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Abstract. We consider bidding games, a class of two-player zero-
sum graph games. The game proceeds as follows. Both players have
bounded budgets. A token is placed on a vertex of a graph, in each
turn the players simultaneously submit bids, and the higher bidder
moves the token, where we break bidding ties in favor of Player 1.
Player 1 wins the game iff the token visits a designated target vertex.
We consider, for the first time, poorman discrete-bidding in which the
granularity of the bids is restricted and the higher bid is paid to the
bank. Previous work either did not impose granularity restrictions or
considered Richman bidding (bids are paid to the opponent). While the
latter mechanisms are technically more accessible, the former is more
appealing from a practical standpoint. Our study focuses on threshold
budgets, which is the necessary and sufficient initial budget required
for Player 1 to ensure winning against a given Player 2 budget. We
first show existence of thresholds. In DAGs, we show that threshold
budgets can be approximated with error bounds by thresholds under
continuous-bidding and that they exhibit a periodic behavior. We
identify closed-form solutions in special cases. We implement and
experiment with an algorithm to find threshold budgets.

1 Introduction

Two-player zero-sum graph games are a fundamental model with
numerous applications, e.g., in reactive synthesis [23] and multi-
agent systems [2]. A graph game is played on a finite directed graph
as follows. A token is placed on a vertex, and the players move
it throughout the graph. We consider reachability games in which
Player 1 wins iff the token visits a designated target vertex. Traditional
graph games are turn-based: the players alternate turns in moving
the token. We consider bidding games [17, 16] in which an “auction”
(bidding) determines which player moves the token in each turn.

Several concrete bidding mechanisms have been defined. In all
mechanisms, both players have bounded budgets. In each turn, both
players simultaneously submit bids that do not exceed their budgets,
and the higher bidder moves the token. The mechanisms differ in
three orthogonal properties. Who pays: In first-price bidding only the
winner pays the bid, whereas in all-pay bidding both players pay their
bids. Who is the recipient: In Richman bidding (named after David
Richman) payments are made to the other player, in poorman bidding
payments are made to the “bank”, i.e. the bid is lost. Restrictions on
bids: In continuous-bidding no restrictions are imposed and bids can
be arbitrarily small, whereas in discrete-bidding budgets and bids are
restricted to be integers.
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Figure 1: Player 1’s threshold budget as a function of Player 2’s initial
budget in the two intermediate vertices of the game on the left.

In this work, we study, for the first time, first-price poorman
discrete-bidding games. This combination addresses two limitations
of previously-studied models. First, most work on bidding games
focused on continuous-bidding games, where a rich mathematical
structure was identified in the form of an intriguing equivalence with
a class of stochastic games called random-turn games [22], in partic-
ular for infinite-duration games [3, 4, 5, 7]. These results, however,
rely on bidding strategies that prescribe arbitrarily small bids. Em-
ploying such strategies in practice is questionable – after all, money
is discrete. Second, discrete-bidding games have only been studied
under Richman bidding [13, 1, 10]. The advantage of Richman over
poorman bidding is that, as a rule of thumb, the former is technically
more accessible. In terms of modeling capabilities, however, while
Richman bidding is confined to so called scrip systems that provide
fairness using an internal currency, poorman bidding captures a wide
range of settings since it coincides with the popular first-price auction.

The central quantity that we focus on is the threshold budget in
a vertex, which is a necessary and sufficient budget for Player 1 to
ensure winning the game. Formally, a configuration of a bidding game
is a triple 〈v,B1, B2〉, where v denotes the vertex on which the token
is placed and Bi is Player i’s budget, for i ∈ {1, 2}. For an initial
vertex v, we call a function Tv : N → N the threshold budgets at v
if for every configuration c = 〈v,B1, B2〉, Player 1 wins from c if
B1 ≥ Tv(B2) and loses from c if B1 ≤ Tv(B2)− 1. We stress that
we focus only on pure strategies.

Example 1. Consider the game that is depicted in Fig. 1, where we
break bidding ties in favor of Player 1. In this example, we identify
the first few thresholds. In Thm. 15, we show that the thresholds in
this game are Tv1(B2) = �B2/φ	 and Tv2(B2) = �B2 · φ	, where
φ ≈ 1.618 is the golden ratio.1 First, when both budgets are 0, all
biddings result in ties, which Player 1 wins and forces the game to t.
Second, we argue that Player 1 wins from 〈v1, 0, 1〉. Indeed, Player 1
bids 0. In order to avoid losing, Player 2 must bid 1, wining the

1 We encourage the reader to read more about these two sequences in https:
//oeis.org/A000201 and https://oeis.org/A005206. See also Remark 16.
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bidding and pays the bid to the bank. Thus, the next configuration is
〈v2, 0, 0〉, from which Player 1 wins. Third, we show that Tv2(1) = 1.
Indeed, Player 2 wins from 〈v2, 0, 1〉 by bidding 1. On the other hand,
from 〈v2, 1, 1〉 Player 1 wins since by bidding 1, he forces the game
to 〈v1, 0, 1〉, from which he wins. Finally, Tv1(2) > 0 since Player 2
can force two consecutive wins when the budgets are 〈0, 2〉, and
Tv1(2) = 1 since by bidding 1, Player 1 forces Player 2 to pay at
least 2 in order not to lose immediately, and he wins from 〈v2, 1, 0〉.

Applications. In sequential first-price auctions m items are sold
sequentially in independent first-price auctions (e.g., [18, 14]). The
popularity of these auctions stems from their simplicity. Indeed, in
each round of the auction, a user is only asked to bid for the current
item on sale, whereas in combinatorial auctions, users need to provide
an exponential input: a valuation for each subset of items. Two-player
sequential auctions are a special case of bidding games played on
DAGs. Each vertex v represents an auction for an item. A path from
the root to v represents the outcomes of previous rounds, i.e., a subset
of items that Player 1 has purchased so far. For a target bundle T
of items, this modeling allows us to obtain a bidding strategy that
is guaranteed to purchase at least the bundle T no matter how the
opponent bids. Indeed, we solve the corresponding bidding game with
the Player 1 objective of reaching a vertex in which T is purchased.
We can also capture a quantitative setting in which Player 1 associates
a value with each bundle of items. Given a target value k, we set
Player 1’s target to be vertices that represent a purchased bundle of
value at least k. We can then either find the threshold budget for
obtaining value k or fix the initial budgets and optimize over k.

Next, we describe two important classes of continuous poorman-
bidding games that are technically challenging, and we argue that it
is appealing to bypass this challenge by considering their discrete-
bidding variants. Our study lays the basis for these extensions. First,
all-pay poorman bidding games constitute a dynamic version of the
well-known Colonel Blotto games [12]: we think of budgets as re-
sources with no inherent value (e.g., time or energy) and a strategy
invests the resources in order to achieve a goal. In fact, many appli-
cations of Colonel Blotto games are dynamic, thus all-pay bidding
games are arguably a more accurate model [6]. All-pay poorman
bidding games are surprisingly technically complex, e.g., already in
extremely simple games, optimal strategies rely on infinite-support
distributions, and have never been studied under discrete bidding.
Second, the study of partial-observation bidding games was initiated
recently [8]. Poorman bidding is both appealing from a theoretical and
practical standpoint but is technically complex. Again, it is appealing
to consider partial-information in combination with discrete bidding.

Finally, poorman discrete bidding are amenable to extensions such
as multi-player games or non-zero-sum games [20].

Our Contribution

Existence of thresholds. In discrete-bidding games, one needs
to explicitly state how bidding ties are resolved [1]. Throughout the
paper, we always break ties in favor of Player 1. We start by showing
existence of thresholds in every game, including games that are not
DAGs. Our techniques are adapted from [1] for Richman discrete-
bidding games. We note that existence of thresholds coincides with
determinacy: from every configuration, one of the players has a pure
winning strategy. We point out that while determinacy holds in turn-
based games for a wide range of objectives [19], determinacy of
bidding games is not immediate due to the concurrent choice of bids.
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Figure 2: The thresholds in three vertices: a root vertex whose two chil-
dren are roots of race games race(3, 5) and race(4, 5). For visibility,
the x-axis starts at 85. We also depict the lower and upper bounds we
obtain from our pipe theorem (indicated by solid lines) and highlight
two points indicating the periodicity in the root vertex.

For example, matching pennies is a very simple concurrent game that
is not determined: neither player can ensure winning.

Threshold budgets in DAGs. In continuous bidding, each vertex v
is associated with a threshold ratio which is a value t ≥ 0 such that
when the ratio between the two players’ budgets is t + ε, Player 1
wins, and when the ratio is t− ε, Player 2 wins [16].

First, we bound the discrete thresholds based on continuous ratios
as follows. Let tv denote the continuous ratio at a vertex v. Then, for
every B2 ∈ N, we show that Tv(B2) lies in the pipe: (B2−n) · tv ≤
Tv(B2) ≤ B2 · tv , where n is the number of vertices in the game. We
point out that the width of the pipe is fixed, so for large budgets B2

the value Tv(B2)/B2 tends to the threshold ratio tv .
Second, we show that threshold budgets in DAGs exhibit a periodic

behavior. While we view this as a positive result, it has a negative
angle: The periods are surprisingly complex even for fairly simple
games, so even though we identify a compact representation for the
thresholds in Example 1, we do not expect a compact representation
in general games.

Third, in continuous-bidding games, the compact representation of
the thresholds (i.e., each vertex being associated with a ratio) is the key
to obtaining a linear-time backwards-inductive algorithm to compute
thresholds in DAGs. Under discrete bidding, given a Player 2 budget
B2, we present a pseudo-linear algorithm to find T (B2), namely its
running time is linear in the size of the game and in B2.

Fourth, we obtain closed-form solutions for a class of games called
race games: for a, b ∈ N, the race game race(a, b) ends within a+ b
turns, Player 1 wins the game if he wins a biddings before Player 2
wins b biddings. For example, a “best of 7” tournament (as in the
NBA playoffs) is race(4, 4).

Example 2. We illustrate some of our main results. In Fig. 2, we
depict the threshold budgets in three vertices of a game as a function
of Player 2’s budget. First, the discrete thresholds reside in a “pipe”
with slope equal to the corresponding continuous ratio (Thm. 10).
Second, v1 and v2 are roots of race games, thus their thresholds
are simple step functions (Thm. 13). Moreover, they lie exactly on
the boundary of the pipe infinitely often, i.e. the pipe bound is tight
(Cor. 14). Third, the threshold budgets are periodic (Thm. 12), we
have Tr(B2+45) = Tr(B2)+32. We find it surprising that in such a
simple game both the periodicity in the root node and the irregularity
within this period are comparatively large.
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Implementation and Experiments. We provide a pseudo-
polynomial algorithm to find the threshold budget given the initial
budget of Player 2 in general games together with a specialized, faster
variant for DAGs. We implement the algorithm, experiment with it,
and develop conjectures based on our findings. Beyond the theoretical
interest, the running time we observed is extremely fast, illustrating
the practicality of finding exact thresholds.

2 Preliminaries

A reachability bidding game is G = 〈V,E, t, s〉, where V is the set
of vertices, E ⊆ V ×V is the set of edges, Player 1’s target is t ∈ V ,
a sink s ∈ V has no path to t and we think of s as Player 2’s target,
we assume that all other vertices have a path to both t and s. We write
N(v) = {u | (v, u) ∈ E} to denote the neighbours of v.

A configuration of G is of the form c = 〈v,B1, B2〉, where v ∈ V
is the vertex on which the token is placed and Bi is the budget of
Player i, for i ∈ {1, 2}. At c, both players simultaneously choose
actions, and the pair of actions determines the next configuration. For
i ∈ {1, 2}, Player i’s action is a pair 〈bi, ui〉, where bi ≤ Bi is an
integer bid that does not exceed the available budget and ui ∈ N(v)
is a neighbor of v to move to upon winning the bidding. If b1 ≥ b2,
then Player 1 moves the token and pays “the bank”, thus the next
configuration is 〈u1, B1 − b1, B2〉. Dually, when b2 > b1, the next
configuration is 〈u2, B1, B2 − b2〉.

A strategy is a function that maps each configuration to an ac-
tion.2 A pair of strategies σ1, σ2, and an initial configuration c0 gives
rise to a unique play denoted by play(c0, σ1, σ2), which is defined
inductively. The inductive step, namely the definition of how a config-
uration is updated given two actions from the strategies, is described
above. Let play(c0, σ1, σ2) = c0, c1, . . ., where ci = 〈vi, Bi

1, B
i
2〉.

The path that corresponds to play(c0, σ1, σ2) is v0, v1, . . .

Definition 3 (Winning Strategies). A Player 1 strategy σ1 is called
a winning strategy from configuration c0 iff for any Player 2 strategy
σ2, play(c0, σ1, σ2) visits the target t. On the other hand, a Player 2
strategy σ2 is a winning strategy from c0 iff for any Player 1 strategy
σ1, play(c0, σ1, σ2) does not visit the target t. For i ∈ {1, 2}, we say
that Player i wins from c0 if he has a winning strategy from c0.

Throughout the paper, we focus on the necessary and sufficient
budget that Player 1 needs for winning, given a Player 2 budget,
defined formally as follows.

Definition 4 (Threshold budgets). Consider a vertex v ∈ V . The
threshold budget at v is a function Tv : N → N such that for every
B2 ∈ N Player 1 wins from 〈v, Tv(B2), B2〉, and Player 2 wins from
〈v, Tv(B2)− 1, B2〉.

3 Existence of Thresholds

In this section we show the existence of threshold budgets in games
played on general graphs.

Definition 5. (Determinacy). A game is determined if from every
configuration, one of the players has a pure winning strategy.

We claim that determinacy is equivalent to existence of thresholds.
It is not hard to deduce both implications from the following observa-
tion. An additional budget cannot harm a player; namely, if Player 1

2 In full generality, strategies map histories of configurations to actions. How-
ever, positional strategies suffice for reachability games.

wins from a configuration 〈v,B1, B2〉, he also wins from 〈v,B′
1, B2〉,

for B′
1 > B1, and dually for Player 2.

In the rest of this section, we prove determinacy of poorman
discrete-bidding games. Our proof is based on a technique that
was developed in [1] to show determinacy of Richman discrete-
bidding. We illustrate the key ideas. Consider a reachability bidding
game G = 〈V,E, t, s〉 and a configuration c = 〈v,B1, B2〉. We
define a bidding matrix Mc that corresponds to c. For 〈b1, b2〉 ∈
{0, . . . , B1} × {0, . . . , B2}, the (b1, b2)

th entry in Mc is associated
with Player i bidding bi, for i ∈ {1, 2}. We label entries in Mc by
1 or 2 as follows. Let G1 denote a turn-based game that is the same
as G only that in each turn, Player 1 reveals his bid first and Player 2
responds. Technically, once both players reveal their bids, the game
proceeds to an intermediate vertex ib1,b2 = 〈b1, b2, c〉. Since G1 is
turn-based, it is determined, thus one of the players has a winning
strategy from ib1,b2 . We label the (b1, b2)th entry in Mc by i ∈ {1, 2}
iff Player i wins from ib1,b2 . For i ∈ {1, 2}, we call a row or a column
of Mc a i-row or i-column, respectively, if all its entries are labeled i.

Definition 6. (Local Determinacy) A bidding game G is called lo-
cally determined if for every configuration c, the bidding matrix Mc

either has a 1-row or a 2-column.

Local determinacy is used as follows. It can be shown that if
Player 1 wins from c, then Mc has a 1-row. More importantly, if
Player 1 does not win in c, local determinacy implies that if Player 2
bids b2 in G, corresponding to a 2-column, the game proceeds to a
configuration c′ from which Player 1 does not win. In reachability
games, since Player 2’s goal is to avoid the target, traversing non-
losing configurations for Player 2 is in fact winning.3

Lemma 7. ([1, Theorem 3.5]) If a reachability bidding game G is
locally determined, then G is determined.

Local determinacy of poorman discrete-bidding games follows
from the following observations on bidding matrices whose proof can
be found in the full version [9].

Lemma 8. Consider a poorman discrete-bidding game G where
Player 1 always wins tie, and consider a configuration c =
〈v,B1, B2〉. (1) Entries in Mc in a column above the top-left to
bottom-right diagonal are equal: for bids b2 > b1 > b′1, we have
Mc[b1, b2] = Mc[b

′
1, b2]. (2) Entries on a row, left of the diagonal

are equal: for bids b1 > b2 > b′2, we have Mc[b1, b2] = Mc[b1, b
′
2].

(3) The entry immediately under the diagonal equals the entry on the
diagonal: For a bid b, we have Mc[b, b] = Mc[b, b− 1].

The proof of [1, Theorem 4.5] shows that a game whose bidding
matrices have the properties of Lem. 8 is locally determined, irrespec-
tive of whether Richman or poorman bidding is employed. Combining
with Lem. 7, we obtain the following.

Theorem 9. Reachability poorman discrete-bidding games are de-
termined.

4 Threshold Budgets for Games on DAGs

In this section, we focus on games played on directed acyclic graphs
(DAGs). We present two main results: First, the Pipe theorem that
relates the threshold budgets to the threshold ratio in the continuous-
bidding game; and, second, the Periodicity theorem which shows that
the threshold budgets eventually exhibit a periodic behavior. Through-
out this section, let G = 〈V,E, t, s〉 be a game with 〈V,E〉 a DAG.
3 The theorem is stated for reachability objectives and it is extended in [1] to

richer objectives.
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4.1 Relating Discrete and Continuous Thresholds

We call the following theorem the Pipe theorem since it shows that
the threshold budgets Tv(B2) lie in a “pipe” below a line whose slope
is the threshold ratio tv (see Example 2). We note that threshold ratios
can be computed in DAGs in time polynomial in the size of the game
(a fact we also exploit later on in our algorithm on DAGs), thus an
immediate corollary of the Pipe theorem is an efficient approximation
algorithm to computing the threshold budgets. In Corollary 14, we
show that the lower bound is tight. For a vertex v, let max-path(v)
denote the length of the longest path from v to either t or s. Note that
max-path(v) ≤ |V | − 1.

Theorem 10 (Pipe theorem). Given v ∈ V , denote by tv the thresh-
old ratio in the continuous-bidding game at v. Then, for every initial
budget B2 ∈ N of Player 2, we have

tv · (1− max-path(v)/B2) ≤ Tv(B2)/B2 ≤ tv.

The right-hand side inequality holds even when G is not a DAG.

Proof sketch. (See the full version [9] for the detailed proof.) To
prove the right-hand side inequality, we show that if Player 1 has
initial budget of at least tv ·B2 then Player 1 can win by following a
winning strategy in the continuous-bidding game and rounding down
the bids. More formally, let σcont be a winning strategy for Player 1
under continuous-bidding when the game starts in v, Player 1’s initial
budget is at least tv ·B2, and Player 2’s initial budget is B2. We define
a Player 1 strategy σdisc as follows. Whenever σcont prescribes a pair
〈b, u〉, where b is a bid and u ∈ V is the vertex to move to upon
winning, σdisc prescribes 〈�b	, u〉.

To prove the left-hand side inequality, we show that if Player 1
has initial budget strictly less than tv · (B2 − max-path(v)) and
Player 2 has initial budget B2, then Player 2 can win by following the
winning strategy in a continuous-bidding game and rounding the bids
up. More formally, let σcont be a winning strategy for Player 2 under
continuous-bidding when the game starts in v, Player 1’s initial budget
is at most tv · (B2 − max-path(v)) and Player 2’s initial budget is
B2 − max-path(v). Suppose that σcont prescribes 〈b, u〉, then σdisc for
Player 2 prescribes 〈�b, u〉. The fact that Player 2 always has enough
budget to bid �b follows from the fact that the game necessarily ends
within max-path(v) turns.

An immediate corollary of Thm. 10 is that the ratio Tv(B2)/B2

tends to tv .

Corollary 11 (Convergence to continuous ratios). For every v ∈
V we have limB2→∞ Tv(B2)/B2 = tv .

4.2 Periodicity of Threshold Budgets

The following theorem shows that for any fixed v ∈ V the function
Tv(·) that yields the threshold budgets exhibits an eventually periodic
behavior, as seen in Example 2.

Theorem 12 (Periodicity theorem). For any vertex v ∈ V there
exist values B, ux, uy ∈ N such that for all B2 ≥ B we have
Tv(B2 + ux) = Tv(B2) + uy . Moreover, the values B, ux, uy can
be computed in polynomial time.

Proof sketch. (See the full version [9] for the detailed proof.) The
proof is by induction with respect to the topological order of the graph.
If v is a leaf, then the claim is obvious. Consider v that is not a leaf.
The proof is based on three ingredients. First, intuitively, when the

children of v have different threshold ratios then their pipes diverge.
Let v− and v+ respectively denote the children whose pipe is lowest
and highest. By Thm. 10, under discrete-bidding, for large budgets,
Player 1 and Player 2 will respectively proceed to v− and v+ upon
winning the bidding in v.

Second, we show that if v− satisfies Tv−(B2+u−
x ) = Tv−(B2)+

u−
y and v+ satisfies Tv+(B2+u+

x ) = Tv+(B2)+u+
y (both for large

enough B2), then v satisfies the same equality with ux = u−
x · (u+

x +
u+
y ) and uy = u+

y · (u−
x + u−

y ). We illustrate the idea using Fig. 3,
which depicts a configuration c = 〈v,B1, B2〉 as a point [B2, B1] in
the plane. Consider first the left image. Suppose that Player 1 bids
b from 〈v,B1, B2〉 (see point P ). The case that Player 1 wins the
bidding corresponds to “stepping down” from [B2, B1] to [B2, B1 −
b]. Note that the token moves to v−. Thus, a necessary condition
for B1 ≥ Tv(B2) is B2 − b ≥ Tv−(B2). The second case is when
Player 2 bids b + 1 and wins the bidding, which corresponds to
“stepping left” to [B2 − (b+ 1), B1], the token moves to v+, and we
obtain a second necessary condition B1 ≥ Tv+(B2 − (b+1)). Then,
given configurations on the thresholds of v− and v+ (depicted as Q
and R), the “lowest” point that satisfies both conditions is a point on
the threshold of v. The right part of Fig. 3 shows how the period of
Tv is determined by the periods of Tv+ and Tv− .

P

Q

R
dx

dy

P

Q

R
dx

dy

R′
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P ′

−→w = (wx, wy)

−→u = (ux, uy)

Tv+

Tv−

Player 2 budget

P
la
ye
r
1
b
u
d
ge
t

Figure 3: Left: Point P lies on or above Tv if and only if dx ≤ dy +1.
Right: Chaining vx + vy copies of u and ux + uy copies of v, the
situation repeats.

Third, if multiple children have the same threshold ratio, we reduce
to the previous case by using the fact that a minimum of two periodic
functions over integers is itself periodic.

This result implies that for each v ∈ V , the function Tv(·) can
be finitely represented: let B be Player 2’s budget when the period
“kicks in”, then for all B′ ≤ B, the value Tv(B

′) is stored explicitly
and these values can be extrapolated to find Tv(B

′′) for B′′ > B.
We point out that periodicity may indeed appear only “eventually”,

as illustrated by Fig. 4; namely, only at B = 7 state (2, 2) contin-
uously is an optimal choice and the periodic behaviour is observed.
Replacing race(5, 4) with race(2x+ 1, 2x) leads to quickly growing
periodicity thresholds B. Finally, we note that on non-DAGs, the
behaviour is not necessarily periodic, as illustrated by Thm. 15 below.

5 Closed-form Solutions

In this section, we show closed-form solutions for threshold budgets
in two special classes of games.

5.1 Race Games

Race games are a class of games played on DAGs. For a, b ∈ N,
the race game race(a, b) ends within a + b turns, Player 1 wins the
game if he wins a biddings before Player 2 wins b biddings. The
key property of race games that we employ is that for each vertex v
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5 10 15 20 25

(2, 2)

(5, 4)

Player 2’s budget B2

Figure 4: We consider a game comprising a root node v with two chil-
dren, which are roots to race(5,4) and race(2,2). We depict Player 1’s
winning moves: for each Player 2’s budget B2, we depict the vertex
(or vertices) that Player 1 may proceed to upon winning the bidding
at configuration 〈v, Tv(B2), B2〉.
independent of the budgets, there is a neighbor vi such that Player i
proceeds to vi upon winning the bidding at v, for i ∈ {1, 2}. The
proof of the following theorem is obtained by induction. See the full
version [9] for details and examples.

Theorem 13. Let v be the root of a race game race(a, b). Then
Tv(B2) = a · �B2/b	.

With the exact closed-form of threshold budgets for race games,
we now show that the bounds in Thm. 10 are tight.

Corollary 14. For every rational number q = n/m, there exist in-
finitely many games G with vertex v such that tv = q and for infinitely
many B the lower and upper bound of Thm. 10 actually is an equality
for some B2 > B.

Proof. Choose G = race(n,m) (or any multiple thereof) and insert
the closed form of Thm. 13. Note that in a race game max-path(v) of
the root vertex v clearly is max(n,m).

5.2 Tug-of-War games

Given an integer n ≥ 1, a tug-of-war game TOW(n) is a game
played on a chain with n + 2 nodes, namely n interior nodes and
two endpoints s and t. We develop closed-form representations of
thresholds in TOW(2) (depicted in Fig. 1) and TOW(3) (depicted
in the full version [9]). For integers k ∈ [1, n] and b ≥ 0, we denote
by tow(n, k, b) the smallest budget that Player 1 needs to win the
tug-of-war game TOW(n) at the vertex that is k steps from his target
t, when the opponent has budget b.

Theorem 15. For b ≥ 0, we have tow(2, 1, b) = �b/φ	 and
tow(2, 2, b) = �b · φ	, where φ = (

√
5 + 1)/2 ≈ 1.618 is the

golden ratio.

Proof. To simplify notation, we use the same vertex names as in
Fig. 1 and, for a Player 2 budget b, we denote by tb = tow(2, 1, b)
and ub = tow(2, 2, b), the thresholds in v1 and v2, respectively. The
core of the proof follows from the following properties of tb and ub:

1. t0 = u0 = 0
2. ub = tb + b for any b ≥ 1
3. tb = minx{max(x, ub−1−x) | 0 ≤ x ≤ b} for any b ≥ 1

Item 1 is trivial: both players bid 0, Player 1 wins ties, thus he wins
all biddings (see Example 1). For Item 2, consider the configuration
〈v2, ub, b〉. Since v2 neighbors s, it is dominant for Player 2 to bid
all her budget b. In order to avoid losing, Player 1 must bid b, and
the game proceeds to 〈v1, ub − b, b〉, thus tb = ub − b. For Item 3,
consider a configuration 〈v1, x, b〉 from which Player 1 wins, i.e.,
x ≥ tb. Note that it is dominant for Player 1 to bid his whole budget
x. In order to avoid losing, Player 2 must bid x+ 1, and proceed to

〈v2, x, b− (x+ 1)〉 from which Player 1 wins, thus x ≥ ub−(x+1),
and tb is obtained from the minimal such x.

This gives us the system of three equations with three unknowns
(for a fixed b), thus existence of an unique solution, if any. In the full
version [9], we verify that the expressions tb = � b

φ
	 and ub = �b · φ	

satisfy the equations.

Remark 16. The closed-form solution in Thm. 15 has a striking
similarity to a classic result in Combinatorial Game Theory. Wythoff
Nim is played by two players who alternate turns in removing chips
from two stacks. A configuration of the game is 〈s1, s2〉, for integers
s1 ≥ s2 ≥ 0, representing the number of chips placed on each stack.
A player has two types of actions: (1) choose a stack and remove
any k > 0 chips from that stack, i.e., proceed to 〈s1 − k, s2〉 or
〈s1, s2 − k〉, or (2) remove any k > 0 chips from both stacks, i.e.,
proceed to 〈s1 − k, s2 − k〉. The player who cannot move loses.
Wythoff [24] identified the configurations from which the first player
to move loses. Trivially, 〈0, 0〉 is losing, followed by 〈1, 2〉, 〈3, 5〉, . . ..
In general, the n-th losing configuration is 〈�n ·φ	, �n ·φ	+n〉. Note
the similarity to the thresholds in v2 and v1, which can be written
respectively as 〈�b · φ	, �b · φ	 − b〉, for b ≥ 0.

Theorem 17. For b ≥ 1 we have tow(3, 1, b) = � b−1
2

	,
tow(3, 2, b) = b− 1, and tow(3, 3, b) = 2b− 1.

Proof. We proceed similarly to the proof of Thm. 15. This time, we
need to check that the expressions

tb = �(b− 1)/2	, ub = b− 1, and vb = 2b− 1

satisfy the relations

1. t1 = u1 = 0, v1 = 1,
2. vb = ub + b for any b ≥ 2,
3. ub = minx{max{tb + x, vb−1−x} | 0 ≤ x ≤ b} for any b ≥ 2.
4. tb = minx{max{x, ub−1−x} | 0 ≤ x ≤ b} for any b ≥ 2.

This time, both Item 1 and Item 2 follow by direct substitution.
Regarding Item 3, we need to show that

b− 1 = min
x

{max{�(b− 1)/2	+ x, 2b− 3− 2x} | 0 ≤ x ≤ b}
To that end, we distinguish two cases based on the parity of b. This

analysis can be found in the full version [9].
Finally, regarding Item 4 we have ub−1−x = b− 2− x, hence the

two numbers inside the max(·) function always sum up to b−2. Here
too, we analyse by distinguishing the parity of b, and the detailed
argument can be found in the full version [9].

We note that for n ≥ 4 the situation gets surprisingly more com-
plicated. For n = 5 the threshold budgets do eventually converge to
a simple pattern, but only from around b = 4 · 103 on. In contrast,
for n ∈ {4, 6} the threshold budgets exhibit no clear pattern up until
b = 106. Moreover, while the pipe theorem Thm. 10 seems to hold
for n ≤ 5 (experimentally validated up to b = 107), it is (quickly)
violated for n ≥ 6. This suggests that a simple closed form solution
for general games is unlikely, given that these structurally similar
games behave so differently.

6 Algorithms for Threshold Budgets

In this section, we discuss an algorithmic approach to compute thresh-
old budgets. We point out that the Pipe theorem (Thm. 10) only pro-
vides an approximation for the thresholds, and periodicity (Thm. 12)
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only holds eventually, thus, in order to use it, exact thresholds need to
be computed until periodicity “kicks in”. We study the following prob-
lem: Given a game G, a vertex v in G, and a budget B2 of Player 2,
determine Tv(B2). We develop an algorithm for general games, run-
ning in time pseudo-polynomial in B2 and polynomial in |G|, and
then a specialized variant for DAGs which is pseudo-linear in B2. In
the following, we write B for an “arbitrary” Player 2 budget and B2

for the particular budget for which we want to compute Tv(B2).
As a first step, we show that poorman discrete-bidding games end

after a finite number of steps. Consider a vertex v. We define the
maximal step count, denoted StepsG(B), to be the maximal number
of steps Player 2 can delay reaching t when the initial budgets are
B and Tv(B) for Player 2 and Player 1, respectively, and Player 1
follows some winning strategy. Let StepsG(B) = maxv Tv(B). The
following lemma bounds StepsG(B).

Lemma 18. Given a budget of Tv(B2), Player 1 can ensure winning
after at most O(|V | ·B2) steps.

Proof. If Player 2 does not win a bid for |V | steps, then Player 1 can
surely move to the target t. Otherwise, Player 2 has to win at least
one bid, decreasing the budget by at least 1 every |V | steps.

We note that this is a very crude approximation, we conjecture that
actually StepsG(B) ∈ O(logB), as we explain later. However, the
existence of such a bound already motivates us to consider the step-
bounded variant of the game: Let T i

v(B) equal the minimal budget
that Player 1 needs to ensure winning from v against a budget of B in
at most i steps (or ∞ if this is not possible). By Lem. 18, T i

v(B) =
Tv(B) for some large enough i. Thus, we are interested in computing
T i
v(B) for increasing i until convergence. Let us briefly discuss simple

cases. For the target vertex, clearly Tt(B) = T i
t (B) = 0 for any

Player 2 budget B and any i. For the sink, Ts(B) = T i
s(B) = ∞, as

well as T 0
v (B) = ∞ for all non-target vertices. As it turns out, we

can compute all other values by a dynamic programming approach.
We first describe a recursive characterization of T i

v(B), which then
immediately yields our algorithm. To this end, we consider the step
operator stepB(v, f, b), which given a threshold function f (such as
T i
v(B)) and vertex v yields the outcome of placing bid b as Player 1

against a Player 2 budget B. The intuition is as follows: Suppose
f is the actual threshold required to win in every vertex. There are
two distinct cases. If Player 1 bids B, i.e. all of Player 2’s budget, a
win of the auction is guaranteed. Player 1 pays B and then naturally
moves to the “cheapest” successor, i.e. one with minimal threshold
as given by f . Otherwise, with a bid of b < B by Player 1, Player 2
could either bid 0, again leaving Player 1 to pay b and choose the best
option, or bid b + 1, i.e. Player 2 wins instead, paying the bid and
choosing the most expensive successor. The overall best choice for
Player 1 then directly is given as minimum over all sensible bids.

Definition 19. Let B a budget for Player 2 and a function f : V ×
{0, . . . , B} → N yielding a threshold for each budget (e.g. T i

v(B)).
We define stepB(v, f, B) = B +minv′∈N(v) f(v

′, B) and, for any
other bid 0 ≤ b < B, let

stepB(v, f, b) = max

{
b+minv′∈N(v) f(v

′, B)

maxv′∈N(v) f(v
′, B − (b+ 1))

Finally, stepB(v, f) = min0≤b≤BstepB(v, f, b).

Indeed, step allows us to iteratively compute T i
v as follows:

Lemma 20. For all i > 0, we have T i
v(B) = stepB(v, T

i−1
◦ ).

Proof. We proceed by induction over i. The correctness of the base
cases follows immediately. To go from step i − 1 to i, observe that
Player 1 surely never wants to bid more than B, since this bid suf-
fices to guarantee winning. Moreover, for any fixed bid b < B, the
opponent Player 2 either wants to bid 0, letting Player 1 win, or
b+ 1, claiming the win at minimal potential cost: Bidding anything
between 0 and b as Player 2 does not change the outcome, and bid-
ding more than b + 1 certainly is wasteful. By this observation, we
can immediately see that for each potential bid b between 0 and B,
stepB(v, T

i−1
◦ , b) yields the best possible outcome against an opti-

mal opponent. In particular, if Player 1 bids b but the available budget
is one smaller than stepB(v, T

i−1
◦ , b), then there exists a response

of Player 2 where Player 1 is left with less budget than T i−1
v′ (B′)

in some vertex v′ against Player 2 budget B′, which by induction
hypothesis is not sufficient.

This naturally gives rise to an iterative algorithm: Given budget
B2, we compute T i

v(B) for all vertices v and budgets 0 ≤ B ≤ B2

for increasing i until a fixpoint is reached. We briefly outline the
algorithm in the full version [9, Algorithm 1].

At first glance, evaluating stepB(v, f) requires O(B ·|N(v)|) time
– we need to consider all possible bids and go over all successors. Thus,
to compute T i

v(B) for all B ≤ B2 and vertices v takes O(B2
2 · |E|).

(By our assumption, every vertex has at least one outgoing edge,
meaning |V | ∈ O(|E|).) While the graphs (and thus |E|) we consider
typically are small, quadratic dependence on B2 is undesirable, since
we may want to compute optimal solutions for considerably large
budgets. It turns out that we can exploit some properties of T i

v(B) to
obtain speed-ups.

Theorem 21. For budget B2 of Player 2, the threshold budget can
be determined in O(StepsG(B2) ·B2 · log(B2) · |E|).
Proof. Observe that T i

v(B) is monotone in B: Winning against a
larger budget of Player 2 certainly requires the same or more re-
sources. Thus, the first expression of the maximum in Definition 19
is a (strictly) monotonically increasing function, while the second
is decreasing. Together, the step function intuitively is convex in b:
There is a “sweet spot”, bidding too much is not worth it and bidding
too little lets Player 2 gain too much. Consequently, we can determine
T i
v(B) by a binary search between 0 and B. This yields a running

time of O(logB · |N(v)|) for a fixed vertex v and budget B. In turn,
to compute a complete step, i.e. for all vertices determine T i

v(B)
for all budgets B ≤ B2, we get O(B2 · log(B2) · |E|). (Note that∑

v∈V |N(v)| = |V |.)

6.1 A Pseudo-Linear Algorithm for DAGs

Using insights of the previous section together with further observa-
tions, we can obtain tighter bounds in the case of DAGs. In particular,
by exploiting both the given topological ordering as well as the bounds
given by Thm. 10, we obtain an algorithm linear in the numerical
value of B2.

Theorem 22. For a DAG game and any budget B2 of Player 2, the
threshold budget Tv(B2) can be determined in O(B2 · log(|V |) · |E|)
steps for all vertices.

Proof sketch. (See the full version [9] for the detailed proof.)
In essence, we use four observations. First, since the game is a DAG,

we can fully compute Tv(B) for each vertex and budget 0 ≤ B ≤ B2

at once by evaluating vertices in reverse topological order. Intuitively,
each vertex only occurs at most once along any play in a DAG game.
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Figure 5: A small game where Thm. 10 is violated.

Thus, we only need to consider each vertex once. Second, we can
exploit the budget bounds given by Thm. 10 to obtain lower and upper
bounds on an optimal bid. The size of this interval as given by Thm. 10
depends on the magnitude of the continuous thresholds. Thirdly, we
rely on actually knowing these thresholds. Thus, we give a bound on
the size and computational complexity of determining them. Finally,
applying binary search to this interval, using the insights of Thm. 21,
yields the result.

7 Experiments and Conjectures

In this section, we present several experimental results which in turn
motivate conjectures for general games.

The Pipe Theorem In our experiments, we observed that Thm. 10
does not hold for all general graphs. We depict the smallest bidding
game we found where Thm. 10 is violated in Fig. 5. We note that this
game has an interesting structure: It is a “normal” tug of war game,
with a single edge added. Moreover, whenever this “gadget” is a part
of a game, the same problem arises. However, this structure is not the
only potential cause: While the pipe theorem even seems to hold for
tug of war games of up to 5 interior states (validated up to B2 = 107),
we observed that it is violated for 6 or more.

Conjectures on General Graphs Despite this apparently chaotic
behaviour, we observed that a variant of Thm. 10 seems to be satisfied
in general.

Conjecture 23. In any game and vertex v, we have that

tv ·B2 −O(logB2) ≤ Tv(B2).

Consider Fig. 6, where we plot the difference d(B) = tv ·B−Tv(B)
for a tug-of-war game with 21 states. The x-axis, i.e. Player 2’s
budget B, is scaled logarithmically. If the conjecture holds, then
d(B) ∈ O(logB), which would appear as a line on such a graph.
And indeed, we clearly see a linear “pipe”. We observed similar graphs
for all investigated games.

Based on experimental evidence, we believe that the underlying
reason is similar to the proof idea of Thm. 10, namely that for large
budgets, the actual bids do not differ too much from the continuous
behaviour.

Conjecture 24. Winning bids are proportional to the current budget
in play, i.e. for each vertex there is a ratio rv such that all winning
bis are b = rv ·B2 +O(1).

In Fig. 6 we also display optimal bids for Player 1 in relation to
Player 2’s budget. A clear linear dependence with a ratio of approxi-
mately rv ≈ 1

3
is visible.

This implies our “pipe conjecture” as follows: When bids are pro-
portional to the budget, then the total budget in play decays expo-
nentially. Thus, the length of the game is logarithmic in the available
budget, i.e. StepsG(B2) ∈ O(logB2) for a fixed game. Recall that
in Thm. 10 we prove the lower bound by arguing that Player 2 needs
a “+1” at most |V | times to compensate for rounding. With this gen-
eral step bound, we can similarly argue that this is required at most
logarithmic number of times. In other words, Player 1 can exploit the
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Figure 6: Plot of tv ·B2−Tv(B2) (logarithmic) and Player 1’s optimal
bids in state 1 of a tug-of-war with 21 states.

“rounding advantage” only logarithmically often. We also mention
that this would then put the complexity of our general algorithm at
O(B2 · log(B2) · |E|).

Implementation and Performance We implemented our algorithm
in Java (executed with OpenJDK 17) and ran it on consumer hardware
(AMD Ryzen 3600). Generation of games and visualization of results
was done using Python scripts.

While not the focus of our evaluation, we observed that our imple-
mentation can easily handle large graphs and budgets. For example,
solving a tug of war game with 20 states and B2 = 106 took around
1 minute (483 steps).

8 Conclusion

We study, for the first time, bidding games that combine poorman with
discrete bidding. On the negative side, threshold budgets in poorman
discrete-bidding games exhibit complex behavior already in simple
games, in particular in games with cycles. On the positive side, we
identify interesting structure: we prove determinacy, in DAGs, we
relate the threshold budgets with continuous ratios, and prove that
thresholds are periodic. Additionally, our implementation efficiently
computes exact solutions to non-trivial games. We particularly invite
the interested reader to explore bidding games using it, the code will
be available on demand.

Our work opens several venues for future work:
Theoretically, we left several open problems and conjectures. Be-

yond that, poorman discrete-bidding is more amendable to extensions
when compared with poorman continuous-bidding, which quickly
becomes technically challenging, or Richman discrete-bidding, which
is a rigid mechanism. For example, it is interesting to introduce into
the basic model, multi-players or complex objectives, e.g., that take
into account left over budgets [15].

Practically, poorman is more popular than Richman bidding since
it coincides with the popular first-price auction and discrete- is more
popular than continuous-bidding since most if not all practical appli-
cations employ some granularity constraints on bids. It is interesting
to develop applications based on these games. For example, to analyze
and develop bidding strategies in sequential auctions or fair allocation
of goods [11]. Further, it is interesting to study mechanism design:
synthesize an arena so that the game has guarantees (e.g., [21]).

G. Avni et al. / Reachability Poorman Discrete-Bidding Games 147



Acknowledgements

This research was supported in part by ISF grant no. 1679/21, ERC
CoG 863818 (FoRM-SMArt) and the European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska-
Curie Grant Agreement No. 665385.

References

[1] M. Aghajohari, G. Avni, and T. A. Henzinger, ‘Determinacy in discrete-
bidding infinite-duration games’, Log. Methods Comput. Sci., 17(1),
(2021).

[2] R. Alur, T. A. Henzinger, and O. Kupferman, ‘Alternating-time temporal
logic’, J. ACM, 49(5), 672–713, (2002).

[3] G. Avni, T. A. Henzinger, and V. Chonev, ‘Infinite-duration bidding
games’, J. ACM, 66(4), 31:1–31:29, (2019).

[4] G. Avni, T. A. Henzinger, and R. Ibsen-Jensen, ‘Infinite-duration
poorman-bidding games’, in Proc. 14th WINE, volume 11316 of LNCS,
pp. 21–36. Springer, (2018).

[5] G. Avni, T. A. Henzinger, and D. Zikelic, ‘Bidding mechanisms in graph
games’, J. Comput. Syst. Sci., 119, 133–144, (2021).

[6] G. Avni, R. Ibsen-Jensen, and J. Tkadlec, ‘All-pay bidding games on
graphs’, in Proc. 34th AAAI, pp. 1798–1805. AAAI Press, (2020).

[7] G. Avni, I. Jecker, and Ð. Žikelić, ‘Infinite-duration all-pay bidding
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