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Most natural and engineered information-processing systems transmit information via signals that
vary in time. Computing the information transmission rate or the information encoded in the temporal
characteristics of these signals requires the mutual information between the input and output signals as a
function of time, i.e., between the input and output trajectories. Yet, this is notoriously difficult because of
the high-dimensional nature of the trajectory space, and all existing techniques require approximations. We
present an exact Monte Carlo technique called path weight sampling (PWS) that, for the first time, makes it
possible to compute the mutual information between input and output trajectories for any stochastic system
that is described by a master equation. The principal idea is to use the master equation to evaluate the exact
conditional probability of an individual output trajectory for a given input trajectory and average this via
Monte Carlo sampling in trajectory space to obtain the mutual information. We present three variants of
PWS, which all generate the trajectories using the standard stochastic simulation algorithm. While direct
PWS is a brute-force method, Rosenbluth-Rosenbluth PWS exploits the analogy between signal trajectory
sampling and polymer sampling, and thermodynamic integration PWS is based on a reversible work
calculation in trajectory space. PWS also makes it possible to compute the mutual information between
input and output trajectories for systems with hidden internal states as well as systems with feedback from
output to input. Applying PWS to the bacterial chemotaxis system, consisting of 182 coupled chemical
reactions, demonstrates not only that the scheme is highly efficient but also that the number of receptor
clusters is much smaller than hitherto believed, while their size is much larger.
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I. INTRODUCTION

Quantifying information transmission is vital for under-
standing and designing natural and engineered information-
processing systems, ranging from biochemical and neural
networks to electronic circuits and optical systems [1–3].
Shannon introduced the mutual information and the infor-
mation rate as the central measures of information theory
more than 70 years ago [4]. These measures quantify the
fidelity by which a noisy system transmits information
from its inputs to its outputs. However, computing these
quantities exactly remains notoriously difficult, if not

impossible, because the inputs and outputs are often not
scalar values but rather temporal trajectories.
Most, if not all, information-processing systems transmit

signals that vary in time. The canonical measure for
quantifying information transmission via time-varying
signals is the mutual information rate [4–7]. It quantifies
the speed at which distinct messages are transmitted
through the system, and it depends not only on the accuracy
of the input-output mapping but also on the correlations
within the input and output signals. Computing the mutual
information rate thus requires computing the mutual
information between the input and output trajectories,
not between their signal values at given time points. The
rate at which this trajectory mutual information increases
with the trajectory duration in the long-time limit defines
the mutual information rate. In the absence of feedback, this
rate also equals the multistep transfer entropy [8,9].
More generally, useful information is often contained in

the temporal dynamics of the signal. A prime example is
bacterial chemotaxis, where the response does not depend
on the current ligand concentration but rather on whether it
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has changed in the recent past [10,11]. Moreover, the
information from the input may be encoded in the temporal
dynamics of the output [12–15]. Quantifying information
encoded in these temporal features of the signals requires
the mutual information not between two time points, i.e.,
the instantaneous mutual information, but rather between
input and output trajectories [6].
Unfortunately, computing the mutual information

between trajectories is exceptionally difficult. The conven-
tional approach requires nonparametric distribution esti-
mates of the input and output distributions, e.g., via
histograms of data obtained through simulations or experi-
ments [16–21]. These nonparametric distribution estimates
are necessary because the mutual information generally
cannot be computed from summary statistics like the mean
or variance of the data alone. However, the high-dimensional
nature of trajectories makes it infeasible to obtain enough
empirical data to accurately estimate the required probability
distributions. Moreover, this approach requires the discreti-
zation of time, which becomes problematic when the
information is encoded in the precise timing of signal spikes,
as, e.g., in neuronal systems [22]. Except for the simplest
systems with a binary state space [21], the conventional
approach to estimate the mutual information via histograms
therefore cannot be transposed to trajectories.
Because there are currently no general schemes available

to compute the mutual information between trajectories
exactly, approximate methods or simplified models are
typically used. While empirical distribution estimates can
be avoided by employing the K-nearest-neighbor entropy
estimator [23,24], this method depends on a choice of metric
in trajectory space and can become unreliable for long
trajectories [25]. Alternative, decoding-based information
estimates can be developed for trajectories [26]; however,
they merely provide a lower bound of the mutual informa-
tion, and it remains unclear how tight these lower bounds
are [25,27,28]. Analytical results are available for simple
systems [29]; for linear systems that obey Gaussian statistics,
the mutual information between trajectories can be obtained
from the covariance matrix [6]. However, many information
processing systems are complex and nonlinear such that
the Gaussian approximation does not hold, and analytical
solutions do not exist. A more promising approach to
estimate the trajectory mutual information for chemical
reaction networks has been developed by Duso and
Zechner [30] and generalized in Ref. [31]. However, the
scheme relies on a moment closure approximation and has
so far only been applied to very simple networks, seemingly
being difficult to extend to complex systems.
Here, we present path weight sampling (PWS), an exact

technique to compute the trajectory mutual information
for any system described by a master equation. Master
equations are widely used to model chemical reaction
networks [32–35], biological population growth [36–38],
economic processes [39,40], and a large variety of other

systems [41,42], expanding our scheme of interest to a
broad class of problems.
PWS is an exact Monte Carlo scheme, in the sense that it

provides an unbiased statistical estimate of the trajectory
mutual information. In PWS, the mutual information is
computed as the difference between the marginal output
entropy associated with the marginal distribution P½x� of
the output trajectories x and the conditional output entropy
associated with the output distribution P½xjs� conditioned
on the input trajectory s. Our scheme is inspired by the
observation of Cepeda-Humerez et al. [25] that the path
likelihood, i.e., the probability P½xjs�, can be computed
exactly from the master equation for a static input signal s.
This makes it possible to compute the mutual information
between a discrete input and a time-varying output via a
Monte Carlo averaging procedure of the likelihoods,
rather than from an empirical estimate of the intractable
high-dimensional probability distribution functions.
The scheme of Cepeda-Humerez et al. [25] is, however,
limited to discrete input signals that do not vary in time.
Here, we show that the path likelihood P½xjs� can also
be computed for a dynamical input trajectory s, which
allows us to compute the conditional output entropy also
for time-varying inputs. While this solves the problem in
part, the marginal output entropy associated with P½x�
cannot be computed with the approach of Cepeda-Humerez
et al. [25]; thus, it requires a different scheme.
We show how, for time-varying input signals, the

marginal probability P½x� can be obtained as a
Monte Carlo average of P½xjs� over a large number of
input trajectories. How to do this effectively is the crux of
PWS. We then use the Monte Carlo estimate for P½x� to
compute the marginal output entropy. We present three
variants of PWS, all of which compute the conditional
entropy in the same manner but differ in the way this
Monte Carlo averaging procedure for computing the
marginal probability P½x� is carried out.
To compute P½x�, direct PWS (DPWS) performs a brute-

force average of the path likelihoods P½xjs� over the input
trajectories s. While we show that this scheme works for
simple systems, the brute-force Monte Carlo averaging
procedure becomes more difficult for larger systems and
exponentially harder for longer trajectories.
Our second and third variants of PWS are based on the

realization that the marginal probability P½x� is akin to a
partition function. These schemes leverage techniques
for computing free energies from statistical physics.
Specifically, the second scheme, Rosenbluth-Rosenbluth
PWS (RR-PWS), exploits the observation that the compu-
tation of P½x� is analogous to the calculation of the (excess)
chemical potential of a polymer, for which efficient
methods have been developed [43–45]. The third scheme,
thermodynamic integration PWS (TI-PWS), is based on
the classic free-energy estimation technique of thermo-
dynamic integration [46–48] in conjunction with a
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trajectory space MCMC sampler using ideas from tran-
sition path sampling [49].
All three PWS variants make it possible to compute the

mutual information between trajectories exactly, without
the need for time discretizing the input and output signals.
The DPWS method is presented in Sec. II, followed by

a review of the required concepts from the theory of
Markov jump processes and master equations. The other
two PWS schemes are then presented as improvements of
DPWS in Sec. III.
In Sec. IV, we show that, surprisingly, our PWS methods

additionally make it possible to compute the mutual infor-
mation between input and output trajectories of systems with
hidden internal states. Hidden states correspond, for exam-
ple, to network components that merely relay, process, or
transform the signal from the input to the output. Indeed, the
downstream system typically responds to the information
that is encoded in this output and not the other internal
system components. Most information processing systems
contain such hidden states, and generally, we want to
integrate out these latent network components. In addition,
we can generalize PWS to systems with feedback from the
output to the input as shown in Appendix C.
In Sec. V, we apply PWS to two well-known model

systems. The first is a simple pair of coupled birth-death
processes, which allow us to test the efficiency of the three
PWS variants, as well as to compare the PWS results with
analytical results from the Gaussian approximation [6] and
the technique by Duso and Zechner [30]. Our second
application concerns the bacterial chemotaxis system, which
is arguably the best characterized signaling system in biology.
Mattingly et al. [50] recently argued that bacterial chemotaxis
in shallow gradients is information limited. However, to
compute the information rate from their experimental data,
they had to employ a Gaussian framework. PWS makes it
possible to assess the accuracy of this approximation. Our
results show that the Gaussian framework is accurate in the
regime of shallow concentration gradients as studied by
Mattingly et al. [50]. However, comparing the PWS pre-
dictions of a model based on previous literature against their
experimental results reveals that the composition of the
receptor array differs from that hitherto believed.

II. MONTE CARLO ESTIMATE OF THE
MUTUAL INFORMATION

In this section, we present the fundamental ideas of
PWS. These ideas lie at the heart of DPWS and also form
the foundation of the other two, more-advanced, PWS
variants, which will be explained in subsequent sections.

A. Statement of the problem

All information processing systems repeatedly take an
input value s and produce a corresponding output x.
Because of noise, the output produced for the same input

can be different every time, such that the system samples
outputs from the distribution PðxjsÞ. In the information
theoretic sense, the device’s capabilities are fully specified
by its output distributions for all possible inputs. We
consider the inputs as being distributed according to a
probability density PðsÞ such that the whole setup of the
signal and device is completely described by the joint
probability density Pðs; xÞ ¼ PðsÞPðxjsÞ.
When the conditional output distributions PðxjsÞ overlap

with each other, information is lost because the input can
not always be inferred uniquely from the output (see
Fig. 1). The remaining information that the output carries
about the signal, on average, is quantified by the mutual
information between the input and output.
Mathematically, the mutual information between a

random variable S, representing the input, and a second
random variable X , representing the output, is defined as

IðS;XÞ ¼
ZZ

ds dx Pðs; xÞ ln Pðs; xÞ
PðsÞPðxÞ ; ð1Þ

where the marginal output distribution is given by PðxÞ ¼R
dsPðs; xÞ. The quantity IðS;XÞ as defined above is a non-

negative real number, representing the mutual information
between S and X in nats. The integrals in Eq. (1) run over
all possible realizations of the random variables S andX . In
our case, S and X represent stochastic trajectories, so the
integrals become path integrals.
In general, the mutual information can be decomposed

into two terms—conditional and marginal entropy. Because
of the symmetry of Eq. (1) with respect to the exchange of
S and X , this decomposition can be written as

IðS;XÞ ¼ HðSÞ − HðSjXÞ ¼ HðXÞ − HðX jSÞ: ð2Þ

The (marginal) input entropy HðSÞ represents the total
uncertainty about the input, and the conditional input
entropy HðSjXÞ describes the remaining uncertainty

FIG. 1. Schematic of information processing under the influ-
ence of noise. Overlapping output distributions for different
inputs lead to information loss because the input cannot always
be uniquely inferred from the output. The mutual information
IðS;XÞ quantifies how much information the observation of the
output typically retains about the input signal.
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of the input after having observed the output. Thus, the
mutual information IðS;XÞ ¼ HðSÞ − HðSjXÞ naturally
quantifies the reduction in uncertainty about the input
through the observation of the output.
When analyzing data from experiments or simulations,

however, the mutual information is generally estimated via
IðS;XÞ ¼ HðXÞ − HðX jSÞ. This is because simulation or
experimental data generally provide information about the
distribution of outputs for a given input, rather than vice
versa. The accessible entropies are thus the marginal output
entropy HðXÞ and the conditional output entropy HðX jSÞ,
which are defined as

HðXÞ ¼ −
Z

dx PðxÞ ln PðxÞ; ð3Þ

HðX jSÞ ¼ −
Z

ds PðsÞ
Z

dxPðxjsÞ ln PðxjsÞ: ð4Þ

The conventional way of computing the mutual infor-
mation involves generating many samples to obtain
empirical distribution estimates for PðxjsÞ and PðxÞ via
histograms. However, the number of samples needs to be
substantially larger than the number of histogram bins to
reduce the noise in the bin counts. Obtaining enough
samples is effectively impossible for high-dimensional
data, like signal trajectories. Moreover, any nonzero bin
size leads to a systematic bias in the entropy estimates, even
in one dimension [17]. These limitations of the conven-
tional method make it impractical for high-dimensional
data, highlighting the need for alternative approaches to
accurately compute mutual information for trajectories.

B. Direct PWS

The central idea of PWS is to compute probability
densities for trajectories exactly, sidestepping the problem
of having to estimate them via histograms. We exploit the
fact that, for systems described by a master equation, the
conditional probability of an output trajectory for a given
input trajectory can be computed analytically. With this
insight, we can derive a procedure to compute the mutual
information. Specifically, we show the following:

(i) For a system described by a master equation, the
trajectory likelihood P½xjs� is a quantity that can be
computed on the fly in a stochastic simulation.

(ii) Input trajectories can be generated from P½s�; output
trajectories for a given input s can be generated
according to P½xjs� using standard SSA (Gillespie)
simulations.

(iii) By combining the two ideas above, we can derive a
direct Monte Carlo estimate for the mutual informa-
tion IðS;XÞ, as illustrated in Fig. 2.

Note that we denote trajectories by bold symbols to
distinguish them from scalar quantities.

Our technique is conceptually straightforward. Using
Monte Carlo simulations, we can compute averages over
the configuration space of trajectories. Suppose we have a
function f½z� that takes a trajectory z and produces a scalar
value. The mean of f½z� with respect to the trajectory
distribution P½z� is then

hf½z�iP½z� ≡
Z

D½z�P½z�fðzÞ: ð5Þ

We write
R
D½z� to denote a path integral over all possible

trajectories of a given duration. We estimate hf½z�iP½z� by
generating a large number of trajectories z1;…; zN from
P½z� and evaluating the correspondingMonte Carlo average

f̂N ¼ 1

N

XN
i¼1

fðziÞ; ð6Þ

which converges to the true mean in the limit N → ∞.

FIG. 2. PWS scheme to compute the mutual information
between trajectories in four steps. 1. Generate N input-output
pairs from P½s; x�. 2. For each input-output pair, compute the
trajectory likelihood P½xijsi� using Eq. (14). 3. Compute P½xi� for
every output. This step differentiates the different variants of PWS
from each other. Direct PWS is presented in Sec. II B,whereasRR-
PWS and TI-PWS are presented in Secs. III B and III C. 4. Using
the likelihoods and the marginal probabilities from the previous
steps, we can estimate the mutual information using Eq. (10).
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Specifically, we want to estimate the conditional and the
marginal entropy to compute the mutual information. Let
us imagine that we generate N input trajectories s1;…; sN
from the distribution P½s�. Next, for every input si,
we generate a set of K outputs xi;1;…; xi;K from P½xjsi�.
Then, the Monte Carlo estimate for the conditional en-
tropy is

HðX jSÞ ¼ −
Z

D½s�P½s�
Z

D½x�P½xjs� lnP½xjs�

¼ −hhlnP½xjs�iP½xjs�iP½s�

≈ −
1

N

XN
i¼1

1

K

XK
j¼1

lnP½xi;jjsi�: ð7Þ

Second, for a given output x, we generate M inputs
s01;…; s0M according to P½s�; then, we can obtain a
Monte Carlo estimate for the marginal probability of the
output trajectory P½x�:

P½x� ¼
Z

D½s�P½s�P½xjs�

¼ hP½xjs�iP½s�

≈
1

M

XM
j¼1

P½xjs0j�: ð8Þ

The estimate for the marginal entropy is then given by

HðXÞ ¼ −
Z

D½x�P½x� lnP½x�

¼ −hlnP½x�iP½x�

≈ −
1

N

XN
i¼1

lnP½xi�

≈ −
1

N

XN
i¼1

ln

�
1

M

XM
j¼1

P½xijs0i;j�
�
: ð9Þ

In the last step, we inserted the result from Eq. (8). In this
estimate, the trajectories x1;…; xN are sampled from P½x�,
i.e., by first sampling from P½s� and then from P½xjs�.
Finally, the mutual information is obtained by taking the
entropy difference, i.e., IðS;XÞ ¼ HðXÞ − HðX jSÞ.
While this is the main idea behind PWS, it is computa-

tionally advantageous to change the order of operations in
the estimate. Specifically, computing the difference of two
averages leads to large statistical errors. We can obtain an
improved estimate by reformulating the mutual information
as a single average of differences:

IðS;XÞ ¼
Z

D½s�
Z

D½x�P½s; x� lnP½xjs�
P½x�

¼ hlnP½xjs� − lnP½x�iP½s;x�: ð10Þ

This equation applies to all variants of PWS. They differ,
however, in the way P½x� is computed. In the brute-force
version of PWS, called DPWS, we use Eq. (8) to evaluate
the marginal probability P½x�. DPWS indeed involves two
nested Monte Carlo computations, in which N pairs ðsi; xiÞ
are generated, and for each output xi, M input trajectories
fsg are generated from scratch to compute P½x�. In Sec. III
below, we will present two additional variants of PWS,
where the brute-force estimate of the marginal probability
P½x� is replaced by more elaborate schemes. That said,
DPWS is a conceptually simple and exact scheme that is
straightforward to implement to compute the mutual
information.
Having explained the core ideas of our technique above,

we continue this section with a review of the necessary
concepts of master equations to implement PWS. First,
in Sec. II C, we derive the formula for the conditional
probability P½xjs�, which lies at the heart of our technique.
In Secs. II C and II D, we discuss how trajectories are
generated according to P½xjs� and P½s�, which are the
remaining ingredients required for using DPWS. Then,
in Sec. III, we present the two other variants of PWS that
improve on DPWS.

C. Driven Markov jump process

Throughout this article, we consider systems that can be
modeled by a master equation and are being driven by a
stochastic signal. The master equation specifies the time
evolution of the conditional probability distribution
Pðx; tjx0; t0Þ, which is the probability for the process to
reach the discrete state x∈Ω at time t, given that it was at
state x0 ∈Ω at the previous time t0. The state space Ω is
multidimensional if the system is made up of multiple
components, and therefore, x and x0 can be vectors rather
than scalar values. Denoting the transition rate at time t
from state x to another state x0 ≠ x by wtðx0; xÞ, the master
equation reads

∂Pðx; tÞ
∂t

¼
X
x0 ∈Ω
x0≠x

½wtðx; x0ÞPðx0; tÞ − wtðx0; xÞPðx; tÞ�; ð11Þ

where, for brevity, we suppress the dependence on the
initial condition, i.e., Pðx; tÞ ¼ Pðx; tjx0; t0Þ. By defining
Qtðx0; xÞ ¼ wtðx0; xÞ for x ≠ x0 and Qtðx; xÞ ¼
−
P

x0 ∈Ωnfxg wtðx0; xÞ the master equation simplifies to

∂Pðx; tÞ
∂t

¼
X
x0 ∈Ω

Qtðx; x0ÞPðx0; tÞ: ð12Þ
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Note that, by definition, the diagonal matrix element
Qtðx; xÞ is the negative exit rate from state x, i.e., the total
rate at which probability flows away from state x.
Using the master equation, we can compute the prob-

ability of any trajectory. A trajectory x is defined by a list of
jump times t1;…; tn−1, together with a sequence of system
states x0;…; xn−1. The trajectory starts at time t0 in state x0
and ends at time tn in state xn−1, such that its duration is
T ¼ tn − t0. At each time ti (for i ¼ 1;…; n − 1), the
trajectory describes an instantaneous jump xi−1 → xi.
The probability density of x is

P½x� ¼ Pðx0Þ ×
�Yn−1

i¼1

Qtiðxi; xi−1Þ
�

×

�Yn
i¼1

exp
Z

ti

ti−1

dtQtðxi−1; xi−1Þ
�
; ð13Þ

a product of the probability of the initial state Pðx0Þ, the
rates of the n − 1 transitions Qtiðxi; xi−1Þ, and the survival
probabilities for the waiting times between jumps, given by
exp

R ti
ti−1 dtQtðxi−1; xi−1Þ for i ¼ 1;…; n.

1. Computing the likelihood P½xjs�
To compute the likelihood or conditional probability

P½xjs� of an output trajectory x for a given input trajectory s,
we note that the input determines the time-dependent
stochastic dynamics of the jump process. Indeed, the
transition rates at time t, given by Qtðx0; x; sÞ, depend
explicitly on the input sðtÞ at time t and may even depend
on the entire history of s prior to t.
In the common case that every input trajectory s leads to

a unique transition rate matrix Qtðx0; x; sÞ, i.e., the map
s ↦ Qtð·; ·; sÞ is injective, the likelihood is directly given
by Eq. (13):

P½xjs� ¼ Pðx0js0Þ ×
�Yn−1

i¼1

Qtiðxi; xi−1; sÞ
�

×

�Yn
i¼1

exp
Z

ti

ti−1

dtQtðxi−1; xi−1; sÞ
�
; ð14Þ

where Pðx0js0Þ is the probability of the initial state x0 of the
output given the initial state of the input s0 ¼ sðt0Þ.
The evaluation of the trajectory likelihood is at the heart of

our Monte Carlo scheme. However, numerically computing
a large product like Eq. (14) very quickly reaches the limits
of floating-point arithmetic since the result is often either too
large or too close to zero to be representable as a floating-
point number. Thus, to avoid numerical issues, it is vital to
perform the computations in log space, i.e., to compute

lnP½xjs� ¼ ln Pðx0js0Þ þ
Z

T

t0

dtLt½s; x�; ð15Þ

where

Lt½s; x� ¼ QtðxðtÞ; xðtÞ; sÞ

þ
Xn−1
i¼1

δðt − tiÞ lnQtðxi; xi−1; sÞ: ð16Þ

The computation of the log-likelihood lnP½xjs� for given
trajectories s and x according to Eqs. (15) and (16) proceeds
as follows:

(i) At the start of the trajectory, we compute the log-
probability of the initial condition ln Pðx0js0Þ,

(ii) For every jump xi−1 → xi in x, we compute the log
jump propensity lnQtiðxi; xi−1; sÞ.

(iii) For every interval ðti−1; tiÞ of constant output value
xðtÞ ¼ xi−1 between two jumps of x, we computeR ti
ti−1 dtQtðxi−1; xi−1; sÞ. This integral can be per-
formed using standard numerical methods such
as the trapezoidal rule, which is also exact if
Qt(xðtÞ; xðtÞ; s) is a piecewise linear function of t
as in our examples in Sec. V.

The sum of the three contributions above yields the exact
log-likelihood lnP½xjs� as given in Eq. (15).
Thus, notably, the algorithm to compute the log-

likelihood lnP½xjs� is both efficient and straightforward
to implement, being closely related to the standard
Gillespie algorithm. The only quantity in Eq. (15) that
cannot be directly obtained from the master equation is the
log-probability of the initial state, ln Pðx0js0Þ.
Our scheme can be applied to any system with a well-

defined (nonequilibrium) initial distribution Pðs0; x0Þ as
specified by, e.g., the experimental setup. Most commonly
though, one is interested in studying information trans-
mission for systems in a steady state. Then, the initial
condition Pðs0; x0Þ is the stationary distribution of the
Markov process. Depending on the complexity of the
system, this distribution can be found either analytically
from the master equation [51,52] (possibly using simplify-
ing approximations [53,54]) or computationally from
stochastic simulations [55].

2. Sampling from P½xjs�
Standard kinetic Monte Carlo simulations naturally

produce exact samples of the probability distribution
P½xjs� as defined in Eq. (14). In other words, for any
signal trajectory s and initial state x0 drawn from Pðx0js0Þ,
we can use the stochastic simulation algorithm (SSA) or
variants thereof to generate a corresponding trajectory x.
The SSA propagates the initial condition x0, t0 forward in
time according to the transition rate matrix Qtð·; sÞ. In the
standard direct SSA algorithm [55], this is done by
alternatingly sampling the waiting time until the next
transition and then selecting the actual transition.
The transition rates Qtðx0; x; sÞ of a driven master

equation are necessarily time dependent since they include
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the coupling of the jump process to the input trajectory s,
which itself varies in time. While most treatments of the
SSA assume that the transition rates are constant in
time, this restriction is easily lifted. Consider step i of
the direct SSA, which generates the next transition time
tiþ1 ¼ ti þ Δti. For time-varying transition rates, the dis-
tribution of the stochastic waiting time Δti is characterized
by the survival function

SiðτÞ ¼ PðΔti > τÞ ¼ exp
Z

tiþτ

ti

dtQtðxi; xi; sÞ: ð17Þ

The waiting time can be sampled using inverse transform
sampling, i.e., by generating a uniformly distributed
random number u∈ ½0; 1� and computing the waiting
time using the inverse survival function Δti ¼ S−1i ðuÞ.
Numerically, computing the inverse of the survival function
requires solving the equation

ln u ¼
Z

tiþΔti

ti

dtQtðxi; xi; sÞ ð18Þ

for the waiting time Δti. Depending on the complexity of
Qtðxi; xijsÞ, this equation can either be solved analytically
or numerically, e.g., using Newton’s method. Hence, this
method to generate stochastic trajectories is only truly exact
if we can solve Eq. (18) analytically, as in the example
in Sec. VA. Additionally, in some cases, more efficient
variants of the SSA with time-dependent rates could be
used [56,57].

D. Input statistics

For our mutual information estimate, we need to be
able to draw samples from the input distribution P½s�. Our
algorithm poses no restrictions on P½s� other than the
possibility to generate sample trajectories.
For example, the input signal may be described by a

continuous-time jump process, as in Sec. VA. One benefit
is that it is possible to generate exact realizations of such
a process (using the SSA) and to exactly compute the
likelihoodP½xjs� using Eq. (15). Specifically, the likelihood
can be exactly evaluated because the transition rates
Qtð·; ·; sÞ for any input trajectory s, while time dependent,
are piecewise constant. This implies that the integral in
Eq. (15) can be evaluated analytically without approxima-
tions. Similarly, for piecewise constant transition rates, the
inverse function of Eq. (18) can be evaluated directly such
that we can sample exact trajectories from the driven jump
process. As a result, when both the input and output
are described by a master equation, PWS is a completely
exact Monte Carlo scheme used to compute the mutual
information.
However, the techniques described here do not require

the input signal s to be described by a continuous-time
jump process, or even to be Markovian. The input signal

can be any stochastic process for which trajectories can
be generated numerically. This includes continuous sto-
chastic processes that are found as solutions to stochastic
differential equations [58]. The application in Sec. V B
provides an example.

III. VARIANTS OF PWS

The DPWS scheme presented in the previous section
makes it possible to compute the mutual information
between trajectories of a stochastic input process and the
output of a Markov jump process. However, the number of
possible trajectories increases exponentially with trajectory
length, leading to a corresponding increase in the variance
of the DPWS estimate. Hence, for long trajectories, the
DPWS estimate may prove to be computationally too
expensive. To address this issue, we describe two improved
variants of PWS in this section, both based on free-energy
estimators from statistical physics.

A. Marginalization integrals in trajectory space

The computationally most expensive part of our scheme
in Sec. II B is the evaluation of the marginalization integral
P½xi� ¼

R
D½s�P½s; xi� which needs to be performed for

every sample x1;…; xN . Consequently, the computational
efficiency of this marginalization is essential for the overall
performance.
Marginalization is a general term to denote an operation

where one or more variables are integrated out of a joint
probability distribution. For instance, we obtain the mar-
ginal probability distribution P½x� from P½s; x� by comput-
ing the integral

P½x� ¼
Z

D½s�P½s; x� ¼
Z

D½s�P½s�P½xjs�: ð19Þ

In DPWS, we use Eq. (8) to compute P½x�, which
involves generating independent input trajectories from
P½s�. However, this is not the optimal Monte Carlo tech-
nique to perform the marginalization. The generated input
trajectories are independent from the output trajectory x.
Thus, we ignore the causal connection between s and x,
and we typically end up sampling trajectories s⋆ whose
likelihoods P½xjs⋆� are very small. Then, most sampled
trajectories have small integral weights, and only very few
samples provide a significant contribution to the average.
The variance of the result is then very large because the
effective sample size is much smaller than the total sample
size. The use ofP½s� as the sampling distribution is thus only
practical in cases where the dependence of the output on the
input is not too strong. It follows, perhaps paradoxically, that
this sampling scheme works best when the mutual infor-
mation is not too large [59].
This is a well-known Monte Carlo sampling problem,

and a large number of techniques have been developed to
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solve it. The two variants of our scheme, RR-PWS and
TI-PWS, both make use of ideas from statistical physics for
the efficient computation of free energies.
To understand how we can make use of these ideas to

compute the marginal probability P½x�, it is convenient
to rephrase the marginalization integral in Eq. (19) in the
language of statistical physics. In this language, P½x�
corresponds to the normalization constant, or partition
function, of a Boltzmann distribution for the potential

U½s; x� ¼ − lnP½s; x�: ð20Þ

In Eq. (20), we interpret s as a variable in the configuration
space, whereas x is an auxiliary variable, i.e., a parameter.
Note that both s and x still represent trajectories. For this
potential, the partition function is given by

Z½x� ¼
Z

D½s�e−U½s;x�: ð21Þ

The integral only runs over the configuration space; i.e.,
we integrate only with respect to s but not x, which
remains a parameter of the partition function. The parti-
tion function is precisely equal to the marginal probability
of the output, i.e., Z½x� ¼ P½x�, as can be verified by
inserting the expression for the U½s; x�. Further, the free
energy is given by

F ½x� ¼ − lnZ½x� ¼ − lnP½x�; ð22Þ

which shows that the computation of the free energy of the
trajectory ensemble corresponding to U½s; x� is equivalent
to the computation of (the logarithm of) the marginal
probability P½x�.
Note that, above, we omitted any factors of kBT since

temperature is irrelevant here. Also note that while the
distribution expð−U½s; x�Þ looks like the equilibrium dis-
tribution of a canonical ensemble from statistical mechan-
ics, this does not imply that we can only study systems in
thermal equilibrium. Indeed, PWS is used to study infor-
mation transmission in systems driven out of equilibrium
by the input signal. Thus, the notation introduced in this
section is nothing but a mathematical reformulation of
the marginalization integral used to make the analogy to
statistical physics apparent, and we assign no additional
meaning of the potentials and free energies introduced here.
In statistical physics, it is well known that the free energy

cannot be directly measured from a simulation. Instead, one
estimates the free-energy difference

ΔF ½x� ¼ F ½x� − F 0½x� ¼ − ln
Z½x�
Z0½x�

ð23Þ

between the system and a reference system with known
free energy F 0½x�. The reference system is described by the

potential U0½s; x�, with the corresponding partition function
Z0½x�. In our case, a natural choice of reference potential is

U0½s; x� ¼ − lnP½s�; ð24Þ

with the corresponding partition function

Z0½x� ¼
Z

D½s�P½s� ¼ 1: ð25Þ

Thus, since P½s� is a normalized probability density
function, the reference free energy is zero (F 0½x� ¼
− lnZ0½x� ¼ 0). Hence, for the above choice of reference
system, the free-energy difference is

ΔF ½x� ¼ F ½x� ¼ − lnP½x�: ð26Þ

Note that, in our case, the reference potential U0½s; x� ¼
− lnP½s� does not depend on the output trajectory x, i.e.,
U0½s; x�≡ U0½s�. It describes a noninteracting version of
our input-output system, where the input trajectories evolve
independently of the fixed output trajectory x.
What is the interaction between the output x and the

input trajectory ensemble? We define the interaction
potential ΔU½s; x� through

U½s; x� ¼ U0½s� þ ΔU½s; x�: ð27Þ

The interaction potential makes it apparent that the dis-
tribution of s corresponding to the potential U½s; x� is biased
by x with respect to the distribution corresponding to the
reference potential U0½s�. By inserting the expressions for
U0½s� and U½s; x� into Eq. (27), we see that

ΔU½s; x� ¼ − lnP½xjs�

¼ − ln Pðx0js0Þ −
Z

T

0

dtLt½s; x�; ð28Þ

where Lt½s; x� is given by Eq. (15). This expression
illustrates that the interaction of the output trajectory x
with the ensemble of input trajectories is characterized by
the trajectory likelihood P½xjs�. Because we can compute
the trajectory likelihood from the master equation, we can
compute the interaction potential.
In this section, we have introduced notation (summarized

in Table I) to show that computing a marginalization
integral is equivalent to the computation of a free-energy
difference. This picture allows us to distinguish two
input trajectory ensembles, the noninteracting ensemble
distributed according to expð−U0½s�Þ ¼ P½s� and the inter-
acting ensemble with input distribution proportional to
expð−U½s; x�Þ ∝ P½sjx�. For example, the brute-force esti-
mate of P½x� used in DPWS can be written as
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P½x� ¼ Z½x�
Z0½x�

¼ he−ΔU½s;x�i0; ð29Þ

where the notation h� � �i0 refers to an average with respect
to the noninteracting ensemble. By inserting the expres-
sions for U0 and ΔU, it is easy to verify that this estimate is
equivalent to Eq. (8). As explained in Sec. II B, to compute
Eq. (29) using Monte Carlo, it is only necessary to sample
from the noninteracting system U0½s� and to compute the
Boltzmann weightΔU½s; x� (i.e., to sample from P½s� and to
compute the log-likelihood lnP½xjs�). This is indeed the
DPWS scheme. However, by noting the correspondence
between signal trajectories and polymers and that Eq. (23)
has the same form as the expression for the (excess)
chemical potential of a polymer, which is the free-energy
difference between the polymer of interest and the ideal
chain [43,60], more efficient schemes can be developed, as
we show next.

B. RR-PWS

In Rosenbluth-Rosenbluth PWS, we compute the free-
energy difference ΔF between the ideal system U0 and U
in a single simulation just like in the brute-force method.
However, instead of generating s trajectories in an uncorre-
lated fashion according to expð−U0½s�Þ ¼ P½s�, we bias our
sampling distribution towards expð−U½s; x�Þ ∝ P½sjx� to
reduce the sampling problems found in DPWS.
The classical scheme for biasing the sampling distribu-

tion in polymer physics is given by Rosenbluth and
Rosenbluth [61] in their study of self-avoiding chains. A
substantial improvement of the Rosenbluth algorithm was
achieved by Grassberger by generating polymers using
pruning and enrichment steps, thereby eliminating con-
figurations that do not significantly contribute to the
average. This scheme is known as the pruned-enriched
Rosenbluth method, or PERM [44]. While PERM is much
more powerful than the standard Rosenbluth algorithm,
its main drawback is that it requires careful tuning of the
pruning and enrichment schedule to achieve optimal con-
vergence. Therefore, we have opted to use a technique that
is similar in spirit to PERM but requires less tuning, the
bootstrap particle filter [62]. We will describe how to use

PWS with a particle filter below. That said, we want to
stress that the particle filter can easily be replaced by PERM
or other related methods [63]. In addition, schemes inspired
by variants of forward flux sampling [64,65] could be
developed.
In the methods discussed above, a polymer is grown

monomer by monomer. In a continuous-time Markov
process, this translates to trajectories being grown segment
by segment. To define the segments, we introduce a time
discretization 0 < τ1 < τ2 < � � � < τn−1 < T. Thus, each
trajectory s of duration T consists of n segments where we
denote the segment between τi and τj by s½i;j� (we define
τ0 ¼ 0 and τn ¼ T). The particle filter uses the following
procedure to grow an ensemble of trajectories segment
by segment:
(1) Generate M starting points s10;…; sM0 according to

the initial condition of the input signal Pðs0Þ.
(2) Iterate for i ¼ 1;…; n:

(a) Starting with an ensemble of M partial trajecto-
ries of duration τi−1 (if i ¼ 1, an ensemble of
starting points), which we label sk½0;i−1� for
k ¼ 1;…;M:

�
s1½0;i−1�;…; sM½0;i−1�

�
; ð30Þ

propagate each trajectory (or each starting point)
forward in time from τi−1 to τi. Propagation is
performed according to the natural dynamics of
s, i.e., generating a new segment sk½i−1;i� with

probability

pgen
i ðkÞ ¼ P

h
sk½i−1;i�jsk½0;i−1�

i
¼ e−U0½sk½i−1;i�� ð31Þ

for k ¼ 1;…;M.
(b) Compute the Boltzmann weight

Uk
i ¼ ΔU

h
sk½i−1;i�; x½i−1;i�

i
ð32Þ

of each new segment. This Boltzmann weight of
a segment from τi−1 to τi can be expressed as

Uk
i ¼ −δ1i lnPðx0js0Þ−

Z
τi

τi−1

dtLt

h
sk½i−1;i�;x½i−1;i�

i

ð33Þ

[see Eq. (28)] and is therefore straightforward to
compute from the master equation.

(c) Sample M times from the distribution

pselect
i ðkÞ ¼ e−U

k
i

wi
; ð34Þ

TABLE I. Translation to the notation of statistical physics.
The definitions of U and U0 that are used here are given in
Eqs. (20) and (24).

P½s; x� e−U½s;x�

P½s� 1
Z0½x� e

−U0½s�

P½sjx� 1
Z½x� e

−U½s;x�

1 Z0½x�
P½x� Z½x�
P½xjs� e−ΔU½s;x�
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where the Rosenbluth weight wi is defined as

wi ¼
XM
k¼1

e−U
k
i : ð35Þ

This sampling procedure yields M randomly
drawn indices l1

i ;…;lM
i . Each lk

i is an index
that lies in the range 1;…;M and that points to
one of the trajectories that has been generated up
to τi. To continue the sampling procedure, we
relabel the indices such that the resampled set

of trajectories is defined by s̃k½0;i� ← s
lki
½0;i� for

k ¼ 1;…;M. The list ðs̃1½0;i�;…; s̃M½0;i�Þ is sub-
sequently used as the input for the next iteration
of the algorithm.

The normalized Rosenbluth factor of the final ensemble
is then given by

W ¼
Yn
i¼1

wi

M
: ð36Þ

As shown in Appendix A, we can derive an unbiased
estimate for the desired ratio Z½x�=Z0½x� ¼ P½x� based on
the Rosenbluth factor:

P̂½x� ¼ Pðx0ÞW; ð37Þ

with Pðx0Þ being the probability of the initial output x0. The
particle filter can therefore be integrated into the DPWS
algorithm to compute the marginal density P½x�, substitut-
ing the brute-force estimate given in Eq. (8). We call the
resulting algorithm used to compute the mutual information
RR-PWS.
We now provide an intuitive explanation for the scheme

presented above. First, note that steps 1 and 2(a) of the
procedure above only involve propagatingM trajectories in
parallel, according to P½s� ¼ expð−U0½s�Þ. The interesting

steps are 2(b) and 2(c), where we eliminate or duplicate
some of the trajectories according to the Boltzmann
weights of the most recent segment. Note that, in general,
the list of indices ðl1

i ;…;lM
i Þ that are sampled in step 2(c)

will contain duplicates (lk
i ¼ lk0

i for k ≠ k0), thus cloning
the corresponding trajectory. Concomitantly, the indices
l1
i ;…;lM

i may not include every original index 1;…;M,
therefore eliminating some trajectories. Since indices of
trajectories with high Boltzmann weight are more likely to
be sampled from Eq. (34), this ensures that we are only
spending computational effort on propagating those
trajectories whose Boltzmann weight is not too small.
Hence, at its heart, the particle filter is an algorithm for
producing samples that tend to be distributed according to
expð−U0½s�Þ expð−ΔU½s; x�Þ ¼ expð−U½s; x�Þ, i.e., accord-
ing to the Boltzmann distribution of the interacting
ensemble; see also Appendix A. For illustration of the
algorithm, one iteration of the particle filter is presented
schematically in Fig. 3.
For the efficiency of the particle filter, it is important to

carefully choose the number of segments n. When the
segments are very short (n large), the accumulated weights
[Eq. (33)] tend to differ very little between the newly
generated segments sk½i−1;i�. Hence, the pruning and enrich-

ment of the segments is dominated by noise. In contrast,
when the segments are very long, the distribution of
Boltzmann weights Uk

i becomes very wide. Then, only a
few segments contribute substantially to the corresponding
Rosenbluth weight wi. Hence, to carefully choose n, we
need a measure that quantifies the variance of the trajectory
weights. To this end, we follow Martino et al. [66] and
introduce an effective sample size (ESS)

MðeffÞ
i ¼ w2

iP
M
k¼1 ðe−U

k
i Þ2 ; ð38Þ

which lies in the range 1 ≤ MðeffÞ
i ≤ M; MðeffÞ

i ¼ 1 if one
trajectory has a much higher weight than all the others, and

FIG. 3. Illustration of one step of the bootstrap particle filter in RR-PWS. We start with a set of trajectories sk½0;i−1� with time span
½τ0; τi−1� (left panel). In the next step, we propagate these trajectories forward in time to τi, according to P½s� (central panel). Then, we
resample the trajectories according to the Boltzmann weights of their most recent segments, effectively eliminating or duplicating
individual segments. An example outcome of the resampling step is shown in the right panel, where the bottom trajectory was duplicated
and one of the top trajectories was eliminated. These steps are repeated for each segment, until a set of input trajectories of the desired
length is generated. The intermediate resampling steps bias the trajectory distribution from P½s� towards P½sjx�.
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MðeffÞ
i ¼ M if all trajectories have the same weight. As a

rule of thumb, we resample only when the MðeffÞ
i drops

belowM=2. Additionally, as recommended in Ref. [67], we
use the systematic sampling algorithm to randomly draw
the indices in step 2(c), which helps to reduce the variance;
we find, however, that the improvement over simple
sampling is very minor. Using these techniques, the only
parameter that needs to be chosen by hand for the particle
filter is the ensemble size M.

C. TI-PWS

Our third scheme, TI-PWS, is based on the analogy of
marginalization integrals with free-energy computations.
As before, we view the problem of computing the
marginal probability P½x� as equivalent to that of com-
puting the free-energy difference between ensembles
defined by the potentials U0½s; x� and U½s; x�, respectively.
For TI-PWS, we define a potential Uθ½s; x� with a
continuous parameter θ∈ ½0; 1� that allows us to transform
the ensemble from U0 to U ¼ U1. The corresponding
partition function is

Zθ½x� ¼
Z

D½s�e−Uθ ½s;x�: ð39Þ

For instance, for 0 ≤ θ ≤ 1, we can define our potential as

Uθ½s; x� ¼ U0½s; x� þ θΔU½s; x�; ð40Þ

such that e−Uθ ½s;x� ¼ P½s�P½xjs�θ. Note that this is the
simplest choice for a continuous transformation between
U0 and U1 but by no means the only one. For reasons of
computational efficiency, it can be beneficial to choose a
different path between U0 and U1, depending on the
specific system [47]. Here, we do not consider other paths
however, and we derive the thermodynamic integration
estimate for the potential given in Eq. (40).
To derive the thermodynamic integration estimate for the

free-energy difference, we first compute the derivative of
lnZθ½x� with respect to θ:

∂

∂θ
lnZθ½x� ¼

1

Zθ½x�
∂

∂θ

Z
D½s�e−Uθ ½s;x�

¼ −
�
∂Uθ½s; x�

∂θ

	
θ

¼ −hΔU½s; x�iθ: ð41Þ

Thus, the derivative of lnZθ½x� is an average of the
Boltzmann weight with respect to Pθ½sjx�, which is the
ensemble distribution of s given by

Pθ½sjx� ¼
1

Zθ½x�
e−Uθ ½s;x�: ð42Þ

Integrating Eq. (41) with respect to θ leads to the formula
for the free-energy difference

ΔF ½x� ¼ −
Z

1

0

dθhΔU½s; x�iθ; ð43Þ

which is the fundamental identity underlying thermody-
namic integration.
To compute the free-energy difference using Eq. (43),

we evaluate the θ integral numerically using Gaussian
quadrature, while the inner average hΔU½s; x�iθ is com-
puted using MCMC simulations. To perform MCMC
simulations in trajectory space, we use ideas from transition
path sampling (TPS) [49]. As discussed in Appendix B, the
efficiency of MCMC samplers strongly depends on the trail
moves that are employed. While better trail moves could be
conceived, we only use the forward shooting and backward
shooting moves of TPS [49] to obtain the results in Sec. V.
These moves regrow either the end or the beginning of a
trajectory, respectively. A move is accepted according to the
Metropolis criterion [68].

IV. INTEGRATING OUT INTERNAL
COMPONENTS

So far, the output trajectory x has been considered to
correspond to the trajectory of the system in the full state
spaceΩ. Concomitantly, the method presented is a scheme
for computing the mutual information between the input
signal s and the trajectory x, comprising the time evolution
of all the n components in the system, X1; X2;…; Xn. Each
component Xi itself has a corresponding trajectory xi,
such that the full trajectory can be represented as a vector
x ¼ ðx1;…; xnÞ. Indeed, it is also the conditional proba-
bility P½xjs� ¼ P½x1;…; xnjs� and the marginal probability
P½x� ¼ P½x1;…; xn� of this vector in the full state space
that can be directly computed from the master equation. In
fact, it is this vector, which captures the states of all the
components in the system, that carries the most informa-
tion on the input signal s and thus has the largest mutual
information. However, typically, the downstream system
cannot read out the states of all the components X1;…; Xn.
Often, the downstream system reads out only a few
components or often even just one component, the “output
component” Xr. The other components then mainly
serve to transmit the information from the input s to this
readout Xr. From the perspective of the downstream
system, the other components are hidden. The natural
quantity to measure the precision of information process-
ing is then the mutual information IðS;X rÞ between the
input s and the output component’s trajectory xr, not
IðS;XÞ. The question then becomes how to compute P½xr�
and P½xrjs�, from which IðS;X rÞ can be obtained. Here,
we present a scheme to achieve this.
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As an example, consider a chemical reaction network
with species X1;…; Xn. Without loss of generality, we
assume that the nth component is the output component,
Xr ¼ Xn. The other species X1;…; Xn−1 are thus not part of
the output but only relay information from the input signal s
to the output signal xn. To determine the mutual informa-
tion IðS;XÞ, we need P½xnjs�, where xn is the trajectory of
only the readout component Xn. However, from the master
equation, we can only obtain an expression for the full
conditional probability P½x1;…; xnjs� of all components.
To compute the value of P½xnjs�, we must perform the
marginalization integral

P½xnjs� ¼
Z

D½x1� � � �
Z

D½xn−1�P½x1;…; xnjs�: ð44Þ

We can compute this integral using a Monte Carlo scheme
as described below and use the resulting estimate for
P½xnjs� to compute the mutual information using our
technique presented in Sec. II B.
The marginalization of Eq. (44) entails integrating out

degrees of freedom from a known joint probability dis-
tribution. In Eq. (8), we solved the analogous problem
of obtaining the marginal probability P½x� by integrating
out the input trajectories through the integral P½x� ¼R
dsP½s; x� ¼ R

dsP½s�P½xjs�. As described in Sec. II B,
the integral from Eq. (8) can be computed via a
Monte Carlo estimate by sampling many input trajectories
from P½s� and taking the average of the corresponding
conditional probabilities P½xjsi�. We show that, in the case,
where there is no feedback from the readout component
back to the other components, a completely analogous
Monte Carlo estimate can be derived for Eq. (44).
We describe this below. Additionally, in the absence of
feedback, the techniques presented in Sec. III above can
be employed to develop computationally more efficient
schemes.
More specifically, we can evaluate Eq. (44) via a direct

Monte Carlo estimate under the condition that the stochas-
tic dynamics of the other components X1;…; Xn−1 are not
influenced by Xn (i.e., no feedback from the readout).
Using the identity

P½x1;…;xnjs�¼P½x1;…;xn−1js�P½xnjx1i ;…;xn−1i ;s� ð45Þ

to rewrite the integrand in Eq. (44), we are able to represent
the conditional probability P½xnjs� as an average over the
readout component’s trajectory probability

P½xnjs� ¼ hP½xnjx1i ;…; xn−1i ; s�iP½x1;…;xn−1js�: ð46Þ

Thus, assuming that we can evaluate the conditional
probability of the readout given all the other components,
P½xnjx1i ;…; xn−1i ; s�, we arrive at the estimate

P½xnjs� ≈ 1

M

XM
i¼1

P½xnjx1i ;…; xn−1i ; s�; ð47Þ

where the samples x1i ;…; xn−1i for i ¼ 1;…;M are drawn
from P½x1;…; xn−1js�. Notice that the derivation of this
Monte Carlo estimate is fully analogous to the estimate in
Eq. (8), but instead of integrating out the input trajectory s,
we integrate out the component trajectories x1;…; xn−1.
To obtain P½xnjx1i ;…; xn−1i ; s� in Eqs. (46) and (47), we

note that, in the absence of feedback, we can describe
the stochastic dynamics of the readout component Xn as a
jump process with time-dependent transition rates whose
time dependence arises from the trajectories of the other
components x1;…; xn−1 and the input s. In effect, this
is a driven jump process for Xn, driven by all upstream
components X1;…; Xn−1 and the input signal. Specifically,
denoting u ¼ ðx1;…; xn−1; sÞ as the joint trajectory repre-
senting the history of all upstream components as well as
the input signal, we can, as explained in Sec. II C, write the
time-dependent transition rate matrix Qtð·juÞ for the
stochastic dynamics of Xn and use Eq. (14) to compute
P½xnju� ¼ P½xnjx1i ;…; xn−1i ; s�. Using Eq. (47), this then
allows us to compute P½xnjs�.
Finally, to compute the mutual information IðS;XnÞ,

e.g., using the estimate in Eq. (10), we additionally need
to evaluate the marginal output probability P½xn�. This
requires us to perform one additional integration over the
space of input trajectories s:

P½xn� ¼
Z

D½s�P½s�P½xnjs�

¼ hP½xnjs�iP½s�: ð48Þ

The corresponding Monte Carlo estimate is

P½xn� ≈ 1

N

XN
i¼1

P½xnjsi�

≈
1

N

XN
i¼1

1

M

XM
j¼1

P


xnjx1ij;…; xn−1ij ; si

�
; ð49Þ

where the input trajectories si follow P½s� and the inter-
mediate components ðx1ij;…; xn−1ij Þ, for i ¼ 1;…; N and
j ¼ 1;…;M, follow P½x1;…; xn−1jsi�.
In summary, the scheme to obtain P½xnju� in the

presence of hidden intermediate components is analogous
to that used for computing P½x� from P½xjs�. In both cases,
one needs to marginalize a distribution function by inte-
grating out components. Indeed, the schemes presented
here and in Sec. II B are bona fide schemes to compute the
mutual information between the input s and either the
trajectory of the output component xn or the full output x.
However, when the trajectories are sufficiently long or the
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stochastic dynamics are sufficiently complex, the free-
energy schemes of Sec. III may be necessary to enhance
the efficiency of computing the marginalized distribution,
P½x� or P½xnjs�.

V. RESULTS

To demonstrate the power of our framework and illus-
trate how the techniques of the previous sections can be
used in practice, we apply PWS to two instructive chemical
reaction networks. We first consider a linearly coupled
birth-death process. This system has already been studied
previously using a Gaussian model [6], and by Duso and
Zechner [30] using an approximate technique, and we
compare our results to the results of these studies. This
simple birth-death system serves to illustrate the main ideas
of our approach and also highlights that linear systems
can be distinctly non-Gaussian. The second example has
been chosen to demonstrate the practical applicability of
our technique. We use RR-PWS to compute the mutual
information rate in the bacterial chemotaxis system, which
is a prime example of a complex information processing
system consisting of many reactions. Then, we compare the
computed rate against recent experiments.
The code used to produce the PWS estimates was written

in the Julia programming language [69] and has been made
freely available [70]. For performing stochastic simula-
tions, we use the DifferentialEquations.jl package [71], and
biochemical reaction models are set up with help from the
ModelingToolkit.jl package [72].

A. Coupled birth-death processes

As a first example system, we consider a simple birth-
death process ∅⇌X of species X, which is created at rate
ρðtÞ and decays with constant rate μ per copy of X. This
system receives information from an input signal that
modulates the birth rate ρðtÞ. For simplicity, we assume
it is given by

ρðtÞ ¼ ρ0sðtÞ; ð50Þ

where ρ0 is a constant and sðtÞ is the input copy number at
time t. This is a simple model for gene expression, where
the rate of production of a protein X is controlled by a
transcription factor S, and X itself has a characteristic decay
rate. The input trajectories sðtÞ themselves are generated
via a separate birth-death process ∅⇌S with production
rate κ and decay rate λ.
We compute the trajectory mutual information for this

system as a function of the trajectory duration T of the input
and output trajectories. For T → ∞, the trajectory mutual
information is expected to increase linearly with T since, on
average, every additional output segment contains the same
additional amount of information on the input trajectory.
Because we are interested in the mutual information in a

steady state, the initial states ðs0; x0Þ were drawn from
the stationary distribution Pðs0; x0Þ. This distribution was
obtained using a Gaussian approximation. This does not
influence the asymptotic rate of increase of the mutual
information, but it leads to nonzero mutual information
already for T ¼ 0.
Figure 4 shows the mutual information as a function

of the trajectory duration T. We compare the three PWS
variants and two approximate schemes. One is that of Duso
and Zechner [30]. To apply it, we used the code publicly
provided by the authors [73], and to avoid making
modifications to this code, we chose a fixed initial con-
dition ðs0 ¼ x0 ¼ 50Þ, which causes the mutual informa-
tion to be zero for T ¼ 0. The figure also shows the
analytical result of a Gaussian model [6], obtained using the
linear-noise approximation (see Appendix F).
We find that the efficiency of the respective PWS variants

depends on the duration of the input-output trajectories.
For short trajectories, all PWS variants yield very similar
estimates for the mutual information. However, for longer

FIG. 4. Comparison of different schemes to compute the mutual
information as a function of trajectory duration for a simple
coupled birth-death process with rates κ ¼ 50; λ ¼ 1; ρ0 ¼ 10;
μ ¼ 10 and a steady-state initial condition. The top panels show
example trajectories of the input and output as well as the mean
(solid line) and standard deviation (shaded region). The lower
panels show the mutual information as a function of trajectory
duration. The inset shows an enlarged version of the dotted
rectangle near the origin. For short trajectories, all PWS estimates
agree. Yet, for longer trajectories, DPWS and TI-PWS require a
much larger number of input trajectories M for computing P½x�
than RR-PWS for convergence. Results for the three PWS
variants are compared with the Duso and Zechner [30] estimate
and with the linear noise approximation from Ref. [6]. We find
excellent agreement between the Duso scheme and RR-PWS.
The Gaussian linear noise approximation systematically under-
estimates the mutual information. All PWS estimates, as well as
the Duso approximation, were computed using N ¼ 104 samples
from P½s; x�.
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trajectories, the estimates of DPWS and, to a smaller degree,
TI-PWS diverge because of poor sampling of the trajectory
space in the estimate of P½x�. For longer trajectories, the
estimate becomes increasingly dominated by rare trajecto-
ries, which make an exceptionally large contribution to the
average of P½x�. Missing these rare trajectories with a high
weight tends to increase the marginal entropy HðXÞ [see
Eq. (9)] and thereby the mutual information; indeed, the
estimates of DPWS and TI-PWS are higher than that of
RR-PWS. For brute-force DPWS, the error decreases as we
increase the number M of input trajectories per output
trajectory used to estimate P½x�. Similarly, for TI-PWS,
the error decreases as we use more MCMC samples for the
marginalization scheme. For the RR-PWS, however, already
for M ¼ 128 the estimate has converged; we verify that a
further increase of M does not change the results.
We also find excellent agreement between the RR-PWS

estimate and the approximate result of Duso and
Zechner [30]. Only very small deviations are visible in
Fig. 4. These deviations are mostly caused by the different
choice for the initial conditions. In RR-PWS, the initial
conditions are drawn from the stationary distribution,
while in the Duso scheme, they are fixed, such that the
mutual information computed with RR-PWS is finite
while that computed with the Duso scheme is zero.
Yet, as the trajectory duration T increases, the Duso
estimate slowly “catches up” with the RR-PWS result.
Figure 4 also shows that although the Gaussian model

matches the PWS result for T ¼ 0, it systematically under-
estimates the mutual information for trajectories of finite
duration T > 0. Interestingly, this is not a consequence of
small copy-number fluctuations: Increasing the average
copy number does not significantly improve the Gaussian
estimate. We leave a detailed analysis of this observation
for future work.
The different approaches for computing the marginal

probability P½x� lead to different computational efficiencies
of the respective PWS schemes. In Fig. 5, as a benchmark,
we show the magnitude of the error of the different PWS
estimates in relation to the required CPU time. Indeed,
as expected, the computation of the marginal probability
poses problems for long trajectories when using the brute-
force DPWS scheme. More interestingly, while TI-PWS
improves the estimate of the mutual information, the
improvement is not dramatic. Unlike the brute-force
scheme, thermodynamic integration makes it possible to
generate input trajectories s that are correlated with the
output trajectories x, but it still overestimates the mutual
information for long trajectories unless a very large number
of MCMC samples are used.
The RR-PWS implementation evidently outperforms the

other estimates for this system. The regular resampling
steps ensure that we mostly sample input trajectories s
with nonvanishing likelihood P½xjs�, thereby avoiding the
sampling problem from DPWS. Moreover, sequential

Monte Carlo techniques such as RR-PWS and FFS [64]
have a considerable advantage over MCMC techniques in
trajectory sampling. With MCMC path sampling, we
frequently make small changes to an existing trajectory
such that the system moves slowly in path space, leading to
poor statistics. In contrast, in RR-PWS, we generate new
trajectories from scratch, segment by segment, and these
explore the trajectory space much faster.
The coupled birth-death process represents a simple yet

nontrivial system capable of information transmission. In
the next section, we apply PWS to a more complex and
realistic biochemical signaling network.

B. Bacterial chemotaxis

The chemotaxis system of the bacterium Escherichia
coli is a complex information processing system. It is
responsible for detecting nutrient gradients in the cell’s
environment and using that information to guide the
bacterium’s movement. Briefly, E. coli navigates through
its environment by performing a biased random walk,
successively alternating between so-called runs, during
which it swims with a nearly constant speed, and tumbles,
during which it randomly chooses a new direction [74]. The
rates of switching between these two states are controlled
by the chemotaxis sensing system [Fig. 6(a)]. This system
consists of receptors on the cell surface that detect the

FIG. 5. Comparing estimation bias for the different PWS
variants in relation to their CPU time requirements. Each dot
represents a single mutual information estimate with N ¼ 104

samples for trajectories of duration T ¼ 5. Almost all the CPU
time of a PWS estimate is spent on the computation of the
marginal probability P½x�. The bias of the marginal probability
estimate can be reduced by using a larger number M of sampled
input trajectories to compute the marginalization integral, which
also increases the required CPU time. The RR-PWS estimate
converges much faster than the estimate of DPWS and TI-PWS.
For DPWS and TI-PWS, the dots represent estimates ranging
fromM ¼ 25 toM ¼ 214, and for RR-PWS ranging fromM ¼ 23

to M ¼ 210. As the baseline of zero bias, we use the converged
result from the RR-PWS estimates.
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ligand and a downstream signaling network that processes
this information by taking the time derivative of the signal,
the ligand concentration. This derivative is taken via
two antagonistic reactions, which occur on two distinct
timescales. Attractant binding rapidly deactivates the
receptor, while slow methylation counteracts this reaction
by reactivating the receptor, leading to near perfect

adaptation [75–78]. Lastly, active receptors phosphorylate
the downstream messenger protein CheY, which controls
the tumbling propensity by binding the flagellar motors
that propel the bacterium.
In our model, the receptors are grouped in clusters

(Appendix D). Each receptor can switch between an active
and an inactive conformational state, but, in the spirit of the
Monod-Wyman-Changeux model [79], the energetic cost
of having two different conformations in the same cluster is
prohibitively large. We can then speak of each cluster as
either being active or inactive. Each receptor in a cluster
can bind ligand molecules and be (de)methylated, and
thus can control the probability that the cluster is active. In
the simulations, receptor (de)methylation is modeled
explicitly because the (de)methylation reactions are slow.
In contrast, the timescale of receptor-ligand (un)binding is
much faster than the other timescales in the system, i.e.,
those of the input dynamics, CheY (de)phosphorylation,
and receptor (de)methylation. The receptor-ligand binding
dynamics can therefore be integrated out without affecting
information transmission, in order to avoid wasting CPU
time (Appendix D). In addition, the receptor clusters
can phosphorylate CheY, while phosphorylated CheY is
dephosphorylated at a constant rate. The dynamics of the
kinase CheA and the phosphatase CheZ that drive
(de)phosphorylation are not modeled explicitly. Table II
in Appendix D gives the parameter values of our chemo-
taxis model, which are all based on values reported in the
literature. For what follows below, the key parameters
are the number of receptors per cluster, which is taken to
be N ¼ 6 based on Refs. [80,81], while the number of
clusters is Nc ¼ Nr=N ¼ 400, where 103 < Nr < 104 is
an estimate for the total number of receptors based on
Ref. [82]. The translation of our model into a master
equation is explained in Appendix D.
We first asked whether this model based on the current

literature can reproduce the information transmission
rate as recently measured by Mattingly et al. [50]. In what
follows, we call this model the “literature-based” model.
The information transmission rate depends not only on

the biochemical chemotaxis network but also on the
dynamics of the input signal. It is therefore important that
the dynamics of this signal in our model agree with those in
the experiments of Mattingly et al. [50]. In our model, the
input signal is the time-dependent ligand concentration cðtÞ
that is experienced by the swimming bacterium. In the
experiments, the cells swim in a very shallow chemical
gradient, such that their swimming behavior is, to a good
approximation, identical to that in the absence of a gradient.
The cell’s movement can thus be modeled as a (persistent)
random walk. Assuming that the gradient is oriented in the
x direction, the autocorrelation of the x component of the
velocity was experimentally found to be well described by
VðtÞ≡ hδvxðtÞδvxð0Þi ≃ σ2ve−λjtj, where σ2v is the variance
of the fluctuations in the velocity, and λ−1 is the correlation

(a)

(b) (c)

(d) (e)

FIG. 6. Information transmission rate in the bacterial chemo-
taxis system. (a) Cartoon of the chemotaxis network of E. coli.
Receptors form clusters with an associated CheA kinase. A
cluster can either be active or inactive, depending on the number
of bound ligands (green dots) and methylated sites (orange dots).
Active CheA can phosphorylate CheY; phosphorylated CheY
controls the rotation direction of the flagellar motors and thereby
the movement of the bacterium. (b) Bacterium diffusing nearly
freely in the x direction in a shallow gradient cðxÞ. The variance
of the position increases with time, the hallmark of a random
walk. The input signal is the concentration cðtÞ ¼ c(xðtÞ) as
experienced by the bacterium at time t. (c) Movement giving rise
to the input statistics of the signal. The shaded regions indicate
the 75th and 95th percentiles; example trajectories are displayed
in color. This signal is nonstationary as its variance always keeps
growing. (d) Mutual information IðCT;YTÞ between input
trajectories cðtÞ and output trajectories ypðtÞ as a function of
trajectory duration T. In each RR-PWS simulation, N ¼ 7200
Monte Carlo samples were used (M ¼ 256 for the particle filter).
(e) Information transmission rate defined as IðCT;YTÞ=T in the
limit T → ∞.
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time of these fluctuations [50]. We therefore model the
cell’s velocity as v̇x ¼ −λvx þ ξ, which, with hξðtÞξðt0Þi ¼
2σ2vλδðt − t0Þ, gives rise to the measured correlation func-
tion VðtÞ. These cells swim in a shallow, exponential
gradient cðxÞ ∝ egx with steepness g. The dynamics of
the ligand concentration as experienced by the bacteria are
then given by ċ ¼ gcvx. The cell’s own swimming dynam-
ics described by vx thus give rise to the input signal cðtÞ
of the biochemical network. It constitutes an exponential
random walk, as illustrated inFigs. 6(b) and 6(c) (see also
Appendix E).
In our model, the output is the concentration of phos-

phorylated CheY, while in the experiments of Mattingly
et al. [50], it is the average activity of the receptor clusters
as obtained via FRET measurements. We argue that this
difference does not significantly affect the obtained infor-
mation rates and, thus, that it is valid to compare our results
to the experiments. In particular, since the copy number of
CheY is much larger than the number of receptor clusters,
the fluctuations in CheY are dominated by the extrinsic
fluctuations coming from the receptor activity noise rather
than from the intrinsic fluctuations associated with CheY
(de)phosphorylation. To a good approximation, the copy
number of phosphorylated CheY, YpðtÞ, is thus a deter-
ministic function of the average receptor activity aðtÞ.
Mathematically, the mutual information IðX;YÞ between
two stochastic variables X and Y is the same as the
mutual information I(fðXÞ; gðYÞ) for deterministic and
monotonic functions f and g. It follows that the mutual
information between cðtÞ and YpðtÞ is nearly the same as
that between cðtÞ and the receptor activity aðtÞ. It is
therefore meaningful to compare the information trans-
mission rates as predicted by our PWS simulations to those
measured by Mattingly et al. [50].
We use RR-PWS to exactly compute the mutual infor-

mation for the literature-based model. Specifically, we
measure the mutual information IðC;Yp;TÞ between the
input trajectory of the ligand concentration cðtÞ and the
output trajectory of phosphorylated CheY, ypðtÞ, where
each trajectory is of duration T. With RR-PWS, it is
possible to compute IðC;Yp; τÞ for all τ ≤ T within a
single PWS simulation of duration T by saving intermedi-
ate results after each sampled segment; see Sec. III B. The
receptor states are hidden internal states, and we use the
technique of Sec. IV to integrate them out.
Figure 6(e) shows the PWS estimate of the information

transmission rate for cells swimming in gradients of
different steepness g. The information transmission rate
is obtained from the PWS estimate of the trajectory
mutual information IðC;Yp;TÞ, with different trajectory
durations T. As seen in Fig. 6(d), for short trajectories, the
mutual information increases nonlinearly with trajectory
duration T, but in the long-duration limit, the slope
becomes constant. This asymptotic rate of increase of
the mutual information with T is the desired information

transmission rate RðC;YpÞ. The precise definition is
given by

RðC;YpÞ ¼ lim
T→∞

IðC;Yp;TÞ
T

: ð51Þ

We then compare our results for the information
transmission rate of the literature-based model to those
of Mattingly et al. [50]. Figure 7(c) shows that the model
predictions differ from the experiments by a factor of
approximately 4. Despite this discrepancy, we believe
that the agreement between experiment and theory is, in
fact, remarkable because these predictions were made
ab initio: The model was developed based on the existing
literature, and we did not fit our model to the data of
Mattingly et al. [50].
However, the question about the origin of the discrep-

ancy remains. The difference between their measurements
and our predictions could be attributed either to the
inaccuracy of our model or to the approximation that
Mattingly et al. [50] had to employ to compute the
information transmission rate from experimental data.
Concerning the latter hypothesis, because of the curse of
dimensionality and experimental constraints, Mattingly
et al. [50] could not directly obtain the information trans-
mission rate from measured time traces of the input and
output of the system. Instead, they measured three different
kernels that describe the system in the linear regime.
Specifically, they obtained the response KðtÞ of the kinase
activity to a step change in input signal, the autocorrelation
function of the input signal VðtÞ, and the autocorrelation
NðtÞ of the kinase activity in a constant background
concentration. Then, they used a Gaussian model to
compute the information transmission rate from these
measured functions KðtÞ, VðtÞ, and NðtÞ [6,50] (see also
Appendix F). This Gaussian model is based on a linear
noise assumption and cannot perfectly capture the true
nonlinear dynamics of the biochemical network. This could
be the cause for the observed discrepancies in the infor-
mation rate. We have indeed already seen in Sec. VA that
there can be substantial differences between exact compu-
tations and the Gaussian approximation for the trajectory
mutual information.
To uncover the reason for the discrepancy, we first test

whether our literature-based model reproduces the exper-
imentally measured kernels. If the kernels do not match,
then, clearly, the discrepancy in the information rate may
be caused by the difference between our model and the
experimental system, as opposed to the inaccuracy of the
Gaussian framework. Our input correlation function VðtÞ
is, by construction, the same as that of Mattingly et al. [50].
However, we find that the response kernel KðtÞ and the
autocorrelation function of the noise NðtÞ of our system
are different. Figures 7(a) and 7(b) show that our model
reproduces the timescales of NðtÞ and KðtÞ as measured
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experimentally. This result is perhaps not surprising
because the decay of both NðtÞ and KðtÞ is set by the
(de)methylation rate, which has been well characterized
experimentally. Yet, the figure also shows that our model
significantly underestimates the amplitudes of both NðtÞ
and KðtÞ.
This raises the question of whether other parameter

values would allow our model to better reproduce the
measured kernels KðtÞ and NðtÞ and, secondly, whether
this would resolve the discrepancy in information rate
between our simulations and the experiments.
The amplitude σ2N of the output noise correlation

function NðtÞ is bounded by the number of receptor
clusters Nc. In particular, the variance of the receptor
activity is σ2N ¼ σ2a=Nc ≤ 1=4Nc, where σ2a ≤ 1=4 is the
variance of the activity of a single receptor cluster.
Comparing this bound to the measured receptor noise
strength σ2N reveals that Nc needs to be much smaller than
our original model assumes: The number of clusters needs
to be as small as Nc ≲ 10. Indeed, Fig. 7(b) shows that with

Nc ¼ 9, our model quantitatively fits the correlation func-
tion NðtÞ of the receptor activity in a constant background
concentration, as measured experimentally [50].
The amplitude of KðtÞ, i.e., the gain, depends on the

ratio KA
D=K

I
D of the dissociation constants of the receptor

for ligand binding in its active or inactive state, respec-
tively, as well as on the number of receptors per cluster, N.
Both dissociation constants have been well characterized
experimentally [80,85], but the number of receptors
per cluster has only been inferred indirectly from experi-
ments [80,81]. The higher gain as measured experimen-
tally by Mattingly et al. [50] indicates that N is larger than
assumed in our model: With N ¼ 15, our model can
quantitatively fit KðtÞ [Fig. 7(a)].
We thus find that by reducing the number of clusters from

Nc ¼ 400 to Nc ¼ 9 while simultaneously increasing their
size from N ¼ 6 to N ¼ 15, our model is able to quanti-
tatively fit both NðtÞ and KðtÞ [50] (Fig. 7). This result
suggests that the number of independent receptor clusters is
smaller than hitherto believed while their size is larger.
Finally, how accurately can our revised model reproduce

the measured information rate, and how accurate is the
Gaussian framework for the experimental system in the
regime studied by Mattingly et al. [50]? In the revised
model, called the “fitted model,” with Nc ¼ 9 and N ¼ 15,
all key quantities for computing the information trans-
mission rate within the Gaussian framework, VðtÞ, NðtÞ,
and KðtÞ, are nearly identical to the experiments of
Mattingly et al. [50]; see Fig. 7. Within the Gaussian
framework (see Appendix F), the information transmission
rate in our model is thus expected to be very similar to the
experimentally measured one, and Fig. 7(c) shows that this
is indeed the case. To quantify the accuracy of the Gaussian
framework, we then recompute the information transmis-
sion rate for the revised model, using exact PWS (see
Appendix H). We find that the result matches the Gaussian
prediction very well. For these shallow and static chemical
gradients, the Gaussian model is thus highly accurate. Our
analysis validates a posteriori the Gaussian framework
adopted by Mattingly et al. [50].

VI. DISCUSSION

In this paper, we have developed a general, practical,
and flexible method that makes it possible to compute the
mutual information between trajectories exactly. PWS is a
Monte Carlo scheme based on the exact computation of
trajectory probabilities. We showed how to compute exact
trajectory probabilities from the master equation and thus
how to use PWS for any system described by a master
equation. Since the master equation is employed in many
fields and, in particular, provides an exact stochastic model
for well-mixed chemical reaction dynamics, PWS is very
broadly applicable.
The application of PWS to the bacterial chemotaxis

system shows how crucial it is to have a simulation

(a)

(c)

(b)

FIG. 7. Comparison of theoretical models with experimental
data for bacterial chemotaxis system. Panels (a) and (b) show the
response and noise kernels, respectively, for the model based on
literature parameters (green), parameters fitted to experiments
(blue), and experiments from Mattingly et al. [50] (orange). In
panel (c), the information transmission rate is shown for each
model as a function of gradient steepness, with results from the
Gaussian approximation shown alongside exact PWS calculations.
The fitted model closely matches the experiments, while the
literature-based model over-estimates information transmission
rate by a factor of ≈4 despite having a lower response amplitude
[panel (a)]. This is because the literature-based model has a large
number of independents receptor clusters Nc, resulting in much
lower noise in the output [panel (b)]. In all cases, the Gaussian
approximation matches the exact PWS results, providing support
for the accuracy of the measurements by Mattingly et al. [50].
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technique that is exact. Without the latter, it would be
impossible to determine whether the difference between our
predictions and the Mattingly data [50] is due to the
inaccuracy of the model, the inaccuracy of the numerical
technique to simulate the model, or the approximations
used by Mattingly and co-workers in analyzing the data.
In contrast, because PWS is exact, we knew the difference
between theory and experiment was either due to the
inaccuracy of the model or the approximations used to
analyze the data. By then employing the same Gaussian
framework to analyze the behavior of the model and the
experimental system, we were able to establish that the
difference was due to the inaccuracy of our original model.
Our analysis indicates that the size of the receptor

clusters in the E. coli chemotaxis system, N ≈ 15, is larger
than that based on previous estimates, N ∼ 6 [80,81,86].
The early estimates of the cluster size were based on bulk
dose-response measurements with a relatively slow ligand
exchange, yielding N ≈ 6 [80,86]. More recent dose-
response measurements, at the single cell level and with
faster ligand exchange, yield an average that is higher,
hNi ≈ 8, and with a broad distribution around it, arising
from cell-to-cell variability [81]. Our estimate N ≈ 15,
based on fitting the response kernel KðtÞ to that measured
by Mattingly et al. [50], therefore appears reasonable. At
the same time, the number of clusters, obtained by fitting
the noise correlation function NðtÞ to the data of Mattingly
et al. [50], is surprisingly low, Nc ∼ 10, given the total
number of receptors, Nr ∼ 103–104 [82]. Interestingly,
recent experiments indicate that the receptor array is poised
near the critical point [87], where receptor switching
becomes correlated over large distances. This effectively
partitions receptors into a few large domains, which may
explain our fitted values for N and Nc.
It has been suggested that information processing sys-

tems are positioned close to a critical point to maximize
information transmission [21,88], although it has been
argued that the sensing error of the E. coli chemotaxis
system is minimized for independent receptors [89].
Mattingly et al. [50] have demonstrated that the chemo-
tactic drift speed in shallow exponential gradients is limited
by the information transmission rate [50], but whether the
system has been optimized for information transmission
and how the latter affects chemotactic performance in other
spatiotemporal concentration profiles remain interesting
questions for future work.
While we have focused on the computation of the mutual

information between trajectories of systems governed by a
master equation, this concept can be extended to other
types of stochastic processes. The crux of PWS is the exact
evaluation of the path likelihood P½xjs� from the master
equation. Therefore, in order to use PWS with a different
stochastic process, we require the ability to compute the
path likelihood P½xjs� for its sample paths. Remarkably, for
stochastic diffusion processes, which are described by a

Langevin equation in a continuous state space, the
trajectory probability can be computed by replacing the
kernel Ltðs; xÞ in Eq. (15) with the Onsager-Machlup
function [90]. In particular, while the path probability is
not well defined for continuous sample paths, Adib [91]
shows that the Onsager-Machlup function yields a correct
expression for the path probability of time-discretized
diffusion trajectories. Therefore, PWS can be extended
to handle systems described by a Langevin equation. In
such a PWS scheme, the Gillespie simulations are replaced
by standard numerical integration techniques for Langevin
equations (see, e.g., Ref. [58]), and the trajectory likelihood
is evaluated on the fly using the Onsager-Machlup function.
PWS cannot be used to directly obtain the mutual

information between trajectories from experimental data,
in contrast to model-free (yet approximate) methods
such as K-nearest-neighbor estimators [23,24], decod-
ing-based information estimates [26], or schemes that
compute the mutual information from the data within the
Gaussian framework [50]. PWS requires a (generative)
model based on a master equation or Langevin equation.
However, an increasingly popular approach is to estimate
the mutual information from experimental data using
hidden Markov models (HMM) [92–94]. While the
construction of these HMM models is beyond the scope
of this paper, PWS makes it possible to compute the
mutual information between time-varying inputs and
outputs exactly for these models.
We have applied PWS to compute the mutual informa-

tion (rate) in the steady state, but PWS can be used equally
well to study systems out of the steady state. For such
systems, a (non)equilibrium initial condition Pðs0; x0Þmust
be specified in addition to a well-defined nonstationary
probability distribution of input trajectories P½s�. These
distributions are defined by the (experimental) setup and
lead to a well-defined output distribution P½x� when the
system is coupled to the input. Thus, a steady state is not a
prerequisite for the application of PWS to study the
trajectory mutual information.
Throughout the paper, we have considered systems in

which the output does not feed back onto the input. In
systems with feedback, the current output influences future
input, which means that we cannot straightforwardly
generate input trajectories according to P½s�. Moreover,
P½xjs�, the central quantity of all three PWS methods,
cannot be obtained straightforwardly. Nonetheless, PWS
can be extended to systems with feedback as shown in
Appendix C. As in free-energy calculations, the trick is to
define a reference system for which the marginal proba-
bility distribution—and thus the “free energy”—is known
and then compute the “free-energy difference” between that
reference system and the system of interest.
Aside from DPWS, we developed two additional var-

iants of PWS, capitalizing on the connection between
information theory and statistical physics. Specifically,
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the computation of the mutual information requires the
evaluation of the marginal probability of individual output
trajectories P½x�, which corresponds to the computation of
a partition function in statistical physics. RR-PWS and TI-
PWS are based on techniques from polymer and rare-event
sampling to make the computation of the marginal trajec-
tory probability more efficient.
The different PWS variants share some characteristics

yet differ in others. DPWS and RR-PWS are static
Monte Carlo schemes in which the trajectories are
generated independently from the previous ones. These
methods are similar to static polymer sampling schemes
like PERM [44] and rare-event methods like DFFS or BG-
FFS [64]. In contrast, TI-PWS is a dynamic Monte Carlo
scheme, where a new trajectory is generated from the
previous trajectory. In this regard, this method is similar to
the CBMC scheme for polymer simulations [95] and the
TPS [49], TIS [96], and RB-FFS [64] schemes to harvest
transition paths. The benefit of static schemes is that the
newly generated trajectories are uncorrelated from the
previous ones, which means that they are less likely to get
stuck in certain regions of path space. Concomitantly, they
tend to diffuse faster through the configuration space.
Indeed, TI-PWS suffers from a problem that is also often
encountered in TPS or TIS, which is that the middle
sections of the trajectories move only slowly in their
perpendicular direction. Tricks that have been applied to
TPS and TIS to solve this problem, such as parallel
tempering, could also be of use here [97].
Another distinction is that RR-PWS generates all the

trajectories in the ensemble simultaneously yet segment by
segment, like DFFS, while DPWS and TI-PWS generate
only one full trajectory at a time, similar to RB-FFS, BG-
FFS, and also TPS and TIS. Consequently, RR-PWS, like
DFFS, faces the risk of genetic drift, which means that,
after sufficiently many resampling steps, most paths of the
ensemble will originate from the same initial seed. Thus,
when continuing to sample new segments, the old segments
that are far in the past become essentially fixed, which
makes it possible to miss important paths in the RR-PWS
sampling procedure. As in DFFS, the risk of genetic drift in
RR-PWS can be mitigated by increasing the initial number
of path segments. Although we did not employ this trick
here, we found that RR-PWS was by far the most powerful
scheme of the three variants studied.
Nonetheless, we expect that DPWS and TI-PWS become

more efficient in systems that respond to the input signal
with a significant delay τ. In these cases, the weight of a
particular output trajectory depends on the degree to which
the dynamics of the output trajectory correlates with the
dynamics of the input trajectory a time τ earlier. Because in
RR-PWS a new segment of an output trajectory is gen-
erated based on the corresponding segment of the input
trajectory that spans the same time interval, it may therefore
miss these correlations between the dynamics of the output

and that of the input a time τ earlier. In contrast, DPWS and
TI-PWS generate full trajectories one at a time and are
therefore more likely to capture these correlations.
Overall, PWS is a general framework for computing the

mutual information between trajectories. We presented
three variants of PWS for systems described by a master
equation. In addition, we expect that other variants could
be developed to improve efficiency for particular appli-
cations. Because of its flexibility and simplicity, we
envision that PWS will become an important and reliable
tool for studying information transmission in dynamic
stochastic systems.
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APPENDIX A: JUSTIFICATION OF THE
PARTICLE FILTER FROM SEC. III B

Here, we justify the marginal probability estimate shown
in Eq. (37); i.e., we show that the bootstrap particle filter
used in Sec. III B provides a consistent estimate for the ratio
of partition functions P½x� ¼ Z½x�=Z0½x�. The result that
this estimate is also unbiased is more difficult to establish; a
proof is given by Del Moral [98].
To make the derivations below easy to follow, we

structure our justification of the particle filter into three
steps. We first give a brief description of how a resampling
procedure can generally be used to generate samples
according to a target distribution when only samples from
a different distribution are available. Second, we use these
insights to explain how the resampling procedure used in
the particle filter generates trajectories that are distributed
approximately according to P½sjx�, even though we only
generate trajectories according to P½s�. Finally, we use this
result to show that the particle filter provides a consistent
estimate for P½x�.

1. Sampling and resampling

Sampling and then resampling is a strategy to use
samples s1;…; sM from a given prior distribution f½s� to
generate approximate samples from a different distribution
of interest, with density proportional to the product
h½s� ¼ f½s�g½s�. In general, h½s� is not normalized, and
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we denote the corresponding normalized probability
density by ĥ½s� ¼ h½s�= R D½s�h½s�. To generate samples
from ĥ½s�, we assign each of the existing samples from
f½s� a normalized weight

Wk ¼ g½sk�P
M
j¼1 g½sj�

: ðA1Þ

Then, by sampling from the discrete set fs1;…; sMg
according to the weights W1;…;WM, we pick samples
that are approximately distributed according to ĥ½s�. Indeed,
for M → ∞, the distribution of the resulting samples
approaches the density ĥ½s� [99]. We use resampling at
each iteration of the algorithm of Sec. III B to regularly
prune those trajectories with low overall contribution to the
marginalization integral.

2. Distribution of trajectories in the particle filter

In the bootstrap particle filter, at each iteration, we start
with a set of trajectories s1½0;i−1�;…; sM½0;i−1�, which we assume
are approximately distributed according to P½s½0;i−1�jx½0;i−1��.
In each iteration of the particle filter, the goal is to produce a
set of trajectories approximately distributed according to
P½s½0;i�jx½0;i��. Clearly, by iterating such a procedure, we can
generate a set of trajectories distributed approximately
according to P½s½0;n�jx½0;n�� for any n > 1. Note that we
always carefully use the phrase approximately distributed
because, as explained above, for finite M, a resampling
procedure cannot generate exact samples from a probability
distribution (yet the estimate for P½x� remains unbiased
regardless of how good these approximations are). We now
take a closer look at one iteration of the particle filter.
We start with the set of trajectories with a time span

½τ0; τi−1�, denoted by fs1½0;i−1�;…; sM½0;i−1�g. These trajectories
are then propagated forward to time τi, by adding a new
segment sk½i−1;i� to the trajectory sk½0;i−1� for k ¼ 1;…;M.

Each new segment is generated from the distribution
P½sk½i−1;i�jsk½0;i−1�� such that the propagation step results in

a set of trajectories fs1½0;i�;…; sM½0;i�g, distributed according
to f½s½0;i�� ¼ P½s½0;i�jx½0;i−1��.
Next, we resample from the set of trajectories, with

the goal of producing a set of trajectories distributed
according to the target density ĥ½s� ¼ P½s½0;i�jx½0;i��.
Thus, we have to find the appropriate weighting function
g½s½0;i�� in order to approximately produce samples accord-
ing to the target distribution. By choosing g½s½0;i�� ¼
exp f−ΔU½s½i−1;i�; x½i−1;i��g ¼ P½x½i−1;i�jx½0;i−1�; s½0;i��, we
generate normalized weights

Wk
i ¼

P½x½i−1;i�jx½0;i−1�; sk½0;i��P
M
j¼1 P½x½i−1;i�jx½0;i−1�; sj½0;i��

; ðA2Þ

cf. Eq. (A1). Note that this is the same choice of weighting
function as in Sec. III B, Eq. (34). By comparison with the
notation used there, we see that the Boltzmann factors Uk

i
and Rosenbluth weights wi were defined such that we can
express the normalized weight equivalently as

Wk
i ¼

e−U
k
i

wi
: ðA3Þ

Why is this choice of weighting function the correct one?
First, observe that resampling with the normalized weights
of Eq. (A2) produces samples approximately distributed
according to

h½s½0;i�� ¼ f½s½0;i��g½s½0;i��
¼ P½s½0;i�jx½0;i−1��P½x½i−1;i�jx½0;i−1�; s½0;i��: ðA4Þ

What remains to be shown is that this density h½s½0;i��,
when normalized, becomes the desired target distribu-
tion P½s½0;i�jx½0;i��.
To do so, we need to rewrite the expression for g½s½0;i�� ¼

P½x½i−1;i�jx½0;i−1�; s½0;i�� using Bayes’ theorem

g½s½0;i�� ¼
P½s½0;i�jx½0;i−1�; x½i−1;i��P½x½i−1;i�jx½0;i−1��

P½s½0;i�jx½0;i−1��
: ðA5Þ

Notice that the first term of the numerator can be written
as P½s½0;i�jx½0;i��. After inserting this result into Eq. (A4),
we obtain

h½s½0;i�� ¼ P½s½0;i�jx½0;i��P½x½i−1;i�jx½0;i−1��: ðA6Þ

The second term in this product is a constant since x is
fixed. The first term is a normalized probability density
for s½0;i�. Therefore, we find that the normalized density
corresponding to h½s½0;i�� is

ĥ½s½0;i�� ¼ P½s½0;i�jx½0;i��: ðA7Þ

Consequently, this is the distribution that is approximated
by the set of trajectories at the end of the ith iteration of the
particle filter, which is what we wanted to show. At its
heart, the particle filter is therefore an algorithm to produce
samples that are approximately distributed according
to P½sjx�.

3. Marginal probability estimate

We now use these insights to derive an estimate of the
marginal density P½x�. We start by noting that the marginal
density of the ith output segment, P½x½i−1;i�jx½0;i−1��, is
given by
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P½x½i−1;i�jx½0;i−1�� ¼
Z

D½s½0;i��P½x½i−1;i�; s½0;i�jx½0;i−1��

¼
Z

D½s½0;i��P½s½0;i�jx½0;i−1��g½s½0;i��: ðA8Þ

The third line follows from the definition of g½s½0;i�� ¼
P½x½i−1;i�jx½0;i−1�; s½0;i��. Hence, we find that the probability
P½x½i−1;i�jx½0;i−1�� can be expressed as the average

P½x½i−1;i�jx½0;i−1�� ¼ hg½s½0;i��iP½s½0;i�jx½0;i−1� �: ðA9Þ

In principle, this average can be computed using a
Monte Carlo scheme, with trajectories generated from
P½s½0;i�jx½0;i−1��. Notice that at each iteration of the particle
filter, we dispose of a set of trajectories s1½0;i�;…; sM½0;i�, which
are approximately distributed according to P½s½0;i�jx½0;i−1��
above. Therefore, we can compute the average, Eq. (A9),
directly from the trajectories that are present for each
iteration of the particle filter. With the notation from
Sec. III B, using g½sk½0;i�� ¼ expð−Uk

i Þ, we thus obtain the

estimate

P½x½i−1;i�jx½0;i−1�� ≈
1

M

XM
k¼1

e−U
k
i ¼ wi

M
: ðA10Þ

The probability of the entire output trajectory P½x� is given
by the product

P½x� ¼ Pðx0ÞP½x½0;1�jx0� � � �P½x½n−1;n�jx½0;n−1��; ðA11Þ

where Pðx0Þ is the probability of the initial output state x0,
which is assumed to be known. In conclusion, we arrive at
the following estimate for the marginal output probability:

P̂½x� ¼ Pðx0Þ
Yn
i¼1

wi

M
; ðA12Þ

which is precisely Eq. (37).

APPENDIX B: MCMC SAMPLING
IN TRAJECTORY SPACE

Thermodynamic integration PWS in Sec. III C relies on
the computation of averages with respect to Pθ½sjx� ∝
expð−Uθ½s; x�Þ. Sampling from these distributions using the
SSA (Gillespie) algorithm is not possible. Instead, in this
section, we show different ways to implement a Markov
chain Monte Carlo (MCMC) sampler in trajectory space to
generate correctly distributed trajectories.
We can build an MCMC sampler in trajectory space

using the Metropolis-Hastings algorithm. To create a
Markov chain in trajectory space, we need to find a suitable
proposal kernel that generates a new trajectory s0 from a

given trajectory s with probability Tðs → s0Þ. We accept the
proposal using the Metropolis criterion with probability

Aðs0; sÞ ¼ min

�
1; eUθ ½s;x�−Uθ ½s0;x� Tðs0 → sÞ

Tðs → s0Þ
�

ðB1Þ

to create a chain of trajectories with stationary distribution
given by Pθ½sjx� ¼ e−Uθ ½s;x�=Zθ½x� for 0 ≤ θ ≤ 1. To ensure
efficient convergence of the resulting Markov chain to its
stationary distribution, the proposal kernel must balance
two conflicting requirements. To efficiently explore the
state space per unit amount of CPU time, the proposed
trajectory s0 must be sufficiently different from the
original trajectory s, while at the same time, it should
not be so radically different that the acceptance proba-
bility is drastically reduced. Thus, the design of the
proposal kernel is crucial for an efficient MCMC sampler,
and we will discuss various strategies to create trial
trajectories. Since different types of trial moves can easily
be combined in a Metropolis-Hastings algorithm, the most
efficient samplers often incorporate multiple complemen-
tary proposal strategies to improve the exploration speed
of the trajectory space.
The simplest (and naive) proposal kernel is to generate

an entirely new trajectory s0 independent of s, by sampling
directly from P½s� using the SSA. Hence, the transition
kernel is given by Tðs → s0Þ ¼ P½s0�, and a proposal s → s0
is accepted with probability

Aðs0; sÞ ¼ min

�
1; eUθ ½s;x�−Uθ ½s0;x� P½s�

P½s0�
�

¼ min

�
1;
P½xjs0�θ
P½xjs�θ

�
; ðB2Þ

where the second line follows by inserting the definition of
Uθ½s; x� given in Eq. (40). Although this simple scheme to
completely regenerate an entire trajectory and accept or
reject according to Aðs0; sÞ creates correctly distributed
trajectories, it should not be used in simulations to compute
P½x�. Indeed, we get a better estimate of P½x� by just using
the same number of independent sample trajectories from
P½s� and using the brute-force scheme in Eq. (8) without
taking the detour of thermodynamic integration to estimate
the normalization constant.
Instead, an idea from transition path sampling is to only

regenerate a part of the old trajectory as part of the proposal
kernel [100]. By not regenerating the entire trajectory, the
new trajectory s0 is correlated with the original trajectory s,
and correlation, in general, improves the acceptance rate.
The simplest way to generate trial trajectories using a
partial update is a move termed forward shooting in which a
time point τ along the existing trajectory s is randomly
selected, and a new trajectory segment is regrown from this
point to the end, resulting in the proposal s0. Since the new
segment is generated according to the input statistics given
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by P½s½T−τ;T��, the acceptance probability for the proposed
trajectory is given by Eq. (B2). If the input dynamics given
byP½s� are time reversible, we can also perform a backward
shooting move. Here, the beginning of s is replaced by a
new segment that is generated backwards in time.
Assuming that the initial condition is the input’s steady-
state distribution, the corresponding acceptance probability
of the backward shooting move is again given by Eq. (B2).
Using these two moves, we create an MCMC sampler
where both ends of the trajectory are flexible, and thus, if
the trajectory is not too long, the chain will quickly relax to
its stationary distribution. This is indeed the MCMC
sampler used to obtain the TI-PWS results for the coupled
birth-death process in Sec. VA.
For long trajectories, it can prove to be a problem that

the middle section is too inflexible when the trail moves
only regenerate either the beginning or the end of a
trajectory. Therefore, one could additionally try to incor-
porate midsection regrowth to make sure that the middle
parts of the trajectory also become flexible. To regrow a
middle segment with duration τ of a trajectory s, we have to
generate a new segment of duration τ according to the
stochastic dynamics given by P½s� but with the additional
condition that we have to connect both endpoints of
the new segment to the existing trajectory. Although the
starting point of the segment can be freely chosen, the
challenge is to ensure that the end point of the new segment
satisfies the end-point constraint. Stochastic processes that
generate trajectories under the condition of hitting a
specific point after a given duration τ are called stochastic
bridging processes.
The simplest way to generate trajectories from a bridging

process is by generating a trajectory segment of length τ
from the normal stochastic process and rejecting the seg-
ment if it does not hit the correct end point [101]. Clearly,
this strategy is only feasible for very short segments and
when the state space is discrete, as otherwise almost every
generated segment will be rejected due to not hitting the
correct end point. To avoid this problem, more efficient
algorithms have been developed to simulate stochastic
bridges for some types of stochastic processes. For dif-
fusion processes, bridges can be simulated efficiently by
introducing a guiding term into the corresponding
Langevin equation [102]. For jump processes, bridges
can be simulated using particle filters [103], by a weighted
stochastic simulation algorithm (wSSA) [104], or using
random time discretization (uniformization) [101].
Further techniques to create trajectory-space MCMC

samplers have been developed in the literature. Crooks
[105] describes a scheme to create MCMC moves for
trajectories evolving in nonequilibrium dynamics by mak-
ing MCMC moves to change the trajectories’ noise
histories. In the particle Markov chain Monte Carlo
(PMCMC) algorithm, trail trajectories are generated using
a particle filter and accepted with an appropriate Metropolis

criterion [106]. Another class of efficient samplers for
Markov jump processes can be built using uniformiza-
tion [107].

APPENDIX C: DEALING WITH FEEDBACK

Although, so far, we have assumed the stochastic
dynamics of the input to be independent of the generated
output trajectories, in principle, all physical information
processing systems exhibit feedback. The physical inter-
action needed to measure the input signal necessarily
affects the incoming signal, and indeed, it follows that no
information can be extracted from the input signal with-
out any perturbation of the input dynamics. Often, it is
assumed that the amplitude of such perturbations is
comparatively small and thus that the feedback can safely
be ignored. Above, the PWS scheme was derived with
this assumption. In this appendix, we drop the assumption
and explicitly consider systems where the produced
output perturbs the input, i.e., systems where the output
feeds back onto the input. In the following, we first
discuss the additional problems that arise when comput-
ing the mutual information for a system with feedback,
and subsequently, we present a modified version of PWS
that can be used to compute the trajectory mutual
information for these systems.

1. Computing the mutual information with feedback
between input and output

All PWS schemes presented above require the compu-
tation of the trajectory likelihood P½xjs�, a quantity that is
not readily available for systems with feedback. Indeed, as
already mentioned in Sec. II C 1, for a given input trajectory
s, the output dynamics are no longer described by a Markov
process in a system with feedback, and therefore, we cannot
find an expression for P½xjs� based on the master equation.
This implies that for systems with feedback, PWS schemes
cannot be used without modification. While it is generally
not possible to derive an expression for the conditional
probability P½xjs� in systems with feedback, we often can
still compute the joint probability density P½s; x� instead.
Based on this quantity, we will present a modified PWS
scheme to compute the mutual information for systems
with feedback.
Specifically, since PWS is a model-based approach to

compute the mutual information, when there is feedback
from the output back to the input, we require a complete
model of the combined system. Specifically, such a model
must provide an expression for the joint probability P½s; x�,
describing the input dynamics and the interaction between
input and output, including the feedback.
An estimate of the mutual information that only relies on

the computation of joint probability densities P½s; x� can be
obtained by expressing the mutual information as
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IðS;XÞ ¼
Z

D½s�
Z

D½x�P½s; x� ln P½s; x�
P½s�P½x� : ðC1Þ

Thus, the PWS scheme with feedback consists of the
computation of

IðS;XÞ ¼
�
ln

P½s; x�
P½s�P½x�

	
P½s;x�

; ðC2Þ

which we want to estimate via a Monte Carlo average
using samples from P½s; x�. We see that while we do not
need to evaluate the likelihood P½xjs�, we now need to
explicitly compute the joint density P½s; x� and two
marginal densities, P½s� and P½x�, for each Monte Carlo
sample ðs; xÞ ∼ P½s; x�. While the joint density can be
evaluated directly by assumption, each of the margin-
alized densities can only be computed using a nested
Monte Carlo estimate.
Specifically, for PWS with feedback, we need to com-

pute twomarginalization integrals per Monte Carlo sample:

P½s� ¼
Z

D½x�P½s; x� ðC3Þ

and

P½x� ¼
Z

D½s�P½s; x�: ðC4Þ

However, these marginalization integrals cannot be directly
computed with the techniques described so far. Note that
while in Sec. III we discussed in detail how to compute
such marginalization integrals, all methods presented there
require the evaluation of the likelihood P½xjs� and cannot
be used directly. Therefore, in the following subsection, we
discuss how to compute marginalization integrals for
systems with feedback.
Additionally, as discussed in Sec. IV, we may also need

to integrate out internal components of the master equation
even when the output feeds back onto these internal
components. The technique discussed below can also be
used in this case as a way to compute the marginalization
integral in Eq. (44).

2. Marginalization integrals for systems
with feedback

Computing marginalization integrals in systems with
feedback is harder than it is in the case without feedback.
Specifically, we will show that it is not obvious how to
apply the brute-force Monte Carlo estimate Eq. (8) or the
other, more advanced techniques from Sec. III A to systems
with feedback. Nevertheless, if the system with feedback
can be decomposed into a noninteracting part and an
interacting part that include the feedback, it is often still
possible to compute marginalization integrals. Below, we

sketch the steps that are necessary in order to compute
marginalization integrals for systems with feedback using
such a decomposition.
For concreteness, we discuss how to compute

P½x� ¼
Z

D½s�P½s; x� ðC5Þ

as the prototype for a marginalization integral we want to
compute. Unlike in Sec. III A, we now assume that x feeds
back onto s. Thus, we have access to the joint distribution’s
density P½s; x� but not to the marginal density P½s� or the
conditional density P½xjs�.
Formulated in the language of statistical physics, all

of the techniques of Sec. III A are estimators of the free-
energy difference ΔF ½x� ¼ F ½x� − F 0½x� between two
ensembles described by potentials U½s; x� and U0½s; x�.
Previously, for systems without feedback, we chose these
potentials to be U0½s;x�¼− lnP½s� and U½s;x�¼−lnP½s;x�
with the idea that U is the potential corresponding to
the actual system and U0 is the potential of a reference
system with known free energy. Then, by computing the
free-energy difference between the reference system and
the actual system, we could compute the marginal
probability P½x�.
However, in systems with feedback, we face a problem.

Note that the actual system is still described by the potential
U½s; x� ¼ − lnP½s; x�, even with feedback. Yet, for the
reference system described by U0½s; x�, we cannot make
the same choice as before because the previous choice
involved the marginal probability P½s�, which is not
available with feedback.
Instead, we have to find an alternative expression for

U0½s; x�. To construct a suitable reference potential, we can
use a decomposition of the full potential into three parts:

U½s; x� ¼ US½s� þ UX½x� þ ΔU½s; x�; ðC6Þ

where ΔU½s; x� describes the features of the system that
induce interaction, or correlation, between s and x. The first
two terms of the potential above, US½s� þ UX½x�, therefore
describe a noninteracting version of the system, where the
input and output are fully independent of each other. We
want to use the potential of that noninteracting version as
our expression for U0, i.e., U0½s; x� ¼ US½s� þ UX½x�. To be
able to do so, we require that the partition function
(normalization constant)

Z0½x� ¼
Z

D½s�e−U0½s;x� ðC7Þ

is known. In other words, we need to choose the decom-
position in Eq. (C6) such that the partition function
Eq. (C7) is known either analytically or numerically. If
such a decomposition is found, we can compute the
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marginal probabilityP½x� from the difference in free energy
ΔF ½x� between U and U0:

− lnP½x� ¼ F ½x� ¼ F 0½x� þ ΔF ½x�; ðC8Þ

where F 0 ¼ − lnZ0½x� is known. Because we have a
known expression for U0½s; x�, the free-energy difference
ΔF ½x� can now be computed using any of the techniques
described in Sec. III A.
As an example for finding a decomposition like Eq. (C6),

let us consider the case where the joint system of input and
output is described by a single master equation; i.e., we
have a master equation with two components: S, which
represents the input, and X, which represents the output. In
such a system, information is transmitted if there exist
transitions that change the copy number of X with a rate
that depends on the copy number of S. In terms of chemical
reactions, S → Sþ X is an example of such a transition. In
turn, this system exhibits feedback if at least one of the
transitions that change the copy number of S has a rate
that depends on X, as, for example, with the reaction
Sþ X → X. Note that with such reactions, the dynamics of
S depend on the current copy number of X, and therefore,
we cannot evolve S trajectories independently of X tra-
jectories, a consequence of feedback. Both of the reactions
S → Sþ X and Sþ X → X introduce correlations between
the S and X trajectories.
In a noninteracting system, such interactions between the

input and output must be absent. Thus, a noninteracting
version of the reaction system contains no single reaction
that involves both S and X. We now describe how we can
use that noninteracting version of the reaction system to
obtain the reference potential U0½s; x�. Since the input and
output trajectories are completely independent in the non-
interacting system, we can express the joint distribution’s
probability density as the product of the individual com-
ponent’s trajectory densities, P0½s; x� ¼ P0½s�P0½x�. Note
that P0½s� and P0½x� should not be confused with the
marginal probabilities P½s� and P½x� of the interacting
version of the reaction system, which must be computed
using a marginalization integral. Since in the noninteracting
version both S and X obey independent dynamics that are
characterized by individual master equations, both P0½s�
and P0½x� can be individually computed using Eq. (13).
Thus, in this case, the noninteracting potential is U0½s; x� ¼
− lnP0½s� − lnP0½x�, and since the probability densities
P0½s� and P0½x� are normalized, the corresponding partition
function is Z0 ¼ 1. Hence, for this reaction system, we can
straightforwardly define a noninteracting version that can
be used to obtain the reference potential U0½s; x�. Using
the techniques described in Sec. III A, we can then compute
the free-energy difference between U0½s; x� and U½s; x� ¼
− lnP½s; x�, where the latter potential describes the dynam-
ics of the fully interacting system. Specifically, we can
compute the marginal probabilities P½s�, P½x� pertaining to

the interacting system, which are required for the mutual
information estimate in Eq. (C2).
In summary, for systems with feedback, we can compute

marginalization integrals by specifying a reference poten-
tial U0½s; x� by finding a noninteracting version of the
system. However, barring a decomposition into interacting
and noninteracting potentials, there is generally no unam-
biguous choice of the reference potential U0½s; x� to
compute the marginal probability P½x�. Still, if a suitable
expression for U0½s; x� can be found, we can make use of
the techniques developed in Sec. III A to compute marginal
probability P½x�. Thus, the specific choice of U0½s; x� is
system specific.

APPENDIX D: STOCHASTIC
CHEMOTAXIS MODEL

We developed a stochastic chemotaxis model that
describes individual reactions using a master equation
framework. In our model, receptors are organized in clusters.
To each cluster, we assign a probability of being active that
depends on the ligand concentration. Additionally, we
explicitly model the methylation and demethylation events
of each receptor which affect the activity of a cluster. The
cluster activity, in turn, determines its ability to phospho-
rylate the protein CheY. Phosphorylated CheY binds to the
molecular motors driving the flagella, which alter the cell’s
tumbling rate. However, we do not model this downstream
effect in our model.

1. MWC model

Receptors are organized in clusters on the cell surface.
In our model, each cluster consists of N receptors. The
ligand binding dynamics to a cluster is cooperative, and in
the spirit of the Monod-Wyman-Changeux (MWC) model
[79,108], we model this cooperativity by coupling the
ligand binding dynamics to conformational switching
dynamics of the receptors. Moreover, the energetic cost
of two receptors in the same cluster being in different
conformational states is prohibitively large. Thus, all
receptors within a cluster of size N switch conformations
in concert, so we can meaningfully speak of an active or an
inactive cluster. A typical value for the cluster size is
reported to be N ¼ 6 by Shimizu et al. [80]. Detailed
balance requires that the ligand binding affinity depends on
whether a cluster is in the active or inactive state.
Consequently, we have a dissociation constant Ka for a
ligand bound to an active receptor and another dissociation
constant Ki for a ligand bound to an inactive receptor. For
chemotaxis, Ka ≫ Ki; i.e., the ligand binding affinity is
higher for the inactive state.
Additionally, each receptor monomer has M methylation

sites that can affect its conformation and therefore the kinase
activity. The aspartate receptor Tar has M ¼ 4 methylation
sites [80]. Methyl groups can be attached to a receptor by the
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protein CheR and are removed by the protein CheB. We
model the receptors’ methylation dynamics following the
model of Barkai and Leibler [75], where CheB can only
demethylate active receptors. Additionally, to ensure exact
adaptation, in our model, CheR can only attach methyl
groups to inactive receptors, as in Ref. [109].
In an environment with ligand concentration c, the

probability of a receptor cluster with m methylated sites
to be active, paðc;mÞ, is determined by the free-energy
difference between the active and inactive receptor states,

paðc;mÞ ¼ 1

1þ e−fðc;mÞ ; ðD1Þ

where

fðc;mÞ ¼ N ln

�
1þ c=Ki

1þ c=Ka

�
þ δfmðm −m0Þ: ðD2Þ

Here, the number of methylated sites of a cluster (not
receptor) is denoted by m, ranging from 0 to NM. The
parameters are again taken from Shimizu et al. [80].
Their experimental results indicate that δfm ¼ −2kBT;
m0 ¼ −N=2. Kamino et al. [81] report ligand dissociation
constants of Ka ¼ 2900 μM for active receptors and Ki ¼
18 μM for inactive Tar receptors (for MeASP). Note that, in
the equations, we assume units such that kBT ¼ 1.
The dynamics of methylation in our model are described

by the following mean-field equation:

dm
dt

¼ (1 − paðc;mÞ)kR − paðc;mÞkB: ðD3Þ

The system reaches a steady state for the adapted activity
paðc;mÞ ¼ a0, where

a0 ¼
kR

kR þ kB
: ðD4Þ

The steady-state methylation m⋆ can be obtained from
Eqs. (D1) and (D2) by solving paðc;m⋆Þ ¼ a0:

m⋆ ¼ m0 þ
N ln

�
1þc=Ki
1þc=Ka

�
þ ln

�
1−a0
a0

�
−δfm

: ðD5Þ

To characterize the methylation timescale, we
linearize the dynamics of mðtÞ around the steady state
[at constant ligand concentration cðtÞ ¼ c0]. To first order,
we can write

dm
dt

¼ −
mðtÞ −m⋆

τm
; ðD6Þ

where τm is the characteristic timescale of the methylation
dynamics. We find τm by expanding pa [Eq. (D1)] around
m ¼ m⋆:

paðc;mÞ ¼ paðc;m⋆Þ þ ∂pa

∂m

����
m⋆
ðm −m⋆Þ þOðm2Þ

¼ a0½1 − δfmð1 − a0Þðm −m⋆Þ� þOðm2Þ;
ðD7Þ

TABLE II. Parameters required for the chemotaxis model, based on literature values. These are the parameters used in the so-called
literature-based model. In the fitted model (see main text), the same parameter values are chosen, except for N ¼ 15 and Nc ¼ 9, which
were obtained by fitting to the data of Mattingly et al. [50]; we note that changing N and Nc also requires updating kA to keep the
fraction ϕY of phosphorylated CheY constant.

Parameter Value Description

av 157.1 μm2 s−2 Variance of up-gradient velocity [50]
λ 0.862 s−1 Velocity correlation decay constant [50]
c0 100 μM Mean ligand concentration

N 6 Number of receptor units per cluster [80]
Nc 400 Number of receptor clusters [82]
M 4 Number of methylation sites per receptor [80]
NY 10 000 Total copy number of CheY proteins (phosphorylated and unphosphorylated) [82]

Ka 2900 μM Ligand dissociation constant of active receptors [81]
Ki 18 μM Ligand dissociation constant of inactive receptors [81]

kR 0.1 s−1 Methylation rate [50,80]
kB 0.2 s−1 Demethylation rate [50,80]
kA 0.015 s−1 Phosphorylation rate [83,84]
kZ 10.0 s−1 Dephosphorylation rate [83,84]
ϕY 0.17 Steady-state fraction of phosphorylated CheY [83]

m0=N 0.5 Receptor methylation level at zero ligand concentration [80]
δfm −2.0 kBT Free energy change of active conformation from attachment of one methyl group [80]
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and then plugging this first-order expansion into Eq. (D3),
we get

dm
dt

¼ δfmðm −m⋆Þ
k−1R þ k−1B

: ðD8Þ

Thus, we find that for small perturbations, the timescale for
methylation to approach the steady state is given by

τm ¼ k−1R þ k−1B
−δfm

: ðD9Þ

Thus, the parameters kR and kR control two important
characteristics of the methylation system: the adapted
activity a0 and the methylation timescale τm. Shimizu
et al. [80] report an adapted activity of a0 ¼ 1=3, and
based on experimental data [50,80], we assume a methyla-
tion timescale of τm ¼ 10 s. Our parameter choice,
which is consistent with both of these observations, is
kR ¼ 0.075 s−1 and kB ¼ 0.15 s−1.
CheY is phosphorylated by CheA, the receptor-

associated kinase. The kinase activity is directly linked
to the activity of a receptor cluster. Therefore, we assume
that CheY is phosphorylated by active receptor clusters.
Dephosphorylation of CheY-p is catalyzed by the phos-
phatase CheZ, which we assume to be present at a constant
concentration. The CheZ-catalyzed dephosphorylation
rate was reported to be 2.2 s−1 for an attractant response
and 22 s−1 for a repellent response [84]. Based on these
data, we use the approximate dephosphorylation rate
kZ ¼ 10 s−1 in our model. In the fully adapted state, the
fraction of active receptors is a0, and therefore, the mean
fraction of phosphorylated CheY, ϕY¼½CheYp�=ð½CheY�þ
½CheYp�Þ, is given by

ϕY ¼ a0NckA
kZ þ a0NckA

: ðD10Þ

In the fully adapted state, the phosphorylated fraction was
found to be ϕY ≈ 0.16 [83]. Hence, we infer a phospho-
rylation rate of kA ¼ kZϕY=(a0Ncð1 − ϕYÞ) ¼ 0.015 s−1
for the literature-based model. Accordingly, for the “fitted”
model, based on fitting KðtÞ and NðtÞ to those measured by
Mattingly et al. [50], we use a larger phosphorylation rate
due to the smaller number of clusters, Nc.

2. Reaction kinetics

Since the timescale of conformational switching of
active and inactive receptors and ligand binding is much
faster [110] than the timescale of phosphorylation or
methylation, we do not explicitly model ligand (un)binding
and conformational switching. Each cluster is characterized
by its methylation state m. This ranges from 0 to the total
number of methylation sites, which equals the number of
sites per receptor M times the number of receptors per

cluster N. In our Gillespie simulation, each possible state of
a cluster is its own species; i.e., we have species Cm for
m ¼ 0;…; NM. Overall, our chemotaxis model consists
of four types of reactions that describe (a) the methylation
of a receptor Cm → Cmþ1, (b) the demethylation of a
receptor Cm → Cm−1, (c) the phosphorylation of CheY
Cm þ Y → Cm þ Yp, and (d) the single dephosphorylation
reaction Yp → Y. Thus, because of the combinatorial
explosion of receptor states, the system has a total number
of 3NM þ 2 elementary reactions (which amounts to 75
reactions in the literature-based model and 182 reactions in
the fitted model).
The ligand-concentration-dependent methylation rate

for Cm → Cmþ1 is given by

kmþðc;mÞ ¼ (1 − paðc;mÞ)kR: ðD11Þ

The term 1 − paðc;mÞ is needed because only inactive
receptors can be methylated. The demethylation rate for
Cm → Cm−1 is given by

km−ðc;mÞ ¼ paðc;mÞkB; ðD12Þ

where only active receptors can be demethylated. These
zero-order dynamics of (de)methylation of receptors lead
to the adaptive behavior of the chemotaxis system as
described above.
Similarly, only active receptors can phosphorylate

the CheY protein using the receptor-associated kinase
CheA; therefore, we model phosphorylation as a reaction
Cm þ Y → Cm þ Yp with propensity

kY→Yp
ðc;mÞ ¼ paðc;mÞkA; ðD13Þ

where kA is a constant that represents the phosphorylation
rate of an active cluster. The dephosphorylation Yp → Y
is carried out by the phosphatase CheZ at a constant rate
kZ ¼ 10 s−1.

APPENDIX E: STOCHASTIC DYNAMICS OF
THE INPUT SIGNAL FOR CHEMOTAXIS

We assume an Escherichia coli bacterium is swimming
in a static nutrient concentration gradient cðxÞ. Following
Mattingly et al. [50], an exponential gradient cðxÞ ¼ c0egx

with gradient steepness g is assumed.
In a shallow gradient, the speed vxðtÞ of E. coli along the

gradient axis can be considered as a stochastic process
that fluctuates around the net chemotactic drift velocity.
Following Mattingly et al. [50], we assume that in a shallow
gradient, the bacterial swimming dynamics are, to a good
approximation, the same as in the absence of a gradient.
Their experimental evidence shows that the velocity fluctu-
ations in the absence of a gradient are described by an
exponentially decaying autocorrelation function:
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VðtÞ ¼ hvxð0ÞvxðtÞi ¼ ave−λjtj: ðE1Þ

Therefore, in a shallow gradient, the gradient-climbing speed
can be modeled as a zero-mean Ornstein-Uhlenbeck process

dvx
dt

¼ −λvx þ σξðtÞ; ðE2Þ

where σ ¼ ffiffiffiffiffiffiffiffiffiffi
2avλ

p
, and ξðtÞ is white noise with

hξðtÞξðt0Þi ¼ δðt − t0Þ. The x position of the bacterium is
given by the integral of the velocity, i.e., xðtÞ ¼ R

t
0 dτvxðτÞ.

Thus, when projected onto the gradient axis, the bacterium
performs a 1D random walk described by the Langevin
equation

d2x
dt2

¼ −λ
dx
dt

þ σξðtÞ: ðE3Þ

Since the bacterium moves in a static concentration
gradient described by cðxÞ, the concentration dynamics
that the cell observes are generated directly from its own
movement dynamics. At time t, the cell is at position xðtÞ
and thus measures the concentration cðtÞ ¼ c(xðtÞ). We
find the stochastic dynamics of c by differentiating using
the chain rule

dc
dt

¼ ∂c
∂x

∂x
∂t

¼ gcðtÞvxðtÞ: ðE4Þ

The concentration dynamics are thus fully determined by
the stochastic dynamics of the cell’s swimming velocity
vxðtÞ in the absence of a gradient and by the shape of the
concentration gradient cðxÞ.
In the PWS simulations, we use cðtÞ directly as the input

to our system. Yet, for the Gaussian approximation, we
need to use a different input signal because the chemotaxis
system does not respond linearly to cðtÞ. Instead, Mattingly
et al. [50] show that the chemotaxis system responds
approximately linearly to an input sðtÞ defined by

sðtÞ ¼ d
dt

ln cðtÞ ¼ gvxðtÞ: ðE5Þ

The correlation function of sðtÞ is given by

CssðtÞ ¼ hsðτÞsðtþ τÞi ¼ g2VðtÞ: ðE6Þ

The power spectral density of this signal is given by the
Fourier transform of its correlation function:

PssðωÞ ¼ g2VðωÞ ¼ g2
2avλ

ω2 þ λ2
: ðE7Þ

We use this same input below in Appendix F to
compute the Gaussian approximation of the mutual
information rate. As discussed in more detail in the main

text, we note that the mutual information between the
output and the input trajectory cðtÞ, as measured in the
PWS simulations, is identical to that between the output
and the input trajectory sðtÞ, as computed in the Gaussian
model because of the deterministic and monotonic map-
ping between cðtÞ and sðtÞ.

APPENDIX F: MUTUAL INFORMATION RATE
FOR THE GAUSSIAN CHEMOTAXIS SYSTEM

In Ref. [111], it is shown that the mutual information for
a discrete-time Gaussian system can be computed using

IðS;XÞ ¼ 1

2
ln
�jΣssjjΣxxj

jZj
�
; ðF1Þ

with

Z ¼
�Σss Σxs

Σsx Σxx

�
: ðF2Þ

Here, Σss and Σxx are the (auto)covariance matrices of the
input and the output, respectively, whereas Σsx and Σxs
contain the cross-covariances. The matrix elements are thus
given by Σij

αβ ¼ hαðtiÞβðtjÞi ¼ Cαβðti − tjÞ, where CαβðtÞ
denotes the (cross-)correlation functions of the system’s
input and output variables.
In continuous time, the information transmission rate

RðS;XÞ of a Gaussian system in a steady state can be
computed exactly from the spectral density functions of the
system:

RðS;XÞ ¼ −
1

4π

Z
∞

−∞
dω ln

�
1 −

jPsxðωÞj2
PssðωÞPxxðωÞ

�
: ðF3Þ

Here, the power spectral density PαβðωÞ is the Fourier
transform of CαβðtÞ, defined as

PαβðωÞ ¼
Z

∞

−∞
dte−iωtCαβðtÞ: ðF4Þ

The information rate in the Gaussian framework can thus
be computed by obtaining the required (cross-)correlation
functions. In their experiments with E. coli bacteria,
Mattingly et al. [50] do not obtain these correlation functions
directly, however. Instead, they obtain three kernels, VðtÞ,
KðtÞ, and NðtÞ, from which the correlation functions can be
inferred. We proceed by discussing the three kernels
individually.
First, VðtÞ denotes the autocorrelation function of the

swimmingvelocity of bacteria, i.e.,VðtÞ ¼ hvxðτÞvxðτ þ tÞi.
As explained in Appendix E, the swimming dynamics of
the bacteria determine the statistics of the input signal
sðtÞ ¼ ðd=dtÞ ln cðtÞ, where cðtÞ is the ligand concentration
as experienced by the bacterium and g is the gradient
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steepness. The input signal correlation function, denoted by
CssðtÞ, can then be expressed as CssðtÞ ¼ g2VðtÞ.
The response kernel, denoted by KðtÞ, represents the

time evolution of the average activity of the receptors in
response to an instantaneous step change in the input
concentration. More precisely, KðtÞ is defined as

KðtÞ ¼ θðtÞhaðtÞ − a0i ln
cs
c0

; ðF5Þ

where we assume the input concentration jumps instanta-
neously from c0 to cs at time t ¼ 0. Note that θðtÞ is the
Heaviside step function. Because the signal sðtÞ is defined
as the time derivative of the concentration cðtÞ, a step
change in cðtÞ corresponds to a delta impulse in sðtÞ. Thus,
KðtÞ describes the deterministic dynamics of the system
after being subjected to a unit stimulus sðtÞ ¼ δðtÞ; i.e.,
KðtÞ is the Green’s function of the system. The stochastic
response aðtÞ to an arbitrary time-dependent signal sðtÞ can
be written as a convolution of KðtÞ with sðtÞ,

aðtÞ ¼ a0 þ
Z

t

−∞
dt0Kðt − t0Þsðt0Þ þ ηaðtÞ; ðF6Þ

where ηaðtÞ is the receptor activity noise. We define the
response xðtÞ ¼ aðtÞ − a0. Assuming the input statistics

are stationary and described by the correlation function
CssðtÞ, it is easy to show that the cross-correlation between
sðtÞ and xðtÞ is given by

CsxðtÞ ¼ hsðτÞxðτ þ tÞi ¼
Z

t

−∞
dt0Kðt − t0ÞCssðt0Þ: ðF7Þ

In other words, the cross-correlation between sðtÞ and xðtÞ
is given by the convolution of the response kernel with the
input correlation function.
The noise kernel NðtÞ describes the autocorrelation of

the activity fluctuations in the absence of an input stimulus.
In particular, NðtÞ ¼ hxðτÞxðτ þ tÞi ¼ hηaðτÞηaðτ þ tÞi,
where we assume that sðtÞ ¼ 0.
We now rewrite Eq. (F3) for the mutual information

rate in terms of the three kernels described above. Thus,
we need to express the power spectra PαβðωÞ in terms of the
Fourier-transformed kernels VðωÞ, KðωÞ, and NðωÞ. In
Appendix E, we already showed that PssðωÞ ¼ g2VðωÞ.
The cross-power spectrum is given by PsxðωÞ ¼
KðωÞPssðωÞ, which follows from Eq. (F7). Finally, from
Ref. [6], we use the identity PxxðωÞ ¼ PssðωÞjKðωÞj2 þ
NðωÞ to express the output power spectrum.We insert these
expressions into Eq. (F3), which yields

FIG. 8. Fourier representation of the kernels for computing the information transmission rate in the Gaussian approximation, the
velocity power spectrum VðωÞ [units ðmms−1Þ2], the squared frequency response jKðωÞj2, and the noise power spectrumNðωÞ. The top-
left panel shows the individual Fourier kernels as a function of frequency ω for the different models. In the top-right panel, the
normalized kernels are shown with linear axis scales. In the bottom panels, the integrand for computing the mutual information rate in
the Gaussian approximation is shown. In the bottom-right panel, the area under the curves represents the proportionality between the
squared gradient steepness g2 and the information rate (units bit s−1 mm). In the bottom-left plot, the integrand is multiplied by ω; thus,
with log scaling of the axes, the area under the curve is equal to the integral.
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RðS;XÞ ¼ 1

4π

Z
∞

−∞
dω ln

�
1þ g2VðωÞjKðωÞj2

NðωÞ
�
: ðF8Þ

Then, for shallow gradients, we can make a Taylor
approximation to obtain

RðS;XÞ ¼ g2

4π

Z
∞

−∞
dω

VðωÞjKðωÞj2
NðωÞ þOðg4Þ: ðF9Þ

This result shows that the information rate in shallow
gradients is proportional to g2 and the proportionality
constant is determined by the measured kernels. Mattingly
et al. [50] obtain the relevant kernels VðωÞ,KðωÞ, andNðωÞ
from experiments by fitting phenomenological models to
their single-cell data. How we obtain these kernels for our
chemotaxis model is described in Appendix G.
Figure 8 shows the Fourier representations of the

relevant kernels, VðωÞ, KðωÞ, and NðωÞ. We computed
these kernels for the three different systems: the literature-
based model, the fitted model, and the experimental system
of Mattingly et al. [50]. Because the kernels are different,
so are the Gaussian information rates that we obtain. The
results are shown and discussed in the main text.

APPENDIX G: QUANTITATIVE COMPARISON
WITH EXPERIMENTS

We wanted to test whether our theoretical model
(“literature-based model”) reproduces the behavior of the
experimental system studied by Mattingly et al. [50]. To do
so, we measured the same kernels for our model as were
measured experimentally. Indeed, the simulation protocol
we used for measuring the kernels was directly modeled
after the experimental protocol [50].

1. Measuring the response kernel

To compute the response kernel, we record the response
of our chemotaxis model to a step input. To do this, we first
adapt the system to the ligand concentration c0 ¼ 100 μM
for t0 ¼ 50 s and then instantaneously increase the con-
centration from c0 to cs ¼ c0 þ 0.1c0. We then record the
response of the system in the 200 s following this step
increase at a time resolution of 0.01 s. Note that we do not
directly obtain the average receptor activity aðtÞ from the
simulations. Since in the PWS simulations we compute the
mutual information between the ligand trajectory cðtÞ and
the output trajectory of the phosphorylated CheY, ypðtÞ, we
estimate aðtÞ from the phosphorylation level of CheY.
Specifically, we record the fraction fðtÞ between phospho-
rylated and unphosphorylated CheY, i.e., fðtÞ ¼ ½Yp�=½Y�.
This fraction serves as a proxy for the activity aðtÞ. Indeed,
because the copy number of CheY is relatively large, we
can estimate the activity as

aðtÞ ¼ kZ
kANc

fðtÞ: ðG1Þ

We then obtain an estimate for the response kernel KðtÞ ¼
lnðcs=c0Þhaðt − t0Þ − aðt0Þi by averaging the recorded
activity traces over 105 recorded trajectories.

2. Output noise statistics

We can similarly obtain the noise statistics of the output
from simulations of our chemotaxis model. In this case,
we stochastically evolve the chemotaxis model at constant
ligand concentration c0 ¼ 100 μM for a very long time of
1 × 104 s. The result is a time trace of the activity aðtÞ,
which we again obtain from the fraction fðtÞ using
Eq. (G1). We discretize this time trace at a resolution of
0.01 s. This results in a time series a ¼ ða1;…; aNÞT ,
where ai ¼ aðtiÞ. To estimate the correlations in the
time series, we subtract the mean activity from each data
point and thus obtain the data vector x, where
xi ¼ ai −

P
N
j¼1 aj=N. From x, we estimate the autocorre-

lation function CxxðtÞ ¼ hxðτÞxðτ þ tÞi of the activity. To
obtain precise results, we average the correlation function
for 105 trajectories.

3. Obtaining the Fourier kernels using the FFT

To compute the Gaussian information rate, we need the
frequency-space representations of the kernels VðtÞ, KðtÞ,
andNðtÞ. We already derived the analytical form of VðωÞ in
Appendix E. We obtain KðωÞ and NðωÞ numerically via
a discrete Fourier transform of the corresponding
measured kernel.
As explained above, we compute time-discretized ker-

nels Ki ¼ KðtiÞ and Ni ¼ NðtiÞ from time traces obtained
via stochastic simulations of our model. We take samples at
times t0;…; tN−1 at a sampling frequency of fs ¼ 100 s−1.
Then, we use the discrete Fourier transform (DFT) to obtain
approximations for KðωÞ and NðωÞ as follows. The DFT
coefficients K̃k of the time discrete response kernel are
given by

K̃k ¼
XN−1

n¼0

Kne−i2πnk=N; ðG2Þ

where k ¼ 0; 1;…; N − 1. These DFT coefficients can be
computed efficiently using the fast Fourier transform (FFT)
algorithm. The DFT provides point estimates for the
Fourier-domain kernel KðωÞ at discrete frequencies

ωk ¼
2πfsk
N

; k ¼ 0; 1;…; N − 1; ðG3Þ

i.e., KðωkÞ ≈ K̃k. This approximation introduces some
level of error, known as spectral leakage, due to the finite
duration and sampling of the signal. This error can be
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reduced by multiplying the time-domain kernel with a
window function. Thus, we multiply the kernel with a
Hanning window, which is a smooth function that tapers at
the edges of the kernel, reducing the effect of disconti-
nuities at the beginning and end of the time series. The
Hanning window is defined as

hn ¼
1

2

�
1 − cos

�
2πn
N − 1

��
; n ¼ 0; 1;…; N − 1: ðG4Þ

The windowed kernel kn is obtained by multiplying the
time-domain kernel Kn with the Hanning window hn:

kn ¼ Knhn; n ¼ 0; 1;…; N − 1: ðG5Þ

Using the FFT algorithm, we then compute the DFT
coefficients k̃k of the windowed kernel.
The procedure described above to obtain the DFT

coefficients k̃k from KðtÞ is applied to NðtÞ as well to
obtain the coefficients ñk. We can then evaluate the
information rate using Eq. (F9) by discretizing the integralR
dωFðωÞ → P

k ΔωFðωkÞ with Δω ¼ 2πfs=N. More
precisely, we compute the Gaussian information rate as

RðS;XÞ ¼ g2

4π

XN−1

k¼0

Δω
VðωkÞjk̃kj2

ñk
: ðG6Þ

APPENDIX H: PWS ESTIMATE FOR THE
FITTED CHEMOTAXIS MODEL

In the main text, we described that a chemotaxis model
with Nc ¼ 9 receptor clusters, each containing N ¼ 15

receptors, matches the experimental kernels of Mattingly
et al. [50]. We then computed the information rate for this
model using both the exact PWS method and a Gaussian
approximation. How the rate in the Gaussian model is
computed is described in Appendix F. Here, we briefly
describe how we compute the exact rate using PWS.
While, in principle, the rate could be computed directly

via PWS for the model with Nc ¼ 9 and N ¼ 15, the
receptor activity noise was so large that obtaining this
estimate directly in a single PWS simulation proved to be
inefficient. Instead, we computed the rate via an extrapo-
lation procedure. In particular, we computed the rate for a
series of models with N ¼ 15, yet with Nc decreasing from
400 to 50. The rate for the model of interest, with N ¼ 15
and Nc ¼ 9, was then obtained by fitting these data to a
simple polynomial and then extrapolating to Nc ¼ 9.
In Fig. 9, we show the information rate for a range

of values of Nc, and for different gradient steepness g.
We see that the information rate increases nonlinearly with
the number Nc of independent clusters. Based on the
assumption that the information rate is zero in the limit
Nc → 0, we fit a quadratic function RðNcÞ ¼ aNc − bN2

c

FIG. 9. Information rate as a function of the number of receptor clusters Nc. The cluster size is fixed at N ¼ 15. The left panel shows
the increase of information rate as a function of gradient steepness for different values of Nc, including a line for the experimental data
from Mattingly et al. [50]. The right panel shows the same data but highlights the increase of the information rate when increasing the
number of receptor clusters. A quadratic fit (shown as dotted lines) is used to extrapolate the information rate. All results were obtained
using RR-PWS.

TABLE III. Fit coefficients for the information rate as a
function of the number of clusters, Nc. These coefficients are
for a quadratic function RðNcÞ ¼ aNc − bN2

c.

g (mm−1) a (bit s−1) b (bit s−1)

0.1 0.234 × 10−3 0.160 × 10−6
0.2 0.814 × 10−3 0.598 × 10−6
0.3 1.74 × 10−3 1.77 × 10−6
0.4 2.84 × 10−3 3.39 × 10−6
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with positive coefficients a, b to the data. We provide the fit
coefficients for different gradient steepness g in Table III.
From these fits, we can obtain the extrapolated information
rates for Nc ¼ 9 that are shown in the main text.
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