in the future. For a transaction of size x, the cost of rejecting it is f · x + m
where f, m ∈ R+.
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We note that u does not need to take any action for transactions going in the opposite
direction (i.e., from v to u) as these transactions do not affect u’s cost.

Problem definition. We now formally define the transaction selection for a channel
problem. The input to our problem is a channel (u, v) and a sequence of transactions
Xt streaming along the channel. We adopt the optimisation perspective over the entire
channel, instead of focusing on individual nodes. That is, we suppose nodes u and v
collaborate and act as a coalition regardless of how they decide to initially split the
capacity on both ends of the channel. The problem therefore is to compute the initial
capacity and distribution (how it should be split on both ends) on the channel, as well
as to decide on whether to accept or reject each transaction in Xt such that the overall
solution minimises the sum of the rejection cost as well as the cost of the capacity
locked in the channel.

Optimal algorithm and costs. Let xmin be the size of the transaction with the
smallest size in Xt and Mmax be the total capacity in the channel needed to accept all
transactions. We first observe that Mmax for Xt is easy to compute in time O(t) and
is upper bounded by the sum of the size of all transactions in Xt, i.e., Mmax ≤

∑︁t
i=1 xi.

Similarly, given any sequence of decisions, we can compute the minimal cost of the
capacity locked in the channel and optimal initial distribution of the capacity by greedy
simulation. Let OPT denote the cost of the optimal algorithm and OPTM the cost
of the optimal algorithm using a capacity of M in the channel. Additionally, we use
OPT R to denote the cost of the optimal algorithm for rejecting transactions and
OPT C to denote the corresponding capacity cost (i.e., amount of capacity injected in
the channel). Similarly, we use OPT R

M to denote the cost for rejecting transactions of
the optimal algorithm using a capacity of M in the channel (note that OPT C

M = M ,
OPT = OPT C + OPT R).

5.3.2 Hardness
Having defined the transaction selection for a channel problem, we show in the next
theorem that the problem is NP-hard.

Theorem 5.3.1. Transaction selection for a channel is NP-hard.

Proof. We show a reduction from the subset sum problem, which is known to be
NP-hard [AB09]. In the subset sum problem, we are given a multiset of integers
I := {i1, i2, . . . , in} and a target integer S. The goal is to find a subset of I with a
sum of S.
Consider the following question in the transaction selection for a channel problem: "is
the cost below a given value?" We will show this question itself is NP-hard.
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We set the constants to m = 0 and f = 3
4 . We create a transaction sequence

{i1, i2, . . . , in} where the jth transaction in the sequence has size equal to ij which is
also the jth element in I. These transactions all go from left to right. Then we add a
transaction of size S going from right to left.

Suppose that there exists I ′ ⊆ I, such that ∑︁j∈I′ ij = S. Then we show that the cost
is at most 1

4S + 3
4
∑︁

j∈I ij .

The solution reaching that cost is as follows: nodes start with capacity S on the right
and accept all transactions from I ′ and then accept the last transaction of size S. The
cost is then S + 3

4
∑︁

j∈I\I′ ij. Since ∑︁j∈I′ ij = S, the bound holds.

Now, suppose that there is no subset of I summing to S. Let A ⊆ I be any set with
sum A. We follow the same procedure as described above by starting with A capacity
on the right and accept all transactions from A. The cost for the transactions going
from left to right is A + 3

4
∑︁

j∈I\A ij = 1
4A + 3

4
∑︁

j∈I ij . Depending on whether A < S
or A > S, the last transaction of size S can be either rejected or accepted. Thus, we
need to add min(max(S − A, 0), 3

4S) to the overall cost, which represents either the
additional capacity cost of "topping up" the initial capacity of A on the right side by
S − A such that we can accept the last transaction, or the additional cost of rejecting
the last transaction S, whichever is smaller. Since A ̸= S, we know that

1
4A + 3

4
∑︂
j∈I

ij + min(max(S − A, 0), 3
4S) >

1
4S + 3

4
∑︂
j∈I

ij

Rearranging, we get min(max(S−A, 0), 3
4S) > 1

4(S−A), which means that transaction
selection for a channel is NP-hard.

5.3.3 Approximating the optimal capacity
Here, we present a lemma that allows us to fix the capacity of the channel to some
value M ∈ R+ for a small trade-off in the approximation ratio of the algorithm. Recall
that xmin is the size of the smallest transaction in Xt and Mmax is the capacity needed
to accept all transactions in Xt. Observe that if the optimal capacity is not 0, it has
to lie in the interval [xmin, Mmax]. We thus fix some ε > 0 and perform a search for
M over all k ∈ N such that xmin(1 + ε)k ≤Mmax. Let us denote by LBM any lower
bound on OPT R

M , the optimal rejection cost using at most capacity M in the channel.

Lemma 5.3.2. For any ε > 0, let M = {xmin(1 + ε)k|k ∈ N and xmin(1 + ε)k ≤
Mmax} ∪ {0}. Then, the following inequality holds:

min
M∈M

(︃
LBM + M

1 + ε

)︃
≤ OPT
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Proof. We first analyse the case where the optimal algorithm rejects all transactions.
In this case, we know that since M contains 0, LB0 ≤ OPT R

0 = OPT0 = OPT , so
the inequality holds.

Now, suppose that the optimal algorithm accepts at least one transaction. This means
OPT C ≥ xmin. So there exists a k ∈ N such that xmin(1 + ε)k−1 ≤ OPT C ≤
xmin(1 + ε)k. Set M = xmin(1 + ε)k. We need to show that that LBM + M

1+ε
≤

OPT = OPT R + OPT C . From the way we choose M , we know that M
1+ε
≤ OPT C .

Now we just need to show LBM ≤ OPT R. Observe that the optimal rejection cost for
any channel with larger capacity is always at most the rejection cost for any channel
with smaller capacity, as in the worst case the algorithm in the former setting accepts
the same set of transactions that the algorithm in the latter setting accepts. Thus,
for any M ′ ≥ M , OPT R

M ′ ≤ OPT R
M . And since we chose M as an upper bound on

OPT C , it means OPT R = OPT R
OP T C ≥ OPT R

M ≥ LBM .

Looking ahead, we describe an algorithm that is a (1 +
√

3)-approximation of LBM

in Section 5.3.6. Thus, together with Lemma 5.3.2, we can use this algorithm to
approximate transaction selection with a ratio of (1 + ε)(1 +

√
3) by running the

algorithm at most 1
ε

log Mmax
xmin

times. We note that choosing a smaller value of ε yields
a better approximation, but increases the running time of the algorithm.

5.3.4 Linear program formulation

Here, we describe a linear program that computes a lower bound for OPT R
M . We first

observe that due to the capacity constraints, the optimal algorithm with capacity M
cannot accept transactions with size larger than M . Hence, for the rest of the analysis,
we assume that all transactions in Xt have size less than M .

In the linear program, we allow accepting a fractional amount of a transaction. That
is, we create a variable 0 ≤ yi ≤ xi for every transaction xi ∈ Xt that represents the
extent to which the transaction is accepted. For instance, yi = xi

2 means that half of
xi is accepted. We introduce variables SL,i and SR,i denoting the capacity on the left
and right ends of the channel after processing the first i transactions from Xt. We
reiterate that due to the fact that the total capacity of a payment channel is invariant
for the lifetime of the channel, SL,i + SR,i = M , and 0 ≤ SL,i, SR,i ≤M .
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We can now formulate the linear program in eq. (5.1):

minimise
∑︂

i

f(xi − yi) + m
xi − yi

xi

(5.1)

subject to ∀i : yi, SL,i, SR,i ≥ 0
∀i : yi ≤ xi

∀i : SL,i + SR,i = M

∀xi ∈ X→ : SL,i = SL,i−1 − yi

∀xi ∈ X→ : SR,i = SR,i−1 + yi

∀xi ∈ X← : SL,i = SL,i−1 + yi

∀xi ∈ X← : SR,i = SR,i−1 − yi

Let LPM be the solution of the linear program with capacity parameter M . The following
lemma states that LPM is a lower bound of the optimal cost of the transaction selection
for a channel problem with capacity M .

Lemma 5.3.3. LPM ≤ OPTM for all M .

Proof. OPTM is an admissible solution to the linear program. If some other (fractional)
solution is found, we know that it is at most OPTM .

The linear program can be solved in time O(nω) where n is the number of variables in
the linear program and ω the matrix multiplication exponent [CLS21] (currently ω is
around 2.37).

5.3.5 Example algorithm
We present an example of how to use the solution of the linear program in Section 5.3.4
for some fixed capacity M to create an algorithm that uses twice as much capacity as
the linear program but guarantees that all transactions that are fully accepted by the
linear program (i.e. xi = yi) will also be fully accepted by the algorithm.

Algorithm 5.1 describes the decision making process only for transactions coming from
left to right on the channel, i.e. X→. As the decision process for X← is symmetric,
we omit it to avoid repetition. The algorithm takes as input the solution to the linear
program and the transaction sequence Xt. Recall that SL,i and SR,i for i ∈ [t] are the
capacity distributions from the linear program solution on the left and right end of the
channel respectively after processing the ith transaction. The algorithm uses the initial
distribution SL,0 and SR,0, and additionally splits the extra M capacity into 2 “reserve
buckets" RL and RR of size M

2 each on both ends. Thus, the initial capacity of the left
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Algorithm 5.1: Algorithm accepting all fully accepted transactions
Input: transaction sequence Xt, capacity M , solution of LP: SL,i, SR,i, yi

Output: decisions to accept or reject
1 Initialise RL = M

2 , RR = M
2

2 for i ∈ [t] do
3 if xi ∈ X→ then
4 if RL ≥ xi − yi then
5 Accept
6 RL = RL − (xi − yi)
7 RR = RR + (xi − yi)
8 SL,i = SL,i − yi

9 SR,i = SR,i + yi

10 else
11 Reject
12 RL = RL + yi

13 RR = RR − yi

14 SL,i = SL,i − yi

15 SR,i = SR,i + yi

node would be SL,0 + RL and the initial capacity of the right node would be SR,0 + RR.
Intuitively, one can think of the additional capacity in RL and RR as a reserve source of
capacity that is used to help Algorithm 5.1 fully accept transactions that are fractionally
accepted in the linear program solution. We stress that Algorithm 5.1 always maintains
the invariant that SL,i + SR,i = M and RL + RR = M for all i.

When processing each transaction, say transaction i which is wlog in X→, the algorithm
first checks if there is sufficient excess capacity in RL to accept the remaining fraction
of transaction i (Line 4 in Algorithm 5.1). If so, the transaction is accepted using
(xi − yi) capacity from RL and yi capacity from SL,i. The capacity of SL,i decreases
by yi and the capacity of SR,i increases by yi, and the capacity in RL decreases by
(xi− yi) while the capacity in RR increases by the same amount. If there is insufficient
capacity in RL,i, i.e., RL,i < xi − yi, the algorithm takes yi from RR,i and adds it
to SR,i+1, and takes yi from SL,i and adds it to RL,i+1 (see Lines 12, 13, 14, 15 in
Algorithm 5.1). Note that the updates to SL,i and SR,i at each step are exactly as the
solution to the linear program (Lines 8, 9 and 14, 15).

Lemma 5.3.4. Given the solution of the linear program, a sequence of transactions
Xt, and channel capacity M , Algorithm 5.1 incurs a channel capacity cost of 2M and
accepts all transactions fully accepted in the linear program.
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Proof. Wlog, let the ith transaction in the sequence belong to X→. After processing
the ith transaction xi, we denote RL (resp. RR) at that step as RL,i (resp. RR,i). We
show that the channel, at time i, has capacity at least SL,i on the left and at least SR,i

on the right.

When RL,i is large enough to accept transaction xi, we use yi capacity from SL,i and
xi − yi capacity from RL,i. The capacity yi from the accepted transaction goes to
SR,i+1 and the remainder (xi − yi) of the capacity goes to RR,i+1.

If the transaction is forced to be rejected, we know that RL,i < xi − yi. Since
RR,i = M −RL,i, we know that RR,i > M −xi + yi, and because all transactions have
size smaller than M , RR,i > yi follows. This means we can take yi from RR,i and add
it to SR,i+1 and remove yi from SL,i (because the capacity disappeared from there)
and add it to RL,i+1.

If the transaction is fully accepted, then xi − yi = 0. This means that the condition
RL,i ≥ xi − yi is satisfied and the algorithm accepts it.

We conclude this example with the following remark:

Remark 5.3.1. The claim in Lemma 5.3.4 holds for any initial distribution of RL and
RR so long as RL + RR = M .

5.3.6 A constant approximation algorithm
Based on the insights in the previous section, we now present a (1 +

√
3)-approximation

algorithm for the transaction selection for a channel problem with fixed capacity M .
We present the formal description of the algorithm in Algorithm 5.2 for transactions
xi ∈ X→ and omit the procedure for xi ∈ X← as the decision process is symmetric.

In a nutshell, Algorithm 5.2 consists of three main ideas: first, it uses M capacity to
follow the decisions made by the linear program solution as much as possible, using
an additional

√
3M as reserve capacity to fully accept some transactions that were

fractionally accepted by the linear program. Second, Algorithm 5.2 tries to maintain
a balance in the distribution of capacity in both ends of the channel. Intuitively, any
transaction that is accepted by the linear program can be accepted when the algorithm
is in this balanced state. Lastly, whenever the capacity is unbalanced: one side (wlog
left side) has too little capacity, the algorithm prioritises accepting transactions that
come from right to left as well as rejecting transactions that go from left to right. This
brings the capacity at both sides to the balanced state, and our analysis shows that the
approximation ratio is maintained below 1 +

√
3.
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Algorithm 5.2: (1 +
√

3)-approximation algorithm
Input: transaction sequence Xt, capacity M , solution of LPM :SL,i, SR,i, yi

Output: decisions to accept or reject
1 Initialise RL, RR =

√
3

2 M,
√

3
2 M

2 for i ∈ [t] do
3 if xi ∈ X→ then
4 if RL − (xi − yi) ≥

√
3−1
2 M then

5 Accept
6 RL = RL − (xi − yi)
7 RR = RR + (xi − yi)
8 else if xi is little-accepted then
9 Reject

10 RL = RL + yi

11 RR = RR − yi

12 else
13 ϕA, ϕR, U, R′L, j ← Divide(RL, LPM , Xt, i)
14 UR ← {}
15 if R′L < 0 then
16 UR, R′L ← RejectBig(Xt, U, R′L)
17 Accept all xi ∈ ϕA ∪ (U \ UR)
18 Reject all xi ∈ ϕR ∪ UR

19 RL = R′L
20 RR =

√
3M −RL

21 i = j

Input and initial capacity distribution. Algorithm 5.2 takes as input Xt and the
solution of linear program given a fixed capacity M . Recall that SL,i and SR,i for i ∈ [t]
are the capacity distributions from the linear program solution on the left and right
end of the channel respectively after processing the ith transaction. The algorithm
uses the initial distribution SL,0 and SR,0, and additionally creates 2 "reserve capacity
buckets" RL and RR of size

√
3

2 M each on both ends. Thus, the initial capacity of
the left node would be SL,0 + RL and the initial capacity of the right node would be
SR,0 + RR. Intuitively, one can think of the additional capacity in RL and RR as a
reserve source of capacity that is used to help Algorithm 5.2 fully accept transactions
that are fractionally accepted in the linear program solution.

Algorithm 5.2 accepts transactions in the following way: for a transaction of size xi wlog
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in X→, assuming there is sufficient capacity in RL, the transaction is accepted using
(xi − yi) capacity from RL and yi capacity from SL,i. The capacity of SL,i decreases
by yi and the capacity of SR,i increases by yi, and the capacity in RL decreases by
(xi − yi) while the capacity in RR increases by the same amount. If the algorithm
rejects xi, the algorithm takes yi from RR,i and adds it to SR,i+1, and takes yi from
SL,i and adds it to RL,i+1. We stress that in doing so, the algorithm always ensures
that the updates to SL,i and SR,i at each step are exactly the same as the solution to
the linear program. We also note that Algorithm 5.2 always maintains the invariant
that SL,i + SR,i = M and RL + RR =

√
3M for all i.

We distinguish between three phases of Algorithm 5.2. We say the algorithm is in the
balanced phase if both RL ≥

√
3−1
2 M and RR ≥

√
3−1
2 M . Note that since Algorithm 5.2

starts with
√

3
2 M in both buckets RL, RR, the algorithm starts in the balanced phase.

If RL <
√

3−1
2 M , we say the algorithm is in the left phase, and if RR <

√
3−1
2 M , we say

the algorithm is in the right phase. We also distinguish between 2 types of transactions:
little-accepted and almost-accepted transactions. We say a transaction is little-accepted
if yi

xi
<

√
3

1+
√

3 , and almost-accepted if yi

xi
≥

√
3

1+
√

3 .

Balanced phase. In the balanced phase, Algorithm 5.2 accepts all transactions that
are almost-accepted in the linear program solution. It also accepts little-accepted
transactions that allow it to remain in the balanced phase. That is, for a little-accepted
transaction xi wlog in X→, it first checks if the left reserve RL is sufficient to forward
the transaction, and that doing so keeps the algorithm in the balanced phase (Line 4).
If RL does not have sufficient capacity, the algorithm rejects xi (Line 8).
We first show in the following lemma that rejecting any little-accepted transaction is
safe in the sense that doing so will not push the approximation ratio of the algorithm
above 1 +

√
3.

Lemma 5.3.5. All little-accepted transactions can be rejected while keeping the
approximation ratio below 1 +

√
3.

Proof. Recall that rejecting a transaction xi incurs a cost of fxi + m, and that a
little-accepted transaction is a transaction such that yi

xi
<

√
3

1+
√

3 . From Equation 5.1, the
cost of a little-accepted transaction xi for the linear program is f · (xi− yi) + mxi−yi

xi
≥

fxi

1+
√

3 + m
1+
√

3 = 1
1+
√

3(fxi + m). From Lemma 5.3.3, we know that the solution of
the linear program for a fixed capacity M is a lower bound on the optimal solution
with capacity M , hence rejecting little-accepted transactions will not increase the
approximation ratio above 1 +

√
3.

In the next lemma, we show that processing little-accepted transactions does not
affect whether the algorithm stays in the balanced phase or not. This simplifies the
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decision making process of Algorithm 5.2 as it can just focus on the decision problem
for almost-accepted transactions.

Lemma 5.3.6. Algorithm 5.2 never leaves the balanced phase after processing a
little-accepted transaction.

Proof. Depending on whether it is accepted or rejected, each little-accepted transaction
moves at most 1

1+
√

3M from the left side to the right side of the channel, and at most
√

3
1+
√

3M from the right side to the left side of the channel.

Because RL + RR =
√

3M and any transaction has size at most M , if RL− 1
1+
√

3M <
√

3−1
2 M , then RR −

√
3

1+
√

3M ≥
√

3−1
2 M .

That means that rejecting a little-accepted transaction from X→ does not create a
situation where RR <

√
3−1
2 M .

Left phase. Since Algorithm 5.2 accepts all almost-accepted transactions in the
balanced phase, it would sometimes have to enter the left or right phase. Here we
describe the procedure for what happens in the left phase (the right phase is analogous).

Suppose Algorithm 5.2 enters the left phase after processing transaction xi−1. The
objective of Algorithm 5.2 in this phase is to accept all almost-accepted transactions
among the unprocessed transactions (i.e., transactions xi, . . . , xt). If this is not possible,
the algorithm rejects some of them such that both of the following conditions hold:
first, the approximation ratio remains 1 +

√
3, and second, the algorithm returns to a

balanced phase.

To do so, Algorithm 5.2 calls a subroutine Divide (Line 13 in Algorithm 5.2) to sort all
unprocessed transactions into three sets: ϕA, ϕR, U . Set ϕA contains all transactions
from X←. These will be accepted as they will increase the left capacity reserve RL

and help to bring Algorithm 5.2 back into the balanced phase. Set ϕR contains
little-accepted transactions from X→. These will be rejected and from Lemma 5.3.5
we know that doing so does not increase the approximation ratio. Set U contains
almost-accepted transactions from X→. Some of these transactions will be accepted
and some rejected in a way that maintains the approximation ratio.

Divide (described in Algorithm 5.3) takes as input the transaction sequence Xt,
the solution of the linear program as well as the current capacity in the left reserve
RL. Divide creates the sets ϕA, ϕR, U incrementally by processing each unprocessed
transaction and accepting transactions from ϕA ∪ U and rejecting transactions from
ϕR until one of the following stopping conditions occurs:

1. RL < 0 which would mean the left capacity reserves are depleted
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2. RL >
√

3−1
2 M

3. all transactions are processed

If the first stopping condition is reached (Line 15 in Algorithm 5.2), the procedure
RejectBig is called. RejectBig (described in Algorithm 5.4) takes as input the set
U and outputs another set UR ⊂ U . This set UR is created by greedily selecting the
biggest sized transactions in U (Line 3 in Algorithm 5.4) and adding them to UR. These
transactions will be rejected and the left capacity reserves will be accordingly updated
after each rejected transaction (Line 6 in Algorithm 5.4). The procedure RejectBig
terminates when the left capacity reserves RL ≥

√
3−1
2 M .

Now we show that if Divide terminates on either the second and third stopping
condition, Algorithm 5.2 will either be in the balanced phase (second stopping condition)
or all transactions will be processed and Algorithm 5.2 terminates (third stopping
condition).

Lemma 5.3.7. If Divide returns R′L ≥ 0 and j, then all almost-accepted transactions
between i and j are accepted by Algorithm 5.2 and either all transactions are processed
or RR,j ≥

√
3−1
2 M and RL,j ≥

√
3−1
2 M .

Proof. There are two cases when Divide returns R′L ≥ 0: either R′L ≥
√

3−1
2 or j = t.

In both cases, we note that Divide simulated accepting all transactions from ϕA and
U and rejecting all transactions from ϕR, and at no time R′L went below 0. That
means that Algorithm 5.2 just repeats decisions of Divide.
Finally, since RL + RR =

√
3M and all transactions are smaller than M , this means

that Algorithm 5.2 after emerging from left-phase cannot plunge to a right-phase right
away.

As the penultimate step in our analysis, we show in the next lemma that RejectBig
does not bring the approximation ratio of Algorithm 5.2 over 1 +

√
3. We do this by

computing the rejection cost incurred by Algorithm 5.2 on transactions from UR and
showing that it is always lower than (1 +

√
3) times the cost of the linear program on

U . As the solution of the linear program is a lower bound on the cost of the optimal
algorithm, this shows that Algorithm 5.2 maintains the approximation ratio even when
rejecting transactions from UR.

Lemma 5.3.8. In Algorithm 5.2, for sets U and UR the following inequality holds:

(1 +
√

3)
∑︂

xi∈U

f · (xi − yi) + m
xi − yi

xi

≥
∑︂

xi∈UR

fxi + m
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Algorithm 5.3: Function Divide to create sets ϕA, ϕR, and U .
Input: transaction sequence Xt, solution of LP :SL,i, SR,i, yi, value RL,

capacity M
Output: sets ϕA, ϕR, U , resulting RL

1 RL = RL − (xi − yi)
2 ϕA, ϕR, U ← {}, {}, {xi}
3 j = i

4 while RL ≥ 0 and RL <
√

3−1
2 and j < t do

5 j = j + 1
6 if xj ∈ X→ and xj is almost-accepted then
7 RL = RL − (xj − yj)
8 U ← U ∪ xj

9 else if xj ∈ X→ and xj is little-accepted then
10 RL = RL + yj

11 ϕR ← ϕR ∪ xj

12 else
13 RL = RL + (xj − yj)
14 ϕA ← ϕA ∪ xj

15 return ϕA, ϕR, U, RL, j

Algorithm 5.4: Function RejectBig to prune out transactions from U .
Input: transaction sequence Xt, set U , value R′L
Output: set UR, value R′L

1 UR ← {}
2 while R′L <

√
3−1
2 do

3 xk ← biggest transaction from U
4 U ← U \ xk

5 UR ← UR ∪ {xk}
6 R′L = R′L + xk

7 return UR, R′L

Proof. If R′L ≥ 0, we know that all almost-accepted transactions are accepted from
Lemma 5.3.7. For R′L < 0 we prove that (1 +

√
3)∑︁xi∈U (xi − yi) ≥

∑︁
xi∈UR

xi, then
we argue that the whole theorem holds.

Let D = RL,i−1−R′L where R′L is the value returned by Divide in Algorithm 5.2. We
know from the fact that that RL,i−1 is the amount of reserves on the left before the
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left phase and R′L < 0, thus D ≥
√

3−1
2 M .

By following the changes of R′L in Divide, we get∑︂
xi∈U

xi − yi = D +
∑︂

xi∈ϕR

yi +
∑︂

xi∈ϕA

xi − yi

Therefore, we know that ∑︁xi∈U xi − yi ≥ D.

Algorithm RejectBig removes transactions from U until ∑︁xi∈UR
xi ≥ D. If the

condition is satisfied, we know that RejectBig returns UR, because R′L ≥
√

3−1
2 .

If |UR| = 1, we know that ∑︁xi∈UR
xi ≤ M , because every xi ≤ M . So in that case∑︁

xi∈UR
xi ≤M ≤ (1 +

√
3)
√

3−1
2 M ≤ (1 +

√
3)D.

If |UR| > 1, we know that rejecting just one transaction is not enough. This means the
biggest transaction has size at most D, so ∑︁xi∈UR

xi ≤ 2D ≤ (1 +
√

3)D.

Now, we know that Algorithm 5.2 rejects less size than the linear program multiplied
by (1 +

√
3). This implies that (1 +

√
3)∑︁xi∈U f · (xi − yi) ≥

∑︁
xi∈UR

fxi, and leaves
us to prove (1 +

√
3)∑︁xi∈U mxi−yi

xi
≥ ∑︁xi∈UR

m.

But we know that the transactions are moved to UR from the biggest size to smallest
size. This means that for every xk ∈ UR and xl ∈ U , xk > xl, and so xl−yl

xl
≥ xl−yl

xk

holds. Let x∗ be the size of the smallest transaction in UR. It suffices to show that
(1 +
√

3)∑︁xi∈U
xi−yi

x∗ ≥
∑︁

xi∈UR

xi

x∗ ≥
∑︁

xi∈UR
xi. However, we know that ∑︁xi∈UR

xi ≤
2D ≤ (1 +

√
3)D ≤ (1 +

√
3)∑︁xi∈U xi − yi since ∑︁xi∈U xi − yi ≥ D. Thus, we

conclude that (1 +
√

3)∑︁xi∈U mxi−yi

xi
≥ ∑︁xi∈UR

m.

We now have all the necessary ingredients to state and prove our main theorem,
which is that transaction selection can be approximated with an approximation ratio of
(1 + ε)(1 +

√
3).

Theorem 5.3.9. The transaction selection for a channel problem can be approximated
with a ratio (1 + ε)(1 +

√
3) in time O(nω · 1

ε
· log Mmax

xmin
), where ω is the exponent of

n in matrix multiplication.

Proof. We perform a search for the capacity of the channel according to Lemma 5.3.2
and for every capacity M searched we solve the linear program with parameter M
(as stated in Equation (5.1)) and run Algorithm 5.2. The solution is the output of
Algorithm 5.2 with the smallest cost.

We know that xmin(1 + ε)
1
ε
·log Mmax

xmin ≥Mmax. That means we need to solve the linear
program and run Algorithm 5.2 at most 1

ε
· log Mmax

xmin
times.
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From Lemma 5.3.3 we know that the solution of the linear program with parameter M
is a lower bound for OPT R

M .

From Lemma 5.3.4, we know that Algorithm 5.2 accepts all fully-accepted transactions
by the linear program. The algorithm can reject any little-accepted transactions by
Lemma 5.3.5. We also know from Lemma 5.3.6 that in the balanced phase Algorithm 5.2
accepts all almost-accepted transactions and never leaves the phase after processing
little-accepted transactions. Finally, Lemma 5.3.8 shows that even in a left (or right)
phase the approximation ratio of Algorithm 5.2 on almost-accepted transactions is
1 +
√

3. This means Algorithm 5.2 is (1 +
√

3)-approximation algorithm for the solution
of the linear program. Moreover, the algorithm uses (1 +

√
3) times more capacity that

the linear program.

Using Lemma 5.3.2, we find that the selected solution is a (1+ε)(1+
√

3)-approximation
of the transaction selection for a channel problem.

5.4 Online setting
In this setting, we present a (7 + 2⌈log C⌉)-competitive online algorithm to admit
transaction streams arriving at both sides of a payment channel, and also to recharge
and rebalance the channel, in order to maximise the throughput over the channel while
accounting for costs. In order to prove our main theorem, we decompose the problem
into two simpler sub problems:

1. (Sub problem 1.) The first and most restrictive sub problem considers a transaction
stream coming only from one direction across a payment channel, and users do
not have the option to reject incoming transactions. We present a 2-competitive
algorithm for this problem, which is optimal in the sense that no deterministic
online algorithm can achieve a lower competitive ratio.

2. (Sub problem 2.) As a relaxation, our second sub problem allows users to
reject transactions although all transactions are still restricted to come from
one direction along a payment channel. We show that our algorithm achieves
a competitive ratio of 2 +

√
5−1
2 for this sub problem. We stress that our lower

bound of 2 we achieve in sub problem 1 also holds in this sub problem, hence
our competitive ratio of 2 +

√
5−1
2 is close to optimal.

All intermediate and main results are summarised in Table 5.1.

We begin by first describing our transactions model, actions and costs in this setting,
and as well as formally define our main and sub problems. Then we proceed to describe

72



5.4. Online setting

Sub problem Competitive ratio
Unidirectional stream without rejection 2

Unidirectional stream with rejection 2 +
√

5−1
2

Bidirectional stream 7 + 2⌈log C⌉

Table 5.1: Summary of the theoretical results in the online setting. The first column
presents each sub problem we analyse in our paper and the second column shows the
competitive ratio achieved by our algorithms for each sub problem

a tracking algorithm in Section 5.4.2 which is used as an algorithmic building block in
all our online algorithms in all problem settings. The core idea of this tracking algorithm
is to allow our online algorithms to track the funds locked inside the channel of the
optimal offline algorithm, and to use the funds as cues to recharge the channel with
more funds. We then present our online algorithms and analysis for each of the sub and
main problem settings in Sections 5.4.3, 5.4.4 and 5.4.5. Finally, we conclude our study
in this setting with an empirical evaluation of our main online algorithm in Section 5.4.6
to compare its average case performance on randomly generated transaction sequences
to our worst-case analysis.

5.4.1 Model
Payment channels. We model the payment channel network as an undirected graph
G = (V, E). A payment channel between users ℓ (left) and r (right) in the network is
an edge (ℓ, r) ∈ E. We denote the balance of user ℓ (resp. r) in the channel (ℓ, r) by
b(ℓ) (resp. b(r)). The capacity of the channel is the total amount of funds locked in
the channel. That is, for a channel (ℓ, r), the capacity of (ℓ, r) is b(ℓ) + b(r).

Recharging and rebalancing payment channels. When a user in a channel does not
have sufficient funds to accept a transaction, the user can either reject the transaction,
recharge the channel, or rebalance the channel. Recharging the channel happens on-
chain and corresponds to closing the payment channel on the blockchain and opening a
new channel with more funds. In contrast, rebalancing the channel happens entirely
off-chain (refer to Figure 2.3 in Chapter 2 for an example). Here, users find a cycle of
payment channels to shift funds from one of their other channels to refund the depleted
channel.

Transactions. We consider a transaction sequence Xt = (x1, ..., xt), xi ∈ R+, that
arrives at a payment channel online. Each transaction xi has both a size and a direction
along a payment channel. The size of a transaction is simply the amount that is being
transferred. The direction of a transaction across a payment channel (ℓ, r) determines
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who is the sender and who is the receiver. When we have a sequence of transactions
that go in both directions along a payment channel, we use −→x to denote a transaction
that goes from left-to-right and ←−x to denote a transaction that goes from right-to-left.
We say a user, wlog ℓ, accepts a transaction of size x coming from the left to right
direction along the channel (ℓ, r) if ℓ agrees to forward x to r. Similarly, we say a
user ℓ rejects a transaction x coming from the left to right direction along the channel
(ℓ, r) when ℓ does not forward the transaction to r. When it is clear which channel and
direction we are referring to, we simply say ℓ accepts or rejects x.

Costs. We consider three types of costs in our problem setting:

1. Rejecting transactions: For a user ℓ, the revenue in terms of transaction fees
from forwarding a payment of size x is Rx+f2, where R, f2 ∈ R+. Consequently,
the cost of rejecting a transaction of size x is simply the opportunity cost of
gaining revenue from accepting the transaction, i.e. Rx + f2.

2. On-chain recharging: For any user ℓ, the cost of recharging a channel on-chain
is F + f1, where F is the amount of funds ℓ puts into the new channel (this
approximates the opportunity cost of locking in the funds in the channel) and
f1 ∈ R+ is an auxiliary cost independent of F which captures the on-chain
recharging transaction fee.

3. Off-chain rebalancing: For any user ℓ, the cost of off-chain rebalancing for an
amount x is C · (Rx + f2), where C is the length of the cycle along which funds
are sent −1. In the example of off-chain rebalancing in Figure 2.3, the length of
the rebalancing cycle is 3 and thus C = 2.

Let us denote by OFF the optimal offline algorithm and ON an online deterministic
algorithm. We denote by CostON(Xt) (resp. CostOFF(Xt)) the total cost of ON
(resp. OFF) given the transaction sequence Xt.

Competitive ratio. We say an online algorithm ON is c-competitive if for every
transaction sequence Xt generated by the adversary,

CostON(Xt) ≤ c ·CostOFF(Xt)

Main problem. Our main problem is to design a competitive deterministic online
algorithm that determines when to accept/reject transactions and when to recharge or
rebalance the channel given a bidirectional stream of transactions across a payment
channel. More precisely, we consider a stream of transactions that can arrive from both
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rℓ

x = 1
x = 9

COST = 9R + f2

(a) Accepting a transaction

rℓ

x = 9
x = 9

COST = 9R + f2

(b) Rejecting a transaction

rℓ

x = 1
x = 9

COST = C(2R + f2)

(c) Off-chain rebalancing

rℓ

x = 1
x = 9

COST = 2 + 3 + f1

(d) Recharging

Figure 5.1: Example of actions users ℓ and r can take in the general bidirectional
stream setting. Each square represents 1 coin.

right to left or left to right in a given payment channel (ℓ, r). ℓ (resp. r) can choose
to accept or reject transactions coming in the left-to-right (resp. right-to-left) direction
in the stream. Either user would incur a cost of Rx + f2 for rejecting a transaction of
size x. Both users can also recharge the channel on-chain at any point, incurring a cost
of Fℓ + Fr + f1 where Fℓ and Fr are functions of the funds put into the channel by ℓ
and r respectively. Since transactions are streaming in both directions in this model,
both users would incur costs in this setting. Thus, we seek to design an algorithm
that minimises the cost of the entire channel. Refer to Figure 5.1 for examples of the
actions that a user can take in our main bidirectional transaction stream setting.

To this end, we give a formal definition of two sub problems of decreasing restrictiveness
on user actions. We present these sub problems as the algorithms and analysis used
to solve these sub problems are used in developing the algorithm and analysis for our
main problem.

Unidirectional stream without rejection. In this model, transactions stream only
in one direction along a given payment channel. Here, we assume users cannot reject
incoming transactions. Formally, given a channel (ℓ, r) and a transaction stream from
wlog left to right, user ℓ only accepts a transaction x if b(ℓ) > x. Otherwise, ℓ has to
recharge the channel on-chain with more funds, incurring a cost of F + f1 where F
is some function of the amount of funds ℓ adds to the channel. As we only consider
transactions streaming in one direction, only one user would incur costs in this setting
(the user that has to decide whether to accept or reject transactions). A real world
example that motivates this setting is a company which wants to position itself as a
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"routing hub" in a payment channel network, providing a routing service in return for
transaction fees. As such, the company would want to accept as many transactions
possible to acquire the reputation of a hub that is constantly available.

Unidirectional stream with rejection. In this model, we still restrict the transaction
stream from wlog left to right in a payment channel (ℓ, r). However, in addition to
accepting transactions and recharging, ℓ can now also reject transactions, incurring a
rejection cost of Rx + f2 for a transaction of size x.

5.4.2 Algorithmic Building Blocks
Before we describe and analyse the performance of our algorithms in the various problem
settings, we first introduce two algorithmic building blocks that we use extensively in
our work. The first building block is an algorithm Funds. It takes a sequence of
transactions as an input and returns the amount of funds that an optimal algorithm uses
on this sequence. The purpose of the algorithm is to track the funds OFF has in their
channel assuming that the sequence of transactions ends at this point. For the first
two sub problems we show how to compute Funds. For the main problem, we propose
a dynamic programming approach. The second building block is a general recharging
online algorithm that calls Funds as a subroutine and uses the output to decide when
and how much to recharge the channel. The intuition behind the recharging online
algorithm is to recharge whenever the amount of funds in OFF’s channel "catches up"
to the amount of funds ON has in their channel.

Building block 1: tracking funds of OFF. For a given transaction sequence
Xt = (x1, . . . , xt), let us denote A(Xi) to be the amount of funds OFF would use in
the channel if OFF gets the sequence Xi = (x1, . . . , xi) (i.e. the length i prefix of Xt)
as input. By appending subsequent transactions xi+1, . . . , xt from Xt to Xi, we can
view A(Xi) as a partial solution to the online optimisation problem that gets updated
with any new transaction. In the unidirectional transaction stream (with or without
rejection) setting, A(Xi) refers to the funds a user locks into a payment channel. In the
bidirectional transaction stream setting, A(Xi) refers to the total balance of both users
in the channel. We assume that given an input sequence Xt, Funds(Xt) performs
the necessary computations and returns A(Xt). For our main problem, computing
Funds(Xt) is generally NP-hard, but we can approximate it to a constant factor. This
is exactly described in Algorithm 5.2 described in Section 5.3.6.

Building block 2: using tracking for recharging. In Algorithm 5.5, we describe
an online (γ, δ)-recharging algorithm ON that uses Funds as a subroutine to decide
when and how much to recharge the channel. ON is run by one user (wlog ℓ) in a
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Algorithm 5.5: (γ, δ)-recharging
1 Initialise Ftracker, X ← 0, ∅
2 for transaction x in order of arrival do
3 concatenate x to X
4 F ′tracker ← Funds(X)
5 if F ′tracker > Ftracker then
6 Ftracker ← F ′tracker + δ
7 recharge to γFtracker

payment channel (ℓ, r). ON calls Funds after each transaction to check if the new
transaction sequence results in a significant increase in the amount of funds OFF has
in their channel. Whenever ON notices that OFF’s funds have increased above a
threshold (Line 5), ON recharges the channel with an amount of γ(A(Xi) + δ) where
A(Xi) is the amount of funds OFF has in their channel.

Let us denote At := maxi≤t A(Xi). Now we state two important properties of the
(γ, δ)-recharging algorithm.

Lemma 5.4.1. Algorithm 5.5 with parameters (γ, δ) ensures that ON always has at
least γ times the amount of funds OFF has and ensures that ON incurs a cost of at
most γ(At + δ) + f1 · ⌈At

δ
⌉.

Proof. The first part of the claim follows from the fact that the moment A(Xi) > Ftracker
for some i, Ftracker gets updated to A(Xi) + δ > A(Xi) and ON recharges the channel
to γFtracker > γA(Xi).

For the second part of the claim, we note that the cost incurred by ON is simply the
total amount of funds added to the channel with an additional cost of f1 each time
ON recharges the channel on-chain. The amount of funds locked in the channel for
ON is always at most γ(At + δ) and the times when ON recharges the channel occurs
whenever OFF increases its funds by an amount of at least δ. Thus, the number of
rechargings for ON that can occur is at most ⌈At

δ
⌉ with a cost of f1 for each recharging

instance. The total cost incurred by ON is therefore γ(At + δ) + f1 · ⌈At

δ
⌉.

Next, we show a simple lower bound in terms of At for the cost of OFF given a
sequence of transactions Xt.

Lemma 5.4.2. If At > 0, then CostOFF(Xt) is at least At + f1.

Proof. We first note that the sequence of costs for OFF is monotonically increasing,
i.e. CostOFF(Xt) ≤ CostOFF(Xt+1). This comes from the fact that any action of
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Algorithm 5.6: Unidirectional transaction stream without rejection
1 Initialise Ftracker, X ← 0, ∅
2 Initialise balance b = 0
3 for transaction x in order of arrival do
4 concatenate x to X
5 F ′tracker ← Funds(X)
6 if F ′tracker > Ftracker then
7 Ftracker ← F ′tracker + f1
8 recharge to Ftracker

9 Accept x

OFF at step i of the sequence can only increase its cost (i.e. either rejecting xi+1 or
recharging the channel and then accepting xi+1), or it does not change the cost at all
(i.e. by accepting xi+1 without recharging).

Since At > 0, we know that OFF recharged on-chain at some point to an amount At

for a recharging cost of At + f1. Since the sequence of costs for OFF is monotonically
increasing, CostOFF(Xt) ≥ At + f1.

5.4.3 Unidirectional transaction stream without rejection
In this section we consider the first sub problem where, given a payment channel
(ℓ, r), transactions stream along the channel in only one direction (wlog left to right).
Moreover, ℓ has to accept an incoming transaction of size x and forward it to r if ℓ’s
balance b(ℓ) ≥ x. Otherwise, ℓ needs to recharge the channel on-chain (and accept
the transaction after).

The optimal offline algorithm OFF follows a simple strategy: since it knows the entire
stream of transactions in advance, it makes a single recharging action at the beginning
of the transaction sequence Xt of size ∑︁t

i=1 xi. The cost incurred by OFF is thus
f1 +∑︁t

i=1 xi.

Now, we present a 2-competitive online algorithm ON for this sub problem. The
algorithm is described in Algorithm 5.6. ON uses (γ, δ)-recharging with parameters
γ = 1 and δ = f1. The algorithm accepts all transactions and the recharging ensures
that ON always has enough funds.

Theorem 5.4.3. The algorithm described above is 2-competitive in the unidirectional
transaction stream without rejection.
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Proof. From Algorithm 5.4.1, setting γ = 1 and δ = f1 gives ON a cost of at most
At + f1 + f1 · ⌈At

f1
⌉. Since f1 · ⌈At

f1
⌉ ≤ f1 · (At

f1
+ 1) = At + f1, the cost of ON is at

most 2(At + f1). From Algorithm 5.4.2, we know that the cost of OFF is at least
At + f1. Thus, ON is 2-competitive.

In addition, we note that ON is optimal in this setting. The next theorem proves that
no deterministic algorithm can achieve a strictly smaller competitive ratio compared
to ON. In particular, our proof shows that ON cannot lock too much funds into the
channel, otherwise ON’s cost is too high, but if ON locks too little funds, it needs to
recharge often.

Theorem 5.4.4. There is no deterministic algorithm that is c-competitive for c < 2 in
the unidirectional transaction stream without rejection sub problem.

Proof. We prove the theorem by contradiction. For the sake of contradiction, suppose
that there exists a c-competitive algorithm ON for c = 2− ε for some ε > 0. Consider
the following sequence of transactions: ε

3 , ε
3 , ε

3 , . . . . We note that when the sequence
of transactions is of length k, CostOFF(Xk) = f1 + k · ε

3 , as the optimal solution is to
recharge the channel at the start of the sequence to the total sum of the transactions
in the sequence.

For ON to remain (2−ε)-competitive after processing the first transaction, ON locked
at most f1 − εf1 + ε

3 in the channel (CostON(X1) ≤ 2f1 − εf1 + 2 ε
3).

We generalize the above idea and show that either ON has always smaller amount
than f1 − ε

3 in the channel or at some point it has at least f1 − ε
3 . In both cases, we

derive a contradiction to the (2− ε) competitive ratio of ON.

First, suppose that ON always recharges to at most f1 − ε′ for some ε′ > 0. Then
after t transactions, the number of rechargings is at least ⌈ t ε

3
f1−ε′ ⌉. So CostON(Xt) ≥

t · ε
3 +f1⌈

t ε
3

f1−ε′ ⌉. Setting t = 3k(f1−ε′)
ε

for some k gives CostOFF(Xt) = f1 +k(f1−ε′)
and CostON(Xt) = k(f1 − ε′) + kf1, but since limk→∞

2kf1−kε′

(k+1)f1−kε′ = 2f1−ε′

f1−ε′ for any
ε′, then the competitive ratio is at least 2.

Now, suppose that t is the first time that after processing a transaction, ON has at least
f1− ε

3 locked in the channel. At time t, CostOFF(Xt) = f1 +t ε
3 . Cost of ON is f1 +t ε

3
for funds locked in the channel plus any additional recharging cost. But since it is the
first time ON recharged by more than f1, the cost for recharging is f1⌈

t ε
3

f1−ε′ ⌉ ≥ f1 + tε
3

for some other positive ε′. So again, CostON(Xt) ≥ t ε
3 + f1 + t ε

3 + f1 = 2(f1 + t ε
3)

which is twice of CostOFF(Xt).

In both cases the cost of ON is at least twice that of OFF which contradicts the
assumption that ON is (2− ε)-competitive.
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Algorithm 5.7: Unidirectional transaction stream with rejection
1 Initialise Ftracker, X ← 0, ∅
2 Initialise balance b = 0
3 for transaction x in order of arrival do
4 concatenate x to X
5 F ′tracker ← Funds(X)
6 if F ′tracker > Ftracker then
7 Ftracker ← F ′tracker +

√
5−1
2 f1

8 recharge to Ftracker

9 if b ≥ x and x is small then
10 Accept x

11 else
12 Reject x

5.4.4 Unidirectional transaction stream with rejection
In this section we consider the second sub problem where transactions are still streaming
along a given payment channel (ℓ, r) in one direction (wlog left to right). This time
though, a user can choose to reject incoming transactions. We describe an algorithm
Algorithm 5.7 with competitive ratio 2 +

√
5−1
2 . We note that the competitive ratio for

this setting is larger than the competitive ratio we achieve in the previous setting as
OFF has a wider range of decisions.

Let us call a transaction of size x big if x > Rx + f2 and small otherwise. We first
observe that OFF in this setting always rejects big transactions.

Lemma 5.4.5. OFF rejects all big transactions in the unidirectional transaction
stream with rejection.

Proof. Accepting a transaction x incurs a cost of x for increasing funds. Rejecting a
transaction x incurs a cost of Rx + f2. So any big transaction should be rejected.

Thus, the strategy of OFF in this setting is to simply reject all big transactions.
Moreover, if there are sufficiently many small transactions in the sequence to offset
the cost of recharging, OFF makes a single recharging action at the beginning of the
sequence of size ∑︁x∈Xt,x is small x for a cost of f1 +∑︁

x∈Xt,x is small x.

The online algorithm performs (1,
√

5−1
2 f1)-recharging and it accepts a transaction

x if it has enough funds and x is small. The following theorem states that ON is
(2 +

√
5−1
2 )-competitive in this problem setting.
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Theorem 5.4.6. The algorithm described above is (2 +
√

5−1
2 )-competitive in the

unidirectional transaction stream with rejection sub problem.

Proof. From Lemma 5.4.5, OFF rejects big transactions. Thus, ON should also reject
these transactions.

While At = 0, both OFF and ON reject all transactions in the sequence and both incur
the same cost. The moment At > 0, we know that OFF recharged with an amount at
least At to accept all small transactions in the sequence. Thus CostOFF(Xt) ≥ At +f1.

At this time ON would have rejected the small transactions in the sequence for at most
a cost of At + f1 together with some additional recharging cost. From Lemma 5.4.1,
we know that the recharging cost for ON is at most

At +
√

5− 1
2 f1 +

⎡⎢⎢⎢ At√
5−1
2 f1

⎤⎥⎥⎥ f1 ≤ At +
√

5− 1
2 f1 + At√

5−1
2

+ f1.

Summing up both costs, we get

CostON(Xt) ≤At + f1 + At +
√

5− 1
2 f1 + At√

5−1
2

+ f1

=
(︄

2 +
√

5− 1
2

)︄
CostOFF(Xt)

Before analysing the optimality of ON, we first observe, as a simple corollary of
Theorem 5.4.4, that the lower bound of 2 also holds for this sub problem.

Corollary 5.4.6.1. There is no deterministic algorithm that is c-competitive for c < 2
in the unidirectional transaction stream with rejection sub problem.

We conjecture that no other deterministic algorithm can perform better that ON in
this setting and sketch an approach to prove the conjecture below.

Conjecture 5.4.1. conjecture]conjecture:rejection There is no deterministic algorithm
that is c-competitive for c < 2 +

√
5−1
2 in the unidirectional transaction stream with

rejection setting.

Sketch. The best ON algorithm needs to recharge the channel when OFF does. If it
recharges the channel later, it incurs some rejection cost that OFF is not incurring,
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which worsens the competitive ratio. If it recharges sooner, there exists a sequence
that either forces OFF to waste funds or incur a big cost.

After OFF recharges, it can reconsider and accept previously rejected transactions, but
ON needs to reject them. Now, the situation is similar as in the case without rejection.
ON needs to recharge, but it already paid for some rejections whereas OFF pays only
for recharging and accepting very small transactions.

ON disadvantaged in this way cannot achieve a better competitive ratio than 2 +√
5−1
2

5.4.5 Bidirectional transaction stream
In this section, we consider the most general problem setting, where for a given payment
channel (ℓ, r), transactions stream along the channel (ℓ, r) in both directions. A user ℓ
(resp. r) can accept or reject incoming transactions that stream from left to right (resp.
right to left). Either user would incur a cost of Rx + f2 for rejecting a transaction of
size x. ℓ does not need to take any action when encountering transactions that stream
from right to left as they simply increase the balance of ℓ in the channel (ℓ, r). Both
users can also decide at any point to recharge their channel on-chain, or rebalance their
channel off-chain.

Our main online algorithm ON for the bidirectional transaction stream setting is
detailed in Algorithm 5.10. For simplicity, we assume that R = 0 in the rejection cost.
This means that the cost of rejecting a single transaction of size x is simply f2, and
rebalancing an amount of x off-chain now only incurs a cost of Cf2. Our algorithm is
run by both users on a payment channel and is composed of three smaller algorithms:
the first is a recharging algorithm to determine when and how much to recharge the
channel on-chain. The second algorithm (Algorithm 5.8) decides whether to accept or
reject new transactions and when to perform off-chain rebalancing. The last algorithm
(Algorithm 5.9) describes how to store the funds received from the other user of the
channel.

(4 + 2⌈log C⌉, f1)-recharging. ON runs an on-chain recharging algorithm similar to
Algorithm 5.5 (see Lines 5 and 8 in Algorithm 5.10) but with parameters γ = 4+2⌈log C⌉
and δ = f1. Since we are in the bidirectional transaction stream setting, Funds returns
the amount of funds OFF has inside the entire channel (i.e. b(ℓ) + b(r)) given a
transaction sequence.

Let us look at the period between the on-chain recharging instances of ON. From
Line 8 in Algorithm 5.10, we know that ON ensures that it has more than 4 + 2⌈log C⌉
times more funds than OFF locked in the channel. These funds are distributed in
the following way: ON initialises ⌈log C⌉+ 2 "buckets" on each end of the channel.
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We denote set of left-side buckets as Bℓ and it consists of Bℓ
s, Bℓ

1, . . . , Bℓ
⌈log C⌉, Bℓ

o.
Likewise, the set of right-side buckets is Br and it consists of Br

s , Br
1, . . . , Br

⌈log C⌉, Br
o .

After recharging, users decide how to distribute funds in the channel, so the buckets Bℓ
s

and Br
s are filled with 2Ftracker funds. Buckets Bℓ

o and Br
o are empty (0 funds). Other

buckets contain Ftracker funds.

Looking ahead, the funds in the i-th bucket on both sides are used to accept transactions
x with a size in the interval

[︂
Ftracker

2i , Ftracker
2i−1

)︂
. The funds in Bs are used to accept

transactions with a size less than Ftracker
C

. Finally, Bo stores excess funds coming from
payments from the other side when all other buckets are full.

Transaction handling. When a transaction arrives at the channel, based on the
direction of the transaction, either ℓ or r executes Algorithm 5.8 to decide whether to
accept the transaction. Wlog let us assume ℓ encounters transaction −→x. If Ftracker

2i <

x ≤ Ftracker
2i−1 for some i ∈ [⌈log C⌉] and Bℓ

i has sufficient funds, the funds from Bℓ
i are

used to accept the transaction. If Bℓ
i lacks sufficient funds for accepting x, ℓ rejects x.

Now, we consider the case where x ≤ Ftracker
C

. If Bℓ
s has sufficient funds, ℓ uses the funds

from Bℓ
s to accept x. If Bℓ

s has insufficient funds to accept x, ℓ performs off-chain
rebalancing with an amount such that after deducting x from Bℓ

s, there would still be
2Ftracker funds left in Bℓ

s. ℓ subsequently accepts x. The required funds for off-chain
rebalancing are transferred from Br

o and Br
s (see Lines 15 and 16 in Algorithm 5.8).

Whenever Bℓ
o > 0 and some bucket in Bℓ gets under its original capacity, funds are

reallocated from Bℓ
o to fill the bucket.

Handling funds coming from the other side. When a transaction x is accepted by
wlog ℓ, ON calls Algorithm 5.9 to distribute the transferred funds among r’s buckets
in the following way: r first uses x to fill Br

s up to its capacity of 2Ftracker (see Line 2
in Algorithm 5.9). If there are still funds left, r refills the Br

i buckets in descending
order from i = ⌈log C⌉ to i = 1. Intuitively, the reason why buckets are refilled in
descending order is due to our simplified cost model for this problem where we assume
the cost of rejection for any transaction is f2. Thus, rejecting three small transactions
size x costs thrice as much as rejecting a larger transaction of size 3x. Finally, if there
are still some funds left, they are added to Br

o .

Our main theorem shows that our main algorithm is 7 + 2⌈log C⌉ competitive.

Theorem 5.4.7. Algorithm 5.10 is 7 + 2⌈log C⌉ competitive.

Proof. We know that for any i, CostOFF(Xi) ≥ CostOFF(Xi−1). From Lemma 5.4.1
and Lemma 5.4.2, we know that cost of ON for recharging (in Algorithm 5.10) is
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Algorithm 5.8: Decision on transaction
1 Decide(Ftracker, x, Bsdr, Brcv)
2 Status← Accept
3 if Ftracker

2i < x ≤ Ftracker
2i−1 and x ≤ Bsdr

i then
4 Accept x
5 X ← min(Ftracker, Bsdr

i − x + Bsdr
o )

6 Bsdr
o ← max(0, Bsdr

i − x + Bsdr
o − Ftracker)

7 Bsdr
i ← X

8 else if xi ≤ Ftracker
C

and x ≤ Bsdr
s then

9 Accept x
10 X ← min(2Ftracker, Bsdr

s − x + Bsdr
o )

11 Bsdr
o ← max(0, Bsdr

s − x + Bsdr
o − 2Ftracker)

12 Bsdr
s ← X

13 else if xi ≤ Ftracker
C

and x > Bsdr
s then

14 Do off-chain rebalancing to fill Bs and pay f2C
15 Brcv

o ← Brcv
o − (2Ftracker −Bsdr

s )
16 Brcv

s ← Brcv
s − x

17 Accept x
18 Bsdr

s ← 2Ftracker

19 else
20 Reject x
21 Status← Reject
22 return (Bsdr, Brcv, Status)

at most (5 + 2⌈log C⌉)CostOFF(Xt). Let t1 and t2 (with t2 > t1) be any two
consecutive times ON recharges. We will show that the cost of ON for rebalancing and
rejection is smaller than 2(CostOFF(Xt2)−CostOFF(Xt1)). Then CostON(Xt) ≤
(7 + 2⌈log C⌉)CostOFF(Xt).

For every strategy of OFF and any two consecutive recharging times t1 and t2, we
show that the rebalancing and rejection cost of ON between times t1 and t2 is at
most twice that of OFF as defined by the strategy. Having the strategy of OFF, we
split the time between rechargings even further, into epochs; we will show that the
competitive ratio of 2 holds for every epoch.

The left epoch starts with the first transaction that makes some bucket in Bℓ non-full
(smaller than the original amount); the left epoch ends either before ON recharges, or
Bℓ

o > 0. In a left epoch, every transaction from the right side is accepted; non-fullness
of some buckets on one side means Bo > 0 on the other side. The right epoch is
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Algorithm 5.9: Handling funds coming from the other side
1 HandleFunds(Ftracker, x, B)
2 X ← min(2Ftracker, Bs + x)
3 x← max(x + Bs − 2Ftracker, 0)
4 Bs ← X
5 for i ∈ [⌈log C⌉] in decreasing order do
6 if x > 0 then
7 X ← min(Ftracker, Bi + x)
8 x← max(x + Bi − Ftracker, 0)
9 Bi ← X

10 Bo ← Bo + x
11 return (B)

Algorithm 5.10: Main algorithm
1 Initialise left and right side buckets Bℓ, Br

2 Initialise tracker Ftracker, X ← 0, ∅
3 for transaction x in order of arrival do
4 concatenate x to X
5 F ′tracker ← Funds(X)
6 if F ′tracker > Ftracker then
7 Ftracker ← F ′tracker + f1
8 recharge to 2(2 + ⌈log C⌉)Ftracker

9 sdr, rcv ← ℓ, r
10 if x is from right to left then
11 sdr, rcv ← r, ℓ

12 Bsdr, Brcv, Status← Decide(Ftracker, x, Bsdr, Brcv)
13 if Status == Accept then
14 Brcv ← HandleFunds(Ftracker, x, Brcv)

defined similarly, but since the epochs are disjoint, we can prove the statement for a
left epoch only.

For transactions below Ftracker
C

, we argue that the cost of ON is at most the cost of OFF.
ON accepts everything, so ON pays only for rebalancing. OFF either rebalances too,
in which case the cost is the same as ON; or it rejected some transactions. Since ON
starts with 2Ftracker funds in Bs and refills the bucket with the highest priority, this
means OFF rejected some transactions summing to at least Ftracker. There are at least
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C of them, so OFF’s cost is also above Cf2. If there is a counterexample containing a
small transaction that OFF rejects, then we can modify it to a counterexample where
the transaction is increased to Ftracker

C
. So we can show the ratio in the case that no

small transactions are coming.

Now that we have the strategy for OFF (decisions before rebalancing), we define some
variables that track the competitive ratio. We will look at incoming transactions, and
prove that the competitive ratio is always below 2. We say that a transaction x belongs
to a bucket Bi if Ftracker

2i < x ≤ Ftracker
2i−1 . A transaction is red if it is rejected by ON and

accepted by OFF and it is blue if it is accepted by ON and rejected by OFF. Let
ρi (βi) be the number of red (blue) transactions in the bucket Bi. We can disregard
transactions for which ON and OFF make the same decision. If the transaction is
rejected by both, it improves the ratio. If the transaction is accepted by both, it can be
simulated by decreasing Ftracker.

We prove by induction that ∑︁k≤j ρk ≤ 2∑︁k≤j βk for all j ∈ [⌈log C⌉]. We show that
if the equality holds and OFF has enough funds to accept incoming transactions, ON
accepts too.

Let us examine j = ⌈log C⌉. We know that the ratio between any two transaction
sizes in B⌈log C⌉ is less than 2, so any two red transactions are bigger than one blue.
Moreover, all funds that arrived from the right side were put into B⌈log C⌉ (if it is not
full). So if ρ⌈log C⌉ = 2β⌈log C⌉, ON has at least the amount of funds in B⌈log C⌉ OFF
has. To continue the induction for buckets with smaller indices, we reassign some red
or blue transactions to different buckets. If ρ⌈log C⌉ < 2β⌈log C⌉, we move at most one
red and some blue transactions (in decreasing order of size) to B⌈log C⌉−1, stopping just
before ρ⌈log C⌉ ≥ 2β⌈log C⌉.

For general j, we know that, due to the reassignment, in every bucket smaller than
j, ON rejected exactly twice the number of transactions OFF did. Moreover, OFF
needs to use at least the same amount of funds to accept red transactions compared
to funds needed by ON to accept blue ones. Now, in the bucket Bj holds ρj = 2βj.
Again, we pair every two red transactions to one blue, such that the sum of red is
bigger than blue. Before the reassignment, the ratio between any two transactions is at
most 2. The reassignment (if occurred) moved at most one red and at least one blue
that is smaller than any original transaction in the bucket, so we can pair the moved
red to moved blue. In transactions in buckets in j and bigger, OFF used more funds
than ON. Any funds that arrived from the right side were put into some bucket in j or
below, so if OFF has enough funds to accept, ON has too.

The same argument holds for a right-epoch, and we note that epochs are disjoint and
cover the entire transaction sequence between times t1 and t2. Since we chose the
consecutive recharging times t1 and t2 arbitrarily, the rebalancing and rejection cost of
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ON between any two consecutive rechargings is at most twice that of OFF within the
same period. Therefore, Algorithm 5.10 is 7 + 2⌈log C⌉ competitive.

5.4.6 Empirical Evaluation
Methodology. We consider the performance of Algorithm 5.10 on randomly generated
transaction sequences. We compare it with the optimal offline algorithm OFF. Since
computing the optimal solution is NP-hard (refer to Section 5.3.2), we use dynamic
programming to compute the cost. For clarity of presentation, we defer the full algorithm
to Appendix A.1.

Average performance of ON

We first report on the competitive ratio our online algorithm achieves under random
transaction sequences. We begin by sampling 50 random transaction sequences of
length 50 each. In each sequence, transaction sizes are first sampled independently
from the folded normal distribution with mean 0 and standard deviation 3, and then
we sample the direction of the transaction (left-to-right or right-to-left) uniformly at
random. Finally, we quantise the size of the transaction to the closest integer. We then
run both OFF and ON on the generated sequences and compute the average of the
following:

1. cost (sum of rejection/off-chain rebalancing/on-chain recharging costs)

2. sum of funds locked in the channel (A(X))

3. acceptance rate (fraction of transactions accepted)

4. funds that are transferred across the channel by off-chain rebalancing per sequence

5. number of on-chain rechargings per sequence

We present our results in Table 5.2. As we can see from the cost of ON vs OFF in
Table 5.2, the competitive ratio is generally significantly lower than the 7 + 2⌈log C⌉
bound as suggested by our conservative worst-case analysis in Theorem 5.3.9.

Limitations of ON. We notice in our experiments that ON seems to overcharge the
channel. This is most noticeable when we observe the effect of C on the performance
of ON. From Table 5.2, increasing C in a range of medium (not too small) values
does not change OFF’s cost noticeably. In contrast, both the average cost and total
amount of locked funds of ON grows with C. This is due to the fact that ON uses
(4 + 2⌈log C⌉, f1)-recharging to ensure that it always has significantly more funds
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Param OFF ON
C f2 Cost A(X) Acc Reb Rech Cost A(X) Acc Reb Rech
2 0.5 15.02 6.4 0.78 0.8 1 63.3 44.26 0.50 0.9 2.18
8 0.5 15.21 6.38 0.77 0 1 87.79 69.06 0.50 0 2.04
2 2 23.6 14.26 0.95 5.36 1 127.02 100.2 0.91 0.38 5.86
8 2 24.5 13.9 0.92 0 1 184.32 156.6 0.9 0 5.84
Param ON-I ON-II
C f2 Cost A(X) Acc Reb Rech Cost A(X) Acc Reb Rech
2 0.5 30.74 6.86 0.44 11.18 2.18 26.52 5.56 0.41 10.22 1.2
8 0.5 39.98 19.86 0.48 0 2.04 32.94 15.9 0.46 0 1.18
2 2 66.16 14.42 0.84 25.48 5.86 60.38 11.3 0.78 27.16 2.2
8 2 81.35 42.72 0.89 1.5 5.84 58.38 33.3 0.83 1.56 2.16

Table 5.2: Comparison between the performance of OFF, ON, ON-I and ON-II on
randomly generated transaction streams. The result is averaged over 50 sequences each
of length 50. The size of each transaction is independently sampled from the folded
normal distribution with mean 0 and standard deviation 3, then quantised to the closest
integer. We set f1 = 3 and R = 0. A(X) is the total amount of funds in the channel
from recharging the channel. “Acc" shows the average fraction of transactions that were
accepted. “Reb" shows how much funds on average was moved along the channel using
off-chain rebalancing. “Rech" shows the average number of rechargings performed.
Note that since OFF knows the entire sequence in advance, it only recharges the
channel once at the beginning of each sequence.

than OFF, even though a big fraction of these funds remain unspent. ON is also
limited by the fact that it does not borrow funds from other buckets when a bucket is
depleted. For instance, ON always charges Bs to 2Ftracker and only uses these funds to
accept transactions that are smaller than Ftracker

C
. Thus, as C increases, the number of

transactions that fall into the Bs bucket decreases and the funds in Bs remain unspent.

Heuristics to improve the performance of ON These observations motivate us
to design a less pessimistic version of ON that we expect will perform better than
ON. We introduce ON-I which is a slightly altered version of ON: ON-I follows the
(⌈log C⌉, f1)-recharging algorithm and does not divide the funds into separate buckets.
Instead, ON-I accepts all the transactions smaller than Ftracker as long as it has funds.
Otherwise, if the transaction is small (< Ftracker

C
) it off-chain rebalances to fill the bucket

and accepts the transaction. Similar to ON, ON-I rejects a transaction if it is larger
than Ftracker .

Our empirical results in Table 5.2 confirms that the average cost of ON-I is significantly
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smaller than ON. The acceptance rate of ON-I is slightly smaller than ON, which
is expected as ON-I does not have separate funds for each range of transactions (as
defined by the buckets), and as a result might miss some transactions. We observe
that ON-I performs more off-chain rebalancings compared to ON on average because
ON-I does not reserve separate funds for small transactions. However, one issue
with both ON and ON-I is that they recharge the channel too often (as soon as
Ftracker < A(Xt)). As can be seen from Table 5.2 (f2 = 2), both algorithms perform
more than 5 rechargings on average for transaction sequences of length 50. This
increases the cost of both algorithms significantly as each recharging instance incurs a
cost of at least f1.

We thus design another version of ON-I to address the aforementioned problem. ON-
II works exactly as ON-I except that it does not recharge the channel as frequently as
ON-I does. ON-II only recharges the channel if α · Ftracker < A(X), where α > 1 is
some constant that controls the how often the algorithm recharges the channel and
can be fine-tuned empirically based on f1 and f2. If we set α = 1, ON-II becomes
equivalent to ON-I and has higher acceptance rate. This is favourable when f2 is
large and f1 is small. Conversely, by increasing α, ON-II recharges the channel less
frequently but the acceptance rate falls. This is favourable when f1 is large and f2 is
small. In our experiments, we observe that for the case f2 = 2, C = 2, when all the
other parameters are as Table 5.2, α = 2 yields the lowest average cost. Thus, in our
evaluation of ON-II, we use α = 2 and from Table 5.2 we note that this choice of
α halves the number of rechargings compared to ON-I, which consequently leads to
lower average cost. Additionally, we note that the total amount of funds in the channel
of ON-II is close to OFF.

Transaction size variance. We also evaluate how the performance of our algorithms
is affected by the variance of the transaction size. We sample 50 sequences each of
length 50 with each transaction in the sequence independently sampled from the folded
normal distribution with mean 0 and standard deviation σ, for a range of σ values
across [3, 20]. The transactions are quantised to the closest integer, and the direction
of each transaction is sampled uniformly at random. We then observe the cost of ON,
ON-I,ON-II and OFF. As can be seen from in Figure 5.2, the cost of all 4 algorithms
rises as σ increases. This is due to the fact that increasing the variance of the sampled
transactions reduces the probability of getting a similarly sized transaction coming from
the other side, thus increasing the speed at which the balance on one side gets depleted.
We note, however, that Figure 5.2 shows that even for large values of σ, ON’s average
cost remains a lot smaller than the worst case upper bound of 7 + 2⌈log C⌉. We also
observe that the cost of ON-I and ON-II is noticeably smaller than ON and grows
at a much slower pace with respect to increases in σ.
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Figure 5.2: Average cost of our algorithms over 50 randomly generated transaction
streams, each of length 50. The size of each transaction is independently sampled
from the folded normal distribution with mean 0 and standard deviation σ. We use the
parameters f1 = 3, f2 = 2, R = 0, C = 4, α = 2.

Transaction flow symmetry. Another factor we look at is how the asymmetry of the
transaction flow along a channel can affect the performance of our algorithms. To do
so, we generate 50 sequences each of length 50, and sample the size of each transaction
from a folded normal distribution with mean 0 and standard deviation 3, and then
quantise the transaction to the nearest integer. We then sample the direction of the
transactions according to a Bernoulli distribution with parameter p, where p represents
the probability of sampling a left-to-right transaction. We see from Figure 5.3 that the
cost of all algorithms decrease as p increases from 0 to 0.5. As p increases from 0.5
to 1, the cost function increases again. This conforms to our intuition that extremely
asymmetric sequences are harder to handle as the lack of sufficiently many transactions
from one side just increases the speed at which the balance on the other side gets
depleted. We observe that both ON-I and ON-II nevertheless perform comparatively
better than ON when given these asymmetric transaction sequences (see Figure 5.3).

Case Study: Lightning Network

Lightning Network parameters. We conclude our evaluation section with a case
study of the Lightning network. We first run our experiments with realistic parameters
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Figure 5.3: Average cost of our algorithms over 50 randomly generated transaction
streams each of length 50. The size of each transaction is sampled from the folded
normal distribution with mean 0 and standard deviation 3. p is the probability of sampling
a left-to-right transaction. We use the parameters f1 = 3, f2 = 2, R = 0, C = 4, α = 2.

taken from Lightning Network data. In the Lightning Network, f1 is the on-chain
transaction fee (roughly around 1000 satoshi) which is a lot larger than f2, the base
fee one receives when forwarding a payment (around 1 satoshi).

Average rebalancing cycle length. Next, we conduct an empirical estimation
of the average rebalancing cycle length in the Lightning Network using the latest
snapshot (September 2021) of the Lightning Network from the Lightning Network gossip
repository [Dec]. This is important as C is an integral component of the competitive
ratio in our main theorem, Theorem 5.3.9. The Lightning Network snapshot contains
117, 894 channels, including pairs of users with more than one channel between them.
After merging these channel pairs, we get 63, 820 channels. We compute the length
of the shortest cycle containing both ℓ and r for every pair of channel holders (ℓ, r).
Table 5.3 shows the frequency of each cycle length (including the channels that are not
part of any cycle at all). From Table 5.3, we see that a large fraction of channel holders
are part of cycles of length at least 4. We note, however, that actual cycles might be
longer as precise balance information is hidden in the Lightning Network snapshot.
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Cycle length ≤ 4 5 6 7 N.A.
Frequency 49, 424 7, 758 469 12 6, 157

Table 5.3: Frequency of the length of shortest cycle between all users in the Lightning
Network. The last column shows the frequency of channels that are not part of any
cycle. The average cycle length is 4.15

5.5 Future Work
This chapter analyses the problem of optimising the decision making process of users in
a PCN in both the offline and online setting. In the offline setting, we present a constant
approximation algorithm for transaction selection for a channel problem. We then show
how the offline and online settings are linked, by showing how our main algorithm in the
offline setting can be used as an oracle for our algorithms in the online setting. In the
online setting, we provide several deterministic online algorithms for various problem
settings that minimise cost while maximising liquidity and transaction throughput in a
payment channel. Our algorithms come with formal worst-case guarantees, and also
perform well in realistic scenarios in simulations.

The analysis in this chapter opens several interesting avenues for future research. In
both the offline and online settings, it would be good to extend our algorithms from a
single channel to an entire network. On the theoretical front, it would be interesting to
close the gap in the achievable competitive ratio, and to explore the implications of our
approach on other classic online admission control problems. Finally, we have mainly
focused on deterministic algorithms in the online setting. Thus, it would be interesting
to study the power of randomised approaches in this context, or to consider different
adversarial models.
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CHAPTER 6
Algorithms for optimising decisions

for new users in PCNs

All models are wrong, but some
are useful.

George Box

This chapter is based on the following publication:

• Zeta Avarikioti, Tomasz Lizurej, Tomasz Michalak, Michelle Yeo.† Lightning
Creation Games. In 43rd IEEE International Conference on Distributed Computing
Systems, ICDCS 2023

6.1 Introduction
Optimisation problem for a new user. In Chapter 5 we looked at the optimisation
problem faced by an existing user in a PCN. In this chapter, we will adopt a different
but complementary perspective and look at the optimisation problem for a new user
who has not yet joined the PCN. From the perspective of a new user, two important
considerations when joining a PCN are where to connect and what portion of a budget
should be locked to distinct channels. This is important as their choice not only affects
the situation of individual nodes but also influences the resulting network as a whole.
However, this issue has been weakly studied in the literature. In fact, most PCN
implementations (e.g., the Lightning Network) still propose a simple heuristic for new
nodes, suggesting connecting to a trusted peer or a hub.
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Key challenge. We answer this question by first presenting several attachment
strategies for newly-joining nodes in a PCN. The first key challenge to this task is to
model the new node’s utility function that accurately reflects the key objectives of new
PCN users. A newcomer has to weigh the cost of creating channels and locking up
capital against the profits stemming from these connections and the node’s position in
the network. Furthermore, the utility function should be efficiently computable, so that
it can be used in practice by new nodes, posing a second challenge.

Prior approaches and drawbacks. Unfortunately, the models of the utility function
considered so far in the literature do not take all the above aspects into account. In
particular, Guasoni et al. [GHS21] analyse the cost of channel creation, and establish
conditions under which two parties would create unidirectional or bidirectional channels
between themselves, as opposed to transacting on-chain. However, the utility function in
[GHS21] only accounts for the cost of channel creation but neglects profits from routing
transactions and fees a user could encounter. Avarikioti et al. [ASW19, AHWW20] and
Ersoy et al. [ERE20b], on the other hand, account for fees and profits from routing
transactions through the PCN but neglect the opportunity costs from the locked capital
and consider only a simplified transaction model where users transact with each other
with uniform probability.

Our approach. We take up the first challenge to model a utility function that
accurately depicts the gains and costs of newly joining nodes. In particular, we account
for on-chain costs for opening channels, routing fees paid to and by the node due
to its position in the network, and opportunity costs for locked capital. We further
leverage a realistic transaction distribution where nodes transact with other nodes
with probability proportional to their degree, inspired by the well-known Barabási-
Albert preferential attachment model [BA99]. We believe this transaction distribution
approximates well real-life scenarios where nodes transact more often with big vendors
and service providers. We further address the second challenge by providing a series of
approximation algorithms to efficiently compute the optimal connection strategy for
newly-joining nodes. The approximation ratio and runtime of each algorithm depend on
how much freedom the node has to distribute its budget on the channels, highlighting
an interesting trade-off.

Stable network topologies. Apart from the myopic analysis for a single joining
node, we also examine the effect our strategies may have on the topological structure
of a PCN. In particular, we examine simple graph structures, i.e., circle and star graphs,
to determine under which conditions these constitute stable graphs, where no node
may increase its utility by changing its strategy (Nash equilibrium). Naturally, which
topologies are stable or not heavily depends on the parameters of the transaction
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distribution. We thus identify the exact parameter space in which each topology
constitutes a Nash equilibrium. Our results in this domain further advances a growing
line of work that attempts to understand the game-theoretic aspects of these networks
either with respect to security e.g., [RAKM21, AKWZ21b, AL22, MBB+19a, ALW20],
or economics, e.g., [WGL+22, vER21b], in addition to purely analysing the cryptographic
underpinnings of the PCN’s security proofs [KL19, MMSK+17].

Contribution. Our contributions in this chapter can be summarised as follows:

• We extend the utility function of [AHWW20] to incorporate a realistic transaction
model and opportunity costs. To that end, we consider transaction distributions
where users transact with other users in proportion to their degree instead of
uniformly at random as in [AHWW20, ERE20b, ASW19].

• Applying standard optimisation algorithms to optimise our utility function does
not provide guarantees on the approximation ratio, as our utility function is
submodular but non-monotone and not necessarily non-negative. We provide
a series of approximation algorithms that maximize our utility function under
different constraints. In particular, we identify a trade-off between the runtime
of the algorithm and capital distribution constraints, i.e., how much capital is
locked in each channel at its creation.

• Finally, we examine simple graph topologies and determine the parameter space
of the transaction distribution in which they form Nash equilibria.

6.2 Related work
Strategic aspects of cryptocurrencies, and more generally the blockchain technologies,
have attracted a lot of attention in the literature [CXG+21, AGBPBTP20, LBS+15] as
by their very nature, they are created to facilitate interactions between self-interested
parties in a decentralised manner.

Network creation games. Apart from the works discussed in the introduction
([AHWW20, ASW19, ERE20b, GHS21]), perhaps the closest research line to which
our paper contributes is the one on creation games. In a well-known work by Fabrikant
et al. [FLM+03b], players choose a subset of other players to connect to in order to
minimise their total distance to all others in the network. The result of Fabrikant et al.
was later strengthened by Albers et al. [AEE+14], and also extended to the weighted
network creation game setting. Ehsani et al. [EFM+11] considers the network creation
game with a fixed budget for each player, thus constraining the number of connections
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each player can make. Another well-known body of research of this kind are network
formation games [BG00, Jac05]. All of these works, however, consider the problem of
network creation in general networks which do not take into account fees and channel
collateral which are specific to PCNs.

Optimising channel creation. There are several works that focus on optimising
channel creation in the PCN setting [GHS21, AHWW20, ERE20b]. Avarikioti et
al. [AHWW20] considers the problem of who to create channels with in a PCN, taking
into account graph centrality measures like betweenness and closeness. Ersoy et
al. [ERE20b] also considers the same problem, but focuses on choosing the fees for
each created channel so as to maximise profit. However, both these works only consider
a limited transaction model where users transact uniformly with all other users in the
network. In contrast, our work considers a more realistic transaction model where
users transact with other users in proportion to their degree. Guasoni et al. [GHS21]
provides a rich model and analysis of the cost of channel creation, and establish
conditions under which two parties would create unidirectional or bidirectional channels
between themselves, as opposed to transacting on-chain. However, the utility function
in [GHS21] only accounts for the cost of channel creation, whereas the utility function
in our work not only considers the channel creation cost, but also the potential profit
from routing transactions and fees a user could encounter.

Stable network topologies. Our work is also closely related to the study of stable
network topologies for real-world networks (e.g. social and communication networks)
that are formed by the interaction of rational agents [DHMZ07, BFL+21]. Demaine et
al. [DHMZ07] show that all equilibrium networks satisfy the small world property, that
is, these networks have small diameters. Bilo et al. [BFL+21] establish properties on
the diameter, clustering and degree distribution for equilibrium networks. In [ASW19,
AHWW20], Avarikioti et al. consider stable graph topologies in the context of PCNs.
Our work extends the analysis of Avarikioti et al. [AHWW20] and considers stable graph
topologies in PCNs under a non-uniform distribution of transactions between users.

6.3 The Model
In this section, we outline our model which is an extension of the model introduced
in [AHWW20]. We alleviate several unrealistic assumptions introduced in [AHWW20],
thus providing more meaningful insights on the connection strategies and expected
network structure of PCNs. We indicate these assumptions below. We model a PCN
with a directed graph G = (V, E) with |V | = n. Each (bidirectional) channel among
two parties is represented by 2 directed edges (one in each direction) connecting the
two vertices corresponding to the parties. We model each bidirectional channel as 2
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directed edges to take into account the balance on both ends of the channel which can
be different and thus impose different limits on the payment amount that can be sent
in each direction. For node u ∈ V , let Ne(u) denote the set of in- and out-neighbours
of u.

6.3.1 PCN transactions
In the following, we alleviate the assumption of [AHWW20] that transactions are
uniformly distributed among the PCN users, and introduce a more realistic transaction
model.

Transactions. We assume transactions (tx) are of size at most T > 0 and all
intermediary nodes impose the same (global) fee function F : [0, T ] −→ R+. We
denote by favg the value of the average (over all transaction sizes) fee when using the
global fee function F . That is, favg =

∫︁ T
0 ptx size=t · F (t)dt, where ptx size=t is a global

probability of occurrence of a transaction with size t. We assume that favg is publicly
known (recall that the fee functions are publicly announced in PCNs).

Let Nu denote the average number of transactions sent from user u over a unit of time.
We denote by N = ∑︁

u∈V Nu the sum of all transactions sent by all users in the PCN
in a unit of time. We assume a user u joining the network knows the distribution of
transactions in the network. These assumptions equally allow each user to estimate
the mean rate (denoted by λuv) of transactions going along any directed edge (u, v)
which, we assume, follows a Poisson process with rate λuv. We also stress that this
estimation can be done efficiently in time O(n2), by calculating shortest paths using
e.g., Dijkstra’s algorithm [Dij59] for each pair of nodes in the network.

Reduced subgraph with updated capacities. The topology of the PCN can change
with the size of transactions due to balance constraints: some directed edges do not
have enough capacity to forward transactions when the transaction size is too large.
However, given that we assume users know the distribution of transactions in the
network, and that the capacity and time of channel creation are publicly posted on the
blockchain, users can estimate the expected balance on each end of all channels in the
network. Thus, for the rest of the paper, we consider that all our proposed algorithms
for a given transaction of size x are computed on a subgraph G′ of the original PCN G
that only takes into account directed edges that have enough capacity to forward x.

Transaction distribution. In this work, we assume that the probability that any two
users transact with each other is proportionate to their degree. Specifically, we use the
Zipf distribution [Zip49] to model the probability of any two users transacting with
each other. In the original definition of the Zipf distribution, these probabilities are
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computed for a given user u in the network by first ranking of all other users according
to their degree, breaking ties arbitrarily. That is, the user with the highest degree is
given rank 1, the user with the second highest degree is given rank 2, etc. Then, for
some user-specific parameter su > 0, the probability ptx

u,v that u transacts with another
user v ∈ V \ {u} with rank k is:

ptx
u,v = 1/ksu∑︁n

i=1 1/isu
. (6.1)

We note that the Zipf distribution is widely used in the natural and social sciences for
modelling data with a power law distribution [SAPP15, ACL16]. It is also frequently
used in the context of social networks [BFL+21] and thus seems a natural model for
approximating the probability of any 2 users transacting in a payment channel network.

At this point, a careful reader might observe that the probability of a given user
transacting with two other users of the same degree, as computed using the original
definition of the Zipf distribution, is not the same. Indeed, these probabilities can differ
to a large extent, depending on how these users are ranked as well as how many users
have the same degree. This seems unrealistic to model transactions in a PCN as it
allows an implicit bias in transacting with users with same degree (and in PCNs like the
Lightning Network the majority of users have degree 1 or 2 [Gita]). In order to make
our model indifferent to rankings of users with similar degrees, we modify the original
Zipf distribution to ensure that the probability of any user transacting with two other
distinct users with the same degree is equal. We do this by simply averaging the Zipf
probability of transacting with every user with the same degree, which we detail below:

Given a network G = (V, E), we first consider the subgraph G′ = (V ′ = V \ {u}, E ′)
which is created by removing the node u and all its incident edges from G. Then, we
sort all nodes in V ′ by their in-degree and then assign a rank-factor (denoted by rf(v))
to each node v in V ′. Since we want to ensure that every node with the same in-degree
has the same rank-factor, we simply average the ranks (as computed using the original
Zipf definition) of nodes with the same in-degree. In more detail, let r0(v) denote the
smallest rank of a node v′ ∈ V ′ such that the in-degree of v′ is equal to the in-degree
of v. Let n(v) be the number of nodes in V ′ with the same in-degree as v. The rank
factor of v can be computed as follows:

rf(v) =
1

rsu
0 (v) + . . . + 1

(r0(v)+n(v))su

n(v)

The probability that u transacts with v ∈ V ′ is then:

ptx
u,v = rf(v)∑︁

v′∈V ′ rf(v′)
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Estimating the transaction rate. The edge betweenness centrality is a natural
measure of the "importance" of a given edge in terms of routing transactions in a PCN.
Let the edge betweenness centrality be defined as:

EBC(e) :=
∑︂

s,r∈V ;s ̸=r;m(s,r)>0

me(s, r)
m(s, r) ,

where me(s, r) is the number of shortest paths that traverse through the edge e and
m(s, r) is the total number of shortest paths from s to r. The transaction rate λe for
all directed edges e in E can be estimated by the edge betweenness centrality of the
edge e weighted by the probability of any two vertices s and r transacting with each
other. That is, for a directed edge e, we first define the probability pe that the edge e
is chosen in a single transaction:

pe =
∑︂

s,r∈V ;s ̸=r;m(s,r)>0

me(s, r)
m(s, r) ptx

s,r. (6.2)

Recall that N is the average number of transactions that happen in a unit of time sent
by all users in the network, and we assume these transactions are independent. The
average number of times a directed edge e = (u, v) is chosen in N transactions is the
transaction rate λe and is simply N · pe.

6.3.2 Utility function of a new user
When a new user joins a PCN, they must decide which channels to create and how
much capital to lock in each channel, while respecting their own budget. In their
decision, the user must factor the following: (a) the on-chain costs of the channels they
choose to open, (b) the opportunity cost from locking their capital for the lifetime of
each channel, (c) the potential gains from routing transactions of others (routing fees),
(d) the routing fees they must pay to route their own transactions through the PCN,
(e) their budget. Intuitively, the more channels a user opens and the higher the amount
of the total capital locked, the more fees they will obtain from routing and the less cost
they will bear for routing their own transactions. In other words, increasing the initial
costs also increases the potential gains. Our goal is to analyze these trade-offs and
find the sweet spot that maximizes the benefits for a newly-joining user with a specific
budget. We account for all these factors in a realistic manner when we design the
utility function of the user, in contrast to previous work [AHWW20, ASW19] where
the opportunity cost was omitted, and the routing fees were calculated naively (i.e.,
constant fees and uniform transaction distribution).
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A B C D

E

Figure 6.1: E joins a PCN with existing users A, B, C, D. E plans to transact with
B once a month, and A usually makes 9 transactions with D each month. We assume
the transactions are of equal size, and transaction fees and costs are of equal size. E
has enough budget only for 2 channels, with the spare amount of funds to lock equaling
19 coins. E should create channels with A and D of sizes 10 and 9 to maximize the
intermediary revenue and minimize E’s own transaction costs, instead of creating a
channel only with B. Although E would now have to pay 1 satoshi for routing the
payment to B through A, A would now choose to route their payments through E as
the fee per payment for A would be 1 satoshi instead of 2. E would gain 10 satoshi
from routing A’s payment to D for a net revenue of 9 satoshi.

User strategy and constraints. Consider a fixed PCN G = (V, E) and a new user
u that wants to join G. We denote the set of possible actions that are available to u
by Ω := {(vi, li)}i, where each element (vi, li) ∈ Ω represents a node vi that u wants
to connect to by locking in an amount of li > 0 on the corresponding channel with vi.
The strategy of u is to select a set of users S ⊆ Ω that u wants to connect to and
how much funds to deposit in these channels. Note that both Ω and S may contain
more than one channel with the same endpoints, but different amounts of locked funds
on each end. We also assume u has some budget Bu > 0 to create and fund channels
and u’s budget constraint imposes the requirement that for the strategy S ⊆ Ω chosen
by u, ∑︁|S|j=1[C + lj] ≤ Bu, where C represents the channel creation fee. Finally, we
remark that we can either constrain the amount locked inside channels to be discrete
or continuous. We call the case where each li can take on continuously many values in
the range [0, Bu] a continuous action set. Figure 6.1 highlights a simple example of
the decision-making process of a new user that wants to join an existing PCN.

Now we define the utility function for a new user u that wants to join a PCN G and
has a fixed budget Bu. The goal of u is to choose any strategy S = {(vi, li)}i ⊆ Ω
to maximize their expected profit within a given budget Bu. The expected profit
(utility) of u is essentially the expected revenue from forwarding transactions through
its channels and collecting the routing fees, minus the costs of creating the channels
(on-chain fees and opportunity cost) and the expected fees encountered by u when
sending transactions to other users in the network.
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Channel costs. Typically, two on-chain transactions are needed to open and close a
channel ∗. Recall that each blockchain transaction costs a fee to the miners, denoted
C.

The cost of the opening transaction can be shared by two parties, and we assume that
parties only agree to open channels if they share this cost equally (C/2 each). The cost
of the closing transaction, on the other hand, is paid by both parties when the channel
closes in collaboration, or by the party that closes the channel when the channel is
closed unilaterally. To model the costs of a channel between u and v, we assume that
it is equally probable that the channel closes in one of the three ways: unilaterally by v,
unilaterally by u, in collaboration of u and v. Thus, the cost of the closing transaction
is in expectation C/2 for each party. Hence, in total, the channel cost for each party is
C.

We also account for the opportunity cost of locking funds (as opposed to using or
storing them elsewhere) in a channel for the lifetime of the channel. Suppose two
users u and v wish to open a channel locking cu and cv amount of coins respectively.
Let lu be the opportunity cost defined by user u; which is, typically a function of the
amount of coins cu, e.g., lu = r · cu, r constant (a standard economic assumption due
to the non-specialized nature of the underlying coins [HL98]). We denote the total
cost for opening the channel (u, v) for user u by Lu(v, l) = C + lu. The cost of user v
is symmetric.

We direct the reader to the work by Guasoni et al. [GHS21] for a more detailed model
of channel costs. We note that our computational results still hold in this extended
model of channel cost. We further note that while the utility function in [GHS21] only
accounts for the cost of channel creation, in our work we also consider the potential
profit from routing transactions and fees a user could encounter.

Revenue from routing fees. Each user of the PCN may route transactions of others
through their channels in exchange for a routing fee. Each time a user u provides
such service, u gains revenue equal to favg as described in section 6.3.1. Specifically,
the expected revenue gained by a user u (denoted by Erev

u ) over a unit time interval
from routing transactions in the PCN is the sum of the fees weighted by the average
transaction rate from all of u’s incident channels:

Erev
u =

∑︂
vi∈Ne(u)

λuvi
· favg. (6.3)

∗We omit the case when one of the parties may commit fraud, and a third transaction is necessary
to award the cheated party all the channel funds. This case is outside the scope of the paper as the
costs for publishing such a transaction may be covered by the total funds of the channel
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Fees encountered by the user. Whenever a user in the network u makes a payment
to another user v, u has to pay some amount of fees to all the intermediary nodes in
the payment path from u to v. Let d(u, v) be one less than the length of the shortest
path from any two distinct users u to v in the network. That is, for any two users u, v
directly connected by a payment channel d(u, v) = 0. The expected fees encountered
by u with a stream of Nu output transactions is the sum of costs which increases
proportionally with the distance between any two users:

Efees
u = Nu ·

∑︂
v∈V ;v ̸=u

d(u, v) · favg · ptx
u,v

We note that when two users u and v are not connected, then d(u, v) = +∞.

Objective. Here, we combine all the costs calculated above and compute the utility
function of a newly joining node. We denote the expected utility of a user u under
a given strategy S ⊆ Ω by UuS

and it is the profit gained from collecting the fees,
minus the fees paid for sending out transactions, and minus the costs of the channels.
Formally,

UuS
= Erev

u − Efees
u −

∑︂
(v,l)∈S

Lu(v, l)

We assume the utility of a disconnected node (i.e. a node that is not connected to any
other node in the network) is −∞.

The objective of u is to select a subset of users to connect to as well as the amount of
funds to lock into these channels that maximises their expected utility subject to the
budget constraints. Formally:

max
S∈Ω

UuS
s.t.

∑︂
(v,lu)∈S

[C + lu] ≤ Bu

6.4 Optimisation algorithms
Having defined the utility and objective for a new user u in Section 6.3.2, we now propose
several algorithms to optimise the objective in this section. We begin by establishing
some properties of our objective function. We first show that our utility function is
submodular but not necessarily monotone and not necessarily non-negative. Thus, we
cannot apply standard algorithms to maximise it efficiently with good guarantees on the
approximation ratio [FMV11]. We thus propose a series of constraints on the actions
of the new user u and define a solution for the objective in each constrained setting.
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We then provide a corresponding optimisation algorithm for each setting that comes
with guarantees on the approximation ratio. In the following, let [k] denote {1, . . . , k}.

6.4.1 Properties of the objective function
We first show that the objective function is submodular. Let S ⊂ Ω be a strategy. Note
that we allow the algorithm to add more than one channel with the same endpoint v
but different amounts of funds li to the strategy set S.

Theorem 6.4.1. The expected utility function UuS
is submodular.

Proof. We split UuS
into three components that sum to UuS

and show that each
component is submodular. Since the sum of submodular functions is submodular, the
claim follows.

We first rewrite UuS
as

UuS
= Erev

u +
(︂
−Efees

u

)︂
+
⎛⎝− ∑︂

(v,l)∈S

Lu(v, l)
⎞⎠ . (6.4)

Consider two strategies S1 ⊆ S2, and consider a pair X = (x, lx) /∈ S2.

We now analyse the first component of UuS
, Erev

u . We use Erev
uS

to denote the expected
revenue of user u given the strategy S.

Now observe that

Erev
uS1∪X

− Erev
uS1

= Erev
uX

= λxu · favg = Erev
uS2∪X

− Erev
uS2

Hence the expected revenue function Erev
uS

is submodular. Note that we assume that
λxu is fixed.

Now we show that the second component −Efees
u = −λu

∑︁
v∈V ;v ̸=u d(u, v) · favg · ptx

u,v

is submodular. Let us denote the marginal gain in terms of the expected fees of adding
X = (x, lx) to strategy S as MGS(X) := −Efees

uS∪X
− (−Efees

uS
) = Efees

uS
− Efees

uS∪X
. We

note that MGS(X) only changes if there is a shortest path from u to some v ∈ V
that goes through the new vertex x, i.e.:

MGS(X) = λufavg

∑︂
v∈V ;v ̸=u;

x∈spS∪{X}(u,v)

ptx
u,v

[︃
dS(u, v)− dS∪{X}(u, v)

]︃

Recall that d(u, v) as defined for two disconnected nodes u, v is +∞. Thus, dS1∪{X}(u, v)−
dS1(u, v) ≤ 0 as X /∈ S1, S2. Moreover, as all vertices v ∈ S1, S2 are direct neighbours
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of u, then dS1(u, v)− dS1∪{X}(u, v) ≥ dS2(u, v)− dS2∪{X}(u, v). Hence, we conclude
that MCS1(X) ≥ MCS2(X). Note that in our calculations we assume that ptx

u,v is
fixed.

Finally, we show that the last component −∑︁(v,l)∈S Lu(v, l) in 6.4 is submodular. The
marginal gain of X = (x, lx) to the channel costs given uS1 is simply the cost of a
single bidirectional channel between u and x, i.e. Lu(v, x). This is exactly equal to the
marginal gain given uS2 .

Now, we show that although the objective function is submodular, it is unfortunately
non-monotone. That is, for any two strategy sets S1, S2 with S1 ⊂ S2, it is not
necessarily the case that Uus1

≤ Uus2
.

Theorem 6.4.2. The expected utility function UuS
is not necessarily monotone

Proof. We analyse each component of UuS
separately. First, we note that a direct

application of [ERE20b] shows that Erev
u is monotone increasing. Next, we look at

expected fees:

−E[fees encountered by uS] = −λu

∑︂
v∈V ;v ̸=u

d(u, v) · favg · ptx
u,v.

The monotonicity of this function directly follows from the fact that for any S1 ⊆ S2,
dS1(u, v) ≥ dS2(u, v). Thus, the function is monotone increasing. Note that in the
calculations we assume that ptx

u,v is a fixed value.

Finally, −∑︁(v,l)∈S Lu(v, l) is clearly a monotone decreasing function. Since two com-
ponents of UuS

are monotonically increasing and one component is monotonically
decreasing, UuS

is non-monotone.

It is straightforward to see that the proof of Theorem 6.4.2 leads to the following
corollary.

Corollary 6.4.2.1. The modified utility function U ′uS
= Erev

u − Efees
u is monotone.

Proof. Follows as a direct consequence from the fact that the expected revenue and
expected fees are both monotone increasing.

The final property we show about our objective function is that it is not necessarily
non-negative.

Theorem 6.4.3. The expected utility function UuS
is not necessarily non-negative.
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Proof. This follows from the observation that the sum of the cost of creating channels
and the expected fees ∑︁(v,l)∈S Lu(v, l)+Efees

u might easily get bigger than the expected
revenue Erev

u when choosing some strategy S ⊆ Ω.

6.4.2 Fixed amounts of funds per channel
We first show that if we restrict the amount of funds (say l∗) that the new user u can
lock in each created channel, we can achieve an approximation ratio of 1 − 1

e
. This

setting is useful for users who join the PCN to transact regularly with other users and
with fixed amounts (for instance, u buys coffee from a different cafe every day in the
week with each cafe selling similarly priced coffee), and so the precise amount of funds
allocated in each channel is not as important who the user should connect to. The
algorithm (described formally in Algorithm 6.1) that achieves this ratio in this setting
is simple – the new user just greedily picks the k best channels to connect with that
maximises their expected revenue minus their expected fees.

Algorithm 6.1: Greedy algorithm
Input: Ω, M

1 PS ← array indexed 1, . . . , M initialised with PS[i] = ∅
2 PU ← array indexed 1, . . . , M initialised with PU[i] = −∞
3 S ← ∅
4 A← Ω
5 while |S| ≤M do
6 X ← argmaxX∈A[U ′uS∪{X} − U ′uS

]
7 S ← S ∪ {X}
8 PS[|S|]← S
9 PU[|S|]← U ′uS

10 A← A \ {X}
11 i← argmaxi∈{1,...,M}[PU[i]]
12 return PS[i]

Formally, let us restrict our analysis to the modified utility function U ′uS
which is the

sum of the expected revenue and the expected fees: U ′uS
= Erev

u + (−Efees
u ). We

note that the modified utility function U ′uS
is submodular and monotone, as shown

in Corollary 6.4.2.1. Let us denote the maximum number of channels that can be
created given u’s budget Bu by M := ⌊ Bu

C+l∗
⌋. Algorithm 6.1 searches for the optimal

subset of vertices to connect to that maximises U ′uS
for each possible subset of size

k, k ∈ {1, 2, . . . , M}. Once all the M optimal subsets are found, Algorithm 6.1 then
compares the utility given by U ′uS

for each subset, and returns the subset that gives the
maximal utility. Since the channel creation cost is now fixed for any choice of k new
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channels, the (1− 1
e
)-approximation we achieve when we greedily maximize U ′uS

simply
follows from the result in [Wil19] since U ′uS

is submodular and monotone.

The next theorem shows that Algorithm 6.1 returns a (1− 1
e
)-approximation and runs

in time linear in M.

Theorem 6.4.4. Algorithm 6.1 with inputs Ω = {(v, l∗) ∈ V : v ̸= u} and M returns
a (1− 1

e
)-approximation of the optimum of U ′uS

. The result is computed in at most
O(Mn) number of estimations of the λuv parameter.

Proof. To see that Algorithm 6.1 returns a (1 − 1
e
)-approximation of the optimum

of U ′uS
, we need to see that in the algorithm for each possible k we compute a

(1− 1
e
)-approximation of U ′ (in O(n) time), because the function U ′ is submodular and

monotonically increasing, then the overall solution that compares partial results gives a
(1− 1

e
)-approximation ratio for a fixed k. This in turn gives a (1− 1

e
)-approximation

ratio for each k ∈ {1, 2, . . . , M}.

6.4.3 Varying amount of funds per channel, discrete version
Next, we relax the previous constraint that the new user u can only lock a fixed amount
of funds in each channel and allow u to now lock varying amounts of funds in each
channel. Enabling varying capital on channels more accurately depicts the realistic
model of transaction distribution that we leverage. However, in order to achieve the
same approximation ratio of 1− 1

e
as in the previous setting, we have to discretise the

capital that can be locked into a channel to some minimal amount m > 0. That is,
opening a channel would require injecting funds of the form km for some k ∈ N. We
impose this discretisation constraint in order to perform an exhaustive search over all
possible assignments of the budget Bu capitals in each channel.

We again operate on the modified utility function U ′uS
and present an algorithm

(described in Algorithm 6.2) that achieves the same approximation ratio of 1− 1
e
, albeit

with a larger runtime. In more detail, given a parameter m, Algorithm 6.2 firstly divides
the budget Bu to Bu

m
units that can be spent. Then, the algorithm divides these budget

units into k + 1 parts (where k := ⌊Bu

C
⌋ is a bound on the number of channels that

u can possibly create with a budget of Bu). Finally, for each possible division of the
budget into k + 1 parts, it runs Algorithm 6.1 as a subroutine in each step locking the
capital assigned to this channel in the division. Let us denote τ :=

(︂ Bu
m

k+1

)︂
.

Theorem 6.4.5. Algorithm 6.2 with inputs V , budget Bu, and parameter m returns
a (1− 1

e
)-approximation of the optimum of U ′uS

. The result is computed in at most
O(τkn) steps.
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Algorithm 6.2: Exhaustive search over channel funds
Input: V, Bu, m

1 k = ⌊Bu

C
⌋

2 D = array of all divisions of [⌊Bu

m
⌋] to k + 1 parts

3 DS ← array indexed 1, . . . , |D| initialized with DS[i] = ∅
4 for i ∈ [|D|] do
5 (l1, . . . , lk+1)← D[i]
6 DS[i]← the output of Algorithm 6.1 run on M = k with a restriction that

in every step j of the while loop in the algorithm a channel with capacity
lj is selected

7 i← argmaxi∈{1,...,|D|}U ′uDS[i]

8 return DS[i]

Proof. The budget Bu

m
can be split to at most k + 1 parts in at most τ =

(︂ Bu
m

k+1

)︂
cases. Algorithm 6.1 is run as a subroutine of Algorithm 6.2 and thus the runtime
of using Algorithm 6.1 for each case is O(kn). The main routine iterates through
all possible combinations of amounts locked to channels, each of them giving the
(1− 1

e
)-approximation for the selected assignments of funds.

We note a natural trade-off between the choice of m and the runtime of Algorithm 6.2:
a larger choice of m would reduce the search space and hence the runtime of the
algorithm. However, it would reduce the control over the capital the user could lock
into any particular channel.

6.4.4 Varying amount of funds per channel, continuous version
In this section, we remove the previous constraint that the capital the new user u can
inject into new channels have to be discretised, that is, u can now inject funds of
the form m where m lies in the real interval [0, Bu] into any channel. We sketch a
polynomial-time 1

5 -approximation algorithm for the optimisation problem: let us first
denote the total expected on-chain transaction cost for a user u with an average output
stream of Nu transactions as Cu := Nu·C

2 . That is, Cu represents the total expected
cost for user u when u transacts entirely on the blockchain and not on the PCN. One
can now consider what we term the benefit function, which is simply the sum of Cu

and the utility of u when u joins the PCN with strategy S. Formally, we denote this
function by U b

uS
:= Cu + UuS

. Intuitively, the benefit function captures the potential
benefit u would gain from transacting with other users over the PCN rather than on
the blockchain, thus it is the sum of the utility the u gets from joining the PCN, as
well as the expected saved costs Cu of not transacting on the blockchain.
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We observe that U b
uS

will stay submodular and positive whenever the user chooses
channels (u, v), such that

Efees
u + Bu

C
· Lu(v, l) < Cu.

As such, we can apply the algorithm and result of Lee et al. [LMNS09] for optimising
submodular and non-negative functions to U b

uS
to achieve a 1

5 -approximation of U b
uS

.

6.5 Structural properties of simple graph topologies
In this section, we complement our study of optimisation algorithms for users in the
payment channel network (Section 6.4) with a study of structural properties of simple
graph topologies given the transaction model between users as defined in Section 6.3.1.
We are particularly interested in properties of stable networks, that is, networks that are
in a Nash Equilibrium where no user can increase their utility by any unilateral change in
strategy. Stability is an important notion in the context of PCNs as this has implications
not only on the choice of which nodes to connect to for a new user [AHWW20] but
also on payment routing and finding off-chain rebalancing cycles for existing users to
replenish depleted channels [APS+22b]. We are also interested in the parameter space
of our model under which specific graph topologies form a Nash Equilibrium.

6.5.1 Upper bound on the longest shortest path containing a
hub

An interesting question is how large is the diameter of stable networks with highly
connected nodes. In the context of PCNs, this has implications on efficient payment
routing algorithms[RMKG18, SVR+20b, PSSY21a, GHP00]. As a first step to answering
this question, we derive an upper bound on the longest shortest path in a stable network
that contains a hub node, i.e., an extremely well-connected node that transacts a
lot with other nodes in the network. Let us select a hub node h and consider the
longest shortest path that h lies on (if there are multiple we simply select one of them
arbitrarily). We denote the length of the path by d. Let ε > 0. The following theorem
derives an upper bound on d for a stable network.

Theorem 6.5.1. d is upper bounded by 2(
C+ε

2 −λe·favg

pmin·N ·favg
) + 1.

Proof. Let P = (v0, v1, . . . , vd) be the path. Consider the addition of an edge e
between v⌊ d

2 ⌋−1 and v⌊ d
2 ⌋+1. Denote by λe the minimum rate of transactions going

through the edge e in both directions, i.e. λe := min{λ(v⌊ d
2 ⌋−1,v⌊ d

2 ⌋+1), λ(v⌊ d
2 ⌋+1,v⌊ d

2 ⌋−1)}.
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Now consider the set of directed shortest paths SP such that each path si ∈ SP is a
subsequence of P and one end point of si lies in {v0, . . . , v⌊ d

2 ⌋−1} and the other end
point of si lies in {v⌊ d

2 ⌋+1, . . . , vd}. Let pi be the probability that si is selected, with
probabilities of directed paths being selected as defined by the probability of the source
of the path transacting with the sink (refer to Equation 6.1 for more details). Let
pmin := mini pi.

We know the cost (split equally) of creating the edge e with some ε amount of funds
locked into the edge is at least C+ε

2 . Since the network is stable, this implies that the
cost of creating e is larger than any benefits gained by the 2 users v⌊ d

2 ⌋−1 and v⌊ d
2 ⌋+1

by creating e. That is,

C + ε

2 ≥ λe · favg + N · pmin · favg · ⌊
d

2⌋, (6.5)

where the first term on the RHS of the inequality is the minimum (among the two parties
v⌊ d

2 ⌋−1 and v⌊ d
2 ⌋+1) of the average revenue gained by adding the edge e. The second term

on the RHS of the inequality is a lower bound on the average amount of fees saved by

v⌊ d
2 ⌋−1 and v⌊ d

2 ⌋+1. Rearranging, this implies that d ≤ 2(
C + ε

2 − λe · favg

pmin ·N · f avg

)+1.

Note that since a hub node is on the path, as long as it is not directly in the middle of
the path (i.e. vertex v⌊ d

2 ⌋
), pmin should be fairly large as hubs are typically high degree

vertices. Moreover, if a hub node is on a diametral path, we extract a meaningful
bound on the diameter of a stable network.

6.5.2 Stability of simple graph topologies
In this section, we study some simple graph topologies, and the parameter spaces of
the underlying transaction distribution under which they form a Nash Equilibrium. We
restrict our analysis to these simple topologies because computing Nash Equilibria for a
general graph using best response dynamics is NP-hard (see Theorem 2 in [AHWW20]).
As mentioned in Section 6.3.1, we assume the underlying transaction distribution
that gives the probability of any two nodes transacting with each other is the Zipf
distribution.

Our analysis in this section relies on the following set of assumptions and notation:

1. Recall from Equations 6.2 and 6.3 in Section 6.3 that the expected revenue of a
user u can be written as:
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Erev
u =

∑︂
vi∈Ne(u)

λuvi
· favg

=
∑︂

v1 ̸=v2
v1,v2∈V \{u}

mu(v1, v2)
m(v1, v2)

·Nv1 · ptx
v1,v2 · favg.

We denote b := Nv1 · favg and assume it is constant for v1 ∈ V \ {u}.

2. We denote a := Nu · favg.

3. We assume a global scale parameter s for the Zipf distribution to model the
underlying transaction distribution. For any s > 0 and n ∈ N, we denote
Hs

n := ∑︁n
k=1

1
ks .

4. We assume all players create channels locking in the same amount of funds. We
use l to denote the cost of creating channels in this case.

We first establish the necessary conditions that make the star graph a Nash Equilibrium.
Let us denote by K1,n the star graph with 1 central vertex and n leaves.

Theorem 6.5.2. K1,n with n ≥ 2 is a Nash Equilibrium when nodes transact with each
other according to the Zipf distribution with parameter s ≥ 0 whenever the following
conditions hold:

1. a
Hs

n
≤ l · 2s,

2. b · i
2 ·

Hs
n−1−1/2s

Hs
n

+ a
Hs

i+1−1
Hs

n
≤ l · (i− 2) (for 2 ≤ i ≤ n− 1)

Due to its length, and for clarity of presentation, we defer the proof of Theorem 6.5.2
to Appendix B.1. The main observation in the proof is that the central node would not
want to switch strategies as its expected revenue under the default strategy is already
maximised. Thus, any switch in strategy would simply add additional cost to the node.
For leaf nodes, we enumerate all possible classes of deviations, and then show for each
deviating class the expected utility of deviating is less than the expected utility under
the default strategy, as long as the two conditions in the theorem statement hold.
We also show that the circle graph is not a Nash Equilibrium when the number of
vertices is sufficiently large. For clarity of presentation, we defer the full proof to
Appendix B.2. The main observation is that for large n, there is a better strategy for
any vertex. This strategy deletes a connection with one of the existing neighbours, and
connects to the opposite node.

Theorem 6.5.3. The Circle graph is not a Nash Equilibrium for s ≥ 0 and for large n.
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6.6 Conclusion and Future Directions
In this chapter, we modeled and analysed the incentive structure behind the creation of
PCNs. We first focused on the perspective of a new user who wants to join the network
in an optimal way. To this end, we defined a new user’s utility function in terms of
expected revenue, expected fees, on-chain cost of creating channels, and opportunity
costs, while accounting for realistic transaction distributions.

We also introduced a series of approximation algorithms under specific constraints on
the capital distribution during the channel creation: (a) We first presented a linear
time (1− 1

e
)-approximation algorithm when a user locks a fixed amount to all channels;

thus, providing an efficient approach for users who wish to lower computational costs.
(b) We further provided a pseudo-polynomial time (1 − 1

e
)-approximation algorithm

when users may lock varying, but discretised by m, amounts to different channels. This
setting applies to most real-life scenarios but comes with a computational overhead
that depends on m. (c) Finally, we proposed a 1/5 approximation solution when a user
can pick the amounts from a continuous set. We used a modified utility function, the
benefit function, which may be leveraged by a user to test whether assuming continuous
funds yields unexpected profits.

Altogether, our results in this section show that depending on the number of assumptions
a new user joining a PCN wants to make, the user has a range of solutions to deploy
to optimize the way they connect to the network.

Lastly, we analysed the parameter spaces in our underlying model and conditions under
which the star and circle graph topologies form a Nash Equilibrium. Our analysis
indicates that under a realistic transaction model, the star graph is the predominant
topology, enhancing the results of [AHWW20].

We highlight three interesting directions for future work. First, it would be beneficial to
develop more advanced algorithms for maximizing the general utility function that also
come with guarantees on the approximation ratio. Second, we believe there are still
avenues in which our model can be made more realistic, for instance, by considering a
more realistic cost model that takes into account interest rates as in [GHS21]. Lastly,
as the accuracy of our model depends on estimations of the underlying PCN parameters,
for instance, the average total number of transactions and the average number of
transactions sent out by each user, developing more accurate methods for estimating
these parameters may be helpful.
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CHAPTER 7
Conclusion

Now cometh the age of the stars.

Ranni, Elden Ring

In this thesis, we studied algorithms for routing, rebalancing, and optimisation in
payment channel networks, with a focus on the privacy and efficiency aspects.

To recap the motivation of the thesis, one of the main challenges that existing route
discovery and rebalancing protocols face is that they either focus on privacy or efficiency
but not on both. As such, our first goal was to advance the study of routing and
rebalancing algorithms in payment channel networks by proposing methods which
are both private and efficient. We also observed that in the optimisation frontier,
existing models for actions, costs, and utility are either too simplistic or rely on strong
assumptions that are unrealistic. Thus, our second goal is to develop richer and more
realistic models as well as optimisation algorithms in these settings that come with
good guarantees.

We summarise the main problems and our solutions below:

• In Chapter 3, we studied the problem of efficient and private route discovery in
PCNs. We introduced a notion of privacy that hides the route query from servers
that receive the query. We presented a protocol that is private and efficient,
based on the crucial observation that hub-labelling algorithms combine well with
private information retrieval to boost asymptotic efficiency. We also developed a
heuristic that leverages the topology of payment networks to discover hubs more
efficiently. To conclude our findings, we validated all our theoretical results with
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simulations on historical snapshots of the Lightning Network, and show that the
evaluations imply that our method can be run frequently with little overhead,
making it easy to use in practice.

• In Chapter 4, we studied the problem of private and efficient rebalancing on
PCNs. We first outlined the shortcomings of previous rebalancing proposals,
namely the focus on either efficiency or privacy but not both. To the best of our
knowledge, we then presented a protocol that is both fully private and efficient,
overcoming all the shortcomings of previous solutions. Our method formulates
the rebalancing problem as a linear program and solves it using MPC to achieve
a fully private, globally optimal solution.

• In Chapter 5, we studied the problem of optimising the utility of an existing user
in the PCN. We look at the problem in both the offline and online setting. In
both of these settings, we advanced existing models of utility by considering a
richer model of actions and costs. In the offline setting, we presented a constant
approximation algorithm that decides how much capacity to inject into a channel
and which transactions to accept and reject, given an input transaction sequence.
In the online setting, we present competitive algorithms in various settings. We
also validated our theoretical results in the online setting with simulations on
randomly generated transaction sequences. Our simulations show that the average
performance of our algorithm is significantly lower than our theoretical bound,
which implies that our algorithms can be deployed in practice.

• In Chapter 6, we studied the problem of optimising the utility of a new user
that wants to join the PCN. We advanced prior models of utility in this setting
by adopting more realistic models of transactions and costs. We showed that
the objective function under our more complex model is difficult to optimise
with good guarantees on the approximation ratio using existing optimisation
algorithms. Nevertheless, we presented several meaningful ways to constrain the
optimisation setting so that we can still develop good approximation algorithms
in each setting. We conclude our findings by with an analysis of stable network
properties and topologies.

The hope of this thesis is not only to advance the privacy and efficiency frontiers of
PCN research, but also to spark interest in future research that continues the ideas and
directions presented in this thesis. In particular, there are various immediate as well as
broader research directions that form interesting and natural progressions of the ideas
proposed in the thesis. We identify some of these directions as follows:

Privacy efficiency trade-off. One of the reasons why most prior work have focused
on either privacy or efficiency exclusively is the existence of an inherent trade-off between
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privacy and efficiency. For instance, a lot of private algorithms for rebalancing and
routing either use MPC [APS+21, MMSKM17], or some noising mechanism [TWFO20,
DTZG22] to hide channel balances, which makes achieving private solutions come at an
additional cost to utility and scalability. The scalability of most fully private solutions
naturally depends on the advances in the implementation of the underlying cryptographic
primitives, e.g., the development of faster MPC libraries or specialised hardware. An
important and natural question is whether we can develop private solutions that do
not depend on sufficient advancements in MPC implementations in order to create
scalable private solutions. A promising approach is to leverage the specific topological
structure of PCNs (close to star-like with very few high-degree hub nodes), and develop
optimisation algorithms that scale exponentially in the number of hub nodes instead of
the input [TYA+22]. This restricts the computational complexity of the optimisation
problem, and hence the amount underlying MPC computations, to scale in the number
of hubs which can be assumed to be very small. Another approach is to combine
specific topological properties of the network with other private algorithms that are
efficient. Thus, our proposed routing solution in Chapter 3 can also be seen as a step
in the right direction.

Optimisation of whole network. In Chapter 5 we restricted the scope of our
optimisation problem to a single channel with both users cooperating to reduce the
total cost of their shared channel. A natural extension of this problem is to expand
the scope of the optimisation problem to include the entire network. Some important
considerations in this setting would be to firstly ensure the atomicity of the decisions on
transactions on an entire payment path – either a payment is accepted along all channels
in the payment path, or rejected by all channels. Another important consideration is
network creation, that is, how to create a network that minimises the total cost. As
the length of payment paths clearly make the problem more complex in this setting,
an interesting approach for future work is to restrict the analysis to low-diameter
topological structures like the star.

Cross-PCN protocols. Thus far we have limited the focus of our study to protocols
and problems over a single PCN. However, just as there are now several blockchains, and
correspondingly several PCNs built on top of these blockchains, future PCN research
would naturally have to include the design of private and efficient cross-PCN protocols.
To the best of our knowledge, there has been only a single work so far that proposed
how to create cross-PCN channels [JYS+23]. Thus, there is still a plethora of open
questions to be answered, such as designing efficient cross-chain payment routing
protocols, efficient cross-chain conflict resolution protocols, cross-chain transaction
aggregation etc. Future work on these might perhaps draw ideas from the current
protocols and algorithms for single PCNs.
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APPENDIX A
Supplementary material for

Chapter 5

A.1 Computing the cost of OFF using dynamic
programming

In this section, we describe a dynamic programming algorithm ON that solves the
main problem. We assume that the size of transactions is integral (moreover the sum
of transactions should be small).

Let Costi(Fℓ, Fr) be the minimum cost for rejecting and off-chain rebalancing in
processing sequence Xi that ends with b(ℓ) = Fℓ and b(r) = Fr (For values of Fℓ and
Fr smaller that 0, we define it to be ∞). Costi(Fℓ, Fr) can be derived from Costi−1
given the decision on the ith transaction.

Let us assume wlog that the ith transaction is from ℓ to r. OFF has three choices
when encountering the transaction xi. The first option is to reject xi, then the cost
is A1 = Costi−1(Fℓ, Fr) + Rxi + f2. The second option is to accept xi which gives
the cost A2 = Costi−1(Fℓ + xi, Fr − xi). The last option is to rebalance the channel
off-chain before accepting the transaction xi. Note that any off-chain rebalancing
before rejecting or accepting (while having enough funds) can be postponed. This
gives a cost of A3 = mina≤Fℓ+xi

Costi−1(a, Fr + Fℓ− a) + C ·R(Fℓ + xi− a) + Cf2.
OFF chooses the best option, that means Costi(Fℓ, Fr) = min {A1, A2, A3}

Note that we handle right to left transactions in the same way.
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Thus, ON computes Costt for all valid pairs (Fℓ, Fr) and the final cost is

CostOFF(Xi) = min
Fℓ,Fr

Costt(Fℓ, Fr) + Fℓ + Fr + f1

To bound the time complexity of ON, we observe some bounds for S = F ∗ℓ + F ∗r ,
where F ∗ℓ and F ∗r are the values of Fℓ and Fr achieving the minimal cost. Observe
that S ≤ ∑︁i≤t xi, it is not worth to have more money than the sum of the trasactions.
We can strenghten the inequality and instead of ∑︁i≤t xi, we can compute the minimal
amount needed to accept every transaction. The other option is to reject everything,
so we know that f1 + S ≤ ∑︁i≤t Rxi + f2.

Now we can prove the theorem about the described algorithm ON.

Theorem A.1.1. ON computes the optimal cost in time O(tS3), where S is the
bound on the maximal funds in the channel and t is the number of transactions.

Proof. In the dynamic programming, we take into account all possible decisions ON
can make, by this, correctness follows.

The algorithm ON tries all possible amounts between 1 and S and starting distributions.
There are S2 of them. While computing one value, it needs to look at at most S
precomputed values. And it needs to do it at most t times.

Using dynamic programming for calculating OFF has two advantages. First, we can
easily recover the decisions of OFF. Secondly, dynamic programming provides us with
the optimal solution for all subsequences of Xt. This is useful for implementing queries
to the offline oracle in Algorithm 5.10.
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APPENDIX B
Technical proofs for Chapter 6

B.1 Proof of Theorem 6.5.2
Theorem 6.5.2. K1,n with n ≥ 2 is a Nash Equilibrium when nodes transact with each
other according to the Zipf distribution with parameter s ≥ 0 whenever the following
conditions hold:

1. a
Hs

n
≤ l · 2s,

2. b · i
2 ·

Hs
n−1−1/2s

Hs
n

+ a
Hs

i+1−1
Hs

n
≤ l · (i− 2) (for 2 ≤ i ≤ n− 1)

Proof. We will first show that the central node has no incentive to deviate from the
star topology. Then, we analyse the leaves and list all possible deviations that could
happen, then show that these deviations would lead to lower expected utility under the
conditions stated above. Let us call the star topology the default strategy.

Consider the central node of the star. The possible deviations that can occur are either
to add additional channels between the central node and some other nodes, or to
delete edges to disconnect the central node from other nodes. Since the central node is
connected to all other nodes, adding an additional channel to any node just increases
the channel creation cost and thus decreases the expected utility for the central node.
Removing a single edge disconnects the central node from some user and thus leads to
infinite cost. Altogether, since any change in strategy results in a lower expected utility,
the central node has no incentive to switch to any different strategy.

Now consider a leaf node u. Apart from sticking to the default strategy, the only
possible deviations for a leaf node are:
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1. connecting to all other n− 1 leaves

2. connecting to all other n− 1 leaves and removing the connection to the central
node

3. connecting to 1 other leaf

4. connecting to 2 ≤ i ≤ n− 2 leaves

5. connecting to 2 ≤ i ≤ n− 2 leaves and removing the connection to the central
node

Expected utility under default strategy. We now compute the expected utility of a
leaf node u under the default strategy, as well as under each of these deviating strategies.
Under the default strategy, the expected revenue of u is 0 as u is a leaf and so does
not route transactions. Since the rank factor of the central node is 1, and each leaf
node has rank factor Hs

n−1
n−1 , the expected fees of u is Efees

u = a(n− 1)
Hs

n−1
n−1
Hs

n
= a · Hs

n−1
Hs

n
.

Finally, the cost of creating 1 channel is l. Altogether, the expected utility of u under
the default strategy is −a · Hs

n−1
Hs

n
− l.

Expected utility under deviating strategy 1. Under deviating strategy 1, i.e.,
connecting to all the other n− 1 leaves, the expected fees of u is Efees

u = 0 since u is
connected to all nodes. The cost of creating these channels is nl. Under this strategy,
the rank factor of u and the central node will both be 1+1/2s

2 , and the rank factor of all
other nodes will be Hs

n−1−1/2s

n−2 . Apart from the central node and u, there are
(︂

n−1
2

)︂
pairs

of nodes that, when transacting with each other, could route their transactions through
u or the central node, with equal probability of 1

2 for each. Thus, the expected revenue

of u under this strategy would be Erev
u = 2b · 1

2

(︂
n−1

2

)︂ Hs
n−1−1/2s

n−2
Hs

n
= b · n−1

2 ·
Hs

n−1−1/2s

Hs
n

.
Altogether, the expected utility of u under this strategy is b · n−1

2 ·
Hs

n−1−1/2s

Hs
n

− ln.

Expected utility under deviating strategy 2. Under deviating strategy 2, i.e.,
connecting to all other leaves and removing the connection to the central node, the
expected fees incurred by u would be Efees

u = a
Hs

n
as the only way u will incur any fees

is to transact with the central node which has a rank factor of 1 from the perspective
of u. The cost of channel creation is l · (n− 1). The rank factor of both u and the
central node is still 1+1/2s

2 , and the rank factor for all other nodes is also still Hn−1−1/2s

n−2 .

Thus, the expected revenue is Erev
u = 2b · 1

2

(︂
n−1

2

)︂ Hs
n−1−1/2s

n−2
Hs

n
= b · n−1

2 ·
Hs

n−1−1/2s

Hs
n

. The
expected utility is thus b · n−1

2 ·
Hs

n−1−1/2s

Hs
n

− a
Hs

n
− l(n− 1).

138



Expected utility under deviating strategy 3. Under deviating strategy 3, i.e.,
adding only 1 connection to another leaf, the expected revenue of u is still going to be
0 as the extra connection does not reduce shortest paths that go through u and thus
does not give u any benefit in terms of added fees. The cost of channel creation in
this case is 2l. The central node still maintains its rank factor of 1, and the leaf that
u connects to will have rank factor 1

2s . All other n− 2 leaves would have rank factor
Hs

n−1− 1
2s

n−2 . Thus, Efees
u = a(n− 2) ·

Hs
n−1− 1

2s
n−2
Hs

n
= a · Hs

n−1− 1
2s

Hs
n

. Altogether, the expected

utility of u under this strategy is −a · Hs
n−1− 1

2s

Hs
n
− 2l.

Expected utility under deviating strategy 4. Under deviating strategy 4, i.e.,
adding connections to 2 ≤ i ≤ n − 2 other leaves, the cost of channel creation is
l(i + 1). From the perspective of u, the central node has rank factor 1, the leaves
that u connects to have rank factor Hs

i+1−1
i

, and all the other nodes have rank factor
Hs

n−Hs
i+1

n−i−1 . Thus, Efees
u = a(n − i − 1)

Hs
n−Hs

i+1
n−i−1

Hs
n

= a · Hs
n−Hs

i+1
Hs

n
. From the perspective

of a leaf that u connects to, the central node has rank factor 1, u has rank factor 1
2 ,

and the other i− 1 leaves that u connects to have rank factor Hs
i+1−1−1/2

i−1 . Thus, the

expected revenue of u is Erev
u = 2b · 1

2

(︂
i
2

)︂ Hs
i+1−1−1/2

i−1
Hs

n
= b · i

2 ·
Hs

i+1−1−1/2s

Hs
n

. Altogether,
the expected utility of u under this strategy is b · i

2 ·
Hs

i+1−1−1/2s

Hs
n

−a · Hs
n−Hs

i+1
Hs

n
− l(i + 1).

Expected utility under deviating strategy 5. Finally, we analyse the utility of u
under deviating strategy 5, which is to add connections to 2 ≤ i ≤ n− 2 other leaves
and remove the connection to the central node. Under this strategy, the cost of channel
creation is li. From the perspective of u, the central node has rank factor 1, the leaves
that u connects to have rank factor Hs

i+1−1
i

, and all other nodes have rank factor Hs
n−Hs

i+1
n−i−1 .

Thus, the expected fees of u is Efees
u = a · [(n− i− 1)

Hs
n−Hs

i+1
n−i−1

Hs
n

+ 1
Hs

n
] = a · Hs

n−Hs
i+1+1

Hs
n

.
From the perspective of a leaf that u connects to, the central node has rank factor 1,
u has rank factor 1

2 , and all i− 1 other leaves that u is connected to have rank factor
Hi+1−1−1/2

i−1 . Thus, Erev
u = 2b · 1

2

(︂
i
2

)︂ Hs
i+1−1−1/2s

i−1
Hs

i+1
= b · i

2 ·
Hs

i+1−1−1/2s

Hn
. Altogether, the

expected utility of u under this strategy is b · i
2 ·

Hs
i+1−1−1/2s

Hn
− a · Hs

n−Hs
i+1+1

Hs
n

− li.

Comparison of strategies. Now we compare the expected utilities of each deviating
strategy, and show that under the conditions stated in the theorem claim, the expected
utility under the default strategy is the highest. We first compare the expected utility
under default strategy and deviating strategy 1. For the default strategy to be a Nash

139



Equilibrium, we need

−a · H
s
n − 1
Hs

n

− l ≥ b · n− 1
2 · H

s
n − 1− 1/2s

Hs
n

− ln

⇐⇒

a · H
s
n − 1
Hs

n

+ b · n− 1
2 · H

s
n − 1− 1/2s

Hs
n

≤ l(n− 1)

The inequality holds due to condition 2 in the theorem claim.

We now compare the expected utility under default strategy and deviating strategy 2.
For the default strategy to be a Nash Equilibrium, we need

−a · H
s
n − 1
Hs

n

− l ≥ b · n− 1
2 · H

s
n − 1− 1/2s

Hs
n

− l(n− 1)− a

Hs
n

⇐⇒

a · Hs
n − 2
Hs

n

+ b · n− 1
2 · H

s
n − 1− 1/2s

Hs
n

≤ l · (n− 2)

The inequality holds due to condition 2 in the theorem claim.

We now compare the expected utility under default strategy and deviating strategy 3.
For the default strategy to be a Nash Equilibrium, we need

−a · H
s
n − 1
Hs

n

− l ≥ −a · H
s
n − 1− 1/2s

Hs
n

− 2l

⇐⇒
a

Hs
n

≤ 2s · l

The inequality holds due to condition 1 in the theorem claim.

We now compare the expected utility under default strategy and deviating strategy 4.
For the default strategy to be a Nash Equilibrium, we need

−a · H
s
n − 1
Hs

n

− l ≥ b · i

2 ·
Hs

i+1 − 1− 1/2s

Hs
n

−
a · (Hs

n −Hs
i+1)

Hs
n

− l(i + 1)

⇐⇒

b · i

2 ·
Hs

i+1 − 1− 1/2s

Hs
n

+ a ·
Hs

i+1 − 1
Hs

n

≤ li

The inequality holds due to condition 2 in the theorem claim.

140



u
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Q4

Figure B.1: Circle topology with vertices divided into quadrants

Finally, we compare the expected utility under default strategy and deviating strategy
4. For the default strategy to be a Nash Equilibrium, we need

−a · H
s
n − 1
Hs

n

− l ≥ b · i

2 ·
Hs

n − 1− 1/2s

Hs
n

− a ·
1 + Hs

n −Hs
i+1

Hs
n

− li

⇐⇒

b · i

2 ·
Hs

n − 1− 1/2s

Hs
n

+ a
Hs

i+1 − 2
Hn

≤ l(i− 1)

The inequality holds due to condition 2 in the theorem claim.

B.2 Proof of Theorem 6.5.3
Theorem 6.5.3. The Circle graph is not a Nash Equilibrium for s ≥ 0 and for large n.

Proof. Suppose we have a circle graph with n + 1 nodes. Let u be an arbitrary vertex
in the circle graph. Let us call the circle topology the default strategy.

Under the default strategy, u is connected to 2 other vertices, thus the cost of channel
creation for u is 2l. From the perspective of any node in the graph, all nodes under
the default strategy have the same degree, and thus the same rank factor of Hs

n/n.
Also, u will only gain revenue from forwarding transactions only if u is in the shortest
path between the sender and receiver nodes. Figure B.1 shows how the vertices in the
circle can be divided into quadrants Q1, Q2, Q3, Q4.

There are
(︂

n
2

)︂
total pairs of vertices (excluding u). Out of these vertices, we need

to exclude
(︂

n/2
2

)︂
pairs of vertices (the vertices that lie in Q2 and Q3 in Figure B.1)

when computing the expected revenue of u as these pairs will never route transactions
through u. For every vertex in quadrants Q1 and Q4, we also need to exclude the n

2
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other vertices that they transact with that u is not on the shortest path and so will
never be routed through u. Thus, the expected revenue of u under the default strategy
is Erev

u = 2b ·
Hs

n
n

Hs
n
· (
(︂

n
2

)︂
−
(︂

n/2
2

)︂
− (2 · n

4 ·
n
2 )) ≈ b

n
· n2

4 = bn
4 . From the perspective of u,

there are 2 nodes of distance 0 to u (its direct neighbours), 2 nodes of distance 1 etc.
Finally, depending on the parity of n, there are at most 2 nodes of distance ⌊n

2 ⌋. Thus,

Efees
u = a ·

Hs
n

n

Hs
n
· 2 · (1 + 2 + . . . + n

2 ) ≈ a
n
· n2

4 = an
4 .

There is, however, a strictly better strategy for u, given that all other nodes stick to the
default strategy. This is the strategy that deletes a connection to one of the neighbour
nodes and creates a new connection to the node directly opposite to it (i.e., the node
with distance ⌊n

2 ⌋ from u, picking one at random if there are 2 of them). Under this
new strategy, the cost of channel creation remains 2l. From the perspective of the node
opposite u, all nodes have a rank factor of Hs

n

n
. For all other nodes apart from the node

opposite of u and u itself, the node opposite u has rank factor 1 and all other nodes
have rank factor Hs

n−1
n−1 . To compute the expected revenue of u under this new strategy,

we use the smallest rank factor of Hs
n−1

n−1 as this lower bounds the expected revenue.

Now we note that all vertices in Q1 will use u to route to vertices in Q3 and Q4.
The vertices in Q2 will not use u to route to Q3 and Q4, but half of the vertices
in Q2 will use u to route to half of the vertices in Q1. The vertices in Q3 will
not use u to route to the vertices in Q4 and Q2 but will use u for vertices in Q1.
Finally, the vertices in Q4 will only use u to route to vertices in Q1. Thus, Erev

u ≥

2b ·
Hs

n−1
n−1
Hs

n
· (n

4 ·
n
2 + n

8 ·
n
8 + n

4 ·
n
4 + n

4 ·
n
4 ) ≈ bn(17

32). From the perspective of u,
the opposite node has rank factor 1 and all other nodes have rank factors of Hs

n−1
n−1 .

Thus, Efees
u = a ·

Hs
n−1

n−1
Hs

n
(3 n

4 ( n
4−1)
2 + ( n

2 ( n
2−1))
2 − ( n

4 ( n
4−1))
2 ) ≤ a

n
3
16n2 = 3an

16 . Since the
expected fees under this new strategy is smaller than the expected fees under the
default strategy, and the expected revenue under the new strategy is larger than the
expected revenue under the default strategy, switching to the new strategy gives u
larger expected utility.
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