
Automated Verification and Control
of Infinite State Stochastic Systems

by

Ðorđe Žikelić

November, 2023

A thesis submitted to the
Graduate School

of the
Institute of Science and Technology Austria

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

Committee in charge:
Caroline J. Muller, Chair
Krishnendu Chatterjee

Petr Novotný
Thomas A. Henzinger

Andreas Podelski

The thesis of Ðorđe Žikelić, titled Automated Verification and Control of Infinite State
Stochastic Systems, is approved by:

Supervisor: Krishnendu Chatterjee, ISTA, Klosterneuburg, Austria

Signature:

Co-supervisor: Petr Novotný, Masaryk University, Brno, Czech Republic

Signature:

Committee Member: Thomas A. Henzinger, ISTA, Klosterneuburg, Austria

Signature:

Committee Member: Andreas Podelski, University of Freiburg, Freiburg, Germany

Signature:

Defense Chair: Caroline J. Muller, ISTA, Klosterneuburg, Austria

Signature:

Signed page is on file

© by Ðorđe Žikelić, November, 2023
CC BY-NC-SA 4.0 The copyright of this thesis rests with the author. Unless oth-
erwise indicated, its contents are licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License. Under this license, you may copy
and redistribute the material in any medium or format. You may also create and
distribute modified versions of the work. This is on the condition that: you credit the
author, do not use it for commercial purposes and share any derivative works under the

same license.

ISTA Thesis, ISSN: 2663-337X

ISBN: 978-3-99078-036-7

I hereby declare that this thesis is my own work and that it does not contain other
people’s work without this being so stated; this thesis does not contain my previous
work without this being stated, and the bibliography contains all the literature that I
used in writing the dissertation.

I declare that this is a true copy of my thesis, including any final revisions, as approved
by my thesis committee, and that this thesis has not been submitted for a higher degree
to any other university or institution.

I certify that any republication of materials presented in this thesis has been approved
by the relevant publishers and co-authors.

Signature:

Ðorđe Žikelić
November, 2023

Signed page is on file

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/

Abstract

Stochastic systems provide a formal framework for modelling and quantifying uncer-
tainty in systems and have been widely adopted in many application domains. Formal
verification and control of finite state stochastic systems, a subfield of formal methods
also known as probabilistic model checking, is well studied. In contrast, formal veri-
fication and control of infinite state stochastic systems have received comparatively
less attention. However, infinite state stochastic systems commonly arise in practice.
For instance, probabilistic models that contain continuous probability distributions such
as normal or uniform, or stochastic dynamical systems which are a classical model for
control under uncertainty, both give rise to infinite state systems.

The goal of this thesis is to contribute to laying theoretical and algorithmic foundations
of fully automated formal verification and control of infinite state stochastic systems,
with a particular focus on systems that may be executed over a long or infinite time.
We consider formal verification of infinite state stochastic systems in the setting of
static analysis of probabilistic programs and formal control in the setting of controller
synthesis in stochastic dynamical systems. For both problems, we present some of the
first fully automated methods for probabilistic (a.k.a. quantitative) reachability and
safety analysis applicable to infinite time horizon systems. We also advance the state
of the art of probability 1 (a.k.a. qualitative) reachability analysis for both problems.
Finally, for formal controller synthesis in stochastic dynamical systems, we present a
novel framework for learning neural network control policies in stochastic dynamical
systems with formal guarantees on correctness with respect to quantitative reachability,
safety or reach-avoid specifications.

vii

Acknowledgements

I would like to begin by thanking my advisor Krishnendu Chatterjee. He provided
me with an opportunity to develop my research interests, gave me a great amount of
freedom to pursue my ideas and believed in my ability to execute them, while constantly
being available to provide invaluable research guidance. All of that in a very enjoyable
working environment. I am also deeply grateful for all the career advice, job interview
preparation tips and help with other aspects of professional life. The same amount of
gratitude goes to Petr Novotný, who was equally supportive and available to provide
guidance throughout my doctoral studies. Even though we were based in different
places, he ensured that it did not present much of an obstacle and we regularly visited
each other in Brno and in Vienna. It was a privilege to be advised by Krish and Petr.

I owe a similar level of gratitude to Thomas A. Henzinger, who had a significant role in
my PhD studies. Tom was extremely supportive of my work and was always available
to provide research guidance and career advice. His support had instrumental role in
my decision to pursue an academic career following the doctoral studies. Furthermore, I
would like to thank Andreas Podelski for being a part of my thesis committee, Caroline
J. Muller for chairing my thesis defense and Edouard Hannezo for chairing my qualifying
exam.

During my doctoral studies, I was fortunate to meet and collaborate with many talented
researchers. Two people that I worked with the most and that I would particularly
like to thank are Mathias Lechner and Guy Avni. Mathias and I have spent countless
hours brainstorming, writing papers, chasing deadlines and have become great friends
in the process. Of all the collaborations, my interaction with Mathias has had the
most significant impact on my development as a researcher. My collaboration with Guy
started while I was working on a rotation project in Tom’s group. Ever since, I have
learned a lot from Guy, both about game theory as well as non-scientific aspects of
academic life. I am grateful to Mathias and Guy and hope that we continue working
together in the future.

I also thank all my other collaborators, working with whom has been an absolute
pleasure: S Akshay, Ali Asadi, Amir Kafshdar Goharshady, Ehsan Kafshdar Goharshady,

viii

Ismaël Jecker, Mehrdad Karrabi, Tobias Meggendorfer, Andreas Pavlogiannis, Jakub
Svoboda, Josef Tkadlec and Abhinav Verma. During my PhD, I had the opportunity
to supervise three very talented interns: Matin Ansaripour, Amirali Ebrahim-zadeh and
Roodabeh Safavi. I am also grateful to all other members of Krish’s and Tom’s groups
with whom I have shared a very enjoyable working environment over the past five
years. Finally, I would like to thank Ksenja Harpprecht and Elisabeth Hacker for all the
administrative support and especially for ensuring that my research travel organization
was always a smooth experience.

During my PhD studies, I completed two applied scientist internships with the Prime
Video Automated Reasoning team at Amazon in London, UK. Both internships were
amazing experiences from which I have learned a lot. I would like to thank Pauline
Bolignano, Bor-Yuh Evan Chang and Franco Raimondi for mentoring and managing me
(or both) and all the members of the Prime Video Automated Reasoning team for a
truly amazing and welcoming environment.

I also thank Viktor Kunčak and Anna Lukina for inviting me to visit their groups at
EPFL and TU Delft, respectively.

During my time at ISTA, I have made some good friends without whom these five years
in Austria would not have been such an enjoyable experience. Thank you Guille, Alex,
Catalin, Linda, Sarath, Sebastiano, Marko, David, Peđa, Dario, Mariano, Elizabeth,
Martin, Bryan and Suyash. As my friends and colleagues in Vienna may have noticed,
and I doubt they haven’t, I maintain it a priority to regularly and frequently visit my
home town Belgrade. And while there are many dear people back at home that I am
highly fond of, special thanks go to Ivan, Miloš, Miloš, Marko, Nenad, Luka, Danilo,
Vlada, Miloš, Isidora and Ðorđe. They have all known me for many years and neither
time nor physical distance has affected our friendships. Thank you everyone.

In the hope that my friends in Vienna will not be offended by this statement, the most
important person that I have met here is Michelle. I moved to Vienna with the intention
to do a great PhD, but I’ve also found something more important. She has been a
constant source of support and kindness. It is only appropriate that we also graduate
together.

Finally, I would like to thank my parents Snežana and Nenad for their unconditional
love, support and care. This thesis is dedicated to them.

Funding sources. This work was supported in part by the ERC CoG 863818 (FoRM-
SMArt) and the European Union’s Horizon 2020 research and innovation programme
under the Marie Skłodowska-Curie Grant Agreement No. 665385.

ix

About the Author

Ðorđe Žikelić obtained bachelor’s and master’s degrees in mathematics at the University
of Cambridge before joining ISTA in September 2018. His research focuses on developing
algorithms for formally verifying correctness of software and combines ideas from formal
methods, programming languages and machine learning research as well as from
probability theory. His main research interests include probabilistic verification, static
program analysis, AI safety, learning-based control and games on graphs. His work
has been published at premier venues in formal methods (CAV, FM), programming
languages (PLDI, POPL), artificial intelligence (AAAI), machine learning (NeurIPS)
and algorithms (SODA) communities. He was a finalist for the Meta PhD Research
Fellowship in the programming languages category in 2022.

x

List of Collaborators and Publications

1. Chapter 3 is based on "Krishnendu Chatterjee, Ehsan Kafshdar Goharshady,
Petr Novotný, Jiří Zárevúcky, Ðorđe Žikelić.† On Lexicographic Proof Rules for
Probabilistic Termination. In Formal Methods - 24th International Symposium,
FM 2021"

2. Chapter 3 is based on "Krishnendu Chatterjee, Ehsan Kafshdar Goharshady,
Petr Novotný, Jiří Zárevúcky, Ðorđe Žikelić.† On Lexicographic Proof Rules for
Probabilistic Termination. In Formal Aspects of Computing, FAC 2023"

3. Chapter 4 is based on "Krishnendu Chatterjee, Petr Novotný, Ðorđe Žikelić.†
Stochastic Invariants for Probabilistic Termination. In 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017"‡

4. Chapter 4 is based on "Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias
Meggendorfer, Ðorđe Žikelić.† Sound and Complete Certificates for Quantitative
Termination Analysis of Probabilistic Programs. In Computer Aided Verification -
34th International Conference, CAV 2022"

5. Chapter 5 is based on "Krishnendu Chatterjee, Ehsan Kafshdar Goharshady, Petr
Novotný, Ðorđe Žikelić.† Proving Non-termination by Program Reversal. In 42nd
ACM SIGPLAN International Conference on Programming Language Design and
Implementation, PLDI 2021"

6. Chapter 6 is based on "Mathias Lechner∗, Ðorđe Žikelić∗ Krishnendu Chatterjee,
Thomas A. Henzinger. Stability Verification in Stochastic Control Systems via
Neural Network Supermartingales. In Thirty-Sixth AAAI Conference on Artificial
Intelligence, AAAI 2022"

†Authors ordered alphabetically.
‡This work was completed prior to the beginning of the author’s PhD studies, however it is a result

of an internship project at ISTA that preceeded PhD studies. Chapter 4 contains results of a part
of this publication that introduces stochastic invariants and proves their soundness for quantitative
termination analysis. The rest of Chapter 4 is based on the publication in item 4.

∗Equal contribution.

xi

7. Chapter 6 is based on "Ðorđe Žikelić∗, Mathias Lechner∗, Krishnendu Chatterjee,
Thomas A. Henzinger. Learning Stabilizing Policies in Stochastic Control Systems.
In ICLR 2022 Workshop on Socially Responsible Machine Learning, SRML 2022"

8. Chapter 7 is based on "Ðorđe Žikelić∗, Mathias Lechner∗, Thomas A. Henzinger,
Krishnendu Chatterjee. Learning Control Policies for Stochastic Systems with
Reach-avoid Guaranteess. In Thirty-Seventh AAAI Conference on Artificial
Intelligence, AAAI 2023"

The following list contains other works published during the PhD period. While they do
not constitute the main body of this thesis, the contributions of some of these works
will be discussed in Chapter 8.

9. S. Akshay, Krishnendu Chatterjee, Tobias Meggendorfer, Ðorđe Žikelić†. MDPs
as Distribution Transformers: Affine Invariant Synthesis for Safety Objectives. In
Computer Aided Verification - 35th International Conference, CAV 2023

10. Krishnendu Chatterjee, Thomas A. Henzinger, Mathias Lechner, Ðorđe Žikelić†.
A Learner-verifier Framework for Neural Network Controllers and Certificates of
Stochastic Systems. In Tools and Algorithms for the Construction and Analysis
of Systems, TACAS 2023 (invited paper)

11. Guy Avni, Ismaël Jecker, Ðorđe Žikelić†. Bidding Graph Games with Partially-
observable Budgets. In Thirty-Seventh AAAI Conference on Artificial Intelligence,
AAAI 2023

12. Mathias Lechner, Ðorđe Žikelić, Krishnendu Chatterjee, Thomas A. Henzinger,
Daniela Rus. Quantization-aware Interval Bound Propagation for Training Certi-
fiably Robust Quantized Neural Networks. In Thirty-Seventh AAAI Conference
on Artificial Intelligence, AAAI 2023

13. Ali Ahmadi, Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggen-
dorfer, Roodabeh Safavi, Ðorđe Žikelić†. Algorithms and Hardness Results for
Computing Cores of Markov Chains. In 42nd IARCS Annual Conference on Foun-
dations of Software Technology and Theoretical Computer Science, FSTTCS
2022

14. Krishnendu Chatterjee, Jakub Svoboda, Ðorđe Žikelić, Andreas Pavlogiannis,
Josef Tkadlec. Social Balance on Networks: Local Minima and Best-edge
Dynamics. In Physical Review E, PRE 2022

xii

15. Ðorđe Žikelić, Bor-Yuh Evan Chang, Pauline Bolignano, Franco Raimondi. Dif-
ferential Cost Analysis with Simultaneous Potentials and Anti-potentials. In 43rd
ACM SIGPLAN International Conference on Programming Language Design and
Implementation, PLDI 2022

16. Mathias Lechner∗, Ðorđe Žikelić,∗ Krishnendu Chatterjee, Thomas A. Henzinger.
Infinite Time Horizon Safety of Bayesian Neural Networks. In Advances in Neural
Information Processing Systems 34: Annual Conference on Neural Information
Processing Systems, NeurIPS 2021

17. Guy Avni, Thomas A. Henzinger, Ðorđe Žikelić†. Bidding Mechanisms in Graph
Games. In Journal of Computer and System Sciences, JCSS 2021

18. Thomas A. Henzinger, Mathias Lechner, Ðorđe Žikelić†. Scalable Verification
of Quantized Neural Networks. In Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2021

19. Guy Avni, Ismaël Jecker, Ðorđe Žikelić†. Infinite-duration All-pay Bidding Games.
In 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021

20. Guy Avni, Thomas A. Henzinger, Ðorđe Žikelić†. Bidding Mechanisms in Graph
Games. In 44th International Symposium on Mathematical Foundations of
Computer Science, MFCS 2019

xiii

Table of Contents

Abstract vii

Acknowledgements viii

About the Author x

List of Collaborators and Publications xi

Table of Contents xv

List of Figures xvii

List of Tables xix

List of Algorithms xx

1 Introduction 1
1.1 Prologue . 1
1.2 Infinite State Stochastic System Analysis 4
1.3 Prior Work, Challenges and Thesis Goal 6
1.4 Thesis Outline and Contributions 9

2 Preliminaries 15
2.1 Mathematical Preliminaries . 15
2.2 Probabilistic Programs . 16
2.3 Stochastic Dynamical Systems . 24
2.4 Martingale Theory . 26
2.5 Fixed-point Theory . 27

3 Lexicographic Methods for Almost-sure Termination Analysis in PPs 29
3.1 Introduction . 29
3.2 Generalized Lexicographic Ranking Supermartingales 34

xv

3.3 GLexRSMs for Probabilistic Programs 38
3.4 Algorithms for Linear Probabilistic Programs 43
3.5 Related Work . 53
3.6 Technical Proofs . 54

4 Quantitative Termination and Safety Analysis in PPs 67
4.1 Introduction . 67
4.2 Overview of Our Approach . 71
4.3 Stochastic Invariants and a Proof Rule for Quantitative Termination 74
4.4 Stochastic Invariant Characterization via SI-indicators 75
4.5 Stochastic Invariants and RSMs for Quantitative Termination . . . 79
4.6 Algorithm for Quantitative Termination 81
4.7 Experiments . 85
4.8 Extension to Quantitative Safety 87
4.9 Related Work . 90
4.10 Technical Proofs . 93

5 Non-termination Analysis in Programs 105
5.1 Introduction . 105
5.2 Preliminaries for Non-probabilistic Programs 109
5.3 Transition System Reversal . 113
5.4 Sound and Complete Certificate for Non-termination 115
5.5 Algorithm for Proving Non-termination 118
5.6 Experiments . 130
5.7 Related Work . 134

6 Learning-based Stochastic Control with Almost-sure Reachability 139
6.1 Introduction . 139
6.2 Problem Statement . 145
6.3 Theoretical Results . 145
6.4 Learner-verifier Framework . 148
6.5 Experiments . 153
6.6 Related Work . 155
6.7 Technical Proofs . 158

7 Learning-based Stochastic Control with Quantitative Reach-avoidance 167
7.1 Introduction . 167
7.2 Problem Statement . 170
7.3 Theoretical Results . 171
7.4 Learner-verifier Framework with RASMs 174
7.5 Experiments . 179

xvi

7.6 Related Work . 181
7.7 Technical Proofs . 183

8 Discussion and Conclusion 191
8.1 Discussion . 191
8.2 Conclusion and Future Perspective 198

Bibliography 201

List of Figures

2.1 Syntax grammar of our PPs. 16
2.2 An example PP with non-determinism. 17
2.3 pCFG for the PP in Figure 2.2. 20

3.1 Motivating examples. Norm(µ, σ) samples from the normal distribution
with mean µ and std. deviation σ. Uniform[a, b] samples uniformly from
the interval [a, b]. Location labels are the “ℓi”: one location per loop
head and one additional location in (b) so as to have one assignment per
transition (a technical requirement for our approach). In addition, the
location label “ℓout” denotes the terminal location. 31

3.2 The pCFGs of the programs presented in Figure 3.1 (see Section 2.2 for
a formal definition of pCFGs). Guards are shown in the rounded boxes,
(absence of a box means that the guard is true). The update tuples are
shown using variable aliases instead of indexes for better readability. On the
left, we have u1 = y, u2 = x− 1 + Norm(0, 1), and u3 = y − 1. On the
right, we have u1 = y + Uniform[−7, 1], u2 = x + Uniform[−7, 1], and
u3 = y + Uniform[−7, 1] . 31

3.3 A simple loop that terminates a.s. and involves sampling from the standard
normal distribution which has unbounded support. However, no existing
martingale-based method that reasons over linear arithmetic can prove its
a.s. termination. 34

xvii

4.1 Our running example for this chapter. Whenever r1 and r2 are evaluated,
their values are sampled from the uniform distributions Uniform([−1, 0.5])
and Uniform([−1, 2]), independently from previous samples. The command
if ⋆ then denotes non-deterministic branching. The labels ℓinit , ℓ1, . . . , ℓ6
and ℓout denote locations in the program’s pCFG. The pCFG for this PP
was presented in Figure 2.3. 71

4.2 A program that was shown in [TOUH21] not to admit a repulsing super-
martingale [CNZ17] or a gamma-scaled supermartingale [TOUH21], but for
which our method can certify the tight lower-bound of 0.5 on the probability
of termination. 81

5.1 Our running example in this chapter. 112
5.2 Transition system (left) and its reversed transition system (right) associated

to our running example in Fig. 5.1. Ix,y denotes x′ = x ∧ y′ = y and is
used for readability. 112

5.3 An example of a program without an initial diverging state with respect
to any resolution of non-determinism that uses polynomials of degree less
than 100, but for which Check 2 proves non-termination. 124

5.4 Example program illustrating aperiodic non-termination. 124
5.5 Reversed transition system of the program in Fig. 5.3 with the resolution

of non-determinism that assigns the constant expression 1 to the non-
deterministic assignment of the variable u. For readability, we use In,u,b to
denote n′ = n ∧ u′ = u ∧ b′ = b, Iu,b to denote u′ = u ∧ b′ = b, etc. . 137

6.1 The learner-verifier loop, figure taken from [CHLZ23, Figure 1]. 141
6.2 Example of a deterministic and a stochastic dynamical system with the

dynamics function differing only in an additive stochastic noise term, il-
lustrating the difficulties of proving almost-sure reachability in stochastic
dynamical systems. The orange markers indicate the system state after 200
time steps. 153

6.3 Learned RSM candidates after 1 and 2 iterations of our algorithm for the
stochastic inverted pendulum task. The candidate on the left violates the
expected decrease condition while the function of the right is a verified
RSM. 154

6.4 Contour lines of the expected reachability time bounds obtained from the
RSM on the inverted pendulum task. 154

6.5 Comparison of our method for bounding the expected value of an RSM
neural network with the ground-truth expected value on 100 randomly
sampled states of the inverted pendulum environment. 155

xviii

7.1 Visualization of a neural network RSM and RASM on the inverted pendulum
task. The RASM provides better probability bounds of reaching the unsafe
states. 181

List of Tables

4.1 Summary of our experimental results on a subset of our benchmark set.
See [CGMZ22a][Appendix J] for benchmark details and for the results on all
benchmarks. For each benchmark, the column with the value 1− p denotes
the lower bound on termination probability that our method proved. . . 86

5.1 Experimental results with evaluation performed on the first platform. The
NO/YES/MAYBE rows contain the total number of benchmarks which were
proved non-terminating, terminating, or for which the tool proved neither,
respectively. The next row contains the number of benchmarks proved to
be non-terminating only by the respective tool. We also report the average
and standard deviation (std. dev.) of runtimes. The last two rows show
the runtime statistics limited to successful non-termination proofs. . . . 131

5.2 Experimental results with evaluation performed on StarExec [SST14]. The
meaning of data is the same as in Table 5.1. 132

5.3 Comparison of configurations based on which check they run and the
SMT-solver used. 133

5.4 Comparison of configurations based on the template size for predicate
functions. A cell in the table corresponding to (C = i, D = j) contains
the number of benchmarks that were proved to be non-terminating by a
configuration using template size (c, d) with c ≤ i and d ≤ j. 133

6.1 Number of learner-verifier loop iterations and mesh of the discretization
used by the verifier. 153

7.1 Reach-avoid probability obtained by our method and by the naive extension
of RSMs. In each case, we report the largest probability successfully verified
by the method. 179

xix

7.2 Reach-avoid probabilities obtained by repairing unsafe policies. Verifying a
policy by only learning the RASM Vν times out, while jointly optimizing Vν

and πθ yields a valid RASM. In each case, we report the largest reach-avoid
probability successfully verified by the respective method. 181

List of Algorithms

3.1 Synthesis of LinGLexRSM maps in LinPPs with the BSP. 46

3.2 Synthesis of LinGLexRSM maps in PPs contained in LinPP∗. 52

5.1 Algorithm for proving non-termination 121

6.1 Algorithm for learning almost-sure reachability policies 149

7.1 Algorithm for learning quantitative reach-avoidance policies 175

xx

CHAPTER 1
Introduction

“So Einstein was wrong when he said, "God does not play dice." Consider-
ation of black holes suggests, not only that God does play dice, but that
he sometimes confuses us by throwing them where they can’t be seen.”
Stephen Hawking

1.1 Prologue
Modern software systems are complex – they may contain many lines of code, be
implemented by multiple developers and be modified over time. This makes it extremely
hard to detect bugs and it has become practically infeasible to write test suites that
ensure total coverage of all system behaviors and all corner cases. Moreover, while
testing is able to detect bugs, in general it is not able to guarantee their absence.
As such, testing alone is not sufficient to provide the desired level of trustworthiness
and software reliability that is necessary for the deployment in safety-critical scenarios.
Furthermore, recent years have seen tremendous success of artificial intelligence (AI)
and machine learning (ML) technologies which have naturally fueled the desire to deploy
them in general software development. However, the lack of explainability of AI and ML
technologies remains the key challenge for their deployment in safety-critical domains.

Formal verification and program analysis. Formal verification is concerned with
formally reasoning about programs and software systems, towards analysing their
properties, detecting bugs or proving correctness with respect to well-defined spec-
ifications [Flo67, Hoa69, Dij76]. Given a program and a formal specification, the
goal of formal verification is to design mathematically rigorous yet fully automated
and scalable methods for proving or disproving that the program satisfies the given

1

1. Introduction

specification. If a program is formally verified to be correct, then a programmer need
not worry about untested corner cases that may lead to incorrect behavior because
their absence is guaranteed. Such rigorous guarantees enhance reliability and trustwor-
thiness of programs and software systems. It is therefore not surprising that formal
verification and program analysis have for long time been active research fields [JM09],
and formal methods and tools have found wide industrial adoption. For instance,
Amazon [NRZ+15], Meta [CDD+15] and Microsoft [BCLR04] are all developing and
using formal verification and program analysis tools.

Formal controller synthesis. While formal verification is concerned with formally
reasoning about a given system, the goal of formal synthesis is to automatically
construct a system that satisfies a given specification [PR89]. The key advantage
of formal synthesis is that it yields correct-by-construction systems that are reliable
and trustworthy by design. In addition to formal verification and program analysis, in
this thesis we will also be interested in formal controller synthesis, which is concerned
with synthesizing controllers for dynamical systems. A controller is a reactive system
which continuously interacts with the dynamical system, receives inputs and produces
control outputs [BS04, Ber12]. Recent years have seen significant demand for formal
controller synthesis methods for safety-critical autonomous systems such as self-driving
cars, aircraft systems and medical devices.

Stochastic systems. Stochastic (or probabilistic) systems are systems that exhibit
uncertain behaviour and that use probability to formally model and quantify uncertainty.
They have been adopted in many application domains as adequate formal models for
uncertain systems whose exact semantics are unknown or too complex to analyse, but
patterns in system behaviour or data can be observed. Moreover, stochastic uncertainty
is not always a consequence of our lack of understanding of exact semantics and can
also be a design choice. For instance, randomised algorithms use coin tossing or random
value sampling to solve certain tasks more efficiently. Below we list some applications
in which stochastic systems naturally arise:

1. Randomised algorithms. As mentioned above, randomised algorithms [MR95] use
probability to yield more efficient solutions to certain algorithmic problems. For
instance, selecting a pivot for the Hoare’s quicksort algorithm [Hoa62] uniformly
at random yields a randomised sorting algorithm which has expected runtime
complexity O(n log n) to sort an array of n elements. In contrast, deterministic
pivot selection yields an algorithm whose worst-case runtime complexity is O(n2).

2. Distributed systems. Distributed systems consist of networked components which
exchange messages and coordinate their executions towards achieving a common
goal. Uncertainty in distributed systems may arise at many levels, for instance

2

1.1. Prologue

in the form of message loss or unknown distribution of packet traffic at routers
in the Internet. In the analysis of distributed systems, stochastic networks are
standard formal models [KY14]. Furthermore, randomisation is often a design
choice in distributed system protocols, e.g. for leader election [GvRB00].

3. Motion planning and control. Planning and control tasks are solved with respect
to a specified model of the environment. The model is typically inferred from
observed data or noisy measurements and may need to take into account distur-
bances that contribute to the evolution of the system. Stochastic control [BS96]
is a subfield of control theory that considers controller synthesis in stochastic en-
vironment models, where stochasticity is used to formally model data uncertainty,
measurement noise or environment disturbances.

4. Machine learning. Machine learning can be viewed as a probabilistic infer-
ence problem, where the goal is to infer a model that best matches observed
data [Gha15, Mur12]. In supervised learning, one can use probability to quantify
the confidence in model’s prediction. In reinforcement learning (RL), the goal is
to learn a policy for sequential decision making that maximises expected reward
in a Markov decision process (MDP), whose semantics are stochastic [SB18].

Formal analysis of stochastic systems. Classical formal verification and synthesis
techniques are boolean in nature and aim for absolute correctness guarantees – they want
to ensure that every system execution satisfies the formal specification. One could of
course apply such boolean reasoning to stochastic systems by analysing every execution
individually and trying to provide worst-case guarantees on correctness. However, such
reasoning would be highly conservative and would lead to refutation of many systems
that would in practice be regarded as correct. For instance, if in analysing software
systems we take into account failures in unreliable hardware, then no software system
could be verified to be absolutely correct as the worst-case scenario entails hardware
failure. The key issue with such a boolean analysis is that it does not take into account
that hardware failure happens with very low probability. Hence, stochastic systems
demand more fine-grained analyses that reason about the probability with which some
formal specification is satisfied. Formal analyses for stochastic systems can be classified
into qualitative and quantitative [BK08]:

• Qualitative analysis. Qualitative analysis is concerned with proving that the set of
stochastic system executions that satisfy the formal specification has probability
0 or 1. In other words, up to some set of executions of probability 0, either none
or all executions of the stochastic system need to satisfy the formal specification.

• Quantitative analysis. Quantitative analysis takes as input a probability threshold
p ∈ [0, 1] and is concerned with proving that the set of stochastic system

3

1. Introduction

executions that satisfy the formal specification has probability at least p. This is
a more fine-grained analysis that provides useful information even if a stochastic
system does not satisfy the formal specification with probability 0 or 1.

In this thesis, we will study qualitative and quantitative analyses for reachability and
safety specifications. Given a stochastic system and a set of states S, we say that a
system execution satisfies the reachability specification for S if it contains a state in
S. Dually, we say that a system execution satisfies the safety specification for S if it
does not contain any state in S and therefore avoids it. Reachability and safety are the
most fundamental liveness and safety specifications, respectively [BK08].

Finite and infinite state stochastic system analysis. Formal analysis of stochas-
tic systems has received significant attention within the formal methods community.
However, prior work has predominantly focused on formal verification and controller
synthesis for finite state stochastic systems, an area that we call probabilistic model
checking. There has been a significant amount of work on probabilistic model checking
and today we known how to efficiently and fully automatically reason about a large
class of properties in finite state MDPs. We refer the reader to [Kat16] for an overview
of developments in probabilistic model checking and to the state of the art probabilistic
model checking tools such as PRISM [KNP11] and Storm [HJK+22] which implement
many of these analyses. In comparison, automated formal analysis of infinite state
stochastic systems is much less explored and presents one of the major challenges in
formal methods. Infinite state stochastic systems commonly arise in practice – contin-
uous probability distributions such as normal or uniform are standard in probabilistic
modelling and stochastic planning and control problems over continuous state spaces
give rise to infinite state stochastic systems. However, the key challenge for their
automated analysis is that the formal verification problem for any non-trivial property in
infinite state stochastic systems specified via a Turing-complete language is undecidable,
by Rice’s theorem [Ric53]. In contrast, many problems in probabilistic model checking
can be automatically and efficiently decided. Thus, one cannot directly reduce the
formal verification and controller synthesis problems for infinite state stochastic systems
to probabilistic model checking. Instead, these problems require new approaches.

1.2 Infinite State Stochastic System Analysis
This thesis contributes to laying theoretical and algorithmic foundations of fully au-
tomated formal verification and controller synthesis for discrete-time∗ infinite state
stochastic systems, with respect to reachability and safety specifications. Analogously

∗We emphasise that this thesis only considers discrete-time stochastic systems and in what follows
we assume that all stochastic systems evolve over discrete time. Formal analysis of continuous-time

4

1.2. Infinite State Stochastic System Analysis

to probabilistic model checking, (measurable) Markov chains and MDPs are classical
objects of study in theoretical analysis of infinite state stochastic systems. However,
they may in general be defined in terms of transition functions that are not computable.
Since we are interested in both theory and automation, this thesis focuses on formal
analysis of two classes of infinite state stochastic systems that are most commonly used
in probabilistic modelling and control theory applications:

1. Probabilistic programs. We consider probabilistic programs as a model for formal
verification of infinite state stochastic systems. A probabilistic program (PP) is a
classical imperative or functional program extended with (1) the ability to sample
values from probability distributions and assign it to program variables, and (2) the
ability to condition program executions on observed variable values [GHNR14].
Probability distributions appearing in sampling instructions may be both discrete
(such as Bernoulli or Poisson) or continuous (such as normal or uniform), hence
PPs give rise to infinite state stochastic systems. They provide an expressive
framework for formally specifying a rich class probabilistic models, including
probabilistic graphical models [KF09] and all discrete probability distributions
for which events are semi-computable [Ica17, Kam19]. PPs have been used in
a multitude of applications including randomized algorithms [MR95], stochastic
networks [BK08, KNP11, FKM+16], cryptography [BGB09], security [BGG+16,
BGHP16] and machine learning [Gha15, vdMPYW18]. Today, there is a large
variety of probabilistic programming languages such as Anglican [TvdMYW16],
Church [GMR+08], Edward [TKD+16], Pyro [BCJ+19] or WebPPL [GS14].
The expressiveness and wide adoption of PPs makes them a particularly appealing
model for formal analysis, and program analysis of PPs has become a very active
area in formal methods and programming languages research. In particular,
instead of designing different verification algorithms for each application domain
in which stochastic systems may arise, one can first translate a stochastic system
of interest into a PP and then focus on the analysis of the PP. Many works on
static analysis of PPs, inclusive of all results on PP analysis in this thesis, extend
PPs with programming constructs for non-deterministic choices. Similarly to
the static analysis of non-probabilistic programs, this extension allows modelling
unknown program inputs but also over-approximation of PP parts that are too
complex for static analysis [CC77, MM05].

2. Discrete-time stochastic dynamical systems. We consider discrete-time stochastic
dynamical systems as a model for formal controller synthesis in infinite state

stochastic systems has also been considered in the literature in the setting of continuous-time Markov
chains [BHHK03] or continuous-time stochastic dynamical systems [KKDD01], but these models are
not the topic of this thesis.

5

1. Introduction

stochastic systems. Discrete-time stochastic dynamical systems [BS96, Ber12]
present a standard model for solving control problems in continuous state spaces
and over discrete time, in the presence of stochastic disturbances or when the
model of the environment is inferred from observed data or noisy measurements.
The goal of stochastic control is to synthesise a controller under which the
stochastic dynamical systems satisfies some formal specification of interest.

1.3 Prior Work, Challenges and Thesis Goal
In what follows, we overview prior work on reachability and safety analysis of infinite
state stochastic systems and identify challenges that this thesis aims to address. We
note that this is not a complete list of related work. Rather, it only serves towards
placing contributions of this thesis within the broader perspective. We will later provide
a detailed overview of related work for each chapter in this thesis.

Prior work on probabilistic program analysis. Formal analysis of PPs goes back
to the seminal work of Kozen on PP semantics [Koz81]. Since then, there has been
much work on developing probabilistic extensions of Hoare logic and Dijkstra’s weakest
precondition calculus. Probabilistic propositional dynamic logic (PPDL), a modal logic
for reasoning about PPs with discrete probability distributions, was developed in [Koz85].
PPDL was further studied and extended to PPs with non-determinism, giving rise to
weakest pre-expectation calculus [MMS96, MM05]. Weakest pre-expectation calculus
can be viewed as a generalization of Dijkstra’s weakest precondition calculus to the
setting of PPs with non-determinism. It has been extensively studied, with many
developments on reasoning about reachability, safety and other properties [KKMO18,
OKKM16, OGJ+18, KK17, ABH+21, BKKM21] and it provides a powerful theoretical
framework for PP analysis. However, automation of these calculi typically requires user
input in the presence of unbounded loops or continuous probability distributions.

Recent years have seen the development of several methods for fully automated PP
analysis. For PPs with bounded loops, exact inference methods perform weighted
model counting [HdBM20] or symbolic execution and integration [GMV16, GSV20] in
order to compute exact expected values of functions or probabilities of events upon PP
execution. Approximate inference methods include [CMMV16, CDM17, HDM22]. The
works [SCG13, BO21, BOZ22] consider PPs with linear arithmetic and use symbolic
execution and integration to compute bounds on reachability and safety probability.
These are not restricted to bounded loops, however they only reason about terminating
program executions and do not consider non-determinism. Abstract interpretation for
PPs was studied in [Mon00, Mon01], but it remains unclear how to perform the widening
operation in the presence of loops and automation is only briefly discussed. Automated

6

1.3. Prior Work, Challenges and Thesis Goal

methods for the analysis of prob-solvable loops, i.e. loops whose body contains a
sequence of probabilistic assignments but no conditional branching or nested loops, that
are based on recurrence solving have been proposed in [BKS19, MBKK21a, MBKK21b].
Finally, martingale-based methods are conceptually most related to the work in this
thesis. Their name is inspired by their usage of martingale processes from probability
theory [Wil91]. Prior work on martingale-based methods for PPs has focused on
proving probability 1 (a.k.a. almost sure) termination/reachability or proving bounds
on termination/reachability time. The central concept in these approaches is a ranking
supermartingale (RSM), which generalizes ranking functions for termination analysis in
non-probabilistic programs. We say that a PP execution is terminating, if it reaches a
terminal state and does not execute forever. By letting the PP terminate upon reaching
some target set of states, one can always reduce the reachability specification to the
termination specification, thus we treat these two specifications as equivalent. RSMs
were introduced in [CS13], extended to PPs with non-determinism in [CFNH18] and were
extensively studied since [CFG16, ACN18, MMKK18, HFCG19, AGR21, CH20, KO21].
However, martingales have not been used for quantitative reachability or safety analysis
in PPs. To the best of our knowledge, no method prior to this thesis provides quantitative
reachability and safety guarantees in a fully automated fashion for PPs that are not
almost-surely terminating, and that can hence model infinite time-horizon systems.

Prior work on stochastic control. Automated controller synthesis for determin-
istic dynamical systems with formal reachability and safety guarantees has been ex-
tensively studied. Formal guarantees are typically achieved by synthesizing a con-
trol policy together with a certificate function which formally proves the desired
property. Classical automated methods consider polynomial systems and utilize
semidefinite programming (SDP) to synthesize polynomial policies and certificate
functions [HG05, Par00, JWFT+03]. However, dynamical systems appearing in prac-
tice are often not polynomial. To alleviate this problem, classical methods consider
polynomial approximations of system dynamics, but this introduces approximation error
that accumulates over time and allows only finite and typically short time horizon
guarantees. A promising approach to enable synthesis of controllers and certificate
functions for non-polynomial systems while not imposing time horizon restrictions is a
learning-based approach. These methods leverage advances in deep reinforcement learn-
ing by learning and formally verifying a control policy together with a safety certificate,
both parametrized as neural networks [CRG19, AAGP21, PAA21]. See [DGF23] for a
survey. Another approach to formal controller synthesis is provided by abstraction-based
methods [Tab09]. Rather than utilizing certificate functions, these methods approxi-
mate the controller synthesis problem using a simpler problem of computing winning
strategies in abstract finite-state systems, for which known algorithms can be used.
In comparison, automated controller synthesis for stochastic dynamical systems with

7

1. Introduction

formal reachability and safety guarantees is a harder problem and remains a challenging
research area. An SDP method for jointly synthesizing a polynomial policy and
a stochastic barrier function (SBF) in polynomial systems with quantitative safety
guarantees was proposed in [PJP04, PJP07]. SBF is a martingale-based certificate
that can be used to prove probabilistic safety over the infinite time horizon. Methods
that first compute polynomial approximations and then use SDP to provide finite time
horizon safety guarantees were proposed in [ST12, SDC21]. Concurrently to this thesis,
an SDP method with reach-avoid guarantees for infinite-time horizon systems has been
developed in [XLZF21], but this method is restricted to polynomial systems. Other
methods use dynamic programming [APLS08] or Hamilton-Jacobi (HJ) reachability
analysis [BCHT17] for finite time horizon stochastic systems.

Another approach to formal controller synthesis in stochastic dynamical systems is
provided by abstraction-based methods [ADB11]. Similarly to their deterministic
analogues, these methods approximate the controller synthesis problem using abstract
finite-state MDPs or stochastic games for which known probabilistic model checking
algorithms can be used, however the abstraction requires additional care and novel
mathematical developments [TMKA17]. There has been considerable amount of work
on abstraction-based controller synthesis in stochastic dynamical systems, however most
existing methods are applicable to finite time horizon systems due to accumulation of
the approximation error [SGA15, LKSZ20, CA19, VGO19]. Recently, a few abstraction-
based controller synthesis methods for infinite-time horizon stochastic dynamical systems
with affine dynamics [HS21], control affine dynamics [DHC22] as well as for infinite-time
horizon switched stochastic systems in which control input space is finite [MMSS24,
DHC22] have been proposed. To the best of our knowledge, no prior method provides
formal reachability and safety guarantees for infinite-time horizon and non-polynomial
stochastic dynamical systems with continuous control input spaces.

Challenges and thesis goal. While these works present significant advances, several
challenges in formal reachability and safety analysis of infinite state stochastic systems
still remain. In particular, most existing methods are either not fully automated or are
restricted to finite-time horizon systems or terminating executions. Exceptions include
automated methods for probability 1 reachability proving in PPs and for controller
synthesis in polynomial, control affine or switched stochastic systems. However, we
currently lack automated methods for quantitative reachability and safety analysis in
infinite-time horizon systems whose dynamics are continuous but non-polynomial. The
goal of this thesis is to address these challenges and to advance and enable

fully automated reachability and safety analysis
in infinite-time horizon stochastic systems.

8

1.4. Thesis Outline and Contributions

More concretely, our goal is to further advance existing analyses such as probability 1
reachability as well as to contribute to laying theoretical and algorithmic foundations
of quantitative reachability and safety analyses that have not been possible before.
Furthermore, we aim for fully automated methods that are applicable to PPs that need
not be almost-surely terminating and to non-polynomial stochastic dynamical systems
with continuous dynamics and control inputs. To achieve the latter, following recent
developments in deterministic dynamical system control that leverage advances in deep
reinforcement learning, our goal is to present a neurosymbolic control framework for
learning and formally verifying neural controllers in stochastic dynamical systems.

Martingale-based approach. To solve these challenges, we follow a martingale-based
approach. As surveyed above, prior work has showed that martingale based certificates
can be used to formally certify properties in stochastic systems. In particular, ranking
supermartingales (RSMs) have been used to formally certify probability 1 termination
and more generally reachability in PPs, and stochastic barrier functions (SBFs) have
been used to formally certify quantitative safety in stochastic dynamical systems. This
hints that martingales provide a tool to formally reason about both reachability and
safety. However, the usage of martingales for formally reasoning about quantitative
reachability or conjuction of quantitative reachability and safety has not been explored.

The main theoretical contribution of this thesis is the design of novel martingale-based
formal certificates for reasoning about quantitative reachability, safety and reach-
avoidance in infinite state stochastic systems. Our results are theoretical in nature and
thus allow their instantiation both in the setting of PPs as well as stochastic dynamical
systems. On the other hand, the main algorithmic contribution of this thesis is full
automation of the computation of our novel martingale-based certificates, both in PPs
and in stochastic dynamical systems. While the theoretical analyses of these two models
are similar, the automation algorithms are fundamentally different. In PPs, we show
that one can automate the computation of our novel martingale-based certificates by
building upon the existing methods for RSM synthesis in PPs. In contrast, in stochastic
dynamical systems, we develop a completely new neurosymbolic framework for learning
and formally verifying neural control policies together with neural martingale certificates.

1.4 Thesis Outline and Contributions
Chapter 2 provides mathematical preliminaries and formally defines the models of PPs
and stochastic dynamical systems that we consider. The rest of this thesis can be
divided into two parts. First, Chapters 3, 4 and 5 study program analysis of PPs. Then,
Chapters 6 and 7 study formal controller synthesis for stochastic dynamical systems. In
both parts, each chapter considers formal analysis with respect to a different property,

9

1. Introduction

hence we try to keep each chapter as self contained as possible so that each chapter
can be read independently. The only exception is Chapter 7 in which the learning-based
framework builds on Chapter 6, so Chapter 6 should be read first. Contributions in
each chapter of this thesis can be summarized as follows:

• Chapter 3 considers the probability 1 (a.k.a. almost-sure) termination/reachability
problem in PPs. While ranking supermartingales (RSMs) present a prominent
approach to proving almost-sure termination, they are not compositional and are
hard to synthesize in PPs with complex control-flow structure. A lexicographic
ranking supermartingale (LexRSM) [ACN18] presents a multi-dimensional exten-
sion of RSMs, that generalizes lexicographic ranking functions for termination
proving in non-probabilistic programs. However, LexRSMs have a limitation that
impedes their automation – all of their components have to be non-negative in
all reachable states. As we show, this might result in LexRSM not existing even
for simple terminating PPs. Our contributions are as follows:

– Theory. We introduce a generalized lexicographic ranking supermartingale
(GLexRSM) which allows some of its components to be negative. This
standard feature of lexicographic ranking functions was hitherto not known
to be sound in the probabilistic setting, and the soundness proof requires
highly non-trivial analysis.

– Automation. We present a polynomial time algorithm for automated synthe-
sis of linear GLexRSMs in linear arithmetic PPs. The algorithm is applicable
to linear arithmetic PPs that may contain nested loops, conditional branch-
ing, non-determinism and sampling instructions from discrete and continuous
probability distributions. Our results also yield the first automated method
that operates over linear arithmetic and can prove almost-sure termination
in PPs that contain sampling instructions from double-sided unbounded
support probability distributions, e.g. normal distributions. We demonstrate
the applicability of our synthesis procedure on PPs for which no existing
linear arithmetic method could prove almost-sure termination.

• Chapter 4 considers the quantitative termination/reachability and safety problems
in PPs. To the best of our knowledge, it presents the first fully automated
method for quantitative reachability and safety analysis in PPs that may not be
almost-surely terminating. Our contributions are as follows:

– Theory. We introduce the notion of a stochastic invariant (SI), which
generalizes the classical notion of program invariants to the setting of PPs.
We show that SIs can be used to formulate sound and complete formal
certificates for quantitative termination/reachability and for quantitative

10

1.4. Thesis Outline and Contributions

safety analysis in PPs. The completeness proof is based on deep results
from probability and martingale theory.

– Automation. We present a PSPACE algorithm for automated synthesis of
our SI-based formal certificates in polynomial arithmetic PPs. The algorithm
is sound and relatively complete, the latter meaning that it is guaranteed
to compute a formal certificate whenever a polynomial instance of the
formal certificate instance exists. The algorithm is applicable to polynomial
arithmetic PPs that need not be almost-surely terminating and that may
contain nested loops, conditional branching, non-determinism and sampling
instructions from discrete and continuous probability distributions. We
experimentally evaluate a prototype implementation of the algorithm and
demonstrate its effectiveness on a number of classical PP benchmarks.

• Chapter 5 considers the non-termination problem in both non-probabilistic pro-
grams and in PPs. Given a non-probabilistic program (resp. PP) with non-
determinism, the goal of the non-termination problem is to find one scheduler
under which the program is not terminating (resp. almost-surely terminating).
Note that this is fundamentally different from the safety problem, where the goal
is to prove that the program is not terminating (resp. almost-surely terminating)
under every scheduler. While termination proving is well-studied, the problem
of detecting non-termination bugs has received much less attention. To that
end, in this chapter we first study the problem of proving non-termination in
non-probabilistic programs, and then show how these results can be extended to
PPs as well. Our contributions are as follows:

– Theory. We present a new formal certificate for non-termination proving in
programs with non-determinism. Our novel certificate is rather simple but
efficient. It relies on a purely syntactic reversal of the program’s transition
system and combines forward and backward reasoning in order to certify
non-termination. To the best of our knowledge, no prior method combines
forward and backward analysis to proving non-termination. The method can
be easily extended to disproving almost-sure termination in PPs in which all
probability distributions have countable support.

– Automation. We present an algorithm for automated synthesis of our non-
termination formal certificate. Our algorithm provides the first method for
non-termination proving that offers a combination of the following features:
it handles programs with non-determinism, provides relative completeness
guarantees and supports programs with polynomial arithmetic. Experi-
mental evaluation of our prototype tool RevTerm shows that, despite its
simplicity and stronger theoretical guarantees, RevTerm outperforms all non-

11

1. Introduction

termination proving tools that competed in the TermComp’19 competition,
both in the number of proved non-terminations and in runtime.

• Chapter 6 considers the controller synthesis with probability 1 reachability guaran-
tees problem in stochastic dynamical systems. We propose the first learning-based
approach for learning and formally verifying neural controllers for almost-sure
reachability in stochastic dynamical systems. Our contributions are as follows:

– Theory. Drawing insight from the results on proving almost-sure termina-
tion/reachability in PPs, we show that RSMs provide a formal certificate
for probability 1 reachability in stochastic dynamical systems. We also show
that RSMs can be used to formally prove upper bounds on reachability time.

– Automation. We present a learner-verifier framework which jointly learns and
formally verifies a control policy and an RSM, both parametrized as neural
networks. This is the first method for formal neural controller synthesis
in stochastic dynamical systems. Our method also yields a verification
procedure for formally verifying almost-sure reachability under a given neural
network control policy. The method is applicable to infinite-time horizon
systems with non-polynomial dynamics, thus overcoming the limitations of
prior work. Our method only requires that the state space of the system
is compact and that the dynamics function is Lipschitz continuous. We
experimentally evaluate our method on several non-linear RL environments.

• Chapter 7 considers the controller synthesis with quantitative reachability and
safety guarantees problem in stochastic dynamical systems. Building on our
results in Chapter 6, we propose the first learning-based approach for learning
and formally verifying neural controllers for quantitative reachability, safety and
reach-avoidance in stochastic dynamical systems. Our contributions are as follows:

– Theory. We introduce a reach-avoid supermartingale (RASM), a martingale-
based formal certificate function for proving quantitative reachability, safety
and reach-avoidance in stochastic dynamical systems. Our RASMs unify
and significantly generalize RSMs for proving probability 1 reachability and
stochastic barrier functions (SBFs) for proving quantitative safety.

– Automation. We present a learner-verifier framework which jointly learns
and formally verifies a control policy and an RASM, both parametrized
as neural networks. This is the first method for formal neural controller
synthesis in stochastic dynamical systems that provides quantitative reach-
ability, safety and reach-avoidance guarantees. Our method also yields
a verification procedure for formally verifying satisfaction of quantitative
specifications under a given neural network control policy. The method is

12

1.4. Thesis Outline and Contributions

applicable to infinite-time horizon systems with non-polynomial dynamics,
thus overcoming the limitations of prior work. As in Chapter 6, our method
only requires that the state space of the system is compact and that the
dynamics function is Lipschitz continuous. We experimentally evaluate our
method on several nonlinear RL environments.

We conclude this thesis with Chapter 8. In this chapter, in Section 8.1 we first discuss
the applicability of theoretical concepts and automation techniques introduced in this
thesis to problems stretching beyond PP analysis and control of stochastic dynamical
systems. This discussion is based on the works of the author published during the PhD
period but which do not constitute a part of thesis. These include applications to static
differential cost analysis in programs (Section 8.1.1), formal verification of Bayesian
neural networks (Section 8.1.2), formal verification of distributional safety properties
in finite-state MDPs (Section 8.1.3) and formal analysis of bidding games on graphs
(Section 8.1.4). We then present concluding remarks and discuss directions for future
work in Section 8.2.

13

CHAPTER 2
Preliminaries

2.1 Mathematical Preliminaries
We start by fixing the notation and defining the basic notions from probability and
measure theory that will be used throughout this thesis. We postpone introducing more
advanced probability and martingale theory concepts to later sections, after we formally
define our models for PPs and stochastic dynamical systems. This will allows us to
illustrate these advanced concepts on examples relevant for the topic of this thesis.

Sets. We use N, N0, Z, Z≥0, Q, Q≥0, R, R≥0 to denote the sets of all natural
numbers, natural numbers extended with 0, integers, nonnegative integers, rational
numbers, nonnegative rational numbers, reals, and nonnegative reals, respectively.

Vectors. We use boldface symbols to denote vectors. For a set S possibly being any
of the sets defined above, a natural number n ∈ N and an n-dimensional vector x ∈ Sn,
we use x[i] to denote the i-th component of x for each 1 ≤ i ≤ n. Furthermore, for a
scalar value a ∈ S, we write x[i← a] for an n-dimensional vector y ∈ Sn with y[i] = a
and y[j] = x[j] for each 1 ≤ j ≤ n with j ̸= i.

Probability space. A probability space is a triple (Ω,F ,P), where Ω is a non-empty
set called sample space, F is a σ-algebra over Ω (which is a collection of subsets of
Ω that contains the empty set ∅ and is closed under complementation and countable
union), and P is a probability measure over F , i.e. a function P : F → [0, 1] that
satisfies the following three properties: (1) P[∅] = 0, (2) P[Ω\A] = 1− P[A] for each
A ∈ F , and (3) P[∪∞i=0Ai] = ∑︁∞

i=0 P[Ai] for any sequence (Ai)∞i=0 of pairwise disjoint
sets in F . An element of F is said to be an event.

15

2. Preliminaries

⟨stmt⟩ ::= ⟨assgn⟩ | ’skip’ | ⟨stmt⟩ ’;’ ⟨stmt⟩
| ’if’ ⟨bexpr⟩ ’then’ ⟨stmt⟩ ’else’ ⟨stmt⟩ ’fi’
| ’while’ ⟨predicate⟩ ’do’ ⟨stmt⟩ ’od’

⟨assgn⟩ ::= ⟨pvar⟩ ’:=’ ⟨expr⟩ | ⟨pvar⟩ ’:= ndet(⟨dom⟩)’
| ⟨pvar⟩ ’:= sample(⟨dist⟩)’

⟨expr⟩ ::= ⟨constant⟩ | ⟨pvar⟩ | ⟨expr⟩ ’·’ ⟨expr⟩
| ⟨expr⟩ ’+’ ⟨expr⟩ | ⟨expr⟩ ’−’ ⟨expr⟩
| ⟨expr⟩ ’/’ ⟨expr⟩ | f(⟨expr⟩)

⟨dom⟩ ::= ’Real’ | ’Real[⟨constant⟩, ⟨constant⟩]’
| ’Real(⟨constant⟩, ⟨constant⟩]’
| ’Real[⟨constant⟩, ⟨constant⟩)’
| ’Real(⟨constant⟩, ⟨constant⟩)’

⟨bexpr⟩ ::= ⟨predicate⟩ | ⋆ | ’prob(p)’
⟨predicate⟩ ::= ⟨literal⟩ | ¬⟨literal⟩

| ⟨predicate⟩ ’and’ ⟨predicate⟩
| ⟨predicate⟩ ’or’ ⟨predicate⟩

⟨literal⟩ ::= ⟨expr⟩ ’▷◁’ ⟨expr⟩
’▷◁’ ::= ’≥’ | ’>’ | ’<’ | ’≤’ | ’=’

Figure 2.1: Syntax grammar of our PPs.

Random variables. Given a probability space (Ω,F ,P), a random variable is an
F-measurable function X : Ω → R ∪ {±∞}, i.e. for each a ∈ R ∪ {±∞} we have
that {ω ∈ Ω | X(ω) ≤ a} ∈ F . We use E[X] to denote the expected value of X
(for the formal definition of expected value, see [Wil91]). A (discrete-time) stochastic
process is a sequence of random variables (Xi)∞i=0 in (Ω,F ,P).

2.2 Probabilistic Programs

We now define the syntax and semantics of probabilistic programs that we consider
in this thesis. We follow standard notation and definitions in probabilistic program
analysis [CGMZ22b].

16

2.2. Probabilistic Programs

x = 0
ℓinit : while x ≥ 0 do
ℓ1 : r1 := Uniform([−1, 0.5])
ℓ2 : x := x + r1
ℓ3 : i f x ≥ 100 then
ℓ4 : i f ⋆ then
ℓ5 : r2 := Uniform([−1, 2])
ℓ6 : x := x + r2

f i f i od
ℓout :

Figure 2.2: An example PP with non-determinism.

2.2.1 Program Syntax
We consider imperative arithmetic probabilistic programs (PPs) with non-determinism.
Our PPs allow standard programming constructs such as conditional branching, while-
loops and variable assignments. They also allow two probabilistic constructs – proba-
bilistic branching which is indicated in the syntax by a command ‘if prob(p) then . . . ’
with p ∈ [0, 1] a real constant, and sampling instructions of the form x := d where d is a
probability distribution. Sampling instructions may contain both discrete (e.g. Bernoulli
or Poisson) and continuous (e.g. uniform or normal) probability distributions.

We also allow constructs for (demonic) non-determinism. We allow non-deterministic
branching indicated in the syntax by ‘if ⋆ then . . . ’, and non-deterministic assignments
indicated by an instruction of the form x := ndet([a, b]), where a, b ∈ R∪{±∞} with
[a, b] being a (possibly unbounded) real interval from which the new variable value is
chosen non-deterministically. We also allow one or both sides of the interval to be open.
The complete syntax of our programs is presented in Figure 2.1.

Example 2.2.1. We present an example PP with non-determinism in Figure 2.2. This
PP is taken from [CGMZ22b] and we will consider it again in Chapter 4. The PP
consists of a single loop which contains sampling instructions, conditional branching and
non-deterministic branching. Whenever r1 and r2 are evaluated, their values are sampled
from the uniform distributions Uniform([−1, 0.5]) and Uniform([−1, 2]), independently
from previous samples. The command if ⋆ then denotes non-deterministic branching.
The labels ℓinit, ℓ1, . . . , ℓ6 and ℓout denote locations in the program’s probabilistic
control-flow graph which we will later use as a formal model for PPs.

Variables, expressions and predicates. Variables in our PPs are real-valued. Given
a finite set of variables V , a variable valuation of V is a vector x ∈ R|V |.

17

2. Preliminaries

Arithmetic expressions in our PPs are built from constants, program variables and stan-
dard Borel-measurable [Bil95] arithmetic operators. We also allow sampling instructions
to appear on right-hand sides of variable assignments as linear terms. An expression
with no such terms is called sampling-free. We allow sampling from both discrete and
continuous distributions. We denote by D the set of distributions appearing in the
program with each d ∈ D assumed to be integrable, i.e. EX∼d[|X|] < ∞. We write
X ∼ d to denote that X is a random variable with probability distribution d. This is to
ensure that expected value of each d over any measurable set is well-defined and finite.

A predicate over a set of variables V is a Boolean combination of atomic predicates of
the form E ≤ E ′, where E, E ′ are sampling-free expressions whose all variables are
from V . We denote by x |= Ψ the fact that the predicate Ψ is satisfied by substituting
values of x for the corresponding variables in Ψ.

Linear and polynomial PPs. While all theoretical results on PPs in this thesis apply
to general PPs in which arithmetic expressions may contain arbitrary Borel-measurable
arithmetic operators, the algorithms for automating our PP analyses will be restricted
either to affine (or linear) arithmetic PPs or to polynomial arithmetic PPs. We say
that a PP is affine (or linear) if all arithmetic expressions appearing in it are affine
expressions over program variables. Similarly, we say that a PP is polynomial if all
arithmetic expressions appearing in it are polynomial expressions over program variables.

Conditioning. Note that our syntax in Figure 2.1 does not contain constructs for
conditioning. Many PP languages support conditioning constructs indicated in the
syntax by an instruction of the form observe(ϕ), where ϕ is a predicate over PP
variables [BGG+13, GAB+13]. Intuitively, whenever such an instruction is executed,
the PP “observes” whether the current valuation of program variables satisfies the
predicate ϕ and rejects the execution if the predicate is not satisfied. A PP execution is
said to be accepted if it is not rejected by any observe-instruction. The semantics of
the PP are then defined only over accepted executions. There are two reasons behind
omitting conditioning constructs from our PPs:

1. For PPs without non-determinism, it was shown in [OGJ+18, Section 7.2] that
reachability and safety analyses in PPs that contain observe-instructions can be
reduced to reachability and safety analyses in semantically equivalent PPs that
do not contain observe-instructions, assuming that the probability of accepted
PP executions is strictly greater than 0.

2. For PPs with non-determinism, it is unclear how to formally define their semantics
when extended with conditioning constructs, see [OGJ+18, Section 6].

18

2.2. Probabilistic Programs

Hence, since for PPs without non-determinism we can remove observe-instructions
and for PPs with non-determinism semantical issues arise if we try to extend them with
conditioning constructs, we assume that our PPs are conditioning-free.

2.2.2 Program Semantics
Probabilistic control-flow graphs (pCFGs). We model our PPs via probabilistic
control-flow graphs (pCFGs) [CNZ17, ACN18, CFNH18]. Each PP can be straightfor-
wardly translated to an equivalent pCFG, see [CFNH18]. A probabilistic control-flow
graph (pCFG) is a tuple C = (L, V, ℓinit , xinit , ↦→, G, Pr , Up), where:

• L is a finite set of locations, partitioned into locations of conditional branching LC ,
probabilistic branching LP , non-deterministic branching LN and assignment LA.

• V = {x1, . . . , x|V |} is a finite set of program variables;

• ℓinit is the initial program location;

• xinit ∈ R|V | is the initial variable valuation;

• ↦→⊆ L × L is a finite set of transitions. For each transition τ = (ℓ, ℓ′), we say
that ℓ is its source location and ℓ′ its target location;

• G is a map assigning to each transition τ = (ℓ, ℓ′) ∈ ↦→ with ℓ ∈ LC a guard
G(τ), which is a logical formula over V specifying whether τ can be executed;

• Pr is a map assigning to each transition τ = (ℓ, ℓ′) ∈ ↦→ with ℓ ∈ LP a probability
Pr(τ) ∈ [0, 1]. We require ∑︁

τ=(ℓ,_) Pr(τ) = 1 for each ℓ ∈ LP ;

• Up is a map assigning to each transition τ = (ℓ, ℓ′) ∈ ↦→ with ℓ ∈ LA an update
Up(τ) = (j, u) where j ∈ {1, . . . , |V |} is a target variable index and u is an
update element which can be:

– the bottom element u = ⊥, denoting no update;
– a Borel-measurable expression u : R|V | → R, denoting a deterministic

variable assignment;
– a probability distribution u = d, denoting that the new variable value

is sampled according to d. We assume that d is integrable, i.e. that
EX∼d[|X|] < ∞ where X ∼ d denotes a random variable distributed
according to d;

– an interval u = [a, b] ⊆ R ∪ {±∞}, denoting a non-deterministic update.
We also allow one or both sides of the interval to be open.

19

2. Preliminaries

ℓinit ℓout

ℓ1

ℓ2

ℓ3

ℓ4

ℓ5

ℓ6

x < 0

x ≥ 0

r1:=Uniform([-1,0.5])

x:=x+r1

x ≥ 100

r1:=Uniform([-1,2])

x:=x+r2

x < 100

Figure 2.3: pCFG for the PP in Figure 2.2.

We assume the existence of the special terminal location denoted by ℓout . This location
only has a self-loop with a trivial guard and identity update as an outgoing transition.
We also require that each location has at least one outgoing transition, and that
each ℓ ∈ LA has a unique outgoing transition. For each location ℓ ∈ LC , we assume
that the disjunction of guards of all transitions outgoing from ℓ is equivalent to true,
i.e. ⋁︁

τ=(l,_) G(τ) ≡ true. This is done to ensure that it is always possible to execute at
least one transition, and is without loss of generality as we may introduce an additional
transition from ℓ to ℓout .

Example 2.2.2. The pCFG for the program in Figure 2.2 is provided in Figure 2.3.

States, paths and runs. A state in a pCFG C is a tuple (ℓ, x), where ℓ is a location
in C and x ∈ R|V | is a variable valuation of V . We say that a transition τ = (ℓ, ℓ′)
is enabled at a state (ℓ, x) if x |= G(τ). We say that a state (ℓ′, x′) is a successor
of (ℓ, x), if there exists an enabled transition τ = (ℓ, ℓ′) in C such that (ℓ′, x′) can be
reached from (ℓ, x) by executing τ , i.e. we can obtain x′ by applying the updates of
τ to x, if any. A finite path in C is a sequence (ℓ0, x0), (ℓ1, x1), . . . , (ℓk, xk) of states
with (ℓ0, x0) = (ℓinit , xinit) and with (ℓi+1, xi+1) being a successor of (ℓi, xi) for each

20

2.2. Probabilistic Programs

0 ≤ i ≤ k − 1. A state (ℓ, x) is reachable in C if there exists a finite path in C that
ends in (ℓ, x). A run (or execution) in C is an infinite sequence of states where each
finite prefix is a finite path. We use StateC, FpathC, RunC, ReachC to denote the set
of all states, finite paths, runs and reachable states in C, respectively. Finally, we use
Stateterm to denote the set {(ℓout , x) | x ∈ R|V |} of terminal states.

Schedulers. The behavior of a pCFG may be captured by defining a probability
space over the set of all runs in the pCFG. For this to be done, however, we need to
resolve non-determinism and this is achieved via the standard notion of a scheduler.
A scheduler in a pCFG C is a map σ which to each finite path ρ ∈ FpathC assigns a
probability distribution σ(ρ) over successor states of the last state in ρ. Since we deal
with programs operating over real-valued variables, the set FpathC may be uncountable.
To that end, we impose an additional measurability assumption on schedulers, in
order to ensure that the semantics of probabilistic programs with non-determinism is
defined in a mathematically sound way. The restriction to measurable schedulers is
standard [NK07, NSK09] hence we omit the formal definition.

Semantics of pCFGs. A pCFG C together with a scheduler σ define a stochastic
process taking values in the set of states of C, whose trajectories correspond to runs
in C. The process evolves as follows: we start in the initial state (ℓinit , xinit) and
inductively extended the path. Suppose that, at time step i, the path produced so far
is ρi and its last state is (ℓi, xi). Depending on the type of the location ℓi, the next
state (ℓi+1, xi+1) is chosen as follows:

• If ℓi ∈ LC , let τ = (ℓi, ℓ′) be the unique transition enabled at (ℓi, xi). Then
(ℓi+1, xi+1) = (ℓ′, xi);

• If ℓi ∈ LP , sample τ = (ℓi, ℓ′) from the set of all transitions outgoing from ℓi

according to the distribution defined by Pr at ℓi. Then (ℓi+1, xi+1) = (ℓ′, xi);

• If ℓi ∈ LN , sample τ = (ℓi, ℓ′) from the set of all transitions outgoing from ℓi

according to the distribution σ(ρi). Then (ℓi+1, xi+1) = (ℓ′, xi);

• If ℓi ∈ LA, let τ = (ℓi, ℓ′) be the unique transition outgoing from ℓi and let
Up(τ) = (j, u). Then:

– If u = ⊥, then (ℓi+1, xi+1) = (ℓ′, xi);
– If u : R|V | → R is a Borel-measurable expression, then (ℓi+1, xi+1) =

(ℓ′, xi[xj ← u(xi)]);
– If u = d is a probability distribution, then sample X according to u and

(ℓi+1, xi+1) = (ℓ′, xi[xj ← X]);

21

2. Preliminaries

– If u = [a, b] is a real interval, then sample X according to σ(ρi) and
(ℓi+1, xi+1) = (ℓ′, xi[xj ← X]).

Formally, a pCFG C and a scheduler σ define a probability space (RunC,FC,Pσ
(ℓinit ,xinit))

over the set of all runs in C, and a stochastic process Cσ = {Cσ
i }∞i=0 in this space

such that for each run ρ ∈ RunC we have that Cσ
i (ρ) is the i-th configuration along

the run ρ. The sigma-algebra FC is the smallest (with respect to set inclusion) sigma-
algebra under which all the functions Cσ

i , for all i ≥ 0, are FC-measurable, i.e. for
each Cσ

i and each Borel-measurable set B ∈ B(R|V |) it holds that {ρ | Cσ
i (ρ) =

(ℓ, x) with x ∈ B} ∈ FC. The formal construction of Pσ
(ℓinit ,xinit) proceeds via the

standard cylinder construction [ADD00, Theorem 2.7.2]. We denote by Eσ
(ℓinit ,xinit) the

expectation operator in the probability space (RunC,FC,Pσ
(ℓinit ,xinit)).

2.2.3 Reachability, Safety and Termination Analysis
We now formally define the qualitative and quantitative reachability and safety analysis
problems in PPs. We then define the termination analysis problems in PPs and show that
reachability analysis can be reduced to termination analysis and vice versa. While these
reductions will not be helpful for designing more efficient formal analyses, termination
analysis in more commonly studied in PP analysis literature and our goal here is to
emphasize that these are the same problems.

Consider a pCFG C = (L, V, ℓinit , xinit , ↦→, G, Pr , Up) associated to some PP and a set
S of states in C. Reachability analysis with respect to S reasons about the infimum
probability of a random program run reaching a state in S. Similarly, safety analysis
with respect to S reasons about the infimum probability of a random program run not
reaching a state in S. In both cases, the infimum is taken over all possible schedulers
that can be used to resolve non-determinism in C. Note, however, that these definitions
are not yet formal. Since our PPs may contain continuous probability distributions,
their state spaces may be uncountable and reachability and safety probabilities with
respect to an arbitrary set of states S need not be mathematically well-defined. To
that end, we need to impose the necessary measurability assumptions on S and we
achieve this by considering sets of states induced by predicate functions.

Predicate functions. A predicate function in C is a map S that to every location
ℓ ∈ L assigns a logical formula S(ℓ) over program variables in V . We require that
{x | x |= S(ℓ)} ⊆ R|V | is a Borel-measurable set for each location ℓ ∈ L. Note that
each predicate function naturally defines a set of states (ℓ, x) in C for which x |= S(ℓ).
With a slight abuse of notation, we also use S to refer to this set of states.

22

2.2. Probabilistic Programs

Reachability analysis. Given a predicate function S in C, we let Reach(S) be the
set of all runs in C that reach a state in S, i.e.

Reach(S) =
{︃

ρ ∈ RunC | ρ reaches (ℓ, x) with x |= S(ℓ)
}︃

.

Then, the reachability analysis problems with respect to S are defined as follows:

• Qualitative reachability. Prove that infσ Pσ[Reach(S)] = 1.

• Quantitative reachability. Given p ∈ [0, 1], prove that infσ Pσ[Reach(S)] ≥ p.

We say that infσ Pσ[Reach(S)] is the reachability probability of S in C.

Safety analysis. Given a predicate function S in C, we let Safe(S) be the set of all
runs in C that do not reach a state in S, i.e.

Safe(S) =
{︃

ρ ∈ RunC | ρ does not reach (ℓ, x) with x |= S(ℓ)
}︃

= RunC\Reach(S).

Then, the safety analysis problems with respect to S are defined as follows:

• Qualitative safety. Prove that infσ Pσ[Safe(S)] = 1.

• Quantitative safety. Given p ∈ [0, 1], prove that infσ Pσ[Safe(S)] ≥ p.

We say that infσ Pσ[Safe(S)] is the safety probability of S in C.

Termination analysis. A state (ℓ, x) in C is said to be a terminal state if ℓ = ℓout . A
run ρ ∈ RunC is said to be terminating if it reaches some terminal state in C. We use
Term ⊆ RunC to denote the set of all terminating runs in RunC. Then, the termination
analysis problems with respect to S are defined as follows:

• Qualitative termination. Prove that infσ Pσ[Term] = 1.

• Quantitative termination. Given p ∈ [0, 1], prove that infσ Pσ[Term] ≥ p.

We say that infσ Pσ[Term] is the termination probability of C.

23

2. Preliminaries

From reachability to termination. Note that termination analysis is just an instance
of reachability analysis with respect to the set of all terminal states in C. On the other
hand, given a predicate function S, one can trivially reduce reachability analysis with
respect to S to termination analysis in a modified pCFG. This is achieved by simply
introducing a new terminal location ℓ′out and letting the pCFG transition to ℓ′out upon
reaching a state in S. Hence, while in what follows we will focus on termination analysis
to follow the convention in PP analysis literature, all our results on termination analysis
are immediately applicable to reachability analysis as well.

2.3 Stochastic Dynamical Systems
We now define the model for stochastic dynamical systems considered in this thesis, as
well as reachability, safety and reach-avoidance analysis problems. We follow standard
terminology and definitions in stochastic dynamical systems [LZCH22, ZLHC23].

2.3.1 Formal Definitions
Stochastic dynamical systems. A discrete-time stochastic dynamical system is
defined by an equation of the form

xt+1 = f(xt, ut, ωt), x0 ∈ X0.

The function f : X × U ×N → X defines system dynamics, where

• X ⊆ Rm is a Borel-measurable system state space,

• U ⊆ Rn is a Borel-measurable control action space, and

• N ⊆ Rp is a Borel-measurable stochastic disturbance space.

We use t ∈ N0 to denote the time index, xt ∈ X the state of the system, ut ∈ U the
action and ωt ∈ N the stochastic disturbance vector at time t. The set X0 ⊆ X is the
set of initial states. The action ut is chosen according to a control policy π : X → U ,
i.e. ut = π(xt). The stochastic disturbance vector ωt is sampled according to a specified
probability distribution d over N . We assume that the dynamics function f and the
control policy π are continuous functions.

Semantics. A sequence (xt, ut, ωt)t∈N0 of state-action-disturbance triples is a tra-
jectory of the system, if for each t ∈ N0 we have ut = π(xt), ωt ∈ supp(d) and
xt+1 = f(xt, ut, ωt). For each initial state x0 ∈ X and continuous control policy
π : X → U , the system induces a Markov process which gives rise to the probability

24

2.3. Stochastic Dynamical Systems

space over the set of all trajectories that start in x0 [Put94]. We denote the probability
measure and the expectation in this probability space by Pπ

x0 and Eπ
x0 . When π and x0

are clear from the context, we omit them and write P and E, respectively.

2.3.2 Reachability, Safety and Reach-avoidance Analysis
Consider a stochastic dynamical system defined as above. We now formally define con-
troller synthesis problems under reachability, safety and reach-avoidance specifications.

Reachability analysis. Let Xt ⊆ X be a Borel-measurable target set. Let

Reach(Xt) =
{︃

(xt, ut, ωt)t∈N0 | ∃t ∈ N0. xt ∈ Xt

}︃
be the set of all trajectories that reach the target set Xt. The reachability controller
synthesis problems with respect to Xt are defined as follows:

• Qualitative reachability. Synthesize a control policy π such that, for every initial
state x0 ∈ X0, we have Pπ

x0 [Reach(Xt)] = 1.

• Quantitative reachability. Given p ∈ [0, 1], synthesize a control policy π such
that, for every initial state x0 ∈ X0, we have Pπ

x0 [Reach(Xt)] ≥ p.

Safety analysis. Let Xu ⊆ X be a Borel-measurable unsafe set. Let

Safe(Xu) =
{︃

(xt, ut, ωt)t∈N0 | ∀t ∈ N0. xt ̸∈ Xu

}︃
be the set of all trajectories that do not visit the unsafe set Xu. The safety controller
synthesis problems with respect to Xu are defined as follows:

• Qualitative safety. Synthesize a control policy π such that, for every initial state
x0 ∈ X0, we have Pπ

x0 [Safe(Xu)] = 1.

• Quantitative safety. Given p ∈ [0, 1], synthesize a control policy π such that, for
every initial state x0 ∈ X0, we have Pπ

x0 [Safe(Xu)] ≥ p.

Reach-avoidance analysis. Let Xt,Xu ⊆ X be disjoint Borel-measurable sets, called
the target set and the unsafe set, respectively. Let

ReachAvoid(Xt,Xu) =
{︃

(xt, ut, ωt)t∈N0 | ∃t ∈ N0. xt ∈ Xt ∧ (∀t′ ≤ t. xt′ ̸∈ Xu)
}︃

be the set of all trajectories that reach Xt without reaching Xu. The reach-avoid
controller synthesis problems with respect to Xt and Xu are defined as follows:

25

2. Preliminaries

• Qualitative reach-avoidance. Synthesize a control policy π such that, for every
initial state x0 ∈ X0, we have Pπ

x0 [ReachAvoid(Xt,Xu))] = 1.

• Quantitative reach-avoidance. Given p ∈ [0, 1], synthesize a control policy π such
that, for every initial state x0 ∈ X0, we have Pπ

x0 [ReachAvoid(Xt,Xu)] ≥ p.

2.4 Martingale Theory
We now provide definitions and results from probability and martingale theory that
lie at the core of our formal reasoning about infinite state stochastic systems. We
first define conditional expectation, which is a technical concept necessary to define
(super)martingales. We then define stopping times, which are random variables that
represent times at which some probabilistic events happen. Finally, we define (su-
per)martingale processes. All concepts are illustrated on examples to help develop
intuition before using these concepts for stochastic system analysis.

Conditional expectation. Let X be a random variable in a probability space
(Ω,F ,P). Let F ′ ⊆ F be a sub-σ-algebra. Intuitively, conditional expectation of
X given F ′ is an F ′-measurable random variable that behaves like X whenever its
expected value is evaluated over an event in F ′. Formally, a conditional expectation of
X given F ′ is a random variable Y such that

• Y is F ′-measurable, and

• for each A ∈ F ′, we have E[X · I(A)] = E[Y · I(A)],

where I(A) : Ω → {0, 1} is an indicator function of A defined via I(A)(ω) = 1 if
ω ∈ A, and I(A)(ω) = 0 if ω ̸∈ A. It is know that conditional expectation of X given
F ′ is guaranteed to exist whenever X is real-valued and nonnegative or real-valued and
integrable [Wil91]. Moreover, conditional expectation is almost-surely unique whenever
it exists, meaning that P[Y = Y ′] = 1 for any two conditional expectations Y and
Y ′ of X given F ′. Therefore, one may pick one such random variable as a canonical
conditional expectation and denote it by E[X | F ′].

Stopping time. A filtration in a probability space (Ω,F ,P) is a sequence (Fi)∞i=0 of
sub-σ-algebras of F which is increasing under set inclusion, so that Fi ⊆ Fi+1 for each
i ∈ N0. A stopping time with respect to the filtration (Fi)∞i=0 is a random variable
T : Ω→ N0 ∪ {∞} such that {ω ∈ Ω | T (ω) ≤ i} ∈ Fi for each i ∈ N0. Intuitively,
a stopping time describes at which time step should a process be stopped, and the
condition {ω ∈ Ω | T (ω) ≤ i} ∈ Fi says that the decision to stop at time i is based
solely on the information available up to time i.

26

2.5. Fixed-point Theory

Example 2.4.1 (Canonical filtration and reachability time). Let C be a pCFG associated
to a PP, σ be a scheduler in C and S be a predicate function in C. Consider the probability
space (ΩC,FC,Pσ) of all runs in C. The canonical filtration (Ri)∞i=0 in this probability
space is defined by letting each sub-sigma-algebra Ri of FC contain all sets A ∈ FC of
runs in Ω whose finite path prefix of length i satisfies some property. An important
example of a stopping time with respect to (Ri)∞i=0 in (ΩC,FC,Pσ) is the reachability
time TS of S. For a run ρ = (ℓi, xi)∞i=0 in C, the reachability time of S is defined as the
first hitting time of the set of states in S,i.e. TS(ρ) = inf{t ∈ N0 | xt |= S(ℓt)}. If S
is the set of all terminal states in C, this gives rise to the termination time TimeTerm.

Supermartingales. Let (Ω,F ,P) be a probability space and (Fi)∞i=0 be a filtration in
it. A supermartingale with respect to (Fi)∞i=0 is a stochastic process (Xi)∞i=0 such that

• each Xi is Fi-measurable,

• each conditional expectation E[Xi+1 | Fi] exists, and

• E[Xi+1 | Fi](ω) ≤ Xi(ω) hold for each ω ∈ Ω and i ≥ 0.

Intuitively, the last condition says that the expected value of Xi+1 given the value of
Xi has to decrease. This condition is formalized by using conditional expectation. If in
the last condition we have equality for each ω ∈ Ω and i ≥ 0, we then say that (Xi)∞i=0
is a martingale.

Example 2.4.2 (Random walk). Consider a biased 1-dimensional random walk over
the set of integers Z. The random walk starts at 0 and then in each time step mover
one step to the left with probability 2/3 and one step to the right with probability 1/3.
Formally, this random walk defines a stochastic process (Xi)∞i=0 with X0 = 0 and

Xi+1 =

⎧⎨⎩Xi − 1, with probability 2/3,

Xi + 1, with probability 1/3,

for each i ∈ N. It is easy to verify from the definition of conditional expectation that
E[Xi+1 | Xi] exists for each i ∈ N0 and that it almost-surely equals

E[Xi+1 | Xi] = 2/3 · (Xi − 1) + 1/3 · (Xi + 1) = Xi − 1/3 ≤ Xi.

Hence, the stochastic process (Xi)∞i=0 is a supermartingale.

2.5 Fixed-point Theory
We conclude these preliminaries by providing an overview of basic notions from fixed
point theory, that will be used in Section 4.

27

2. Preliminaries

Partial order. Let L be a set. A binary relation ⊑ on L is said to be a partial order
if it satisfies the following three properties:

• Reflexivity: x ⊑ x for each x ∈ L,

• Antisymmetry: x ⊑ y ∧ y ⊑ x⇒ x = y for each x, y ∈ L, and

• Transitivity: x ⊑ y ∧ y ⊑ z ⇒ x ⊑ z for each x, y, z ∈ L.

Suprema and infima. Given a set L, a partial order ⊑ over it and a subset K ⊆ L,
an element u ∈ L is said to be an upper bound of K if k ⊑ u holds for all k ∈ K.
Similarly, l ∈ L is said to be a lower bound for K if l ⊑ k holds for all k ∈ K. The
supremum ⊔K of K is a smallest upper bound of K with respect to ⊑, i.e. an upper
bound such that for any other upper bound u of K we have ⊔K ⊑ u. Similarly, the
infimum ⊓K of K is a largest lower bound of K with respect to ⊑, i.e. a lower bound
such that for any other lower bound l of K we have l ⊑ ⊓K.

Lattice. A partial order (L,⊑) is said to be a lattice if L is non-empty and the
supremum x ⊔ y and the infimum x ⊓ y exist for every two elements {x, y} ⊆ L. A
lattice is said to be ω-complete if for any ascending chain x1 ⊑ x2 ⊑ . . . in L there
exists the supremum of the chain ⊔∞i=1xi.

Monotone and ω-continuous functions. Given a partial order (L,⊑), a function
f : L → L is monotone if for every x1 ⊑ x2 in L we have f(k1) ⊑ f(k2). Given an
ω-complete lattice (L,⊑), a function f : L → L is ω-continuous if for every ascending
chain x1 ⊑ x2 ⊑ . . . in L we have f(⨆︁{xn}∞i=0) = ⨆︁{f(xi)}∞i=0.

Fixed Points. Given an ω-complete lattice (L,⊑) and a function f : L → L, an
element x ∈ L is a pre-fixed point if f(x) ⊑ x, a post-fixed point if f(x) ⊒ x and a
fixed point if f(x) = x. The least fixed point of f , denoted by lfpf , is the fixed point
that is smaller than any other fixed point. Analogously, the greatest fixed point of f ,
denoted by gfpf , is the fixed point that is larger than any other fixed point.

28

CHAPTER 3
Lexicographic Methods for

Almost-sure Termination Analysis in
PPs

This section is based on the following publications:

• Krishnendu Chatterjee, Ehsan Kafshdar Goharshady, Petr Novotný, Jiří Zárevúcky,
Ðorđe Žikelić.† On Lexicographic Proof Rules for Probabilistic Termination. In
Formal Methods - 24th International Symposium, FM 2021

• Krishnendu Chatterjee, Ehsan Kafshdar Goharshady, Petr Novotný, Jiří Zárevúcky,
Ðorđe Žikelić.† On Lexicographic Proof Rules for Probabilistic Termination. In
Formal Aspects of Computing, FAC 2023

3.1 Introduction
Qualitative termination/reachability analysis. In this section, we consider the
qualitative (a.k.a. almost-sure) termination/reachability analysis problem in PPs. Re-
call, in Section 2.2.3 we showed that reachability analysis in PPs can be reduced to
termination analysis in PPs. While ranking supermartingales (RSMs) [CS13] present a
prominent approach to proving almost-sure termination, they are not compositional
and are hard to synthesize in PPs with complex control-flow structure. Lexicographic
ranking supermartingales (LexRSMs) [ACN18] present a multi-dimensional extension

†Authors ordered alphabetically.

29

3. Lexicographic Methods for Almost-sure Termination Analysis in PPs

of RSMs, that generalize lexicographic ranking functions for termination proving in
non-probabilistic programs. The goal of this section is to advance the state of the art
of lexicographic proof rules for qualitative termination analysis in PPs.

Lexicographic proof rules for non-probabilistic programs. For non-probabilistic
programs, the termination problem asks whether a given program always terminates.
While the problem is well-known to be undecidable over Turing-complete programs,
many sound automated techniques that work well for practical programs have been
developed [CPR06, CPR11]. Such techniques typically seek a suitable certificate of
termination. Particularly relevant certificate is a ranking function (RF) [Flo67, BMS05a,
CS01, SG91, PR04a, PR04b] mapping program states into a well-founded domain,
forcing a strict decrease of the function value in every step. The basic ranking functions
are 1-dimensional, which is often insufficient for complex control-flow structures and
does not allow for compositional reasoning. A lexicographic ranking function (LexRF)
is multi-dimensional extension of RFs that provide an effective approach to termination
analysis [CSZ13, ADFG10, GMR15, BCI+16, BMS05a, BCF13]. The literature typically
restricts to linear LexRFs for linear-arithmetic (LA) programs, as LA reasoning can be
more efficiently automated compared to non-linear arithmetic.

Lexicographic proof rules for PPs. For PPs, the almost-sure (a.s.) termination
problem asks whether a given PP terminates with probability 1. One way of proving
a.s. termination is via ranking supermartingales (RSMs), a probabilistic analogue of
ranking functions named so due to the connection with (super)martingale stochastic
processes [Wil91]. There is a rich body of work on 1-dimensional RSMs, while the
work [ACN18] introduces lexicographic RSMs. In PPs, a transition τ available in some
state s yields a probability distribution over the successor states. The conditions defining
RSMs are formulated in terms of the expectation operator Eτ of this distribution. In
particular, lexicographic ranking supermartingales (LexRSMs) of [ACN18] are functions
f mapping program states to Rd, such that for each transition τ there exists a
component 1 ≤ i ≤ d, satisfying, for any reachable state s at which τ is enabled,
the following conditions P-RANK and S-NNEG (with fi the i-component of f and
s |= G(τ) denoting the fact that s satisfies the guard of τ):

1. P-RANK(f, τ) ≡ s |= G(τ) ⇒
(︂
Eτ [fi(s′)] ≤ fi(s) − 1 and Eτ [fj(s′)] ≤ fj(s)

for all 1 ≤ j < i
)︂
.

2. S-NNEG(f, τ) ≡ s |= G(τ)⇒
(︂
fj(s) ≥ 0 for all 1 ≤ j ≤ d

)︂
.

(We use the standard primed notation from program analysis, i.e. s′ is the probabilistically
chosen successor of s when performing τ .) The P-RANK condition enforces an expected

30

3.1. Introduction

ℓ0 : while y ≥ 0 do
x := y;

ℓ1 : while x ≥ 0 do
x := x− 1 + Norm(0, 1)

od ;
y := y − 1

od
ℓout :

(a)

ℓ0 : while x ≥ 0 do
i f y ≥ 0 then

y := y + Uniform[−7, 1]
e l se

x := x + Uniform[−7, 1] ;
ℓ1 : y := y + Uniform[−7, 1]

f i od
ℓout :

(b)

Figure 3.1: Motivating examples. Norm(µ, σ) samples from the normal distribution
with mean µ and std. deviation σ. Uniform[a, b] samples uniformly from the interval
[a, b]. Location labels are the “ℓi”: one location per loop head and one additional
location in (b) so as to have one assignment per transition (a technical requirement for
our approach). In addition, the location label “ℓout” denotes the terminal location.

ℓ0

ℓ1

ℓout y < 0

y ≥ 0

(x, u1)

x < 0

(y, u3)

x ≥ 0

(x, u2)

ℓ0

ℓ1

ℓout x < 0

x ≥ 0 ∧ y ≥ 0

(y, u1)(y, u3)

x ≥ 0 ∧ y < 0

(x, u2)

Figure 3.2: The pCFGs of the programs presented in Figure 3.1 (see Section 2.2 for a
formal definition of pCFGs). Guards are shown in the rounded boxes, (absence of a
box means that the guard is true). The update tuples are shown using variable aliases
instead of indexes for better readability. On the left, we have u1 = y, u2 = x − 1 +
Norm(0, 1), and u3 = y − 1. On the right, we have u1 = y + Uniform[−7, 1], u2 =
x + Uniform[−7, 1], and u3 = y + Uniform[−7, 1]

decrease in lexicographic ordering, while S-NNEG stands for “strong non-negativity”.
Proving the soundness of LexRSMs for proving a.s. termination is highly non-trivial
and requires reasoning about complex stochastic processes [ACN18]. Apart from
soundness, [ACN18] also discusses compositionality aspects of LexRSMs in PPs and
presents an algorithm for the synthesis of linear LexRSMs in linear PPs.

31

3. Lexicographic Methods for Almost-sure Termination Analysis in PPs

Limitations of LexRSMs. While LexRSMs improved the applicability of a.s. termina-
tion proving, their usage is impeded by the restrictiveness of strong non-negativity due
to which a linear LexRSM might not exist even for simple a.s. terminating programs.
This is a serious drawback from the automation perspective, since even if such a program
admits a non-linear LexRSM, efficient automated tools that restrict to linear-arithmetic
reasoning would not be able to find it.
Consider the program in Figure 3.1a. By employing simple random-walk arguments, we
can manually prove that the program terminates a.s. A linear LexRSM proving this
needs to have a component containing a positive multiple of x at the head of the inner
while-loop (ℓ1). However, due to the sampling from the normal distribution, which
has unbounded support, the value of x inside the inner loop cannot be bounded from
below. Hence, the program does not admit a linear LexRSM. In general, the existing
1-dimensional variants of ranking supermartingales [CS13, HFCG19] as well as LexRSMs
with strong non-negativity do not handle well programs with unbounded-support distri-
butions, as they all require their components to be nonnegative in all reachable states at
which some transition is enabled. The strong nonnegativity condition is too restrictive
for automated methods that reason over linear arithmetic, and existing methods that
reason over linear arithmetic cannot prove even that the inner loop of the program in
Figure 3.1a (also shown in Fig. 3.3) terminates a.s.
Now consider the program in Figure 3.1b. It can be again shown that this PP terminates
a.s.; however, this cannot be witnessed by a linear LexRSM: to rank the “if-branch”
transition, there must be a component with a positive multiple of y in ℓ0. But y can
become arbitrarily negative within the else branch, and cannot be bounded from below
by a linear function of x.

Contributions. The contributions of this chapter are as follows:

1. Generalized Lexicographic RSMs. In the non-probabilistic setting, strong non-
negativity can be relaxed to partial non-negativity (P-NNEG), where only the
components which are to the left of the “ranking component” i (inclusive)
need to be non-negative (Ben-Amram–Genaim RFs [BAG15]). We show that
in the probabilistic setting, the same relaxation is possible under additional
expected leftward non-negativity constraint EXP-NNEG. Formally, we say that
f is a generalized lexicographic ranking supermartingale (GLexRSM) if for any
transition τ there is 1 ≤ i ≤ d such that for any reachable state s at which τ is
enabled we have P-RANK(f, τ) ∧ P-NNEG(f, τ) ∧ EXP-NNEG(f, τ), where

P-NNEG(f, τ) ≡ s |= G(τ)⇒
(︂
fj(s) ≥ 0 for all 1 ≤ j ≤ i

)︂
EXP-NNEG(f, τ) ≡ s |= G(τ)⇒

(︂
Eτ [fj(s′) · I<j(s′)] ≥ 0 for all 1 ≤ j ≤ i

)︂
,

32

3.1. Introduction

with I<j the indicator function of the set of all states in which a transition ranked
by a component < j is enabled. We first formulate GLexRSMs as an abstract proof
rule for general stochastic processes. We then instantiate them into the setting
of PPs and define GLexRSM maps, which we prove to be sound for proving a.s.
termination. These results are general and not specific to linear-arithmetic PPs.

2. Polynomial Algorithms for Linear GLexRSMs. We present two algorithms:

a) For linear arithmetic PPs in which sampling instructions use bounded-
support distributions and non-deterministic variable update instructions use
bounded-support intervals, we show that the problem LinGLexPP of
deciding whether a given PP with a given set of linear invariants admits
a linear GLexRSM is decidable in polynomial time. Also, our algorithm
computes the witnessing linear GLexRSM whenever it exists. In particular,
our approach proves the a.s. termination of the program in Fig. 3.1b.

b) Building on results of item 1, we construct a sound polynomial-time al-
gorithm for a.s. termination proving in PPs that do perform sampling
from unbounded-support distributions. In particular, the algorithm proves
a.s. termination for our motivating example in Fig. 3.1a.

3. First linear-arithmetic martingale-based method for unbounded-support distribu-
tions. Finally, while the focus of our work is on relaxing the restrictive strong
non-negativity assumption of LexRSMs, we remark that our theoretical and algo-
rithmic results also yield the first automated method that operates over linear
arithmetic and can prove a.s. termination in PPs in which termination depends
on sampling instructions from double-sided unbounded support probability dis-
tributions. For instance, termination behavior of the simple loop in Fig. 3.3 is
determined by values sampled from the standard normal distribution. Any linear
arithmetic martingale-based certificate admitted by this program would need to
have a vanishing linear coefficient of the sampled variable for the certificate to be
non-negative, hence this program does not admit any martingale-based certificate
that imposes the strong non-negativity condition. To the best of our knowledge,
the only exception are descent supermartingale maps (DSMs) of [HFCG19] which
replace the strong non-negativity assumption by the bounded difference condition
that requires bounded maximal change in value at every program state. However,
the program in Fig. 3.3 does not admit a linear arithmetic DSM either, as the
sampled value from the standard normal distribution is unbounded therefore the
linear coefficient of the sampled variable in the DSM would need to be 0. Since
our method relaxes the strong non-negativity assumption while not introducing
the bounded difference condition, it presents the first method that operates over
linear arithmetic and can prove a.s. termination of the PP presented in Fig. 3.3.

33

3. Lexicographic Methods for Almost-sure Termination Analysis in PPs

ℓ0 : while x ≥ 0 do
x := x− 1 + Norm(0, 1)

od
ℓout :

Figure 3.3: A simple loop that terminates a.s. and involves sampling from the standard
normal distribution which has unbounded support. However, no existing martingale-
based method that reasons over linear arithmetic can prove its a.s. termination.

Chapter organization. This chapter is split in two parts: the first one is “abstract”,
with the definition and soundness proof of abstract GLexRSMs (Section 3.2). We
also present an example showing that “GLexRSMs” without the expected leftward
non-negativity constraint are not sound. The second part covers application to PPs: a
GLexRSM-based proof rule for a.s. termination (Section 3.3) and our algorithms for
a.s. termination analysis in PPs (Section 3.4). We overview related work in Section 3.5.
Finally, Section 3.6 contains full proofs of results presented in earlier sections that are
deferred to this section in order to enhance readability.

3.2 Generalized Lexicographic Ranking
Supermartingales

In this section, we introduce the notion of generalized lexicographic ranking super-
martingales (GLexRSMs) – an abstract concept that is not necessarily connected to PPs,
but which is crucial for the soundness of our new proof rule for a.s. termination. The
following section heavily relies on preliminary background in probability and martingale
theory, see Sections 2.1 and 2.4.

Defintion 3.2.1 (Generalized Lexicographic Ranking Supermartingale). Let (Ω,F ,P)
be a probability space and let (Ft)∞t=0 be a filtration of F . Suppose that T is a stopping
time w.r.t. F . An n-dimensional real valued stochastic process (Xt)∞t=0 is a generalized
lexicographic ranking supermartingale for T (GLexRSM) if:

1. For each t ∈ N0 and 1 ≤ j ≤ n, the random variable Xt[j] is Ft-measurable.

2. For each t ∈ N0, 1 ≤ j ≤ n, and A ∈ Ft+1, the conditional expectation
E[Xt+1[j] · I(A) | Ft] exists.

3. For each t ∈ N0, there exists a partition of the set {T > t} into n subsets
Lt

1, . . . , Lt
n, all of them Ft-measurable (i.e., belonging to Ft), such that for each

1 ≤ j ≤ n

34

3.2. Generalized Lexicographic Ranking Supermartingales

• E[Xt+1[j] | Ft](ω) ≤ Xt[j](ω) for each ω ∈ ∪n
j′=jL

t
j′ ,

• E[Xt+1[j] | Ft](ω) ≤ Xt[j](ω)− 1 for each ω ∈ Lt
j,

• Xt[j](ω) ≥ 0 for each ω ∈ ∪n
j′=jL

t
j′ ,

• E[Xt+1[j] · I(∪j−1
j′=0L

t+1
j′) | Ft](ω) ≥ 0 for each ω ∈ ∪n

j′=jL
t
j′ , with Lt+1

0 =
{T ≤ t + 1}.

Intuitively, we may think of each ω ∈ Ω as a trajectory of process that evolves over
time (in the second part of the chapter, this will be a PP run). Then, Xt is a vector
function depending on the first t time steps (each Xt[j] is Ft-measurable), while T is
the time at which the trajectory is stopped. Then in point 3 of the definition, the first
two items encode the expected (conditional) lexicographic decrease of Xt, the third
item encodes non-negativity of components to the left (inclusive) of the one which
“ranks” ω in step t, and the last item encodes the expected leftward non-negativity
(sketched in Section 1). For each 1 ≤ j ≤ n and time step t ≥ 0, the set Lt

j contains
all ω ∈ {T > t} which are “ranked” by the component j at time t. An instance of an
n-dimensional GLexRSM {Xt}∞t=0 is a tuple (X∞t=0, {Lt

1, . . . , Lt
n}∞t=0), where the second

component is a sequence of partitions of Ω satisfying the condition in Definition 3.2.1.
We say that ω ∈ Ω has level j in step t of the instance ((Xt)∞t=0, (Lt

1, . . . , Lt
n)∞t=0) if

T (ω) > t and ω ∈ Lt
j. If T (ω) ≤ t, we say that the level of ω at step t is 0.

We now state the main theorem of this section, which underlies the soundness of our
new method for proving almost-sure termination.

Theorem 3.2.2. Let (Ω,F ,P) be a probability space, (Ft)∞t=0 a filtration of F and
T a stopping time w.r.t. F . If there is an instance ((Xt)∞t=0, (Lt

1, . . . , Lt
n)∞t=0) of a

GLexRSM over (Ω,F ,P) for T , then P[T <∞] = 1.

In [ACN18], a mathematical notion of LexRSMs is defined and a result for LexRSMs
analogous to our Theorem 3.2.2 is established. Thus, the first part of our proof mostly
resembles the proof of Theorem 3.3. in [ACN18], up to the point of defining the
stochastic process (Yt)∞t=0 in eq. (3.1). After that, the proof of [ACN18] crucially relies
on nonnegativity of each Xt[j] and Yt at every ω ∈ Ω that is guaranteed by LexRSMs,
and it cannot be adapted to the case of GLexRSMs. Below we first show that, for
GLexRSMs, E[Yt] ≥ 0 for each t ≥ 0, and then we present a very elegant argument via
the Borel-Cantelli lemma [Wil91, Theorem 2.7] which shows that this boundedness of
expectation is sufficient for the theorem claim to hold.

Proof of Theorem 3.2.2. We proceed by contradiction. Suppose that there exists an
instance of a GLexRSM but that P[T = ∞] > 0. First, we claim that there exists
1 ≤ k ≤ n and s, M ∈ N0 such that the set B of all ω ∈ Ω for which the following

35

3. Lexicographic Methods for Almost-sure Termination Analysis in PPs

properties hold has positive measure, i.e. P[B] > 0: (1) T (ω) =∞, (2) Xs[k](ω) ≤M ,
(3) for each t ≥ s, the level of ω at step t is at least k, and (4) the level of ω equals k
infinitely many times.

The claim is proved by several applications of the union bound. For each ω ∈ Ω, we
define minlev(ω) to be the smallest 0 ≤ j ≤ n such that the level of ω is equal to j in
infinitely many steps i. Let Bk = {ω ∈ Ω | T (ω) = ∞∧min-lev(ω) = k} for each
1 ≤ k ≤ n. Then

{ω ∈ Ω | T (ω) =∞} = ∪n
k=1Bk,

and thus, by the union bound, there exists 1 ≤ k ≤ n for which P[Bk] > 0. We may
express Bk as a union of events over the time of the last visit to some Li

j with j < k.
If we write Bs

k = {ω ∈ Ω | T (ω) =∞∧ (i ≥ s⇒ ω ∈ ∪n
j=kLi

j} for each s ∈ N0, we
have that Bk = ∪s≥0B

s
k. As by the union bound P[Bk] ≤ ∑︁∞

s=0 P[Bs
k], there exists

s ∈ N0 for which P[Bs
k] > 0. Now, for each M ∈ N0, let Bs,M

k be defined via

Bs,M
k = {ω ∈ Bs

k | Xs[k] ≤M}.

Then Bs
k = ∪∞M=0B

s,M
k . By the union bound we have P[Bs

k] ≤ ∑︁∞
M=0 P[Bs,M

k], and
there exists M ∈ N0 such that P[Bs,M

k] > 0. The set B = Bs,M
k satisfies the conditions

of the claim. Since B is defined in terms of tail properties of ω (“level is at least k
infinitely many times”) it is not necessarily Ft-measurable for any t. Hence, we define
a stochastic process (Yt)∞t=0 such that each Yt is Ft-measurable, and which satisfies
the desirable properties of (Xt[k])∞t=0 on B.

Let D = {ω ∈ Ω | Xs[k](ω) ≤ M ∧ ω ∈ ∪n
j=kLs

j}. Note that D is Ft-measurable
for t ≥ s. We define a stopping time F w.r.t. (Ft)∞t=0 via F (ω) = inf{t ≥ s | ω ̸∈
∪n

j′=kLt
j′}; then a stochastic process (Yt)∞t=0 via

Yt(ω) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, if ω ̸∈ D,

M, if ω ∈ D, and t < s,

Xt[k](ω), if ω ∈ D, t ≥ s and F (ω) > t,

XF (ω)[k](ω), else.

(3.1)

A straightforward argument (presented in Section 3.6.1) shows that for each t ≥ s we
have E[Yt+1] ≤ E[Yt]− P[Lt

k ∩D ∩ {F > t}]. By a simple induction we obtain:

E[Ys] ≥ E[Yt] +
t−1∑︂
r=s

P[Lr
k ∩D ∩ {F > r}]. (3.2)

36

3.2. Generalized Lexicographic Ranking Supermartingales

Now, we show that E[Yt] ≥ 0 for each t ∈ N0. The claim is clearly true for t < s, so
suppose that t ≥ s. We can then expand E[Yt] as follows

E[Yt] = E[Yt · I(F = s)] +
t∑︂

r=s+1
E[Yt · I(F = r)] + E[Yt · I(F > t)]

(Ys ≥ 0 as D ⊆ ∪n
j=kLs

j and Yt(ω) ≥ 0 whenever F (ω) > t)

≥
t∑︂

r=s+1
E[Yt · I(F = r)] =

t∑︂
r=s+1

E[Yt · I({F = r} ∩D)]

(Yt(ω) = XF (ω)[k](ω) whenever ω ∈ D, t ≥ s and F (ω) ≤ t)

=
t∑︂

r=s+1
E[Xr[k] · I(∪k−1

j=0Lr
j) · I({F > r − 1} ∩D)]

(properties of cond. exp. & I({F > r − 1} ∩D) is Fr−1-measurable)

=
t∑︂

r=s+1
E

[︃
E[Xr[k] · I(∪k−1

j=0Lr
j) | Fr−1] · I({F > r − 1} ∩D)

]︃
≥ 0

(E[Xr[k] · I(∪k−1
j=0Lr

j) | Fr−1](ω) ≥ 0 for ω ∈ {F > r − 1} ⊆ ∪n
j=kLr−1

j).

Plugging into eq. (3.2) that E[Yt] ≥ 0, we get E[Ys] ≥
∑︁t−1

r=s P[Lr
k ∩D ∩ {F > r}] for

each t ≥ s. By letting t→∞, we conclude E[Ys] ≥
∑︁∞

r=s P[Lr
k ∩D ∩ {F > r}]. As

Ys ≤M and Ys = 0 outside D, we know that E[Ys] ≤M · P[D]. We get
∞∑︂

r=s

P[Lr
k ∩D ∩ {F =∞}] ≤

∞∑︂
r=s

P[Lr
k ∩D ∩ {F > r}] ≤M · P[D] <∞.

By the Borel-Cantelli lemma, P[Lr
k ∩D ∩ {F = ∞} for infinitely many r] = 0. But

the event {Lr
k ∩ D ∩ {F = ∞} for infinitely many r} is precisely the set of all runs

ω ∈ Ω for which (1) T (ω) = ∞ (as ω never has level zero by ω ∈ Lr
k for inf. many

k), (2) Xs[k](ω) ≤ M , (3) for each r ≥ s the level of ω at step t is at least k,
and (4) the level of ω is k infinitely many times. Hence, B = {Lr

k ∩ D ∩ {F =
∞} for infinitely many r} and P[B] = 0, a contradiction.

GLexRSMs would be unsound without the expected leftward nonnegativity.

Example 3.2.1. Consider a one-dimensional stochastic process (Yt)∞t=0 s.t. Y0 = 1
with probability 1 and then the process evolves as follows: in every step t, if Yt ≥ 0,
then with probability pt = 1

4 ·
1
2t we put Yt+1 = Yt − 2

pt
and with probability 1 − pt

we put Yt+1 = Yt + 1
1−pt

. If Yt < 0, we put Yt+1 = Yt. The underlying probability
space can be constructed by standard techniques and we consider the filtration (Ft)∞t=0
s.t. Ft is the smallest sub-sigma-algebra making Yt measurable. Finally, consider the
stopping time T returning the first point in time when Yt < 0. Then T < ∞ if and

37

3. Lexicographic Methods for Almost-sure Termination Analysis in PPs

only if the process ever performs the update Yt+1 = Yt − 2
pt

, but the probability that
this happens is bounded by 1

4 + 3
4 ·

1
8 + 3

4 ·
7
8 ·

1
16 + · · · < 1

4
∑︁∞

t=0
1
2t = 1

2 < 1. At the
same time, putting Lt

1 = {Yt ≥ 0} we get that the tuple ((Yt)∞t=0, (Lt
1)∞t=0) satisfies all

conditions of Definition 3.2.1 apart from the last bullet of point 3.

3.3 GLexRSMs for Probabilistic Programs
We now define a syntactic proof rule for a.s. termination of PPs based on GLexRSMs,
showing its soundness via Theorem 3.2.2. To formally define our new proof rule,
we first need to define the notions of measurable maps, generalized transitions and
pre-expectation. In what follows, let C = (L, V, ℓinit , xinit , ↦→, G, Pr , Up) be a pCFG.

Defintion 3.3.1 (Measurable map). An n-dimensional measurable map (MM) is a
vector η = (η1, . . . , ηn), where each ηi is a function mapping each location ℓ to a
real-valued Borel-measurable function ηi(ℓ) over program variables. We say that η
is a linear expression map (LEM) if ηi(ℓ) is representable by a linear expression over
program variables for each 1 ≤ i ≤ n and for each location ℓ in C.

Next, we define generalized transitions in pCFGs. Intuitively, these are identical to
transitions in pCFGs as defined in Section 2.2, except that all transitions outgoing from
some probabilistic branching location are merged into one generalized transition. Think-
ing about generalized transitions will simplify reasoning about probability distributions
of successor states upon executing one step in the pCFG and will allow simultaneous
ranking of all transitions outgoing from a probabilistic branching location.

Defintion 3.3.2 (Generalized transition). Consider a pCFG C = (L, V, ℓinit , xinit , ↦→
, G, Pr , Up) and the partition L = LC ∪LN ∪LA∪LP of its locations as in Section 2.2.
A generalized transition is defined as either

• a transition τ = (ℓ, ℓ′) ∈ ↦→ with ℓ ∈ LC ∪ LN ∪ LA, i.e. τ is induced by a
transition whose source location is not a location of probabilistic branching, or

• a tuple τ = (ℓ, δ), where ℓ ∈ LP and δ is a probability distribution over locations
in C with δ(ℓ′) = Pr((ℓ, ℓ′)) for each transition (ℓ, ℓ′) ∈ ↦→ outgoing from ℓ, i.e. τ
is induced by a probabilistic branching in C.

We use ∆NP B to denote the set of all generalized transitions that are not induced
by a probabilistic branching (defined in the first item above), ∆P B to denote the set
of all generalized transitions that are induced by a probabilistic branching (defined in
the second item above), and ∆ = ∆NP B ∪∆P B to denote the set of all generalized

38

3.3. GLexRSMs for Probabilistic Programs

transitions. With a slight abuse of notation, we identify each generalized transition in
∆NP B with the transition in C that induces it.

In both cases above, we say that ℓ is the source location of τ . For a generalized
transition τ , we define its guard G(τ) via G(τ) = G((ℓ, ℓ′)) if τ = (ℓ, ℓ′) with ℓ ∈ LC

being a location of conditional branching, and G(τ) = true otherwise.

The notion of pre-expectation was introduced in [Koz85], was made syntactic in
the Dijkstra wp-style in [MM99], and was extended to programs with continuous
distributions in [CS13]. It formalizes the “one-step” expectation operator Eτ we used
on an intuitive level in the introduction. In what follows, we generalize the definition of
pre-expectation presented in [CS13] in order to allow taking expectation over subsets
of successor states in C (a necessity for handling the EXP-NNEG constraint). We
say that a set S of states in C is measurable, if for each location ℓ in C we have
that {x ∈ R|V | | (ℓ, x) ∈ S} ∈ B(R|V |), i.e. it is in the Borel sigma-algebra of R|V |.
Furthermore, we also differentiate between the maximal and minimal pre-expectation,
which may differ in the case of non-determinism in programs and intuitively are equal to
the maximal resp. minimal value of the next-step expectation over all non-deterministic
choices. Let η be a 1-dimensional MM, τ a generalized transition and S be a measurable
set of states in C. We denote by max-preτ

η,S(s) the maximal pre-expectation of η in τ
given S (i.e. the maximal expected value of η after making a step from s computed over
successor states belonging to S), and similarly we denote by min-preτ

η,S the minimal
pre-expectation of η in τ given S. In what follows, we use I(S) to denote a function
which to each state (ℓ, x) assigns 1 if (ℓ, x) ∈ S and 0 otherwise.

Defintion 3.3.3 (Pre-expectation). Let η be a 1-dimensional MM, τ be a generalized
transition with source location ℓ and S be a measurable set of states in C. A maximal
pre-expectation of η in τ given S is the function max-preτ

η,S assigning to each state
(ℓ, x) the following value:

1. If τ = (ℓ, δ) with ℓ ∈ LP , then

max-preτ
η,S(ℓ, x) =

∑︂
ℓ′∈L

δ(ℓ′) · η(ℓ′, x) · I(S)(ℓ′, x).

2. If τ = (ℓ, ℓ′) with ℓ ∈ LC ∪ LN then:

max-preτ
η,S(ℓ, x) = η(ℓ′, x) · I(S)(ℓ′, x).

3. If τ = (ℓ, ℓ′) with ℓ ∈ LA, then:

• If Up(τ) = (j,⊥), then max-preτ
η,S(ℓ, x) = η(ℓ′, x) · I(S)(ℓ′, x).

39

3. Lexicographic Methods for Almost-sure Termination Analysis in PPs

• If Up(τ) = (j, u) with u : R|V | → R an expression, then

max-preτ
η,S(ℓ, x) = η(ℓ′, x[xj ← u(xi)]) · I(S)(ℓ′, x[xj ← u(xi)]).

• If Up(τ) = (j, u) with u = d a probability distribution, then

max-preτ
η,S(ℓ, x) = EX∼d

[︃
η(ℓ′, x[xj ← X) · I(S)(ℓ′, x[xj ← X])

]︃
.

• If Up(τ) = (j, u) with u = [a, b] a non-deterministic interval, then

max-preτ
η,S(ℓ, x) = sup

X∈[a,b]

[︃
η(ℓ′, x[xj ← X) · I(S)(ℓ′, x[xj ← X])

]︃
.

A minimal pre-expectation is denoted by min-preτ
η,S and is defined analogously, with

the only difference being that in the last item we use inf instead of sup. We omit the
subscript S when S is the set of all states of C.

GLexRSM-Based Proof Rule for Almost-Sure Termination. We now present
our GLexRSM-based proof rule for a.s. termination proving. Given n ∈ N, we call a
map lev : ∆ → {0, 1, . . . , n} a level map. For τ ∈ ∆ we say that lev(τ) is its level.
The level of a state is the largest level of any generalized transition enabled at that
state. We denote by S≤j

lev the set of states with level ≤ j.

As in the case of non-probabilistic programs, termination certificates are supported by
program invariants over-approximating the set of reachable states. An invariant in C is
a function I which to each location ℓ of C assigns a Borel-measurable set I(ℓ) ⊆ R|V |
such that for any state (ℓ, x) reachable in C it holds that x ∈ I(ℓ). If each I(ℓ) is
given by a conjunction of linear inequalities over program variables, we say that I is a
linear invariant.

Defintion 3.3.4 (GLexRSM Map). Let η be an n-dimensional MM and I an invariant
in C. We say that η is a generalized lexicographic ranking supermartingale map
(GLexRSM map) supported by I, if there is a level map lev : ∆→ {0, 1, . . . , n} such
that lev(τ) = 0 iff τ is a self-loop generalized transition at ℓout , and for any generalized
transition τ with the source location ℓ ̸= ℓout the following conditions hold:

1. P-RANK(η, τ) ≡ x ∈ I(ℓ) ∩ G(τ) ⇒
(︂
max-preτ

ηlev(τ)
(ℓ, x) ≤ ηlev(τ)(ℓ, x) − 1 ∧

max-preτ
ηj

(ℓ, x) ≤ ηj(ℓ, x) for all 1 ≤ j < lev(τ)
)︂
;

2. P-NNEG(η, τ) ≡ x ∈ I(ℓ) ∩G(τ)⇒
(︂
ηj(ℓ, x) ≥ 0 for all 1 ≤ j ≤ lev(τ)

)︂
;

40

3.3. GLexRSMs for Probabilistic Programs

3. EXP-NNEG(η, τ) ≡ x ∈ I(ℓ) ∩ G(τ) ⇒ min-preτ
ηj ,S≤j−1

lev
(ℓ, x) ≥ 0 for all

1 ≤ j ≤ lev(τ).

A GLexRSM map η is linear (or LinGLexRSM map) if it is also an LEM.

Theorem 3.3.5 (Soundness of GLexRSM-maps for a.s. termination). Let C be a pCFG
and I an invariant in C. Suppose that C admits an n-dimensional GLexRSM map η
supported by I, for some n ∈ N. Then C terminates a.s.

Theorem 3.3.5 instantiates Theorem 3.2.2 to probability spaces of pCFGs and its proof
can be found in Section 3.6.2. We stress that the instantiation is not straightforward. In
particular, in proving it we establish two interesting results on PPs with non-determinism
that were hitherto not studied in the PP analysis literature. In the rest of this section,
we discuss these results in more detail. The proof of Theorem 3.3.5 uses these results to
prove that a GLexRSM map induces a GLexRSM as in Definition 3.2.1 in the probability
space over the set of runs defined by the pCFG.

First, to ensure that a scheduler cannot “escape” ranking by intricate probabilistic
mixing of transitions, we show that in order to prove a.s. termination, it is sufficient
to consider deterministic schedulers, which do not introduce randomization among
transitions. This statement is formalized in the following proposition. In what follows,
we use {TimeTerm =∞} to denote the set of all runs in C whose termination time is
infinite, i.e. of all runs that do not terminate.

Proposition 3.3.6. Let C be a pCFG and suppose that there exist a measurable
scheduler σ and an initial state (ℓinit , xinit) such that Pσ

ℓinit ,xinit [TimeTerm =∞] > 0.
Then there exists a measurable scheduler σ∗, which is deterministic in the sense
that to each finite path it assigns a single transition with probability 1, such that
Pσ∗

ℓinit ,xinit [TimeTerm =∞] > 0.

Proof sketch, full proof in Section 3.6.2. The proof of Proposition 3.3.6 proceeds by
constructing a sequence σ = σ0, σ1, σ2, . . . of schedulers, where for each i ∈ N0 we
have that σi+1 and σi agree on histories of length at most i− 1, and σi+1 ”refines” σi

on histories of length i in such a way that:

• σi+1 is deterministic on histories of length at most i;

• σi+1 is measurable;

• Pσi+1 [TimeTerm =∞] ≥ Pσi [TimeTerm =∞].

41

3. Lexicographic Methods for Almost-sure Termination Analysis in PPs

Then we define the scheduler σ∗ as σ∗(ρ) = σi(ρ) whenever the length of a finite
history ρ is i. The construction of each σi+1 requires care as it needs to ensure that
the newly constructed scheduler is measurable, that it satisfies Pσi+1 [TimeTerm =
∞] ≥ Pσi [TimeTerm =∞], and finally that the resulting scheduler σ∗ is measurable.
The fact that Pσ∗

ℓinit ,xinit [TimeTerm = ∞] > 0 then follows by the application of the
Monotone Convergence Theorem [Wil91]. The formal construction is highly non-trivial
and uses advanced results from probability theory.

Second, previous martingale-based certificates of a.s. termination [FH15, CFNH18,
FC19, ACN18] often impose either nonnegativity or integrability of random variables
defined by measurable maps in programs to ensure that their conditional expectations
exist. We show that these conditional expectations exist even without such assumptions
and in the presence of nondeterminism, and that they can be explicitly expressed by
extending the definition of pre-expectation in [CS13] to also depend on a fixed scheduler
that is used to resolve non-determinism. This generalizes the result of [CS13] to PPs
with nondeterminism.

Defintion 3.3.7 (Pre-expectation with respect to a scheduler). Let S be a set of
measurable states in C. The pre-expectation with respect to a scheduler σ of a MM η
given S is a map preσ,η,S : FpathC → R defined as follows. Let ρ ∈ FpathC be a finite
path ending in (ℓ, x). We define preσ,η,S(ρ) as follows:

1. If ℓ ∈ LN is a location of non-deterministic branching, denote by σ(ρ) the
probability distribution over (generalized) transitions enabled in (ℓ, x) defined by
the scheduler σ. Then

preσ,η,S(ρ) =
∑︂

τ∈supp(σ(ρ))
σ(ρ)(τ) · preτ

σ,η,S(ℓ, x).

2. Otherwise, let τ be the unique generalized transition with source location ℓ. Then

preσ,η,S(ρ) = preτ
σ,η,S(ℓ, x),

where preτ
σ,η,S is defined in the same way as the standard pre-expectation preτ

η,S,
except for the case when τ is transition (ℓ, ℓ′) whose update element is a non-
deterministic assignment from an interval, i.e. u(τ) = (j, u) with u being an
interval; in such a case, we put preτ

σ,η,S(ℓ, x) = η(ℓ′, x(j ← E[dσ(ρ, τ) · I(S)]).

Intuitively, preσ,η,S takes a finite path ρ ∈ FpathC as an input, and returns the expected
value of η in the next step when the integration is performed over program states in
S, given the program run history and the choices of the scheduler σ. In the proof
of Theorem 3.3.5 we show that, for any scheduler σ, all conditional expectations

42

3.4. Algorithms for Linear Probabilistic Programs

whose existence is required in order to define a GLexRSM as in Definition 3.2.1 in the
probability space over the set of runs defined by the pCFG C and the scheduler σ indeed
exist and can be expressed via pre-expectations with respect to the scheduler σ.

Remark 3.3.1 (Comparison to [HFCG19]). The work [HFCG19] considers a modular
approach. Given a loop whose body has already been proved a.s. terminating, they
show that the loop terminates a.s. if it admits a 1-dimensional MM satisfying P-RANK
for each generalized transition in the loop, P-NNEG for the generalized transition
entering the loop, and the “bounded expected difference” property for all transitions.
Hence, their approach is suited mainly for PPs with incremental variable updates.
Modularity is also a feature of the approaches based on the weakest pre-expectation
calculus [MM04, MM05, MMKK18].

3.4 Algorithms for Linear Probabilistic Programs
We now present two algorithms for proving a.s. termination in a linear probabilistic
program (LinPP). The first algorithm considers LinPPs with sampling from bounded-
support distributions, and we show that the problem of deciding the existence of
LinGLexRSM maps for such LinPPs is decidable. Our second algorithm extends the
first algorithm into a sound a.s. termination prover for general LinPPs. In what follows,
let C be a LinPP and I a linear invariant in C. For both algorithms, we assume that all
non-deterministic variable updates in the LinPP use bounded-support intervals.

3.4.1 Linear Programs with Distributions of Bounded Support
Restricting to linear arithmetic is standard in automated a.s. termination proving,
allowing to encode the existence of the termination certificate into systems of linear
constraints [CS13, CFNH18, ACN18, CH20]. In the case of LinGLexRSM maps, the
difficulty lies in encoding the EXP-NNEG condition, as it involves integrating distribu-
tions in variable updates which cannot always be done analytically. We show, however,
that for LinPPs with bounded-support sampling, we can define another condition
which is easier to encode and which can replace EXP-NNEG. Formally, we say that
a distribution d ∈ D has a bounded support, if there exists N(d) ≥ 0 such that
PX∼d[|X| > N(d)] = 0. Here, we use PX∼d to denote the probability measure induced
by a random variable X with the probability distribution d. We say that a LinPP has
the bounded support property (BSP) if all distributions in the program have bounded
support. For instance, the program in Fig. 3.1b has the BSP, whereas the program in
Fig. 3.1a does not. Using the same notation as in Definition 3.3.4, we put:

W-EXP-NNEG(η, τ) ≡ x ∈ I(ℓ) ∩G(τ)⇒ ∀1 ≤ j ≤ lev(τ) min-preτ
ηj

(ℓ, x) ≥ 0.

43

3. Lexicographic Methods for Almost-sure Termination Analysis in PPs

(The ’W’ stands for “weak.”) Intuitively, EXP-NNEG requires nonnegativity of the
expected value of ηj when integrated over successor states of level smaller than j,
whereas the condition W-EXP-NNEG requires nonnegativity of the expected value of
ηj when integrated over all successor states. Since ηj is nonnegative at successor states
of level at least j, this new condition is weaker than EXP-NNEG. Nevertheless, the
following lemma shows that in order to decide existence of LinGLexRSM maps for
programs with the BSP, we may w.l.o.g. replace EXP-NNEG by W-EXP-NNEG for all
transitions but for those of probabilistic branching.

Lemma 3.4.1. Let C be a LinPP with the BSP and I be a linear invariant in C.
If a LEM η satisfies conditions P-RANK and P-NNEG for all generalized transitions,
EXP-NNEG for all generalized transitions in ∆P B and W-EXP-NNEG for all other
generalized transitions, then η may be increased pointwise by a constant value in order
to obtain a LinGLexRSM map.

Proof. To prove the lemma, we need to show that there exists K > 0 such that the
LEM η′ of the same dimension as η, and defined via η′j(ℓ, x) = ηj(ℓ, x) + K for each
component j and state (ℓ, x), is a LinGLexRSM map in C supported by I (with the
level map being the same as for η). Note that increasing η pointwise by a constant
K > 0 preserves the P-NNEG, P-RANK conditions for each generalized transition in C,
as well as EXP-NNEG for each generalized transition of probabilistic branching. Hence,
we are left to show that there exists K > 0 such that for any transition τ = (ℓ, ℓ′)
which is not a generalized transition of probabilistic branching we have
EXP-NNEG(η′, τ) ≡ x ∈ I(ℓ)∩G(τ)⇒ min-preτ

η′
j ,S≤j−1

lev
(ℓ, x) ≥ 0 for all 1 ≤ j ≤ lev(τ).

Since the LinPP that induces C satisfies the BSP property and since all non-deterministic
assignments are defined by closed intervals, there exists N > 0 such that PX∼d[|X| >
N] = 0 for each distribution d ∈ D, and [a, b] ⊆ [−N, N] for each interval [a, b]
appearing in non-deterministic assignments.
We claim that K = 2 · N · max-coeff(η) satisfies the claim, where max-coeff(η) is
the maximal absolute value of a coefficient appearing in any expression η(ℓ′) for any
location ℓ′. To prove this, let τ = (ℓ, ℓ1) be a transition which is not a generalized
transition of probabilistic branching. Let x ∈ I(ℓ) ∩G(τ) and let 1 ≤ j ≤ lev(τ). In
order to prove that min-preτ

η′
j ,S≤j−1

lev
(ℓ, x) ≥ 0 holds, we distinguish between three cases:

1. Up(τ) = ⊥ or Up(τ) = (i, u) where u is a linear expression. Then (ℓ, x) has a
single successor state (ℓ1, x1) upon executing τ .

• If the level of (ℓ1, x1) is at least j, then S≤j−1
lev contains no successor states

and we have that min-preτ
η′

j ,S≤j−1
lev

(ℓ, x) = 0 as the integration is performed
over the empty set.

44

3.4. Algorithms for Linear Probabilistic Programs

• Otherwise, S≤j−1
lev contains (ℓ1, x1) and

min-preτ
η′

j ,S≤j−1
lev

(ℓ, x) = η′j(ℓ1, x1) = ηj(ℓ1, x1)+K = min-preτ
ηj

(ℓ, x)+K ≥ 0,

where the inequality min-preτ
ηj

(ℓ, x) ≥ 0 holds since W-EXP-NNEG(η, τ).

2. If Up(τ) = (i, u) where u = d ∈ D is a probability distribution, let X ∼ d denote
a random variable distributed according to d. Then, by linearity of ηj, we have

min-preτ
η′

j ,S≤j−1
lev

(ℓ, x) = EX∼d

[︃
η′j(ℓ1, x[i← X]) · I(next state has level ≤ j − 1)

]︃
= EX∼d

[︃
(ηj(ℓ1, x[i← 0]) + K + coeff[i] ·X) · I(next state has level ≤ j − 1)

]︃
= EX∼d

[︃
(ηj(ℓ1, x[i← 0]) + coeff[i] · E[X]) · I(next state has level ≤ j − 1)

]︃
+ EX∼d

[︃
(K − coeff[i] · E[X] + coeff[i] ·X) · I(next state has level ≤ j − 1)

]︃
≥ EX∼d

[︃
min-preτ

ηj
(ℓ, x) · I(next state has level ≤ j − 1)

]︃
+ EX∼d

[︃
(K − 2 ·N ·max-coeff(η)) · I(next state has level ≤ j − 1)

]︃
≥ 0,

(3.3)

where min-preτ
ηj

(ℓ, x) ≥ 0 holds since W-EXP-NNEG(η, τ), and E[X] ≥ −N
holds and X ≥ −N holds almost-surely since PX∼d[|X| > N] = 0 by the
definition of N . Here, coeff[i] denotes the linear coefficient in ηj of the i-th
variable in the variable valuation x.

3. If Up(τ) = (i, u) where u = [a, b] denotes a non-deterministic update, then

min-preτ
η′

j ,S≤j−1
lev

(ℓ, x) = inf
X∈[a,b]∧(ℓ1,x(i←X))∈S≤j−1

lev

[︃
η′j(ℓ1, x[i← X])

]︃

≥ inf
X∈[a,b]

[︃
η′j(ℓ1, x[i← X])

]︃
= min-preτ

ηj
(ℓ, x) + K ≥ 0,

where min-preτ
ηj

(ℓ, x) ≥ 0 holds since W-EXP-NNEG(η, τ) and K ≥ 0.

Observe that the proof of Lemma 3.4.1 in item (2) essentially depends on the assumption
that we work over linear arithmetic. Indeed, the second expected value in the first
inequality in eq. (3.3) might not be possible to bounded from below by 0 for any K > 0
if we allowed non-linear arithmetic and program variable values that are not bounded.

45

3. Lexicographic Methods for Almost-sure Termination Analysis in PPs

Algorithm 3.1: Synthesis of LinGLexRSM maps in LinPPs with the BSP.
input : A LinPP C with the BSP property, linear invariant I.
output : LinGLexRSM map supported by I if it exists, otherwise ”No

LinGLexRSM map”
1 T ←− all generalized transitions in C; d ←− 0
2 while T is non-empty do
3 d ←− d + 1
4 construct LPT
5 if LPT is feasible then
6 ηd ←− LEM defined by the optimal solution of LPT
7 T ←− T \{τ ∈ T | τ is 1-ranked by ηd}
8 end
9 else return No LinGLexRSM map

10 end
11 max←− max-coeff(η)
12 N ←− constant such that all distributions and intervals supported in [−N, N]
13 for 1 ≤ j ≤ d do
14 ηj ←− ηj + 2 ·N ·max
15 end
16 return (η1, . . . , ηd)

Algorithmic results. Let LinGLexPPbounded be the set of pairs (C, I) of a pCFG
C representing a LinPP with the BSP and all non-deterministic assignments having
bounded support and a linear invariant I in C, such that C admits a LinGLexRSM map
supported by I.

Theorem 3.4.2. There is a polynomial-time algorithm deciding if a tuple (C, I) belongs
to the set LinGLexPPbounded. Moreover, if the answer is yes, the algorithm outputs
a witness in the form of a LinGLexRSM map of minimal dimension.

The algorithm behind Theorem 3.4.2 is a generalization of algorithms in [ADFG10,
ACN18] finding LinLexRFs in non-probabilistic programs and LinLexRSM maps in PPs,
respectively. The pseudocode is shown in Algorithm 3.1. Suppose that we are given a
LinPP C = (L, V, ℓinit , xinit , ↦→, G, Pr , Up) with the BSP and a linear invariant I. Our
algorithm stores a set T initialized to all generalized transitions in C. It then proceeds
in iterations to compute new components of the witness. In each iteration it searches
for a LEM η which is required to (ℓ denotes the source location of τ in each case)

1. be nonnegative on each τ ∈ T , i.e. ∀x. x ∈ I(ℓ) ∩G(τ)⇒ η(ℓ, x) ≥ 0;

46

3.4. Algorithms for Linear Probabilistic Programs

2. be unaffecting on each τ ∈ T , i.e. ∀x. x ∈ I(ℓ) ∩ G(τ) ⇒ max-preτ
η(ℓ, x)

≤ η(ℓ, x);

3. have nonnegative minimal pre-expectation for each τ ∈ T \∆P B, i.e. ∀x. x ∈
I(ℓ) ∩G(τ)⇒ min-preτ

η(ℓ, x) ≥ 0;

4. if S is the set of states in C whose all enabled generalized transitions have
been removed from T in the previous algorithm iterations, ∀τ ∈ T ∩ ∆P B,
∀x. x ∈ I(ℓ) ∩G(τ)⇒ preτ

η,S(ℓ, x) ≥ 0; and

5. 1-rank the maximal number of generalized transitions in τ ∈ T , i.e. ∀x. x ∈
I(ℓ) ∩G(τ)⇒ max-preτ

η(ℓ, x) ≤ η(ℓ, x)− 1 for as many τ as possible.

This is done by fixing an LEM template for each location ℓ in C, and converting the
above constraints to an equivalent linear program LPT in template variables via Farkas’
lemma (FL). The FL conversion (and its extension to strict inequalities [CFNH18]) is
standard in termination proving and encoding conditions 1-3 and 5 above is analogous
to [ADFG10, ACN18], hence we omit the details. To encode condition 4, let τ = (ℓ, δ) ∈
T be a generalized transition of probabilistic branching. Then supp(δ) = (ℓ1, ℓ2) as each
probabilistic branching in our PP syntax in Section 2.2 has two branches. Furthermore,
there are no variable updates, so for any x ∈ I(ℓ) ∩G(τ) we have

preτ
η,S(ℓ, x) = δ(ℓ1) · η(ℓ1, x) · I(S)(ℓ1, x) + δ(ℓ2) · η(ℓ2, x) · I(S)(ℓ2, x),

i.e. we include the term δ(ℓi) ·η(ℓi, x) for i ∈ {1, 2} whenever (ℓi, x) ∈ S. Hence, to en-
code condition 4 for τ , define G1 = ¬(∨τ ′=(ℓ1,_)∈TG(τ ′)) and G2 = ¬(∨τ ′=(ℓ2,_)∈TG(τ ′)),
and encode the following 3 conditions:

• ∀x. x ∈ I(ℓ) ∩G(τ) ∩G1 ∩G2 ⇒ δ(ℓ1) · η(ℓ1, x) + δ(ℓ2) · η(ℓ2, x) ≥ 0,

• ∀x. x ∈ I(ℓ) ∩G(τ) ∩G1 ∩ ¬G2 ⇒ δ(ℓ1) · η(ℓ1, x) ≥ 0, and

• ∀x. x ∈ I(ℓ) ∩G(τ) ∩ ¬G1 ∩G2 ⇒ δ(ℓ2) · η(ℓ2, x) ≥ 0.

Each condition can be encoded via linear constraint as in [ADFG10, ACN18]. Clearly,
the size of the encoding is polynomial. An important thing to note is that the negations
in G1 and G2 might result in strict inequalities appearing in the above constraints.
However, it was shown in [CFNH18] that this is not an issue for the Farkas’ lemma
(FL) conversion. Indeed, Lemma 4.3 in [CFNH18] shows that, whenever a system of
linear inequalities on the LHS of a constraint is feasible, the strict inequalities may
without loss of generality be replaced by non-strict inequalities. On the other hand,
Lemma 4.7 in [CFNH18] shows that this check can be done in polynomial time.

47

3. Lexicographic Methods for Almost-sure Termination Analysis in PPs

In each algorithm iteration, all generalized transitions that have been 1-ranked are
removed from T and the algorithm proceeds to the next iteration. If all generalized
transitions are removed from T , the algorithm concludes that the program admits a
LinGLexRSM map (obtained by increasing the constructed LEM by a constant defined
in the proof of Lemma 3.4.1). If in some iteration a new component which 1-ranks
at least 1 generalized transition in T cannot be found, the program does not admit a
LinGLexRSM map.

We show that Algorithm 3.1 satisfies the claim of Theorem 3.4.2.

Proof of Theorem 3.4.2. We first prove that the algorithm is sound, i.e. that η =
(η1, . . . , ηd) computed by Algorithm 3.1 is a LinGLexRSM map supported by I, and
thus that C is a.s. terminating. Define the level map lev : ∆→ {0, 1 . . . , d} with the
self loop at ℓout having level 0, and for any other generalized transition τ we define
lev(τ) as the index of algorithm iteration in which it was removed from T . The fact
that η computed in lines 1-8 in Algorithm 3.1 satisfies P-NNEG, P-RANK, EXP-NNEG
for generalized transitions of probabilistic branching and W-EXP-NNEG for all other
generalized transitions then easily follows from conditions imposed by the algorithm in
each iteration. From the proof of Lemma 3.4.1, it then follows that η obtained upon
increasing each component by a constant term in lines 9-13 satisfies EXP-NNEG for
every generalized transition. Hence η is a LinGLexRSM map supported by I and this
concludes the soundness proof.

The proof of completeness as well as of the minimality of dimension is similar in spirit
to the completeness proofs for the algorithm of [ADFG10] for computing LinLexRFs in
non-probabilistic programs and for the algorithm of [ACN18] for computing LinLexRSMs
in PPs. First, we observe that a pointwise sum of two LinGLexRSM maps supported by
I is also a LinGLexRSM map supported by I. This follows by linearity of integration and
therefore the pre-expectation operator. The argument is straightforward, thus we omit
it. However, this simple observation will be central in the rest of the proof. Suppose
first that the program admits a LinGLexRSM η′ = (η′1, . . . , η′m) supported by I. We
show that Algorithm 3.1 then finds one such LinGLexRSM map (up to a constant
term), hence the algorithm is complete. We prove this by contradiction. Suppose that
the algorithm stops after the d-th iteration, after having computed (η1, . . . , ηd) but
with T still containing at least one generalized transition. Then (η1, . . . , ηd) does not
rank every generalized transition in the pCFG. Thus, η′ ranks strictly more generalized
transitions than (η1, . . . , ηd). We distinguish two cases:

1. There exists the smallest 1 ≤ j ≤ min{d, m} such that

• for each 1 ≤ j′ < j, ηj′ and η′j′ would rank exactly the same generalized
transitions if computed by the algorithm in the j′-th iteration, but

48

3.4. Algorithms for Linear Probabilistic Programs

• η′j ranks a generalized transition which is not ranked by ηj in the j-th
iteration of the algorithm.

Then the algorithm could have ranked strictly more generalized transitions by
computing ηj + η′j instead of ηj, which contradicts the maximality condition for
computing new components that is imposed by the algorithm.

2. There is no such index. But then, since η′ = (η′1, . . . , η′m) is the LinGLexRSM
supported by I, it must follow that m > d and that η′d+1 would satisfy all the
conditions imposed by the algorithm in the (d + 1)-st iteration and it would rank
at least 1 new generalized transition, thus the algorithm couldn’t terminate after
iteration d.

Thus, in both cases we reach contradiction, and completeness of Algorithm 3.1 follows.

Minimality of dimension is proved analogously, by contradiction. If there exists a
LinGLexRSM map w.r.t. S supported by I of dimension strictly smaller by that found
by the algorithm, we can use it analogously as above to show that at some iteration
the algorithm could have ranked a strictly larger number of generalized transitions,
contradicting the maximality condition for computing new components that is imposed
by the algorithm. Thus the minimality of dimension claim follows.

We conclude by showing that our motivating example in Fig. 3.1b admits a LinGLexRSM
map supported by a very simple linear invariant. Thus, by completeness, our algorithm
is able to prove its a.s. termination.

Example 3.4.1. Consider the program in Figure 3.1b with a linear invariant I(ℓ0) =
true, I(ℓ1) = x ≥ −7. Its a.s. termination is witnessed by a LEM η(ℓ0, (x, y)) =
(1, x + 7, y + 7), η(ℓ1, (x, y)) = (1, x + 8, y + 7) and η(ℓout , (x, y)) = (0, x + 7, y + 7).
Since ∆P B = ∅ here, and since P-RANK, P-NNEG and W-EXP-NNEG are satisfied by
η, by Lemma 3.4.1, C admits a LinGLexRSM map supported by I.

3.4.2 Algorithm for general LinPPs
While imposing W-EXP-NNEG lets us avoid integration in LinPPs with the BSP, this
is no longer the case if we discard the BSP. Intuitively, the problem in imposing the
condition W-EXP-NNEG instead of EXP-NNEG for LinPPs without the BSP, is that
the set of states of smaller level over which EXP-NNEG performs integration might
have a very small probability, however the value of the LinGLexRSM component on that
set is negative and arbitrarily large in absolute value. Thus, a naive solution for general
LinPPs would be to “cut off” the tail events where the LinGLexRSM component can
become arbitrarily negative and over-approximate them by a constant value in order

49

3. Lexicographic Methods for Almost-sure Termination Analysis in PPs

to obtain a piecewise linear GLexRSM map. However, this might lead to the jump in
maximal pre-expectation and could violate P-RANK.

In what follows, we impose a slight restriction on the syntax of LinPPs that we
consider, and introduce a new condition on LEMs that allows the over-approximation
trick mentioned above while ensuring that the P-RANK condition is not violated. We
consider the subclass LinPP∗ of LinPPs in which no generalized transition of probabilistic
branching and a generalized transition with a sampling instruction share a target location.
This is a very mild restriction (satisfied, e.g. by our motivating example in Fig. 3.1b)
which is enforced for technical reasons arising in the proof of Lemma 3.4.3. Each LinPP
can be converted to satisfy this property by adding a skip instruction in the program’s
source code where necessary. Second, using the notation of Definition 3.3.4, we define
the new condition UNBOUND for a generalized transition τ as follows:

UNBOUND(η, τ) ≡ if τ = (ℓ, ℓ′) with ℓ ∈ LA and Up(τ) = (i, u) with u

a probability distribution of unbounded support, then the coefficient of
the variable with index i in ηj(ℓ′) is 0 for all 1 ≤ j < lev(τ).

The following technical lemma is an essential ingredient in the soundness proof of our
algorithm for programs in LinPP∗.

Lemma 3.4.3. Let C be a LinPP∗ and I be a linear invariant in C. If a LEM η satisfies
P-RANK and P-NNEG for all generalized transitions, EXP-NNEG for all generalized
transitions of probabilistic branching, W-EXP-NNEG for all other generalized transitions,
as well as UNBOUND, then C admits a piecewise linear GLexRSM map supported by I.

Proof sketch, full proof in Section 3.6.3. Analogously as in the proof of Lemma 3.4.1,
we may increase η by a constant term in order to ensure that all generalized transitions
satisfy EXP-NNEG, except for maybe those that in the variable update involve sampling
from a distribution of unbounded support. So, without loss of generality, assume
that η satisfies EXP-NNEG for all other generalized transitions. Denote the set of
all generalized transitions in C that involve sampling from distributions of unbounded
support by ↦→unb.

As before, denote by max-coeff(η) the maximal absolute value of a coefficient appearing
in η. Also, define N analogously as in the proof of Lemma 3.4.1, i.e. for all distributions
of bounded support that appear in sampling instructions and for all bounded intervals
appearing in non-deterministic assignments, we have that they are supported in [−N, N].
Finally, since in our definition of pCFGs in Section 2.2 we assume that each distribution
appearing in sampling instructions is integrable, we have EX∼d[|X|] < ∞ for each
d ∈ D where we use D to denote the set of all probability distributions appearing in
sampling instructions in C. Note that D is finite since the number of transitions in C

50

3.4. Algorithms for Linear Probabilistic Programs

is finite. Thus, by triangle inequality, we also have EX∼d[|X − E[X]|] < ∞. Hence,
as EX∼d[|X − E[X]| · I(|X − E[X]| < k)] → EX∼d[|X − E[X]|] as k → ∞ by the
Monotone Convergence Theorem [Wil91], for each d ∈ D there exists k(d) ∈ N such
that

EX∼d

[︃
|X − E[X]| · I

(︃
|X − E[X]| ≥ k

)︃]︃
<

1
2 ·max-coeff(η) .

for all k ≥ k(d). Define K = maxd∈D k(d), which is finite as D is finite.

Next, define the set U ⊆ {1, 2, . . . , dim(η)} × L of pairs of indices of components of
η and locations in C as follows:

U = {(j, ℓ′) | ∃τ ∈↦→unb s.t. lev(τ) = j and ℓ′ is the target location of τ}.

Thus, U is the set of pairs of indices of components of η and locations in C on which
the condition UNBOUND imposes additional template restrictions.

We define an LEM η′ which is of the same dimension as η, and for each component η′j
we define

η′j(ℓ, x) =

⎧⎨⎩0 if (j, ℓ) ∈ U and ηj(ℓ, x) < −C,

2 · ηj(ℓ, x) + 2 · C otherwise,

where C > 0 is a constant to be determined. We claim that there exists C > 0 for which
η′ is a piecewise linear GLexRSM map supported by I (with the level map being the same
as for η). The fact that η′ is piecewise linear for every C > 0 is clear from its definition,
so we are left to verify that there exists C > 0 for which P-NNEG(η′, τ), P-RANK(η′, τ)
and EXP-NNEG(η′, τ) hold for each generalized transition τ . A careful analysis, which
can be found in Section 3.6.3, shows that C = (2N + K) ·max-coeff(η) + 1 satisfies
the claim. Hence, C admits a piecewise linear GLexRSM map supported by I.

Algorithm. The new algorithm shares an overall structure with the algorithm from
Section 3.4.1. Thus, we only give a high level overview and focus on novel aspects.
The algorithm pseudocode is presented in Algorithm 3.2.

The condition UNBOUND is encoded by modifying the templates for the new LEM
components. Let ↦→unb be the set of generalized transitions in C induced by a transition
in C containing sampling from unbounded support distributions, and for any such
generalized transition τ let ℓ′τ be the target location of the transition in C that induces
it. Then for any set of generalized transitions T , construct a linear program LPunb

T
analogously to LPT in Section 3.4.1, additionally enforcing that for each τ ∈ ↦→unb∩ T ,
the coefficient of the variable updated by τ in the LEM template at ℓ′τ is 0. Algorithm 3.2
first tries to prune as many generalized transitions as possible by repeatedly solving
LPunb

T and removing ranked generalized transitions from T , see lines 3-6. Once no

51

3. Lexicographic Methods for Almost-sure Termination Analysis in PPs

Algorithm 3.2: Synthesis of LinGLexRSM maps in PPs contained in LinPP∗.
input : A LinPP∗ C, linear invariant I.
output : An LEM satisfying the conditions of Lemma 3.4.3, if it exists

1 T ←− all generalized transitions in C; d ←− 0
2 while T is non-empty do
3 construct LPunb

T
4 if LPunb

T is feasible then
5 d ←− d + 1; ηd ←− LEM defined by the optimal solution of LPunb

T
6 T ←− T \{τ ∈ T | τ is 1-ranked by ηd}
7 end
8 else
9 found ←− false

10 for τ0 ∈↦→unb ∩T do
11 construct LPτ0,unb

T

12 if LPτ0,unb
T is feasible then

13 d ←− d + 1; found ←− true
14 ηd ←− LEM defined by the optimal solution of LPτ0,unb

T
15 T ←− T \{τ ∈ T | τ is 1-ranked by ηd}
16 end
17 end
18 if not found then return No LEM as in Lemma 3.4.3
19 end
20 end
21 return (η1, . . . , ηd)

more generalized transitions can be ranked, the algorithm tries to rank new generalized
transitions by allowing non-zero template coefficients previously required to be 0, while
still enforcing UNBOUND. For a set of generalized transitions T and for τ0 ∈ ↦→unb∩ T ,
we construct a linear program LPτ0,unb

T analogously to LPunb
T but allowing a non-zero

coefficient of the variable updated by τ0 at ℓ′τ0 . However, we further impose that the
new component 1-ranks any other generalized transition in ↦→unb ∩ T with the target
location ℓ′τ0 . This new linear program is solved for all τ0 ∈ ↦→unb ∩ T and all 1-ranked
generalized transitions are removed from T , as in Algorithm 3.2, lines 7-15. The process
continues until all generalized transitions are pruned from T or until no remaining
generalized transition can be 1-ranked, in which case no LEM as in Lemma 3.4.3 exists.

Theorem 3.4.4. Algorithm 3.2 decides in polynomial time if a LinPP∗ C admits an
LEM which satisfies all conditions of Lemma 3.4.3 and which is supported by I. Thus,
if the algorithm outputs an LEM, then C is a.s. terminating and admits a piecewise

52

3.5. Related Work

linear GLexRSM map supported by I.

The proof of Theorem 3.4.4 uses Lemma 3.4.3 and the completeness argument is
similar to that in the proof of Theorem 3.4.2, thus we omit the details. The full proof
can be found in Section 3.6.4. We conclude by showing that Algorithm 3.2 can prove
a.s. termination of our motivating example in Fig. 3.1a and the simple loop in Fig. 3.3.

Example 3.4.2. Consider the program in Figure 3.1a with a linear invariant I(ℓ0) = true,
I(ℓ1) = y ≥ 0. The LEM defined via η(ℓ0, (x, y)) = (1, 2y + 2, x + 1), η(ℓ1, (x, y)) =
(1, 2y +1, x+1) and η(ℓout , (x, y)) = (0, 2y +2, x+1) satisfies P-RANK, P-NNEG and
W-EXP-NNEG, which is easy to check. Furthermore, the only generalized transition
containing a sampling instruction is the self-loop at ℓ1 which is ranked by the third
component of η. As the coefficients of x of the first two components at ℓ1 are equal
to 0, η also satisfies UNBOUND. Hence, η satisfies all conditions of Lemma 3.4.3 and
Algorithm 3.2 proves a.s. termination.

Example 3.4.3. Consider now the simple loop in Figure 3.3 with a linear invariant
I(ℓ0) = true. The LEM defined via η(ℓ0, x) = (1, x + 1), and η(ℓout , x) = (0, x + 1)
satisfies P-RANK, P-NNEG and W-EXP-NNEG, which is easy to check. The only
generalized transition containing a sampling instruction is the self-loop at ℓ0 which is
ranked by the second component of η, and the coefficient of x of the first components
at ℓ0 is equal to 0. Hence, η also satisfies UNBOUND. Hence, η satisfies all conditions
of Lemma 3.4.3 and Algorithm 3.2 proves a.s. termination.

3.5 Related Work
Martingale-based termination literature mostly focused on 1-dimensional RSMs [CS13,
CFNH18, CFG16, CNZ17, FH15, MMKK18, HFC18, FC19, MBKK21a, GGH19]. RSMs
themselves can be seen as generalizations of Lyapunov ranking functions from control
theory [BG05, Fos53]. Recently, the work [HFCG19] pointed out the unsoundess of
the 1-dimensional RSM-based proof rule in [FH15] due to insufficient lower bound
conditions and provided a corrected version. On the multi-dimensional front, it was
shown in [FH15] that requiring components of (lexicographic) RSMs to be nonnegative
only at points where they are used to rank some enabled transition (analogue of
Bradley-Manna-Sipma LexRFs [BMS05a]) is unsound for proving a.s. termination. This
illustrates the intricacies of dealing with lower bounds in the design of a.s. termination
certificates. Lexicographic RSMs with strong non-negativity were introduced in [ACN18].
The work [CH20] produces an ω-regular decomposition of program’s control-flow graph,
with each program component ranked by a different RSM. This approach does not
require a lexicographic ordering of RSMs, but each component in the decomposition
must be ranked by a single-dimensional non-negative RSM. RSM approaches were also

53

3. Lexicographic Methods for Almost-sure Termination Analysis in PPs

used for cost analysis [NCH18, WFG+19, AMS20] and additional liveness and safety
properties [CVS16, BEFFH16, CNZ17, CGMZ22b].

Logical calculi for reasoning about properties of PPs (including termination) were stud-
ied in [Koz81, FH82, Koz85, Fel84] and extended to programs with non-determinism
in [MM04, MM05, KKMO18, OKKM16, GKM14]. In particular [MM04, MM05,
MMKK18] formalize RSM-like proof certificates within the weakest pre-expectation
(WPE) calculus [MMS96, MM99]. The power of this calculus allows for reasoning
about complex programs [MMKK18, Section 5], but the proofs typically require a
human input. Theoretical connections between martingales and the WPE calculus
were recently explored in [HKGK20]. There is also a rich body of work on analysis of
probabilistic functional programs, where the aim is typically to obtain a general type
system [LG19, ADG19, KLG20, DLFR21] for reasoning about termination properties
(automation for discrete probabilistic term rewrite systems was shown in [ALY20]).

As for other approaches to a.s. termination, for finite-state programs with nondeter-
minism a sound and complete method was given in [EGK12], while [Mon01] considers
a.s. termination proving through abstract interpretation. The work [KKM18] shows
that proving a.s. termination is harder (in terms of arithmetical hierarchy) than proving
termination of non-probabilistic programs.

The computational complexity of the construction of lexicographic ranking functions in
non-probabilistic programs was studied in [BAG13, BAG15].

3.6 Technical Proofs

3.6.1 Proof of Inequality in the Proof of Theorem 3.2.2
We prove the inequality that was used in the proof of Theorem 3.2.2, which claims that
for each t ≥ s we have

E[Yt+1] ≤ E[Yt]− P[Lt
k ∩D ∩ {F > t}].

To prove the inequality, note that

E[Yt+1] = E[Yt+1 ·I(Ω\D)]+E[Yt+1 ·I(D∩{F ≤ t})]+E[Yt+1 ·I(D∩{F > t})], (3.4)

where

• E[Yt+1 · I(Ω\D)] = 0 since Yt+1 = 0 on Ω\D;

• E[Yt+1 ·I(D∩{F ≤ t})] = E[Yt ·I(D∩{F ≤ t})], as Yt+1 = Yt on D∩{F ≤ t};

54

3.6. Technical Proofs

• E[Yt+1 · I(D ∩ {F > t})] = E[Xt+1[k] · I(D ∩ {F > t})], as Yt+1 = Xt+1[k] on
D ∩ {F > t}.

Now, by the theorem assumptions the conditional expectation E[Xt+1[k] | Ft] exists.
Hence, as D ∩ {F > t} is Ft-measurable for t ≥ s, we have that

E
[︃
Xt+1[k] · I(D ∩ {F > t})

]︃
= E

[︃
E[Xt+1[k] | Ft] · I(D ∩ {F > t})

]︃
.

By the theorem assumptions, we also know that E[Xt+1[k] | Ft] ≤ Xt[k]− I(Lt
k) on

∪n
j=kLt

j . Thus, as D ∩ {F > t} ⊆ ∪n
j=kLt

j for t ≥ s, by plugging this into the previous
equation we conclude

E
[︃
Xt+1[k] · I(D ∩ {F > t})

]︃
≤ E

[︃
(Xt[k]− I(Lt

k)) · I(D ∩ {F > t})
]︃

= E
[︃
(Yt − I(Lt

k)) · I(D ∩ {F > t}
]︃
,

where in the last row we used that Xt[k] = Yt on D ∩ {F > t}. Summing up our
upper bounds on each term on the RHS of eq. (3.4), we conclude that

E[Yt+1] ≤ 0 + E[Yt · I(D ∩ {F ≤ t})] + E
[︃
(Yt − I(Lt

k)) · I(D ∩ {F > t})
]︃

= E[Yt · I(D)]− P[Lt
k ∩D ∩ {F > t}],

= E[Yt]− P[Lt
k ∩D ∩ {F > t}].

where in the last row we used that Yt = 0 on Ω\D. This proves the desired inequality.

3.6.2 Proof of Theorem 3.3.5
Theorem (Soundness of GLexRSM-maps for a.s. termination). Let C be a pCFG and I
an invariant in C. Suppose that C admits an n-dimensional GLexRSM map η supported
by I, for some n ∈ N. Then C terminates a.s.

Proof. Let C = (L, V, ℓinit , xinit , ↦→, G, Pr , Up) be a pCFG. The proof proceeds by
using the GlexRSM map η to define a GLexRSM w.r.t. the termination time TimeTerm
in the probability space (ΩC,FC,P) associated to the pCFG. Here, P is a probability
measure defined by an arbitrary (but throughout the proof fixed) scheduler and an
initial configuration. The proof then uses Theorem 3.2.2 to conclude a.s. termination
of the program. See Section 2.2 for necessary preliminaries on pCFG semantics and
Section 2.4 for the formal definition of termination time.

First, however, we state again definition the auxiliary notion of pre-expectation with
respect to a scheduler, also stated in Chapter 3.

55

3. Lexicographic Methods for Almost-sure Termination Analysis in PPs

Definition (Pre-expectation with respect to a scheduler). Let S be a set of measurable
states in C. The pre-expectation with respect to a scheduler σ of a MM η given S is a
map preσ,η,S : FpathC → R defined as follows. Let ρ ∈ FpathC be a finite path ending
in (ℓ, x). We define preσ,η,S(ρ) as follows:

1. If ℓ ∈ LN is a location of non-deterministic branching, denote by σ(ρ) the
probability distribution over (generalized) transitions enabled in (ℓ, x) defined by
the scheduler σ. Then

preσ,η,S(ρ) =
∑︂

τ∈supp(σ(ρ))
σ(ρ)(τ) · preτ

σ,η,S(ℓ, x).

2. Otherwise, let τ be the unique generalized transition with source location ℓ. Then

preσ,η,S(ρ) = preτ
σ,η,S(ℓ, x),

where preτ
σ,η,S is defined in the same way as the standard pre-expectation preτ

η,S,
except for the case when τ is transition (ℓ, ℓ′) whose update element is a non-
deterministic assignment from an interval, i.e. u(τ) = (j, u) with u being an
interval; in such a case, we put preτ

σ,η,S(ℓ, x) = η(ℓ′, x(j ← E[dσ(ρ, τ) · I(S)]).

Intuitively, preσ,η,S takes a finite path ρ ∈ FpathC as an input, and returns the expected
value of η in the next step when the integration is performed over program states in S,
given the program run history and the choices of the scheduler σ.

For a run ρ ∈ ΩC, let (ℓρ
i , xρ

i) denote the i-th configuration along ρ, τ ρ
i the i-th

generalized transition taken along ρ and ρi the prefix of ρ of length i. We define an
n-dimensional stochastic process (Xi)∞i=0 over (ΩC,FC,P) by setting

Xi[j](ρ) =

⎧⎨⎩ηj(ℓ
ρ
i , xρ

i) if ℓρ
i ̸= ℓout

−1 otherwise.

for each i ∈ N0, 1 ≤ j ≤ n and ρ ∈ ΩC. We consider the canonical filtration (Ri)∞i=0
where Ri is the smallest sub-sigma-algebra of FC such that all the functions ℓ·j(ρ) = ℓρ

j ,
x·j(ρ) = xρ

j , 0 ≤ j ≤ i, are Ri-measurable. We also consider the stopping time
TimeTerm with respect to (Ri)∞i=0 defined by the first hitting time of ℓout . For each
i ∈ N0, we define a partition of {TimeTerm > i} into n sets Li

1, . . . , Li
n with Li

j =
{ρ ∈ ΩC | ℓρ

i ≠ ℓout , level of (ℓρ
i , xρ

i) is j}. We show that ({X∞i=0, {Li
1, . . . , Li

n}∞i=0)
is an instance of a GLexRSM in the probability space (ΩC,FC,P). We prove this by
verifying each of the defining conditions in Definition 3.2.1:

1. Clearly, each Xi[j] is Ri-measurable as Xi[j] is defined in terms of the i-th
configuration of a program run.

56

3.6. Technical Proofs

2. We now show that all conditional expectations required in Definition 3.2.1 exist.
Let B ∈ Ri+1, we need to show that E[Xi+1[j] · I(B) | Ri] exists. Fix ρ ∈ ΩC,
and let ρi denote a finite prefix of ρ of length i. Then define proj(B)(ρi) as

proj(B)(ρi) = {(ℓρ′

i+1, xρ′

i+1) | ρ′ ∈ B ∧ ρ′i = ρi},

i.e. it is the set of all (i + 1)-st states of infinite runs in B whose finite prefix of
length i coincides with ρi. Then we show that

E[Xi+1[j] · I(B) | Ri](ρ) = preσ,ηj ,proj(B)(ρi)(ρi),

i.e. this conditional expectation can be expressed in terms of the pre-expectation
w.r.t. the scheduler that we define in Definition 3.3.7.
To see this, recall that the conditional expectation E[Xi+1[j] · I(B) | Ri] is
defined as the unique Ri-measurable random variable Y for which E[Y · I(A)] =
E[Xi+1[j] · I(B ∩ A)] for any A ∈ Ri. For fixed A ∈ Ri, E[Xi+1[j] · I(B ∩ A)]
is equal to the integral of Xi+1[j] when integration is done over all runs in B
whose finite prefix of length i ensures that the run belongs to A. But this is
exactly the value obtained by integrating preσ,ηj ,proj(B)(ρi)(ρi) over runs ρ ∈ A.
This proves that preσ,ηj ,proj(B)(ρi)(ρi) satisfies all the properties of the conditional
expectation for any ρ ∈ ΩC. As conditional expectation is a.s. unique whenever
it exists [Wil91], the claim follows.

3. To see that lexicographic ranking, nonnegativity and boundedness of conditional
expectation conditions in Definition 3.2.1 hold, we need to show that for each
i ∈ N0, 1 ≤ j ≤ n and ρ ∈ Li

j, we have

• E[Xi+1[j′] | Fi](ρ) ≤ Xi[j′](ρ) for each 1 ≤ j′ < j,
• E[Xi+1[j] | Fi](ρ) ≤ Xi[j](ρ)− 1,
• Xi[j′](ρ) ≥ 0 for each 1 ≤ j′ ≤ j, and
• E[Xi+1[j′] · I(∪j′−1

t=0 Li+1
t) | Fi](ρ) ≥ 0 for each 1 ≤ j′ ≤ j (here, Li+1

0 =
{TimeTerm ≤ i + 1}).

Before checking these properties, we first prove in Proposition 3.6.1 below that,
to show that a program terminates almost-surely, it suffices to consider those
schedulers that to each finite program run assign a single transition to be taken.
Thus, we without loss of generality assume that σ is such a scheduler, and let
τ be the only transition in the support of σ(ρi). Then since ρ ∈ Li

j, we have
j = lev(τ). As τ is the only transition in the support of σ(ρi), we have

E[Xi+1[j] | Ri](ρ) = preσ,ηj
(ρi) = preτ

σ,ηj
(ℓρ

i , xρ
i) ≤ max-preτ

ηj
(ℓρ

i , xρ
i)

≤ ηj(ℓ
ρ
i , xρ

i)− 1 = Xi[j](ρ)− 1,

57

3. Lexicographic Methods for Almost-sure Termination Analysis in PPs

The inequality preτ
σ,ηj

(ℓρ
i , xρ

i) ≤ max-preτ
ηj

(ℓρ
i , xρ

i) holds since preτ
σ,ηj

in Defini-
tion 3.3.7 and max-preτ

ηj
in Definition 3.3.3 only differ in the way in which we

treat update elements given by nondeterministic assignments where in the first
case we take expectation and in the second case the global maximum. The
last inequality holds by the P-RANK condition of GLexRSM maps and since
j = lev(τ). It follows analogously that E[Xi+1[j′] | Fi](ρ) ≤ Xi[j′](ρ) for each
1 ≤ j′ < j. The fact that Xi[j′](ρ) ≥ 0 for each 1 ≤ j′ ≤ j follows from the
P-NNEG condition of GLexRSM maps. Finally, for each 1 ≤ j′ ≤ j we have that
E[Xi+1[j′] · I(∪j′−1

t=0 Li+1
t) | Fi](ρ) ≥ min-preτ

ηj′ ,S
≤j′−1
lev

(ℓρ
i , xρ

i) as lev(τ) = j, so
the expected leftward nonnegativity follows from the EXP-NNEG condition of
GLexRSM maps.

Therefore, ((Xi)∞i=0, (Li
1, . . . , Li

n)∞i=0) is an instance of a GLexRSM w.r.t. the stopping
time TimeTerm. Thus, and from Theorem 3.2.2 we have P[TimeTerm <∞] = 1.

Proposition 3.6.1. Let C be a pCFG and suppose that there exist a measurable
scheduler σ and an initial configuration (ℓinit , xinit) such that Pσ

ℓinit ,xinit [TimeTerm =
∞] > 0. Then there exists a measurable scheduler σ∗ which is deterministic in the
sense that to each finite path it assigns a single transition with probability 1, such that
Pσ∗

ℓinit ,xinit [TimeTerm =∞] > 0.

Proof. In what follows we fix the initial configuration (ℓinit , xinit) and omit it from
the notation of the probability measure, which we denote by Pσ. We construct σ∗ by
constructing a sequence σ = σ0, σ1, σ2, . . . of schedulers, where for each i ∈ N0 we
have that σi+1 and σi agree on histories of length at most i− 1, and σi+1 ”refines” σi

on histories of length i in such a way that:

• σi+1 deterministically chooses transitions on histories of length at most i;

• σi+1 is measurable;

• Pσi+1 [TimeTerm =∞] ≥ Pσi [TimeTerm =∞].

Then we define the scheduler σ∗ as σ∗(ρ) = σi(ρ) whenever the length of a finite
history ρ is i.

The construction of σi+1 from σi proceeds as follows. For finite runs of length different
than i, we let σi+1(ρ) = σi(ρ). For finite runs of length i ending in a location
ℓ ∈ LA with the unique outgoing transition having non-deterministic update, we let
σi+1(ρ) = σi(ρ). We are left to define σi+1 on histories of length exactly i ending in
a state (ℓ, x) with a non-deterministic branching location ℓ ∈ LN . Fix such a finite

58

3.6. Technical Proofs

history ρ in C of length i. For each transition τ ∈ supp(σi(ρ)), let pi(ρ, τ) denote the
probability of non-termination in the probability space of infinite runs, when starting in
the last configuration of ρ, executing the transition τ and then following the scheduler
σi (where the history ρ is taken into account to resolve nondeterminism). Then set

τi(ρ) = arg max
τ∈supp(σi(ρ))

pi(ρ, τ),

i.e. the transition in the support of σ(ρ) which maximizes this probability. Then
we define σi+1(ρ) to be a Dirac-delta distribution which assigns probability 1 to the
transition τi(ρ).

We now check that the constructed scheduler σi+1 satisfies each of the 3 properties
above:

1. The fact that, σi+1 is deterministic on histories of length at most i immediately
follows by induction on i and by construction of σi+1.

2. To see that σi+1 is measurable, we again proceed by induction on i and assume
that σi is measurable (base case holds since σ0 = σ). We need to show that, for
each program transition τ , we have σ−1

i+1(τ) ∈ Ffin where Ffin is the σ-algebra of
finite runs (for the definition of this σ-algebra, as well as for details on measurable
schedulers, see [ACN18]). Write

σ−1
i+1(τ) = Aτ,<i ∪ Aτ,=i ∪ Aτ,>i,

where Aτ,<i is the set of all finite runs in σ−1
i+1(τ) of length at most i − 1 and

analogously for the other two sets. Since σi+1 and σi coincide on histories of
length different than i, by measurability of σi it follows that Aτ,<i and Aτ,>i are
in Ffin. Thus it suffices to show that Aτ,=i ∈ Ffin.
We partition Aτ,=i as ∪ℓ∈LAτ,=i,l, where Aτ,=i,l is the set of all finite runs in
Aτ,=i with the last location being l. It suffices to prove that each Aτ,=i,l ∈ Ffin.
To show that Aτ,=i,l ∈ Ffin, we again partition Aτ,=i,l in terms of transitions in
the support of σi. Therefore, it suffices to prove for each finite set of transitions
T ⊆ ↦→ with τ ∈ T that Aτ,=i,l,T ∈ F , where Aτ,=i,l,T is the set of all finite paths
of length i and ending in l such that supp(σi(ρ)) = T and pi(ρ, τ) ≥ pi(ρ, τ ′)
for any τ ′ ∈ T .
Since σi is measurable by induction hypothesis, all conditions except the last
one define events in Ffin. To see that this is also the case for the condition that
pi(ρ, τ) ≥ pi(ρ, τ ′) for any τ ′ ∈ T , observe that this event can be rewritten as a
projection onto the set of all finite paths of length i of the set of all infinite runs

59

3. Lexicographic Methods for Almost-sure Termination Analysis in PPs

ρ̃ satisfying the following property

Eσi

[︃
ITimeTerm=∞∧τρ

i =τ |σ(Fi, Iτρ
i =τ)

]︃
(ρ̃)

≥ max
τ ′∈T

Eσi

[︃
ITimeTerm=∞∧τρ

i =τ ′|σ(Fi, Iτ ′ρ
i =τ ′)

]︃
(ρ̃),

where σ(Fi, Iτ ′ρ
i =τ ′) is the smallest σ-algebra containing Fi and the σ-algebra

generated by the random variable Iτ ′ρ
i =τ ′ . All random variables involved in the

above inequality are F-measurable by measurability of σi, and so the set of
infinite runs satisfying this conditions is in F . This shows that the last condition
also defines a measurable event. Thus, Aτ,=i,l ∈ Ffin and the claim follows.

3. We need to show that Pσi+1 [TimeTerm = ∞] ≥ Pσi [TimeTerm = ∞] for
each i. To do this, it suffices to show that Pσi+1 [TimeTerm =∞∧ ℓρ

i = ℓ] ≥
Pσi [TimeTerm =∞∧ ℓρ

i = ℓ] for each location ℓ ∈ L where the event {ℓρ
i = ℓ}

denotes that ℓ is the (i + 1)-st location along the program run. If we show this,
by taking the sum over all locations on both sides of the inequality, the claim
follows.
Fix a location ℓ. Then

Pσi+1 [TimeTerm =∞∧ ℓρ
i = ℓ] = Eσi+1 [ITimeTerm=∞ · Iℓρ

i =ℓ]
= Eσi+1 [Eσi+1 [ITimeTerm=∞ · Iℓρ

i =ℓ|Fi]]
= Eσi+1 [Iℓρ

i =ℓ · Eσi+1 [ITimeTerm=∞|Fi]]
= Eσi [Iℓρ

i =ℓ · Eσi+1 [ITimeTerm=∞|Fi]].

(3.5)

The first equality holds since the probability of the event is equal to the expected
value of its indicator function. The second equality holds by the definition of
conditional expectation. The third equality holds since we may take out from
the conditional expectation any variable that is measurable w.r.t. the σ-algebra
that we condition on [Wil91]. The fourth inequality holds since the probability
measures defined by σi+1 and σi by construction agree on Fi-measurable sets.
But, by construction we have Eσi+1 [ITimeTerm=∞|Fi](ρ) ≥ Eσi [ITimeTerm=∞|Fi](ρ)
for each infinite run ρ, because in the (i + 1)-st configuration σi+1 picks the tran-
sition which maximizes the probability of non-termination among all transitions
in supp(σi(ρi)). Hence, plugging this back into eq. (3.5) we conclude

Pσi+1 [TimeTerm =∞∧ ℓρ
i = ℓ] = Eσi+1 [ITimeTerm=∞ · Iℓρ

i =ℓ]
= Eσi [Iℓρ

i =ℓ · Eσi+1 [ITimeTerm=∞|Fi]]
≥ Eσi [Iℓρ

i =ℓ · Eσi [ITimeTerm=∞|Fi]]
= Pσi [TimeTerm =∞∧ ℓρ

i = ℓ],

60

3.6. Technical Proofs

where the last equality follows by the same sequence of equalities as in eq. (3.5)
with i + 1 replaced by i. This proves the claim.

Hence, schedulers σ = σ0, σ1, σ2, . . . satisfy all the desired properties. Finally, note
that by construction σ∗ is deterministic too. We are left to show that σ∗ is measurable
and that Pσ∗

ℓinit ,xinit [TimeTerm =∞] > 0.

To see that σ∗ is measurable, we need to show that (σ∗)−1(τ) is in the σ-algebra of
finite runs for each transition τ . This follows since, if we write (σ∗)−1(τ) = ∪i∈N0Ai

where Ai is the set of all finite runs in (σ∗)−1(τ) of length i, we have that each Ai is
in the σ-algebra since σ∗ coincides with σi on histories of length at most i.

To see that Pσ∗ [TimeTerm =∞] > 0, suppose that on the contrary Pσ∗ [TimeTerm =
∞] = 0 so Pσ∗ [TimeTerm < ∞] = 1. Let δ = Pσ[TimeTerm = ∞] > 0, where σ
is the potentially non-deterministic scheduler from the proposition statement. Since
we have Pσ∗ [TimeTerm ≤ i] → Pσ∗ [TimeTerm < ∞] as i → ∞ by the Monotone
Convergence Theorem [Wil91], there exists i ∈ N0 such that Pσ∗ [TimeTerm ≤ i] ≥
1− δ/2. But

Pσ∗ [TimeTerm ≤ i] ≤ Pσi [TimeTerm <∞] ≤ Pσ0 [TimeTerm <∞] = 1− δ

as Pσi [TimeTerm =∞] ≥ Pσ0 [TimeTerm =∞] by the above monotonicity property
of (Pσi [TimeTerm =∞])∞i=0. This gives contradiction, hence Pσ∗ [TimeTerm =∞] >
0 as claimed.

3.6.3 Proof of Lemma 3.4.3
Lemma. Let C be a LinPP∗ and I be a linear invariant in C. If a LEM η satisfies
P-RANK and P-NNEG for all generalized transitions, EXP-NNEG for all generalized
transitions of probabilistic branching, W-EXP-NNEG for all other generalized transitions,
as well as UNBOUND, then C admits a piecewise linear GLexRSM map supported by I.

Proof. Let η be an LEM whose existence is assumed in the lemma. Analogously as in
the proof of Lemma 3.4.1, we may increase η by a constant term in order to ensure
that all generalized transitions satisfy EXP-NNEG, except for maybe those induced by
transitions that in the variable update involve sampling from a distribution of unbounded
support. So without loss of generality assume that η satisfies EXP-NNEG for all other
generalized transitions. Denote the set of all generalized transitions in C induced by
transitions that involve sampling from distributions of unbounded support by ↦→unb.

As before, denote by max-coeff(η) the maximal absolute value of a coefficient appearing
in η. Also, define N analogously as in the proof of Lemma 3.4.1, i.e. for all distributions
of bounded support that appear in sampling instructions and for all bounded intervals

61

3. Lexicographic Methods for Almost-sure Termination Analysis in PPs

appearing in non-deterministic assignments, we have that they are supported in [−N, N].
Finally, since in our definition of pCFGs in Section 2.2 we assume that each distribution
appearing in sampling instructions is integrable, we have EX∼d[|X|] < ∞ for each
d ∈ D where we use D to denote the set of all probability distributions appearing in
sampling instructions in C. Note that D is finite since the number of transitions in C
is finite. Thus, by triangle inequality, we also have EX∼d[|X − E[X]|] < ∞. Hence,
as EX∼d[|X − E[X]| · I(|X − E[X]| < k)] → EX∼d[|X − E[X]|] as k → ∞ by the
Monotone Convergence Theorem [Wil91], for each d ∈ D there exists k(d) ∈ N such
that

EX∼d

[︃
|X − E[X]| · I

(︃
|X − E[X]| ≥ k

)︃]︃
<

1
2 ·max-coeff(η) .

for all k ≥ k(d). Define K = maxd∈D k(d), which is finite as D is finite.

Next, define the set U ⊆ {1, 2, . . . , dim(η)} × L of pairs of indices of components of
η and locations in C as follows:

U = {(j, ℓ′) | ∃τ ∈↦→unb s.t. lev(τ) = j and ℓ′ is the target location of τ}.

Thus, U is the set of pairs of indices of components of η and locations in C on which
the condition UNBOUND imposes additional template restrictions.

We now define an LEM η′ which is of the same dimension as η, and for each component
η′j we define

η′j(ℓ, x) =

⎧⎨⎩0 if (j, ℓ) ∈ U and ηj(ℓ, x) < −C,

2 · ηj(ℓ, x) + 2 · C otherwise,

where C > 0 is a constant to be determined. We claim that there exists C > 0 for
which η′ is a piecewise linear GLexRSM map supported by I (with the level map being
the same as for η). The fact that η′ is piecewise linear for every C > 0 is clear from
its definition, so we are left to verify that there exists C > 0 for which P-NNEG(η′, τ),
P-RANK(η′, τ) and EXP-NNEG(η′, τ) hold for each generalized transition τ .

Generalized transitions not in ↦→unb. We show that, for generalized transitions not
in ↦→unb, the claim holds for every C > 2 ·N ·max-coeff(η).

First, suppose that τ is a generalized transition induced by probabilistic branching. Let
ℓ be its source location and ℓ1, ℓ2 its target locations (in pCFGs induced by PPs in our
syntax, every probabilistic branching has two target locations, see Section 2.2). Since
we assume that C is induced by a program in LinPP∗ meaning that neither ℓ1 nor ℓ2
are target locations of any generalized transition in ↦→unb, by definition of U and η′

we must have η′j(ℓ1, x) = 2 · ηj(ℓ1, x) + 2 · C and η′j(ℓ2, x) = 2 · ηj(ℓ2, x) + 2 · C for
each component η′j and each x. On the other hand, the piecewise linear transformation

62

3.6. Technical Proofs

defining η′ ensures that η′j(ℓ, x) ≥ 2 · ηj(ℓ, x) + 2 · C for each component η′j and each
x. Hence, it is easy to see that P-NNEG(η′, τ), P-RANK(η′, τ) and EXP-NNEG(η′, τ)
all hold as they hold for η. Note that this proof allows any C > 0.

Next, let τ ̸∈↦→unb be a generalized transition which is also not a generalized transition
induced by probabilistic branching. Denote by ℓ its source location, ℓ1 its target location,
x ∈ I(ℓ) ∩G(τ), and (ℓ1, x1) some state that is reachable from (ℓ, x) by executing τ .
We claim that, for each 1 ≤ j ≤ lev(τ),

ηj(ℓ1, x1) ≥ −2 ·N ·max-coeff(η),

By definition of η′, if C > 2 · N · max-coeff(η) this would imply that η′j(ℓ1, x1) =
2 ·ηj(ℓ1, x1)+2 ·C for each successor state (ℓ1, x1). Since η′j(ℓ, x) ≥ 2 ·ηj(ℓ, x)+2 ·C,
it is again easy to see that P-NNEG(η′, τ), P-RANK(η′, τ) and EXP-NNEG(η′, τ) all
remain true as they are true for η.

To prove the claim, fix 1 ≤ j ≤ lev(τ) and a successor state (ℓ1, x1). By the condition
W-EXP-NNEG(η, τ), we have min-preτ

ηj
(ℓ, x) ≥ 0. If τ is not induced by a transition of

probabilistic assignment, then we must have ηj(ℓ1, x1) ≥ min-preτ
ηj

(ℓ, x) by definition
of min-pre, and the claim follows. Otherwise, suppose that Up(τ) = (i, u) with u = d
a probability distribution of bounded support and X ∼ d (recall, we assumed that
τ ̸∈↦→unb). Then, by linearity of ηj we see that

ηj(ℓ1, x1) = min-preτ
ηj

(ℓ, x) + coeff[i] ·X − coeff[i] · E[X]
≥ coeff[i] ·X − coeff[i] · E[X]
≥ −2 · |coeff[i]| ·N
≥ −2 ·max-coeff(η) ·N,

as claimed. The first inequality follows from W-EXP-NNEG(η, τ), and the rest follows
by definition of N and the assumption that d has bounded support. Here, we used
coeff[i] to denote the coefficient in ηj of the variable with index i at location ℓ1.

Generalized transitions in ↦→unb. Let τ ∈↦→unb, let ℓ be its source location and ℓ1 its
target location. We claim that each of the conditions P-NNEG(η′, τ), P-RANK(η′, τ)
and EXP-NNEG(η′, τ) holds if C > K ·max-coeff(η).

1. P-NNEG(η′, τ): By definition of η′, for each component η′j and x we have
η′j(ℓ, x) ≥ 2 · ηj(ℓ, x) + C. Hence, the claim follows since P-NNEG(η, τ) holds.

2. P-RANK(η′, τ): If x ∈ I(ℓ)∩G(τ), we need to show that for 1 ≤ j < lev(τ) we
have η′j(ℓ, x) ≥ max-preτ

η′
j
(ℓ, x), and that η′lev(τ)(ℓ, x) ≥ max-preτ

η′
lev(τ)

(ℓ, x) + 1.

63

3. Lexicographic Methods for Almost-sure Termination Analysis in PPs

First, fix 1 ≤ j < lev(τ). From the UNBOUND condition, we know that the
coefficient in ηj of the variable updated by τ at ℓ1 is 0. Hence, ηj has the same
value at each successor state of (ℓ, x) upon executing τ which is thus equal to
max-preτ

ηj
(ℓ, x). By the W-EXP-NNEG(η, τ) this value has to be nonnegative.

Hence, the value of η′j is also the same at each successor state and equal to
2 ·max-preτ

ηj
(ℓ, x)+C. Thus, as η′j(ℓ, x) ≥ 2 ·ηj(ℓ, x)+C, the desired inequality

holds as P-RANK(η, τ) holds.
We now prove that η′lev(τ)(ℓ, x) ≥ max-preτ

η′
lev(τ)

(ℓ, x) + 1. Let Up(τ) = (i, u)
with u = d a probability distribution of unbounded support and X ∼ d. Since
(lev(τ), ℓ1) ∈ U , we have that

max-preτ
η′

lev(τ)
(ℓ, x) = EX∼d

[︃
η′lev(τ)(ℓ1, x[i← X])

]︃
= EX∼d

[︃
(2 · ηlev(τ)(ℓ1, x[i← X]) + 2 · C) · I

(︃
ηlev(τ)(ℓ1, x[i← X]) ≥ −C

)︃]︃
= 2 · C + 2 ·max-preτ

ηlev(τ)
(ℓ, x)

− EX∼d

[︃
(2 · ηlev(τ)(ℓ1, x[i← X]) + 2 · C) · I

(︃
ηlev(τ)(ℓ1, x[i← X]) < −C

)︃]︃
(use that max-preτ

ηlev(τ)
(ℓ, x) ≤ ηlef(τ)(ℓ, x)− 1 by P-RANK(η, τ))

≤ 2 · C + 2 · ηlef(τ)(ℓ, x)− 2

− EX∼d

[︃
(2 · ηlev(τ)(ℓ1, x[i← X]) + 2 · C) · I

(︃
ηlev(τ)(ℓ1, x[i← X]) < −C

)︃]︃
(from definition of η′, have 2 · C + 2 · ηlef(τ)(ℓ, x) ≤ η′lev(τ)(ℓ, x))

≤ η′lev(τ)(ℓ, x)− 2

− EX∼d

[︃
(2 · ηlev(τ)(ℓ1, x[i← X]) + 2 · C) · I

(︃
ηlev(τ)(ℓ1, x[i← X]) < −C

)︃]︃
.

Now, ηlev(τ)(ℓ1, x[i ← X]) = ηlev(τ)(ℓ1, x[i ← E[X]) + (X − E[X]) · coeff[i] =
min-preτ

ηlev(τ)
(ℓ, x) + (X −E[X]) · coeff[i] ≥ (X −E[X]) · coeff[i], which holds by

linearity of η and the last inequality follows from W-EXP-NNEG(η, τ). Here, we
use coeff[i] to denote the coefficient at ℓ1 of the variable with index i in ηlev(τ).
Hence, continuing the above sequence inequalities we have that (note that the
integrand is negative on the set over which integration is performed hence, as
we have the minus sign outside the integral, the whole expression increases if we
further decrease the integrand but enlarge the event over which the integration
is performed in a way which keeps the integrand negative)

≤ η′lev(τ)(ℓ, x)− 2

− EX∼d

[︃
(2 · (X − E[X]) · coeff[i] + 2 · C) · I

(︃
(X − E[X]) · coeff[i] < −C

)︃]︃
.

64

3.6. Technical Proofs

Thus, to conclude that η′lev(τ)(ℓ, x) ≥ max-preτ
η′

lev(τ)
(ℓ, x) + 1 it suffices to show

EX∼d

[︃
(2 · (X −E[X]) · coeff[i] + 2 ·C) · I

(︃
(X −E[X]) · coeff[i] < −C

)︃]︃
≥ −1.

Now observe that, in order for (X −E[X]) · coeff[i] < −C to hold we must have
X − E[X] and coeff[i] be of opposite signs. Therefore, we have

EX∼d

[︃
(2 · (X − E[X]) · coeff[i] + 2 · C) · I

(︃
(X − E[X]) · coeff[i] < −C

)︃]︃
≥ EX∼d

[︃
(−2|X − E[X]| ·max-coeff(η) + 2 · C)

· I
(︃
|X − E[X]| > C/max-coeff(η)

)︃]︃
= 2max-coeff(η) · EX∼d

[︃
(−|X − E[X]|+ C/max-coeff(η))

· I
(︃
|X − E[X]| > C/max-coeff(η)

)︃]︃
≥ 2max-coeff(η) · EX∼d

[︃
(−|X − E[X]|)

· I
(︃
|X − E[X]| > C/max-coeff(η)

)︃]︃
≥ −1,

where the last inequality holds as C > K ·max-coeff(η) and by definition of K.

3. EXP-NNEG(η′, τ): Let x ∈ I(ℓ)∩G(τ), we show that min-preτ
η′

j ,S≤j−1
lev

(ℓ, x) ≥ 0
for all 1 ≤ j ≤ lev(τ). For 1 ≤ j < lev(τ), by the UNBOUND condition
we know that, at ℓ1, the coefficient in ηj of the variable which is updated
by τ is 0. Hence, the value of ηj at all successor states of (ℓ, x) upon exe-
cuting τ is the same, and is equal to min-preτ

ηj
(ℓ, x) which is nonnegative by

W-EXP-NNEG(η, τ). Therefore, we must have η′j(ℓ1, x1) = 2 · ηj(ℓ1, x1) + 2 ·C
at each state (ℓ1, x1) reachable from (ℓ, x) by executing τ . Therefore, we also
have min-preτ

η′
j ,S≤j−1

lev
(ℓ, x) = 2 ·min-preτ

ηj ,S≤j−1
lev

(ℓ, x) + 2 · C ≥ 0, where the last
inequality holds since EXP-NNEG(η, τ).
For the component lev(τ), note that (lev(τ), ℓ1) ∈ U . Thus, from our definition
of η′ it follows that η′lev(τ)(ℓ1, x1) ≥ 0 for every variable valuation x1. Hence,

min-preτ

η′
lev(τ),S

≤lev(τ)−1
lev

(ℓ, x) ≥ 0

since it is just an integral of a non-negative function over the set S
≤lev(τ)−1
lev .

65

3. Lexicographic Methods for Almost-sure Termination Analysis in PPs

Choice of C. From the analysis of all cases above, we see that

C = (2N + K) ·max-coeff(η) + 1

ensures that η′ is a piecewise linear GLexRSM map, which proves the lemma claim.

3.6.4 Proof of Theorem 3.4.4
Theorem. Algorithm 3.2 decides in polynomial time if a LinPP∗ C admits an LEM
which satisfies all conditions of Lemma 3.4.3 and which is supported by I. Thus, if the
algorithm outputs an LEM, then C is a.s. terminating and admits a piecewise linear
GLexRSM map supported by I.

Proof. We first prove that the algorithm is sound, i.e. that the LEM η which algorithm
outputs must satisfy all conditions of Lemma 3.4.3. Let k be the total number of
algorithm iterations, so that η = (η1, . . . , ηk). Define the level map lev : ∆ →
{0, 1 . . . , k} with the self loop at ℓout having level 0, and for any other generalized
transition τ we define lev(τ) as the index of algorithm iteration in which it was removed
from T . The fact that η satisfies P-NNEG, P-RANK, EXP-NNEG for generalized
transitions induced by probabilistic branching and W-EXP-NNEG for all other generalized
transitions then easily follows from conditions imposed by the algorithm in each iteration.
Furthermore, the way we constructed linear programs LPunb

T and LPτ,unb
T for each

τ ∈↦→unb ∩T ensures that η satisfies UNBOUND. Hence η is an LEM supported by I
which satisfies all conditions of Lemma 3.4.3.

We now prove completeness, i.e. that for any (C, I) with C coming from a program in
LinPP∗, Algorithm 3.2 decides the existence of an LEM supported by I which satisfies
conditions of Lemma 3.4.3. First, observe that for any two LEMs supported by I and
which satisfy all the conditions in Lemma 3.4.3, their pointwise sum also satisfies all
the conditions in Lemma 3.4.3. Hence, an argument analogous to that in the proof
of Theorem 3.4.2 shows that the algorithm finds an LEM satisfying all the conditions
of Lemma 3.4.3 whenever one such LEM exists by observing that whenever an LEM
exists but T is non-empty, either LPunb

T or LPτ,unb
T for at least one τ ∈ ↦→unb ∩T has

a solution which 1-ranks at least one new generalized transition.

Note that due to a fixed ordering of generalized transitions in ↦→unb ∩T through which
the algorithm iterates, the dimension of the computed LEM which satisfies all the
conditions of Lemma 3.4.3 need not be minimal. However, this was not the claim of
our theorem.

66

CHAPTER 4
Quantitative Termination and Safety

Analysis in PPs

This section is based on the following publications:

• Krishnendu Chatterjee, Petr Novotný, Ðorđe Žikelić.† Stochastic Invariants for
Probabilistic Termination. In 44th ACM SIGPLAN Symposium on Principles of
Programming Languages, POPL 2017‡

• Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer, Ðorđe
Žikelić.† Sound and Complete Certificates for Quantitative Termination Analysis
of Probabilistic Programs. In Computer Aided Verification - 34th International
Conference, CAV 2022

4.1 Introduction
Quantitative termination/reachability and safety analysis. We now turn our
attention to quantitative termination/reachability and safety analysis in PPs. Recall,
in Section 2.2.3 we showed that reachability analysis can be reduced to termination
analysis. Compared to their qualitative counterparts, quantitative analyses in PPs
are typically more challenging as they require more fine-grained reasoning about the

†Authors ordered alphabetically.
‡This work was completed prior to the beginning of the author’s PhD studies, however it is a result

of an internship project at ISTA that preceeded the PhD studies. Chapter 4 contains results of a part
of this publication that introduces stochastic invariants and proves their soundness for quantitative
termination analysis. The rest of Chapter 4 is based on [CGMZ22b].

67

4. Quantitative Termination and Safety Analysis in PPs

probability of a property being satisfied. As we discuss in Section 4.9, prior to the
work presented in this chapter, methods for quantitative reachability and safety analysis
in PPs were either not fully automated or could only reason about terminating PP
executions and as such are not suitable for PPs that model infinite-time horizon systems.

Our approach – stochastic invariants. We present a framework for quantitative
termination and safety analysis in PPs that is fully automated and that is applicable to
not necessarily a.s. terminating PPs that may model infinite-time horizon systems. At
the core of our framework lies the notion of stochastic invariants, which we introduce.
A stochastic invariant is a tuple (SI , p) consisting of a set SI of PP states and an
upper-bound p on the probability of a random program run ever leaving SI . Stochastic
invariants can be viewed as a stochastic extension of the classical notion of invariants
in programs. However, in contrast to invariants which over-approximate the set of all
states that no program run can ever leave, stochastic invariants are also annotated
with a probability threshold p and over-approximate the set of all states that a random
program run can leave with probability at most p. We show that stochastic invariants
provide sound proof rules for quantitative termination and safety analyses:

1. Quantitative termination. In order to reason about quantitative termination and
prove that a PP terminates with probability at least 1− p, it suffices to find a
stochastic invariant (SI , p) such that, with probability 1, a random program run
either terminates or leaves SI . Then, since SI is left with probability at most p,
the PP must terminate with probability at least 1− p. Hence, the combination of
stochastic invariants and probability 1 reachability certificates provides a sound
proof rule for quantitative termination analysis in PPs.

2. Quantitative safety. In order to reason about quantitative safety and prove that
a PP avoids some set of states S with probability at least 1− p, it suffices to
find a stochastic invariant (SI , p) such that SI ∩ S = ∅. Then, since SI is left
with probability at most p, the PP stays within SI and avoids S with probability
at least 1− p. Hence, stochastic invariants also provide a sound proof rule for
quantitative safety analysis in PPs.

Challenges. The above outline provides sound proof rules for proving quantitative
termination and safety that are based on stochastic invariants. However, in order to
go from these proof rules to effective and fully automated methods for quantitative
termination and safety analysis in PPs, we need to solve the following two challenges:

1. Completeness. The above outline shows that our proof rules are sound. Moreover,
our proof rule for quantitative safety is easily seen to be complete as well. Indeed,

68

4.1. Introduction

if S is a set of states that a random run in a pCFG C avoids with probability
at least 1 − p, then (SI , p) with SI = StateC\S defines a stochastic invariant
with SI ∩ S = ∅. However, it is not clear whether our proof rule for quantitative
termination is complete. Completeness is important in order to ensure that our
proof rule is general and not only applicable to a small subclass of PPs.

2. Automation. In order to go from theoretical proof rules to fully automated
quantitative termination and safety analysis, we need to automate the computation
of stochastic invariants that satisfy properties required by our proof rules. Note
that this is a hard problem. Reasoning about quantitative safety with respect
to a given set of states is already a very hard and unexplored problem in infinite
state stochastic system analysis. Here, we are required to compute a set of states
SI while reasoning about its quantitative safety probability p.

Contributions. Our contributions in this chapter can be summarized as follows:

1. We introduce stochastic invariants in PPs and use them to derive sound and
complete proof rules for quantitative termination and safety analysis in PPs.

2. The definitions of stochastic invariants and our proof rules alone do not provide
automated methods for quantitative termination and safety analysis in PPs. In
order to enable automation of stochastic invariant computation, we introduce
a martingale-based certificate function for stochastic invariants that we call
stochastic invariant indicators (SI-indicators). We prove that SI-indicators provide
a sound and complete characterization of stochastic invariants.

3. We present a constraint-solving based algorithm for fully automatically computing
SI-indicators in PPs with affine or polynomial arithmetic. Our algorithm is
relatively complete, meaning that it is guaranteed to compute an affine/polynomial
SI-indicator in a certain subclass of affine/polynomial PPs whenever a polynomial
SI-indicator exist (we formally define this subclass of affine/polynomial PPs in later
sections). Due to SI-indicators providing a sound and complete characterization of
stochastic invariants, we also obtain relatively complete algorithms for quantitative
termination and safety analysis in PPs.

4. We implement a prototype of our approach that uses SI-indicators to compute
stochastic invariants and perform quantitative termination analysis in PPs. We
demonstrate the applicability of our approach on various PP benchmarks.

The definition of stochastic invariants and their soundness for quantitative termination
analysis (part of contribution point 1) are based on our results in [CNZ17]. The
completeness of stochastic invariant based proof rule for quantitative termination

69

4. Quantitative Termination and Safety Analysis in PPs

analysis (part of contribution point 1), definition of SI-indicators and their soundness
and completeness for characterizing stochastic invariants (contribution point 2), the
relatively complete algorithm for SI-indicator computation and quantitative termination
analysis in PPs (contribution point 3) and experimental results (contribution point 4)
are based on our results in [CGMZ22b]. While both of these publications focused on
quantitative termination analysis, the applicability of stochastic invariants to quantitative
safety analysis follows immediately from our results in [CNZ17, CGMZ22b] and we
expand this thesis with their straightforward extension to quantitative safety analysis in
order to highlight this. In order to follow the organization of [CNZ17, CGMZ22b], we
first present our results on quantitative termination analysis in PPs. Then, towards the
end of this chapter, we generalize our results to quantitative safety analysis in PPs.

Chapter organization. Section 4.2 provides an overview of our framework for
quantitative termination analysis in PPs. In Section 4.3 we formally define stochastic
invariants, present our proof rule for quantitative termination analysis in PPs and
prove its soundness and completeness. In Section 4.4, we then present a martingale-
based certificate called stochastic invariant indicators (SI-indicators) for characterizing
stochastic invariants and show that they provide sound and complete characterization
of stochastic invariants. Section 4.5 defines ranking supermartingales (RSMs), a formal
certificate for probability 1 termination, and combines them with stochastic invariants
towards instantiating our proof rule for quantitative termination analysis. Section 4.6
presents our fully automated algorithm for quantitative termination analysis. Section 4.7
presents our experimental results. Section 4.8 shows that our results easily extend to
quantitative safety. Section 4.9 discusses related work. Finally, Section 4.10 contains
full proofs of results presented in earlier sections that are deferred to this section in
order to enhance readability.

Repulsing supermartingales. Prior to introducing SI-indicators in [CGMZ22b],
we first introduced a repulsing supermartingale (RepSM) [CNZ17] as a sound but
incomplete martingale-based characterization of stochastic invariants. While RepSMs
provide an effective approach to automating the synthesis of stochastic invariants in
PPs, their incompleteness was shown in [TOUH21, Example 6.6]. Our SI-indicators
overcome this limitation of RepSMs and provide a sound and complete characterization
of stochastic invariants. To that end, in this chapter we only present SI-indicators in
order to keep our presentation focused on a single characterization and algorithm for
computing stochastic invariants. However, we note that the introduction of repulsing
supermartingales is another important contribution of our work [CNZ17].

70

4.2. Overview of Our Approach

x = 0
ℓinit : while x ≥ 0 do
ℓ1 : r1 := Uniform([−1, 0.5])
ℓ2 : x := x + r1
ℓ3 : i f x ≥ 100 then
ℓ4 : i f ⋆ then
ℓ5 : r2 := Uniform([−1, 2])
ℓ6 : x := x + r2
ℓout :

Figure 4.1: Our running example for this chapter. Whenever r1 and r2 are evalu-
ated, their values are sampled from the uniform distributions Uniform([−1, 0.5]) and
Uniform([−1, 2]), independently from previous samples. The command if ⋆ then de-
notes non-deterministic branching. The labels ℓinit , ℓ1, . . . , ℓ6 and ℓout denote locations
in the program’s pCFG. The pCFG for this PP was presented in Figure 2.3.

4.2 Overview of Our Approach
We now illustrate our approach to quantitative termination analysis on an example
PP shown in Figure 4.1. The program models a 1-dimensional discrete-time random
walk over the real line that starts at x = 0 and terminates once a point with x < 0 is
reached. In every time step, x is incremented by a random value sampled according to
the uniform distribution Uniform([−1, 0.5]). However, if the stochastic process is in a
point with x ≥ 100, then the value of x might also be incremented by a random value
independently sampled from Uniform([−1, 2]). The choice on whether the second
increment happens is non-deterministic. By a standard random walk argument, the
program does not terminate almost-surely.

Outline of our approach Let p = 0.01. To prove this program terminates with
probability at least 1− p = 0.99, our method computes the following two objects:

1. Stochastic invariant. A stochastic invariant is a tuple (SI , p) s.t. SI is a set of
program states that a random program run leaves with probability at most p.

2. Termination proof for the stochastic invariant. A probability 1 termination
certificate is computed in order to prove that the program will, with probability 1,
either terminate or leave the set SI . Since SI is left with probability at most p,
the program must terminate with probability at least 1− p.

In Section 4.3, we formally define this proof rule and prove that it is sound and complete
for quantitative termination analysis in PPs.

71

4. Quantitative Termination and Safety Analysis in PPs

Synthesizing a stochastic invariant The definition of stochastic invariants and the
formulation of our proof rule do not provide insight into how to automate stochastic
invariant computation. In order to allow for a fully automated quantitative termination
analysis in PPs, in Section 4.4 we propose a martingale-based characterization of
stochastic invaraints in the form of stochastic invariant indicators. A stochastic
invariant indicator (SI-indicator) is a state function f which assigns a non-negative real
value to each reachable program state and which serves the following two purposes:
First, exactly those states which are assigned a value strictly less than 1 are considered
a part of the stochastic invariant SI . Second, the value assigned to each state is an
upper-bound on the probability of leaving SI if the program starts from that state.
Finally, by requiring that the value of the SI-indicator at the initial state of the program
is at most p, we ensure a random program run leaves the stochastic invariant with
probability at most p. In Section 4.4, we will define SI-indicators in terms of conditions
that ensure the properties above and facilitate automated computation. We also
show that SI-indicators serve as a sound and complete characterization of stochastic
invariants, which is one of the core contributions of this chapter. The significance of
completeness of the characterization is that, in order to search for a stochastic invariant
with a given probability threshold p, one may equivalently search for an SI-indicator with
the same probability threshold whose computation can be automated. The previous
approach in [CNZ17] to the synthesis of stochastic invariants was neither complete nor
provided tight probability bounds. For Figure 4.1, we have the following set SI which
will be left with probability at most p = 0.01 :

SI (ℓ) =

⎧⎨⎩(x < 99) if ℓ ∈ {ℓinit , ℓ1, ℓ2, ℓ3, ℓout}
false otherwise.

(4.1)

An SI-indicator for this stochastic invariant is:

f(ℓ, x, r1, r2) =

⎧⎪⎪⎨⎪⎪⎩
x+1
100 if ℓ ∈ {ℓinit , ℓ1, ℓ3, ℓout} and x < 99
x+1+r1

100 if ℓ = ℓ2 and x < 99
1 otherwise.

(4.2)

It is easy to check that (SI , 0.01) is a stochastic invariant and that for every state
s = (ℓ, x, r1, r2), the value f(s) is an upper-bound on the probability of eventually
leaving SI if program execution starts at s. Also, s ∈ SI ⇔ f(s) < 1.

Synthesizing a termination proof To prove that a PP terminates with probability at
least 1−p, our method searches for a stochastic invariant (SI , p) for which, additionally,
a random program run with probability 1 either leaves SI or terminates. In order
to impose this additional condition, our method simultaneously computes a ranking
supermartingale for the set of states ¬SI ∪ Stateterm, where Stateterm is the set of all

72

4.2. Overview of Our Approach

terminal states. Recall, ranking supermartingales are a classical certificate for proving
almost-sure termination or reachability in PPs. Formally, a state function η is said
to be a ranking supermartingale (RSM) [CS13] for ¬SI ∪ Stateterm if it satisfies the
following two conditions:

• Non-negativity. η(ℓ, x, r1, r2) ≥ 0 for any reachable state (ℓ, x, r1, r2) ∈ SI ;

• ε-decrease in expectation. There exists ε > 0 such that, for any reachable
non-terminal state (ℓ, x, r1, r2) ∈ SI , the value of η decreases in expectation by
at least ε after a one-step execution of the program from (ℓ, x, r1, r2).

The existence of an RSM for ¬SI ∪ Stateterm implies that the program will, with
probability 1, either terminate or leave SI . As (SI , p) is a stochastic invariant, we can
readily conclude that the program terminates with probability at least 1− p = 0.99.
An example RSM with ε = 0.05 for our example above is:

η(ℓ, x, r1, r2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + 1.1 if ℓ = ℓinit

x + 1.05 if ℓ = ℓ1

x + 1.2 + r1 if ℓ = ℓ2

x + 1.15 if ℓ = ℓ3

x + 1 if ℓ = ℓout

100 otherwise.

(4.3)

We formally define RSMs in Section 4.5. We also show that, by using RSMs as a
probability 1 reachability certificate in our sound and complete proof rule for quanti-
tative termination analysis, we are able to derive tight lower bound on termination
probability for a PP that was demonstrated in [TOUH21] not to admit a repulsing
supermartingale [CNZ17] or a gamma-scaled supermartingale [TOUH21].

Simultaneous synthesis Our method employs a template-based approach in order
to automate the synthesis of the SI-indicator and the RSM in affine/polynomial PPs.
The SI-indicator and the RSM are synthesized simultaneously. We assume that our
method is provided with an affine/polynomial invariant I which over-approximates
the set of all reachable states in the program, which is necessary since the defining
conditions of SI-indicators and RSMs are required to hold at all reachable program
states. Note that invariant generation is an orthogonal and well-studied problem and
can be automated using [CFGG20]. For both the SI-indicator and the RSM, our method
first fixes a symbolic template affine/polynomial expression for each location in the
program. Then, all the defining conditions of SI-indicators and RSMs are encoded as
a system of constraints over the symbolic template variables, where reachability of

73

4. Quantitative Termination and Safety Analysis in PPs

program states is encoded using the invariant I, and the synthesis proceeds by solving
this system of constraints. We describe our algorithm in Section 4.6, and show that
it is relatively complete with respect to the provided invariant I and the probability
threshold 1− p. On the other hand, we note that our algorithm can also be adapted
to compute lower bounds on the termination probability by combining it with a binary
search on p.

Completeness vs relative completeness Our characterization of stochastic in-
variants using indicator functions is complete. So is our reduction from quantitative
termination analysis to the problem of synthesizing an SI-indicator function and a
certificate for almost-sure reachability. These are our core theoretical contributions in
this work. Nevertheless, as shown in [FC19], RSMs are complete only for finite termina-
tion, not a.s. termination. Moreover, template-based approaches lead to completeness
guarantees only for solutions that match the template, e.g. polynomial termination
certificates of a bounded degree. Therefore, our end-to-end approach is only relatively
complete. These losses of completeness are due to Rice’s undecidability theorem and
inevitable even in qualitative termination analysis. In this chapter, we successfully
provide approaches for quantitative termination analysis that are as complete as the
best known methods for the qualitative case.

4.3 Stochastic Invariants and a Proof Rule for
Quantitative Termination

In this section, we introduce the notion of stochastic invariants and use them to present
a sound and complete proof rule for quantitative termination analysis in PPs. In what
follows, we fix a pCFG C = (L, V, ℓinit , xinit , ↦→, G, Pr , Up). Recall from Section 2.2
that a predicate function in C is a map F that to every location ℓ ∈ L assigns a logical
formula F (ℓ) over program variables. It naturally induces a set of states, which we
require to be Borel-measurable for the semantics to be well-defined and which we
identify with the predicate function F by a slight abuse of notation. We use ¬F to
denote the negation of a predicate function, i.e. (¬F)(ℓ) = ¬F (ℓ).

An invariant in C is a predicate function I which additionally over-approximates the set
of reachable states in C, i.e. for every (ℓ, x) ∈ ReachC we have x |= I(ℓ). Stochastic
invariants can be viewed as a probabilistic extension of invariants, which a random
program run leaves only with a certain probability. An example of a stochastic invariant
for the PP in Fig. 4.1 is shown in eq. (4.1).

Defintion 4.3.1 (Stochastic invariant). Let SI a predicate function in C and p ∈ [0, 1]
a probability. The tuple (SI , p) is a stochastic invariant (SI) if the probability of a run

74

4.4. Stochastic Invariant Characterization via SI-indicators

in C leaving the set of states defined by SI is at most p under any scheduler. Formally,
we require that

supσ Pσ

[︃
ρ ∈ RunC | ρ reaches some (ℓ, x) with x ̸|= SI (ℓ)

]︃
≤ p.

We show that stochastic invariants in combination with an almost-sure termination
certificate for PPs yield a sound and complete proof rule for quantitative termination
analysis. Note that Theorem 4.3.2 below states a general result about termination
probabilities that is agnostic to the termination certificate.

Theorem 4.3.2 (Soundness and Completeness of SIs for Quantitative Termination).
Let C = (L, V, ℓinit , xinit , ↦→, G, Pr , Up) be a pCFG and (SI , p) a stochastic invariant
in C. Suppose that, with respect to every scheduler, a run in C almost-surely either
terminates or reaches a state in ¬SI , i.e.

infσ Pσ

[︃
Term ∪ Reach(¬SI)

]︃
= 1. (4.4)

Then C terminates with probability at least 1 − p. Conversely, if C terminates with
probability at least 1− p, then there exists a stochastic invariant (SI , p) in C such that,
with respect to every scheduler, a run in C almost-surely either terminates or reaches a
state in ¬SI .

Proof sketch, full proof in Section 4.10.1. The first part (soundness) follows directly
from the definition of SI and (4.4). The completeness proof is conceptually and
technically involved and presented in Section 4.10.1. In short, the central idea is
to construct, for every n greater than a specific threshold n0, a stochastic invariant
(SI n, p + 1

n
) such that a run almost-surely either terminates or exists SI n. Then, we

show that ∩∞n=n0SI n is our desired SI . To construct each SI n, we consider the infimum
termination probability at every state (ℓ, x) and call it r(ℓ, x). The infimum is taken
over all schedulers. We then let SI n be the set of states (ℓ, x) for whom r(ℓ, x) is
greater than a specific threshold α. Intuitively, our stochastic invariant is the set of
program states from which the probability of termination is at least α, no matter
how the non-determinism is resolved. Let us call these states likely-terminating. The
intuition is that a random run of the program will terminate or eventually leave the
likely-terminating states with high probability.

4.4 Stochastic Invariant Characterization via
SI-indicators

In the previous section, we defined stochastic invariants and showed that they yield a
sound and complete proof rule for quantitative termination analysis in PPs. However,

75

4. Quantitative Termination and Safety Analysis in PPs

the definition of stochastic invariants and the formulation of our proof rule do not
provide insight into how to automate stochastic invariant computation. In order to
allow for a fully automated quantitative termination analysis in PPs, we now propose a
sound and complete martingale-based characterization of stochastic invaraints through
the novel notion of stochastic invariant indicators (SI-indicators).
Intuitively, an SI-indicator is a function that to each state assigns an upper-bound on
the probability of violating the stochastic invariant if we start the program in that state.
Since the definition of an SI-indicator imposes conditions on its value at reachable
states and since computing the exact set of reachable states is in general infeasible, we
define SI-indicators with respect to a supporting invariant with the later automation in
mind. In order to understand the ideas of this section, one may assume for simplicity
that the invariant exactly equals the set of reachable states. A state-function in C is a
function f that to each location ℓ ∈ L assigns a Borel-measurable real-valued function
over program variables f(ℓ) : R|V | → R. We use f(ℓ, x) and f(ℓ)(x) interchangeably.

Defintion 4.4.1 (Stochastic invariant indicator). A tuple (fSI , p) comprising a state
function fSI and probability p ∈ [0, 1] is a stochastic invariant indicator (SI-indicator)
with respect to an invariant I, if it satisfies the following conditions:

(C1) Non-negativity. For every location ℓ ∈ L, we have x |= I(ℓ)⇒ fSI (ℓ, x) ≥ 0.

(C2) Non-increasing expected value. For every location ℓ ∈ L, we have:

(C1
2) If ℓ ∈ LC , then for any transition τ = (ℓ, ℓ′) we have

x |= I(ℓ) ∧G(τ)⇒ fSI (ℓ, x) ≥ fSI (ℓ′, x).

(C2
2) If ℓ ∈ LP , then

x |= I(ℓ)⇒ fSI (ℓ, x) ≥
∑︂

τ=(ℓ,ℓ′)∈ ↦→
Pr(τ) · fSI (ℓ′, x).

(C3
2) If ℓ ∈ LN , then

x |= I(ℓ)⇒ fSI (ℓ, x) ≥ max
τ=(ℓ,ℓ′)∈ ↦→

fSI (ℓ′, x).

(C4
2) If ℓ ∈ LA with τ = (ℓ, ℓ′) the unique outgoing transition from ℓ, then:

• If Up(τ) = (j,⊥), we have

x |= I(ℓ)⇒ f(ℓ, x) ≥ f(ℓ′, x).

• If Up(τ) = (j, u) with u : R|V | → R an expression, we have

x |= I(ℓ)⇒ f(ℓ, x) ≥ f(ℓ′, x[xj ← u(xi)]).

76

4.4. Stochastic Invariant Characterization via SI-indicators

• If Up(τ) = (j, u) with u = d a distribution, we have

x |= I(ℓ)⇒ f(ℓ, x) ≥ EX∼d[f(ℓ′, x[xj ← X])].

• If Up(τ) = (j, u) with u = [a, b] an interval, we have

x |= I(ℓ)⇒ f(ℓ, x) ≥ sup
X∈[a,b]

{f(ℓ′, x[xj ← X])}.

(C3) Initial condition. We have f(ℓinit , xinit) ≤ p.

Intuition behind SI-indicators. (C1) imposes that f is nonnegative at any state
contained in the invariant I. Next, for any state in I, (C2) imposes that the value
of f does not increase in expectation upon a one-step execution of the pCFG under
any scheduler. Finally, the condition (C3) imposes that the initial value of f in C is at
most p. Together, the indicator thus intuitively over-approximates the probability of
violating SI . An example of an SI-indicator for our running example in Figure 3.2 is
given in (4.2). The following theorem formalizes the above intuition and is our main
result of this section. In essence, we prove that (SI , p) is a stochastic invariant in C
iff there exists an SI-indicator (fSI , p) such that SI contains all states at which fSI is
strictly smaller than 1. This implies that, for every stochastic invariant (SI , p), there
exists an SI-indicator such that (SI ′, p) defined via SI ′(ℓ) = (x |= I(ℓ)∧ fSI (ℓ, x) < 1)
is a stochastic invariant that is at least as tight as (SI , p). Eq. (4.2) shows an example
SI-indicator for the PP in Fig. 4.1 and the stochastic invariant in eq. (4.1).

The following theorem is the main result of this section and it formally shows that
SI-indicators provide a sound and complete characterization of stochastic invariants.

Theorem 4.4.2 (Soundness and Completeness of SI-indicators). Let C be a pCFG,
I an invariant in C and p ∈ [0, 1]. For any SI-indicator (fSI , p) with respect to I, the
predicate map SI defined as

SI (ℓ) = (x |= I(ℓ) ∧ fSI (ℓ, x) < 1)

yields a stochastic invariant (SI , p) in C. Conversely, for every stochastic invariant
(SI , p) in C, there exist an invariant ISI and a state function fSI such that (fSI , p) is
an SI-indicator with respect to ISI and for each ℓ ∈ L we have

SI (ℓ) ⊇ (x |= ISI (ℓ) ∧ fSI (ℓ, x) < 1).

Proof sketch, full proof in Section 4.10.2. Since the proof is technically involved, we
present the main ideas here and defer the details to Section 4.10.2.

First, suppose that I is an invariant in C and that (fSI , p) is an SI-indicator with
respect to I, and let SI (ℓ) = (x |= I(ℓ) ∧ fSI (ℓ, x) < 1) for each ℓ ∈ L. We

77

4. Quantitative Termination and Safety Analysis in PPs

need to show that (SI , p) is a stochastic invariant in C. Let supσ Pσ
(ℓ,x)[Reach(¬SI)]

be a state function that maps each state (ℓ, x) to the probability of reaching ¬SI
from (ℓ, x). We consider a lattice of non-negative semi-analytic state-functions (L,⊑)
with the partial order defined via f ⊑ f ′ if f(ℓ, x) ≤ f ′(ℓ, x) holds for each state
(ℓ, x) in I. See Section 2.5 for a review of lattice theory. It follows from a result
in [TOUH21] that the probability of reaching ¬SI can be characterized as the least
fixed point of the next-time operator X¬SI : L → L. Away from ¬SI , the operator
X¬SI simulates a one-step execution of C and maps f ∈ L to its maximal expected
value upon one-step execution of C where the maximum is taken over all schedulers,
and at states contained in ¬SI the operator X¬SI is equal to 1. It was also shown
in [TOUH21] that, if a state function f ∈ L is a pre-fixed point of X¬SI , then it
satisfies supσ Pσ

(ℓ,x)[Reach(¬SI)] ≤ f(ℓ, x) for each (ℓ, x) in I. Now, by checking the
defining properties of pre-fixed points and recalling that fSI satisfies Non-negativity
condition (C1) and Non-increasing expected value condition (C2) in Definition 4.4.1,
we can show that fSI is contained in the lattice L and is a pre-fixed point of X¬SI .
It follows that supσ Pσ

(ℓinit ,xinit)[Reach(¬SI)] ≤ fSI (ℓinit , xinit). On the other hand, by
initial condition (C3) in Definition 4.4.1 we know that fSI (ℓinit , xinit) ≤ p. Hence, we
have supσ Pσ

(ℓinit ,xinit)[Reach(¬SI)] ≤ p so (SI , p) is a stochastic invariant.

Conversely, suppose that (SI , p) is a stochastic invariant in C. We show in Sec-
tion 4.10.2 that, if we define ISI to be the trivial true invariant and define fSI (ℓ, x) =
supσ Pσ

(ℓ,x)[Reach(¬SI)], then (fSI , p) forms an SI-indicator with respect to ISI . The
claim follows by again using the fact that fSI is the least fixed point of the operator
X¬SI , from which we can conclude that (fSI , p) satisfies conditions (C1) and (C2) in
Definition 4.4.1. On the other hand, the fact that (SI , p) is a stochastic invariant and
our choice of fSI imply that (fSI , p) satisfies the initial condition (C3) in Definition 4.4.1.
Hence, (fSI , p) forms an SI-indicator with respect to ISI . Furthermore, SI (ℓ) ⊇ (x |=
ISI (ℓ) ∧ fSI (ℓ, x) < 1) follows since 1 > fSI (ℓ, x) = supσ Pσ

(ℓ,x)[Reach(¬SI)] implies
that (ℓ, x) cannot be contained in ¬SI so x |= SI (ℓ). This concludes the proof.

Based on the theorem above, in order to compute a stochastic invariant in C for
a given probability threshold p, it suffices to synthesize a state function fSI that
together with p satisfies all the defining conditions in Definition 4.4.1 with respect to
some supporting invariant I, and then consider a predicate function SI defined via
SI (ℓ) = (x |= I(ℓ) ∧ fSI (ℓ, x) < 1) for each ℓ ∈ L. This will be the guiding principle
of our algorithmic approach in Section 4.6.

Intuition on characterization. Stochastic invariants can essentially be thought of
as quantitative safety specifications in probabilistic programs – (SI , p) is a stochastic
invariant if and only if a random PP run leaves SI with probability at most p. However,
what makes their computation hard is that they do not consider probabilities of staying

78

4.5. Stochastic Invariants and RSMs for Quantitative Termination

within a specified safe set. Rather, the computation of stochastic invariants requires
computing both the safe set and the certificate that it is left with at most the given
probability. Nevertheless, in order to reason about them, we may consider SI as
an implicitly defined safe set. Hence, if we impose conditions on a state function
fSI to be an upper bound on the reachability probability for the target set of states
(x |= I(ℓ)∧ fSI (ℓ, x) < 1), and in addition impose that fSI (ℓinit , xinit) ≤ p, then these
together will entail that p is an upper bound on the probability of ever leaving SI when
starting in the initial state. This is the intuitive idea behind our construction of SI-
indicators, as well as our soundness and completeness proof. In the proof, we show that
conditions (C1) and (C2) in Definition 4.4.1 indeed entail the necessary conditions to
be an upper bound on the reachability probability of the set (x |= I(ℓ)∧ fSI (ℓ, x) < 1).

4.5 Stochastic Invariants and RSMs for
Quantitative Termination

Theorem 4.3.2 provides us with a recipe for computing lower bounds on the probability of
termination once we are able to compute stochastic invariants: if (SI , p) is a stochastic
invariant in a pCFG C, it suffices to prove that the set of states Stateterm ∪ ¬SI is
reached almost-surely with respect to any scheduler in C, i.e. the program terminates
or violates SI. Note that this is simply a qualitative a.s. termination problem, except
that the set of terminal states is now augmented with ¬SI . Then, since (SI , p) is a
stochastic invariant, it would follow that a terminal state is reached with probability
at least 1 − p. Moreover, the theorem shows that this approach is both sound and
complete. In other words, proving quantitative termination, i.e. that we reach Stateterm
with probability at least 1− p is now reduced to (i) finding a stochastic invariant (SI , p)
and (ii) proving that the program C ′ obtained by adding ¬SI to the set of terminal
states of C is a.s. terminating. Note that, to preserve completeness, (i) and (ii) should
be achieved in tandem, i.e. an approach that first synthesizes and fixes SI and then
tries to prove a.s. termination for ¬SI is not complete.

Ranking supermartingales. While our reduction above is agnostic to the type of
proof/certificate that is used to establish a.s. termination, in this work we use Ranking
Supermartingales (RSMs) [CS13], which are a standard and classical certificate for
proving a.s. termination and reachability. Let C = (L, V, ℓinit , xinit , ↦→, G, Pr , Up) be
a pCFG and I an invariant in C. Note that as in Definition 4.4.1, the main purpose
of the invariant is to allow for automated synthesis and one can again simply assume
it to equal the set of reachable states. An ε-RSM for a subset T of states is a state
function that is non-negative in each state in I, and whose expected value decreases by
at least ε > 0 upon a one-step execution of C in any state that is not contained in the

79

4. Quantitative Termination and Safety Analysis in PPs

target set T . Thus, intuitively, a program run has an expected tendency to approach
the target set T where the distance to T is given by the value of the RSM which is
required to be non-negative in all states in I. The ε-ranked expected value condition is
formally captured via the next-time operator X (see Section 4.10.2). An example of an
RSM for our running example in Figure 4.1 and the target set of states ¬SI ∪Stateterm
with SI the stochastic invariant in Equation (4.1) is given in Equation (4.3).

Defintion 4.5.1 (Ranking supermartingales). Let T be a predicate function defining a
set of target states in C, and let ε > 0. A state function η is said to be an ε-ranking
supermartingale (ε-RSM) for T with respect to the invariant I if it satisfies the following
conditions:

• Non-negativity. For each location ℓ ∈ L and x ∈ I(ℓ), we have η(ℓ, x) ≥ 0.

• ε-ranked expected value. For each location ℓ ∈ L and x |= I(ℓ) ∩ ¬T (ℓ), we
have η(ℓ, x) ≥ X(η)(ℓ, x) + ε.

Note that the second condition can be expanded according to location types in the
exact same manner as in condition C2 of Definition 4.4.1. The only difference is that
in Definition 4.4.1, the expected value had to be non-increasing, whereas here it has to
decrease by ε. It is well-known that the two conditions above entail that T is reached
with probability 1 with respect to any scheduler [CS13, CFNH18].

Theorem 4.5.2 (Proof in Section 4.10.4). Let C be a pCFG, I an invariant in C and T
a predicate function defining a target set of states. If there exist ε > 0 and an ε-RSM
for T with respect to I, then T is a.s. reached under any scheduler, i.e.

infσ Pσ
(ℓinit ,xinit)

[︃
Reach(T)

]︃
= 1.

The following theorem is an immediate corollary of Theorems 4.3.2 and 4.5.2.

Theorem 4.5.3. Let C be a pCFG and I be an invariant in C. Suppose that there
exist a stochastic invariant (SI , p), an ε > 0 and an ε-RSM η for Stateterm ∪¬SI with
respect to I. Then C terminates with probability at least 1− p.

Therefore, in order to prove that C terminates with probability at least 1− p, it suffices
to find (i) a stochastic invariant (SI , p) in C, and (ii) an ε-RSM η for Stateterm ∪ ¬SI
with respect to I and some ε > 0. Note that these two tasks are interdependent.
We cannot simply choose any stochastic invariant. For instance, the trivial predicate
function defined via SI = true always yields a valid stochastic invariant for any p ∈ [0, 1],
but it does not help termination analysis. Instead, we need to compute a stochastic
invariant and an RSM for it simultaneously.

80

4.6. Algorithm for Quantitative Termination

x = ndet((0, 1))
ℓinit : while x < 1 do {0 < x < 2}
ℓ1 : x := 2 · x {0 < x < 1}
ℓ2 : i f prob (0.5) then {1 ≤ x < 2}
ℓ3 : while true do sk ip od {1 ≤ x < 2}
ℓout : {1 ≤ x < 2}

Figure 4.2: A program that was shown in [TOUH21] not to admit a repulsing super-
martingale [CNZ17] or a gamma-scaled supermartingale [TOUH21], but for which our
method can certify the tight lower-bound of 0.5 on the probability of termination.

Power of completeness. We end this section by showing that our approach certifies a
tight lower-bound on termination probability for a program that was proven in [TOUH21]
not to admit any of the previously-existing certificates for lower bounds on termination
probability. This shows that our completeness pays off in practice and our approach is
able to handle programs that were beyond the reach of previous methods. Consider
the program in Figure 4.2 annotated by an invariant I. We show that our approach
certifies that this program terminates with probability at least 0.5. Indeed, consider a
stochastic invariant (SI , 0.5) with

SI (ℓ) =

⎧⎨⎩true if ℓ ∈ {ℓinit , ℓ1, ℓ2, ℓout}
false if ℓ = ℓ3

and a state function defined via

η(ℓinit , x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− log(x) + log(2) + 3 if ℓ = ℓinit

− log(x) + log(2) + 2 if ℓ = ℓ1

1 if ℓ = ℓ2

0 if ℓ ∈ {ℓ3, ℓout}

for each x. Then one can check by inspection that (SI , 0.5) is a stochastic invariant
and η is a (log(2)−1)-RSM for Stateterm ∪¬SI with respect to I. Therefore, it follows
by Theorem 4.5.3 that the PP in Figure 4.2 terminates with probability at least 0.5.

4.6 Algorithm for Quantitative Termination
We now provide template-based relatively complete algorithms for simultaneous and
automated synthesis of SI-indicators and RSMs, in order to solve the quantitative
termination problem over pCFGs with affine/polynomial arithmetic. Our approach
builds upon the ideas of [ACF+21, CFG16] for qualitative and non-probabilistic cases.

81

4. Quantitative Termination and Safety Analysis in PPs

Input and assumptions. The input to our algorithms consists of a pCFG C together
with a probability p ∈ [0, 1], an invariant I,∗ and technical variables δ and M , which
specify polynomial template sizes used by the algorithm and which will be discussed
later. In this section, we limit our focus to affine/polynomial pCFGs, i.e. we assume
that all guards G(τ) in C and all invariants I(ℓ) are conjunctions of affine/polynomial
inequalities over program variables. Similarly, we assume that every update function
u : R|V | → R used in deterministic variable assignments is an affine/polynomial
expression in R[V].

Output. The goal of our algorithms is to synthesize a tuple (f, η, ε) where f is an
SI-indicator function, η is a corresponding RSM, and ε > 0, such that:

• At every location ℓ of C, both f(ℓ) and η(ℓ) are affine/polynomial expressions of
fixed degree δ over the program variables V .

• Having SI (ℓ) := {x | f(ℓ, x) < 1}, the pair (SI , p) is a valid stochastic invariant
and η is an ε-RSM for Stateterm ∪ ¬SI with respect to I.

As shown in Sections 4.4 and 4.5, such a tuple w = (f, η, ε) serves as a certificate that
the probabilistic program modeled by C terminates with probability at least 1− p. We
call w a quantitative termination certificate.

Overview. Our algorithm is a standard template-based approach similar to [ACF+21,
CFG16]. We encode the requirements of Definitions 4.4.1 and 4.5.1 as entailments
between affine/polynomial inequalities with unknown coefficients and then apply the
classical Farkas’ Lemma [Far02] or Putinar’s Positivstellensatz [Put93] to reduce the
synthesis problem to Quadratic Programming (QP). Finally, we solve the resulting QP
using a numerical optimizer or an SMT-solver. Our approach consists of the four steps
below. Step 3 follows [ACF+21] exactly. Hence, we refer to [ACF+21] for more details
on this step.

Step 1. Setting up templates. The algorithm sets up symbolic templates with
unknown coefficients for f, η and ε.

• First, for each location ℓ of C, the algorithm sets up a template for f(ℓ) which is a
polynomial consisting of all possible monomials of degree at most δ over program
variables, each appearing with an unknown coefficient. For example, consider the
program in Figure 4.1 of Section 4.2. This program has three variables: x, r1 and

∗We assume an invariant is given as part of the input. Invariant generation is an orthogonal and
well-studied problem and can be automated using [CSS03, CFGG20].

82

4.6. Algorithm for Quantitative Termination

r2. If δ = 1, i.e. if the goal is to find an affine SI-indicator, at every location ℓi of
the program, the algorithm sets f(ℓi, x, r1, r2) := ˆ︃ci,0 + ˆ︃ci,1 ·x + ˆ︃ci,2 · r1 + ˆ︃ci,3 · r2.
Similarly, if the desired degree is δ = 2, the algorithm symbolically computes:
f(ℓi, x, r1, r2) := ˆ︃ci,0 + ˆ︃ci,1 · x + ˆ︃ci,2 · r1 + ˆ︃ci,3 · r2 + ˆ︃ci,4 · x2 + ˆ︃ci,5 · x · r1 + ˆ︃ci,6 · x ·
r2 + ˆ︃ci,7 · r2

1 + ˆ︃ci,8 · r1 · r2 + ˆ︃ci,9 · r2
2. Note that every monomial of degree at most

2 appears in this expression. The goal is to synthesize suitable real values for
each unknown coefficient ˆ︃ci,j such that f becomes an SI-indicator. Throughout
this section, we use the ˆ︁. notation to denote an unknown coefficient whose value
will be synthesized by our algorithm.

• The algorithm creates an unknown variable ˆ︁ε whose final value will serve as ε.

• Finally, at each location ℓ of C, the algorithm sets up a template for η(ℓ) in the
exact same manner as the template for f(ℓ). The goal is to synthesize values
for ˆ︁ε and the ˆ︁c variables in this template such that η becomes a valid ˆ︁ε-RSM for
Stateterm ∪ ¬SI with respect to I.

Step 2. Generating entailment constraints. In this step, the algorithm symbolically
computes the requirements of Definition 4.4.1, i.e. C1–C3, and their analogues in
Definition 4.5.1 using the templates generated in the previous step. Note that all
of these requirements are entailments between affine/polynomial inequalities over
program variables whose coefficients are unknown. In other words, they are of the
form ∀x A(x)⇒ b(x) where A is a set of affine/polynomial inequalities over program
variables whose coefficients contain the unknown variables ˆ︁c and ˆ︁ε generated in the
previous step and b is a single such inequality. For example, for the program of
Figure 3.2, the algorithm symbolically computes condition C1 at line ℓ1 as follows:
∀x I(ℓ1, x)⇒ f(ℓ1, x) ≥ 0. Assuming that the given invariant is I(ℓ1, x) := (x ≤ 1)
and an affine (degree 1) template was generated in the previous step, the algorithm
expands this to:

∀x 1− x ≥ 0⇒ ˆ︃c1,0 + ˆ︃c1,1 · x + ˆ︃c1,2 · r1 + ˆ︃c1,3 · r2 ≥ 0. (4.5)

The algorithm generates similar entailment constraints for every location and every
requirement in Definitions 4.4.1 and 4.5.1.

Step 3. Quantifier elimination. At the end of the previous step, we have a system
of constraints of the form ⋀︁

i (∀x Ai(x)⇒ bi(x)) . In this step, the algorithm sets off
to eliminate the universal quantification over x in every constraint. First, consider the
affine case. If Ai is a set of linear inequalities over program variables and bi is one
such linear inequality, then the algorithm attempts to write bi as a linear combination
with non-negative coefficients of the inequalities in Ai and the trivial inequality 1 ≥ 0.
For example, it rewrites (4.5) as ˆ︂λ1 · (1− x) + ˆ︂λ2 = ˆ︃c1,0 + ˆ︃c1,1 · x + ˆ︃c1,2 · r1 + ˆ︃c1,3 · r2

83

4. Quantitative Termination and Safety Analysis in PPs

where ˆ︂λi’s are new non-negative unknown variables for which we need to synthesize
non-negative real values. This inequality should hold for all valuations of program
variables. Thus, we can equate the corresponding coefficients on both sides and obtain
this equivalent system:

ˆ︂λ1 + ˆ︂λ2 = ˆ︃c1,0 (the constant factor)
−ˆ︂λ1 = ˆ︃c1,1 (coefficient of x)

0 = ˆ︃c1,2 = ˆ︃c1,3 (coefficients of r1 and r2)
(4.6)

This transformation is clearly sound, but it is also complete due to the well-known
Farkas’ lemma [Far02]. Now consider the polynomial case. Again, we write bi as a
combination of the polynomials in Ai. The only difference is that instead of having
non-negative real coefficients, we use sum-of-square polynomials as our multiplicands.
For example, suppose our constraint is

∀x g1(x) ≥ 0 ∧ g2(x) ≥ 0⇒ g3(x) > 0,

where the gi’s are polynomials with unknown coefficients. The algorithm writes

g3(x) = h0(x) + h1(x) · g1(x) + h2(x) · g2(x), (4.7)

where each hi is a sum-of-square polynomial of degree at most M. The algorithm sets
up a template of degree M for each hi and adds well-known quadratic constraints
that enforce it to be a sum of squares. See [ACF+21, Page 22] for details. It then
expands (4.7) and equates the corresponding coefficients of the LHS and RHS as
in the linear case. The soundness of this transformation is trivial since each hi is a
sum-of-squares and hence always non-negative. Completeness follows from Putinar’s
Positivstellensatz [Put93]. Since the arguments for completeness of this method are
exactly the same as the method in [ACF+21], we refer the reader to [ACF+21] for more
details and an extension to entailments between strict polynomial inequalities.

Step 4. Quadratic programming. All of our constraints are converted to Quadratic
Programming (QP) over template variables, e.g. see (4.6). Our algorithm passes this
QP instance to an SMT solver or a numerical optimizer. If a solution is found, it plugs
in the values obtained for the ˆ︁c and ˆ︁ε variables back into the template of Step 1 and
outputs the resulting termination witness (f, η, ε).

We end this section by noting that our algorithm is sound and relatively complete for
synthesizing affine/polynomial quantitative termination certificates.

Theorem 4.6.1 (Soundness and Completeness in the Affine Case). Given an affine
pCFG C, an affine invariant I, and a non-termination upper-bound p ∈ [0, 1], if C
admits a quantitative termination certificate w = (f, η, ε) in which both f and η are

84

4.7. Experiments

affine expressions at every location, then w corresponds to a solution of the QP instance
solved in Step 4 of the algorithm above. Conversely, every such solution, when plugged
back into the template of Step 1, leads to an affine quantitative termination certificate
showing that C terminates with probability at least 1− p over every scheduler.

Theorem 4.6.2 (Soundness and Relative Completeness in the Polynomial Case). Given
a polynomial pCFG C, a polynomial invariant I which is a compact subset of R|V |
at every location ℓ, and a non-termination upper-bound p ∈ [0, 1], if C admits a
quantitative termination certificate w = (f, η, ε) in which both f and η are polynomial
expressions of degree at most δ at every location, then there exists an M ∈ N, for
which w corresponds to a solution of the QP instance solved in Step 4 of the algorithm
above. Conversely, every such solution, when plugged back into the template of Step 1,
leads to a polynomial quantitative termination certificate of degree at most δ showing
that C terminates with probability at least 1− p over every scheduler.

Proof. Step 2 encodes the conditions of an SI-indicator (Definition 4.4.1) and RSM
(Definition 4.5.1). Theorem 4.5.3 shows that an SI-indicator together with an RSM
is a valid quantitative termination certificate. The transformation in Step 3 is sound
and complete as argued in [ACF+21, Theorems 4 and 10]†. The affine version relies on
Farkas’ lemma [Far02] and is complete with no additional constraints. The polynomial
version is based on Putinar’s Positivstellensatz [Put93] and is only complete for large
enough M , i.e. a high-enough degree for sum-of-square multiplicands. This is why we
call our algorithm relatively complete. In practice, small values of M are enough to
synthesize w and we use M = 2 in all of our experiments.

4.7 Experiments
Implementation. We implemented a prototype of our approach in Python and used
SymPy [M+17] for symbolic computations and the MathSAT5 SMT Solver [CGSS13]
for solving the final QP instances. We also applied basic optimizations, e.g. checking
the validity of each entailment and thus removing tautological constraints.

Machine and parameters. All results were obtained on an Intel Core i9-10885H
machine (8 cores, 2.4 GHz, 16 MB Cache) with 32 GB of RAM running Ubuntu 20.04.
We always synthesized quadratic termination certificates and set δ = M = 2.

Benchmarks. We generated a variety of random walks with complicated behavior,
including nested combinations of probabilistic and non-deterministic branching and

†We need a more involved transformation for strict inequalities. See [ACF+21, Theorem 8].

85

4. Quantitative Termination and Safety Analysis in PPs

Table 4.1: Summary of our experimental results on a subset of our benchmark set.
See [CGMZ22a][Appendix J] for benchmark details and for the results on all benchmarks.
For each benchmark, the column with the value 1 − p denotes the lower bound on
termination probability that our method proved.

Benchmark Short Explanation p 1− p Runtime (s)
Figure 4.1 Our running example 0.01 0.99 2.38

Figure 7 Nested probabilistic and non-deterministic branches 0.25 0.25 0.75 1.40
leading to infinite loop with maximum probability

Figure 9 An a.s. terminating biased random walk 0 1 0.73
with uniformly distributed steps

Figure 10 A random walk that starts at x = 10 and 0.12 0.88 1.10
takes a step of Uniform(−2, 1) each time. Terminates

if x < 0 and loops forever as soon as x ≥ 100.
Figure 11 A 2-D random walk starting at (50, 50). In each iteration, 0.07 0.93 3.52

x is incremented, while y is increased by Uniform(−1, 1).
Terminates when x > 100. Loops when y ≤ 0.

Figure 14 A 3-D random walk. In each iteration, each of x, y, z 0.999 0.001 3.22
are incremented with a higher probability than
decremented. Terminates when x + y + z < 0.

Figure 15 An example with both probabilistic and non-deterministic 0.51 0.49 2.73
in an assignment.

Figure 16 A variant of Figure 15 with unbounded non-determinism 0.51 0.49 2.70
in an assignment.

Figure 17 A probabilistic branch between an a.s. terminating loop 0.4 0.6 5.17
and a loop with small termination probability.

Figure 18 A skewed random walk with two barriers, 0.51 0.49 5.26
only one of which leads to program termination.

Figure 19 Taken from [CNZ17] and conceptually similar to Figure 5. 0.24 0.76 0.94
Figure 22 A more complicated and non-a.s.-terminating 0.1 0.9 1.15

random walk taken from [CNZ17].
Figure 23 A 2-D variant of Figure 22, also from [CNZ17]. 0.08 0.92 4.01

loops. We also took a number of benchmarks from [CNZ17]. Table 4.1 presents
experimental results on a subset of our benchmark set, together with short descriptions
of these benchmarks. Complete evaluation as well as details on all benchmarks are
provided in the extended version of the paper [CGMZ22a][Appendix J].

Results and discussion. Our experimental results are summarized in Table 4.1, with
complete results provided in [CGMZ22a][Appendix J]. In every case, our approach was
able to synthesize a certificate that the program terminates with probability at least
1−p under any scheduler. Moreover, our runtimes are consistently small and less than 6
seconds per benchmark. Our approach was able to handle programs that are beyond the
reach of previous methods, including those with unbounded differences and unbounded
non-deterministic assignments to which approaches such as [CNZ17] and [TOUH21] are
not applicable, as was demonstrated in [TOUH21]. This adds experimental confirmation
to our theoretical power-of-completeness result at the end of Section 4.5, which showed
the wider applicability of our method. Finally, it is noteworthy that the termination
probability lower-bounds reported in Table 4.1 are not tight. There are two reasons for

86

4.8. Extension to Quantitative Safety

this. First, while our theoretical approach is sound and complete, our algorithm can
only synthesize affine/polynomial certificates for quantitative termination, and the best
polynomial certificate of a certain degree might not be tight. Second, we rely on an
SMT-solver to solve our QP instances. The QP instances often become harder as we
decrease p, leading to the solver’s failure even though the constraints are satisfiable.

4.8 Extension to Quantitative Safety
We conclude this chapter by showing that all our results naturally extend to quantitative
safety analysis in PPs. In particular, we first show that stochastic invariants trivially
yield a sound and complete proof rule for quantitative safety analysis and demonstrate it
on an example. We then, we show that our relatively complete algorithm in Section 4.6
straightforwardly extends to a relatively complete algorithm for quantitative safety
analysis in affine/polynomial PPs.

Recall, given a pCFG C = (L, V, ℓinit , xinit , ↦→, G, Pr , Up) and a predicate function S
in C that defines a set of states in C, the safety probability of S in C is defined as the
infimum probability of a random run not reaching S, i.e. infσ Pσ[Safe(S)]. The goal
of quantitative safety analysis is then to prove that the safety probability of S in C is
above some probability threshold. See Section 2.2 for formal definitions of reachability
and safety probabilities.

4.8.1 Stochastic Invariants for Quantitative Safety
The following theorem shows that stochastic invariants yield a sound and complete
proof rule for quantitative safety analysis in PPs. The proof rule for quantitative safety
is based on the fact that stochastic invariants encode an upper bound on the safety
probability with respect to the complement of a set of states. Intuitively, given a
predicate function S, the safety probability of S in C is at least 1 − p if and only if
there exists a stochastic invariant (SI , p) in C such that S ∩ SI = ∅, when S and SI
are regarded as sets of states in C.

Theorem 4.8.1 (Soundness and Completeness of SIs for Quantitative Safety). Let
C = (L, V, ℓinit , xinit , ↦→, G, Pr , Up) be a pCFG, S a predicate function in C and (SI , p)
a stochastic invariant in C. Suppose that there exists no state (ℓ, x) in C such that
x |= S(ℓ) and x |= SI (ℓ). Then, the safety probability of S in C is greater than or
equal to 1− p, i.e.

inf
σ
Pσ[Safe(S)] ≥ 1− p.

Conversely, if the safety probability of S in C is greater than or equal to 1− p, then
there exists a stochastic invariant (SI , p) in C for which there exists no state (ℓ, x) in
C such that x |= S(ℓ) and x |= SI (ℓ).

87

4. Quantitative Termination and Safety Analysis in PPs

Proof. To prove the first part (soundness), observe that

inf
σ
Pσ[Safe(S)] ≥ inf

σ
Pσ[Safe(¬SI)] = 1− sup

σ
Pσ[Reach(¬SI)] ≥ 1− p.

Here, the first inequality follows since S∩SI = ∅ as sets of states so S ⊆ ¬SI , whereas
the last inequality follows by the definition of stochastic invariants.
To prove the second part (completeness), suppose that the safety probability of S in C
is greater than or equal to 1− p. Consider a predicate function SI = ¬S. Clearly, we
have that there exists no state (ℓ, x) in C such that x |= S(ℓ) and x |= SI (ℓ). Hence,
to prove the theorem claim, it suffices to prove that (SI , p) is a stochastic invariant.
This follows since

sup
σ

Pσ[Reach(¬SI)] = 1− inf
σ
Pσ[Safe(¬SI)] ≤ 1− inf

σ
Pσ[Safe(S)] ≤ p.

Here, the first inequality follows since S ∩ SI = ∅ so S ⊆ ¬SI , whereas the last
inequality follows since the safety probability of S is greater than or equal to 1− p.

Example 4.8.1. Consider again our running example for this chapter in Fig. 4.1 and a
predicate function defined via

S(ℓ) =

⎧⎨⎩(x ≥ 100) if ℓ ∈ {ℓinit , ℓ1, ℓ2, ℓ3, ℓout}
true otherwise.

Intuitively, S captures the set of states that could be reached upon executing the
if-branch in line ℓ3. Consider also the predicate function SI defined in eq. (4.1). In
Section 4.2, we showed that (SI , 0.01) is a stochastic invariant. On the other hand,
comparing S to SI , we can see that S ∩ SI = ∅ as sets. Therefore, our proof rule
in Theorem 4.8.1 implies that the safety probability of S is greater than or equal to
1− 0.01 = 0.99.

4.8.2 Relatively Complete Algorithm for Quantitative Safety
We now show that our algorithm in Section 4.6 can be straightforwardly adapted to a
relatively complete algorithm for quantitative safety analysis in PPs. The algorithm is
very similar to the algorithm in Section 4.6, thus in what follows we only present a high
level overview and highlight the differences compared to our algorithm in Section 4.6.

Input. As before, the algorithm considers affine/polynomial PPs and takes as input a
pCFG C, a probability p ∈ [0, 1], an affine/polynomial invariant I and technical variables
δ and M that have the same purpose as in Section 4.6. In addition, the algorithm also
takes as input a predicate function S in C whose quantitative safety we wish to analyze,
which we require to be specified via a conjunction of affine/polynomial inequalities over
program variables.

88

4.8. Extension to Quantitative Safety

Output. The algorithm synthesizes an SI-indicator f for which we require that

• if we define a predicate function SI via SI (ℓ) := {x | f(ℓ, x) < 1} for each
location ℓ in C, the pair (SI , p) is a valid stochastic invariant, and

• there exists no state (ℓ, x) such that x |= S(ℓ) and x |= SI (ℓ).

The first condition will be enforced analogously as in the algorithm in Section 4.6. To
enforce the latter condition, it suffices to enforce that f(ℓ, x) ≥ 1 for each x |= S(ℓ).
We call w = (f) a quantitative safety certificate for S.

Algorithm. Our algorithm for quantitative safety analysis proceeds in the analogous
four steps as the algorithm in Section 4.6. In what follows, we summarize those steps
and highlight the differences compared to the algorithm in Section 4.6.

Step 1. Setting up templates. Analogously as in Section 4.6, for each location ℓ
of C, our algorithm sets up a template for f(ℓ) which is a polynomial consisting of all
possible monomials of degree at most δ over program variables, each appearing with
an unknown coefficient.

Step 2. Generating entailment constraints. The algorithm symbolically computes
the requirements for f to be an SI-indicator, i.e. conditions C1−C3 in Definition 4.4.1.
In addition, it symbolically computes the following entailment for each location ℓ in C:

∀x x |= S(ℓ)⇒ f(ℓ, x) ≥ 1.

These entailments encode that, if a state is contained in S, then the value of f at the
state is greater than or equal to 1. Thus, we have that S ∩ SI = ∅ for the predicate
function SI defined via SI (ℓ) := {x | f(ℓ, x) < 1} for each location ℓ in C. The
generation of these entailments is done analogously as in Step 2 in Section 4.6.

Step 3. Quantifier elimination. This step proceeds analogously as the Step 3
in Section 4.6. In the affine case, quantifier elimination uses Farkas’ lemma [Far02]
and in the polynomial case it uses Putinar’s Positivstellensatz [Put93], which provide
soundness and completeness guarantees analogously as in Section 4.6.

Step 4. Quadratic programming. The resulting constraints are converted to
Quadratic Programming (QP) over template variables and the resulting QP instance is
passed to an SMT solver or a numerical optimizer. If a solution is found, the algorithm
plugs in the obtained values back into the template of Step 1 and outputs the resulting
safety witness w = (f).

89

4. Quantitative Termination and Safety Analysis in PPs

Our algorithm for quantitative safety analysis is sound and relatively complete for
synthesizing affine/polynomial quantitative termination certificates, analogously to our
algorithm for quantitative termination analysis in Section 4.6.

Theorem 4.8.2 (Soundness and Completeness in the Affine Case). Given an affine
pCFG C, an affine invariant I, an affine predicate function S and an upper bound
p ∈ [0, 1] on the non-safety probability of S, if C admits a quantitative safety certificate
w = (f) in which f is specified via an affine expression at every location, then w
corresponds to a solution of the QP instance solved in Step 4 of the algorithm above.
Conversely, every such solution, when plugged back into the template of Step 1, leads
to an affine quantitative safety certificate showing that the safety probability of S in C
is at least 1− p over every scheduler.

Theorem 4.8.3 (Soundness and Relative Completeness in the Polynomial Case). Given
a polynomial pCFG C, a polynomial invariant I which is a compact subset of R|V | at
every location ℓ, a polynomial predicate function S and an upper bound p ∈ [0, 1] on
the non-safety probability of S, if C admits a quantitative safety certificate w = (f) in
which f is specified via a polynomial expression of degree at most δ at every location,
then there exists an M ∈ N, for which w corresponds to a solution of the QP instance
solved in Step 4 of the algorithm above. Conversely, every such solution, when plugged
back into the template of Step 1, leads to a polynomial quantitative safety certificate
of degree at most δ showing that the safety probability of S in C is at least 1− p over
every scheduler.

Proof. Step 2 encodes the conditions of an SI-indicator (Definition 4.4.1) and and in
addition encodes that f is at least 1 at every state contained in S. Theorem 4.8.1
shows that an SI-indicator whose indicated stochastic invariant does not intersect S
is a valid quantitative safety certificate. The transformation in Step 3 is sound and
complete as argued in [ACF+21, Theorems 4 and 10]‡. The affine version relies on
Farkas’ lemma [Far02] and is complete with no additional constraints. The polynomial
version is based on Putinar’s Positivstellensatz [Put93] and is only complete for large
enough M , i.e. a high-enough degree for sum-of-square multiplicands. This is why we
call our algorithm relatively complete.

4.9 Related Work
Quantitative termination and safety. For this chapter to be self contained, we
repeat our overview of related work in Chapter 1. Prior to the work in this thesis,
automated methods for quantitative termination and safety analysis in PPs derived

‡We need a more involved transformation for strict inequalities. See [ACF+21, Theorem 8].

90

4.9. Related Work

bounds on termination or safety probability by considering terminating executions. As
such, they are not well suited for the formal analysis of PPs that may model infinite-time
horizon systems. For PPs with bounded loops, exact inference methods perform weighted
model counting [HdBM20] or symbolic execution and integration [GMV16, GSV20] in
order to compute exact expected values of functions or probabilities of events upon
PP execution. Approximate inference methods include [CMMV16, CDM17, HDM22].
The work [SCG13] considers linear arithmetic PPs and uses symbolic execution and
integration to compute bounds on reachability and safety probability. To the best of our
knowledge, existing exact and approximate inference methods do not support PPs with
non-determinism. Abstract interpretation for quantitative safety analysis in PPs was
proposed in [Mon00], however it remains unclear how to perform the widening operation
in the presence of loops and automation is only briefly discussed. Automated methods
for the analysis of prob-solvable loops, i.e. loops whose body contains a sequence of
probabilistic assignments but no conditional branching or nested loops, that are based
on recurrence solving have been proposed in [BKS19, MBKK21a, MBKK21b].

Following the publication of our work [CNZ17], several other approaches to quantitative
termination and safety analysis have been proposed, of which some are applicable to
non almost-surely terminating PPs [TOUH21, WSF+21, BO21]. In what follows, we
compare the work in this chapter to these works in more detail. In particular, none
of these works provide a sound and complete proof rule for quantitative termination
analysis in PPs, and to the best of our knowledge our work [CGMZ22b] provides the
only such proof rule whose computation can be automated.

Comparison to [TOUH21]. The work [TOUH21] proposed novel martingale-based
proof rules for quantitative termination and safety analysis in PPs and algorithms for
their automated computation. For quantitative safety analysis, it introduces nonnegative
repulsing supermartingales (NNRepSMs), that relax some of the restrictive conditions of
RepSMs of [CNZ17] and provide a sound and complete proof rule for quantitative safety
analysis. For quantitative termination analysis, it introduces γ-scaled submartingales
(γ-SclSubMs) and proves their effectiveness for computing lower bounds on termination
probability. Intuitively, for γ ∈ (0, 1), a state function f is a γ-SclSubM if it is a bounded
nonnegative function whose value in each non-terminal state decreases in expected
value at least by a factor of γ upon a one-step execution of the pCFG. One may think
of the second condition as a multiplicative decrease in expected value. However, this
condition is too strict and γ-SclSubMs are not complete for lower bounds on termination
probability [TOUH21, Example 6.6]. Unlike our approaches in [CNZ17, CGMZ22b]
which combine martingale-based certificates and stochastic invariants to reason about
quantitative termination, γ-SclSubMs aim to reason about quantitative termination
directly and are not complete.

91

4. Quantitative Termination and Safety Analysis in PPs

Comparison to [WSF+21]. The work [WSF+21] uses martingale-based methods
and presents two approaches to quantitative safety analysis in PPs. First, it is shown
that RepSMs provide a tighter upper bound on the probability of reaching a set of
states compared to the bound proved in [CNZ17]. Second, they present a sound and
complete proof rule for quantitative safety analysis in PPs. This proof rule is equivalent to
NNRepSMs of [TOUH21], however the algorithm for synthesizing them is fundamentally
different and allows template-based synthesis of bounds with exponential templates.
This work also provides a martingale-based method for quantitative reachability analysis,
however the method is only applicable to almost-surely terminating PPs.

Comparison to [BO21]. The work of [BO21] proposes a type system for functional
PPs that allows incrementally searching for type derivations and accumulating a lower
bound on termination probability. In the limit, it finds arbitrarily tight lower bounds
on termination probability, however it does not provide any completeness or precision
guarantees in finite time and it only reasons about terminating executions.

Supermartingale-based methods for other PP analyses. Martingale-based meth-
ods for proving probability 1 termination/reachability were studied extensively. Since we
discussed these works in detail in Chapter 3, we omit the repetition. Martingale-based
methods were also used to for the formal analysis of probability 1 recurrence and
persistance [CVS16], cost [NCH18, WFG+19] and sensitivity [WFC+20] analysis.

Other approaches. Logical calculi for reasoning about various properties of PPs
(including termination and safety) were studied in [Koz85, FH82, Fel84] and extended
to programs with non-determinism in [MM05, KKMO18, OKKM16, KMMM10]. These
works consider proof systems for PPs based on the weakest pre-expectation calculus.
The expressiveness of this calculus allows reasoning about very complex programs, but
the proofs typically require human input. In contrast, we aim for a fully automated
approach for probabilistic programs with polynomial arithmetic. Connections between
martingales and the weakest pre-expectation calculus were studied in [HKGK20].

Cores in MDPs. Cores are a conceptually equivalent notion to stochastic invariants
introduced in [KM20] for finite state MDPs. [KM20] presents a sampling-based
algorithm for their computation. The questions related to the computational complexity
of computing cores in MDPs were further studied in [ACG+22].

92

4.10. Technical Proofs

4.10 Technical Proofs

4.10.1 Proof of Theorem 4.3.2
Theorem (Soundness and Completeness of SIs for Quantitative Termination). Let
C = (L, V, ℓinit , xinit , ↦→, G, Pr , Up) be a pCFG and (SI , p) a stochastic invariant in C.
Suppose that, with respect to every scheduler, a run in C almost-surely either terminates
or reaches a state in ¬SI , i.e.

infσ Pσ

[︃
Term ∪ Reach(¬SI)

]︃
= 1. (4.8)

Then C terminates with probability at least 1 − p. Conversely, if C terminates with
probability at least 1− p, then there exists a stochastic invariant (SI , p) in C such that,
with respect to every scheduler, a run in C almost-surely either terminates or reaches a
state in ¬SI .

Proof. The first part (soundness) follows directly from the definition of SI and (4.8).
In what follows, we present the completeness proof. Suppose that p ∈ [0, 1] and that C
is a pCFG that terminates with probability at least 1− p. We need to prove that there
exists a stochastic invariant (SI , p) in C, such that a run in C with respect to every
scheduler almost-surely reaches either some terminal state or a state in ¬SI .

If p = 1, then letting SI (ℓ) = R|V | for each location ℓ in C and V the set of variables
in C trivially satisfies the theorem claim. Otherwise, let n0 ∈ N be the smallest
natural number such that p + 1

n0
< 1. To show that there exists a stochastic invariant

(SI , p) with the desired property, we construct for each n ≥ n0 a stochastic invariant
(SI n, p + 1

n
) such that a run in C with respect to every scheduler almost-surely reaches

either some terminal state or a state in ¬SI n. We then show that, by taking all of the
constructed stochastic invariants and defining SI (ℓ) := ∩∞n=n0SI n(ℓ) for each location
ℓ in C, the tuple (SI , p) defines a stochastic invariant such that a run in C with respect
to every scheduler almost-surely reaches either some terminal state or a state in ¬SI ,
as desired. We will explain in the construction and proof of desired properties for
(SI n, p + 1

n
) why we need to impose that n ≥ n0.

Construction of (SI n, p + 1
n
). Let StateC denote the set of all states in C. For every

state (ℓ, x) ∈ StateC, we define

r(ℓ, x) = inf
σ
Pσ

(ℓ,x)

[︃
Term

]︃
to denote the infimum termination probability over all schedulers in C when the
initial state is (ℓ, x). The state function r is Borel-measurable, and the proof proceeds

93

4. Quantitative Termination and Safety Analysis in PPs

analogously as in Appendix 4.10.3. The only difference in the proof is that we consider ε-
optimal schedulers for the infimum reachability probability over all measurable schedulers
for a given Borel-measurable target set, and their existence was also shown in [TOUH18,
Appendix C]. Now, fix n ≥ n0 and define αn ∈ (0, 1) via the equality p + 1

n
= p

1−αn
.

Define SI n = {(ℓ, x) ∈ StateC | r(s) > αn}. We show that (SI n, p + 1
n
) is a stochastic

invariant such that a run in C with respect to every scheduler almost-surely reaches
either some terminal state or a state in ¬SI n. Our proof follows from Claim 1, which
shows that (SI n, p + 1

n
) is a stochastic invariant, and Claim 2, which shows that a run

in C with respect to every scheduler almost-surely reaches either some terminal state or
a state in ¬SI n.

Claim 1. (SI n, p + 1
n
) is a stochastic invariant in C.

Proof of Claim 1. By theorem assumption, the program terminates with probability
at least 1− p, thus we have r(ℓinit , xinit) ≥ 1− p. On the other hand, by our choice
of n0 and the assumption that n ≥ n0, we have p

1−αn
= p + 1

n
≤ p + 1

n0
< 1 and so

1− p > αn. Combining the two inequalities, we conclude that r(ℓinit , xinit) > αn and
the initial state is contained SI n. Note that this is the part of the proof (ensuring that
SI n contains the initial state) in which it is essential to have n ≥ n0.

We are left to show that the set SI is left with probability at most p. Let t =
supσ Pσ[Reach(¬SI n)] be the supremum probability of reaching ¬SI n over all schedulers
in C. In order to show that (SI n, p + 1

n
) is a stochastic invariant, we need to prove

that t ≤ p + 1
n
. We prove this by contradiction. Suppose, on the contrary, that

t > p + 1
n
. Then there exits a scheduler σ¬SI n for which Pσ¬SIn [Reach(¬SI)] > p + 1

n
.

Consider a scheduler σ′¬SI n
that follows σ¬SI n until a state in ¬SI n is reached, upon

which it starts following a scheduler that minimizes the probability of termination.
By the definition of SI n and the choice of the scheduler σ′¬SI n

, it then follows that,
with respect to the scheduler σ′¬SI n

, C does not terminate with probability at least
Pσ¬SIn [Reach(¬SI n)] · (1− αn). On the other hand, it is a theorem assumption that C
terminates with probability at least 1−p with respect to every scheduler, and hence does
not terminate with probability at most p with respect to every scheduler. Hence, we have
that Pσ¬SIn [Reach(¬SI n)] · (1− αn) ≤ p, and so Pσ¬SI [Reach(¬SI)] ≤ p

1−αn
= p + 1

n

by our choice of αn. This leads to contradiction, and Claim 1 follows.

Claim 2. infσ Pσ[Term ∪ Reach(¬SI n)] = 1.

Proof of Claim 2. Our proof of Claim 2 assumes familiarity with the notions of conditional
expectation, filtration and stopping time from probability theory, as well as the notion of
canonical filtration in the probability space induced by a probabilistic program. Recall,
an overview of all the required notions was presented in Section 2.4. Fix a scheduler σ.

94

4.10. Technical Proofs

In order to prove Claim 2, we need to show that Pσ[Term ∪ Reach(¬SI n)] = 1. Our
proof proceeds in several steps.

Step 1: Definition of k∗σ. Define a state function k∗σ via

k∗σ(ℓ, x) = min
k∈N0

{︃
Pσ

(ℓ,x)[termination in at most k steps] > αn

}︃

for every (ℓ, x) ∈ SI n, and k∗σ(ℓ, x) = 0 otherwise. In order for this to be a state
function, we need to show that k∗σ(ℓ, x) is indeed finite in each state in SI n, and that
the resulting function is measurable. To prove finiteness, let (ℓ, x) ∈ SI n. By definition
of SI n, we know that r(ℓ, x) > αn. Hence,

αn < r(ℓ, x) = inf
σ′

Pσ′

(ℓ,x)

[︃
Term

]︃
≤ Pσ

(ℓ,x)

[︃
Term

]︃
=
∞∑︂

k=0
Pσ

(ℓ,x)

[︃
termination in exactly k steps

]︃

= sup
k∈N0

Pσ
(ℓ,x)

[︃
termination in at most k steps

]︃
.

Hence, Pσ
(ℓ,x)[termination in at most k steps] > αn, holds for a sufficiently large k and

so k∗σ(ℓ, x) is finite. To prove that k∗σ is measurable observe that, for each (ℓ, x), we
have

k∗σ(ℓ, x) = min
k∈N0

{︃
P≤k,σ[terminate ¬SI n] > αn

}︃
· I(ℓ,x)∈SI n

with P≤k,σ[·] being the operator defined as the probability of reaching some target
set of states in at most k steps. As the measurability of this operator was proved
in [TOUH21], the minimum is taken over a countable set and the indicator function is
measurable, the measurability of k∗σ follows.

Step 2: A sequence of stopping times (Ti)∞i=0. We now inductively define a sequence of
stopping times (Ti)∞i=0 with respect to the canonical filtration (Ri)∞i=0 in the probability
space (RunC,FC,Pσ) as follows:

• Set T0(ρ) = 0 for each ρ ∈ RunC.

• For each i ≥ 1, define Ti for each ρ ∈ RunC via

Ti(ρ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Ti−1(ρ) + k∗(ρTi−1(ρ), σ), if ρ does not leave SI

or terminate in the first
Ti−1(ρ) + k∗(ρTi−1(ρ), σ) steps,

Ti−1(ρ), otherwise

95

4. Quantitative Termination and Safety Analysis in PPs

where we use ρTi−1(ρ) to denote the Ti−1(ρ)-th state along ρ. Intuitively, Ti(ρ)
denotes the sum of the lengths of the first i finite paths of length k∗((ℓ, x), σ),
unless the program run ρ leaves SI n or terminates.

The measurability of each Ti follows by induction and by the measurability of k∗σ. To
show that each Ti is a stopping time with respect to the canonical filtration (Ri)∞i=0,
we need to show that for every t ∈ N0 we have {ρ ∈ RunC | Ti(ρ) ≤ t} ∈ Rt. This
follows since the fact whether Ti(ρ) ≤ t for a run ρ ∈ RunC is determined by the first
t states along ρ.

Step 3: Stopping time T ∗. Next, consider the filtration (FTi
)∞i=0 defined by the sequence

(Ti)∞i=0 of stopping times. That is, for each i ∈ N0, we define FTi
via

FTi
:= ∪∞t=0{A ∩ {Ti ≤ t} | A ∈ Rt}.

This set is non-empty since each stopping time Ti is a.s. finite (which follows by
induction on i and the fact that k∗σ is finite in every state). Furthermore, each FTi

can
be proved to be a σ-algebra by checking that all the defining conditions are satisfied.
Hence, (FTi

)∞i=0 is an increasing sequence of σ-algebras and defines a filtration. Thus,
we may define a stopping time T ∗ with respect to the filtration (FTi

)∞i=0 via

T ∗(ρ) = inf
k∈N0

{︃
ρ terminates or leaves SI n in the first Tk(ρ) steps

}︃
.

The fact that T ∗ is measurable and a stopping time follows since it is the first hitting
time of the set ¬SI n ∪ Stateterm with respect to the filtration (FTi

)∞i=0, and it is a
standard result on stopping times that the first hitting time of a set is a stopping
time [Wil91, Section 10.8].

Step 4: Proof that Pσ[Term ∪ Reach(¬SI)] = 1. We are finally ready to prove the
desired claim. By the definitions of k∗σ, (Ti)∞i=0 and T ∗, it follows that

Pσ[T ∗ ≤ k + 1 | FTk
] > αn

holds for each k ∈ N0. Since αn > 0 does not depend on the index k, it follows
from a known result on stopping times [Wil91, Lemma 10.11] that Eσ[T ∗] <∞. But
Eσ[T ∗] < ∞ implies Pσ[T ∗ < ∞] = 1 and we have {ρ ∈ RunC | T ∗(ρ) < ∞} =
Term ∪ Reach(¬SI n), so Claim 2 follows.

Proof that (SI , p) is a stochastic invariant with ¬SI ∪ Stateterm reached
a.s. Indeed, due to our definitions of stochastic invariants and predicate functions,
SI n(ℓ) ⊆ R|V | is Borel-measurable for each n ≥ n0 and a location ℓ in C. Hence,
SI (ℓ) = ∩∞n=n0SI n ⊆ R|V | is also Borel-measurable as a countable intersection of

96

4.10. Technical Proofs

Borel-measurable sets. Next, we need to show that (SI , p) is a stochastic invariant,
i.e. that SI contains the initial state and that a random run leaves SI with probability
at most p. The fact that SI contains the initial program state follows since all SI n’s
contain the initial state due to (SI n, p + 1

n
) being stochastic invariants. Now, let

t = supσ Pσ[Reach(¬SI)]. Since SI ⊆ SI n and (SI n, p + 1
n
) is a stochastic invariant,

we have that t = supσ Pσ[Reach(¬SI n)] ≥ supσ Pσ[Reach(¬SI n)] ≥ p + 1
n

for each
n ≥ n0. Thus, by letting n → ∞, we conclude that t ≥ p so (SI , p) is a stochastic
invariant. Finally, to show that a run in C with respect to every scheduler almost-
surely reaches either some terminal state or a state in ¬SI , set n = n0 and observe
that by assumption a run almost-surely reaches either some terminal state or a state
in ¬SI n0 ⊆ ¬SI . This concludes the proof that (SI , p) yields a desired stochastic
invariant.

4.10.2 Proof of Theorem 4.4.2
Theorem (Soundness and Completeness of SI-indicators). Let C be a pCFG, I an
invariant in C and p ∈ [0, 1]. For any SI-indicator (fSI , p) with respect to I, the
predicate map SI defined as

SI (ℓ) = (x |= I(ℓ) ∧ fSI (ℓ, x) < 1)

yields a stochastic invariant (SI , p) in C. Conversely, for every stochastic invariant
(SI , p) in C, there exist an invariant ISI and a state function fSI such that (fSI , p) is
an SI-indicator with respect to ISI and for each ℓ ∈ L we have

SI (ℓ) ⊇ (x |= ISI (ℓ) ∧ fSI (ℓ, x) < 1).

Our proof of the theorem builds on the existing results on reachability analysis in PPs
from [TOUH21]. To that end, we first recall the result of [TOUH21] which shows that,
if we are provided with a target set of states, then the reachability probabilities for
that target set can be characterized as the least fixed point of a suitably constructed
operator that simulates one-step execution of the program’s pCFG. In the sequel, we
assume basic familiarity with fixed point theory. An overview of the required notions is
provided in Section 2.5.

Lattice of state functions. We consider the lattice of nonnegative upper semianalytic
state functions in C, that map states in the invariant I to nonnegative (possibly infinite)
values:

L = {f upper semianalytic | f : StateI
C → [0,∞]}.

The class of upper semianalytic state functions extends Borel-measurable state functions
(that we considered so far), and this is a technical condition needed for the next-time

97

4. Quantitative Termination and Safety Analysis in PPs

operator defined below to be closed in this lattice [TOUH21]. This technical condition
does not affect any of our results and hence we do not define this notion formally but
refer the reader to [TOUH21, BS04]. We define the partial order ⊑ on L in an intuitive
manner. For a pair of state functions f , f ′ in L, we write f ⊑ f ′ if f(ℓ, x) ≤ f ′(ℓ, x)
for each state (ℓ, x) in I. With all operations defined state-wise, one easily sees that
(L,⊑) is a lattice with f ∧ f ′ = min{f, f ′} and f ∨ f ′ = max{f, f ′}. Furthermore, it
is ω-complete, meaning that each ascending chain f1 ⊑ f2 ⊑ . . . has a supremum given
by f = sup{f1, f2, . . . }. The bottom and the top elements are defined via ⊥(ℓ, x) = 0
and ⊤(ℓ, x) =∞, respectively, for each state (ℓ, x) in I.

Next-time operator. Intuitively, the next-time operator X : L → L simulates a
one-step execution of C and maps f to a state function equal to its maximal expected
value with respect to all schedulers upon this one-step execution. To formally define it,
let f ∈ L. Then, for any state (ℓ, x) in I, depending on the type of the location ℓ in C
we define X(f)(ℓ, x) as follows:

• If ℓ ∈ LC , let τ = (ℓ, ℓ′) be the transition with x |= G(τ). Then X(f)(ℓ, x) =
f(ℓ′, x).

• If ℓ ∈ LP , then X(f)(ℓ, x) = ∑︁
τ=(ℓ,ℓ′)∈ ↦→ Pr(τ) · f(ℓ′, x).

• If ℓ ∈ LN , then X(f)(ℓ, x) = maxτ=(ℓ,ℓ′)∈ ↦→ f(ℓ′, x).

• If ℓ ∈ LA with τ = (ℓ, ℓ′) the unique outgoing transition from ℓ and Up(τ) =
(j, u), then:

– If u = ⊥, then X(f)(ℓ, x) = f(ℓ′, x).
– If u : R|V | → R, then X(f)(ℓ, x) = f(ℓ′, x[xj ← u(x)]).
– If u = d, then X(f)(ℓ, x) = EX∼d[f(ℓ′, x[xj ← X])].
– If u = [a, b], then X(f)(ℓ, x) = supX∈[a,b]{f(ℓ′, x[xj ← X])}.

The fact that for an upper semianalytic state function f ∈ L we have X(f) ∈ L was
proved in [TOUH21].

Characterization of reachability probabilities. Let T be a predicate function in C.
Then define the operator XT : L → L in the lattice (L,⊑) as follows:

XT (f)(ℓ, x) =

⎧⎨⎩X(f)(ℓ, x), if x ̸|= T (ℓ)
1, otherwise,

(4.9)

98

4.10. Technical Proofs

for each f ∈ L and x |= I(ℓ). Thus, XT behaves analogously as X and simulates a
one-step execution of C in states not contained in T , but evaluates to 1 for states in
T . The following proposition states that reachability probabilities for the target set T
can be characterized in terms of the least fixed point of the operator XT , and that
pre-fixed points of XT can be used to bound the reachability probabilities from above
(Proposition 4.2 and Corollary 4.7 in [TOUH21], respectively). Recall, a pre-fixed point
of XT is a state function f ∈ L that satisfies XT (f) ⊑ f .

Proposition 4.10.1 ([TOUH21]). The operator XT : L → L is ω-continuous, and
we have supσ Pσ

(ℓ,x)[Reach(T)] = lfpXT (ℓ, x) for each state (ℓ, x) in I. For any state
function f ∈ L which is a pre-fixed point of XT and for each state (ℓ, x) in I, we have
supσ Pσ

(ℓ,x)[Reach(T)] ≤ f(ℓ, x).

We are now ready to prove the claim of Theorem 4.4.2.

Proof of Theorem 4.4.2. Suppose first that we are given an invariant I in C and an
SI-indicator (fSI , p) with respect to I. We want to show that, if we define a predicate
function SI via SI (ℓ) = (x |= I(ℓ) ∧ fSI (ℓ, x) < 1) for each ℓ ∈ L, then (SI , p) is a
stochastic invariant in C. Consider the operator X¬SI : L → L in the lattice (L,⊑), so
that the target set of states is the complement of SI . Observe that fSI ∈ L. Indeed,
fSI (ℓ) is Borel-measurable for each ℓ ∈ L hence also upper semianalytic, and the fact
that it is nonnegative at each state in I follows from (C1) in Definition 4.4.1. We now
claim that fSI is a pre-fixed point of X¬SI in L:

• If (ℓ, x) is a state with x ∈ I(ℓ) ∩ SI (ℓ), then we have X¬SI (fSI)(ℓ, x) =
X(fSI)(ℓ, x) ≤ fSI (ℓ, x), where the first equation follows from eq. (4.9), and
the second from the condition (C2) on non-increasing expected value in Defini-
tion 4.4.1.

• If (ℓ, x) is a state with x ∈ I(ℓ) ∩ (¬SI (ℓ)), then by definition of SI we have
fSI (ℓ, x) ≥ 1. But X¬SI (fSI)(ℓ, x) = 1 by eq. (4.9), and so X¬SI (fSI)(ℓ, x) ≤
fSI (ℓ, x).

Hence fSI is a pre-fixed point of X¬SI and by Proposition 4.10.1 it follows that
supσ Pσ

(ℓ,x)[Reach(¬SI)] ≤ fSI (ℓinit , xinit). But from (C3) in Definition 4.4.1 of SI-
indicators we know that fSI (ℓinit , xinit) ≤ p, so supσ Pσ

(ℓ,x)[Reach(¬SI)] ≤ p. This
concludes the proof that (SI , p) is a stochastic invariant in C.

Now we prove the second part of the theorem. Suppose that (SI , p) is a stochastic
invariant in C. We need to show that there exist an invariant ISI and a state function
fSI such that (fSI , p) is an SI-indicator with respect to ISI and for each ℓ ∈ L we

99

4. Quantitative Termination and Safety Analysis in PPs

have SI (ℓ) ≡ (x |= ISI (ℓ) ∧ fSI (ℓ, x) < 1). We prove this by giving an explicit
construction for ISI and fSI . Define the invariant ISI to be the trivial true invariant,
i.e. ISI (ℓ) = true for each ℓ ∈ L. As for fSI , for each state (ℓ, x) in I define

fSI (ℓ, x) = sup
σ

Pσ
(ℓ,x)[Reach(¬SI)].

First, we need to show that fSI (ℓ) is Borel-measurable for each ℓ ∈ L so that fSI
is a state function. We defer this technical proof to Appendix 4.10.3 below. Next,
by Proposition 4.10.1, we know that fSI is the least fixed point of the operator
X¬SI . This implies that (fSI , p) satisfies both conditions (C1) (Nonnegativity) and
(C2) (Non-increasing expected value) in Definition 4.4.1 with respect to the trivial
invariant ISI of all states in C. Finally, since (SI , p) is a stochastic invariant in C,
we have fSI (ℓinit , xinit) = supσ Pσ

(ℓ,xinit)[Reach(¬SI)] ≤ p, so (fSI , p) satisfies the
Initial condition (C3) in Definition 4.4.1. Hence, (fSI , p) is an SI-indicator with
respect to ISI . The fact that SI (ℓ) ⊇ (x |= ISI (ℓ) ∧ fSI (ℓ, x) < 1) follows since
1 > fSI (ℓ, x) = supσ Pσ

(ℓ,x)[Reach(¬SI)] implies that (ℓ, x) cannot be contained in
¬SI so x |= SI (ℓ).

4.10.3 Measurability Argument in the Proof of Theorem 4.4.2
Let C = (L, V, ℓinit , xinit , ↦→, G, Pr , Up) be a pCFG. Let T be a predicate function
defining a target set of states in C, and ε > 0. We say that a scheduler σ is ε-optimal
for the reachability objective T , if

Pσ
(ℓ,x)

[︃
Reach(T)

]︃
≥ sup

σ′
Pσ′

(ℓ,x)

[︃
Reach(T)

]︃
− ε

for any state (ℓ, x) ∈ StateC.

It was shown in [TOUH18, Appendix C] that a pCFG can be translated to an equivalent
infinite horizon stochastic optimal control model [BS04]. In infinite horizon stochastic
optimal control models, a cost is incurred in each state, and it is known that an
ε-optimal scheduler for the objective to maximize the discounted cost exists [BS04,
Proposition 9.20]. The work [TOUH18, Appendix C] then shows that, once a pCFG is
translated into an infinite horizon stochastic optimal control model, costs can be chosen
in such a way that the total discounted cost with the discount factor α = 1 is equal
to the supremum reachability probability over all measurable schedulers for any given
Borel-measurable target set. Hence, for every ε > 0 and a predicate function T defining
target set of states, there exits an ε-optimal scheduler for T (recall, in Section 2.2 we
assume that predicate functions are defined in terms of Borel-measurable expressions).

To prove that supσ Pσ
(ℓ,x)[Reach(¬SI)] is a Borel-measurable state function, for each

n ∈ N let σn be a 1
n
-optimal scheduler for the target set of states defined by ¬SI . We

100

4.10. Technical Proofs

then have
sup

σ
Pσ

(ℓ,x)

[︃
Reach(¬SI)

]︃
= sup

n∈N
Pσn

(ℓ,x)

[︃
Reach(¬SI)

]︃
.

Thus, it suffices to prove that each Pσn

(ℓ,x)[Reach(¬SI)] is a Borel-measurable state
function, since a supremum of countably many Borel-measurable functions is Borel-
measurable.

Fix n ∈ N. To prove that Pσn

(ℓ,x)[Reach(¬SI)] is a Borel-measurable state function,
observe that

Pσn

(ℓ,x)

[︃
Reach(¬SI)

]︃
= sup

m∈N
Pσn

(ℓ,x)

[︃
Reach≤m(¬SI)

]︃
,

where Reach≤m(¬SI) denotes the set of all runs in C whose finite prefix of length
at most m reaches a state in ¬SI . The last equality follows by first observing that
the sequence of indicator function I(Reach≤m(¬SI)) → I(Reach(¬SI)) converges
pointwise as m→∞ and is a pointwise increasing sequence, and then applying the
Monotone Convergence Theorem [Wil91]. Again, since a countable supremum of Borel-
measurable functions is Borel-measurable, it suffices to show that Pσn

(ℓ,x)[Reach≤m(¬SI)]
defines a Borel-measurable state function for each n, m ∈ N.

But for fixed n, m ∈ N, this set can be defined inductively in terms of finitely many
expected value operators, due to finiteness of m (note, scheduler σn is fixed, so we need
not take a supremum). Hence a simple induction on m shows that Pσn

(ℓ,x)[Reach≤m(¬SI)]
defines a Borel-measurable state function for each n, m ∈ N, which concludes the
proof.

4.10.4 Proof of Theorem 4.5.2
Theorem. Let C be a pCFG, I an invariant in C and T a predicate function defining a
target set of states. If there exist ε > 0 and an ε-RSM for T with respect to I, then T
is a.s. reached under any scheduler, i.e.

infσ Pσ
(ℓinit ,xinit)

[︃
Reach(T)

]︃
= 1.

In order to prove the theorem, we first need to recall the mathematical notion of ranking
supermartingales. Let (Ω,F ,P) be a probability space, (Fi)∞i=0 a filtration in it and
ε > 0. Let T be a stopping time in (Ω,F ,P) with respect to the filtration (Fi)∞i=0. A
stochastic process (Xi)∞i=0 is said to be an ε-ranking supermartingale (ε-RSM) with
respect to the stopping time T if it satisfies the following conditions:

• Each Xi is Fi-measurable.

• We have Xi(ω) ≥ 0 for each i ≥ 0 and ω ∈ Ω.

101

4. Quantitative Termination and Safety Analysis in PPs

• Each Xi is integrable, i.e. E[|Xi|] = E[Xi] <∞.

• For each i ≥ 0 and ω ∈ Ω, we have E[Xi+1 | Fi](ω) ≤ Xi(ω)− ε · I(T (ω) < i).

The following theorem is a classical result on ranking supermartingales for their use in
the probabilistic program analysis.

Theorem 4.10.2 ([FC19]). Let (Ω,F ,P) be a probability space, (Fi)∞i=0 a filtration
and ε > 0. Let T be a stopping time in (Ω,F ,P) with respect to the filtration (Fi)∞i=0.
Suppose that there exists an ε-RSM (Xi)∞i=0 with respect to T . Then P[T <∞] = 1.

We are now ready to prove Theorem 4.5.2.

Proof of Theorem 4.5.2. By the theorem assumption, there exist ε > 0 and a state
function η in C which is an ε-RSM for the target set of states T with respect to the
invariant I. We need to show that, with respect to any scheduler in C, a state in T is
reached with probability 1.

Fix a scheduler σ. Recall, C and σ together give rise to a probability space (ΩC,FC,Pσ)
over the set of runs in C. In order to prove the theorem claim, we define the stopping
time TimeReachT with respect to the canonical filtration (Ri)∞i=0 to be the first time
of reaching the target set of states T . We then use η to construct an ε-RSM with
respect to TimeReachT , which by Theorem 4.10.2 implies that Pσ[TimeReachT] <∞
and therefore that T is reached with probability 1 with respect to the scheduler σ.
Since σ was arbitrary, the theorem claim follows.

For each run ρ ∈ RunC, let (ℓρ
i , xρ

i) be the i-th state along ρ. Define a stochastic
process (Xi)∞i=0 in (ΩC,FC,Pσ) as follows

Xi(ρ) =

⎧⎨⎩η(ℓρ
i , xρ

i), if TimeReachT (ρ) < i,

η(ℓρ
TimeReachT (ρ), xρ

TimeReachT (ρ)), otherwise.
(4.10)

We show that (Xi)∞i=0 is indeed an ε-RSM with respect to TimeReachT by verifying
that each of the four defining conditions of the mathematical notion of ε-RSMs is
satisfied:

• Each Xi is defined in terms of the i-th state along a program run, hence is
Ri-measurable.

• We have E[X0] = η(ℓinit , xinit) <∞ since the codomain of η are real numbers.
Once we show in the fourth item below that E[Xi+1 | Fi](ρ) ≤ Xi(ρ) − ε ·
I(TimeReachT (ρ) < i) for each i and ρ ∈ RunC, by taking the expected value

102

4.10. Technical Proofs

on both sides and by recalling the definition of conditional expectation, it will
follow that E[Xi+1] ≤ E[Xi] for each i. Hence, a simple induction shows that
E[Xi] ≤ E[X0] <∞ for each i.

• By the Nonnegativity condition in Definition 4.5.1, we know that η(ℓ, x) ≥ 0 for
any location ℓ and a variable valuation x |= I(ℓ). For any ρ ∈ RunC and any
i ≥ 0, the state (ℓρ

i , xρ
i) is reachable and hence by the definition of invariants we

have xρ
i |= I(ℓρ

i). Thus, η(ℓρ
i , xρ

i) ≥ 0 for any run ρ and i ≥ 0. It follows from
eq. (4.10) that Xi(ρ) ≥ 0 for any run ρ and i ≥ 0.

• We need to show that E[Xi+1 | Fi](ρ) ≤ Xi(ρ)− ε · I(TimeReachT (ρ) < i) for
each i and ρ ∈ RunC. Fix i ≥ 0 and ρ ∈ RunC.
If TimeReachT (ρ) ≥ i, then it follows by the definition of (Xi)∞i=0 both sides of
the formula are equal to η(ℓρ

TimeReachT (ρ), xρ
TimeReachT (ρ)) and the claim follows.

If TimeReachT (ρ) < i, we have

E[Xi+1 | Fi](ρ) ≤ X(η)(ℓρ
i , xρ

i) ≤ η(ℓρ
i , xρ

i)− ε

= Xi(ρ)− ε · I(TimeReachT (ρ) < i),

as wanted, where the second inequality holds by the ε-ranked expected value
condition in Definition 4.5.1.

Hence (Xi)∞i=0 is an ε-RSM with respect to TimeReachT , and the theorem claim
follows. From Theorem 4.10.2 we may now conclude that Pσ[TimeReachT] <∞ and
therefore that T is reached with probability 1 with respect to the scheduler σ. Since σ
was arbitrary, the theorem claim follows.

103

CHAPTER 5
Non-termination Analysis in

Programs

This section is based on the following publication:

• Krishnendu Chatterjee, Ehsan Kafshdar Goharshady, Petr Novotný, Ðorđe Žikelić.†
Proving Non-termination by Program Reversal. In 42nd ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implementation, PLDI
2021

5.1 Introduction
Disproving properties in PPs with non-determinism. Previous chapters have
focused on proving properties in PPs with non-determinism. Recall, the goal of
qualitative (resp. quantitative) termination analysis is to show that a PP terminates
with probability 1 (resp. at least p ∈ [0, 1]), with respect to every scheduler. Similarly,
the goal of the qualitative (resp. quantitative) safety analysis is to show that the
PP avoids some set of states S with probability 1 (resp. at least p ∈ [0, 1]), again
with respect to every scheduler. Hence, in PPs with non-determinism, it would be
too conservative to disprove a termination property by performing safety analysis and
vice-versa and it would lead to incomplete approaches, since both analyses prove lower
bounds on probability with respect to every scheduler. In order to disprove a property in
PPs with non-determinism, it suffices to show that the logical negation of the property
is satisfied with respect to some scheduler.

†Authors ordered alphabetically.

105

5. Non-termination Analysis in Programs

Non-termination proving. In this chapter, we study the problem of disproving
termination, or in other words proving non-termination. In contrast to previous chapters,
we study non-termination proving in non-probabilistic programs. This is because our
results have important implications already in non-probabilistic program analysis and
significantly advance the state of the art. We will then show that our method for
proving non-termination in non-probabilistic programs naturally extends to disproving
qualitative termination in PPs with discrete probability distributions, i.e. PPs in which
all probability distributions appearing in sampling instructions have countable support.
In what follows, we start by surveying existing approaches on non-termination proving
in non-probabilistic programs and identifying their limitations, before presenting the
contributions of this chapter.

Program analysis of non-probabilistic programs. There are two relevant directions
in program analysis: to prove program correctness and to find bugs. While a correctness
proof is obtained once, the procedure of bug finding is more relevant during software
development and is repeatedly applied, even for incomplete or partial programs. In terms
of specifications, the most basic properties in program analysis are safety and liveness.
The analysis of non-probabilistic programs with respect to safety properties has received
a lot of attention [BR02, HJMS02, GKS05, GHK+06], and for safety properties to report
errors the witnesses are finite traces violating the safety property. The most basic liveness
property is termination. There is a huge body of work for proving correctness with respect
to the termination property [FGKP85, CS02, BMS05b, Cou05], e.g. sound and complete
methods based on ranking functions have been developed [CS01, PR04a, PR04b], and
efficient computational approaches based on lexicographic ranking functions have also
been considered [BMS05b, CSZ13, BCF13].

Non-termination proving in non-probabilistic programs. The bug finding problem
for the termination property, or proving non-termination, is a challenging problem.
Conceptually, while for a safety property the violating witness is a finite trace, for
a termination property the violating witnesses are infinite traces. There are several
approaches for proving non-termination; here we discuss some key ones, which are
most related in spirit to our new method (for a detailed discussion of related work, see
Section 5.7). For the purpose of this overview, we (rather broadly and with a certain
grain of salt) classify the approaches into two categories: trace-based approaches,
which look for a non-terminating trace (e.g. [GHM+08, LH18, FG19]), and set-based
approaches, which look for a set of non-terminal program states in which the program
can stay indefinitely (e.g. [CCF+14, LNO+14, GAB+17]). For instance, the work
of [GHM+08] considers computing "lassos" (where a lasso is a finite prefix followed
by a finite cycle infinitely repeated) as counter-examples for termination and presents
a trace-based approach based on lassos to prove non-termination of deterministic

106

5.1. Introduction

programs. In general, finite lassos are not sufficient to witness non-termination. While
lassos are periodic, proving non-termination for programs with aperiodic infinite traces
via set-based methods has been considered in [CCF+14, LNO+14] for programs with
non-determinism. In [CCF+14], a method is proposed where "closed recurrence sets" of
states are used to prove non-termination. Intuitively, a closed recurrence set must contain
some initial state, must contain no terminal states, and cannot be escaped once entered.
In [CCF+14], closed recurrence sets are defined with respect to under-approximations
of the transition relation, and an under-approximation search guided by several calls to
a safety prover is used to compute a closed recurrence set. In [LNO+14], a constraint
solving-based method is proposed to search for ”quasi-invariants” (sets of states which
cannot be left once entered) exhaustively in all strongly-connected subgraphs. A safety
prover is used to check reachability for every obtained quasi-invariant. For constraint
solving, Max-SMT is used in [LNO+14].

Limitations of previous approaches. While the previous works represent significant
advancement for proving non-termination, each of them has, to the best of our
knowledge, at least one of the following limitations:

1. They do not support non-determinism, e.g. [VR08, GSV08].

2. They only work for lassos (i.e. periodic non-terminating traces), e.g. [GHM+08].

3. Theoretical limitation of not providing any (relative) completeness guarantees.
Clearly, a non-termination proving algorithm cannot be both sound and complete,
since non-termination is well-known to be undecidable. However, as in the case
of termination proving, it can be beneficial to provide relative completeness
guarantees, i.e. conditions on the input program under which the algorithm is
guaranteed to prove non-termination. To our best knowledge, the only approaches
with such guarantees are [LH18, GSV08]; however, both of them only provide
guarantees for a certain class of deterministic programs.

4. Most of the previous approaches do not support programs with polynomial
arithmetic (with an exception of [CFNO14, FG19]).

Contributions. In this work we propose a new set-based approach to non-termination
proving in integer programs with polynomial arithmetic. Intuitively, it searches for a
diverging program state, i.e. a state that is reachable but from which no program run is
terminating (after resolving non-determinism using symbolic polynomial assignments).
Our approach is based on a simple technique of program reversal, which reverses
each transition in the program’s transition system to produce the reversed transition
system. The key property of this construction is that, given a program state, there

107

5. Non-termination Analysis in Programs

is a terminating run starting in it if and only if it is reachable from the terminal
location in the reversed transition system. This allows over-approximating the set of all
program states from which termination can be reached by computing an invariant in the
program’s reversed transition system. We refer to the invariants in reversed transition
systems as backward invariants. To generate the backward invariant, we may employ
state-of-the-art polynomial invariant generation techniques to the reversed transition
system as a single-shot procedure which is the main practical benefit of the program
reversal. Our method proves non-termination by generating a backward invariant whose
complement is reachable. Hence, our new method adapts the classical and well-studied
techniques for inductive invariant generation in order to find non-termination proofs
by combining forward and backward analysis of a program. While such a combined
analysis is common in safety analysis where the goal is to show that no program run
reaches some annotated set of states [Bou93], to our best knowledge it has never been
considered for proving non-termination in programs with non-determinism, where we
need to find a single program run that does not terminate. The key features of our
method are as follows:

1. Our approach supports programs with non-determinism.

2. Our approach is applicable to programs where all non-terminating traces are
aperiodic.

3. Relative completeness guarantee: The work of [CCF+14] establishes that closed
recurrence sets with respect to under-approximations are a sound and complete
certificate of non-termination, yet the algorithm based on these certificates does
not in itself provide any relative completeness guarantee (in the above sense).
For our approach we show the following: If there is an under-approximation of
the transition relation where non-determinism can be resolved by polynomial
assignments such that the resolved program contains a closed recurrence set
representable as a polynomial predicate function, then our approach is guaranteed
to prove non-termination. We obtain such guarantee by employing relatively
complete methods for inductive invariant synthesis, which is another key advantage
of adapting invariant generation techniques to non-termination proving. Moreover,
we provide even stronger relative completeness guarantees for programs in which
non-determinism appears only in branching (but not in variable assignments).

4. Our approach supports programs with polynomial arithmetic.

We developed a prototype tool RevTerm which implements our approach. We experimen-
tally compared our tool with state-of-the-art non-termination provers on standard bench-
marks from the Termination and Complexity Competition (TermComp‘19 [GRS+19]).

108

5.2. Preliminaries for Non-probabilistic Programs

Our tool demonstrates performance on par with the most efficient of the competing
provers, while providing additional guarantees. In particular, with a proper configuration,
our tool achieved the largest number of benchmarks proved non-terminating.

Extension to disproving qualitative termination in PPs. Finally, while the
above results consider programs with non-determinism, we note that our approach
naturally yields a method for disproving qualitative termination analysis in PPs with
non-determinism in which all probability distributions are discrete. To see this, note that
the existence of any diverging state in such a PP implies that there exists a scheduler
under which the PP terminates with probability strictly less than 1. Indeed, consider
the scheduler under which a diverging state s is reached. Then, due to all probability
distributions being discrete, it follows that s is reached with strictly positive probability.
Hence, as s is diverging so any path that reaches s is non-terminating, it follows that
under this scheduler the PP terminates with probability strictly less than 1. Thus,
in order to disprove qualitative termination in a PP with non-determinism and with
discrete probability distributions, it suffices to (1) replace all probabilistic branching and
assignment instructions with non-deterministic assignment and branching instructions,
and (2) use our method for proving non-termination in non-probabilistic programs in
order to disprove qualitative termination of the original PP. We note that, while it is
a straightforward extension of our method, this extension to PPs was not discussed
in [CGNZ21] and we highlight it in this thesis for the first time.

Chapter organization. The rest of this chapter is organized as follows. Since this
chapter is the only chapter that studies non-probabilistic programs, in Section 5.2 we
present necessary preliminaries on non-probabilistic programs. We then present our
approach and its novel aspects in the following order: first we introduce the technique
of program reversal in Section 5.3; then we present a new certificate for non-termination
based on so-called backward invariants in Section 5.4, as well as an invariant generation-
based algorithm for automating the computation of this certificate in Section 5.5. We
present our experiments in Section 5.6. Section 5.7 discusses related work.

5.2 Preliminaries for Non-probabilistic Programs
Since we only study non-probabilistic programs in this chapter, we start by specifying
the class of programs that we consider and define a formal model for their analysis.

Syntax. We consider simple imperative arithmetic programs with polynomial integer
arithmetic and with non-determinism. They consist of standard programming constructs
such as conditional branching, while-loops and (deterministic) variable assignments. In
addition, we allow constructs for non-deterministic assignments of the form x := ndet(),

109

5. Non-termination Analysis in Programs

which assign any integral value to x. The adjective polynomial refers to the fact that
all arithmetic expressions are polynomials in program variables.

Example 5.2.1 (Running example). Fig. 5.1 shows a program which will serve as
our running example in this chapter. The second line contains a non-deterministic
assignment, in which any integral value can be assigned to the variable x.

Removing non-deterministic branching. We may without loss of generality assume
that non-determinism does not appear in branching: for the purpose of termination
analysis, one can replace each non-deterministic branching with a non-deterministic
assignment. Indeed, non-deterministic branching in programs is given by a command
if ∗ then, meaning that the control-flow can follow any of the two subsequent
branches. By introducing an auxiliary program variable xndet and replacing each
command if ∗ then with two commands

xndet := ndet()
if xndet ≥ 0 then

we obtain a program which terminates on every input if and only if the original program
does. This removal is done for the sake of easier presentation and neater definition of
the resolution of non-determinism, see Section 5.5.1.

Valuation, predicate, assertion. Similarly as in Section 2.2, given a finite set V
of program variables, we say that a variable valuation of V is x ∈ Z|V | since in this
section we consider integer programs. A predicate over a set of variables V is again
a Boolean combination of atomic predicates of the form E ≤ E ′, where E, E ′ are
arithmetic expressions over V . We need not differentiate between non-strict and strict
inequalities since we work over integer arithmetic. An assertion is a conjunction of
atomic predicates of the form E ≤ E ′ (so without disjunctions). We write x |= ϕ to
denote that the predicate ϕ given by a formula over program variables is satisfied by
substituting values in x for corresponding variables in ϕ. For a predicate ϕ, we define
¬ϕ for the predicate obtained by the logical negation of ϕ.

Transition system. We model programs using transition systems [CSS03]. Transition
systems allow for a more streamlined reasoning about program transitions compared
to pCFGs, in which we differentiated between different types of locations in order to
simplify reasoning about probabilistic instructions.

Defintion 5.2.1 (Transition system). A transition system is an ordered tuple T =
(L, V, ℓinit , Θinit, ↦→), where L is a finite set of locations; V is a finite set of program
variables; ℓinit is the initial location; Θinit is the set of initial variable valuations; and
↦→⊆ L × L × P(Z|V | × Z|V |) is a finite set of transitions. Each transition is defined

110

5.2. Preliminaries for Non-probabilistic Programs

as an ordered triple τ = (l, l′, ρτ), with l its source and l′ the target location, and
the transition relation ρτ ⊆ Z|V | × Z|V |. The transition relation is usually given by an
assertion over V and V ′, where V represents the source-state variables and V ′ the
target-state variables.

Each program P naturally defines a transition system T , with each transition relation
given by an assertion over program variables. Its construction is standard and we omit
it. The only difference is that here ℓinit will correspond to the first non-assignment
command in the program code, whereas the sequence of assignments preceding ℓinit
specifies Θinit (unspecified variables may take any value). Hence Θinit will also be
an assertion. For transition systems derived from programs, we assume the existence
of a special terminal location ℓout, which represents a ”final” line of the program
code. It has a single outgoing transition which is a self-loop with a transition relation
ρ = {(x, x) | x ∈ Z|V |}.

Similarly to pCFGs in Section 2.2, a state of a transition system T is an ordered pair
(l, x) where l is a location and x is a vector of variable valuations. A state (l′, x′) is a
successor of a state (l, x) if there is a transition τ = (l, l′, ρτ) with (x, x′) ∈ ρτ . The
self-loop at ℓout allows us to without loss of generality assume that each state has at
least one successor in a transition system T derived from a program. Given a state c, a
finite path from c in T is a finite sequence of states c = (l0, x0), . . . , (lk, xk) where for
each 0 ≤ i < k we have that (li+1, xi+1) is a successor of (li, xi). A run (or execution)
from c in T is an infinite sequence of states whose every finite prefix is a finite path
from c. A state is said to be initial if it belongs to the set {(ℓinit , x) | x |= Θinit}.
A state (l, x) is reachable from c if there is a finite path from c with the last state
(l, x). When we omit specifying the state c, we refer to a finite path, execution and
reachability from some initial state. A state (l, x) is said to be terminal if l = ℓout .

Example 5.2.2. The transition system for our running example is presented in Fig. 5.2
left. It contains 6 locations L = {l0, l1, l2, l3, l4, ℓout} with ℓinit = l0, and two program
variables V = {x, y}. Since there are no assignments preceding the initial program
location, we have Θinit = Z2. Locations are depicted by labeled circles, transitions by
directed arrows between program locations and their transition relations are given in
the associated rectangular boxes.

Invariants and inductive predicate functions. Given a transition system T , a
predicate function is a map I assigning to each location in T a predicate over the
program variables. A predicate function naturally defines a set of states in T and we
will freely interchange between the two notions. A predicate function is of type-(c, d) if
it assigns to each program location a predicate which is a disjunction of d assertions,
each being a conjunction of c inequalities. For a predicate function I, we define the

111

5. Non-termination Analysis in Programs

l0 : while x ≥ 9 do
l1 : x := ndet()
l2 : y := 10 · x
l3 : while x ≤ y do
l4 : x := x + 1

od
od

Figure 5.1: Our running example in this chapter.

ℓ0 ℓout

ℓ1

ℓ2

ℓ3

ℓ4

x < 9 ∧ Ix,y

x ≥ 9 ∧ Ix,y

y′ = y

y′ = 10x ∧ x′ = x

x ≤ y ∧ Ix,yx′ = x + 1 ∧ y′ = y

x > y ∧ Ix,y

ℓ0 ℓout

ℓ1

ℓ2

ℓ3

ℓ4

x < 9 ∧ Ix,y

x ≥ 9 ∧ Ix,y

y = y′

y = 10x′ ∧ x = x′

x ≤ y ∧ Ix,yx = x′ + 1 ∧ y = y′

x > y ∧ Ix,y

Figure 5.2: Transition system (left) and its reversed transition system (right) associated
to our running example in Fig. 5.1. Ix,y denotes x′ = x ∧ y′ = y and is used for
readability.

complement predicate function ¬I as (¬I)(l) = ¬I(l) for each location l.
A predicate function I is said to be an invariant if for every reachable state (l, x) in T ,
we have x |= I(l). Intuitively, invariants are over-approximations of the set of reachable
states in the transition system. A predicate function is inductive if it is inductive with
respect to every transition τ = (l, l′, ρτ), i.e. if for any pair of states (l, x) and (l′, x′)
with x |= I(l) and (x, x′) ∈ ρτ , we also have x′ |= I(l′).

Termination problem. Given a program and its transition system T , we say that
a run reaching ℓout is terminating. The program is said to be terminating if every
run in T is terminating. Otherwise it is said to be non-terminating. One witness to
non-termination can be a state that is reachable but from which there are no terminating
executions. We call such state diverging.

112

5.3. Transition System Reversal

Example 5.2.3. Consider again the running example in Fig. 5.1 and its transition
system in Fig. 5.2. For any initial state with x ≥ 9, executions that always assign
x := 9 when passing the non-deterministic assignment are non-terminating. On the
other hand, the execution that assigns x := 0 in the non-deterministic assignment
enters the outer loop only once and then terminates. Thus, no initial state is diverging.
One can similarly check that other states are also not diverging.

5.3 Transition System Reversal
We now show that it is possible to ”reverse” a transition system by reversing its
transitions. This construction is the core concept of our approach to proving non-
termination, since states in the program from which ℓout is reachable will be precisely
those states which can be reached from ℓout in the reversed transition system. We then
present a sound and complete certificate for non-termination based on this construction.

Defintion 5.3.1 (Reversed transition system). Given a transition system T = (L, V, ℓinit ,
Θinit, ↦→) and a transition τ = (l, l′, ρτ) ∈ ↦→, let

ρ′τ = {(x′, x) | (x, x′) ∈ ρτ}.

If ρτ is given by an assertion over V ∪ V ′, ρ′τ is obtained from ρτ by replacing each
unprimed variable in the defining assertion for ρτ with its primed counterpart, and
vice-versa. Then for an assertion Θ, we define the reversed transition system of
T with initial variable valuations Θ as a tuple T r,Θ = (L, V, ℓout , Θ, ↦→r), where
↦→r= {(l′, l, ρ′τ) | (l, l′, ρτ) ∈ ↦→}.

Note that this construction satisfies Definition 5.2.1 and thus yields another transition
system. All notions that were defined before (e.g. state, finite path, etc.) are defined
analogously for the reversed transition systems.

Example 5.3.1. Fig. 5.2 right shows the reversed transition system T r,Θ of the program
in Fig. 5.1. Note that for every transition τ in T for which ρτ is given by a conjunction
of an assertion over unprimed program variables and x′ = x ∧ y′ = y, after reversing
we obtain the conjunction of the same assertion just now over primed variables and
x′ = x ∧ y′ = y. Hence, for such τ the transition relation is invariant under reversing.
For example, a transition from l0 to l1 in T has transition relation x ≥ 9∧x′ = x∧y′ = y
so the reversed transition has transition relation x′ ≥ 9 ∧ x = x′ ∧ y = y′. As x′ = x,
this is the same relation as prior to reversal.

The following lemma is the key property of this construction.

113

5. Non-termination Analysis in Programs

Lemma 5.3.2 (Key property of reversed transition systems). Let T be a transition
system, Θ an assertion and T r,Θ the reversed transition system of T with initial variable
valuations Θ. Let c and c′ be two states. Then c′ is reachable from c in T if and only
if c is reachable from c′ in T r,Θ.

Proof. We prove that if c′ is reachable from c in T then c is reachable from c′ in T r,Θ,
the other direction follows analogously. Suppose that c = (l0, x0), (l1, x1), . . . , (lk, xk) =
c′ is a path from c to c′ in T . Then for each 0 ≤ i < k there is a transition
τi = (li, li+1, ρτi

) in T for which (xi, xi+1) ∈ ρτi
. But then (xi+1, xi) ∈ ρ′τi

and
τ r

i = (l′, l, ρ′τi
), hence (li, xi) is a successor of (li+1, xi+1) in T r,Θ. Thus c′ =

(lk, xk), (lk−1, xk−1), . . . , (l0, x0) = c is a finite path in T r,Θ, proving the claim.

Backward Invariants. Lemma 5.3.2 implies that generating invariants for the reversed
transition system T r,Θ provides a way to over-approximate the set of states in T from
which some state in the set {(ℓout , x) | x |= Θ} is reachable. This motivates the notion
of a backward invariant, which will be important in what follows.

Defintion 5.3.3 (Backward invariant). For a transition system T and an assertion
Θ, we say that the predicate function BI is a backward invariant in T r,Θ if it is an
invariant in T r,Θ. The word backward is used to emphasize that we are working in the
reversed transition system.

We conclude this section with a theorem illustrating the behavior of inductive predicate
functions under program reversal.

Theorem 5.3.4. Let T be a transition system, Θ an assertion, I a predicate function
and T r,Θ the reversed transition system. Then I is inductive in T if and only if ¬I is
inductive in T r,Θ.

Proof. We show that I being inductive in T implies that ¬I is inductive in T r,Θ. The
other direction of the lemma follows analogously.
Let τ r = (l′, l, ρ′τ) be a transition in T r,Θ obtained by reversing τ = (l, l′, ρτ) in T .
Assume that x′ ∈ ¬I(l′). To show inductiveness of ¬I in the reversed transition system,
we take a successor (l, x) of (l′, x′) in the reversed transition system with (x′, x) ∈ ρ′τ ,
and we need to show that x ∈ ¬I(l). By definition of the reversed transition we have
(x, x′) ∈ ρτ . So, if on the contrary we had x ∈ I(l), inductiveness of I in T would
imply that x′ ∈ I(l′). This would contradict the assumption that x′ ∈ ¬I(l′). Thus,
we must have x ∈ ¬I(l), and ¬I is inductive in T r,Θ.

114

5.4. Sound and Complete Certificate for Non-termination

5.4 Sound and Complete Certificate for
Non-termination

Lemma 5.3.2 indicates that reversed transition systems are relevant for the termination
problem, as they provide means to describe states from which the terminal location can
be reached. We now introduce the BI -certificate for non-termination, based on the
reversed transition systems and backward invariants. We show that it is both sound
and complete for proving non-termination and hence characterizes it (i.e. a program is
non-terminating if and only if it admits the certificate). This is done by establishing a
connection to recurrence sets [GHM+08, CCF+14], a notion which provides a necessary
and sufficient condition for a program to be non-terminating.

Recurrence set. A recurrence set [GHM+08] in a transition system T is a non-empty
set of states G which (1) contains some state reachable in T , (2) every state in G has
at least one successor in G, and (3) contains no terminal states. The last condition
was not present in [GHM+08] and we add it to account for the terminal location and
the self-loop at it, but the definitions are easily seen to be equivalent. In [GHM+08],
it is shown that a program is non-terminating if and only if its transition system
contains a recurrence set. The work in [CCF+14] notes that one may without loss of
generality restrict attention to recurrence sets which contain some initial state (which
they call open recurrence sets). Indeed, to every recurrence set one can add states
from some finite path reaching it to obtain an open recurrence set, and there is at least
one such path since each recurrence set contains a reachable state.

Closed recurrence set. A closed recurrence set [CCF+14] is an open recurrence
set C with the additional property of being inductive, i.e. for every state in C each of
its successors is also contained in C. The work [CCF+14, Theorems 1 and 2] shows
that closed recurrence sets can be used to define a sound and complete certificate
for non-termination, which we describe next. Call U = (L, V, ℓinit , Θinit, ↦→U) an
under-approximation of T = (L, V, ℓinit , Θinit, ↦→) if for every (l, l′, ρu

τ) ∈ ↦→U there
exists (l, l′, ρτ) ∈ ↦→ with ρu

τ ⊆ ρτ . Then T contains an open recurrence set if and only
if there is an under-approximation U of T and a closed recurrence set in U .

Proper under-approximations. We introduce a notion of proper under-approximation.
An under-approximation U of T is proper if every state which has a successor in T
also has at least one successor in U . This is a new concept and restricts general under-
approximations, but it will be relevant in defining the BI -certificate for non-termination
and establishing its soundness and completeness. The next lemma is technical and shows
that closed recurrence sets in proper under-approximations are sound and complete for
proving non-termination.

115

5. Non-termination Analysis in Programs

Lemma 5.4.1. Let P be a non-terminating program and T its transition system. Then
there exist a proper under-approximation U of T and a closed recurrence set C in U .

Proof. Since P is non-terminating, we have that T = (L, V, ℓinit , Θinit, ↦→) admits an
under-approximation U ′ = (L, V, ℓinit , Θinit, ↦→U ′) and a closed recurrence set C in U ′.
Define the under-approximation U = (L, V, ℓinit , Θinit, ↦→U) of T by defining ρU

τ for
each τ = (l, l′, ρτ) ∈↦→ as follows:

ρU
τ = ρU ′

τ ∪ {(x, x′) | (x, x′) ∈ ρτ , (l, x) ̸∈ C}.

Thus we extend ρU ′
τ in order to make each state outside C have the same set of

successors as in ↦→. We claim that the under-approximation U of T is proper and that
C is a closed recurrence set in U , proving the lemma. Indeed, by the construction of
U every state outside C which has a successor in T also has at least one successor in
U . For a state in C this is immediate since its set of successors in U is the same in U ′

and C is a closed recurrence set in U ′. Hence U is proper. To see that C is a closed
recurrence set in U , note again that every state in C has the same successor set in
U ′ and in U , thus it has at least one successor in U which is in C, and also all of its
successors in U are in C. Therefore, as C contains an initial state in T and thus in U ,
the claim follows.

BI -certificate for non-termination. We introduce and explain how backward
invariants in combination with proper under-approximations can be used to characterize
non-termination. Suppose P is a program we want to show is non-terminating, and
T is its transition system. Let ReachT (ℓout) be the set of variable valuations of all
reachable terminal states in T . A BI -certificate for non-termination will consist of an
ordered triple (U, BI , Θ) of a proper under-approximation U of T , a predicate function
BI and an assertion Θ such that

• Θ ⊇ ReachT (ℓout);

• BI is an inductive backward invariant in U r,Θ;

• BI is not an invariant in T .

Theorem 5.4.2 (Soundness of our certificate). Let P be a program and T its transition
system. If there exists a BI -certificate (U, BI , Θ) in T , then P is non-terminating.

Proof. Consider a predicate function ¬BI . Note that in a transition system defined
by a program, every state has at least one successor. So as U is proper, every state
in ¬BI has at least one successor in U . On the other hand, by Theorem 5.3.4 we
have that ¬BI is inductive in U since BI is inductive in U r,Θ. Hence for every state

116

5.4. Sound and Complete Certificate for Non-termination

in ¬BI , all of its successors in U are also in ¬BI . We also know that BI is not an
invariant in T , so there exists a reachable state c in T which is contained in ¬BI . We
use it to construct a non-terminating execution. Pick any finite path c0, c1, . . . , ck = c
in T , which exists by reachability. Since terminal states do not have non-terminal
successors, none of the states along this finite path is terminal. Then, starting from
c we may inductively pick successors in U which are in ¬BI . This is possible from
what we showed above. Moreover, none of the picked successors can be terminal all
reachable terminal states are contained in BI . Thus we obtain a non-terminating run,
as wanted.

Example 5.4.1. Consider again the running example and its transition system T
presented in Fig. 5.1 and Fig. 5.2, respectively. Let U be the under-approximation of
T defined by restricting the transition relation of the non-deterministic assignment
x := ndet() as ρU

τ = {(x, y, x′, y′) | x′ = 9, y′ = y}. Intuitively, U is a transition
system of the program obtained by replacing the non-deterministic assignment in P
with x := 9. Define a predicate function BI as

BI (l) =

⎧⎪⎪⎨⎪⎪⎩
(1 ≥ 0) if l = ℓout

(x ≤ 8) if l ∈ {l0, l2, l3, l4}
(−1 ≥ 0) if l = l1,

i.e. BI (l1) is empty, and let Θ = Z2. U r,Θ can be obtained from T r,Θ by replacing the
transition relation from l2 to l1 with x = 9∧ y = y′ in Fig. 5.2 right. Then U is proper,
and BI is an inductive backward invariant for U r,Θ since no transition can increase x.
On the other hand, (l0, 9, 0) is reachable in T but not contained in BI , thus BI is not
an invariant in T . Hence (U, BI , Θ) is a BI -certificate for non-termination and the
program is non-terminating.

By making a connection to closed recurrence sets, the following theorem shows that
backward invariants in combination with proper under-approximations of T also provide
a complete characterization of non-termination.

Theorem 5.4.3 (Complete characterization of non-termination). Let P be a non-
terminating program with transition system T . Then T admits a proper under-
approximation U and a predicate function BI such that BI is an inductive backward
invariant in the reversed transition system U r,Z|V | , but not an invariant in T .

Proof. Since P is non-terminating, from Lemma 5.4.1 we know that T admits a proper
under-approximation U and a closed recurrence set C in U . For each location l in T ,
let C(l) = {x | (l, x) ∈ C}. Define the predicate function BI as BI (l) = ¬C(l) for
each l. We claim that BI is an inductive backward invariant in U r,Z|V | , but not an

117

5. Non-termination Analysis in Programs

invariant in T . By definition of closed recurrence sets, BI contains all terminal states
in T , i.e. initial states of U r,Z|V | . On the other hand, for every state in C all of its
successors in U are also contained in C. Thus, as a predicate function C is inductive,
hence by Theorem 5.3.4 BI = ¬C is inductive in U r,Z|V | . This shows that BI is an
inductive backward invariant in U r,Z|V | . On the other hand, as a closed recurrence set
C contains an initial state in T , BI does not contain all reachable states and is thus
not an invariant in T . The claim of the theorem follows.

Remark 5.4.1 (Connection to the pre-operator). There is a certain similarity between
reversal of an individual transition and application of the pre-operator, the latter being a
well known concept in program analysis. However, in our approach we introduce reversed
transition systems which are obtained by reversing all transitions (hence the name
“program reversal”). This allows us using black-box invariant generation techniques as
a one-shot method of computing sets from which a terminal location can be reached,
as presented in the next section. This is in contrast to approaches which rely on an
iterative application of the pre-operator.

5.5 Algorithm for Proving Non-termination
We now present our algorithm for proving non-termination based on program reversing
and BI -certificates introduced in Section 5.4. It uses a black box constraint solving-
based method for generating (possibly disjunctive) inductive invariants, as in [CSS03,
GSV08, KBBR17, KCBR18, HOPW18, RK04, RK07, CFGG20]. This is a classical
approach to invariant generation and it fixes a template for the invariant (i.e. a type-
(c, d) predicate function with polynomial expressions as well as an upper bound D on
the degree of polynomials, where c, d and D are provided by the user), introduces a
fresh variable for each template coefficient, and encodes invariance and inductiveness
conditions as existentially quantified constraints on template coefficient variables. The
obtained system is then solved and any solution yields an inductive invariant. Moreover,
the method is relatively complete [RK04, RK07, CFGG20] in the sense that every
inductive invariant of the fixed template and maximal polynomial degree is a solution
to the system of constraints. Efficient practical approaches to polynomial inductive
invariant generation have been presented in [KBBR17, KCBR18].

We first introduce resolution of non-determinism which induces a type of proper under-
approximations of the program’s transition system of the form that allows searching for
them via constraint solving. We then proceed to our main algorithm. In what follows,
P will denote a program with polynomial arithmetic and T = (L, V, ℓinit , Θinit, ↦→) will
be its transition system. Furthermore, in what follows we assume that all predicates
and assertions are defined in terms of polynomial expressions over program variables.

118

5.5. Algorithm for Proving Non-termination

5.5.1 Resolution of Non-determinism
As we saw in Example 5.2.3, there may exist non-diverging program states which
become diverging when supports of non-deterministic assignments are restricted to
suitably chosen subsets. Here we define one such class of restrictions which ”resolves”
each non-deterministic assignment by replacing it with a polynomial expression over
program variables. Such resolution ensures that the resulting under-approximation of
the program’s transition relation is proper. Let TNA ⊆ ↦→ be the set of transitions
corresponding to non-deterministic assignments in P .

Defintion 5.5.1 (Resolution of non-determinism). A resolution of non-determinism
for T is a map RNA which to each τ ∈ TNA assigns a polynomial expression RNA(τ)
over program variables. It naturally defines a restricted transition system TRNA which
is obtained from T by letting the transition relation of τ ∈ TNA corresponding to an
assignment x := ndet() be

ρRNA

τ (x, x′) := (x′ = RNA(τ)(x)) ∧
⋀︂

y∈V \{x}
y′ = y.

Note that TRNA is a proper under-approximation of T . If there exists a resolution
of non-determinism RNA and a state c which is reachable in T but from which no
execution in TRNA terminates, then any such execution is non-terminating in T as well.
We say that any such state c is diverging with respect to (w.r.t.) RNA.

Example 5.5.1. Looking back at the program in Figure 3.2, define a resolution of non-
determinism RNA to assign constant expression 9 to the non-deterministic assignment
x := ndet(). Then every initial state with x ≥ 9 becomes diverging w.r.t. RNA.

5.5.2 Algorithm
Main idea. To prove non-termination, our algorithm uses a constraint solving ap-
proach to find a BI -certificate. It searches for a resolution of non-determinism RNA, a
predicate function BI and an assertion Θ such that:

1. Θ ⊇ ReachT (ℓout) (recall that ReachT (ℓout) is the set of variable valuations of
all reachable terminal states in T);

2. BI is an inductive backward invariant for the reversed transition system T r,Θ
RNA ;

3. BI is not an invariant for T .

119

5. Non-termination Analysis in Programs

Need for inductive invariants and safety checking. Using the aforementioned
black box invariant generation, our algorithm encodes the conditions on RNA, BI , and
Θ as polynomial constraints and then solves them. However, the method is only able
to generate inductive invariants, which is to say that encoding ”BI is not an invariant
for T ” is not possible. Instead, we modify the third requirement on BI above to get:

1. Θ ⊇ ReachT (ℓout);

2. BI is an inductive backward invariant for T r,Θ
RNA ;

3. BI is not an inductive invariant for T .

The third requirement does not guarantee that we get a proper BI -certificate. However
it guides invariant generation to search for BI which is less likely to be an invariant for
T . It follows that the algorithm needs to do additional work to ensure that the triple
(RNA, BI , Θ) is a BI -certificate.

Splitting the algorithm into two checks. The predicate function BI is not an
inductive invariant for T if and only if it has one of the following properties: either it
does not contain some initial state or is not inductive with respect to some transition
in T . For each of these two properties, we can separately compute BI satisfying it
and the properties (1) and (2) above, followed by a check whether the computed BI
indeed proves non-termination. We refer to these two independent computations as
two checks of our algorithm:

• Check 1 - the algorithm checks if there exist RNA, BI and Θ as above so that
BI does not contain some initial state and conditions (1) and (2) are satisfied.
By Theorem 5.3.4, BI is inductive for T r,Θ

RNA if and only if the complement ¬BI is
an inductive predicate function for TRNA . Moreover, since ¬BI contains an initial
state there is no need for an additional reachability check to conclude that BI is
not an invariant for T . Hence by fixing Θ = Z|V |, to prove non-termination it
suffices to check if there exist a resolution of non-determinism RNA, a predicate
function I and an initial state c in T such that I contains c, I is inductive for
TRNA and I(ℓout) = ∅.

• Check 2 - the algorithm checks if there exist RNA, Θ and BI as above so that
BI is not inductive in T and conditions (1) and (2) are satisfied. If a solution is
found, the algorithm still needs to find a state in ¬BI which is reachable in T ,
via a call to a safety prover.

120

5.5. Algorithm for Proving Non-termination

Algorithm 5.1: Algorithm for proving non-termination
input : A program P , its transition system T , predicate function template

size (c, d), maximal polynomial degree D.
output : Proof of non-termination if found, otherwise ”Unknown”

1 set a template for each polynomial defined by resolution of non-determinism
RNA

2 construct restricted transition system TRNA

3 set templates for state c and for an invariant I of type-(c, d)
4 encode Φ1 = ϕc ∧ ϕI,RNA

5 if Φ1 feasible then return Non-termination
6 else
7 set templates for invariant Ĩ of type-(c, 1) and for a backward invariant BI

of type-(c, d)
8 construct reversed transition system T r,Ĩ(ℓout)

RNA

9 foreach τ ∈ ↦→ do set templates for xτ , x′τ
10 encode Φ2 = ϕĨ ∧ ϕBI ,RNA ∧ ⋁︁

τ∈ ↦→ ϕτ

11 if Φ2 feasible then
12 if ∃ (l, x) Reachable in T with x |= ¬BI (l) then return

Non-termination
13 else return Unknown
14 end
15 else return Unknown
16 end

Algorithm summary. As noted at the beginning of Section 5.5, the invariant gener-
ation method first needs to fix a template for the predicate function and the maximal
polynomial degree. Thus our algorithm is parametrized by c and d which are bounds
on the template size of predicate functions (d being the maximal number of disjunctive
clauses and c being the maximal number of conjunctions in each clause), and by an
upper bound D on polynomial degrees. The algorithm consists of two checks, which
can be executed either sequentially or in parallel:

Check 1 - the algorithm checks if there exist a resolution of non-determinism RNA, a
predicate function I and an initial state c such that (1) I is an inductive invariant in
TRNA for the single initial state c, and (2) I(ℓout) = ∅. To do this, we fix a template
for each of RNA, I and c, and encode these properties as polynomial constraints:

• For each transition τ in TNA, fix a template for a polynomial RNA(τ) over program
variables of degree at most D. That is, introduce a fresh template variable for
each coefficient of such a polynomial.

121

5. Non-termination Analysis in Programs

• Introduce fresh variables c1, c2, . . . , c|V | defining the variable valuation of c. Then
substitute these variables into the assertion Θinit specifying initial states in T to
obtain the constraint ϕc for c being an initial state.

• Fix a template for the predicate function I of type-(c, d) and maximal polynomial
degree D. The fact that I is an inductive invariant for TRNA with the single
initial state c and I(ℓout) = ∅ is encoded by the invariant generation method
(e.g. [CSS03, RK04]) into a constraint ϕI,RNA .

The algorithm then tries to solve Φ1 = ϕc ∧ ϕI,RNA using an off-the-shelf SMT solver.
If a solution is found, c is an initial diverging state w.r.t. TRNA , so the algorithm reports
non-termination.

Check 2 - the algorithm checks if there exist a resolution of non-determinism RNA,
an assertion Θ, a predicate function BI and a transition τ ∈ TNA such that (1) Θ ⊇
ReachT (ℓout), (2) BI is an inductive backward invariant for T r,Θ

RNA, and (3) BI is not
inductive w.r.t. τ in T . To encode Θ ⊇ ReachT (ℓout), we introduce another predicate
function Ĩ (purely conjunctive for the sake of efficiency), and impose a requirement on
it to be an inductive invariant for T . We may then define the initial variable valuations
for T r,Θ

RNA as Θ = Ĩ(ℓout). The algorithm introduces fresh template variables for RNA,
Ĩ and BI , as well as for a pair of variable valuations xτ and x′τ for each transition
τ = (l, l′, ρτ) in T and imposes the following constraints:

• For each transition τ in TNA, fix a template for a polynomial expression RNA(τ)
of degree at most D over program variables.

• Fix a template for the predicate function Ĩ of type-(c, 1) (as explained above, for
efficiency reasons we make Ĩ conjunctive) and impose a constraint ϕĨ that Ĩ is
an inductive invariant for T .

• Fix a template for the predicate function BI of type-(c, d) and impose a constraint
ϕBI ,RNA that BI is an inductive backward invariant for T r,Ĩ(ℓout)

RNA .

• For each transition τ in T , the constraint ϕτ encodes non-inductiveness of BI
with respect to τ in T :

x, x′ |= BI (l) ∧ ρτ ∧ ¬BI (l′).

The algorithm then solves Φ2 = ϕĨ ∧ ϕBI ,RNA ∧ ⋁︁
τ∈ ↦→ ϕτ by using an SMT-solver. If

a solution is found, the algorithm uses an off-the-shelf safety prover to check if there
exists a state in ¬BI reachable in T . Such state is then diverging w.r.t. TRNA , so we
report non-termination.

122

5.5. Algorithm for Proving Non-termination

The pseudocode for our algorithm is shown in Algorithm 5.1. The following theorem
proves soundness of our algorithm.

Theorem 5.5.2 (Soundness). If Algorithm 5.1 outputs ”Non-termination” for some
program P , then P is non-terminating.

Proof. If the algorithm outputs ”Non-termination” for an input program P , then it
was either able to show that Φ1 is feasible for P , or that Φ2 is feasible for P with the
subsequent safety check being successful.

Suppose that the algorithm showed that Φ1 is feasible and found a resolution of
non-determinism RNA, an initial state c in T , and a type-(c, d) predicate function I
satisfying properties in Check 1 of the algorithm. We claim that (TRNA ,¬I,Z|V |) is a BI -
certificate for P and thus, by Theorem 5.4.2, P is non-terminating. By Definition 5.5.1,
RNA defines a proper under-approximation TRNA of T . On the other hand, I is inductive
for TRNA , so by Theorem 5.3.4, ¬I is inductive for T r,Z|V |

RNA . Moreover, I(ℓout) = ∅, so
¬I(ℓout) = Z|V | contains all terminal states and ¬I is an inductive backward invariant
for T r,Z|V |

RNA . Finally, ¬I does not contain the initial state c in T and is thus not an
invariant for T .

Suppose now that Φ2 was shown to be feasible and that the subsequent safety check
was successful. Then the algorithm had to find a resolution of non-determinism RNA, a
type-(c, 1) predicate function Ĩ, a type-(c, d) predicate function BI , and a transition τ in
T satisfying constraints in Check 2 of the algorithm. We claim that (TRNA , BI , Ĩ(ℓout))
is a BI -certificate for P and thus, by Theorem 5.4.2, P is non-terminating. Again,
by Definition 5.5.1, RNA defines a proper under-approximation TRNA of T . BI is an
inductive backward invariant for T r,Ĩ(ℓout)

RNA and Ĩ(ℓout) contains all terminal states in T ,
as Ĩ is an invariant for T . Finally, since the safety check was successful there exists a
reachable state in T contained in ¬BI , showing that BI is not an invariant for T .

Remark 5.5.1 (Algorithm termination). Our algorithm might not always terminate
because either the employed SMT-solver or the safety prover might diverge. Thus, in
practice one needs to impose a timeout in order to ensure algorithm termination.

5.5.3 Demonstration on Examples
We demonstrate our algorithm on two examples illustrating the key aspects. We then
present an example demonstrating an application of our method on program whose all
non-terminating traces are aperiodic.

Example 5.5.2. Consider again our running example in Fig. 5.1. We demonstrate that
Check 1 of our algorithm can prove that it is non-terminating. Define the resolution

123

5. Non-termination Analysis in Programs

n := 0, b := 0, u := 0
l0 : while b == 0 and n ≤ 99 do
l1 : u := ndet()
l2 : i f u ≤ −1 then
l3 : b := −1

e l se i f u == 0 then
l4 : b := 0
l5 : e l se b := 1 f i
l6 : n := n + 1
l7 : i f n ≥ 100 and b ≥ 1 then
l8 : while true do
l9 : sk ip

od f i od

Figure 5.3: An example of a program without an initial diverging state with respect to
any resolution of non-determinism that uses polynomials of degree less than 100, but
for which Check 2 proves non-termination.

l0 : while x ≥ 1 do
l1 : y := 10 · x
l2 : while x ≤ y do
l3 : x := x + 1

od od

Figure 5.4: Example program illustrating aperiodic non-termination.

of non-determinism RNA to assign a constant expression 9 to the non-deterministic
assignment, an initial state c = (ℓinit , 9, 0), and a predicate function I as I(ℓ) = (x ≥ 9)
for ℓ ̸= ℓout and I(ℓout) = ∅. Then I is an inductive invariant for TRNA with the initial
state c. Thus the system of polynomial constraints constructed by Check 1 is feasible,
proving that this program is non-terminating.

Example 5.5.3. Consider the program in Fig. 5.3. Its initial variable valuation is given
by the assertion (n = 0 ∧ b = 0 ∧ u = 0), and a program execution is terminating so
long as it does not assign 0 to u in the first 99 iterations of the outer loop, and then
at least 1 in the 100-th iteration. Thus, if the initial state was diverging with respect
to a resolution of non-determinism which resolves the non-deterministic assignment of
u by a polynomial p(n, b, u), this polynomial would need to satisfy p(n, 0, 0) = 0 for
n = 0, 1, . . . , 98 and p(99, 0, 0) ≥ 1. Hence, the degree of p would have to be at least
100, and this program has no initial diverging state with respect to any resolution of
non-determinism that is feasible to compute by using the Check 1 of our algorithm.

124

5.5. Algorithm for Proving Non-termination

We now show that Check 2 can prove non-termination of this program using only
polynomials of degree 0, i.e. constant polynomials. Define RNA, Ĩ, BI and τ as follows:

• RNA assigns constant expression 1 to the assignment of u at ℓ1;

• Ĩ(ℓ) = (0 ≤ n ≤ 100) for each location ℓ;

• BI is a predicate function defined via

BI (ℓ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0 ≤ n ≤ 100) if ℓ = ℓout

(n ≤ 100) if ℓ = ℓ0

(n ≤ 99) ∨ (n = 100 ∧ b ≤ 0) if ℓ = ℓ7

(n ≤ 98) ∨ (n = 99 ∧ b ≤ 0) if ℓ = ℓ6

(n ≤ 98) if ℓ ∈ {ℓ1, ℓ5}
(n ≤ 99) if ℓ ∈ {ℓ3, ℓ4}
(n ≤ 98) ∨ (n = 99 ∧ u ≤ 0) if ℓ = ℓ2

(1 ≤ 0) if ℓ ∈ {l8, l9};

• τ is the transition from ℓ0 to ℓ1.

To show that these RNA, Ĩ, BI and τ satisfy each condition in Check 2, we note that:

1. The set of variable valuations reachable in the program upon termination is
(n, b) ∈ {(n, b) | 1 ≤ n ≤ 99 ∧ b! = 0} ∪ {(100, b) | b ≤ 0}, thus Θ = Ĩ(ℓout)
contains it;

2. BI is an inductive backward invariant for T r,Ĩ(ℓout)
RNA (which can be checked by

inspection of the reversed transition system in Fig. 5.5;

3. BI is not inductive w.r.t. τ in T , since (99, 0, 0) ∈ BI (ℓ0) but the variable
valuation (99, 0, 0) obtained by executing τ in T is not contained in BI (ℓ1).

Thus, these RNA, Ĩ, BI and τ present a solution to the system of constraints defined
by Check 2. Since the state (ℓ1, 99, 0, 0) is reachable in this program by assigning
u := 0 in the first 99 iterations of the outer loop, but (99, 0, 0) ̸∈ BI (ℓ1), the safety
prover will be able to show that a state in ¬BI is reachable. Hence our algorithm is
able to prove non-termination.

125

5. Non-termination Analysis in Programs

Example 5.5.4. Consider the program in Fig. 5.4. Note that non-determinism in this
program is implicit and appears in assigning the initial variable valuation. Moreover,
every initial state defines a unique execution which is terminating if and only if the
initial value of x is non-positive. We claim that every non-terminating execution in this
program is aperiodic. Consider an execution starting in an initial state (ℓ0, x1, y1) with
x1 ≥ 1. First, note that the inner program loop is terminating thus the execution will
execute the outer loop infinitely many times. The i-th iteration of the outer loop in this
execution is of the form ℓ0, ℓ1, (ℓ2, ℓ3)(9xi) where (ℓ0, xi, yi) the state in this execution
upon starting the i-th iteration of the outer loop. A simple inductive argument shows
that xi = 10i−1 for each i ∈ N. This proves the claim that each non-terminating
execution is indeed aperiodic. We now show that Check 1 of our algorithm can prove
that this program is non-terminating. Since there are no non-deterministic assignments,
the resolution of non-determinism RNA is trivial. Consider the initial state c = (ℓ0, 1, 1)
and a predicate function I defined via I(ℓ) = (x ≥ 1) if ℓ ∈ {ℓ0, ℓ1, ℓ2, ℓ3}, and
I(ℓout) = ∅. Then RNA, I and c satisfy all the properties in Check 1 of our algorithm,
and our algorithm can prove non-termination of the program in Fig. 5.4.

5.5.4 Relative Completeness
At the beginning of Section 5.5 we noted that constraint solving-based inductive
invariant generation is relatively complete [CSS03, GSV08, RK04, RK07, CFGG20], in
the sense that whenever there is an inductive invariant representable using the given
template, the algorithm will find such an invariant. This means that our algorithm is
also relatively complete in checking whether the program satisfies properties encoded
as polynomial constraints in Check 1 and Check 2. Since successful Check 1 does not
require a subsequent call to a safety prover, it provides to the best of our knowledge
the first relatively complete algorithm for proving non-termination of programs with
polynomial integer arithmetic and non-determinism.

Theorem 5.5.3 (Relative completeness). Let P be a program with polynomial integer
arithmetic and T its transition system. Suppose that T admits a proper under-
approximation U which restricts each non-deterministic assignment to a polynomial
assignment, and a predicate function C which is a closed recurrence set in U . Then
for sufficiently high values of parameters c, d and D bounding the template size for
invariants and the maximal polynomial degree, our algorithm proves non-termination of
the program P .

While relative completeness guarantees in Theorem 5.5.3 are the first such guarantees
for programs with non-determinism, they only apply to non-terminating programs that
contain an initial diverging state w.r.t. some resolution of non-determinism. However,
Example 5.5.3 shows that finding such a state might require using very high degree

126

5.5. Algorithm for Proving Non-termination

polynomials to resolve non-determinism, and in general such a state need not exist at all
in non-terminating programs. In order to ensure catching non-termination bugs in such
examples, an algorithm with stronger guarantees is needed. To that end, we propose
a modification of our algorithm for programs in which non-determinism appears only
in branching. The new algorithm provides stronger relative completeness guarantees
that can detect non-terminating behavior in programs with no initial diverging states
or for which Check 1 is not practical, including the program in Example 5.5.3 (that
is, its equivalent version in which non-determinism appears only in branching as we
demonstrate in Example 5.5.5).

To motivate this modification, let us look back at the conditions imposed on the
predicate function BI by our algorithm. BI is required not to be an invariant, so
that ¬BI contains a reachable state. However, this reachability condition cannot be
encoded using polynomial constraints, so instead we require that ¬BI is not an inductive
invariant, and then employ a safety prover which does not provide any guarantees. Our
modification is based on the work of [ACF+21], which presents a relatively complete
method for reachability analysis in polynomial programs with non-determinism appearing
only in branching.

Relatively complete reachability analysis. We give a high level description of the
method in [ACF+21]. Let P be a program with non-determinism appearing only in
branching, T its transition system, and C a set of states defined by a predicate function.
The goal of the analysis is to check whether some state in C is reachable in T . The
witness for the reachability of C in [ACF+21] consists of (1) an initial state c, (2) a
predicate function C⋄ that contains c, and (3) a polynomial ranking function fC for C⋄

with respect to C. A polynomial ranking function for C⋄ with respect to C is a map
fC that to each location ℓ ∈ L assigns a polynomial expression fC(l) over program
variables, such that each state (l, x) ∈ C⋄\C has a successor (l′, x′) ∈ C⋄ with

fC(l)(x) ≥ fC(l′)(x′) + 1 ∧ fC(l)(x) ≥ 0,

where C⋄ and C are treated as sets of states. Intuitively, this means that for each state
(l, x) ∈ C⋄\C, the value of fC at this state is non-negative and there is a successor
of this state in C⋄ at which the value of fC decreases by at least 1. If the program
admits such a witness, then we may exhibit a path from c to a state in C by inductively
picking either a successor in C (and thus proving reachability), or a successor in C⋄\C
along which fC decreases by 1. As the value of fC in c is finite and fC is non-negative
on C⋄\C, decrease can happen only finitely many times and eventually we will have
to pick a state in C. It is further shown in [ACF+21] that any reachable C admits
a witness in the form of an initial state, a predicate function and a (not necessarily
polynomial) ranking function.

127

5. Non-termination Analysis in Programs

For programs with non-determinism appearing only in branching, it is shown in [ACF+21]
that all the defining properties of c, C⋄ and fC can be encoded using polynomial
constraints. Thus [ACF+21] searches for a reachability witness by introducing template
variables for c, C⋄ and fC , encoding the defining properties using polynomial constraints
and then reducing to constraint solving. The obtained constraints are at most quadratic
in the template variables, as was the case in our algorithm for proving non-termination.
Moreover, their analysis is relatively complete - if a witness of reachability in the form
of an initial state c, a predicate function C⋄ and a polynomial ranking function fC

exists, the method of [ACF+21] will find it.

Modification of our algorithm. The modified algorithm is similar to Check 2, with
only difference being that we encode reachability of ¬BI using polynomial constraints
instead of requiring it not to be inductive in T . The algorithm introduces a template of
fresh variables determining RNA, Ĩ and BI . In addition, it introduces a template of fresh
variables determining an initial state c, a predicate function C⋄ and a polynomial ranking
function f¬BI . The algorithm then imposes the following polynomial constraints:

• Encode the same conditions on RNA, Ĩ and BI as in Check 2 to obtain Φbackward.

• Introduce fresh variables c1, c2, . . . , c|V | defining the variable valuation of c. Then
substitute these variables into the assertion Θinit specifying initial states in T to
obtain the constraint ϕc for c being an initial state.

• Fix a template for the predicate function C⋄ of type-(c, d) and maximal polynomial
degree D. Encode that C⋄ contains c into the constraint ϕc,C⋄ .

• For each location ℓ in T , fix a template for a polynomial f¬BI (ℓ) over program
variables of degree at most D. That is, introduce a fresh template variable for
each coefficient of such a polynomial.

• Using the method of [ACF+21], for each location ℓ encode the following condition

∀x.x |= C⋄(ℓ)⇒ x ∈ ¬BI (ℓ) ∨
(︃(︃ ⋁︂

τ=(ℓ,ℓ′,ρτ)
x′ |= C⋄(ℓ′)∧

ρτ (x, x′) ∧ f¬BI (ℓ)(x) ≥ f¬BI (ℓ′)(x′) + 1
)︃
∧ f¬BI (ℓ)(x) ≥ 0

)︃
,

as a polynomial constraint ϕℓ,reach. Note that, since we assume that non-
determinism appears only in branching and not in variable assignments, for
any x there is at most one variable valuation x′ such that ρτ (x, x′) is satisfied.
Thus, the above condition indeed encodes the condition that, if (ℓ, x) ̸∈ ¬BI ,
then at least one successor state satisfies the ranking function property. It is

128

5.5. Algorithm for Proving Non-termination

shown in [ACF+21] that this condition can be encoded into existentially quantified
polynomial constraints over template variables, by using analogous semi-algebraic
techniques that are used for inductive invariant generation in [CSS03, CFGG20]
and which we use for invariant synthesis. We then take Φreach = ∧ℓ ϕℓ,reach.

The algorithm then tries to solve Φmodified = Φbackward ∧ ϕc ∧ ϕc,C⋄ ∧ Φreach.

Soundness of the modified algorithm follows the same argument as the proof of
Theorem 5.5.2. The following theorem presents the stronger relative completeness
guarantees provided by the modified algorithm.

Theorem 5.5.4 (Stronger relative completeness). Let P be a program with polynomial
integer arithmetic, in which non-determinism appears only in branching. Let T be its
transition system. Suppose that T admits

1. a proper under-approximation U restricting each non-deterministic assignment to
a polynomial assignment,

2. a predicate function Ĩ which is an inductive invariant in T ,

3. a predicate function BI which is an inductive backward invariant in T r,Ĩ(ℓout)
U , and

4. a witness of reachability of ¬BI as in [ACF+21].

Then for high enough values of c, d and D bounding the template size for invariants
and the polynomial degree, our algorithm proves non-termination of the program P .

Remark 5.5.2. The method of [ACF+21] encodes constraints for programs in which
non-determinism appears only in branching, whereas in this work we talked about
constraint encoding for programs in which non-determinism appears only in assignments.
This is not an issue in the modified algorithm - we can always start with a program in
which non-determinism appears only in branching to encode the reachability witness
constraints, and then apply the trick from Section 5.2 to replace each non-deterministic
branching by an assignment.

Example 5.5.5. We show that the relative completeness guarantees of the modified
algorithm apply to the program obtained from Fig. 5.3 by replacing the non-deterministic
assignment of u and the subsequent conditional branching with the non-deterministic
branching given by if ∗ then. Specifically, the new program is obtained by removing the
non-deterministic assignment of u from the program, merging ℓ1 and ℓ2 in Fig. 5.5.3 into
the new location ℓ1,2 and replacing the conditional by the non-deterministic branching.
The reachability constraints for the modified algorithm are then encoded with respect

129

5. Non-termination Analysis in Programs

to this new program. On the other hand, to encode the constraints as in Check 2, we
consider the original program in Fig. 5.3.
To see that this program satisfies the conditions of Theorem 5.5.4, we define RNA,
Ĩ and BI as in Example 5.5.3. Then, one witness of reachability of ¬BI (where we
identify ℓ1,2 with ℓ1) is defined by c = (ℓinit , 0, 0, 0),

C⋄(ℓ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(0 ≤ n ≤ 99 ∧ b = 0 ∧ u = 0) if ℓ ∈ {ℓ0, ℓ1,2}
(0 ≤ n ≤ 98 ∧ b = 0 ∧ u = 0) if ℓ ∈ {ℓ4, ℓ6}
(1 ≤ n ≤ 99 ∧ b = 0 ∧ u = 0) if ℓ = ℓ7

(1 ≤ 0) otherwise;

and

f¬BI (ℓ, n, b, u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5 · (100− n) + 3 if ℓ = ℓ0

5 · (100− n) + 2 if ℓ = ℓ1,2

5 · (100− n) + 1 if ℓ = ℓ4

5 · (100− n) + 0 if ℓ = ℓ6

5 · (100− n) + 4 if ℓ = ℓ7

0 otherwise;

To see that this is indeed the witness of reachability of ¬BI , observe C⋄ contains
precisely the set of all states along the path from c = (ℓinit , 0, 0, 0) to the state
(ℓ1, 99, 0, 0) in ¬BI that we described in Example 5.5.3 (recall, for reachability analysis
we identify ℓ1 with ℓ1,2 in the modified program in which non-determinism appears only
in branching), and that f¬BI is non-negative along this path and decreases by exactly 1
in each step along the path.

5.6 Experiments
We present a prototype implementation of our algorithm in our tool RevTerm. We
follow a standard approach to invariant generation [CSS03, GSV08, CFGG20] which
only fixes predicate function templates at cutpoint locations. For safety prover we use
CPAchecker [BK11] and for constraint solving we use three SMT-solvers: Barcelogic
1.2 [BNO+08], MathSAT5 [CGSS13] and Z3 [dMB08]. Since non-determinism in all
our benchmarks appears in variable assignments only, we implemented only our main
algorithm and not the modified algorithm with stronger guarantees for programs with
branching-only non-determinism.

Benchmarks. We evaluated our approach on benchmarks from the category Ter-
mination of C-Integer Programs of the Termination and Complexity Competition

130

5.6. Experiments

Table 5.1: Experimental results with evaluation performed on the first platform. The
NO/YES/MAYBE rows contain the total number of benchmarks which were proved
non-terminating, terminating, or for which the tool proved neither, respectively. The
next row contains the number of benchmarks proved to be non-terminating only by
the respective tool. We also report the average and standard deviation (std. dev.)
of runtimes. The last two rows show the runtime statistics limited to successful non-
termination proofs.

RevTerm Ultimate VeryMax
NO 107 97 103
YES 0 209 213

MAYBE 228 29 19
Unique NO 3 1 0
Avg. time 1.2s 5.0s 3.7s
Std. dev. 3.0s 3.7s 7.3s

Avg. time for NO 1.2s 4.4s 10.6s
Std. dev. for NO 3.0s 3.8s 9.4s

(TermComp‘19 [GRS+19]). The benchmark suite consists of 335 programs with non-
determinism: 111 non-terminating, 223 terminating, and the Collatz conjecture for
which termination is unknown. We compared RevTerm against the best state-of-the-art
tools that participated in this category, namely AProVE [GAB+17], Ultimate [CHL+18],
VeryMax [BBL+17], and also LoAT [FG19].

Configurations of our tool. Recall that our algorithm is parameterized by the
template size for predicate functions and the maximal polynomial degree. Also, it
performs two checks which can be run sequentially or in parallel. Thus a configuration of
RevTerm is defined by (a) the choice of whether we are running Check 1 or Check 2, (b)
the template size (c, d) for predicate functions and the maximal polynomial degree D,
and (c) the choice of an SMT-solver. Our aim is to compare our algorithm to other
existing approaches to non-termination proving and demonstrate generality of its relative
completeness guarantees, rather than develop an optimized tool. Hence we test each
configuration separately and count the total number of benchmarks that were proved
to be non-terminating by at least one of the configurations. We consider configurations
for both checks, each of the three SMT-solvers, and all template sizes in the set
{(c, d, D) | 1 ≤ c ≤ 5, 1 ≤ d ≤ 5, 1 ≤ D ≤ 2}.

Experimental results. Our experiments were run on two platforms, and we include
the results for each of them in separate tables. The first platform is Debian, 128 GB
RAM, Intel(R) Xeon(R) CPU E5-1650 v3 @ 3.50GHz, 12 Threads. The experimental

131

5. Non-termination Analysis in Programs

Table 5.2: Experimental results with evaluation performed on StarExec [SST14]. The
meaning of data is the same as in Table 5.1.

RevTerm LoAT AProVE Ultimate VeryMax
NO 103 96 99 97 102
YES 0 0 216 209 212

MAYBE 232 239 20 29 21
Unique NO 2 1 0 0 0
Avg. time 1.8s 2.6s 4.2s 7.4s 3.8s
Std. dev. 6.6s 0.9s 4.1s 4.9s 7.4s

Avg. time NO 1.8s 2.6s 5.0s 7.0s 10.8s
Std. dev. NO 6.6s 0.9s 3.9s 7.1s 9.5s

results are presented in Table 5.1 and the timeout for each experiment was 60s. We
could not install the dependencies for AProVE on the first platform and LoAT does
not support the input format of benchmarks, so we also evaluate all tools except for
LoAT on StarExec [SST14] which is a platform on which TermComp‘19 was run. We
take the results of the evaluation of LoAT on StarExec from [FG19] which coupled it
with AProVE for conversion of benchmarks to the right input format. Note however
that the solver Barcelogic 1.2 is not compatible with StarExec so the number of non-
terminations RevTerm proves is smaller compared to Table 5.1. The experimental results
are presented in Table 5.2, and the timeout for each experiment was 60s. The timeout
in both cases is on wallclock time and was chosen to match that in [FG19]. We note
that in TermComp‘19 the timeout was 300s and Ultimate proved 100 non-terminations,
whereas AProVE and VeryMax proved the same number of non-terminations as in
Table 5.2.

From Tables 5.1 and 5.2 we can see that RevTerm outperforms other tools in terms of
the number of proved non-terminations. The average time for RevTerm is computed by
taking the fastest successful configuration on each benchmark, so the times indicate that
running multiple configurations in parallel would outperform the state-of-the-art. Since
AProVE, Ultimate and VeryMax attempt to prove either termination or non-termination
of programs, we include both their average times for all solved benchmarks and for
non-termination proofs only.

Performance by configuration. We now discuss the performance of each configura-
tion based on whether it runs Check 1 or Check 2 and based on which SMT-solver it uses.
For the purpose of this comparison we only consider evaluation on the first platform
which supports Barcelogic 1.2. Comparison of configurations in terms of the total
number of solved benchmarks is presented in Table 5.3. We make two observations:

132

5.6. Experiments

Table 5.3: Comparison of configurations based on which check they run and the
SMT-solver used.

Barcelogic MathSAT5 Z3 Total
1.2

Check 1 84 98 80 103
Check 2 69 54 63 74

Total 96 98 82 107

Table 5.4: Comparison of configurations based on the template size for predicate
functions. A cell in the table corresponding to (C = i, D = j) contains the number of
benchmarks that were proved to be non-terminating by a configuration using template
size (c, d) with c ≤ i and d ≤ j.

D = 1 D = 2 D = 3 D = 4 D = 5
C = 1 58 76 77 78 78
C = 2 90 97 97 97 97
C = 3 102 107 107 107 107
C = 4 103 107 107 107 107
C = 5 103 107 107 107 107

• Configurations using Check 1 prove 103 out of 112 non-terminations, which
matches the performance of all other tools. This means that the relative com-
pleteness guarantees provided by our approach are quite general.

• Even though some SMT-solvers perform well and solve many benchmarks, none of
them reaches the number 107. This means that our performance is dependent on
the solver choice and designing a successful tool would possibly require multiple
solvers. For example, from our results we observed that MathSAT5 performs
particularly well for Check 1 with templates of small size (c, d ∈ {1, 2}), while
Barcelogic 1.2 is best suited for templates of larger size (with c ≥ 3) and for
Check 2. While this could be seen as a limitation of our approach, it also implies
that our algorithm would become even more effective with the improvement of
SMT-solvers.

Finally, in Table 5.4 we present a comparison of configurations based on the template
sizes for predicate functions. A key observation here is that for any benchmark that
RevTerm proved to be non-terminating, it was sufficient to use a template for predicate
functions with c ≤ 3, d ≤ 2 and D ≤ 2. This implies that with a smart choice of
configurations, it suffices to run a relatively small number of configurations which if
run in parallel would result in a tool highly competitive with the state-of-the-art.

133

5. Non-termination Analysis in Programs

5.7 Related Work
In what follows, we present a more detailed comparison to existing methods for non-
termination proving in non-probabilistic programs.

A large number of techniques for proving non-termination consider lasso-shaped pro-
grams, which consist of a finite prefix (or stem) followed by a single loop without
branching [GHM+08, LH18]. Such techniques are suitable for being combined with
termination provers [HLNR10]. Many modern termination provers repeatedly generate
traces which are then used to refine the termination argument in the form of a ranking
function, either by employing safety provers [CPR06] or by checking emptiness of
automata [HHP14]. When refinement is not possible, a trace is treated like a lasso
program and the prover would try to prove non-termination. However, lassos are
not sufficient to detect aperiodic non-termination, whereas our approach handles it.
Moreover, programs with nested loops typically contain infinitely many lassos which may
lead to divergence, and such methods do not provide relative completeness guarantees.

TNT [GHM+08] proves non-termination by exhaustively searching for candidate lassos.
For each lasso, it searches for a recurrence set (see Section 5.4) and this search is done
via constraint solving. The method does not support non-determinism.

Closed recurrence sets (see Section 5.4) are a stronger notion than the recurrence sets,
suited for proving non-termination of non-deterministic programs. The method for
computing closed recurrent sets in [CCF+14] was implemented in T2 and it uses a
safety prover to eliminate terminating paths iteratively until it finds a program under-
approximation and a closed recurrence set in it. The method can detect aperiodic
non-termination. However it is likely to diverge in the presence of many loops, as noted
in [LNO+14].

The method in [LNO+14] was implemented in VeryMax [BBL+17] and it searches for
witnesses to non-termination in the form of quasi-invariants, which are sets of states
that cannot be left once they are entered. Their method searches for a quasi-invariant in
each strongly-connected subgraph of the program by using Max-SMT solving. Whenever
a quasi-invariant is found, safety prover is used to check its reachability. The method
relies on multiple calls to a safety prover and does not provide relative completeness
guarantees.

AProVE [GAB+17] proves non-termination of Java programs [BSOG11] with non-
determinism. It uses constraint solving to find a recurrence set in a given loop, upon
which it checks reachability of the loop. The key limitation of this approach is that for
programs with nested loops for which the loop condition is not a loop invariant, it can
only detect recurrence sets with a single variable valuation at the loop head.

An orthogonal approach to recurrence sets was presented in [LH18]. It considers lasso-

134

5.7. Related Work

shaped programs with linear arithmetic and represents infinite runs as geometric series.
Their method provides relative completeness guarantees for the case of deterministic
lasso-shaped programs. It also supports non-determinism, but does not provide relative
completeness guarantees. The method has been implemented as a non-termination
prover for lasso traces in Ultimate [CHL+18].

The method in [UGK16] tries to prove either termination or non-termination of programs
with non-determinism by making multiple calls to a safety prover. For each loop, a
termination argument is incrementally refined by using a safety prover to sample a
terminating trace that violates the argument. Once such terminating traces cannot be
found, a safety prover is again used to check the existence of non-terminating traces in
the loop.

The work of [GSV08] considers deterministic programs with linear integer arithmetic.
They present a constraint solving-based method for finding the weakest liberal precon-
dition (w.l.p.) of a fixed predicate function template. They then propose a method
for proving non-termination which computes the w.l.p. for the postcondition "false",
and then checks if it contains some initial state. While this approach is somewhat
similar to Check 1, encoding and solving the weakest precondition constraints of a
given template is computationally expensive and unnecessary for the purpose of proving
non-termination. In Check 1, we do not impose such a strict condition. Moreover,
initial diverging states are not sufficient to prove non-termination of non-deterministic
programs. It is not immediately clear how one could use w.l.p. calculus to find a
diverging state within a loop, like in Example 5.5.3.

The tool Invel [VR08] proves non-termination of Java programs using constraint solving
and heuristics to search for recurrence sets. It only supports deterministic programs.
In [LQC15] a Hoare-style approach is developed to infer sufficient preconditions for
terminating and non-terminating behavior of programs. As the paper itself mentions,
the approach is not suitable for programs with non-determinism.

While all of the methods discussed above are restricted to programs with linear arithmetic,
the following two methods also consider non-linear programs.

The tool Anant [CFNO14] proves non-termination of programs with non-linear arithmetic
and heap-based operations. They define live abstractions, which over-approximate a
program’s transition relation while keeping it sound for proving non-termination. Their
method then over-approximates non-linear assignments and heap-based commands
with non-deterministic linear assignments using heuristics to obtain a live abstraction
with only linear arithmetic. An approach similar to [GHM+08] but supporting non-
determinism is then used, to exhaustively search for lasso traces and check if they are
non-terminating. The over-approximation heuristic they present is compatible with our
approach and could be used to extend our method to support operations on the heap.

135

5. Non-termination Analysis in Programs

LoAT [FG19] proves non-termination of integer programs by using loop acceleration. If
a loop cannot be proved to be non-terminating, the method tries to accelerate it in
order to find paths to other potentially non-terminating loops.

136

5.7. Related Work

ℓ0 ℓout

ℓ1

ℓ2

ℓ3
ℓ4

ℓ5

ℓ6

ℓ7

ℓ8ℓ9

(b! = 0 ∨ n ≥ 100) ∧ In,u,b

n′ = n − 1 ∧ Iu,b

u = 1 ∧ In,b

u ≤ −1 ∧ In,u,b

u = 0 ∧ In,u,b

u ≥ 1 ∧ In,u,b

b = 1 ∧ In,u

b = 0 ∧ In,u

b = −1 ∧ In,u

(b = 0 ∧ x ≤ 99) ∧ In,u,b

(b ≥ 1 ∧ x = 100) ∧ In,u,b

In,u,b

(x! = 100 ∨ b ≤ 0) ∧ In,u,b

In,u,b

Figure 5.5: Reversed transition system of the program in Fig. 5.3 with the resolution
of non-determinism that assigns the constant expression 1 to the non-deterministic
assignment of the variable u. For readability, we use In,u,b to denote n′ = n ∧ u′ =
u ∧ b′ = b, Iu,b to denote u′ = u ∧ b′ = b, etc.

137

CHAPTER 6
Learning-based Stochastic Control

with Almost-sure Reachability

This section is based on the following publications:

• Mathias Lechner∗, Ðorđe Žikelić∗, Krishnendu Chatterjee, Thomas A. Henzinger.
Stability Verification in Stochastic Control Systems via Neural Network Super-
martingales. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI
2022

• Ðorđe Žikelić∗, Mathias Lechner∗, Krishnendu Chatterjee, Thomas A. Henzinger.
Learning Stabilizing Policies in Stochastic Control Systems. In ICLR 2022 Work-
shop on Socially Responsible Machine Learning, SRML 2022

6.1 Introduction
Stochastic control with qualitative reachability guarantees. We now proceed
to studying formal controller synthesis in discrete-time stochastic dynamical systems.
Recall, given a stochastic dynamical system and a specification, the goal of formal
controller synthesis is to compute a controller (or a control policy) under which the
system is guaranteed to satisfy the specification. In this chapter, we study formal
controller synthesis in stochastic dynamical systems with probability 1 (a.k.a. almost-
sure) reachability guarantees. To the best of our knowledge, we present the first
framework for learning neural control policies in stochastic dynamical systems with

∗Equal contribution.

139

6. Learning-based Stochastic Control with Almost-sure Reachability

formal almost-sure reachability guarantees. Our framework also yields a method for
formally verifying almost-sure reachability under neural network control policies in
stochastic dynamical systems. In order to motivate the necessity of learning-based
control methods that provide formal guarantees and thus explain the significance of
our contributions in this chapter, we start by overviewing existing approaches to formal
controller synthesis in dynamical systems and explaining their limitations. A detailed
survey of related work is presented in Section 6.6.

Prior approaches to formal controller synthesis. Discrete-time dynamical systems,
be it deterministic or stochastic, are defined by a dynamics function over a continuous
state space which defines how the system evolves over time under a control policy.
Formal controller synthesis in dynamical systems is typically achieved by synthesizing
a control policy together with a certificate function which formally proves that the
desired specification is satisfied. For instance, Lyapunov functions [HC11] are standard
certificate functions for reachability and stability and control barrier functions [ACE+19]
are standard certificate functions for safety in deterministic dynamical systems. Classical
methods for formal controller synthesis either use hand-crafted certificate functions and
are thus only semi-automated, or consider polynomial systems and utilize semidefinite
programming (SDP) to synthesize polynomial policies and certificate functions [HG05,
Par00, GK01, JWFT+03]. However, dynamical systems appearing in practice are often
not polynomial. To alleviate this problem, classical methods consider polynomial
approximations of system dynamics, but this introduces approximation error that
accumulates over time and allows only finite and typically short time horizon guarantees.
Another approach is to first construct a finite-state abstraction of the dynamical system,
solve the control task for this finite-state abstraction and project the resulting controller
back to the original continuous system. Notable examples of such approaches for
stochastic dynamical systems include [SGA15, LKSZ20, CA19, VGO19]. However,
due to the approximation error being accumulated over time, these methods provide
guarantees only over a finite and a priori fixed time horizon. Recently, a few abstraction-
based controller synthesis methods for infinite-time horizon stochastic dynamical systems
with affine dynamics [HS21], control affine dynamics [DHC22] or in which control input
space is finite [MMSS24, DHC22] have been proposed. However, to the best of our
knowledge, no existing method can handle formal controller synthesis in infin ite-time
horizon non-polynomial stochastic dynamical systems with continuous control inputs.

Learning-based control. Learning-based methods and in particular reinforcement
learning (RL) provide a promising approach to solving highly nonlinear control problems
without imposing restrictions on the time horizon, thus overcoming the limitations
discussed above. However, most RL algorithms only focus on learning a policy that
maximizes the expectation of some reward function [SB18] and do not take other

140

6.1. Introduction

Learner Verifier

Policy and certificate candidate

Counterexample set

Figure 6.1: The learner-verifier loop, figure taken from [CHLZ23, Figure 1].

constraints into account. The safe RL paradigm considers constrained Markov decision
processes (cMDPs) [Alt99, Gei06, AHTA17, CNDG18] which are equipped with both a
reward and a cost function. Solving cMDPs consists of optimizing the expected reward
while satisfying some expected cost constraint. However, the existing safe RL methods
only aim to satisfy the cost constraint in expectation and furthermore they do not
provide formal guarantees. This raises concerns about the suitability of RL methods for
safety-critical applications such as autonomous vehicles or healthcare. A fundamental
challenge for the deployment of policies learned via RL algorithms in safety-critical
applications is certifying their safety and correctness [GF15, AOS+16]. A recent trend
in formal controller synthesis for deterministic dynamical systems is to learn and verify
a neural network control policy, together with a neural network certificate function
that formally proves the specification of interest. In particular, methods that jointly
learn and verify a neural control policy and a neural certificate function have been
proposed in [RBK18, CRG19, AAGP21] for reachability and stability and in [PAA21]
for safety in discrete- and continuous-time deterministic dynamical systems. However,
while these works make significant contributions towards setting the foundations of
learning-based formal controller synthesis in deterministic dynamical systems, their
methods do not extended to the setting of stochastic dynamical systems (reasons
impeding their extension to stochastic dynamical systems are discussed below). Prior
to the work in this thesis, no learning-based formal controller synthesis framework for
stochastic dynamical systems has been proposed.

Our approach – learning and verification of neural supermartingales. In this
chapter, we present the first formal controller synthesis method that learns neural
controllers for stochastic dynamical systems with almost-sure reachability guarantees.
Our method jointly learns a control policy and a ranking supermartingale that formally
certifies almost-sure reachability of some target set of states, both parametrized as
neural network functions mapping system states to real numbers. Recall, ranking
supermartingales (RSMs) [CS13] were introduced for almost-sure termination and
reachability analysis in PPs. An RSM for some target region is a nonnegative function

141

6. Learning-based Stochastic Control with Almost-sure Reachability

that decreases in expectation by at least ε > 0 after every one-step evolution of the
system and in each state that is not in the target region. We prove that RSMs can also
be used to define almost-sure reachability certificates for stochastic control problems.

At the core of our approach is the learner-verifier framework, which proceeds in the
counterexample guided invariant synthesis (CEGIS) fashion [STB+06] and draws insights
from the learner-verifier framework for deterministic dynamical systems first proposed
in [CRG19]. The framework consists of two modules: the learner which learns a control
policy and an RSM candidate in the form of neural networks, and the verifier which
then formally verifies correctness of the learned RSM candidate. If the verification step
succeeds, the method outputs the control policy and the RSM which formally proves
almost-sure reachability. Otherwise, if the verification step fails, a set of counterexamples
showing that the candidate is not a valid RSM is computed, which are then used by
the learner to fine-tune the candidate. This learner-verifier loop is repeated until the
learned control policy and the RSM candidate are successfully verified or until a timeout
is reached. See Fig. 6.1 for an illustration of the learner-verifier loop. Our framework
is applicable to stochastic dynamical systems defined over compact (i.e. closed and
bounded) state spaces with general continuous dynamics and with continuous control
input spaces (note that every continuous function defined over a compact domain
is also Lipschitz continuous). Thus, it handles infinite-time horizon non-polynomial
stochastic dynamical systems with continuous control inputs, as desired.

Key challenge - verification of the expected decrease condition. One of the
key algorithmic challenges in designing the verifier module, compared to the case
of deterministic dynamical systems, is that we need to verify the expected decrease
condition of RSMs which requires being able to compute the expected value of a
neural network function over a probability distribution. Note, sampling cannot be used
for this task since it only allows computing statistical bounds. On the other hand,
the verification step of existing learner-verifier methods for deterministic dynamical
systems [CRG19, AAGP21, PAA21] proceeds by reduction to a decision procedure and
invoking an off-the-shelf solver. In our case, that would require being able to compute
a closed-form expression of the expected value of a neural network function over a
probability distribution. However, it is not clear how this closed-form expression can be
computed or if it exists at all in the general case. To solve this challenge, we propose
a method for efficiently computing formal and tight bounds on the expected value of
an arbitrary neural network function over a probability distribution. The verifier then
formally verifies the expected decrease condition by discretizing the state space and
formally verifying a slightly stricter condition at the discretization vertices. By carefully
choosing the mesh of the discretization and computing an additional error term, we
obtain a sound verification procedure applicable to general Lipschitz continuous systems.

142

6.1. Introduction

The choice of RSMs and reachability time. RSMs can intuitively be viewed as
a stochastic extension of Lyapunov functions for reachability and stability analysis in
deterministic dynamical systems [Kha02]. However, prior theoretical work on reachability
and stability analysis in stochastic dynamical systems has proposed several different
extensions of Lyapunov functions (see [Kus14] for a survey). There are two key
advantages of using RSMs instead of other stochastic extensions of Lyapunov functions.
First, we show that the defining properties of RSMs are much easier to encode within a
learning framework. Second, we show that RSMs also provide bounds on the reachability
time, which stochastic Lyapunov functions do not. Ensuring that reachability happens
within some tolerable time limit can also be important. For instance, consider the
scenario of a self-driving car where we wish to train a policy which decreases its speed
whenever the speed exceeds the allowed speed limit. If the self-driving car drives at a
very high speed, it is not sufficient to only ensure that the speed eventually reaches
the allowed speed limit. A good speed stabilizing policy additionally needs to provide
plausible guarantees on the speed stabilization time. One of the key benefits of using
RSMs is that we show that they provide such guarantees.

Verification procedure for Lipschitz continuous policies. We show that our
framework also yields a method for formally verifying almost-sure reachability under a
given control policy, by simply fixing the control policy in the learner-verifier loop and
only learning and verifying the RSM. Our method only assumes that the given control
policy is Lipschitz continuous. This allows for neural network control policies with all
standard activation functions since they are known to be Lipschitz continuous [SZS+14].

Contributions. Our contributions in this chapter can be summarized as follows:

1. We show that ranking supermartingales (RSMs) provide a formal certificate for
almost-sure reachability in stochastic dynamical systems, as well as guarantees
on the reachability time.

2. We present a learner-verifier framework for jointly learning a control policy and
an RSM which formally proves almost-sure reachability, both parametrized as
neural networks. Our method is applicable to stochastic dynamical systems with
compact state space and (Lipschitz) continuous dynamics function.

3. By fixing a control policy and only learning and verifying the RSM, our framework
also yields a method for formal verification of almost-sure reachability under a
given Liphscitz continuous control policy.

4. As a part of our verification procedure, we present a method for efficiently
computing formal bounds on the expected value of a neural network function

143

6. Learning-based Stochastic Control with Almost-sure Reachability

over a probability distribution. We are not aware of any existing works that tackle
this problem and believe that this contribution may be of independent interest
for neural network analysis.

5. We empirically validate our approach and show that it successfully learns and
verifies neural network control policies for ensuring almost-sure reachability in
stochastic dynamical systems

This chapter is based on [LZCH22], which introduced our learner-verifier framework
for formal controller synthesis and verification in stochastic dynamical systems. The
presentation in [LZCH22] focused more on formal controller verification whereas here we
adapt the presentation to focus on formal controller synthesis. Additional experiments
on formal controller synthesis and the practical study of neural network initialization
were presented in [ZLCH22], which we also include in this chapter.

Almost-sure reachability and stability. We note that our method is also applicable
to formal controller synthesis and verification with almost-sure asymptotic stability
guarantees, assuming that the stabilizing set is closed under system dynamics. Stability
is one of the most important specifications appearing in control tasks [Lya92]. Given a
stochastic dynamical system and a stabilizing set Xs, we say that Xs is almost-sure
asymptotically stable under a control policy if the system reaches and eventually stays
within Xs with probability 1. The closedness under system dynamics assumption imposes
that the stabilizing set Xs cannot be left once entered. Hence, under this assumption,
the almost-sure asymptotic stability specification reduces to the almost-sure reachability
specification. Assuming the closedness under system dynamics of the stabilization set is
a reasonable and a realistic choice, due to dynamical systems typically expressing weak
dynamics around the systems’ stable points. Formal controller synthesis with stability
guarantees under the closedness under system dynamics assumption has been the
focus of the existing learning-based formal control methods for deterministic dynamical
systems [BTSK17, RBK18, CRG19], and the work [LZCH22] on which this chapter
is based has also focused on this problem for stochastic dynamical systems, with the
reduction to reachability discussed in [LZCH22, Preliminaries]. However, since this
thesis focuses on reachability and safety specifications, we adapt the presentation
of [LZCH22] to consider almost-sure reachability.

Chapter organization. The rest of this chapter is organized as follows. We formally
define the problem considered in this chapter in Section 6.2. In Section 6.3, we present
our theoretical results and show that RSMs can be used as a formal certificate function
for almost-sure reachability in stochastic dynamical systems. In Section 6.4, we present
our learner-verifier framework for stochastic dynamical systems. In Section 6.5 we
present our experimental results. We survey related work in Section 6.6. Finally,

144

6.2. Problem Statement

Section 6.7 contains full proofs of results presented in earlier sections that are deferred
to this section in order to enhance readability.

6.2 Problem Statement
We consider a discrete-time stochastic dynamical system

xt+1 = f(xt, ut, ωt), t ∈ N0,

defined by a dynamics function f : X × U ×N → X as in Section 2.3. We use d to
denote the probability distribution over the stochastic disturbance space N from which
the stochastic disturbance vector ωt is sampled at each time step.

Problem statement. We consider the qualitative reachability analysis problem in
stochastic dynamical systems. Let Xt ⊆ X be a Borel-measurable target set and

Reach(Xt) =
{︃

(xt, ut, ωt)t∈N0 | ∃t ∈ N0. xt ∈ Xt

}︃
be the set of all trajectories of the system that reach the target set Xt. Our goal is to
synthesize a control policy π such that, for every initial state x0 ∈ X , we have

Pπ
x0

[︃
Reach(Xt)

]︃
= 1.

Assumptions. Reachability analysis in stochastic dynamical systems would be impos-
sible without additional assumptions on the system, so that the model is sufficiently
well-behaved. To that end, as in Section 2.3, we assume that X , U and N are all
Borel-measurable for the system semantics to be well-defined. We also assume that
X ⊆ Rm is compact (i.e. closed and bounded) in the Euclidean topology of Rm. The
dynamics function f is assumed to be continuous, which is a common assumption in
control theory, including the existing works on learning-based formal controller synthesis
with stability guarantees in deterministic dynamical systems [RBK18, CRG19]. Note
that every continuous function defined over a compact state space is also Lipschitz
continuous. Finally, we assume that d has bounded support or that it is a product of
independent univariate probability distributions, which is needed for efficient sampling
and expected value computation.

6.3 Theoretical Results
We now present a theoretical framework for formally verifying almost-sure reachability
in discrete-time stochastic dynamical system. Our framework is based on ranking

145

6. Learning-based Stochastic Control with Almost-sure Reachability

supermartingales, which we recall and formally define in the setting of stochastic
dynamical systems below. In what follows, we assume that a control policy π is fixed.
In Section 6.4 we will then present our algorithm for learning and verifying a control
policy together with a ranking supermartingale.

Ranking supermartingales Consider a discrete-time stochastic dynamical system
defined by a dynamics function f , a policy π and a probability distribution d with
model assumptions as in the previous section, and let Xt ⊆ X . Intuitively, a ranking
supermartingale (RSM) for Xt is a nonnegative continuous function whose value at
each state in X\Xt decreases in expectation by at least ε > 0 (is ε-ranked) after a
one-step evolution of the system under the policy π, where the expected value is taken
with respect to the probability distribution d over disturbance vectors. RSMs were first
introduced in [CS13] for the termination analysis of PPs, and we adapt them to the
setting of stochastic dynamical systems below.

Defintion 6.3.1. A continuous function V : X → R is said to be a ranking super-
martingale (RSM) for Xt, if V (x) ≥ 0 holds for any x ∈ X and if there exists ε > 0
such that

Eω∼d

[︃
V

(︃
f(x, π(x), ω)

)︃]︃
≤ V (x)− ε (6.1)

holds for every x ∈ X\Xt.

We note that RSMs differ from the commonly considered stochastic Lyapunov functions
for discrete-time stochastic systems [Kus14], which require V to be continuous and to
satisfy the following conditions:

• Eω∼d[V (f(x, π(x), ω))] < V (x) for x ∈ X\Xt,

• V (x) > 0 for x ∈ X\Xt, and

• V (x) = 0 for x ∈ Xt.

The third condition would be quite restrictive if we tried to learn V in the form of a
neural network, which is our goal. Thus, one of the key benefits of considering RSMs
instead of stochastic Lyapunov functions is that we may replace the V (x) = 0 for
x ∈ Xt condition by a slightly stricter expected decrease condition that requires the
decrease by at least some ε > 0. Theorem 6.3.2 establishes that RSMs are indeed
sufficient to prove a.s. reachability.

Theorem 6.3.2. Let f : X × U × N → X be a continuous dynamics function,
π : X → U a continuous control policy and d a probability distribution over N . Let
Xt ⊆ X . Suppose that there exists an RSM V : X → R for Xt. Then, for every initial
state x0 ∈ X , we have Pπ

x0 [Reach(Xt)] = 1.

146

6.3. Theoretical Results

The main idea behind the proof of Theorem 6.3.2 is as follows. For each state x0 ∈ X ,
we consider the probability space of all trajectories that start in x0. We then show that
the RSM V for Xt gives rise to an instance of the mathematical notion of RSMs in this
probability space, and use results from probability theory on the convergence of RSMs
to conclude that Xt is reached almost-surely. The proof is presented in Section 6.7.2.

Bounds on the reachability time While formally verifying that the system reaches
the target set with probability 1 is very important for safety critical applications, a
practical concern is to ensure that reachability happens within some tolerable time
limit. Another important caveat of using RSMs for almost-sure reachability analysis in
stochastic dynamical systems is that they provide formal guarantees on the reachability
time. For a system trajectory (xt, ut, ωt)t∈N0 , we define its reachability time TXt =
inf{t ∈ N0 | xt ∈ Xt} to be the first hitting time of the target set Xt (with TXs =∞ if
trajectory never reaches Xs). Given c > 0, the system has c-bounded differences if the
distance between any two consecutive system states with respect to the l1-norm does
not exceed c, i.e. for any x ∈ X and ω ∈ supp(d) we have ||f(x, π(x), ω)− x||1 ≤ c.

Theorem 6.3.3. Let f : X × U × N → X be a continuous dynamics function,
π : X → U a continuous control policy and d a probability distribution over N . Let
Xt ⊆ X . Suppose that there exists an ε-RSM V : X → R for Xt. Then, for any initial
state x0 ∈ X ,

1. Ex0 [TXt] ≤
V (x0)

ε
.

2. Px0 [TXt ≥ t] ≤ V (x0)
ε·t , for any time t ∈ N.

3. If the system has c-bounded differences for c > 0, then Px0 [TXt ≥ t] ≤ A ·
e−t·ε2/(2·(c+ε)2) for any time t ∈ N and A = eε·V (x0)/(c+ε)2 .

The proof of Theorem 6.3.3 can be found in Section 6.7.3 and here we present the
key ideas. The first part shows that the expected reachability time is bounded from
above by the initial value of V divided by ε. To prove it, we show that the reachability
time gives rise to a stopping time in the probability space of all trajectories that start
in x0. We then observe that the RSM V satisfies the expected decrease condition
until TXs is exceeded and use the results from probability theory on the convergence
of RSMs to conclude the bound on the expected value of this stopping time. The
second part shows a bound on the probability that the reachability time exceeds a
threshold t, and it follows immediately from the first part by an application of Markov’s
inequality. Note that this bound decays linearly in t, as t → ∞. Finally, the third
part shows an asymptotically tighter bound with the decay in t being exponential,
for systems that have c-bounded differences. The proof follows by an application of
Azuma’s inequality [Azu67].

147

6. Learning-based Stochastic Control with Almost-sure Reachability

6.4 Learner-verifier Framework
We now present our learner-verifier framework for formal controller synthesis with
almost-sure reachability guarantees by jointly learning and verifying a control policy
and an RSM. The framework consists of two modules which alternate within a loop:
the learner and the verifier. In each loop iteration, the learner first learns a control
policy πν and an RSM candidate Vθ in the form of neural networks, where ν and θ
are vectors of neural network parameters. The control policy and the RSM candidate
are then passed to the verifier, which checks whether Vθ is a valid RSM. If the answer
is positive, the verifier terminates the loop and concludes the target set of states is
reached almost-surely under the learned policy πν . Otherwise, the verifier computes a
set of counterexamples which show that the candidate is not an RSM and passes it
to the learner, which then proceeds with the next learning iteration. This process is
repeated until either a learned candidate is verified or a given timeout is reached.

In what follows, we consider a discrete-time stochastic dynamical system defined by
a dynamics function f and a probability distribution d with model assumptions as in
the previous sections, and a target set Xt ⊆ X . The rest of this section describes the
details behind our framework. The underlying algorithm is shown in Algorithm 6.1.

6.4.1 Initialization and Discretization
Policy initialization. Our algorithm initializes the neural network policy πν by using
proximal policy optimization (PPO) [SWD+17]. In order to be able to run PPO, the
algorithm induces an MDP from the system and defines a reward function r : X → [0, 1]
via r(x) := I[Xt](x). Our experimental results will show that a naive initialization
often does not allow learning a policy that ensures almost-sure reachability, thus proper
initialization is important. The importance of initialization was also observed in [CRG19].
Specifically, [CRG19] initialized their linear policy with the LQR solution of the system
linearized at the origin. However, it is not clear how one could linearize stochastic
dynamics with non-additive stochastic disturbance or systems that are highly non-linear,
whereas our initialization is applicable to general stochastic dynamical systems.

State space discretization. Recall, an RSM Vθ needs to satisfy the expected
decrease condition in eq. (6.1) at each state in X\Xt. However, one of the main
difficulties in verifying this condition when Vθ has a neural network form is that it is
not clear how to compute a closed form for the expected value of Vθ at a successor
system state. In order to be able to verify neural network RSM candidates, our method
discretizes the state space and then verifies the expected decrease condition only at
the states in the discretization (which we will show to be possible due to f , πν and Vθ

all being Lipschitz continuous and X being compact). The discretization X̃ of X\Xt

148

6.4. Learner-verifier Framework

Algorithm 6.1: Algorithm for learning almost-sure reachability policies
input : Dynamics function f , disturbance distribution d, target set Xt ⊆ X ,

Lipschitz constant Lf , parameters τ > 0, N ∈ N, λ > 0
output : “Almost-sure reachability” or “Unknown”

1 X̃ ← discretization of X\Xt with mesh τ

2 for x in X̃ do
3 Dx ← N sampled successor states of x
4 end
5 while timeout not reached do
6 πν , Vθ ← trained policy and RSM candidate by minimizing the loss in

eq. (6.4)
7 Lπ, LV ← Lipschitz constants of πν and Vθ

8 K ← LV · (Lf · (Lπ + 1) + 1)
9 if ∃x ∈ X̃ s.t. Eω∼d[Vθ(f(x, πν(x), ω))] ≥ Vθ(x)− τ ·K then

10 Dx ← add N sampled successor states of x
11 end
12 else
13 return “Almost-sure reachability”
14 end
15 end
16 return Unknown

satisfies the property that, for each x ∈ X\Xt, there is x̃ ∈ X̃ with ||x − x̃||1 < τ ,
with τ an algorithm parameter that we call the mesh of X̃. Since X is compact and so
X\Xt is bounded, the discretization consists of finitely many states.

The method also initializes the collection of pairs D = {(x,Dx) | x ∈ X̃}, where
each Dx consists of N successor states of x obtained by independent sampling of
N successor states for each x ∈ X̃ . Here, N ∈ N is an algorithm parameter. The
collection D will be used to approximate expected values at successor states for each x
in X̃ in the loss function used by the learner.

6.4.2 Verifier
In order to motivate the form of the loss function used by the learner, we first describe
the verifier module of our algorithm. For a neural network Vθ to be an RSM as in
Definition 6.3.1, it needs to be (1) continuous, (2) nonnegative at each state, and
(3) to satisfy the expected decrease condition in eq. (6.1) for each state in X\Xt. Since
Vθ is a neural network we already know that it is a continuous function. Moreover,
since X is compact and V is continuous, the function V admits a finite global lower

149

6. Learning-based Stochastic Control with Almost-sure Reachability

bound −m ∈ R. Hence, if we verify that V satisfies the expected decrease condition,
we may consider the function V ′(x) = V (x) + m which is in addition nonnegative and
thus an RSM to conclude almost-sure reachability of Xt. Therefore, the verifier only
needs to check that Vθ satisfies the expected decrease condition in eq. (6.1) for each
state in X\Xt, from which it immediately follows that V ′θ is an RSM.

As explained above, checking this for each state in X\Xt is not feasible since we
cannot compute a closed form for the expected value of Vθ at a successor system state.
Instead, we show that it is sufficient to check a slightly stricter condition on states in
the discretization X̃ . Let Lf , Lπ and LV be the Lipschitz constants of f , the learned
control policy πν and the candidate RSM Vθ, respectively. We assume that the Lipschitz
constant for the dynamics function f is provided, and use the method of [SZS+14] to
compute the Lipschitz constant of neural networks πν and Vθ. Then define

K = LV · (Lf · (Lπ + 1) + 1). (6.2)

In order to verify that Vθ satisfies the expected decrease condition in eq. (6.1) for each
state in X\Xt, the verifier checks for each x in the discretization X̃ that

Eω∼d

[︃
Vθ

(︃
f(x, πν(x), ω)

)︃]︃
< Vθ(x)− τ ·K. (6.3)

If eq. (6.3) holds for each x ∈ X̃ , the verifier concludes almost-sure reachability of
Xt. Otherwise, if x ∈ X̃ for which eq. (6.3) does not hold is found, it is passed to the
learner by independently sampling N successor states of x which are added to Dx.

Theorem 6.4.1 establishes the correctness of Algorithm 6.1 by showing that it indeed
suffices to check eq. (6.3) for states in the discretization. The proof uses the fact that
f is Lipschitz continuous and that X is compact, and is provided in Section 6.7.4.

Theorem 6.4.1. Suppose that the verifier in Algorithm 6.1 verifies that Vθ satisfies
eq. (6.3) for each x ∈ X̃ . Let −m ∈ R be such that Vθ(x) ≥ −m for each x ∈ X .
Then, the function V ′θ (x) = Vθ(x) + m is an RSM for Xt. Hence, Xt is reached
almost-surely.

We remark that the cardinality of the discretization X̃ grows exponentially in the
dimension of the state space, which in turn implies an exponential complexity for each
verification step in our algorithm. This limitation is also present in related works on
stability analysis in deterministic dynamical systems [BTSK17]. A potential approach
to overcome the complexity bottleneck would be to discretize different dimensions and
regions of the state space with a heterogeneous instead of a uniform granularity. In our
implementation, we use one such optimization which locally refines the discretization grid
at counterexamples computed by the verifier, see [LZCH21b, Supplementary Material].

150

6.4. Learner-verifier Framework

Expected value computation What is left to be described is how our algorithm
computes the expected value in eq. (6.3) for a given state x ∈ X̃ . This is not trivial,
since Vθ is a neural network and so we do not have a closed form for the expected value.
However, we can bound the expected value via interval arithmetic abstract interpretation
(IAAI). In particular, let x ∈ X̃ be a throughout fixed state for which we want to bound
the expected value Eω∼d[Vθ(f(x, πν(x), ω))]. Our algorithm partitions the disturbance
space N ⊆ Rp into finitely many hyperrectangular cells cell(N) = {N1, . . . ,Nk}, with
k being the number of cells. We use maxvol = maxNi∈cell(N) vol(Ni) to denote the
maximal volume with respect to the Lebesgue measure over Rp of any cell in the
partition. The algorithm then bounds the expected value via

Eω∼d

[︃
Vθ

(︃
f(x, πν(x), ω)

)︃]︃
≤

∑︂
Ni∈cell(N)

maxvol · sup
ω∈Ni

F (ω)

where F (ω) = Vθ(f(x, πν(x), ω)). Each supremum is then bounded from above via
interval arithmetic by using the method of [GDS+18]. In particular, if the dependence of
f(x, πν(x), ω) on the stochastic disturbance ω is affine, then for each cell Ni ∈ cell(N)
we directly obtain a tight hyperrectangle {f(x, πν(x), ω) | ω ∈ Ni} of states and then
use the method of [GDS+18] to bound the supremum of Vθ over this hyperrectangle.
This is the case in all our benchmarks in experimental evaluation and we observed
that this method computes very tight bounds when the number of cells is sufficiently
large. Otherwise, if the dependence of f(x, πν(x), ω) on ω is not affine, our method
relies on an off-the-shelf tool to compute a hyperrectangular over-approximation of
the set {f(x, πν(x), ω) | ω ∈ Ni}. Note that maxvol is not finite in cases when N
is unbounded. In order to allow expected value computation for an unbounded N ,
we first apply the probability integral transform [Mur12] to each univariate probability
distribution in d. Recall, in our model assumptions we assumed that d is a product of
univariate distributions and our dynamics function f takes the most general form.

6.4.3 Learner
We now describe the learner module of our algorithm. A control policy and a candidate
RSM are learned as neural networks by minimizing the following loss function

L(ν, θ) = LRSM(ν, θ) + λ · LLipschitz(ν, θ). (6.4)

The first loss term LRSM(ν, θ) is defined via

LRSM(θ) = 1
|X̃ |

∑︂
x∈X̃

(︃
max

{︃ ∑︂
x′∈Dx

Vθ(x′)
|Dx|

− Vθ(x) + τ ·K, 0
}︃)︃

.

Intuitively, for x ∈ X̃ , the corresponding term in the sum incurs a loss whenever the
condition in eq. (6.3) is violated. Since the closed form for the expected value in

151

6. Learning-based Stochastic Control with Almost-sure Reachability

eq. (6.3) in terms of parameters θ cannot be computed, for each x ∈ X̃ we approximate
it as the mean of the values of Vθ at sampled successor states of x that the algorithm
stores in the set Dx.

The second loss term λ · LLipschitz(ν, θ) is the regularization term used to incentivize
that the Lipschitz constants Lπ and LV of πν and Vθ do not exceed some tolerable
threshold, and hence to enforce that τ ·K in eq. (6.3) is sufficiently small. The constant
λ is an algorithm parameter balancing the two loss terms, and we define

LLipschitz(θ) = max
{︃

LVθ
− δ

τ · (Lf · (Lπ + 1) + 1) , 0
}︃

.

Here, δ is the threshold parameter, and Lπ and Lθ are computed as in [SZS+14].

To conclude this section, we note that the loss function L(ν, θ) is nonnegative but
is not necessarily equal to 0 even if Vν,θ satisfies eq. (6.3) for each x ∈ X̃ and its
Lipschitz constant is below the allowed threshold. This is because L(ν, θ) depends on
samples in D which are used to approximate the expected values in eq. (6.3). However,
in Theorem 6.4.2 we show that the loss L(ν, θ)→ 0 almost-surely as we add samples
to the set Dx for each x ∈ X̃ , whenever Vθ satisfies eq. (6.3) for each x ∈ X̃ and the
Lipschitz constant Lπ and Lθ are below the allowed threshold. The claim follows from
the Strong Law of Large Numbers [Wil91, Section 12.10] and the proof can be found
in Section 6.7.5.

Theorem 6.4.2. Let M = minx∈X̃ |Dx|. If Vθ satisfies eq. (6.3) for each x ∈ X̃ and
if Lπ, LVθ

≤ δ/(τ · (Lf · (Lπ + 1) + 1)), then limM→∞ L(ν, θ) = 0 holds almost-surely.

6.4.4 Formal Verification of Almost-sure Reachability
While the presentation in this chapter has focused on the formal controller synthesis
problem under almost-sure reachability specifications, our approach can also be adapted
to the setting in which we want to verify that the target set Xt is reached almost-surely.
This can be done by simply freezing the parameters ν of the control policy and only
learning and verifying an RSM. To achieve this, we simply need to replace the loss
function in eq. (6.4) with

L(θ) = LRSM(θ) + λ · LLipschitz(θ).

The correctness of our algorithm proved in Theorem 6.4.1 then ensures that any learned
and verified RSM is valid. The method for formal verification only requires that the
control policy is Lipschitz continuous, which allows neural network policies with all
classical activation functions [SZS+14].

152

6.5. Experiments

Figure 6.2: Example of a deterministic and a stochastic dynamical system with the
dynamics function differing only in an additive stochastic noise term, illustrating the
difficulties of proving almost-sure reachability in stochastic dynamical systems. The
orange markers indicate the system state after 200 time steps.

Environment Iters. Mesh (τ)
2D system 4 0.002

Inverted pendulum 2 0.01

Table 6.1: Number of learner-verifier loop iterations and mesh of the discretization
used by the verifier.

6.5 Experiments
We validate our algorithm empirically on two RL benchmark environments. Our first
benchmark is a two-dimensional dynamical system of the form xt+1 = Axt +Bg(ut)+ω,
where ω is a disturbance vector sampled from a zero-mean triangular distribution. The
function g clips the control action to stay within the interval [−1, 1]. Our second
benchmark is the inverted pendulum problem [BCP+16]. Contrarily to the standard
inverted pendulum task, which has deterministic dynamics, we consider a more difficult
stochastic variant. The system has two state variables x1 and x2 which represent
the angle and the angular velocity of the pendulum. The objective of this task is to
balance the pendulum in an upright position through control actions in the form of a
torque that is applied to the pendulum. Our stochastic variant of the task applies a
zero-mean triangular noise to both state variables. Details on both benchmarks and on
our experimental setup can be found in [LZCH21b, Supplementary Material].

For each RL task, we consider the state space X = {x | ||x||1 ≤ 0.5} and initialize
a control policy comprised of two hidden layers with 128 ReLU units each by using
proximal policy optimization [SWD+17], while applying our Lipschitz regularization to

153

6. Learning-based Stochastic Control with Almost-sure Reachability

Figure 6.3: Learned RSM candidates after 1 and 2 iterations of our algorithm for the
stochastic inverted pendulum task. The candidate on the left violates the expected
decrease condition while the function of the right is a verified RSM.

Figure 6.4: Contour lines of the expected reachability time bounds obtained from the
RSM on the inverted pendulum task.

keep the Lipschitz constant of the policy within a reasonable bound. We then run our
learner-verifier framework to learn and verify a control policy for which the target set
Xt = {x | ||x||1 ≤ 0.2} is almost-surely reached. Our RSM neural networks consist of
one hidden layer with 128 ReLU units.

Example trajectories under the initialized policy for the first benchmark with the
deterministic (ω = 0) and stochastic dynamics are shown in Figure 6.2. The trajectories
of the deterministic system reach the origin, however this is not the case for the
stochastic system. This illustrates the intricacies of verifying almost-sure reachability in
stochastic dynamical systems.

Our method could successfully learn and verify a control policy and an RSM for both

154

6.6. Related Work

Figure 6.5: Comparison of our method for bounding the expected value of an RSM
neural network with the ground-truth expected value on 100 randomly sampled states
of the inverted pendulum environment.

systems, as shown in Table 6.1. For illustration, the final RSM neural network for the
inverted pendulum task is shown in Figure 6.3. We further computed the ε of the RSM
network according to Definition 6.3.1 for the inverted pendulum task to obtain the
reachability time bounds as outlined in Theorem 6.3.3. The resulting reachability time
bounds are shown in Figure 6.4.

We perform an additional experiment to study the effectiveness of our method for
computing bounds on the expected value a neural network. In particular, we sample
100 random states of the inverted pendulum environment. For each sampled state, we
use our method to compute the bound on the expected value of the final RSM neural
network (shown in Figure 6.3) in a successor system state, with different sizes of the
cell partition. We then compute the ground-truth of the expected value by averaging
the RSM value at 1000 independently sampled successor states (Strong Law of Large
Numbers). The results shown in Figure 6.5 indicate that, even with a modest size of
the cell partition, a tight bound can be obtained. As the partition is further refined,
the expected value bound converges to the ground-truth.

6.6 Related Work
Reachability and stability via Lyapunov functions. Formal controller synthesis
and verification under reachability and stability specifications in deterministic dynamical
systems has received a lot of attention in recent works. Classical methods compute a
control policy together with a Lyapunov function that formally certifies reachability and
stability. For systems with polynomial dynamics and Lyapunov functions restricted to
the sum-of-squares (SOS) form, polynomial control policy and Lyapunov function can be
computed via semi-definite programming [HG05, Par00, GK01, JWFT+03]. A learner-

155

6. Learning-based Stochastic Control with Almost-sure Reachability

verifier framework similar to ours but for computing polynomial Lyapunov functions has
been proposed in [RS19]. However, these methods require polynomial approximations
and may not be efficient for systems with general nonlinearities. Moreover, it is known
that even some simple dynamical systems that are asymptotically stable do not admit
polynomial Lyapunov functions [AKP11]. Learning control policies and Lyapunov
functions in the form of neural networks has been considered in [RBK18, CRG19,
AAGP21], and it is an approach that is better suited to dynamical systems with general
nonlinearities. In particular, [RBK18] formally verify stability by learning a Lyapunov
function together with a region which the system should reach and stabilize within
by first discretizing the state space of the system, then learning a Lyapunov function
candidate which tries to maximize the number of the discrete states at which the
Lyapunov condition holds, and finally verifying that the candidate is indeed a Lyapunov
function. The works [CRG19, AAGP21] propose a learner-verifier framework which uses
counterexamples found by the verifier to improve the loss function and thus learn a new
candidate. This loop is repeated until the verifier certifies that the Lyapunov function
is correct. Our method combines and extends ideas from these works to the setting of
stochastic dynamical systems. Note, while these methods consider stability, they all
assume that the stabilizing region (typically the origin) is closed under system dynamics
thus they essentially study reachability.

Computation of reachable sets under neural controllers. There are several works
and tools that consider deterministic continuous-time dynamical systems with neural
network controllers and compute an over-approximation of the set of all reachable
states over a given finite-time horizon. Some notable examples are Sherlock [DCS19],
ReachNN [HFL+19] and ReachNN∗ [FHC+20] which use polynomial approximations to
over-approximate the reachable set over a given time horizon, NNV [TYL+20] which
is based on abstract interpretation, LRT-NG [GCL+20] which overapproximates the
reachable set as sequence of hyperspheres, or Verisig [IWA+19] which reduces the
problem to reachability analysis in hybrid systems. Furthermore, GoTube [GLH+21]
constructs the reachable set of a deterministic continuous-time system with statistical
guarantees about the constructed set overapproximating the true reachable states.

Abstraction-based methods. Abstraction-based methods provide an approach to
formal controller synthesis in deterministic [Tab09] and stochastic [ADB11] dynamical
systems with respect to different specifications, including almost-sure reachability. For
stochastic dynamical systems, these methods construct a finite-state MDP or stochastic
game approximation of the problem and use probabilistic model checking for controller
synthesis. Most existing methods are applicable to finite-time horizon systems due to
accumulation of the approximation error [SGA15, LKSZ20, CA19, VGO19]. Recently,
a few abstraction-based controller synthesis methods for infinite-time horizon stochastic

156

6.6. Related Work

dynamical systems with affine dynamics [HS21], control affine dynamics [DHC22] or
stochastic dynamical systems with finite control input spaces [MMSS24, DHC22] have
been proposed. In this chapter, we consider infinite-time horizon and non-polynomial
stochastic dynamical systems with continuous control input spaces.

Other methods for stochastic dynamical systems. There are several other classes
of approaches to formal controller synthesis for finite-time horizon stochastic dynamical
systems with respect to reachability specifications. These include methods based on dy-
namic programming [APLS08] or Hamilton-Jacobi (HJ) reachability analysis [BCHT17].

Stability for stochastic dynamical systems. While there are several theoretical
results on the stability of stochastic dynamical systems (see [Kus14] for a comprehensive
survey), to our best knowledge there are very few works that consider their automated
stability verification without the reduction to reachability analysis [Vai15, CS03]. Both
of these are numerical approaches that first partition the system’s state space into
finitely many regions and then over-approximate the system’s continuous dynamics
via a discrete finite-state abstraction. Thus, the computed stability certificates are
piecewise-constant. Furthermore, [Vai15] verifies a weaker notion of stability called
“coarse stochastic stability” that depends on the partition of the state space, and [CS03]
imposes stability by requiring the system to reach the stabilizing region within some
pre-specified finite time and deterministically (i.e. for each sample path).

Safe exploration. RL algorithms need to explore the environment via randomized
actions to learn which actions lead to a high future reward. However, in safety-critical
environments, random actions may lead to catastrophic results. Safe exploration RL
aims to restrict the exploratory actions to those that ensure safety of the environment.
The most dominant approach to addressing this problem is learning the system dynamics’
uncertainty bounds and limiting the exploratory actions within a high probability safety
region. In the literature, Gaussian Processes [KBTK18, TBK19, Ber19], linearized
models [DDV+18] , deep robust regression [LSC+20], and Bayesian neural networks
[LZCH21a] are used to learn uncertainty bounds.

Learning stable dynamics. Learning dynamics from observation data is the first
step in many control methods as well as model-based RL. Recent works considered
learning deterministic system dynamics with guarantees on stability of some specified
region [KM19]. Learning stochastic dynamics from observation data has been studied
in [UH17, LLF+20].

RSMs for probabilistic programs. Finally, as has been extensively discussed in
this thesis, ranking supermartingales (RSMs) were first introduced in the programming

157

6. Learning-based Stochastic Control with Almost-sure Reachability

languages community in order to reason about termination of PPs [CS13]. Our
theoretical results instantiate RSMs to the setting of stochastic dynamical systems
and show that they provide a formal certificate for almost-sure reachability. While
our theoretical results are motivated by the works on PPs, our approach to their
computation differs significantly from the existing methods for RSM computation in
PPs [CS13, CFNH16, CFG16]. In particular, these methods compute linear/polynomial
RSMs via linear/semi-definite programming, and are more similar to the early methods
for the computation of polynomial Lyapunov functions that we discussed above. On the
contrary, our method learns an RSM in the form of a neural network. The only method
for learning RSMs in PPs has been presented in the recent work of [AGR21] which
computes neural network RSMs with a single hidden layer. In contrast, one of the main
algorithmic novelties of our work is that we propose a general framework for computing
the expected value of a neural network function over some probability distribution,
which allows us to learn multi-layer neural network RSMs for general nonlinear systems.

6.7 Technical Proofs
6.7.1 Further Background on Martingale Theory
Some of the proofs of results in this chapter assume the background on probability and
martingale theory presented in Sections 2.1 and 2.4. In addition, we need to recall the
mathematical notion of ranking supermartingales in probability spaces and two standard
result on them before proving some of the theorems.

Ranking supermartingale. We define the mathematical notion of ranking super-
martingales. Let (Ω,F ,P) be a probability space and let ε ≥ 0. Suppose that T is
a stopping time with respect to a filtration {Fi}∞i=0. An ε-ranking supermartingale
(ε-RSM) with respect to T is a stochastic process (Xi)∞i=0 such that

• Xi is Fi-measurable, for each i ≥ 0,

• Xi(ω) ≥ 0, for each i ≥ 0 and ω ∈ Ω, and

• E[Xi+1 | Fi](ω) ≤ Xi(ω)− ε · IT >i(ω), for each i ≥ 0 and ω ∈ Ω.

We now state two results on RSMs that we will use in our proofs. A variant of the first
result was presented in works on termination analysis of probabilistic programs [FH15,
CFNH16]. Since our variant slightly differs from the ones presented in those works, we
provide the proof for the sake of completeness (while previous variants consider the
special case of stopping times defined by the first time after which the value of an RSM
falls below some given threshold, our variant considers general stopping times).

158

6.7. Technical Proofs

Proposition 6.7.1. Let (Ω,F ,P) be a probability space, let (Fi)∞i=0 be a filtration and
let T be a stopping time with respect to (Fi)∞i=0. Suppose that (Xi)∞i=0 is an ε-RSM
with respect to T , for some ε > 0. Then

1. P[T <∞] = 1,

2. E[T] ≤ E[X0]
ε

, and

3. P[T ≥ t] ≤ E[X0]
ε·t , for each t ∈ N.

Proof. We first prove by induction on i that, for each i ∈ N,

E[Xi] ≤ E[X0]− ε ·
i−1∑︂
j=0

P[T > j]. (6.5)

The base case i = 1 follows immediately from the definition of an ε-RSM. We now
suppose that the claim is true for i, and we prove it for i + 1:

E[Xi+1] = E
[︃
E[Xi+1 | Fi]

]︃
≤ E[Xi]− ε · P[T > i]

≤ E[X0]− ε ·
i∑︂

j=0
P[T > i],

where the first inequality holds since (Xi)∞i=0 is an ε-RSM with respect to T , and the
second inequality holds by the induction hypothesis. Hence, the claim follows.

But we know that Xi(ω) ≥ 0 for each i, ω by the definition of an ε-RSM, hence by
plugging E[Xi] ≥ 0 into eq. (6.5) we conclude that 0 ≤ E[X0]− ε ·∑︁i−1

j=0 P[T > j] for
each i ∈ N, and thus

∞∑︂
j=0

P[T > j] ≤ E[X0]
ε

<∞.

It then follows that:

1. P[T =∞] = limt→∞ P[T > t] = 0, as ∑︁∞
j=0 P[T > j] converges,

2. E[T] = ∑︁∞
t=0 P[T > t] ≤ E[X0]

ε
, and

3. P[T ≥ t] ≤ E[T]
t
≤ E[X0]

ε·t , where the first inequality follows by Markov’s inequality.

Hence, the proposition claim follows.

159

6. Learning-based Stochastic Control with Almost-sure Reachability

The second is a classical result on supermartingales (and therefore RSMs) called Azuma’s
inequality [Azu67], that we will later use in proving the concentration bounds on the
reachability time.

Proposition 6.7.2 (Azuma’s inequality). Let (Ω,F ,P) be a probability space and let
(Fi)∞i=0 be a filtration. Suppose that (Xi)∞i=0 is a supermartingale with respect to (Fi)∞i=0,
and let (ci)∞i=0 be a sequence of positive real numbers such that |Xi+1(ω)−Xi(ω)| ≤ ci

for each i ≥ 0 and ω ∈ Ω. Then, for each n ∈ N and t > 0, we have that

P
[︃
Xn −X0 ≥ t

]︃
≤ e

−t2

2·
∑︁n−1

i=0 c2
i . (6.6)

6.7.2 Proof of Theorem 6.3.2
Theorem. Let f : X × U ×N → X be a continuous dynamics function, π : X → U
a continuous control policy and d a probability distribution over N . Let Xt ⊆ X .
Suppose that there exists an RSM V : X → R for Xt. Then, for every initial state
x0 ∈ X , we have Pπ

x0 [Reach(Xt)] = 1.

Proof. Recall from Section 2.3 that, for each initial state x0 ∈ X , the system dynamics
induces a Markov process which gives rise to the probability space over the set of
all system trajectories that start in the initial state x0. Denote this probability space
by (Ωx0 ,Fx0 ,Px0). The idea behind the proof is to show that any RSM for Xt gives
rise to a mathematical RSM in the probability space (Ωx0 ,Fx0 ,Px0). We then use
Proposition 6.7.1 to deduce a.s. reachability.
In order to formally show that an RSM can be instantiated as a mathematical object in
this probability space, we first need to define the canonical filtration in this probability
space. This will allow defining the reachability time as a stopping time with respect to
the canonical filtration, and finally instantiating the RSM in our stochastic dynamical
system as a mathematical RSM with respect to this stopping time. The rest of this
section formalizes the intuition behind the proofs that was outlined above.

Canonical filtration Fix an initial state x0 ∈ X and consider the probability space
(Ωx0 ,Fx0 ,Px0). For each i ∈ N0, define Fi ⊆ F to be the σ-algebra containing the
subsets of Ωx0 that, intuitively, contain all trajectories in Ωx0 whose first i states satisfy
some specified property. Formally, we define Fi as follows. For each j ∈ N0, let
Cj : Ωx0 → X be a map which to each trajectory ρ = (xt, ut, ωt)t∈N0 ∈ Ωx0 assigns
the j-th state xj along the trajectory. Then Fi is the smallest σ-algebra over Ωx0 with
respect to which C0, C1, . . . , Ci are all measurable, where X ⊆ Rm is equipped with
the induced Borel-σ-algebra [Wil91, Section 1]. Clearly F0 ⊆ F1 ⊆ We say that
the sequence of σ-algebras (Fi)∞i=0 is the canonical filtration in the probability space
(Ωx0 ,Fx0 ,Px0).

160

6.7. Technical Proofs

Reachability stopping time In order to formally reason about a.s. reachability and
the reachability time of the target set Xt, we formalize the notion of the reachability
stopping time. Define TXt : Ωx0 → N0 ∪ {∞} to be the first hitting time of the set Xt.
Since whether TXt(ρ) ≤ i depends solely on the first i states along ρ, we clearly have
{ρ ∈ Ωx0 | T (ρ) ≤ i} ∈ Fi for each i and so TXt is a stopping time with respect to
(Fi)∞i=0. We call TXt the reachability stopping time.

We now prove the theorem claim that Xt is reached almost-surely, i.e. that for every
initial state x0 ∈ X , we have Pπ

x0 [Reach(Xt)] = 1. Let x0 ∈ X . If x0 ∈ Xt, then
the claim trivially holds. Thus suppose without loss of generality that x0 ̸∈ Xt, and
consider the probability space (Ωx0 ,Fx0 ,Px0), the canonical filtration (Fi)∞i=0 and the
reachability stopping time TXt in it.

Now, we define a stochastic process (Xi)∞i=0 in (Ωx0 ,Fx0 ,Px0) via

Xi(ρ) =

⎧⎨⎩V (xi), if i < TXt(ρ)
V (xTXt (ρ)), otherwise

for each i ≥ 0 and ρ = (xt, ut, ωt)t∈N0 ∈ Ωx0 . Hence, if the stopping time TXt is not
exceeded by time i we define Xi to be equal to the value of V at the i-th state along
the trajectory, and after TXt is exceeded we define Xi to be equal to the value of V at
the time step TXt at which the process is stopped.

We claim that (Xi)∞i=0 is an ε-RSM with respect to the reachability stopping time TXt .
To prove this claim, we check each of the three defining properties of ε-RSMs:

• Each Xi is Fi-measurable. The value of Xi is defined in terms of the first i
states along a trajectory if TXt > i, and in terms of the first TXt states if i ≥ TXt .
By the definition of the canonical filtration, we have that Xi is Fi-measurable
for each i ≥ 0.

• Each Xi(ρ) ≥ 0. Since each Xi is defined in terms of V and since we know that
V (x) ≥ 0 for each state x ∈ X , it follows that Xi(ρ) ≥ 0 for each i ≥ 0 and
ρ ∈ Ωx0 .

• Each E[Xi+1 | Fi](ρ) ≤ Xi(ρ) − ε · ITXt >i(ρ). First, note that the conditional
expectation exists since Xi+1 is nonnegative for each i ≥ 0. In order to prove
the inequality, we distinguish two cases.
First, if TXt(ρ) > i, we need to show that E[Xi+1 | Fi](ρ) ≤ Xi(ρ) − ε.
Let ρ = (xt, ut, ωt)t∈N0 . We have that Xi(ρ) = V (xi). On the other hand,
we have E[Xi+1 | Fi](ρ) = Eω∼d[V (f(xi, π(xi), ω)]. To see this, observe
that Eω∼d[V (f(xi, π(xi), ω)] satisfies all the defining properties of conditional

161

6. Learning-based Stochastic Control with Almost-sure Reachability

expectation since it is the expected value of V at a subsequent state of xi, and
recall that conditional expectation is a.s. unique whenever it exists. We thus have

E[Xi+1 | Fi](ρ) = Eω∼d[V (f(xi, π(xi), ω)]
≤ V (xi)− ε = Xi(ρ)− ε,

where the inequality holds since V is an RSM for Xt and xi ̸∈ Xt (as TXt(ρ) > i).
This proves the claim.
Second, if TXt(ρ) ≤ i, we need to show that E[Xi+1 | Fi](ρ) ≤ Xi(ρ). Let ρ =
(xt, ut, ωt)t∈N0 . We have Xi(ρ) = V (xTXt (ρ)) and E[Xi+1 | Fi](ρ)] = V (xTXt (ρ)),
so the equality follows.

This concludes the proof that (Xi)∞i=0 is an ε-RSM with respect to TXt . Therefore, by
the first part of Proposition 1, we have that Px0 [TXt <∞] = 1 which by the definition
of the reachability stopping time implies Pπ

x0 [Reach(Xt)] = 1. Since the initial state x0
was arbitrary, the claim follows.

6.7.3 Proof of Theorem 6.3.3
Theorem. Let f : X × U ×N → X be a continuous dynamics function, π : X → U
a continuous control policy and d a probability distribution over N . Let Xt ⊆ X .
Suppose that there exists an ε-RSM V : X → R for Xt. Then, for any initial state
x0 ∈ X ,

1. Ex0 [TXt] ≤
V (x0)

ε
.

2. Px0 [TXt ≥ t] ≤ V (x0)
ε·t , for any time t ∈ N.

3. If the system has c-bounded differences for c > 0, then Px0 [TXt ≥ t] ≤ A ·
e−t·ε2/(2·(c+ε)2) for any time t ∈ N and A = eε·V (x0)/(c+ε)2 .

Proof. In the proof of Theorem 6.3.2 in Section 6.7.2, we showed that (Xi)∞i=0 is an
ε-RSM with respect to TXt . The first two parts of the theorem then follow from the
second and the third item of Proposition 6.7.1.

The proof of the third part of the theorem is similar to the argument in [CFNH16,
Section 5.1.2] which derives concentration bounds on the termination time in PPs. We
define another stochastic process (Yi)∞i=0 as follows:

Yi(ρ) = Xi(ρ) + ε ·min{i, TXt(ρ)}.

162

6.7. Technical Proofs

We claim that (Yi)∞i=0 is a supermartingale with respect to the canonical filtration
(Fi)∞i=0. By applying Azuma’s inequality to this newly constructed supermartingale, we
will then deduce the statement of the third item in the theorem.

To prove this claim, note that each Yi is Fi-measurable and nonnegativity clearly holds,
so we just need to check that E[Yi+1 | Fi](ρ) ≤ Yi(ρ) for each i ≥ 0 and ρ ∈ Ωx0 . To
prove this, observe that

E[Yi+1 | Fi](ρ) = E
[︃
Xi+1 + ε ·min{i + 1, TXt} | Fi

]︃
(ρ)

= E
[︃
Xi+1 | Fi

]︃
(ρ) + ε · E

[︃
min{i + 1, TXt} | Fi

]︃
(ρ)

≤ Xi(ρ)− ε · ITXt >i(ρ) + ε · E[min{i + 1, TXt} | Fi](ρ)

(6.7)

Now, we distinguish between two cases.

• If TXt(ρ) > i, then min{i + 1, TXt} = i + 1 and so E[min{i + 1, TXt} | Fi](ρ) =
i + 1. Then, continuing on the right-hand-side of eq. (6.7), we have

E[Yi+1 | Fi](ρ) = E
[︃
Xi+1 + ε ·min{i + 1, TXt} | Fi

]︃
(ρ)

≤ Xi(ρ)− ε · ITXt >i(ρ) + ε · E[min{i + 1, TXt} | Fi](ρ)
= Xi(ρ)− ε + ε · (i + 1)
= Xi(ρ)− ε · i = Yi(ρ)

• If TXt(ρ) ≤ i, then min{i + 1, TXt}(ρ) = TXt(ρ) = TXt(ρ) · ITXt≤i(ρ). But the
random variable TXt · ITXt≤i is Fi-measurable, so by the properties of conditional
expectation we have that E[TXt · ITXt≤i | Fi] = TXt · ITXt≤i. Plugging this back
into the right-hand-side of eq. (6.7), we have

E[Yi+1 | Fi](ρ) = E
[︃
Xi+1 + ε ·min{i + 1, TXt} | Fi

]︃
(ρ)

≤ Xi(ρ)− ε · ITXt >i(ρ) + ε · E[min{i + 1, TXt} | Fi](ρ)
= Xi(ρ)− 0 + ε · TXt(ρ) = Yi(ρ).

Hence, (Yi)∞i=0 is a supermartingale with respect to the canonical filtration (Fi)∞i=0.
Moreover, note that (Yi)∞i=0 has (c + ε)-bounded differences, as (Xi)∞i=0 has c-bounded
differneces.

163

6. Learning-based Stochastic Control with Almost-sure Reachability

Finally, the statement the third item of the theorem follows from the following sequence
of inequalities

Px0

[︃
TXt ≥ t

]︃
= Px0

[︃
Xt ≥ 0 ∧ TXt ≥ t

]︃
= Px0

[︃
Xt + ε ·min{t, TXt} −X0 ≥ ε ·min{t, TXt} −X0 ∧ TXt ≥ t

]︃
= Px0

[︃
Xt + ε ·min{t, TXt} −X0 ≥ ε · t−X0 ∧ TXt ≥ t

]︃
≤ Px0

[︃
Xt + ε ·min{t, TXt} −X0 ≥ ε · t−X0

]︃
= Px0

[︃
Yt − Y0 ≥ ε · t−X0

]︃

≤ e

−(ε·t−X0)2

2·
∑︁t−1

i=0 (c+ε)2 = e
−(ε·t−X0)2

2·t·(c+ε)2 = e
−ε2·t

2·(c+ε)2 · e
ε·X0

(c+ε)2 · e
−X2

0
2·t·(c+ε)2

= e
−ε2·t

2·(c+ε)2 · e
ε·V (x0)
(c+ε)2 · e

−V (x0)2

2·t·(c+ε)2 ≤ e
−ε2·t

2·(c+ε)2 · e
ε·V (x0)
(c+ε)2 · 1

= A · e−t· ε2
2·(c+ε)2

with A = eε·V (x0)/(c+ε)2 , where in sixth row we applied Azuma’s inequality to the
supermartingale (Yi)∞i=0 and in the ninth row we use e−V (x0)2/(2·t·(c+ε)2) ≤ 1.

6.7.4 Proof of Theorem 6.4.1
Theorem. Suppose that the verifier in Algorithm 6.1 verifies that Vθ satisfies eq. (6.3)
for each x ∈ X̃ . Let −m ∈ R be such that Vθ(x) ≥ −m for each x ∈ X . Then, the
function V ′θ (x) = Vθ(x) + m is an RSM for Xt. Hence, Xt is reached almost-surely.

Proof. The function V ′ is continuous since V is continuous. Moreover, V ′ is nonnegative
since V ′(x) = V (x) + m ≥ −m + m = 0 for each x ∈ X . Thus, we only need to show
that V ′ satisfies the expected decrease condition for each x ∈ X\Xt, i.e. that there
exists ε > 0 such that

Eω∼d

[︃
V

(︃
f(x, π(x), ω)

)︃]︃
≤ V (x)− ε

for each x ∈ X\Xt. We prove that ε > 0 defined via

ε = min
x∈X̃

(︃
V (x)− τ ·K − Eω∼d

[︃
V

(︃
f(x, π(x), ω)

)︃]︃)︃
satisfies the claim, where by theorem assumptions we know that ε is indeed strictly
positive. To show this, fix x ∈ X\Xt and let x̃ ∈ X̃ be such that ||x− x̃||1 ≤ τ . Such

164

6.7. Technical Proofs

x̃ exists by the definition of a discretization. Then, by Lipschitz continuity of f , π and
V , we have

Eω∼d

[︃
V

(︃
f(x, π(x), ω)

)︃]︃
≤ Eω∼d

[︃
V

(︃
f(x̃, π(x̃), ω)

)︃]︃
+ ||f(x̃, π(x̃), ω)− f(x, π(x), ω)||1 · LV

≤ Eω∼d

[︃
V

(︃
f(x̃, π(x̃), ω)

)︃]︃
+ ||(x̃, π(x̃), ω)− (x, π(x), ω)||1 · LV · Lf

≤ Eω∼d

[︃
V

(︃
f(x̃, π(x̃), ω)

)︃]︃
+ ||x̃− x||1 · LV · Lf · (1 + Lπ)

≤ Eω∼d

[︃
V

(︃
f(x̃, π(x̃), ω)

)︃]︃
+ τ · LV · Lf · (1 + Lπ),

(6.8)

where in the last row we used ||x− x̃||1 < τ . On the other hand, by Lipschitz continuity
of V we have

V (x) ≥ V (x̃) + ||x̃− x||1 · LV ≥ V (x̃)− τ · LV . (6.9)

Thus combining eq.(6.8) and (6.9) we get

V (x)− Eω∼d

[︃
V

(︃
f(x, π(x), ω)

)︃]︃
≥ V (x̃)− τ · LV − Eω∼d

[︃
V

(︃
f(x̃, π(x̃), ω)

)︃]︃
− τ · LV · Lf · (1 + Lπ)

= V (x̃)− τ ·K − Eω∼d

[︃
V

(︃
f(x̃, π(x̃), ω)

)︃]︃
≥ ε

(6.10)

where the equality in the second last row follows by the definition of K, and the
inequality in the last row follows by our choice of ε. This concludes the proof that
V ′ is an RSM for Xt. The claim that reached almost-surely Xt then follows from
Theorem 6.3.2.

6.7.5 Proof of Theorem 6.4.2
Theorem. Let M = minx∈X̃ |Dx|. If Vθ satisfies eq. (6.3) for each x ∈ X̃ and if
Lπ, LVθ

≤ δ/(τ · (Lf · (Lπ + 1) + 1)), then limM→∞ L(ν, θ) = 0 holds almost-surely.

Proof. Since LVθ
≤ δ/(τ · (Lf · (Lπ + 1) + 1)), we have that LLipschitz(θ) = 0. Thus,

L(θ) = LRSM(θ) = 1
|X̃ |

∑︂
x∈X̃

(︃
max

{︃ ∑︂
x′∈Dx

Vθ(x′)
|Dx|

− Vθ(x) + τ ·K, 0
}︃)︃

.

165

6. Learning-based Stochastic Control with Almost-sure Reachability

Hence, it suffices to prove that for each x ∈ X̃ we almost-surely have

lim
M→∞

max
{︃ ∑︂

x′∈Dx

Vθ(x′)
|Dx|

− Vθ(x) + τ ·K, 0
}︃

= 0.

To prove this, observe that {Vθ(x′) | x′ ∈ Dx} is a set of values of V in at least M
independently sampled successor states of x according to the distribution over the
successor states of x defined by the system dynamics and the probability distribution d
over disturbance vectors. Since X is compact and Vθ is continuous, the random value
defined by the value of V at a randomly sampled successor state of x is bounded, thus
has a well-defined and finite first moment.

The Strong Law of Large Numbers [Wil91, Section 12.10] states that, given a distribution
µ with a finite first moment and a sequence X1, X2, . . . of independent identically
distributed random variables distributed according to µ, we have that

lim
n→∞

X1 + · · ·+ Xn

n
= EX∼µ[X]

holds almost-surely. Applying the Strong Law of Large Numbers to {Vθ(x′) | x′ ∈ Dx}
we conclude that, almost-surely,

lim
M→∞

max
{︃ ∑︂

x′∈Dx

Vθ(x′)
|Dx|

− Vθ(x) + τ ·K, 0
}︃

= max
{︃

lim
M→∞

∑︂
x′∈Dx

Vθ(x′)
|Dx|

− Vθ(x) + τ ·K, 0
}︃

= max
{︃
Eω∼d

[︃
V

(︃
f(x, π(x), ω)

)︃]︃
− Vθ(x) + τ ·K, 0

}︃
= 0,

where the first equality holds since limits may be interchanged with the maximum
function over finitely many arguments, the second equality holds almost-surely by the
Strong Law of Large Numbers, and the third inequality holds since Vθ satisfies eq. (3)
for each x ∈ X̃ . Hence, LRSM(θ) = 0, as claimed.

166

CHAPTER 7
Learning-based Stochastic Control

with Quantitative Reach-avoidance

This section is based on the following publication:

• Ðorđe Žikelić∗, Mathias Lechner∗, Thomas A. Henzinger, Krishnendu Chatterjee.
Learning Control Policies for Stochastic Systems with Reach-avoid Guaranteess.
In Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2023

7.1 Introduction
Stochastic control with quantitative reach-avoid guarantees. This chapter
considers formal controller synthesis in discrete-time stochastic dynamical systems
with quantitative reach-avoid guarantees. In particular, we revisit our learner-verifier
framework for stochastic dynamical systems introduced in Chapter 6 and significantly
extend and generalize it to enable learning and verifying a neural network control policy
and a certificate function which formally verifies that the reach-avoid specification
is satisfied with at least the desired probability. This yields the first framework for
learning neural controllers in stochastic dynamical systems with quantitative reach-avoid
guarantees. Our framework also yields a method for formally verifying quantitative
reach-avoidance under a neural network control policy in stochastic dynamical systems.

Reach-avoid specifications. Reach-avoid specifications are one of the most common
and practically relevant specifications appearing in safety-critical applications that

∗Equal contribution.

167

7. Learning-based Stochastic Control with Quantitative Reach-avoidance

generalize both reachability and safety specifications [SL10]. Given a target region and
an unsafe region, the reach-avoid specification requires that a system controlled by a
policy reaches the target region while avoiding the unsafe region. For instance, a lane-
keeping constraint requires a self-driving car to reach its destination without leaving the
allowed car lanes [VE03]. In the case of stochastic systems, reach-avoid specifications
are also specified by a probability threshold with which the system controlled by a policy
needs to satisfy the reach-avoid specification.

Prior approaches and learning-based control. As discussed in Chapter 6, classical
automated methods for formal controller synthesis are mostly restricted to dynamical
systems with polynomial dynamics or to finite-time horizon systems. Learning-based
methods provide a promising approach to overcoming these limitations. However, the key
challenge is to enable formal verification of neural network control policies in stochastic
dynamical systems. Prior to the work in this thesis, several works have contributed
to setting the foundations of learning-based control in deterministic dynamical system
with formal reachability and stability [RBK18, CRG19, AAGP21] and safety [PAA21]
guarantees. In Chapter 6, we presented to the best of our knowledge the first learning-
based control method with formal almost-sure reachability guarantees for infinite-time
horizon systems that learns and verifies neural controllers and is applicable to general
continuous stochastic dynamical systems over compact state spaces (recall, every
continuous function defined over a compact state space is also Lipschitz continuous).

Our approach – learning and verification of neural reach-avoid supermartingales.
We extend and generalize the method in Chapter 6 to enable formal controller synthesis
with quantitative reach-avoid guarantees. Our method jointly learns a control policy and
a reach-avoid supermartingale, both parametrized as neural networks. A reach-avoid
supermartingale (RASM) is a martingale-based certificate function for formally certifying
quantitative reach-avoidance that we introduce in this work. Informally, an RASM is
a function assigning a nonnegative real value to each system state that is required
to strictly decrease in expected value until the target region is reached, but needs to
strictly increase for the system to reach the unsafe region. By carefully choosing the
ratio of the initial level set of the RASM and the least level set that the RASM needs
to attain for the system to reach the unsafe region (here we use the standard level set
terminology of Lyapunov functions [HC11]), we obtain a formal reach-avoid certificate.
Our RASMs generalize and unify the stochastic control barrier functions which are a
standard certificate for safe control of stochastic dynamical systems [PJP04, PJP07]
and ranking supermartingales that certify probability 1 reachability [CS13]. Our method
in this chapter has two key novel aspects compared to the learner-verifier framework
for almost-sure reachability in Chapter 6. First, we use introduce and use RASMs as
certificate functions. Second, we show how the learner and the verifier modules can be

168

7.1. Introduction

generalized to allow effective learning and formal verification of RASMs.

Verification procedure for Lipschitz continuous policies. Analogously as in
Chapter 6, our framework also yields a method for formally verifying quantitative
reach-avoidance under a given control policy, by simply fixing the control policy in
the learner-verifier loop and only learning and verifying the RASM. Our method only
assumes that the given control policy is Lipschitz continuous. This allows for neural
network control policies with all standard activation functions since they are known to
be Lipschitz continuous [SZS+14].

Contributions. Our contributions in this chapter can be summarized as follows:

1. We introduce reach-avoid supermartingales (RASMs), a novel martingale-based
certificate function for formally certifying quantitative reach-avoidance. Our
RASMs unify and generalize stochastic barrier functions [PJP04, PJP07] and
ranking supermartingales [CS13].

2. We present a learner-verifier framework for jointly learning a control policy and an
RASM which formally proves quantitative reach-avoidance, both parametrized as
neural networks. Our method is applicable to stochastic dynamical systems with
compact state space and (Lipschitz) continuous dynamics function. As a special
cases, our method can be used for formal controller synthesis with quantitative
reachability or with quantitative safety guarantees as well.

3. By fixing a control policy and only learning and verifying the RASM, our framework
also yields a method for formal verification of quantitative reach-avoidance under
a given Liphscitz continuous control policy.

4. We empirically validate our approach and demonstrate its effectiveness on 3
reinforcement learning benchmarks.

Chapter organization. The rest of this chapter is organized as follows. We formally
define the problem considered in this chapter in Section 7.2. In Section 7.3, we introduce
RASMs and prove their soundness for formally certifying quantitative reach-avoidance
in stochastic dynamical systems. In Section 7.4, we present a learner-verifier framework
for stochastic dynamical systems that jointly learns a control policy and an RASM as
neural networks. In Section 7.5 we present our experimental results. We discuss related
work in Section 7.6. Finally, Section 7.7 contains full proofs of results presented in
earlier sections that are deferred to this section in order to enhance readability.

169

7. Learning-based Stochastic Control with Quantitative Reach-avoidance

7.2 Problem Statement
Analogously as in Chapter 6, we consider a discrete-time stochastic dynamical system

xt+1 = f(xt, ut, ωt), t ∈ N0,

defined by a dynamics function f : X × U ×N → X as in Section 2.3. We use d to
denote the probability distribution over the stochastic disturbance space N from which
the stochastic disturbance vector ωt is sampled at each time step.

Problem statement. We consider the quantitative reach-avoidance analysis problem
in stochastic dynamical systems. Let X0 ⊆ X denote a Borel-measurable initial set
of states. Let Xt ⊆ X and Xu ⊆ X be Borel-measurable target set and unsafe set,
respectively, and let p ∈ [0, 1]. We define

ReachAvoid(Xt,Xu) =
{︃

(xt, ut, ωt)t∈N0 | ∃t ∈ N0. xt ∈ Xt ∧ (∀t′ ≤ t. xt′ ̸∈ Xu)
}︃

to be the set of all trajectories that reach Xt while avoiding Xu. Our goal is to synthesize
a control policy π such that, for every initial state x0 ∈ X0, we have

Pπ
x0

[︃
ReachAvoid(Xt,Xu)

]︃
≥ p.

We restrict to the cases when either p < 1, or p = 1 and Xu = ∅. Our approach
is not applicable to the case p = 1 and Xu ≠ ∅ due to technical issues that arise in
defining our formal certificate, which we discuss in the following section. We remark
that quantitative reachability is a special instance of our problem obtained by setting
Xu = ∅. On the other hand, we cannot directly obtain quantitative safety by assuming
any specific form of the target set Xt, however we will show in the following section
that our method implies quantitative safety with respect to Xu if we set Xt = ∅.

Assumptions. As in Section 2.3, we assume that X , U and N as well as X0,Xt,Xu ⊆
X are all Borel-measurable for the system semantics to be well-defined. We also assume
that X ⊆ Rm is compact (i.e. closed and bounded) in the Euclidean topology of Rm.
The dynamics function f is assumed to be continuous, which is a common assumption
in control theory. Note that every continuous function defined over a compact state
space is also Lipschitz continuous. Finally, we assume that d has bounded support or
that it is a product of independent univariate probability distributions, which is needed
for efficient sampling and expected value computation.

170

7.3. Theoretical Results

7.3 Theoretical Results
We now introduce reach-avoid supermartingales (RASMs), our novel martingale-based
certificate function for formally certifying quantitative reach-avoidance in stochastic
dynamical systems. Note that, in this section only, we assume that the policy is fixed.
In the next section, we will present our algorithm for learning policies that provide
formal reach-avoid guarantees in which RASMs will be an integral ingredient. In what
follows, we consider a discrete-time stochastic dynamical system defined as in the
previous section. For now, we assume that the probability threshold is strictly smaller
than 1, i.e. p < 1. We will later show that our approach straightforwardly extends to
the case p = 1 and Xu = ∅.

Reach-avoid supermartingales. We define a reach-avoid supermartingale (RASM)
to be a continuous function V : X → R that assigns real values to system states.
The name is chosen to emphasize the connection to supermartingale processes from
probability theory [Wil91], which we will explore later in order to prove the effectiveness
of RASMs for verifying reach-avoid properties. The value of V is required to be
nonnegative over the state space X (Nonnegativity condition), to be bounded from
above by 1 over the set of initial states X0 (Initial condition) and to be bounded from
below by 1

1−p
over the set of unsafe states Xu (Safety condition). Hence, in order for

a system trajectory to reach an unsafe state and violate the safety specification, the
value of the RASM V needs to increase at least 1

1−p
times along the trajectory. Finally,

we require the existence of ε > 0 such that the value of V decreases in expected value
by at least ε after every one-step evolution of the system from every system state
x ∈ X\Xt for which V (x) ≤ 1

1−p
(Expected decrease condition). Intuitively, this last

condition imposes that the system has a tendency to strictly decrease the value of
V until either the target set Xt is reached or a state with V (x) ≥ 1

1−p
is reached.

However, as the value of V needs to increase at least 1
1−p

times in order for the system
to reach an unsafe state, these four conditions will allow us to use RASMs to certify
that the reach-avoid constraint is satisfied with probability at least p.

Defintion 7.3.1 (Reach-avoid supermartingales). Let Xt ⊆ X and Xu ⊆ X be the
target set and the unsafe set, and let p ∈ [0, 1) be the probability threshold. A
continuous function V : X → R is said to be a reach-avoid supermartingale (RASM)
with respect to Xt, Xu and p if it satisfies:

1. Nonnegativity condition. V (x) ≥ 0 for each x ∈ X .

2. Initial condition. V (x) ≤ 1 for each x ∈ X0.

3. Safety condition. V (x) ≥ 1
1−p

for each x ∈ Xu.

171

7. Learning-based Stochastic Control with Quantitative Reach-avoidance

4. Expected decrease condition. There exists ε > 0 such that, for each x ∈ X\Xt

at which V (x) ≤ 1
1−p

, we have V (x) ≥ Eω∼d[V (f(x, π(x), ω))] + ε.

Comparison to Lyapunov functions. The defining properties of RASMs hint a
connection to Lyapunov functions for deterministic control systems. However, the key
difference between Lyapunov functions and our RASMs is that Lyapunov functions
deterministically decrease in value whereas RASMs decrease in expectation. Determin-
istic decrease ensures that each level set of a Lyapunov function, i.e. a set of states
at which the value of Lyapunov functions is at most l for some l ≥ 0, is an invariant
of the system. However, it is in general not possible to impose such a condition on
stochastic systems. In contrast, our RASMs only require expected decrease in the level,
and the Initial and the Unsafe conditions can be viewed as conditions on the maximal
initial level set and the minimal unsafe level set. The choice of a ratio of these two
level values allows us to use existing results from martingale theory in order to obtain
probabilistic avoidance guarantees, while the Expected decrease condition by ε > 0
furthermore provides us with probabilistic reachability guarantees.

Certifying reach-avoid constraints via RASMs. We now show that the existence
of an ε-RASM for some ε > 0 implies that the reach-avoid constraint is satisfied with
probability at least p.

Theorem 7.3.2. Let Xt ⊆ X and Xu ⊆ X be the target set and the unsafe set,
respectively, and let p ∈ [0, 1) be the probability threshold. Suppose that there
exists an RASM V with respect to Xt, Xu and p. Then, for every x0 ∈ X0,
Px0 [ReachAvoid(Xt,Xu)] ≥ p.

Proof sketch. The complete proof of Theorem 7.3.2 is provided in Section 7.7.1. In
what follows, we sketch the key ideas behind our proof, in order to illustrate how
quantitative reachability and safety analysis can be combined by using martingale-based
certificate functions. To prove the theorem, we first show that an ε-RASM V induces a
supermartingale [Wil91] in the probability space over the set of all trajectories that start
in an initial state x0 ∈ X0. Recall, a supermartingale in a probability space (Ω,F ,P) is
a stochastic process (Xt)∞t=0 such that, for each t ∈ N0, the expected value of Xt+1
conditioned on the value of Xt is less than or equal to Xt. We refer the reader to
Section 2.4 for a necessary background on probability and martingale theory that is
needed to understand the proof of Theorem 7.3.2.

Now, let (Ωx0 ,Fx0 ,Px0) be the probability space of trajectories that start in x0. Then,

172

7.3. Theoretical Results

for each time step t ∈ N0, we define a random variable

Xt(ρ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

V (xt), if xi ̸∈ Xt and V (xi) < 1
1−p

for each 0 ≤ i ≤ t

0, if xi ∈ Xt for some 0 ≤ i ≤ t

and V (xj) < 1
1−p

for each 0 ≤ j ≤ i
1

1−p
, otherwise

for each trajectory ρ = (xt, ut, ωt)t∈N0 ∈ Ωx0 . In other words, the value of Xt is equal
to the value of V at xt, unless either the target set Xt has been reached first in which
case we set all future values of Xt to 0, or a state in which V exceeds 1

1−p
has been

reached first in which case we set all future values of Xt to 1
1−p

. Then, since V satisfies
the Nonnegativity and the Expected decrease condition of RASMs, we may show that
(Xt)∞t=0 is a supermartingale. in the probability space (Ωx0 ,Fx0 ,Px0).

Next, we show that the nonnegative supermartingale (Xt)∞t=0 with probability 1 converges
to and reaches 0 or a value that is greater than or equal to 1

1−p
. To do this, we first

employ the Supermartingale Convergence Theorem (see Section 7.7.1 for formal details)
which states that every nonnegative supermartingale converges to some value with
probability 1. We then use the fact that, in the Expected decrease condition of RASMs,
the decrease in expected value is strict and by at least ε > 0, in order to conclude that
this value is reached and has to be either 0 or greater than or equal to 1

1−p
.

Finally, we use another classical result from martingale theory (see Section 7.7.1 for
formal details) which states that, given a nonnegative supermartingale (Xt)∞t=0 and
λ > 0,

P
[︃

sup
i≥0

Xi ≥ λ
]︃
≤ E[X0]

λ
.

Plugging λ = 1
1−p

into the above inequality, it follows that Px0 [supi≥0 Xi ≥ 1
1−p

] ≤
(1− p) · Ex0 [X0] ≤ 1− p. The second inequality follows since X0(ρ) = V (x0) ≤ 1 for
every ρ ∈ Ωx0 by the Initial condition of RASMs. Hence, as (Xt)∞t=0 with probability
1 either reaches 0 or a value that is greater than or equal to 1

1−p
, we conclude that

(Xt)∞t=0 reaches 0 without reaching a value that is greater than or equal to 1
1−p

with
probability at least p. By the definition of each Xt and by the Safety condition of
RASMs, this implies that with probability at least p the system will reach the target
set Xt without reaching the unsafe set Xu, i.e. that Px0 [ReachAvoid(Xt,Xu)] ≥ p.

Quantitative safety. In order to solve the quantitative safety analysis problem and
verify that a control policy guarantees that the unsafe set Xu is not reached with
probability at least p, we may modify the Expected decrease condition of RASMs by

173

7. Learning-based Stochastic Control with Quantitative Reach-avoidance

setting Xt = ∅. Thus, RASMs are also effective for the quantitative safety analysis. This
claim follows immediately from our proof of Theorem 7.3.2. In this case and if we set
ε = 0, then our RASMs coincide with stochastic barrier functions of [PJP04, PJP07].
However, if Xt is not empty, then we must have ε > 0 in order to enforce convergence
and reachability of Xt.

Extension to p = 1 and Xu = ∅ and comparison to RSMs. So far, we have
only considered p ∈ [0, 1). The difficulty in the case p = 1 arises since the value 1

1−p

in the Safety and the Expected decrease conditions in Definition 7.3.1 would not be
well-defined. However, if Xu = ∅, then the Safety condition need not be imposed at
any state. Moreover, it follows directly from our proof that imposing the expected
decrease condition at all states in X\Xt makes RASMs sound for certifying probability 1
reachability. In fact, in this special case our RASMs reduce to the RSMs of [CS13]
and used in [LZCH22]. The key novelty of our RASMs over RSMs is that we also
employ level set reasoning in order to obtain probabilistic reach-avoid guarantees, thus
presenting a true stochastic extension of Lyapunov functions that allow reasoning both
about reach-avoid specifications as well as quantitative reasoning about the probability
with which they are satisfied. In contrast, RSMs do not reason about level sets and
can only certify probability 1 reachability.

7.4 Learner-verifier Framework with RASMs

We now present our learner-verifier framework for learning control policies with reach-
avoid guarantees, by jointly learning a neural network policy and an RASM certificate.
The algorithm consists of two modules called learner and verifier, which are composed
into a loop. In each loop iteration, the learner learns a policy together with an RASM
candidate as two neural networks πθ and Vν , with θ and ν being vectors of neural
network parameters. The verifier then formally verifies whether the learned RASM
candidate is indeed an RASM for the system and the learned policy. If the answer is
positive, then the algorithm concludes that the learned policy provides formal reach-
avoid guarantees. Otherwise, the verifier computes a counterexample which shows that
the learned RASM candidate is not an RASM. The counterexample is passed to the
learner and used to modify the loss function towards learning a new policy and an
RASM candidate. The loop is repeated until either a candidate is successfully verified or
the algorithm reaches a specified timeout. The algorithm is presented in Algorithm 7.1.
We note that our algorithm can also verify whether a given Lipschitz continuous policy
guarantees quantitative reach-avoidance, by fixing the policy and learning the RASM.

174

7.4. Learner-verifier Framework with RASMs

Algorithm 7.1: Algorithm for learning quantitative reach-avoidance policies
input : Dynamics function f , disturbance distribution d, state space X , initial,

target and unsafe sets X0,Xt,Xu ⊆ X , probability p ∈ [0, 1),
Lipschitz constant Lf , parameters τ > 0, N ∈ N, λ > 0

output : “Reach-avoid guarantee with probability p” or “Unknown”
1 πθ ← trained by PPO
2 X̃ ← discretization of X with mesh τ

3 Cinit, Cunsafe, Cdecrease ← X̃ ∩ X0, X̃ ∩ Xu, X̃ ∩ (X\Xt)
4 Vν ← trained by minimizing the loss function
5 while timeout not reached do
6 Lπ, LV ← Lipschitz constants of πθ, Vν

7 K ← LV · (Lf · (Lπ + 1) + 1)
8 Xẽ ← vertices of discr. X̃ whose adjacent cells intersect X\Xt and contain

x s.t. Vν(x) < 1
1−p

9 CellsX0 , CellsXu ← discr. cells that intersect X0, Xu

10 if ∃x̃ ∈ Xẽ ∩ (X\Xt) s.t. Eω∼d[Vν(f(x̃, π(x̃), ω))] ≥ Vν(x̃)− τ ·K and
Vν(x̃) < 1

1−p
then

11 Cdecrease ← Cdecrease ∪ {x}
12 end
13 else if ∃cell ∈ CellsX0 s.t. supx∈cell Vν(x) > 1 then
14 Cinit ← Cinit ∪ ({vertices of cell} ∩ X0)
15 end
16 else if ∃cell ∈ CellsXu s.t. infx∈cell Vν(x) < 1

1−p
then

17 Cunsafe ← Cunsafe ∪ ({vertices of cell} ∩ Xu)
18 end
19 else
20 return “Reach-avoid guarantee with probability p”
21 end
22 Vν , πθ,← trained by minimizing the loss function
23 X̃ ← refined discretization
24 end
25 return “Unknown”

7.4.1 Initialization and Discretization

Policy Initialization. Learning two networks concurrently with multiple objectives
can be unstable due to dependencies between the two networks and differences in the
scale of the objective loss terms. To mitigate these instabilities, we propose pre-training
of the policy network so that our algorithm starts from a proper initialization. In

175

7. Learning-based Stochastic Control with Quantitative Reach-avoidance

particular, from the given dynamical system and the safety specification, we induce a
Markov decision process (MDP) intending to reach the target set while avoiding the
unsafe set. The reward term rt is given by rt := I[Xt](xt) − I[Xu](xt) and we use
proximal policy optimization (PPO) [SWD+17] to train the policy.

State Space Discretization. When it comes to verifying learned candidates, the key
difficulty lies in checking the Expected decrease condition. This is because, in general, it
is not possible to compute a closed form expression for the expected value of an RASM
over successor system states, as both the policy and the RASM are neural networks. In
order to overcome this difficulty, our algorithm discretizes the state space of the system.
Given a mesh parameter τ > 0, a discretization X̃ of X with mesh τ is a set of states
such that, for every x ∈ X , there exists a state x̃ ∈ X̃ such that ||x− x̃||1 < τ . Due
to X being compact and therefore bounded, for any τ > 0 it is possible to compute its
finite discretization with mesh τ by simply considering vertices of a grid with sufficiently
small cells. Note that f , πθ and Vν are all continuous, hence due to X being compact f ,
πθ and Vν are also Lipschitz continuous. This will allow us to verify that the Expected
decrease condition is satisfied by checking a slightly stricter condition only at the
vertices of the discretization grid. The initial discretization X̃ is also used to initialize
counterexample sets used by the learner. In particular, the learner initializes three sets
Cinit = X̃ ∩X0, Cunsafe = X̃ ∩Xu and Cdecrease = X̃ ∩ (X\Xt). These sets will later be
extended by counterexamples computed by the verifier. Conversely, the discretization
used by the verifier for checking the defining properties of RASMs will at each iteration
of the loop be refined by a discretization with a smaller mesh, in order to relax the
conditions that are checked by the verifier.

7.4.2 Verifier
We now describe the verifier module of our algorithm. Suppose that the learner has
learned a policy πθ and an RASM candidate Vν . Since Vν is a neural network, we know
that it is a continuous function. Furthermore, we design the learner to apply a softplus
activation function to the output layer of Vν , which ensures that the Nonnegativity
condition of RASMs is satisfied by default. Thus, the verifier only needs to check the
Initial, Safety and Expected decrease conditions in Definition 7.3.1.

Let Lf , Lπ and LV be the Lipschitz constants of f , πθ and Vν , respectively. We assume
that a Lipschitz constant for the dynamics function f is provided, and use the method
of [SZS+14] to compute Lipschitz constants of neural networks πθ and Vν . To verify the
Expected decrease condition, the verifier collects the superset Xẽ of discretization points
whose adjacent grid cells contain a non-target state and over which Vν attains a value
that is smaller than 1

1−p
. This set is computed by first collecting all cells that intersect

X\Xt, then using interval arithmetic abstract interpretation (IA-AI) [CC77, GDS+18]

176

7.4. Learner-verifier Framework with RASMs

which propagates interval bounds across neural network layers in order to bound from
below the minimal value that Vν attains over each collected cell, and finally collecting
vertices of all cells at which this lower bound is less than 1

1−p
. The verifier then checks

a stricter condition for each state x̃ ∈ Xẽ:

Eω∼d

[︃
Vν

(︃
f(x̃, πθ(x̃), ω)

)︃]︃
< Vν(x̃)− τ ·K, (7.1)

where K = LV · (Lf · (Lπ + 1) + 1). The expected value in eq. (7.1) is also bounded
from above via IA-AI by using the method that we presented in Chapter 6, where
one partitions the support of d into intervals, propagates intervals and multiplies each
interval bound by its probability weight in order to bound the expected value of a neural
network function over a probability distribution.

In order to verify the Initial condition, the verifier collects the set CellsX0 of all cells of
the discretization grid that intersect the initial set X0. Then, for each cell ∈ CellsX0 , it
checks whether

sup
x∈ cell

Vν(x) > 1, (7.2)

where the supremum of Vν over the cell is bounded from above by using IA-AI. Similarly,
to verify the Unsafe condition, the verifier collects the set CellsXu of all cells of the
discretization grid that intersect the unsafe set Xu. Then, for each cell ∈ CellsXu , it
uses IA-AI to check whether

inf
x∈ cell

Vν(x) <
1

1− p
. (7.3)

If the verifier shows that Vν satisfies eq. (7.1) for each x̃ ∈ Xẽ, eq. (7.2) for each
cell ∈ CellsX0 and eq. (7.3) for each cell ∈ CellsXu , it concludes that Vν is an RASM.
Otherwise, if a counterexample x̃ to eq. (7.1) is found and we have x̃ ∈ X\Xt and
Vν(x) < 1

1−p
, it is added to Cdecrease. Similarly, if counterexample cells to eq. (7.2) and

eq. (7.3) are found, all their vertices that are contained in X0 and Xu are added to
Cinit and Cunsafe, respectively.

The following theorem shows that checking the above conditions is sufficient to formally
verify whether an RASM candidate is indeed an RASM. The proof follows by exploiting
the fact that f , πθ and Vν are all Lipschitz continuous and that X is compact, and we
include it in Section 7.7.2.

Theorem 7.4.1. Suppose that the verifier verifies that Vν satisfies eq. (7.1) for each
x̃ ∈ Xẽ, eq. (7.2) for each cell ∈ CellsX0 and eq. (7.3) for each cell ∈ CellsXu . Then
the function Vν is an RASM for the system with respect to Xt, Xu and p.

177

7. Learning-based Stochastic Control with Quantitative Reach-avoidance

7.4.3 Learner
A policy and an RASM candidate are learned by minimizing the loss function

L(θ, ν) =LInit(ν) + LUnsafe(ν) + LDecrease(θ, ν)
+ λ ·

(︂
LLipschitz(θ) + LLipschitz(ν)

)︂
.

The first three loss terms are used to guide the learner towards learning a true RASM
by forcing the learned candidate towards satisfying the Initial, Safety and Expected
decrease conditions in Definition 7.3.1. They are defined as follows:

LInit(ν) = max
x∈Cinit

{Vν(x)− 1, 0}

LUnsafe(ν) = max
x∈Cunsafe

{ 1
1− p

− Vν(x), 0}

LDecrease(θ, ν) = 1
|Cdecrease|

·

∑︂
x∈Cdecrease

(︃
max

{︃ ∑︂
ω1,...,ωN∼N

Vν

(︂
f(x, πθ(x), ωi)

)︂
N

− Vθ(x) + τ ·K, 0
}︃)︃

Each loss term is designed to incur a loss at a state whenever that state violates the
corresponding condition in Definition 7.3.1 that needs to be checked by the verifier. In
the expression for LDecrease(θ, ν), we approximate the expected value of Vν by taking
the mean value of Vν at N sampled successor states, where N ∈ N is an algorithm
parameter. This is necessary as it is not possible to compute a closed form expression
for the expected value of a neural network Vν .

The last loss term λ · (LLipschitz(θ) + LLipschitz(ν)) is the regularization term used to
guide the learner towards a policy and an RASM candidate with Lipschitz constants
below a tolerable threshold ρ, with λ > 0 being a regularization constant. By preferring
networks with small Lipschitz constants, we allow the verifier to use a wider mesh,
which significantly speeds up the verification process. The regularization term for πθ

(and analogously for Vν) is defined via

LLipschitz(θ) = max
{︃ ∏︂

W,b∈θ

max
j

∑︂
i

|Wi,j| − ρ, 0
}︃

,

where W and b weight matrices and bias vectors for each layer in πθ so LVθ
=∏︁

W,b∈θ maxj
∑︁

i |Wi,j| is a Lipschitz constant for Vθ.

Finally, in our implementation we also add an auxiliary loss term LAux(ν) that does not
enforce any of the defining conditions of RASMs, however it is used to guide the learner
towards a candidate that attains the global minimum in a state that is contained within

178

7.5. Experiments

RSM RASM
Environment (reach-avoid extension) (ours)
2D system 83.4% 93.3%

Inverted pendulum 47.9% 92.1%
Collision avoidance Fail 90.4%

Table 7.1: Reach-avoid probability obtained by our method and by the naive extension
of RSMs. In each case, we report the largest probability successfully verified by the
method.

the target set Xt. We empirically observed that this term sometimes helps the updated
policy from diverging from its objective to stabilize the system. It is defined via

LAux(ν) = max{Vν(x̂Target)− ε, 0}
+ max{ min

x∈X̃∩Xt

Vν(x)− min
x∈Cinit

Vν(x), 0}

+ max{ min
x∈X̃∩Xt

Vν(x)− min
x∈Cunsafe

Vν(x), 0}

with x̃Target being some state contained in Xt and ε ≥ 0 an algorithm parameter.

We remark that the loss function is always nonnegative but is not necessarily equal to
0 even if Vν satisfies all conditions checked by the verifier and if Lipschitz constants are
below the specified thresholds. This is because the expected values in LDecrease(θ, ν) are
approximated via sample means. However, in the following theorem we show that in this
case L(θ, ν)→ 0 with probability 1 as we add independent samples. The claim follows
from the Strong Law of Large Numbers and the proof can be found in Section 7.7.3.

Theorem 7.4.2. Let N be the number of samples used to approximate expected values
in LDecrease(θ, ν). Suppose that Vν satisfies eq. (7.1) for each x̃ ∈ Xẽ, eq. (7.2) for each
cell ∈ CellsX0 and eq. (7.3) for each cell ∈ CellsXu . Suppose that Lipschitz constants
of πθ and Vν are below the thresholds specified by LLipschitz(θ) and LLipschitz(ν) and
that the samples in LDecrease(θ, ν) are independent. Then limN→∞ L(θ, ν) = 0 with
probability 1.

7.5 Experiments
We experimentally validate our method on 3 non-linear RL environments. Our first
two environments are a linear 2D system with non-linear control bounds and the
stochastic inverted pendulum control problem. The linear 2D system is of the form
xt+1 = Axt + Bg(ut) + ωt, where g : u ↦→ min(max(u,−1, 1)) limits the admissible

179

7. Learning-based Stochastic Control with Quantitative Reach-avoidance

action of the policy and ωt is sampled from a triangular noise distribution. The inverted
pendulum environment is taken from the OpenAI Gym [BCP+16] and made more
difficult by adding noise perturbations to its state. Our third environment concerns a
collision avoidance task. The objective of this environment is to navigate an agent to
the target region while avoiding crashing into one of two obstacles. Further details on
all environments can be found in [ZLHC22, Appendix].

The policy and RASM networks consist of two hidden layers (128 units each, ReLU).
The RASM network has a single output unit with a softplus activation. We run our
algorithm with a timeout of 3 hours.

The goal of our first experiment is to empirically evaluate the ability of our approach
to learn policies for quantitative reach-avoidance and to understand the importance of
combining reachability with level set reasoning towards safety in stochastic systems.
For all tasks, we pre-train the policy networks using 100 iterations of PPO. To evaluate
our approach, we run our algorithm with several probability thresholds and report the
highest threshold for which a policy together with an RASM is successfully learned.
In order to understand the importance of simultaneous reasoning about reachability
and level sets, we then compare our approach with a much simpler extension of the
method of [LZCH22] presented in Chapter 6, which learns RSMs to certify probability
1 reachability but does not consider any form of safety specifications. In particular,
we run the method in Chapter 6 without the safety constraint and, in case a valid
RSM is found, we normalize the function such that the Nonnegativity and the Initial
conditions of RASMs are satisfied. We then bound from below the smallest value that
the RSM attains over the unsafe region, and extract the corresponding reach-avoid
probability bound according to the Safety condition of RASMs. Note that, even though
this extension also exploits the ideas behind the level set reasoning in our RASMs, it
first performs reachability analysis and only afterwards considers safety. We remark that
there is no existing method that provides reach-avoid guarantees in non-polynomial
stochastic systems over the infinite time horizon, i.e. there is no existing baseline to
compare against, thus we compare our level set reasoning with the extension of the
method in Chapter 6.

Table 7.1 shows results of our first experiment. In particular, in the third column we see
that our method successfully learns policies that provide high probability reach-avoid
guarantees for all benchmarks. On the other hand, comparison to the second column
shows that simultaneous reasoning about reachability and safety that is allowed by our
RASMs provides significantly better quantitative reach-avoid guarantees than when
such reasoning is decoupled. Figure 7.1 visualizes the RSM computed by the baseline
and our RASM.

In our second experiment, we study how well our algorithm can repair (or fine-tune)
an unsafe policy. In particular, we pre-train the policy network using only 20 PPO

180

7.6. Related Work

Figure 7.1: Visualization of a neural network RSM and RASM on the inverted pendulum
task. The RASM provides better probability bounds of reaching the unsafe states.

Vν Vν and πθ

2D system Fail (10 iters.) 96.7% (4 iters.)
Collision avoidance Fail (9 iters.) 80.9% (3 iters.)
Inverted pendulum Fail (7 iters.) Fail (7 iters.)

Table 7.2: Reach-avoid probabilities obtained by repairing unsafe policies. Verifying a
policy by only learning the RASM Vν times out, while jointly optimizing Vν and πθ yields
a valid RASM. In each case, we report the largest reach-avoid probability successfully
verified by the respective method.

iterations. We then run our algorithm with fixed policy parameters θ, i.e. we only learn
an RASM in order to verify quantitative reach-avoid guarantee provided by a pre-trained
policy. Next, we run our Algorithm 7.1 with both ν and θ as trainable parameters.
Table 7.2 shows that, compared to a standalone verification method, our algorithm is
able to repair unsafe policies in practice. However, the inability to repair the inverted
pendulum policy illustrates that a decent starting policy is necessary for our algorithm,
emphasizing the importance of policy initialization. Since the Policy Initialization
step in Algorithm 7.1 initializes the policy by using PPO with a reward function that
encodes the reach-avoid specification, our second experiment also demonstrates that a
policy initialised by using RL on a tailored reward function is not sufficient to learn a
reach-avoid policy with guarantees and that the learned policy requires “correction”
in order to provide reach-avoid guarantees. The “correction” is achieved precisely by
keeping the policy parameters trainable in the learner-verifier framework and fine-tuning
them.

7.6 Related Work
To conclude this chapter, we overview related work on reachability and safety analysis
in dynamical systems. For an overview of classical approaches to formal controller

181

7. Learning-based Stochastic Control with Quantitative Reach-avoidance

synthesis with reachability and safety guarantees in deterministic dynamical systems, we
refer the reader to Section 6.6 where these works were already discussed. We also refer
the reader to Section 6.6 for discussions on safe exploration RL and martingale-based
methods for PP analysis in order to avoid repetition. In what follows, we discuss
quantitative reachability and safety analysis in stochastic dynamical systems.

Formal controller synthesis for stochastic dynamical systems. Formal controller
synthesis for stochastic dynamical systems has received less attention compared to
their deterministic counterparts. Most existing approaches are abstraction based – they
construct a finite-state MDP or stochastic game approximation of the problem and
then use probabilistic model checking for controller synthesis. Due to accumulation
of the approximation error in each time step, many abstraction-based methods are
applicable to systems that evolve over finite and a priori known time horizons. Notable
examples include [SGA15, LKSZ20, CA19, VGO19]. Recently, a few abstraction-based
controller synthesis methods for infinite-time horizon stochastic dynamical systems
with affine dynamics [HS21], control affine dynamics [DHC22] or with finite control
input spaces [MMSS24, DHC22] have been proposed. An abstraction based method
for obtaining infinite-time horizon PAC-style guarantees on reach-avoidance in linear
stochastic systems was proposed in [BRAJ22]. This method is applicable to systems with
both aleatoric and epistemic uncertainty. Another approach that was discussed above is
to consider stochastic dynamical systems with polynomial dynamics and utilize stochastic
control barrier functions and convex optimization tools to compute polynomial control
policies with quantitative safety guarantees [PJP04, PJP07, ST12, SDC21, MMB+22].
The method of [XLZF21] considers polynomial stochastic dynamical systems and uses
convex optimization to synthesize polynomial control policies with quantitative reach-
avoid guarantees. Concurrently to our work, [MCL23] proposed a learning-based method
for formal safety verification in continuous stochastic control systems over a fixed finite-
time horizon, by learning a neural network stochastic control barrier function. Other
methods use dynamic programming [APLS08] or Hamilton-Jacobi (HJ) reachability
analysis [BCHT17] for finite time horizon stochastic systems.

Constrained MDPs. Safe RL has also been studied in the context of constrained
MDPs (cMDPs) [Alt99, Gei06]. An agent in a cMDP must satisfy hard constraints
on expected cost for one or more auxiliary notions of cost aggregated over an episode.
Several works study RL algorithms for cMDPs [UD07], notably the Constrained Policy
Optimization (CPO) [AHTA17] or the method [CNDG18] which proposed a Lyapunov
method for solving cMDPs. While these algorithms perform well, their constraints
are satisfied in expectation which makes them less suitable for safety-critical systems.
Furthermore, these methods try to satisfy constraints empirically and do not guarantee
constraint satisfaction. On the other hand, these methods operate in the model-free

182

7.7. Technical Proofs

setting and do not assume knowledge of system dynamics.

Safe RL via shielding. Some safe RL approaches ensure safety by computing
two control policies – the main policy that optimizes the expected reward, and the
backup policy that the system falls back to whenever a safety constraint may be
violated [MM93, PB02, ABE+18, EBA+21, GHKW21]. The backup policy can thus
be of simpler form. Shielding for stochastic linear systems with additive disturbances
has been considered in [WZ18]. [LB20, BL21] are applicable to stochastic non-linear
systems, however their safety guarantees are statistical – their algorithms are randomized
with parameters δ, ε ∈ (0, 1) and they with probability 1− δ compute an action that
is safe in the current state with probability at least 1 − ε. The statistical error is
accumulated at each state, hence these approaches are not suitable for infinite or long
time horizons. In contrast, our approach targets formal guarantees for infinite time
horizon problems.

7.7 Technical Proofs

7.7.1 Proof of Theorem 7.3.2
Theorem. Let Xt ⊆ X and Xu ⊆ X be the target set and the unsafe set, respectively,
and let p ∈ [0, 1) be the probability threshold. Suppose that there exists an RASM V
with respect to Xt, Xu and p. Then, for every x0 ∈ X0, Px0 [ReachAvoid(Xt,Xu)] ≥ p.

The proof assumes the background on probability and martingale theory presented in
Sections 2.1 and 2.4. Before we prove the theorem, we recall two additional results
from martingale theory that will be key ingredients in the proof. The first is Doob’s
Supermartingale Convergence Theorem (see [Wil91], Section 11) which shows that
every nonnegative supermartingale converges almost-surely to some finite value. The
second theorem (see [Kus14], Theorem 7.1) provides a bound on the probability that
the value of the supemartingale ever exceeds some threshold, and it will allow us to
reason about both probabilistic reachability and safety. This is a less standard result
from martingale theory, so we prove it below. In what follows, let (Ω,F ,P) be a
probability space and (Fi)∞i=0 be a filtration in it.

Theorem 7.7.1 (Supermartingale convergence theorem). Let (Xi)∞i=0 be a nonneg-
ative supermartingale with respect to (Fi)∞i=0. Then, there exists a random vari-
able X∞ in (Ω,F ,P) to which the supermartingale converges to with probability 1,
i.e. P[limi→∞Xi = X∞] = 1.

183

7. Learning-based Stochastic Control with Quantitative Reach-avoidance

Theorem 7.7.2. Let (Xi)∞i=0 be a nonnegative supermartingale with respect to (Fi)∞i=0.
Then, for every λ > 0, we have

P
[︃

sup
i≥0

Xi ≥ λ
]︃
≤ E[X0]

λ
.

Proof. Fix λ > 0. Define a stopping time T : Ω→ N0∪{∞} via T = infi∈N0{Xi ≥ λ}.
Then, for each n ∈ N0, define a random variable

XT∧n = XT · I(T ≤ n) + Xn · I(T > n)

where XT is a random variable defined via XT (ω) = XT (ω)(ω) for each ω ∈ Ω, and I is
the indicator function. It is a classical result from martingale theory that, for any n ∈ N0,
we have E[XT∧n] ≤ E[X0] (see [Wil91], Section 10.9). Hence, in order to prove the
desired inequality, it suffices to prove λ · P[supi≥0 Xi ≥ λ] ≤ supn∈N0 E[XT∧n].

To prove the desired inequality we observe that, for each n ∈ N0, we have that

E[XT∧n] = E[XT · I(T ≤ n)] + E[Xn · I(T > n)]
≥ E[λ · I(T ≤ n)] + E[Xn · I(T > n)]
= λ · P[T ≤ n] + E[Xn · I(T > n)]
≥ λ · P[T ≤ n] = λ · P[sup

0≤i≤n
Xi ≥ λ].

(7.4)

where in the first inequality we use the fact that XT ≥ λ, in the second inequality
we use the fact that each Xn is nonnegative and in the last equality we use the
fact that T = infi∈N0{Xi ≥ λ}. Finally, (P[sup0≤i≤n Xi ≥ λ])∞n=0 is a sequence of
probabilities of events that are increasing with respect to set inclusion, so by the
Monotone Convergence Theorem (see [Wil91], Section 5.3) it follows that

lim
n→∞

P[sup
1≤i≤n

Xi ≥ λ] = P[sup
i∈N0

Xi ≥ λ].

Hence, by taking the supremum over n ∈ N0 of both sides of eq. (7.4), we conclude
that λ · P[supi≥0 Xi ≥ λ] ≤ supn∈N0 E[XT∧n], as desired. This concludes the proof of
Theorem 7.7.2 since

P
[︃

sup
i≥0

Xi ≥ λ
]︃
≤ sup

n∈N0

E[XT∧n]
λ

≤ E[X0]
λ

.

Proof of Theorem 7.3.2. Fix an initial state x0 ∈ X0 so that we need to show that
Px0 [ReachAvoid(Xt,Xu)] ≥ p. Let V be an RASM with respect to Xt, Xu and p ∈ [0, 1)

184

7.7. Technical Proofs

whose existence is assumed in the theorem. First, we show that V gives rise to a
supermartingale in the probability space (Ωx0 ,Fx0 ,Px0) of all trajectories of the system
that start in x0. Then, we use Theorem 7.7.1 and Theorem 7.7.2 to prove probabilistic
reachability and safety.

For each time step t ∈ N0, define Fx0,t ⊆ Fx0 to be a sub-σ-algebra that, intuitively,
contains events that are defined in terms of the first t states of the system. Formally, for
each j ∈ N0, let Cj : Ωx0 → X assign to each trajectory ρ = (xt, ut, ωt)t∈N0 ∈ Ωx0 the
j-th state xj along the trajectory. We define Fi to be the smallest σ-algebra over Ωx0

with respect to which C0, C1, . . . , Ci are all measurable, where X ⊆ Rm is equipped
with the induced subset Borel-σ-algebra. The sequence (Fx0,t)∞t=0 is increasing with
respect to set inclusion.

Now, define a stochastic process (Xt)∞t=0 in the probability space (Ωx0 ,Fx0 ,Px0) via

Xt(ρ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

V (xt), if xi ̸∈ Xt and V (xi) < 1
1−p

for each 0 ≤ i ≤ t

0, if xi ∈ Xt for some 0 ≤ i ≤ t and
V (xj) < 1

1−p
for each 0 ≤ j ≤ i

1
1−p

, otherwise

for each t ∈ N0 and a trajectory ρ = (xt, ut, ωt)t∈N0 . In other words, the value of Xt is
equal to the value of V at xt, unless either the target set Xt has been reached first in
which case we set all future values of Xt to 0, or a state in which V exceeds 1

1−p
has

been reached first in which case we set all future values of Xt to 1
1−p

. We claim that
(Xt)∞t=0 is a nonnegative supermartingale with respect to (Fx0,t)∞t=0. Indeed, each Xt is
Fx0,t-measurable as it is defined in terms of the first t states along a trajectory. It is also
nonnegative as V is nonnegative by the Nonnegativity condition of RASMs. Finally, to
see that Ex0 [Xt+1 | Fx0,t](ρ) ≤ Xt(ρ) holds for each t ∈ N0 and ρ = (xt, ut, ωt)t∈N0 ,
we consider 3 cases:

185

7. Learning-based Stochastic Control with Quantitative Reach-avoidance

1. If x0, x1, . . . , xt ̸∈ Xt and V (xi) < 1
1−p

for each 0 ≤ i ≤ t, then

Ex0 [Xt+1 | Fx0,t](ρ)

= Ex0

[︃
Xt+1 ·

(︃
I(xt+1 ̸∈ Xt ∧ V (xt+1) <

1
1− p

)

+ I(xt+1 ∈ Xt) + I(V (xt+1) ≥
1

1− p
)
)︃
| Fx0,t

]︃
(ρ)

= Ex0 [Xt+1 · I(xt+1 ̸∈ Xt) | Fx0,t](ρ)

+ 0 + 1
1− p

· E[I(V (xt+1) ≥
1

1− p
) | Fx0,t](ρ)

≤ Eω∼d[V (f(xt, ut, ωt)) · I(xt+1 ̸∈ Xt ∧ V (xt+1) <
1

1− p
)]

+ Eω∼d[V (f(xt, ut, ωt)) · I(xt+1 ∈ Xt)]

+ Eω∼d[V (f(xt, ut, ωt)) · I(V (xt+1) ≥
1

1− p
)]

= Eω∼d[V (f(xt, ut, ωt))] ≤ V (xt)− ε.

Here, the first equality follows by the law of total probability, the second equality
follows by our definition of each Xt, the third inequality follows by observing
that V (xt+1) ≥ Xt+1(ρ) in this case, the fourth equality is just the sum of
expectations over disjoint sets, and finally the fifth inequality follows by the
Expected decrease condition in Definition 1 since xt ̸∈ Xt and V (xt) < 1

1−p
, by

the assumption of this case.

2. If xi ∈ Xt for some 0 ≤ i ≤ t and V (xj) < 1
1−p

for all 0 ≤ j ≤ i, then we have
Ex0 [Xt+1 | Fx0,t](ρ) = Xt+1(ρ) = 0.

3. Otherwise, we must have V (xi) ≥ 1
1−p

and x0, . . . , xi ̸∈ Xt for some − ≤ i ≤ t,
thus Ex0 [Xt+1 | Fx0,t](ρ) = Xt+1(ρ) = 1

1−p
.

Hence, we have proved that (Xt)∞t=0 is a nonnegative supermartingale.

Now, by Theorem 7.7.1 it follows that the value of the nonnegative supermartingale
(Xt)∞t=0 with probability 1 converges. In what follows, we show that (Xt)∞t=0 with
probability 1 converges to and reaches either 0 or a value that is greater than or equal
to 1

1−p
. To do this, we use the fact that the Expected decrease condition of RASMs

enforces the value of V to decrease in expected value by at least ε > 0 after every
one-step evolution of the system in any non-target state at which V (x) < 1

1−p
. Define

the stopping time T : Ωx0 → N0 ∪ {∞} via

T (ρ) = inf
t∈N0

{︃
Xt(ρ) = 0 ∨Xt(ρ) ≥ 1

1− p

}︃
.

186

7.7. Technical Proofs

Our goal is then to prove that Px0 [T <∞] = 1. Using the argument in the proof that
(Xt)∞t=0 is a nonnegative supermartingale (in particular, the proof of supermartingale
property in Case 1), we can in fact deduce a stronger inequality

Ex0 [Xt+1 | Fx0,t](ρ) ≤ Xt(ρ)− ε · I(T (ρ) > t)

for each ρ ∈ Ωx0 . But now, we may use Proposition 7.7.3 stated below to deduce that
Ex0 [T] ≤ Ex0 [X0] = V (x0) < ∞, which in turn implies that Px0 [T < ∞] = 1, as
desired. This concludes the proof.

The following proposition states a results on probability 1 convergence of ranking
supermartingales (RSMs). We note that RASMs generalize RSMs in the sense that
RSMs coincide with RASMs in the special case when the unsafe set is empty and we
only consider a probability 1 reachability specification, i.e. Xu = ∅.
Proposition 7.7.3 ([CS13]). Let (Ω,F ,P) be a probability space, let (Fi)∞i=0 be an
increasing sequence of sub-σ-algebras in F and let T be a stopping time with respect to
(Fi)∞i=0. Suppose that (Xi)∞i=0 is a stochastic process such that each Xi is nonnegative
and we have that

E[Xi+1 | Fi](ω) ≤ Xi(ω)− ε · I(T (ω) > i)

holds for each i ∈ N0 and ω ∈ Ω. Then P[T <∞] = 1.

Finally, by using Theorem 7.7.2 for the nonnegative supermartingale (Xt)∞t=0 and
λ = 1

1−p
> 0, it follows that Px0 [supi≥0 Xi ≥ 1

1−p
] ≤ (1− p) · Ex0 [X0] ≤ 1− p. The

second inequality follows since X0(ρ) = V (x0) ≤ 1 for every ρ ∈ Ωx0 by the Initial
condition of RASMs. Hence, as (Xt)∞t=0 with probability 1 either reaches 0 or a value
that is greater than or equal to 1

1−p
, we conclude that (Xt)∞t=0 reaches 0 without

reaching a value that is greater than or equal to 1
1−p

with probability at least p. By
the definition of each Xt and by the Safety condition of RASMs, this implies that with
probability at least p the system will reach the target set Xtwithout reaching the unsafe
set Xu, i.e. that Px0 [ReachAvoid(Xt,Xu)] ≥ p.

7.7.2 Proof of Theorem 7.4.1
Theorem. Suppose that the verifier verifies that Vν satisfies eq. (7.1) for each x̃ ∈ Xẽ,
eq. (7.2) for each cell ∈ CellsX0 and eq. (7.3) for each cell ∈ CellsXu . Then the function
Vν is an RASM for the system with respect to Xt, Xu and p.

Proof. Suppose that the verifier verifies that V satisfies eq. (7.1) for each x̃ ∈ Xẽ,
eq. (7.2) for each cell ∈ CellsX0 and eq. (7.3) for each cell ∈ CellsXu . The fact
that the Initial and the Unsafe conditions in Definition 1 of RASMs are satisfied

187

7. Learning-based Stochastic Control with Quantitative Reach-avoidance

by V then follows from the correctness of interval arithmetic abstract interpretation
(IA-AI) of [GDS+18]. Thus, we only need to show that V satisfies the Expected
decrease condition. To show this, we need to show that there exists ε > 0 such that
V (x) ≥ Eω∼d[V (f(x, π(x), ω))] + ε holds for all x ∈ X\Xt at which V (x) ≤ 1

1−p
. We

prove that ε > 0 defined via

ε = min
x̃∈Xε̃

(︃
V (x̃)− τ ·K − Eω∼d

[︃
V

(︃
f(x̃, π(x̃), ω)

)︃]︃)︃

satisfies this property. Note that ε > 0, as each x̃ ∈ Xẽ satisfies eq. (7.1).

To show this, fix x ∈ X\Xt with V (x) ≤ 1
1−p

and let x̃ ∈ Xẽ be such that ||x−x̃||1 ≤ τ .
By construction, the set Xẽ contains vertices of each discretization cell that intersects
X\Xt and that contains at least one state at which V is less than or equal to 1

1−p
,

hence such x̃ exists. We then have

Eω∼d

[︃
V

(︃
f(x, π(x), ω)

)︃]︃
≤ Eω∼d

[︃
V

(︃
f(x̃, π(x̃), ω)

)︃]︃
+ ||f(x̃, π(x̃), ω)− f(x, π(x), ω)||1 · LV

≤ Eω∼d

[︃
V

(︃
f(x̃, π(x̃), ω)

)︃]︃
+ ||(x̃, π(x̃), ω)− (x, π(x), ω)||1 · LV · Lf

≤ Eω∼d

[︃
V

(︃
f(x̃, π(x̃), ω)

)︃]︃
+ ||x̃− x||1 · LV · Lf · (1 + Lπ)

≤ Eω∼d

[︃
V

(︃
f(x̃, π(x̃), ω)

)︃]︃
+ τ · LV · Lf · (1 + Lπ).

(7.5)

On the other hand, we also have

V (x) ≥ V (x̃)− ||x̃− x||1 · LV ≥ V (x̃)− τ · LV . (7.6)

Combining eq.(7.5) and (7.6), we conclude that

V (x)− Eω∼d

[︃
V

(︃
f(x, π(x), ω)

)︃]︃
≥ V (x̃)− τ · LV − Eω∼d

[︃
V

(︃
f(x̃, π(x̃), ω)

)︃]︃
− τ · LV · Lf · (1 + Lπ)

= V (x̃)− τ ·K − Eω∼d

[︃
V

(︃
f(x̃, π(x̃), ω)

)︃]︃
≥ ε

(7.7)

where the equality in the second last row follows by the definition of K, and the
inequality in the last row follows by our choice of ε. Hence, V satisfies the Expected
decrease condition and is indeed an RASM.

188

7.7. Technical Proofs

7.7.3 Proof of Theorem 7.4.2

Theorem. Let N be the number of samples used to approximate expected values in
LDecrease(θ, ν). Suppose that Vν satisfies eq. (7.1) for each x̃ ∈ Xẽ, eq. (7.2) for each
cell ∈ CellsX0 and eq. (7.3) for each cell ∈ CellsXu . Suppose that Lipschitz constants
of πθ and Vν are below the thresholds specified by LLipschitz(θ) and LLipschitz(ν) and
that the samples in LDecrease(θ, ν) are independent. Then limN→∞ L(θ, ν) = 0 with
probability 1.

Proof. Since Lipschitz constants of πθ and Vν are below the thresholds specified by
LLipschitz(θ) and LLipschitz(ν), we have that λ·(LLipschitz(θ)+LLipschitz(ν)) = 0. Moreover,
our initialization of Cinit and our design of the verifier module ensure that Cinit contains
only states in X0, hence LInit(ν) = 0 as Vν satisfies the Initial condition of RASMs.
Note, Vν satisfies all conditions checked by the verifier, hence by Theorem 2 we know
that it is an RASM. Similarly, Cunsafe contains only states in Xu, hence LUnsafe(ν) = 0
as Vν satisfies the Safety condition of RASMs. Thus, under theorem assumptions we
have that

L(θ, ν) = LDecrease(θ, ν)

= 1
|Cdecrease|

∑︂
x∈Cdecrease

(︃
max

{︃ ∑︂
ω1,...,ωN∼N

Vν

(︂
f(x, πθ(x), ωi)

)︂
N

− Vθ(x) + τ ·K, 0
}︃)︃

Hence, in order to prove that limN→∞ L(θ, ν) = 0 with probability 1, it suffices to
prove that for each x ∈ Cdecrease with probability 1 we have

lim
N→∞

max
{︃ ∑︂

ω1,...,ωN∼N

Vν

(︂
f(x, πθ(x), ωi)

)︂
N

− Vθ(x) + τ ·K, 0
}︃

= 0.

The above sum is the mean of N independently sampled successor states of x, which
are sampled according to the probability distribution defined by the system dynamics
and the probability distribution d over disturbance vectors. Since the state space of
the system is assumed to be compact and Vθ is continuous as it is a neural network,
the random value defined by the value of V at a sampled successor state is bounded
and therefore admits a well-defined and finite first moment. The Strong Law of Large
Numbers [Wil91] then implies that the above sum converges to the expected value of

189

7. Learning-based Stochastic Control with Quantitative Reach-avoidance

this distribution as N →∞. Thus, with probability 1, we have that

lim
N→∞

max
{︃ ∑︂

ω1,...,ωN∼N

Vν

(︂
f(x, πθ(x), ωi)

)︂
N

− Vθ(x) + τ ·K, 0
}︃

= max
{︃

lim
M→∞

∑︂
ω1,...,ωN∼N

Vν

(︂
f(x, πθ(x), ωi)

)︂
N

− Vθ(x) + τ ·K, 0
}︃

= max
{︃

lim
M→∞

Eω∼d

[︃
f(x, πθ(x), ω)

]︂
− Vθ(x) + τ ·K, 0

}︃
= 0.

The first equality holds since a limit may be interchanged with the maximum function
over a finite number of arguments, the second equality holds with probability 1 by
the Strong Law of Large Numbers, and the third equality holds since Vν satisfies
eq. (7.1) for each x̃ ∈ Xẽ and we have Cdecrease ⊆ Xẽ. This concludes our proof that
limN→∞ L(θ, ν) = 0 with probability 1.

190

CHAPTER 8
Discussion and Conclusion

8.1 Discussion
“All things can be conjoined.”
Miriel, Elden Ring∗

This thesis has predominantly focused on the formal verification and controller synthesis
problems for infinite state stochastic systems. However, it also introduces or advances
several theoretical concepts and algorithmic methods – novel martingale-based certifi-
cates for proving properties of stochastic systems, constraint solving-based methods
for formal synthesis of polynomial certificates in probabilistic and non-probabilistic pro-
grams, as well as the learner-verifier framework for formal synthesis of non-polynomial
controllers and certificates in dynamical systems. As it turns out, the applicability of
these techniques stretches beyond probabilistic program analysis and controller synthesis
in stochastic dynamical systems. In this section, we overview some of the other research
projects that the author of this thesis has worked on during the PhD period, in which
these techniques have found useful and sometimes unexpected applications. These
works do not constitute a part of this thesis, as they consider problems not directly
related to infinite state stochastic system analysis.

8.1.1 Differential Cost Analysis
This section is based on the following publication:

∗A wonderful game published by FromSoftware Inc. and Bandai Namco Entertainment.

191

8. Discussion and Conclusion

• Ðorđe Žikelić∗, Bor-Yuh Evan Chang, Pauline Bolignano, Franco Raimondi. Dif-
ferential Cost Analysis with Simultaneous Potentials and Anti-potentials. In 43rd
ACM SIGPLAN International Conference on Programming Language Design and
Implementation, PLDI 2022

Differential cost analysis [ÇBG+17] considers the problem of statically bounding the
difference in resource usage (i.e. cost) between two program versions. In particular,
for two program versions and a set of inputs, the goal of differential cost analysis is to
compute a threshold value that bounds the maximal difference in cost usage between
the two programs.The notion of cost may be quite generic, and it encompasses metrics
such as runtime, memory usage, the number of object allocations or the number of
thread allocations, etc. This static analysis problem has many practical applications.
For instance, in software development, programs are often modified and extended with
new features. A program revision might lead to unacceptable jumps in cost usage.
For performance critical software, it is crucial to detect such undesired performance
regressions prior to releasing the software to production.

In this work, we propose a new method for differential cost analysis in numerical
imperative programs with polynomial arithmetic and with non-determinism. Our
method uses potential functions from amortized analysis [Tar85] to reason about costs
incurred in individual programs. Potential functions are a well-known certificate function
for computing upper bounds on the cost incurred in a single program [HAH11, HH10,
HDW17, CHS15]. In this work we also use their lower-bound analogue—that we
call anti-potential functions—to reason about the relative cost between two program
versions. While we have drawn inspiration from lower-bound analogues in other
domains [FNBG20, WFG+19, NDFH17], the key contribution here is computing a
differential threshold value on the maximal difference in cost between two programs
simultaneously with potential and anti-potential functions—one that provides an upper
bound on the cost incurred in the new version and the other that provides a lower
bound on the cost incurred in the old for the same inputs.

The simultaneous computation is done by employing a constraint solving-based approach
similar to automation methods used in Chapters 3, 4 and 5, which collects the necessary
constraints on potential and anti-potential functions to serve as upper and lower
bounds on incurred cost in the program versions, as well as the differential cost
constraint. The constraint solving-based approach allows our method to provide several
key properties: (1) our method can be fully automated, (2) it reduces synthesis to
linear programming, hence it allows efficient optimization of the threshold value by
introducing a minimization objective in the linear program, (3) it does not depend on

∗This work was performed in part while the author was an Applied Scientist Intern at Amazon.

192

8.1. Discussion

syntactic alignment of programs and is suitable for programs that are not syntactically
similar, and (4) it supports non-determinism in the programming language.

Contributions. Our contributions can be summarized as follows:

1. We present a new method for differential cost analysis that uses potential and
anti-potential functions to reason about relative incurred cost.

2. We give an algorithm for deriving potential and anti-potential functions simulta-
neously with a threshold value on the difference in cost in imperative numerical
programs with polynomial arithmetic and non-determinism.

3. Our experimental evaluation demonstrates the ability of our method to compute
tight threshold values for differential cost analysis.

8.1.2 Verification of Bayesian Neural Networks
This section is based on the following publication:

• Mathias Lechner∗, Ðorđe Žikelić,∗ Krishnendu Chatterjee, Thomas A. Henzinger.
Infinite Time Horizon Safety of Bayesian Neural Networks. In Advances in Neural
Information Processing Systems 34: Annual Conference on Neural Information
Processing Systems, NeurIPS 2021

Bayesian neural networks (BNNs) are a family of neural networks that place distributions
over their weights [Nea12]. This allows learning uncertainty in the data and the network’s
prediction, while preserving the strong modelling capabilities of neural networks [Mac92]
and makes BNNs very appealing for robotic and medical applications [MGK+17] where
uncertainty is a central component of data. However, despite the large body of literature
on verifying safety of neural networks, the formal safety verification of BNNs has received
less attention. Notably, [CKL+19, WLPK20, MWL+20] have proposed sampling-based
techniques for obtaining statistical guarantees about BNNs. Although these approaches
provide insight into BNN safety, they suffer from two key limitations – they do not
provide formal guarantees and can only simulate the system for a finite time.

In this work, we study the safety verification problem for BNN policies in safety-
critical systems over the infinite time horizon. Formally, we consider a discrete-time
deterministic dynamical system with a BNN policy. Given a set of initial states and
a set of unsafe (or bad) states, the goal of the safety verification problem is to verify
that no system execution starting in an initial state can reach an unsafe state. Our

∗Equal contribution.

193

8. Discussion and Conclusion

goal is to verify sure safety, i.e. safety of every system execution of the system. We
present a method for computing safe weight sets for which every system execution is
safe as long as the BNN samples its weights from this set. Verifying that a weight set
is safe allows re-calibrating the BNN policy by rejecting unsafe weight samples in order
to guarantee safety.

To verify safety of a weight set, we search for a safety certificate in the form of a safe
positive invariant (also known as safe inductive invariant). A safe positive invariant
is a set of system states that contains all initial states, is closed under the system
dynamics and does not contain any unsafe state. We parametrize safe positive invariant
candidates by (deterministic) neural networks that classify system states for determining
set inclusion and present a learner-verifier framework for learning and formally verifying
safe positive invariants building on the ideas presented in Chapters 6 and 7.

Contributions. Our contributions can be summarized as follows:

1. We define a safety verification problem for BNN policies by computing and
verifying safe weight sets. The problem generalizes the sure safety verification of
BNNs and solving it allows re-calibrating BNN policies via rejection sampling to
guarantee safety.

2. We introduce a method for computing safe weight sets in BNN policies in the
form of products of intervals around the BNN weights’ means. To verify safety
of a weight set, our novel algorithm learns a safe positive invariant in the form of
a deterministic neural network.

3. We evaluate our methodology on a series of benchmark applications, including
non-linear systems with safety specifications.

8.1.3 Verification of Distributional Safety in MDPs
This section is based on the following publication:

• S. Akshay, Krishnendu Chatterjee, Tobias Meggendorfer, Ðorđe Žikelić†. MDPs
as Distribution Transformers: Affine Invariant Synthesis for Safety Objectives. In
Computer Aided Verification - 35th International Conference, CAV 2023

Markov decision processes (MDPs) are a classical model for probabilistic decision
making systems. In the verification community, MDPs are often viewed through an
automata-theoretic lens, as state transformers, with runs being sequences of states

†Authors ordered alphabetically.

194

8.1. Discussion

with certain probability for taking each run. However, in several contexts such as
modeling biochemical networks or queuing theory, it is also convenient to view MDPs as
transformers of probability distributions over the states, and define objectives over these
distributions [CKV+11, KVAK10, AGV18]. In this framework, we can, for instance,
reason about properties such as the probability in a set of states always being above a
given threshold or comparing the probability in two states at some future time point.
As shown in [BRS06] such distribution-based properties cannot be expressed in pCTL∗.

Unfortunately, and perhaps surprisingly, when we view them as distribution transformers
even the simplest reachability and safety problems are known to be computationally
intractable. In [AAOW15], it is shown that even with just Markov chains, reachability
is as hard as the so-called Skolem problem, and safety is as hard as the positivity
problem [OW14, OW15], and the decidability of both are long-standing open problems
in linear recurrence sequences. In light of this difficulties, what can one do to tackle
these problems in theory and in practice? In this work, we take an over-approximation
route to tackling these questions, not only to check existence of strategies for safety
but also synthesize them. Our goal is to develop a novel invariant-synthesis based
approach towards strategy synthesis in MDPs. We restrict our attention to a class
of safety objectives on MDPs, which are already general enough to capture several
interesting and natural problems on MDPs.

Contributions. Our contributions can be summarized as follows:

1. We define the notion of inductive distributional invariants for safety in MDPs
and show that they provide sound and complete certificates for proving safety
objectives in MDPs. In doing so, we formalize the link between strategies and
distributional invariants in MDPs.

2. We develop two algorithms for automated synthesis of affine inductive distribu-
tional invariants that prove safety in MDPs, and at the same time, synthesize
strategies. The first algorithm is restricted to synthesizing memoryless strategies
but is relatively complete, whereas the second algorithm can synthesize general
strategies but is incomplete. In both cases, we draw insight from invariant
generation in program analysis and employ a constraint solving-based approach
similar to automation methods in Chapters 3, 4 and 5 to reduce synthesis to the
existential first-order theory of reals, giving a PSPACE complexity upper bound.

3. We implement our approaches and show that for several practical and non-trivial
examples, affine invariants suffice.

195

8. Discussion and Conclusion

8.1.4 Bidding Games on Graphs
This section is based on the following publications:

• Guy Avni, Thomas A. Henzinger, Ðorđe Žikelić†. Bidding Mechanisms in Graph
Games. In 44th International Symposium on Mathematical Foundations of
Computer Science, MFCS 2019

• Guy Avni, Ismaël Jecker, Ðorđe Žikelić†. Infinite-duration All-pay Bidding Games.
In 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021

• Guy Avni, Thomas A. Henzinger, Ðorđe Žikelić†. Bidding Mechanisms in Graph
Games. In Journal of Computer and System Sciences, JCSS 2021

• Guy Avni, Ismaël Jecker, Ðorđe Žikelić†. Bidding Graph Games with Partially-
observable Budgets. In Thirty-Seventh AAAI Conference on Artificial Intelligence,
AAAI 2023

Two player infinite-duration games on graphs are a central class of games studied
in formal methods with applications in reactive synthesis [PR89]. A graph game
places a token at some initial vertex, and the game proceeds by players moving
the token along the graph edges in order to produce an infinite path in the graph.
There are several mechanisms to determine which player gets to move the token. In
bidding games [LLPU96, LLP+99], players have budgets and in each turn hold an
auction (i.e. bidding) to determine which player gets to move the token. Both players
simultaneously submit bids and the player with the higher bid wins the auction and
gets to move the token. Bidding games on graphs provide a natural model for stateful
and ongoing auctions in which budgets do not contribute to players’ utilities, with
applications in settings such as online advertising.

A bidding game is specified by the bidding mechanism which determines what happens
with the invested bids and by the players’ objectives. We classify bidding mechanisms
according to two orthogonal properties: who pays and who is the recipient. In terms of
who pays the bids, we distinguish between first-price bidding, in which only the higher
bidder pays, and all-pay in which both players pay their bids. In terms of who receives
the bids, we distinguish between Richman bidding in which payments are paid to the
other player [LLPU96], and poorman bidding in which payments are paid to the “bank”
thus the money is lost [LLP+99]. A payment scheme called taxman spans the spectrum
between Richman and poorman [LLP+99]. In terms of players’ objectives, we consider
zero-sum games with qualitative (e.g. reachability or more generally parity) and with

†Authors ordered alphabetically.

196

8.1. Discussion

mean-payoff objectives where vertices of the graph are assigned weights and the goal
of players is to maximize and minimize the long-run average sum of weights.

The central notion in the study of bidding games is the initial ratio of budgets – if
Player 1 has initial budget B1 and Player 2 has initial budget B2, then the initial ratio
of budgets is B1/(B1 + B2). In bidding games with qualitative objectives (such as
reachability or parity), we are interested in computing a threshold ratio which is the
smallest necessary and sufficient initial ratio with which Player 1 is guaranteed to have
a winning strategy. In bidding games with mean-payoff objectives, given an initial ratio
of budgets we are interested in the optimal payoff that Player 1 can guarantee.

Prior work has focused on first-price bidding games. In particular, for games with
qualitative objectives, algorithms have been proposed for computing threshold ra-
tios for first-price Richman reachability [LLPU96] and more generally parity [AHC19]
games, as well as first-price poorman reachability [LLP+99] and more generally parity
games [AHI18]. For games with mean-payoff objectives, algorithms for computing
optimal payoffs have been proposed first-price Richman mean-payoff games [AHC19]
and first-price poorman mean-payoff games [AHI18].

Contributions. Our contributions in this line of work can be summarized as follows:

• In [AHZ19, AHZ21], we study first-price taxman bidding games and propose
algorithms for computing threshold ratios in reachability and parity games and
optimal payoffs in mean-payoff games.

• In [AJZ21], we study all-pay bidding games under Richman, poorman and taxman
bidding mechanisms on strongly-connected graphs. We propose algorithms for
computing threshold ratios in parity games and optimal payoffs in mean-payoff
games. Unlike first-price bidding games in which players have pure optimal
strategies, we show that in all-pay mean-payoff games players may need mixed
(i.e. randomized) strategies in order to achieve optimal payoff. Quite surprisingly,
for solving mean-payoff games we use martingale-based techniques that we used
in Chapters 3 and 4 to prove the “expected trend” achieved by a player’s mixed
strategy and deduce optimality of the strategy.

• In [AJZ23], we initiate the study of bidding games with partially-observable
budgets, in which players only have prior belief about the probability distribution
according to which the opponent’s initial budget is distributed.

197

8. Discussion and Conclusion

8.2 Conclusion and Future Perspective
In this thesis, we considered formal verification and controller synthesis in infinite state
stochastic systems. We studied formal verification in the setting of static analysis
of probabilistic programs and formal controller synthesis in the setting of control of
stochastic dynamical systems. In both settings, our goal was to enable and advance

fully automated reachability and safety analysis
in infinite-time horizon stochastic systems,

which have been mostly out of the reach of the existing formal methods approaches.

To solve this challenge, we followed a martingale-based approach. The main theoretical
contribution of this thesis is the design of novel martingale-based formal certificates for
reasoning about qualitative reachability as well as quantitative reachability, safety and
reach-avoidance in infinite state stochastic systems. These certificates are theoretical in
nature and can be instantiated both in the setting of PPs and of stochastic dynamical
systems and do not impose any restrictions on the time horizon over which the stochastic
system is executed. The main algorithmic contribution of this thesis is full automation
of the computation of these martingale-based certificates, both in PPs and in stochastic
dynamical systems. More concretely, we studied the following problems:

• In Chapter 3, we the probability 1 (a.k.a. almost-sure) termination/reachability
analysis in PPs. We introduced generalized lexicographic ranking supermartin-
gales (GLexRSMs), a lexicographic extension of RSMs, allowing for sound and
compositional reasoning about almost-sure termination analysis in PPs with
more complex control-flow structure. We presented two constraint-solving based
polynomial time algorithms for automated synthesis of linear GLexRSMs in linear
arithmetic PPs. We demonstrated their applicability on PPs for which no existing
linear arithmetic method could prove almost-sure termination, including PPs
with double-sided unbounded support probability distributions such as normal
distribution that commonly arise in probabilistic modelling.

• In Chapter 4, we studied the quantitative termination/reachability and safety
analyses in PPs. To the best of our knowledge, we presented the first fully
automated methods for quantitative reachability and safety analysis in PPs that
may not be almost-surely terminating. We achieved this by introducing stochastic
invariants (SIs) and using them to formulate sound and complete martingale-
based certificates for quantitative reachability and safety. We then presented
a constraint-solving based algorithm for automated synthesis of these SI-based
certificates in polynomial arithmetic PPs. Our algorithm is sound, relatively

198

8.2. Conclusion and Future Perspective

complete and applicable to polynomial arithmetic PPs that need not be almost-
surely terminating. We experimentally evaluated our prototype implementation
and demonstrate its effectiveness on a number of PPs that previous methods
could not handle.

• In Chapter 5, we studied non-termination analysis, both in non-probabilistic
programs and in PPs. We presented a new formal certificate for non-termination
proving in programs with non-determinism. The certificate is based on a purely
syntactic reversal of the program’s transition system and a of combination
forward and backward reasoning. We then presented an algorithm for automated
constraint-solving based synthesis of our non-termination certificate in polynomial
arithmetic programs. Experimental evaluation of our prototype tool RevTerm
showed that, despite its simplicity and stronger theoretical guarantees, RevTerm
outperforms all non-termination proving tools that competed in the TermComp’19
competition, both in the number of proved non-terminations and in runtime.

• In Chapter 6, we studied controller synthesis with probability 1 reachability
guarantees in stochastic dynamical systems. We proposed the first method for
learning and formally verifying neural controllers for almost-sure reachability in
stochastic dynamical systems. Our learner-verifier method jointly learns and
verifies a control policy and an RSM, both parametrized as neural networks.
The method is applicable to infinite-time horizon systems with non-polynomial
dynamics, thus overcoming the limitations of prior work, and can also be used to
verify probability 1 reachability under a given neural network control policy. We
experimentally evaluated our method on several non-linear RL environments.

• In Chapter 7, we considered controller synthesis with quantitative reachabil-
ity and safety guarantees in stochastic dynamical systems. Building on and
extending our results in Chapter 6, we proposed the first method for learning
and formally verifying neural controllers for quantitative reachability, safety and
reach-avoidance. The method jointly learns a neural control certificate and a
neural reach-avoid supermartingale (RASM), a novel martingale-based certifi-
cate for quantitative reach-avoidance that we introduce. As above, the method
is applicable to infinite-time horizon systems with non-polynomial dynamics,
thus overcoming the limitations of prior work, and can also be used to verify
quantitative reach-avoidance under a given neural network control policy. We
experimentally evaluated our method on several non-linear RL environments.

While this thesis advances the state of the art of automated formal analysis of infinite
state stochastic systems, this problem is far from being solved. There are several
important challenges that researchers in formal methods, programming languages,
artificial intelligence and control theory communities need to address for formal analysis

199

8. Discussion and Conclusion

of infinite state stochastic systems to scale to real-world applications. In what follows,
we identify some of these challenges and discuss possible future research directions.

Scaling PP analysis to richer languages. Recent years have seen much work on
PP analysis with several very exciting developments. However, automated methods
for formal analysis of PPs are still mostly focused on academic examples towards
demonstrating the ability to handle complex control-flow structures such as nested
loops, nested branching or complicated probability distributions. In order for the PP
analysis to move forward and ultimately be adopted by users of probabilistic programming
and inference tools, there are two fundamental challenges that need to be addressed:
scalability of automated analyses and expressivity of analyzed PP languages.

The key barrier to scaling PP analysis is that existing automated methods are not
compositional. For instance, automation of methods presented in this thesis proceeds
via constraint-solving based synthesis of martingale-based certificates, which reduces
the analysis to solving a large system of constraints encoding the whole PP. Such
an approach will not scale to large systems. A promising approach to overcoming
this challenge is to derive compositional variants of martingale-based certificates.
For instance, lexicographic extensions of RSMs provide compositional proof rules for
probability 1 termination analysis [ACN18], so our GLexRSMs in Chapter 3 are a step in
the right direction. An interesting direction of future work is to revisit martingale-based
certificates for quantitative termination and safety and to think about whether we could
use them to formulate compositional proof rules for PP analysis.

When it comes to the expressivity of PP languages, most formal analyses of PPs focus
on programs with numerical datatypes. However, all modern PP languages contain
datatypes for arrays which current automated methods do not support. A step in the
right direction towards enabling formal analysis of PPs with arrays has been made
in [BKK+19], which proposes quantitative separation logic for PPs. Studying automated
methods for formal analysis of PPs with arrays is an exciting venue for future work.

Stochastic control under general specifications. This thesis considers two im-
portant classes of specifications – reachability and safety, as well as reach-avoidance
which is defined via their conjunction. However, these are by no means all specifications
that one may consider in practice. An interesting direction of future work would
be to extend the learner-verifier framework in Chapters 6 and 7 to a richer class of
probabilistic specifications, e.g. pLTL specifications. Another venue for future work is to
consider control problems where the goal is to optimize some quantitative specification
(e.g. maximize expected total reward or mean-payoff) while guaranteeing satisfaction
of some pLTL specification. For instance, we may want to learn a control policy that
minimizes travel time to some target destination while ensuring avoidance of obstacles.

200

Bibliography

[AAGP21] Alessandro Abate, Daniele Ahmed, Mirco Giacobbe, and Andrea Peruffo.
Formal synthesis of lyapunov neural networks. IEEE Control. Syst. Lett.,
5(3):773–778, 2021.

[AAOW15] S. Akshay, Timos Antonopoulos, Joël Ouaknine, and James Worrell.
Reachability problems for markov chains. Inf. Process. Lett., 115(2):155–
158, 2015.

[ABE+18] Mohammed Alshiekh, Roderick Bloem, Rüdiger Ehlers, Bettina
Könighofer, Scott Niekum, and Ufuk Topcu. Safe reinforcement learning
via shielding. In Sheila A. McIlraith and Kilian Q. Weinberger, edi-
tors, Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), the 30th innovative Applications of Artificial
Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana,
USA, February 2-7, 2018, pages 2669–2678. AAAI Press, 2018.

[ABH+21] Alejandro Aguirre, Gilles Barthe, Justin Hsu, Benjamin Lucien Kaminski,
Joost-Pieter Katoen, and Christoph Matheja. A pre-expectation calculus
for probabilistic sensitivity. Proc. ACM Program. Lang., 5(POPL):1–28,
2021.

[ACE+19] Aaron D. Ames, Samuel Coogan, Magnus Egerstedt, Gennaro Notomista,
Koushil Sreenath, and Paulo Tabuada. Control barrier functions: Theory
and applications. In 17th European Control Conference, ECC 2019,
Naples, Italy, June 25-28, 2019, pages 3420–3431. IEEE, 2019.

[ACF+21] Ali Asadi, Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Gohar-
shady, and Mohammad Mahdavi. Polynomial reachability witnesses via
stellensätze. In Stephen N. Freund and Eran Yahav, editors, PLDI ’21:
42nd ACM SIGPLAN International Conference on Programming Lan-
guage Design and Implementation, Virtual Event, Canada, June 20-25,
2021, pages 772–787. ACM, 2021.

201

[ACG+22] Ali Ahmadi, Krishnendu Chatterjee, Amir Kafshdar Goharshady, To-
bias Meggendorfer, Roodabeh Safavi, and Dorde Zikelic. Algorithms
and hardness results for computing cores of markov chains. In 42nd
IARCS Annual Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS, 2022.

[ACMZ23] S. Akshay, Krishnendu Chatterjee, Tobias Meggendorfer, and Dorde
Zikelic. Mdps as distribution transformers: Affine invariant synthesis for
safety objectives. In Constantin Enea and Akash Lal, editors, Computer
Aided Verification - 35th International Conference, CAV 2023, Paris,
France, July 17-22, 2023, Proceedings, Part III, volume 13966 of Lecture
Notes in Computer Science, pages 86–112. Springer, 2023.

[ACN18] Sheshansh Agrawal, Krishnendu Chatterjee, and Petr Novotný. Lexico-
graphic ranking supermartingales: an efficient approach to termination
of probabilistic programs. Proc. ACM Program. Lang., 2(POPL):34:1–
34:32, 2018.

[ADB11] Alessandro Abate, Alessandro D’Innocenzo, and Maria Domenica Di
Benedetto. Approximate abstractions of stochastic hybrid systems. IEEE
Trans. Autom. Control., 56(11):2688–2694, 2011.

[ADD00] R.B. Ash and C. Doléans-Dade. Probability and Measure Theory. Aca-
demic Press, 2000.

[ADFG10] Christophe Alias, Alain Darte, Paul Feautrier, and Laure Gonnord. Multi-
dimensional rankings, program termination, and complexity bounds of
flowchart programs. In Proceedings of the 17th International Conference
on Static Analysis, SAS’10, pages 117–133, Berlin, Heidelberg, 2010.
Springer-Verlag.

[ADG19] M. Avanzini, U. Dal Lago, and A. Ghyselen. Type-based complexity
analysis of probabilistic functional programs. In 2019 34th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pages
1–13, 2019.

[AGR21] Alessandro Abate, Mirco Giacobbe, and Diptarko Roy. Learning proba-
bilistic termination proofs. In Alexandra Silva and K. Rustan M. Leino,
editors, Computer Aided Verification - 33rd International Conference,
CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part II, volume
12760 of Lecture Notes in Computer Science, pages 3–26. Springer,
2021.

202

[AGV18] S. Akshay, Blaise Genest, and Nikhil Vyas. Distribution-based objectives
for markov decision processes. In Anuj Dawar and Erich Grädel, editors,
Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages
36–45. ACM, 2018.

[AHC19] Guy Avni, Thomas A. Henzinger, and Ventsislav Chonev. Infinite-duration
bidding games. J. ACM, 66(4):31:1–31:29, 2019.

[AHI18] Guy Avni, Thomas A. Henzinger, and Rasmus Ibsen-Jensen. Infinite-
duration poorman-bidding games. In George Christodoulou and Tobias
Harks, editors, Web and Internet Economics - 14th International Con-
ference, WINE 2018, Oxford, UK, December 15-17, 2018, Proceedings,
volume 11316 of Lecture Notes in Computer Science, pages 21–36.
Springer, 2018.

[AHTA17] Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained
policy optimization. In International Conference on Machine Learning,
pages 22–31. PMLR, 2017.

[AHZ19] Guy Avni, Thomas A. Henzinger, and Dorde Zikelic. Bidding mechanisms
in graph games. In 44th International Symposium on Mathematical
Foundations of Computer Science, MFCS, 2019.

[AHZ21] Guy Avni, Thomas A. Henzinger, and Dorde Zikelic. Bidding mechanisms
in graph games. J. Comput. Syst. Sci., 2021.

[AJZ21] Guy Avni, Ismaël Jecker, and Dorde Zikelic. Infinite-duration all-pay
bidding games. In Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA, 2021.

[AJZ23] Guy Avni, Ismaël Jecker, and Dorde Zikelic. Bidding graph games with
partially-observable budgets. In Thirty-Seventh AAAI Conference on
Artificial Intelligence, AAAI, 2023.

[AKP11] Amir Ali Ahmadi, Miroslav Krstic, and Pablo A. Parrilo. A globally
asymptotically stable polynomial vector field with no polynomial lyapunov
function. In 50th IEEE Conference on Decision and Control and European
Control Conference, 11th European Control Conference, CDC/ECC 2011,
Orlando, FL, USA, December 12-15, 2011, pages 7579–7580. IEEE, 2011.

[Alt99] Eitan Altman. Constrained Markov decision processes, volume 7. CRC
Press, 1999.

203

[ALY20] Martin Avanzini, Ugo Dal Lago, and Akihisa Yamada. On probabilistic
term rewriting. Sci. Comput. Program., 185, 2020.

[AMS20] Martin Avanzini, Georg Moser, and Michael Schaper. A modular cost
analysis for probabilistic programs. Proceedings of the ACM on Pro-
gramming Languages, 4((Proceedings of OOPSLA 2020).):1–30, 2020.

[AOS+16] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul F. Christiano, John
Schulman, and Dan Mané. Concrete problems in AI safety. CoRR,
abs/1606.06565, 2016.

[APLS08] Alessandro Abate, Maria Prandini, John Lygeros, and Shankar Sastry.
Probabilistic reachability and safety for controlled discrete time stochastic
hybrid systems. Autom., 44(11):2724–2734, 2008.

[Azu67] Kazuoki Azuma. Weighted sums of certain dependent random variables.
Tohoku Mathematical Journal, Second Series, 19(3):357–367, 1967.

[BAG13] Amir M. Ben-Amram and Samir Genaim. On the linear ranking problem
for integer linear-constraint loops. In Proceedings of the 40th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’13, pages 51–62, New York, NY, USA, 2013. ACM.

[BAG15] Amir M. Ben-Amram and Samir Genaim. Complexity of bradley-manna-
sipma lexicographic ranking functions. In Daniel Kroening and Corina S.
Păsăreanu, editors, Computer Aided Verification: 27th International
Conference, CAV 2015, San Francisco, CA, USA, July 18-24, 2015,
Proceedings, Part II, pages 304–321. Springer International Publishing,
2015.

[BBL+17] Cristina Borralleras, Marc Brockschmidt, Daniel Larraz, Albert Oliv-
eras, Enric Rodríguez-Carbonell, and Albert Rubio. Proving termina-
tion through conditional termination. In Tools and Algorithms for the
Construction and Analysis of Systems - 23rd International Conference,
TACAS 2017, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29,
2017, Proceedings, Part I, pages 99–117, 2017.

[BCF13] Marc Brockschmidt, Byron Cook, and Carsten Fuhs. Better termination
proving through cooperation. In Computer Aided Verification - 25th
International Conference, CAV 2013, Saint Petersburg, Russia, July
13-19, 2013. Proceedings, pages 413–429, 2013.

204

[BCHT17] Somil Bansal, Mo Chen, Sylvia L. Herbert, and Claire J. Tomlin.
Hamilton-jacobi reachability: A brief overview and recent advances.
In 56th IEEE Annual Conference on Decision and Control, CDC 2017,
Melbourne, Australia, December 12-15, 2017, pages 2242–2253. IEEE,
2017.

[BCI+16] Marc Brockschmidt, Byron Cook, Samin Ishtiaq, Heidy Khlaaf, and Nir
Piterman. T2: Temporal property verification. In Marsha Chechik and
Jean-François Raskin, editors, Tools and Algorithms for the Construction
and Analysis of Systems: 22nd International Conference, TACAS 2016,
Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016,
Proceedings, pages 387–393, Berlin, Heidelberg, 2016. Springer Berlin
Heidelberg.

[BCJ+19] Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer,
Neeraj Pradhan, Theofanis Karaletsos, Rohit Singh, Paul A. Szerlip,
Paul Horsfall, and Noah D. Goodman. Pyro: Deep universal probabilistic
programming. J. Mach. Learn. Res., 20:28:1–28:6, 2019.

[BCLR04] Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani.
SLAM and static driver verifier: Technology transfer of formal methods
inside microsoft. In Eerke A. Boiten, John Derrick, and Graeme Smith,
editors, Integrated Formal Methods, 4th International Conference, IFM
2004, Canterbury, UK, April 4-7, 2004, Proceedings, volume 2999 of
Lecture Notes in Computer Science, pages 1–20. Springer, 2004.

[BCP+16] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider,
John Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv
preprint arXiv:1606.01540, 2016.

[BEFFH16] Gilles Barthe, Thomas Espitau, Luis María Ferrer Fioriti, and Justin Hsu.
Synthesizing probabilistic invariants via doob’s decomposition. In Swarat
Chaudhuri and Azadeh Farzan, editors, Computer Aided Verification:
28th International Conference, CAV 2016, Toronto, ON, Canada, July
17-23, 2016, Proceedings, Part I, pages 43–61. Springer International
Publishing, 2016.

[Ber12] Dimitri Bertsekas. Dynamic programming and optimal control: Volume
I, volume 1. Athena scientific, 2012.

[Ber19] Felix Berkenkamp. Safe exploration in reinforcement learning: Theory
and applications in robotics. Ph.D. thesis, ETH Zurich., 2019.

205

[BG05] Olivier Bournez and Florent Garnier. Proving Positive Almost-Sure
Termination. In RTA, pages 323–337, 2005.

[BGB09] Gilles Barthe, Benjamin Grégoire, and Santiago Zanella Béguelin. Formal
certification of code-based cryptographic proofs. In Zhong Shao and
Benjamin C. Pierce, editors, Proceedings of the 36th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2009, Savannah, GA, USA, January 21-23, 2009, pages 90–101. ACM,
2009.

[BGG+13] Johannes Borgström, Andrew D. Gordon, Michael Greenberg, James
Margetson, and Jurgen Van Gael. Measure transformer semantics for
bayesian machine learning. Log. Methods Comput. Sci., 9(3), 2013.

[BGG+16] Gilles Barthe, Marco Gaboardi, Benjamin Grégoire, Justin Hsu, and
Pierre-Yves Strub. Proving differential privacy via probabilistic couplings.
In Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors, Proceed-
ings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 749–758.
ACM, 2016.

[BGHP16] Gilles Barthe, Marco Gaboardi, Justin Hsu, and Benjamin C. Pierce.
Programming language techniques for differential privacy. ACM SIGLOG
News, 3(1):34–53, 2016.

[BHHK03] Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and Joost-
Pieter Katoen. Model-checking algorithms for continuous-time markov
chains. IEEE Trans. Software Eng., 29(6):524–541, 2003.

[Bil95] P. Billingsley. Probability and Measure. Wiley, 3rd edition, 1995.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking.
MIT Press, 2008.

[BK11] Dirk Beyer and M. Erkan Keremoglu. Cpachecker: A tool for con-
figurable software verification. In Computer Aided Verification - 23rd
International Conference, CAV 2011, Snowbird, UT, USA, July 14-20,
2011. Proceedings, pages 184–190, 2011.

[BKK+19] Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph
Matheja, and Thomas Noll. Quantitative separation logic: a logic for
reasoning about probabilistic pointer programs. Proc. ACM Program.
Lang., 3(POPL):34:1–34:29, 2019.

206

[BKKM21] Kevin Batz, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and
Christoph Matheja. Relatively complete verification of probabilistic
programs: an expressive language for expectation-based reasoning. Proc.
ACM Program. Lang., 5(POPL):1–30, 2021.

[BKS19] Ezio Bartocci, Laura Kovács, and Miroslav Stankovic. Automatic gener-
ation of moment-based invariants for prob-solvable loops. In Yu-Fang
Chen, Chih-Hong Cheng, and Javier Esparza, editors, Automated Tech-
nology for Verification and Analysis - 17th International Symposium,
ATVA 2019, Taipei, Taiwan, October 28-31, 2019, Proceedings, volume
11781 of Lecture Notes in Computer Science, pages 255–276. Springer,
2019.

[BL21] Osbert Bastani and Shuo Li. Safe reinforcement learning via statistical
model predictive shielding. In Dylan A. Shell, Marc Toussaint, and M. Ani
Hsieh, editors, Robotics: Science and Systems XVII, Virtual Event, July
12-16, 2021, 2021.

[BMS05a] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Linear Ranking
with Reachability. In Computer Aided Verification, 17th International
Conference, CAV 2005, Edinburgh, Scotland, UK, July 6-10, 2005,
Proceedings, pages 491–504, 2005.

[BMS05b] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. Termination of
polynomial programs. In Verification, Model Checking, and Abstract
Interpretation, 6th International Conference, VMCAI 2005, Paris, France,
January 17-19, 2005, Proceedings, pages 113–129, 2005.

[BNO+08] Miquel Bofill, Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-
Carbonell, and Albert Rubio. The barcelogic SMT solver. In Computer
Aided Verification, 20th International Conference, CAV 2008, Princeton,
NJ, USA, July 7-14, 2008, Proceedings, pages 294–298, 2008.

[BO21] Raven Beutner and Luke Ong. On probabilistic termination of functional
programs with continuous distributions. In Stephen N. Freund and Eran
Yahav, editors, PLDI ’21: 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, Virtual Event,
Canada, June 20-25, 2021, pages 1312–1326. ACM, 2021.

[Bou93] François Bourdoncle. Abstract debugging of higher-order imperative
languages. In Robert Cartwright, editor, Proceedings of the ACM
SIGPLAN’93 Conference on Programming Language Design and Imple-
mentation (PLDI), Albuquerque, New Mexico, USA, June 23-25, 1993,
pages 46–55. ACM, 1993.

207

[BOZ22] Raven Beutner, C.-H. Luke Ong, and Fabian Zaiser. Guaranteed bounds
for posterior inference in universal probabilistic programming. In Ranjit
Jhala and Isil Dillig, editors, PLDI ’22: 43rd ACM SIGPLAN International
Conference on Programming Language Design and Implementation, San
Diego, CA, USA, June 13 - 17, 2022, pages 536–551. ACM, 2022.

[BR02] Thomas Ball and Sriram K. Rajamani. The SLAM project: debugging
system software via static analysis. In Conference Record of POPL 2002:
The 29th SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, Portland, OR, USA, January 16-18, 2002, pages 1–3, 2002.

[BRAJ22] Thom S. Badings, Licio Romao, Alessandro Abate, and Nils Jansen.
Probabilities are not enough: Formal controller synthesis for stochastic
dynamical models with epistemic uncertainty. CoRR, abs/2210.05989,
2022.

[BRS06] Danièle Beauquier, Alexander Moshe Rabinovich, and Anatol Slissenko.
A logic of probability with decidable model checking. J. Log. Comput.,
16(4):461–487, 2006.

[BS96] Dimitri Bertsekas and Steven E Shreve. Stochastic optimal control: the
discrete-time case, volume 5. Athena Scientific, 1996.

[BS04] Dimitir P Bertsekas and Steven Shreve. Stochastic optimal control: the
discrete-time case. 2004.

[BSOG11] Marc Brockschmidt, Thomas Ströder, Carsten Otto, and Jürgen Giesl.
Automated detection of non-termination and nullpointerexceptions for
java bytecode. In Formal Verification of Object-Oriented Software -
International Conference, FoVeOOS 2011, Turin, Italy, October 5-7,
2011, Revised Selected Papers, pages 123–141, 2011.

[BTSK17] Felix Berkenkamp, Matteo Turchetta, Angela P. Schoellig, and Andreas
Krause. Safe model-based reinforcement learning with stability guaran-
tees. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.
Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett, ed-
itors, Advances in Neural Information Processing Systems 30: Annual
Conference on Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA, pages 908–918, 2017.

[CA19] Nathalie Cauchi and Alessandro Abate. Stochy-automated verification
and synthesis of stochastic processes. In Proceedings of the 22nd ACM
International Conference on Hybrid Systems: Computation and Control,
pages 258–259, 2019.

208

[ÇBG+17] Ezgi Çiçek, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Jan
Hoffmann. Relational cost analysis. In Giuseppe Castagna and Andrew D.
Gordon, editors, Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages, POPL 2017, Paris, France,
January 18-20, 2017, pages 316–329. ACM, 2017.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction or approxi-
mation of fixpoints. In Robert M. Graham, Michael A. Harrison, and
Ravi Sethi, editors, Conference Record of the Fourth ACM Symposium
on Principles of Programming Languages, Los Angeles, California, USA,
January 1977, pages 238–252. ACM, 1977.

[CCF+14] Hong Yi Chen, Byron Cook, Carsten Fuhs, Kaustubh Nimkar, and
Peter W. O’Hearn. Proving nontermination via safety. In Tools and
Algorithms for the Construction and Analysis of Systems - 20th Inter-
national Conference, TACAS 2014, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble,
France, April 5-13, 2014. Proceedings, pages 156–171, 2014.

[CDD+15] Cristiano Calcagno, Dino Distefano, Jérémy Dubreil, Dominik Gabi,
Pieter Hooimeijer, Martino Luca, Peter W. O’Hearn, Irene Papakon-
stantinou, Jim Purbrick, and Dulma Rodriguez. Moving fast with software
verification. In Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi,
editors, NASA Formal Methods - 7th International Symposium, NFM
2015, Pasadena, CA, USA, April 27-29, 2015, Proceedings, volume 9058
of Lecture Notes in Computer Science, pages 3–11. Springer, 2015.

[CDM17] Dmitry Chistikov, Rayna Dimitrova, and Rupak Majumdar. Approximate
counting in SMT and value estimation for probabilistic programs. Acta
Informatica, 54(8):729–764, 2017.

[CFG16] Krishnendu Chatterjee, Hongfei Fu, and Amir Kafshdar Goharshady.
Termination analysis of probabilistic programs through positivstellensatz’s.
In Swarat Chaudhuri and Azadeh Farzan, editors, Computer Aided
Verification - 28th International Conference, CAV 2016, Toronto, ON,
Canada, July 17-23, 2016, Proceedings, Part I, volume 9779 of Lecture
Notes in Computer Science, pages 3–22. Springer, 2016.

[CFGG20] Krishnendu Chatterjee, Hongfei Fu, Amir Kafshdar Goharshady, and
Ehsan Kafshdar Goharshady. Polynomial invariant generation for non-
deterministic recursive programs. In Alastair F. Donaldson and Emina
Torlak, editors, Proceedings of the 41st ACM SIGPLAN International

209

Conference on Programming Language Design and Implementation,
PLDI 2020, London, UK, June 15-20, 2020, pages 672–687. ACM, 2020.

[CFNH16] Krishnendu Chatterjee, Hongfei Fu, Petr Novotný, and Rouzbeh Hashem-
inezhad. Algorithmic analysis of qualitative and quantitative termination
problems for affine probabilistic programs. In Rastislav Bodík and Rupak
Majumdar, editors, Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages 327–342.
ACM, 2016.

[CFNH18] Krishnendu Chatterjee, Hongfei Fu, Petr Novotný, and Rouzbeh Hashem-
inezhad. Algorithmic analysis of qualitative and quantitative termination
problems for affine probabilistic programs. ACM Trans. Program. Lang.
Syst., 40(2):7:1–7:45, 2018.

[CFNO14] Byron Cook, Carsten Fuhs, Kaustubh Nimkar, and Peter W. O’Hearn.
Disproving termination with overapproximation. In Formal Methods in
Computer-Aided Design, FMCAD 2014, Lausanne, Switzerland, October
21-24, 2014, pages 67–74, 2014.

[CGMZ22a] Krishnendu Chatterjee, Amir Goharshady, Tobias Meggendorfer, and
Dorde Zikelic. Sound and Complete Certificates for Quantitative Termi-
nation Analysis of Probabilistic Programs. 2022.

[CGMZ22b] Krishnendu Chatterjee, Amir Kafshdar Goharshady, Tobias Meggendorfer,
and Dorde Zikelic. Sound and complete certificates for quantitative
termination analysis of probabilistic programs. In Computer Aided
Verification - 34th International Conference, CAV, 2022.

[CGN+21] Krishnendu Chatterjee, Ehsan Kafshdar Goharshady, Petr Novotný, Jiri
Zárevúcky, and Dorde Zikelic. On lexicographic proof rules for proba-
bilistic termination. In Formal Methods - 24th International Symposium,
FM, 2021.

[CGNZ21] Krishnendu Chatterjee, Ehsan Kafshdar Goharshady, Petr Novotný, and
Dorde Zikelic. Proving non-termination by program reversal. In Proceed-
ings of the 42nd ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation, PLDI, 2021.

[CGSS13] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and
Roberto Sebastiani. The MathSAT5 SMT solver. In TACAS, 2013.

210

[CH20] Jianhui Chen and Fei He. Proving almost-sure termination by omega-
regular decomposition. In Alastair F. Donaldson and Emina Torlak,
editors, Proceedings of the 41st ACM SIGPLAN International Conference
on Programming Language Design and Implementation, PLDI 2020,
London, UK, June 15-20, 2020, pages 869–882. ACM, 2020.

[CHL+18] Yu-Fang Chen, Matthias Heizmann, Ondrej Lengál, Yong Li, Ming-
Hsien Tsai, Andrea Turrini, and Lijun Zhang. Advanced automata-based
algorithms for program termination checking. In Proceedings of the
39th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018,
pages 135–150, 2018.

[CHLZ23] Krishnendu Chatterjee, Thomas A. Henzinger, Mathias Lechner, and
Dorde Zikelic. A learner-verifier framework for neural network controllers
and certificates of stochastic systems. In Sriram Sankaranarayanan and
Natasha Sharygina, editors, Tools and Algorithms for the Construction
and Analysis of Systems - 29th International Conference, TACAS 2023,
Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2022, Paris, France, April 22-27, 2023, Proceedings,
Part I, volume 13993 of Lecture Notes in Computer Science, pages 3–25.
Springer, 2023.

[CHS15] Quentin Carbonneaux, Jan Hoffmann, and Zhong Shao. Compositional
certified resource bounds. In David Grove and Stephen M. Blackburn,
editors, Proceedings of the 36th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, Portland, OR, USA,
June 15-17, 2015, pages 467–478. ACM, 2015.

[CKGN+23] Krishnendu Chatterjee, Ehsan Kafshdar Goharshady, Petr Novotný, Jiří
Zárevúcky, and undefinedorundefinede Žikelić. On lexicographic proof
rules for probabilistic termination. Form. Asp. Comput., 35(2), jun 2023.

[CKL+19] Luca Cardelli, Marta Kwiatkowska, Luca Laurenti, Nicola Paoletti, An-
drea Patane, and Matthew Wicker. Statistical guarantees for the robust-
ness of bayesian neural networks. In Sarit Kraus, editor, Proceedings of
the Twenty-Eighth International Joint Conference on Artificial Intelli-
gence, IJCAI 2019, Macao, China, August 10-16, 2019, pages 5693–5700.
ijcai.org, 2019.

[CKV+11] Rohit Chadha, Vijay Anand Korthikanti, Mahesh Viswanathan, Gul Agha,
and YoungMin Kwon. Model checking mdps with a unique compact
invariant set of distributions. In Eighth International Conference on

211

Quantitative Evaluation of Systems, QEST 2011, Aachen, Germany, 5-8
September, 2011, pages 121–130. IEEE Computer Society, 2011.

[CMMV16] Supratik Chakraborty, Kuldeep S. Meel, Rakesh Mistry, and Moshe Y.
Vardi. Approximate probabilistic inference via word-level counting. In
Dale Schuurmans and Michael P. Wellman, editors, Proceedings of the
Thirtieth AAAI Conference on Artificial Intelligence, February 12-17,
2016, Phoenix, Arizona, USA, pages 3218–3224. AAAI Press, 2016.

[CNDG18] Yinlam Chow, Ofir Nachum, Edgar A. Duéñez-Guzmán, and Moham-
mad Ghavamzadeh. A lyapunov-based approach to safe reinforcement
learning. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen
Grauman, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 31: Annual Conference on
Neural Information Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada, pages 8103–8112, 2018.

[CNZ17] Krishnendu Chatterjee, Petr Novotný, and Dorde Zikelic. Stochastic
invariants for probabilistic termination. In Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages, POPL,
2017.

[Cou05] Patrick Cousot. Proving program invariance and termination by para-
metric abstraction, lagrangian relaxation and semidefinite programming.
In Verification, Model Checking, and Abstract Interpretation, 6th Inter-
national Conference, VMCAI 2005, Paris, France, January 17-19, 2005,
Proceedings, pages 1–24, 2005.

[CPR06] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Termination
proofs for systems code. In Proceedings of the ACM SIGPLAN 2006
Conference on Programming Language Design and Implementation,
Ottawa, Ontario, Canada, June 11-14, 2006, pages 415–426, 2006.

[CPR11] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Proving
program termination. Commun. ACM, 54(5):88–98, 2011.

[CRG19] Ya-Chien Chang, Nima Roohi, and Sicun Gao. Neural lyapunov control.
In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in
Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pages 3240–3249, 2019.

212

[CS01] Michael Colón and Henny Sipma. Synthesis of linear ranking functions.
In Tools and Algorithms for the Construction and Analysis of Systems,
7th International Conference, TACAS 2001 Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2001
Genova, Italy, April 2-6, 2001, Proceedings, pages 67–81, 2001.

[CS02] Michael Colón and Henny Sipma. Practical methods for proving program
termination. In Computer Aided Verification, 14th International Confer-
ence, CAV 2002,Copenhagen, Denmark, July 27-31, 2002, Proceedings,
pages 442–454, 2002.

[CS03] Luis G. Crespo and Jian-Qiao Sun. Stochastic optimal control via
bellman’s principle. Autom., 39(12):2109–2114, 2003.

[CS13] Aleksandar Chakarov and Sriram Sankaranarayanan. Probabilistic pro-
gram analysis with martingales. In Natasha Sharygina and Helmut Veith,
editors, Computer Aided Verification - 25th International Conference,
CAV 2013, Saint Petersburg, Russia, July 13-19, 2013. Proceedings,
volume 8044 of Lecture Notes in Computer Science, pages 511–526.
Springer, 2013.

[CSS03] Michael Colón, Sriram Sankaranarayanan, and Henny Sipma. Linear
invariant generation using non-linear constraint solving. In Warren
A. Hunt Jr. and Fabio Somenzi, editors, Computer Aided Verification,
15th International Conference, CAV 2003, Boulder, CO, USA, July 8-12,
2003, Proceedings, volume 2725 of Lecture Notes in Computer Science,
pages 420–432. Springer, 2003.

[CSZ13] Byron Cook, Abigail See, and Florian Zuleger. Ramsey vs. lexicographic
termination proving. In Tools and Algorithms for the Construction and
Analysis of Systems - 19th International Conference, TACAS 2013, Held
as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings,
pages 47–61, 2013.

[CSZ+22] Krishnendu Chatterjee, Jakub Svoboda, Dorde Zikelic, Andreas Pavlo-
giannis, and Josef Tkadlec. Social balance on networks: Local minima
and best-edge dynamics. Phys. Rev. E, 106, 2022.

[CVS16] Aleksandar Chakarov, Yuen-Lam Voronin, and Sriram Sankaranarayanan.
Deductive Proofs of Almost Sure Persistence and Recurrence Properties.
In Marsha Chechik and Jean-François Raskin, editors, Tools and Algo-
rithms for the Construction and Analysis of Systems: 22nd International

213

Conference, TACAS 2016, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS 2016, Eindhoven,
The Netherlands, April 2-8, 2016, Proceedings, pages 260–279, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.

[DCS19] Souradeep Dutta, Xin Chen, and Sriram Sankaranarayanan. Reachability
analysis for neural feedback systems using regressive polynomial rule
inference. In Necmiye Ozay and Pavithra Prabhakar, editors, Proceedings
of the 22nd ACM International Conference on Hybrid Systems: Com-
putation and Control, HSCC 2019, Montreal, QC, Canada, April 16-18,
2019, pages 157–168. ACM, 2019.

[DDV+18] Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerík, Todd Hester, Cos-
min Paduraru, and Yuval Tassa. Safe exploration in continuous action
spaces. ArXiv, abs/1801.08757, 2018.

[DGF23] Charles Dawson, Sicun Gao, and Chuchu Fan. Safe control with learned
certificates: A survey of neural lyapunov, barrier, and contraction meth-
ods for robotics and control. IEEE Transactions on Robotics, 2023.

[DHC22] Maxence Dutreix, Jeongmin Huh, and Samuel Coogan. Abstraction-
based synthesis for stochastic systems with omega-regular objectives.
Nonlinear Analysis: Hybrid Systems, 45:101204, 2022.

[Dij76] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[DLFR21] Ugo Dal Lago, Claudia Faggian, and Simona Ronchi Della Rocca. In-
tersection types and (positive) almost-sure termination. Proc. ACM
Program. Lang., 5(POPL), January 2021.

[dMB08] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an efficient
SMT solver. In Tools and Algorithms for the Construction and Analysis
of Systems, 14th International Conference, TACAS 2008, Held as Part
of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings,
pages 337–340, 2008.

[EBA+21] Ingy Elsayed-Aly, Suda Bharadwaj, Christopher Amato, Rüdiger Ehlers,
Ufuk Topcu, and Lu Feng. Safe multi-agent reinforcement learning
via shielding. In Frank Dignum, Alessio Lomuscio, Ulle Endriss, and
Ann Nowé, editors, AAMAS ’21: 20th International Conference on
Autonomous Agents and Multiagent Systems, Virtual Event, United
Kingdom, May 3-7, 2021, pages 483–491. ACM, 2021.

214

[EGK12] Javier Esparza, Andreas Gaiser, and Stefan Kiefer. Proving termination
of probabilistic programs using patterns. In CAV 2012, pages 123–138,
2012.

[Far02] Julius Farkas. Theorie der einfachen ungleichungen. Journal für die reine
und angewandte Mathematik, 1902(124):1–27, 1902.

[FC19] Hongfei Fu and Krishnendu Chatterjee. Termination of nondeterministic
probabilistic programs. In Constantin Enea and Ruzica Piskac, editors,
Verification, Model Checking, and Abstract Interpretation - 20th Inter-
national Conference, VMCAI 2019, Cascais, Portugal, January 13-15,
2019, Proceedings, volume 11388 of Lecture Notes in Computer Science,
pages 468–490. Springer, 2019.

[Fel84] Yishai A. Feldman. A decidable propositional dynamic logic with explicit
probabilities. Information and Control, 63(1):11–38, 1984.

[FG19] Florian Frohn and Jürgen Giesl. Proving non-termination via loop accel-
eration. In 2019 Formal Methods in Computer Aided Design, FMCAD
2019, San Jose, CA, USA, October 22-25, 2019, pages 221–230, 2019.

[FGKP85] Nissim Francez, Orna Grumberg, Shmuel Katz, and Amir Pnueli. Proving
termination of prolog programs. In Logics of Programs, Conference,
Brooklyn College, New York, NY, USA, June 17-19, 1985, Proceedings,
pages 89–105, 1985.

[FH82] Yishai A Feldman and David Harel. A probabilistic dynamic logic. In
Proceedings of the fourteenth annual ACM Symposium on Theory of
computing, pages 181–195. ACM, 1982.

[FH15] Luis María Ferrer Fioriti and Holger Hermanns. Probabilistic Termination:
Soundness, Completeness, and Compositionality. In Proceedings of
the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2015, Mumbai, India, January 15-17,
2015, pages 489–501, 2015.

[FHC+20] Jiameng Fan, Chao Huang, Xin Chen, Wenchao Li, and Qi Zhu.
Reachnn*: A tool for reachability analysis of neural-network controlled
systems. In Dang Van Hung and Oleg Sokolsky, editors, Automated
Technology for Verification and Analysis - 18th International Symposium,
ATVA 2020, Hanoi, Vietnam, October 19-23, 2020, Proceedings, volume
12302 of Lecture Notes in Computer Science, pages 537–542. Springer,
2020.

215

[FKM+16] Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt,
and Alexandra Silva. Probabilistic netkat. In Peter Thiemann, editor,
Programming Languages and Systems - 25th European Symposium on
Programming, ESOP 2016, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2016, Eindhoven,
The Netherlands, April 2-8, 2016, Proceedings, volume 9632 of Lecture
Notes in Computer Science, pages 282–309. Springer, 2016.

[Flo67] Robert W. Floyd. Assigning meanings to programs. Mathematical
Aspects of Computer Science, 19:19–33, 1967.

[FNBG20] Florian Frohn, Matthias Naaf, Marc Brockschmidt, and Jürgen Giesl. In-
ferring lower runtime bounds for integer programs. ACM Trans. Program.
Lang. Syst., 42(3), October 2020.

[Fos53] F. G. Foster. On the Stochastic Matrices Associated with Certain
Queuing Processes. The Annals of Mathematical Statistics, 24(3):pp.
355–360, 1953.

[GAB+13] Andrew D. Gordon, Mihhail Aizatulin, Johannes Borgström, Guillaume
Claret, Thore Graepel, Aditya V. Nori, Sriram K. Rajamani, and Claudio V.
Russo. A model-learner pattern for bayesian reasoning. In Roberto
Giacobazzi and Radhia Cousot, editors, The 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL
’13, Rome, Italy - January 23 - 25, 2013, pages 403–416. ACM, 2013.

[GAB+17] Jürgen Giesl, Cornelius Aschermann, Marc Brockschmidt, Fabian Emmes,
Florian Frohn, Carsten Fuhs, Jera Hensel, Carsten Otto, Martin Plücker,
Peter Schneider-Kamp, Thomas Ströder, Stephanie Swiderski, and René
Thiemann. Analyzing program termination and complexity automatically
with aprove. J. Autom. Reasoning, 58(1):3–31, 2017.

[GCL+20] Sophie Gruenbacher, Jacek Cyranka, Mathias Lechner, Md. Ariful Islam,
Scott A. Smolka, and Radu Grosu. Lagrangian reachtubes: The next
generation. In CDC, pages 1556–1563. IEEE, 2020.

[GDS+18] Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel,
Chongli Qin, Jonathan Uesato, Relja Arandjelovic, Timothy A. Mann,
and Pushmeet Kohli. On the effectiveness of interval bound propagation
for training verifiably robust models. CoRR, abs/1810.12715, 2018.

[Gei06] Peter Geibel. Reinforcement learning for mdps with constraints. In
Johannes Fürnkranz, Tobias Scheffer, and Myra Spiliopoulou, editors,

216

Machine Learning: ECML 2006, 17th European Conference on Machine
Learning, Berlin, Germany, September 18-22, 2006, Proceedings, volume
4212 of Lecture Notes in Computer Science, pages 646–653. Springer,
2006.

[GF15] Javier García and Fernando Fernández. A comprehensive survey on safe
reinforcement learning. J. Mach. Learn. Res., 16:1437–1480, 2015.

[GGH19] Jürgen Giesl, Peter Giesl, and Marcel Hark. Computing expected runtimes
for constant probability programs. In Pascal Fontaine, editor, Automated
Deduction – CADE 27, pages 269–286, Cham, 2019. Springer Interna-
tional Publishing.

[Gha15] Zoubin Ghahramani. Probabilistic machine learning and artificial intelli-
gence. Nature, 521(7553):452–459, 2015.

[GHK+06] Bhargav S. Gulavani, Thomas A. Henzinger, Yamini Kannan, Aditya V.
Nori, and Sriram K. Rajamani. SYNERGY: a new algorithm for property
checking. In Proceedings of the 14th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2006, Portland,
Oregon, USA, November 5-11, 2006, pages 117–127, 2006.

[GHKW21] Mirco Giacobbe, Mohammadhosein Hasanbeig, Daniel Kroening, and
Hjalmar Wijk. Shielding atari games with bounded prescience. In
Frank Dignum, Alessio Lomuscio, Ulle Endriss, and Ann Nowé, editors,
AAMAS ’21: 20th International Conference on Autonomous Agents and
Multiagent Systems, Virtual Event, United Kingdom, May 3-7, 2021,
pages 1507–1509. ACM, 2021.

[GHM+08] Ashutosh Gupta, Thomas A. Henzinger, Rupak Majumdar, Andrey Ry-
balchenko, and Ru-Gang Xu. Proving non-termination. In Proceedings of
the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL 2008, San Francisco, California, USA, January
7-12, 2008, pages 147–158, 2008.

[GHNR14] Andrew D. Gordon, Thomas A. Henzinger, Aditya V. Nori, and Sri-
ram K. Rajamani. Probabilistic programming. In James D. Herbsleb and
Matthew B. Dwyer, editors, Proceedings of the on Future of Software
Engineering, FOSE 2014, Hyderabad, India, May 31 - June 7, 2014,
pages 167–181. ACM, 2014.

[GK01] J. W. Grizzle and Jun-Mo Kang. Discrete-time control design with
positive semi-definite lyapunov functions. Syst. Control. Lett., 43(4):287–
292, 2001.

217

[GKM14] Friedrich Gretz, Joost-Pieter Katoen, and Annabelle McIver. Operational
versus weakest pre-expectation semantics for the probabilistic guarded
command language. Performance Evaluation, 73:110 – 132, 2014. Special
Issue on the 9th International Conference on Quantitative Evaluation of
Systems.

[GKS05] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: directed
automated random testing. In Proceedings of the ACM SIGPLAN 2005
Conference on Programming Language Design and Implementation,
Chicago, IL, USA, June 12-15, 2005, pages 213–223, 2005.

[GLH+21] Sophie Gruenbacher, Mathias Lechner, Ramin Hasani, Daniela Rus,
Thomas A Henzinger, Scott Smolka, and Radu Grosu. Gotube: Scal-
able stochastic verification of continuous-depth models. arXiv preprint
arXiv:2107.08467, 2021.

[GMR+08] Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Kallista A.
Bonawitz, and Joshua B. Tenenbaum. Church: a language for generative
models. In David A. McAllester and Petri Myllymäki, editors, UAI
2008, Proceedings of the 24th Conference in Uncertainty in Artificial
Intelligence, Helsinki, Finland, July 9-12, 2008, pages 220–229. AUAI
Press, 2008.

[GMR15] Laure Gonnord, David Monniaux, and Gabriel Radanne. Synthesis of
ranking functions using extremal counterexamples. In Proceedings of
the 36th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’15, pages 608–618, New York, NY, USA,
2015. ACM.

[GMV16] Timon Gehr, Sasa Misailovic, and Martin T. Vechev. PSI: exact symbolic
inference for probabilistic programs. In Swarat Chaudhuri and Azadeh
Farzan, editors, Computer Aided Verification - 28th International Confer-
ence, CAV 2016, Toronto, ON, Canada, July 17-23, 2016, Proceedings,
Part I, volume 9779 of Lecture Notes in Computer Science, pages 62–83.
Springer, 2016.

[GRS+19] Jürgen Giesl, Albert Rubio, Christian Sternagel, Johannes Waldmann,
and Akihisa Yamada. The termination and complexity competition. In
Tools and Algorithms for the Construction and Analysis of Systems - 25
Years of TACAS: TOOLympics, Held as Part of ETAPS 2019, Prague,
Czech Republic, April 6-11, 2019, Proceedings, Part III, pages 156–166,
2019.

218

[GS14] Noah D Goodman and Andreas Stuhlmüller. The Design and Implementa-
tion of Probabilistic Programming Languages. http://dippl.org,
2014.

[GSV08] Sumit Gulwani, Saurabh Srivastava, and Ramarathnam Venkatesan.
Program analysis as constraint solving. In Rajiv Gupta and Saman P.
Amarasinghe, editors, Proceedings of the ACM SIGPLAN 2008 Confer-
ence on Programming Language Design and Implementation, Tucson,
AZ, USA, June 7-13, 2008, pages 281–292. ACM, 2008.

[GSV20] Timon Gehr, Samuel Steffen, and Martin T. Vechev. λpsi: exact infer-
ence for higher-order probabilistic programs. In Alastair F. Donaldson
and Emina Torlak, editors, Proceedings of the 41st ACM SIGPLAN
International Conference on Programming Language Design and Imple-
mentation, PLDI 2020, London, UK, June 15-20, 2020, pages 883–897.
ACM, 2020.

[GvRB00] Indranil Gupta, Robbert van Renesse, and Kenneth P. Birman. A proba-
bilistically correct leader election protocol for large groups. In Maurice
Herlihy, editor, Distributed Computing, 14th International Conference,
DISC 2000, Toledo, Spain, October 4-6, 2000, Proceedings, volume
1914 of Lecture Notes in Computer Science, pages 89–103. Springer,
2000.

[HAH11] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. Multivariate amor-
tized resource analysis. In Thomas Ball and Mooly Sagiv, editors, Pro-
ceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2011, Austin, TX, USA, January
26-28, 2011, pages 357–370. ACM, 2011.

[HC11] Wassim M Haddad and VijaySekhar Chellaboina. Nonlinear dynamical
systems and control. Princeton university press, 2011.

[HdBM20] Steven Holtzen, Guy Van den Broeck, and Todd D. Millstein. Scaling
exact inference for discrete probabilistic programs. Proc. ACM Program.
Lang., 4(OOPSLA):140:1–140:31, 2020.

[HDM22] Zixin Huang, Saikat Dutta, and Sasa Misailovic. Automated quantized
inference for probabilistic programs with AQUA. Innov. Syst. Softw.
Eng., 18(3):369–384, 2022.

[HDW17] Jan Hoffmann, Ankush Das, and Shu-Chun Weng. Towards automatic
resource bound analysis for ocaml. In Giuseppe Castagna and Andrew D.

219

http://dippl.org

Gordon, editors, Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages, POPL 2017, Paris, France,
January 18-20, 2017, pages 359–373. ACM, 2017.

[HFC18] Mingzhang Huang, Hongfei Fu, and Krishnendu Chatterjee. New ap-
proaches for almost-sure termination of probabilistic programs. In Suky-
oung Ryu, editor, Programming Languages and Systems, pages 181–201,
Cham, 2018. Springer International Publishing.

[HFCG19] Mingzhang Huang, Hongfei Fu, Krishnendu Chatterjee, and Amir Kaf-
shdar Goharshady. Modular verification for almost-sure termination of
probabilistic programs. Proc. ACM Program. Lang., 3(OOPSLA):129:1–
129:29, 2019.

[HFL+19] Chao Huang, Jiameng Fan, Wenchao Li, Xin Chen, and Qi Zhu. Reachnn:
Reachability analysis of neural-network controlled systems. ACM Trans.
Embed. Comput. Syst., 18(5s):106:1–106:22, 2019.

[HG05] Didier Henrion and Andrea Garulli. Positive polynomials in control,
volume 312. Springer Science & Business Media, 2005.

[HH10] Jan Hoffmann and Martin Hofmann. Amortized resource analysis with
polynomial potential. In Andrew D. Gordon, editor, Programming Lan-
guages and Systems, 19th European Symposium on Programming, ESOP
2010, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010.
Proceedings, volume 6012 of Lecture Notes in Computer Science, pages
287–306. Springer, 2010.

[HHP14] Matthias Heizmann, Jochen Hoenicke, and Andreas Podelski. Termi-
nation analysis by learning terminating programs. In Computer Aided
Verification - 26th International Conference, CAV 2014, Held as Part of
the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22,
2014. Proceedings, pages 797–813, 2014.

[HJK+22] Christian Hensel, Sebastian Junges, Joost-Pieter Katoen, Tim Quatmann,
and Matthias Volk. The probabilistic model checker storm. Int. J. Softw.
Tools Technol. Transf., 24(4):589–610, 2022.

[HJMS02] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire
Sutre. Lazy abstraction. In Conference Record of POPL 2002: The 29th
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
Portland, OR, USA, January 16-18, 2002, pages 58–70, 2002.

220

[HKGK20] Marcel Hark, Benjamin Lucien Kaminski, Jürgen Giesl, and Joost-Pieter
Katoen. Aiming low is harder: induction for lower bounds in probabilistic
program verification. Proc. ACM Program. Lang., 4(POPL):37:1–37:28,
2020.

[HLNR10] William R. Harris, Akash Lal, Aditya V. Nori, and Sriram K. Rajamani.
Alternation for termination. In Static Analysis - 17th International
Symposium, SAS 2010, Perpignan, France, September 14-16, 2010.
Proceedings, pages 304–319, 2010.

[HLZ21] Thomas A. Henzinger, Mathias Lechner, and Dorde Zikelic. Scalable ver-
ification of quantized neural networks. In Thirty-Fifth AAAI Conference
on Artificial Intelligence, AAAI, 2021.

[Hoa62] Charles AR Hoare. Quicksort. The computer journal, 5(1):10–16, 1962.

[Hoa69] Charles Antony Richard Hoare. An axiomatic basis for computer pro-
gramming. Communications of the ACM, 12(10):576–580, 1969.

[HOPW18] Ehud Hrushovski, Joël Ouaknine, Amaury Pouly, and James Worrell.
Polynomial invariants for affine programs. In Proceedings of the 33rd
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2018, Oxford, UK, July 09-12, 2018, pages 530–539, 2018.

[HS21] Sofie Haesaert and Sadegh Soudjani. Robust dynamic programming
for temporal logic control of stochastic systems. IEEE Trans. Autom.
Control., 66(6):2496–2511, 2021.

[Ica17] Thomas Icard. Beyond almost-sure termination. In Glenn Gunzelmann,
Andrew Howes, Thora Tenbrink, and Eddy J. Davelaar, editors, Pro-
ceedings of the 39th Annual Meeting of the Cognitive Science Society,
CogSci 2017, London, UK, 16-29 July 2017. cognitivesciencesociety.org,
2017.

[IWA+19] Radoslav Ivanov, James Weimer, Rajeev Alur, George J. Pappas, and
Insup Lee. Verisig: verifying safety properties of hybrid systems with
neural network controllers. In Necmiye Ozay and Pavithra Prabhakar,
editors, Proceedings of the 22nd ACM International Conference on
Hybrid Systems: Computation and Control, HSCC 2019, Montreal, QC,
Canada, April 16-18, 2019, pages 169–178. ACM, 2019.

[JM09] Ranjit Jhala and Rupak Majumdar. Software model checking. ACM
Comput. Surv., 41(4):21:1–21:54, 2009.

221

[JWFT+03] Zachary Jarvis-Wloszek, Ryan Feeley, Weehong Tan, Kunpeng Sun,
and Andrew Packard. Some controls applications of sum of squares
programming. In 42nd IEEE international conference on decision and
control (IEEE Cat. No. 03CH37475), volume 5, pages 4676–4681. IEEE,
2003.

[Kam19] Benjamin Lucien Kaminski. Advanced weakest precondition calculi for
probabilistic programs. PhD thesis, RWTH Aachen University, Germany,
2019.

[Kat16] Joost-Pieter Katoen. The probabilistic model checking landscape. In
Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors, Proceed-
ings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 31–45.
ACM, 2016.

[KBBR17] Zachary Kincaid, Jason Breck, Ashkan Forouhi Boroujeni, and Thomas W.
Reps. Compositional recurrence analysis revisited. In Proceedings of the
38th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, pages
248–262, 2017.

[KBTK18] T. Koller, Felix Berkenkamp, Matteo Turchetta, and A. Krause. Learning-
based model predictive control for safe exploration. 2018 IEEE Conference
on Decision and Control (CDC), pages 6059–6066, 2018.

[KCBR18] Zachary Kincaid, John Cyphert, Jason Breck, and Thomas W. Reps. Non-
linear reasoning for invariant synthesis. PACMPL, 2(POPL):54:1–54:33,
2018.

[KF09] Daphne Koller and Nir Friedman. Probabilistic Graphical Models -
Principles and Techniques. MIT Press, 2009.

[Kha02] H.K. Khalil. Nonlinear Systems. Pearson Education. Prentice Hall, 2002.

[KK17] Benjamin Lucien Kaminski and Joost-Pieter Katoen. A weakest pre-
expectation semantics for mixed-sign expectations. In 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2017,
Reykjavik, Iceland, June 20-23, 2017, pages 1–12. IEEE Computer
Society, 2017.

[KKDD01] Harold Joseph Kushner Kushner, Harold J Kushner, Paul G Dupuis, and
Paul Dupuis. Numerical methods for stochastic control problems in
continuous time, volume 24. Springer Science & Business Media, 2001.

222

[KKM18] Benjamin Lucien Kaminski, Joost-Pieter Katoen, and Christoph Matheja.
On the hardness of analyzing probabilistic programs. Acta Informatica,
pages 1–31, 2018.

[KKMO18] Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja,
and Federico Olmedo. Weakest precondition reasoning for expected
runtimes of randomized algorithms. J. ACM, 65(5):30:1–30:68, 2018.

[KLG20] Naoki Kobayashi, Ugo Dal Lago, and Charles Grellois. On the termination
problem for probabilistic higher-order recursive programs. Log. Methods
Comput. Sci., 16(4), 2020.

[KM19] J. Zico Kolter and Gaurav Manek. Learning stable deep dynamics models.
In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett, editors, Advances in
Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pages 11126–11134, 2019.

[KM20] Jan Kretínský and Tobias Meggendorfer. Of cores: A partial-exploration
framework for markov decision processes. Log. Methods Comput. Sci.,
16(4), 2020.

[KMMM10] Joost-Pieter Katoen, Annabelle McIver, Larissa Meinicke, and Carroll C.
Morgan. Linear-Invariant Generation for Probabilistic Programs: - Auto-
mated Support for Proof-Based Methods. In SAS, volume LNCS 6337,
Springer, pages 390–406, 2010.

[KNP11] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification
of probabilistic real-time systems. In G. Gopalakrishnan and S. Qadeer,
editors, Proc. 23rd International Conference on Computer Aided Ver-
ification (CAV’11), volume 6806 of LNCS, pages 585–591. Springer,
2011.

[KO21] Andrew Kenyon-Roberts and C.-H. Luke Ong. Supermartingales, ranking
functions and probabilistic lambda calculus. In 36th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June
29 - July 2, 2021, pages 1–13. IEEE, 2021.

[Koz81] Dexter Kozen. Semantics of probabilistic programs. J. Comput. Syst.
Sci., 22(3):328–350, 1981.

[Koz85] Dexter Kozen. A probabilistic PDL. J. Comput. Syst. Sci., 30(2):162–178,
1985.

223

[Kus14] Harold J. Kushner. A partial history of the early development of
continuous-time nonlinear stochastic systems theory. Autom., 50(2):303–
334, 2014.

[KVAK10] Vijay Anand Korthikanti, Mahesh Viswanathan, Gul Agha, and YoungMin
Kwon. Reasoning about mdps as transformers of probability distributions.
In QEST 2010, Seventh International Conference on the Quantitative
Evaluation of Systems, Williamsburg, Virginia, USA, 15-18 September
2010, pages 199–208. IEEE Computer Society, 2010.

[KY14] Frank Kelly and Elena Yudovina. Stochastic networks, volume 2. Cam-
bridge University Press, 2014.

[LB20] Shuo Li and Osbert Bastani. Robust model predictive shielding for
safe reinforcement learning with stochastic dynamics. In 2020 IEEE
International Conference on Robotics and Automation, ICRA 2020, Paris,
France, May 31 - August 31, 2020, pages 7166–7172. IEEE, 2020.

[LG19] Ugo Dal Lago and Charles Grellois. Probabilistic termination by monadic
affine sized typing. ACM Trans. Program. Lang. Syst., 41(2):10:1–10:65,
2019.

[LH18] Jan Leike and Matthias Heizmann. Geometric nontermination arguments.
In Tools and Algorithms for the Construction and Analysis of Systems
- 24th International Conference, TACAS 2018, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS
2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, Part II,
pages 266–283, 2018.

[LKSZ20] Abolfazl Lavaei, Mahmoud Khaled, Sadegh Soudjani, and Majid Zamani.
AMYTISS: parallelized automated controller synthesis for large-scale
stochastic systems. In Shuvendu K. Lahiri and Chao Wang, editors,
Computer Aided Verification - 32nd International Conference, CAV 2020,
Los Angeles, CA, USA, July 21-24, 2020, Proceedings, Part II, volume
12225 of Lecture Notes in Computer Science, pages 461–474. Springer,
2020.

[LLF+20] Nathan P. Lawrence, Philip D. Loewen, Michael G. Forbes, Johan U.
Backström, and R. Bhushan Gopaluni. Almost surely stable deep dy-
namics. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-
Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Informa-
tion Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
2020.

224

[LLP+99] Andrew J. Lazarus, Daniel E. Loeb, James Gary Propp, Walter R.
Stromquist, and Daniel H. Ullman. Combinatorial games under auction
play. Games and Economic Behavior, 27:229–264, 1999.

[LLPU96] A. J. Lazarus, D. E. Loeb, J. G. Propp, and D. Ullman. Richman games.
Games of No Chance, 29:439–449, 1996.

[LNO+14] Daniel Larraz, Kaustubh Nimkar, Albert Oliveras, Enric Rodríguez-
Carbonell, and Albert Rubio. Proving non-termination using max-smt.
In Computer Aided Verification - 26th International Conference, CAV
2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna,
Austria, July 18-22, 2014. Proceedings, pages 779–796, 2014.

[LQC15] Ton Chanh Le, Shengchao Qin, and Wei-Ngan Chin. Termination and
non-termination specification inference. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, Portland, OR, USA, June 15-17, 2015, pages 489–498,
2015.

[LSC+20] Anqi Liu, Guanya Shi, Soon-Jo Chung, Anima Anandkumar, and Yisong
Yue. Robust regression for safe exploration in control. In L4DC, 2020.

[Lya92] Aleksandr Mikhailovich Lyapunov. The general problem of the stability
of motion. International journal of control, 55(3):531–534, 1992.

[LZC+23] Mathias Lechner, Dorde Zikelic, Krishnendu Chatterjee, Thomas A.
Henzinger, and Daniela Rus. Quantization-aware interval bound prop-
agation for training certifiably robust quantized neural networks. In
Thirty-Seventh AAAI Conference on Artificial Intelligence, AAAI, 2023.

[LZCH21a] Mathias Lechner, Dorde Zikelic, Krishnendu Chatterjee, and Thomas A.
Henzinger. Infinite time horizon safety of bayesian neural networks.
In Advances in Neural Information Processing Systems 34: Annual
Conference on Neural Information Processing Systems, NeurIPS, 2021.

[LZCH21b] Mathias Lechner, Dorde Zikelic, Krishnendu Chatterjee, and Thomas A.
Henzinger. Stability verification in stochastic control systems via neural
network supermartingales. CoRR, abs/2112.09495, 2021.

[LZCH22] Mathias Lechner, Dorde Zikelic, Krishnendu Chatterjee, and Thomas A.
Henzinger. Stability verification in stochastic control systems via neural
network supermartingales. In Thirty-Sixth AAAI Conference on Artificial
Intelligence, AAAI, 2022.

225

[M+17] Aaron Meurer et al. SymPy: symbolic computing in python. PeerJ
Comput. Sci., 2017.

[Mac92] David J. C. MacKay. A practical bayesian framework for backpropagation
networks. Neural Comput., 4(3):448–472, 1992.

[MBKK21a] Marcel Moosbrugger, Ezio Bartocci, Joost-Pieter Katoen, and Laura
Kovács. Automated termination analysis of polynomial probabilistic
programs. In Nobuko Yoshida, editor, Programming Languages and
Systems - 30th European Symposium on Programming, ESOP 2021,
Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 -
April 1, 2021, Proceedings, volume 12648 of Lecture Notes in Computer
Science, pages 491–518. Springer, 2021.

[MBKK21b] Marcel Moosbrugger, Ezio Bartocci, Joost-Pieter Katoen, and Laura
Kovács. The probabilistic termination tool amber. In Marieke Huisman,
Corina S. Pasareanu, and Naijun Zhan, editors, Formal Methods - 24th
International Symposium, FM 2021, Virtual Event, November 20-26,
2021, Proceedings, volume 13047 of Lecture Notes in Computer Science,
pages 667–675. Springer, 2021.

[MCL23] Frederik Baymler Mathiesen, Simeon Craig Calvert, and Luca Laurenti.
Safety certification for stochastic systems via neural barrier functions.
IEEE Control. Syst. Lett., 7:973–978, 2023.

[MGK+17] Rowan McAllister, Yarin Gal, Alex Kendall, Mark Van Der Wilk, Amar
Shah, Roberto Cipolla, and Adrian Weller. Concrete problems for au-
tonomous vehicle safety: Advantages of bayesian deep learning. Interna-
tional Joint Conferences on Artificial Intelligence, Inc., 2017.

[MM93] Hannah Michalska and David Q. Mayne. Robust receding horizon
control of constrained nonlinear systems. IEEE Trans. Autom. Control.,
38(11):1623–1633, 1993.

[MM99] Carroll Morgan and A McIver. pgcl: Formal reasoning for random
algorithms. 1999.

[MM04] Annabelle McIver and Carroll Morgan. Developing and Reasoning About
Probabilistic Programs in pGCL. In PSSE, pages 123–155, 2004.

[MM05] Annabelle McIver and Carroll Morgan. Abstraction, Refinement and
Proof for Probabilistic Systems. Monographs in Computer Science.
Springer, 2005.

226

[MMB+22] Rayan Mazouz, Karan Muvvala, Akash Ratheesh Babu, Luca Laurenti,
and Morteza Lahijanian. Safety guarantees for neural network dynamic
systems via stochastic barrier functions. In Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural
Information Processing Systems, 2022.

[MMKK18] Annabelle McIver, Carroll Morgan, Benjamin Lucien Kaminski, and Joost-
Pieter Katoen. A new proof rule for almost-sure termination. Proc. ACM
Program. Lang., 2(POPL):33:1–33:28, 2018.

[MMS96] Carroll Morgan, Annabelle McIver, and Karen Seidel. Probabilistic
predicate transformers. ACM Trans. Program. Lang. Syst., 18(3):325–
353, 1996.

[MMSS24] Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck, and Sadegh
Soudjani. Symbolic control for stochastic systems via finite parity games.
Nonlinear Analysis: Hybrid Systems, 51:101430, 2024.

[Mon00] David Monniaux. Abstract interpretation of probabilistic semantics. In
Jens Palsberg, editor, Static Analysis, 7th International Symposium, SAS
2000, Santa Barbara, CA, USA, June 29 - July 1, 2000, Proceedings,
volume 1824 of Lecture Notes in Computer Science, pages 322–339.
Springer, 2000.

[Mon01] David Monniaux. An abstract analysis of the probabilistic termination of
programs. In Patrick Cousot, editor, Static Analysis, 8th International
Symposium, SAS 2001, Paris, France, July 16-18, 2001, Proceedings,
volume 2126 of Lecture Notes in Computer Science, pages 111–126.
Springer, 2001.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms.
Cambridge University Press, 1995.

[Mur12] Kevin P. Murphy. Machine learning - a probabilistic perspective. Adaptive
computation and machine learning series. MIT Press, 2012.

[MWL+20] Rhiannon Michelmore, Matthew Wicker, Luca Laurenti, Luca Cardelli,
Yarin Gal, and Marta Kwiatkowska. Uncertainty quantification with
statistical guarantees in end-to-end autonomous driving control. In 2020
IEEE International Conference on Robotics and Automation, ICRA 2020,
Paris, France, May 31 - August 31, 2020, pages 7344–7350. IEEE, 2020.

[NCH18] Van Chan Ngo, Quentin Carbonneaux, and Jan Hoffmann. Bounded
expectations: resource analysis for probabilistic programs. In PLDI 2018,
pages 496–512, 2018.

227

[NDFH17] Van Chan Ngo, Mario Dehesa-Azuara, Matthew Fredrikson, and Jan
Hoffmann. Verifying and synthesizing constant-resource implementations
with types. In 2017 IEEE Symposium on Security and Privacy, SP 2017,
San Jose, CA, USA, May 22-26, 2017, pages 710–728. IEEE Computer
Society, 2017.

[Nea12] Radford M Neal. Bayesian learning for neural networks, volume 118.
Springer Science & Business Media, 2012.

[NK07] Martin R. Neuhäußer and Joost-Pieter Katoen. Bisimulation and logical
preservation for continuous-time markov decision processes. In CONCUR,
2007.

[NRZ+15] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc
Brooker, and Michael Deardeuff. How amazon web services uses formal
methods. Commun. ACM, 58(4):66–73, 2015.

[NSK09] Martin R. Neuhäußer, Mariëlle Stoelinga, and Joost-Pieter Katoen.
Delayed nondeterminism in continuous-time markov decision processes.
In FOSSACS, 2009.

[OGJ+18] Federico Olmedo, Friedrich Gretz, Nils Jansen, Benjamin Lucien Kamin-
ski, Joost-Pieter Katoen, and Annabelle McIver. Conditioning in proba-
bilistic programming. ACM Trans. Program. Lang. Syst., 40(1):4:1–4:50,
2018.

[OKKM16] Federico Olmedo, Benjamin Lucien Kaminski, Joost-Pieter Katoen, and
Christoph Matheja. Reasoning about recursive probabilistic programs. In
Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors, Proceed-
ings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 672–681.
ACM, 2016.

[OW14] Joël Ouaknine and James Worrell. Positivity problems for low-order linear
recurrence sequences. In Chandra Chekuri, editor, Proceedings of the
Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 366–379.
SIAM, 2014.

[OW15] Joël Ouaknine and James Worrell. On linear recurrence sequences and
loop termination. ACM SIGLOG News, 2(2):4–13, 2015.

228

[PAA21] Andrea Peruffo, Daniele Ahmed, and Alessandro Abate. Automated
and formal synthesis of neural barrier certificates for dynamical mod-
els. In Jan Friso Groote and Kim Guldstrand Larsen, editors, Tools
and Algorithms for the Construction and Analysis of Systems - 27th
International Conference, TACAS 2021, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2021,
Luxembourg City, Luxembourg, March 27 - April 1, 2021, Proceedings,
Part I, volume 12651 of Lecture Notes in Computer Science, pages
370–388. Springer, 2021.

[Par00] Pablo A Parrilo. Structured semidefinite programs and semialgebraic
geometry methods in robustness and optimization. California Institute
of Technology, 2000.

[PB02] Theodore J. Perkins and Andrew G. Barto. Lyapunov design for safe
reinforcement learning. J. Mach. Learn. Res., 3:803–832, 2002.

[PJP04] Stephen Prajna, Ali Jadbabaie, and George J. Pappas. Stochastic
safety verification using barrier certificates. In 43rd IEEE Conference on
Decision and Control, CDC 2004, Nassau, Bahamas, December 14-17,
2004, pages 929–934. IEEE, 2004.

[PJP07] Stephen Prajna, Ali Jadbabaie, and George J. Pappas. A framework for
worst-case and stochastic safety verification using barrier certificates.
IEEE Trans. Autom. Control., 52(8):1415–1428, 2007.

[PR89] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module.
In Conference Record of the Sixteenth Annual ACM Symposium on
Principles of Programming Languages, Austin, Texas, USA, January
11-13, 1989, pages 179–190. ACM Press, 1989.

[PR04a] Andreas Podelski and Andrey Rybalchenko. A complete method for the
synthesis of linear ranking functions. In Verification, Model Checking,
and Abstract Interpretation, 5th International Conference, VMCAI 2004,
Venice, Italy, January 11-13, 2004, Proceedings, pages 239–251, 2004.

[PR04b] Andreas Podelski and Andrey Rybalchenko. Transition invariants. In
19th IEEE Symposium on Logic in Computer Science (LICS 2004), 14-17
July 2004, Turku, Finland, Proceedings, pages 32–41, 2004.

[Put93] Mihai Putinar. Positive polynomials on compact semi-algebraic sets.
Indiana University Mathematics Journal, 42(3):969–984, 1993.

229

[Put94] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Wiley Series in Probability and Statistics. Wiley,
1994.

[RBK18] Spencer M. Richards, Felix Berkenkamp, and Andreas Krause. The
lyapunov neural network: Adaptive stability certification for safe learning
of dynamical systems. In 2nd Annual Conference on Robot Learning,
CoRL 2018, Zürich, Switzerland, 29-31 October 2018, Proceedings,
volume 87 of Proceedings of Machine Learning Research, pages 466–476.
PMLR, 2018.

[Ric53] Henry Gordon Rice. Classes of recursively enumerable sets and their
decision problems. Transactions of the American Mathematical society,
74(2):358–366, 1953.

[RK04] Enric Rodríguez-Carbonell and Deepak Kapur. Automatic generation of
polynomial loop. In Symbolic and Algebraic Computation, International
Symposium ISSAC 2004, Santander, Spain, July 4-7, 2004, Proceedings,
pages 266–273, 2004.

[RK07] Enric Rodríguez-Carbonell and Deepak Kapur. Automatic generation of
polynomial invariants of bounded degree using abstract interpretation.
Sci. Comput. Program., 64(1):54–75, 2007.

[RS19] Hadi Ravanbakhsh and Sriram Sankaranarayanan. Learning control
lyapunov functions from counterexamples and demonstrations. Auton.
Robots, 43(2):275–307, 2019.

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2018.

[SCG13] Sriram Sankaranarayanan, Aleksandar Chakarov, and Sumit Gulwani.
Static analysis for probabilistic programs: inferring whole program prop-
erties from finitely many paths. In Hans-Juergen Boehm and Cormac
Flanagan, editors, ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’13, Seattle, WA, USA, June
16-19, 2013, pages 447–458. ACM, 2013.

[SDC21] Cesar Santoyo, Maxence Dutreix, and Samuel Coogan. A barrier func-
tion approach to finite-time stochastic system verification and control.
Autom., 125:109439, 2021.

[SG91] Kirack Sohn and Allen Van Gelder. Termination Detection in Logic
Programs using Argument Sizes. In Proceedings of the Tenth ACM

230

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems, May 29-31, 1991, Denver, Colorado, USA, pages 216–226, 1991.

[SGA15] Sadegh Esmaeil Zadeh Soudjani, Caspar Gevaerts, and Alessandro Abate.
FAUST 2 : Formal abstractions of uncountable-state stochastic pro-
cesses. In Tools and Algorithms for the Construction and Analysis of
Systems - 21st International Conference, TACAS 2015, Held as Part of
the European Joint Conferences on Theory and Practice of Software,
ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, volume 9035
of Lecture Notes in Computer Science, pages 272–286. Springer, 2015.

[SL10] Sean Summers and John Lygeros. Verification of discrete time stochastic
hybrid systems: A stochastic reach-avoid decision problem. Autom.,
46(12):1951–1961, 2010.

[SST14] Aaron Stump, Geoff Sutcliffe, and Cesare Tinelli. Starexec: A cross-
community infrastructure for logic solving. In Automated Reasoning -
7th International Joint Conference, IJCAR 2014, Held as Part of the
Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 19-22, 2014.
Proceedings, pages 367–373, 2014.

[ST12] Jacob Steinhardt and Russ Tedrake. Finite-time regional verification
of stochastic non-linear systems. Int. J. Robotics Res., 31(7):901–923,
2012.

[STB+06] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodík, Sanjit A. Seshia,
and Vijay A. Saraswat. Combinatorial sketching for finite programs. In
John Paul Shen and Margaret Martonosi, editors, Proceedings of the
12th International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS 2006, San Jose, CA, USA,
October 21-25, 2006, pages 404–415. ACM, 2006.

[SWD+17] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and
Oleg Klimov. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347, 2017.

[SZS+14] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Du-
mitru Erhan, Ian J. Goodfellow, and Rob Fergus. Intriguing properties of
neural networks. In 2nd International Conference on Learning Represen-
tations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference
Track Proceedings, 2014.

[Tab09] Paulo Tabuada. Verification and Control of Hybrid Systems - A Symbolic
Approach. Springer, 2009.

231

[Tar85] Robert Endre Tarjan. Amortized computational complexity. SIAM
Journal on Algebraic Discrete Methods, 6(2):306–318, 1985.

[TBK19] Matteo Turchetta, Felix Berkenkamp, and A. Krause. Safe exploration
for interactive machine learning. In NeurIPS, 2019.

[TKD+16] Dustin Tran, Alp Kucukelbir, Adji B. Dieng, Maja Rudolph, Dawen
Liang, and David M. Blei. Edward: A library for probabilistic modeling,
inference, and criticism. arXiv preprint arXiv:1610.09787, 2016.

[TMKA17] Ilya Tkachev, Alexandru Mereacre, Joost-Pieter Katoen, and Alessandro
Abate. Quantitative model-checking of controlled discrete-time markov
processes. Inf. Comput., 253:1–35, 2017.

[TOUH18] Toru Takisaka, Yuichiro Oyabu, Natsuki Urabe, and Ichiro Hasuo. Rank-
ing and repulsing supermartingales for approximating reachability. CoRR,
abs/1805.10749, 2018.

[TOUH21] Toru Takisaka, Yuichiro Oyabu, Natsuki Urabe, and Ichiro Hasuo. Rank-
ing and repulsing supermartingales for reachability in randomized pro-
grams. ACM Trans. Program. Lang. Syst., 43(2):5:1–5:46, 2021.

[TvdMYW16] David Tolpin, Jan-Willem van de Meent, Hongseok Yang, and Frank D.
Wood. Design and implementation of probabilistic programming language
anglican. In Tom Schrijvers, editor, Proceedings of the 28th Symposium
on the Implementation and Application of Functional Programming
Languages, IFL 2016, Leuven, Belgium, August 31 - September 2, 2016,
pages 6:1–6:12. ACM, 2016.

[TYL+20] Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick
Musau, Luan Viet Nguyen, Weiming Xiang, Stanley Bak, and Taylor T.
Johnson. NNV: the neural network verification tool for deep neural
networks and learning-enabled cyber-physical systems. In Shuvendu K.
Lahiri and Chao Wang, editors, Computer Aided Verification - 32nd
International Conference, CAV 2020, Los Angeles, CA, USA, July 21-24,
2020, Proceedings, Part I, volume 12224 of Lecture Notes in Computer
Science, pages 3–17. Springer, 2020.

[UD07] Eiji Uchibe and Kenji Doya. Constrained reinforcement learning from
intrinsic and extrinsic rewards. In 2007 IEEE 6th International Conference
on Development and Learning, pages 163–168. IEEE, 2007.

[UGK16] Caterina Urban, Arie Gurfinkel, and Temesghen Kahsai. Synthesizing
ranking functions from bits and pieces. In Tools and Algorithms for the

232

Construction and Analysis of Systems - 22nd International Conference,
TACAS 2016, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands,
April 2-8, 2016, Proceedings, pages 54–70, 2016.

[UH17] Jonas Umlauft and Sandra Hirche. Learning stable stochastic nonlinear
dynamical systems. In Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, volume 70 of Proceedings of Machine Learning Research, pages
3502–3510. PMLR, 2017.

[Vai15] Umesh Vaidya. Stochastic stability analysis of discrete-time system using
lyapunov measure. In American Control Conference, ACC 2015, Chicago,
IL, USA, July 1-3, 2015, pages 4646–4651. IEEE, 2015.

[vdMPYW18] Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and
Frank Wood. An introduction to probabilistic programming. CoRR,
abs/1809.10756, 2018.

[VE03] Ardalan Vahidi and Azim Eskandarian. Research advances in intelligent
collision avoidance and adaptive cruise control. IEEE Trans. Intell. Transp.
Syst., 4(3):143–153, 2003.

[VGO19] Abraham P. Vinod, Joseph D. Gleason, and Meeko M. K. Oishi. Sreach-
tools: a MATLAB stochastic reachability toolbox. In Proceedings of the
22nd ACM International Conference on Hybrid Systems: Computation
and Control, HSCC 2019, Montreal, QC, Canada, April 16-18, 2019,
pages 33–38. ACM, 2019.

[VR08] Helga Velroyen and Philipp Rümmer. Non-termination checking for im-
perative programs. In Tests and Proofs, Second International Conference,
TAP 2008, Prato, Italy, April 9-11, 2008. Proceedings, pages 154–170,
2008.

[WFC+20] Peixin Wang, Hongfei Fu, Krishnendu Chatterjee, Yuxin Deng, and
Ming Xu. Proving expected sensitivity of probabilistic programs with
randomized variable-dependent termination time. Proc. ACM Program.
Lang., 4(POPL):25:1–25:30, 2020.

[WFG+19] Peixin Wang, Hongfei Fu, Amir Kafshdar Goharshady, Krishnendu Chat-
terjee, Xudong Qin, and Wenjun Shi. Cost analysis of nondeterministic
probabilistic programs. In PLDI 2019, pages 204–220, 2019.

233

[Wil91] David Williams. Probability with Martingales. Cambridge mathematical
textbooks. Cambridge University Press, 1991.

[WLPK20] Matthew Wicker, Luca Laurenti, Andrea Patane, and Marta Kwiatkowska.
Probabilistic safety for bayesian neural networks. In Ryan P. Adams and
Vibhav Gogate, editors, Proceedings of the Thirty-Sixth Conference on
Uncertainty in Artificial Intelligence, UAI 2020, virtual online, August
3-6, 2020, volume 124 of Proceedings of Machine Learning Research,
pages 1198–1207. AUAI Press, 2020.

[WSF+21] Jinyi Wang, Yican Sun, Hongfei Fu, Krishnendu Chatterjee, and Amir Kaf-
shdar Goharshady. Quantitative analysis of assertion violations in proba-
bilistic programs. In Stephen N. Freund and Eran Yahav, editors, PLDI
’21: 42nd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, Virtual Event, Canada, June
20-25, 2021, pages 1171–1186. ACM, 2021.

[WZ18] Kim Peter Wabersich and Melanie N. Zeilinger. Linear model predictive
safety certification for learning-based control. In 57th IEEE Conference
on Decision and Control, CDC 2018, Miami, FL, USA, December 17-19,
2018, pages 7130–7135. IEEE, 2018.

[XLZF21] Bai Xue, Renjue Li, Naijun Zhan, and Martin Fränzle. Reach-avoid
analysis for stochastic discrete-time systems. In 2021 American Control
Conference, ACC 2021, New Orleans, LA, USA, May 25-28, 2021, pages
4879–4885. IEEE, 2021.

[ZCBR22] Dorde Zikelic, Bor-Yuh Evan Chang, Pauline Bolignano, and Franco
Raimondi. Differential cost analysis with simultaneous potentials and
anti-potentials. In 43rd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, PLDI, 2022.

[ZLCH22] Dorde Zikelic, Mathias Lechner, Krishnendu Chatterjee, and Thomas A.
Henzinger. Learning stabilizing policies in stochastic control systems. In
ICLR 2022 Workshop on Socially Responsible Machine Learning SRML,
2022.

[ZLHC22] Dorde Zikelic, Mathias Lechner, Thomas A. Henzinger, and Krishnendu
Chatterjee. Learning control policies for stochastic systems with reach-
avoid guarantees. CoRR, abs/2210.05308, 2022.

[ZLHC23] Dorde Zikelic, Mathias Lechner, Thomas A. Henzinger, and Krishnendu
Chatterjee. Learning control policies for stochastic systems with reach-

234

avoid guarantees. In Thirty-Seventh AAAI Conference on Artificial
Intelligence, AAAI, 2023.

235

	Abstract
	Acknowledgements
	About the Author
	List of Collaborators and Publications
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Prologue
	Infinite State Stochastic System Analysis
	Prior Work, Challenges and Thesis Goal
	Thesis Outline and Contributions

	Preliminaries
	Mathematical Preliminaries
	Probabilistic Programs
	Stochastic Dynamical Systems
	Martingale Theory
	Fixed-point Theory

	Lexicographic Methods for Almost-sure Termination Analysis in PPs
	Introduction
	Generalized Lexicographic Ranking Supermartingales
	GLexRSMs for Probabilistic Programs
	Algorithms for Linear Probabilistic Programs
	Related Work
	Technical Proofs

	Quantitative Termination and Safety Analysis in PPs
	Introduction
	Overview of Our Approach
	Stochastic Invariants and a Proof Rule for Quantitative Termination
	Stochastic Invariant Characterization via SI-indicators
	Stochastic Invariants and RSMs for Quantitative Termination
	Algorithm for Quantitative Termination
	Experiments
	Extension to Quantitative Safety
	Related Work
	Technical Proofs

	Non-termination Analysis in Programs
	Introduction
	Preliminaries for Non-probabilistic Programs
	Transition System Reversal
	Sound and Complete Certificate for Non-termination
	Algorithm for Proving Non-termination
	Experiments
	Related Work

	Learning-based Stochastic Control with Almost-sure Reachability
	Introduction
	Problem Statement
	Theoretical Results
	Learner-verifier Framework
	Experiments
	Related Work
	Technical Proofs

	Learning-based Stochastic Control with Quantitative Reach-avoidance
	Introduction
	Problem Statement
	Theoretical Results
	Learner-verifier Framework with RASMs
	Experiments
	Related Work
	Technical Proofs

	Discussion and Conclusion
	Discussion
	Conclusion and Future Perspective

	Bibliography

