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SUMMARY
Methylation of CG dinucleotides (mCGs), which regulates eukaryotic genome functions, is epigenetically
propagated by Dnmt1/MET1 methyltransferases. How mCG is established and transmitted across genera-
tions despite imperfect enzyme fidelity is unclear. Whether mCG variation in natural populations is governed
by genetic or epigenetic inheritance also remains mysterious. Here, we show that MET1 de novo activity,
which is enhanced by existing proximate methylation, seeds and stabilizes mCG in Arabidopsis thaliana
genes. MET1 activity is restricted by active demethylation and suppressed by histone variant H2A.Z, produc-
ing localized mCG patterns. Based on these observations, we develop a stochastic mathematical model that
precisely recapitulates mCG inheritance dynamics and predicts intragenic mCG patterns and their popula-
tion-scale variation given only CG site spacing. Our results demonstrate that intragenic mCG establishment,
inheritance, and variance constitute a unified epigenetic process, revealing that intragenic mCG undergoes
large, millennia-long epigenetic fluctuations and can therefore mediate evolution on this timescale.
INTRODUCTION

Although CG DNA methylation (mCG) patterns are vital for plant

and animal development, and for human health,1–3 how these

patterns are set up and propagated is not fully understood.

mCG is thought to be installed by dedicated de novo methyl-

transferases, and subsequently, epigenetically propagated by

Dnmt1/MET1 (animals and plants) or Dnmt5 (fungi and other eu-

karyotes) ‘‘maintenance’’ methyltransferases.4–9 These enzymes

restore full methylation to hemi-methylated CG sites produced

by DNA replication,10–12 although mammalian Dnmt1 also has

de novo activity,13 while DNA demethylases can at any point

actively remove mCG.14,15 In some lineages, such as flowering

plants, mCG patterns are epigenetically inherited across gener-

ations,4,8,16–18 with mCG associated with variation in both gene

expression and phenotype.19–21

However, as mCG epigenetic inheritance is imperfect, it is un-

clear over how many cell cycles mCG can encode additional in-

formation independent of the underlying genetic sequence and

thus function as an epigenetic genotype. Conversely, it is un-
Cell Systems 14, 953–967, Novem
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known over what timescales mCG patterns might not be epige-

netic but instead are phenotypes that are predictable from local

and global genetic variation. Resolving these questions is

fundamental to understanding mCG epigenetic dynamics and

determining whether epigenetically inherited mCG patterns (epi-

alleles) can be a basis for natural selection.22

In this context, computational modeling is an essential tool for

mechanistic understanding of long-term epigenetic inheritance

that allows access to experimentally inaccessible timescales.

Computational models based on mammalian data indicate that

strong cooperativity—nearby mCG promoting methylation gain

and unmethylated CG (uCG) sites promoting methylation loss—

can produce bistability: the capacity for stable epigenetic inheri-

tance of either the methylated or the unmethylated (UM) state of

a locus.23–26 Dnmt1 activity indeed shows signs of cooperativity,

with new methylation preferentially targeted to and maintained

within regions of existing mCG.13,26 However, how mCG inheri-

tance unfolds over long periods of time has not been explored

and whether a bistable—or any other—paradigm might mediate

long-term epigenetic inheritance in vivo is unknown.
ber 15, 2023 ª 2023 The Author(s). Published by Elsevier Inc. 953
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Figure 1. GbM epigenetic dynamics are dominated by MET1 and delimited by ROS1 and H2AZ

(A–C) Per-cell-cycle rates of mCG gain and loss at individual CG sites within indicated genomic regions. GbM genes were divided into methylated (gbM seg-

ments, A), and unmethylated (UM in gbM, B) regions. A significant difference from the WT rate is indicated by *p = 0.01–0.001, **p = 0.001–0.00001, and

***p < 0.00001 (Fisher’s exact test), N = 9–36 (STARMethods). The UM gene cmt2cmt3 loss rate marked by (y) is based on very few observations and hence is not

reliable (and is not significantly different from WT).

(D) GbM gains that expand to form new methylation clusters can be observed in previously entirely unmethylated genes in different genotypes, including ddcc.

Each circle represents an individual CG pair, with darkness of fill indicating fractional mCG.

(legend continued on next page)
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Flowering plants and most invertebrates have a type of intra-

genic mCG, called gene body methylation (gbM), that tends to

occur in exonic nucleosomes of conserved, constitutively ex-

pressed genes,27–30 and (in themodel plantArabidopsis thaliana)

can prevent aberrant intragenic transcription and promote gene

expression.21,31 Plant gbM is characterized by the absence of

overlapping non-CG methylation32,33 and by a more equal bal-

ance between the rates of mCG loss and gain than that observed

in transposons.17,34 Compared with transposon methylation, the

epigenetics of gbM are far more mysterious.35 The CMT3 meth-

yltransferase has been proposed as the main de novo enzyme,

but the only direct evidence for this is from experiments in which

CMT3 is ectopically overexpressed.36,37 How apparently

random mCG losses and gains at individual CG sites produce

gbM patterns that remain coherent over long periods of time is

unknown. Why gbM favors nucleosomes and exons is unclear,

and why some genes are reproducibly methylated across time,

others are reproducibly unmethylated, and yet others are varia-

bly methylated is mysterious.19,38,39

Here, through a combination of theoretical investigation, ge-

netics, and population genetics, we elucidate the mechanistic

basis of gbM epigenetic inheritance, the timescale over which

it operates and its connection with genetic variation in Arabidop-

sis. We find that gbM establishment, maintenance, and even

loss, constitute a unified, MET1-mediated process. MET1 activ-

ity is suppressed by the histone variant H2A.Z and, especially in

UM genes, by the DNA demethylase ROS1. Any level of gbM can

be stably inherited over tens of generations, but—contrary to ex-

isting models—gbM patterns are not governed by bistable

epigenetic inheritance. Instead, our simulations show that, with

a constant genetic background, gbM patterns eventually

converge to a single DNA-sequence-dependent steady state.

Nevertheless, gbM undergoes large stochastic epigenetic fluc-

tuations that explain much of the observed population-scale

gbM variance. These fluctuations can last for thousands of years

in the absence of genetic change, thereby establishing gbM as

an epigenetic genotype able to mediate evolution on this

timescale.

RESULTS

Gene body methylation epigenetic dynamics are
primarily mediated by MET1
To investigate the timescale and mechanism of gbM epigenetic

inheritance, we grew Arabidopsis for up to six consecutive

generations (Figure S1A) and obtained whole-genome bisu-

lfite sequencing data. In addition to wild-type (WT) Col-0,

we analyzed mutants of all non-MET1 methyltransferases in

different combinations (cmt2, cmt3, drm1drm2, cmt2cmt3,

drm1drm2cmt2cmt3 [ddcc]). In Arabidopsis, the MET1 family is

composed of four genes: MET1—the main, and potentially the
(E) New methylated clusters occur in entirely unmethylated genes in ros1 muta

population. Each circle represents an individual CG pair, with darkness of fill ind

(F–H) Per cell-cycle rates of mCG gain at individual CG sites in genes that are unm

into rarely methylated genes (RMGs) (F, <20% population gbM frequency), occa

and frequently methylated genes (FMGs) (H, R50% population gbM frequency

**p = 0.001–0.00001, and ***p < 0.00001 (Fisher’s exact test), N = 10–36. Number

changed in UM genes overall.
only functional enzyme40—and three close homologs.41–43

Thus, unless we specifically refer to the MET1 gene, all conclu-

sions below apply to the overall MET1 family.

We identified single CG site methylation gains and losses at

each generation and calculated epimutation rates per cell cycle

basedon thepublishedestimateof 34cell cyclespergeneration44

(Figures 1A–1C; Tables S1A and S1B).We used published data45

to define gbM and UM segments within gbM genes, so that UM

segments have small amounts of mCG in our datasets (Tables

S1C and S1D), which allows calculation of loss rates. Our rates

for all Arabidopsis genes agree with those previously published

(Figure 1A; Table S1).17 Notably, rates of mCG gain (2.6 3 10�5

per site per cell cycle) and loss (3.23 10�5 per site per cell cycle)

are finely balanced in gbM segments, but the rate of gain in UM

segments of gbM genes (UM in gbM, 2.2 3 10�6 per site per

cell cycle) is 80-fold lower than the loss rate (1.8 3 10�4 per site

per cell cycle), which is consistent with the low mCG levels in

UM segments. Although a recent study concluded that sparsely

methylated regions (SPMRs)withingbMgeneshaveanenhanced

epimutation rate,46 we find that epimutation rates are similar be-

tween SPMRs and methylated regions of gbM genes that lie

outside SPMRs (Figures S1B–S1E; Table S1).

We find that rates of mCG gain and loss in gbM regions are

similar to WT in all the methyltransferase mutants we tested,

including the quadruple ddcc mutant where the only functional

methyltransferase is MET140 (Figures 1A and 1B; Table S1). Re-

analysis of published cmt3 and suvh4/5/6 triple mutant data46

(SUVH4, 5, and 6 are histone methyltransferases that mediate

DNA methylation by CMT2 and 347–49) produced similar results

(Figures S1F and S1G). Nevertheless, rates are somewhat

changed in some mutants, most significantly a decreased gain

rate in gbM segments of ddcc plants and elevated gain rates in

all genes, gbM genes and in UM segments of gbM genes in

drm1drm2 mutants (Figures 1A and 1B; Table S1). These differ-

ences likely reflect small contributions of non-MET1 methyl-

transferases to gbM, which may contribute to gbM steady state

over long periods of time. However, our data demonstrate that

gbM gains and losses are primarily due to MET1 activity (Figures

1A and 1B; Table S1).

Methylation dynamics within gbM genes may differ from those

of UM loci. To explore whether MET1 can establish methylation

in such loci, we calculated mCG gain and loss rates in UM genes

(defined using published data45; Figure 1C; Table S1). The WT

loss rate in UM genes (2.13 10�4 per site per cell cycle) is similar

to that in UM regions of gbM genes, but the gain rate (1.73 10�7

per site per cell cycle) is 13-fold lower than in UM regions of gbM

genes, and 150-fold lower than in gbM segments, so that the UM

gene loss rate is 1,200-fold higher than the gain rate. The epimu-

tation rates in UM genes imply steady-state mCG of around

0.1% (STAR Methods), which is consistent with their overall

lack of methylation.
nts, including in a gene (AT4G08865) that is almost never methylated in the

icating fractional mCG.

ethylated (UM) in Col-0, grouped depending on their population gbM frequency

sionally methylated genes (OMGs) (G, 20%–50% population gbM frequency),

). A significant difference from the WT rate is indicated by *p = 0.01–0.001,

s above bars indicate fold-change from WT for genotypes that are significantly

Cell Systems 14, 953–967, November 15, 2023 955
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We observed no reduction of the UM gene gain rate in any of

the analyzedmutants and identified newmethylation events in all

methyltransferase mutants, including the quadruple ddcc

mutant (Figure 1C; Table S1A). Indeed, gain rates are strongly

elevated in drm1drm2 and ddcc plants (Figure 1C; Table S1A),

suggesting that DRM methyltransferases indirectly suppress

gains at UM genes. All genotypes except cmt2, including

ddcc, contain at least one example of a single mCG gain within

a UM gene expanding to produce a newmCG cluster (Figure 1D;

Table S2A). These results demonstrate that methyltransferases

other than MET1 are not required to initiate or expand gbM clus-

ters. MET1 is therefore a de novomethyltransferase that can sto-

chastically establish gbM in previously UM genes.

GbM patterns vary substantially between natural Arabidopsis

accessions.19,20,50,51 These differences could arise, at least in

part, due to the stochastic de novo activity of MET1. To investi-

gate this hypothesis, we determined whether UM genes that

gained mCG in our experiments (regardless of whether this

expanded into a new gbM cluster), or in analogous published ex-

periments, are more likely to be methylated in the Arabidopsis

population than all Col-0 UM genes. Col-0 UM genes that gained

gbM in our WT data have gbM in 46% of accessions on average

(Table S2B). The corresponding percentages for other geno-

types are 50% for cmt2, 45% for cmt3, 42% for cmt2cmt3,

41% for published WT mutation accumulation line (MAL) data,

32% for drm1drm2, and 35% for ddcc (Table S2B). In compari-

son, all Col-0 UM genes are much less likely to contain gbM in

the population (16%, p < 2 3 10�16, Table S2B) and overall,

genes with population gbM frequencies between 10% and

90% are relatively uncommon.21,52 This indicates that some

(relatively rare) UM Col-0 genes are predisposed to gain gbM

due to de novo MET1 activity and suggests that natural

Arabidopsis gbM diversity reflects an accumulated pattern of

stochastic differences that are initiated and epigenetically main-

tained by MET1.

ROS1 preferentially prevents methylation in UM gene
bodies
The above results raise the question of why some genes are

more likely to experience de novo MET1 activity. Two of the

methyltransferase mutants we analyzed, drm1drm2 and ddcc,

exhibit significantly increased rates of mCG gain in UM genes

(Figure 1C; Table S1A). We hypothesized that this may be due

to reduced expression of the DNA demethylase ROS1 that oc-

curs in DRM pathway mutants.53,54 We therefore analyzed

mCG in ros1 mutants over consecutive generations. We did

not observe a significant change in the gain rate in gbM seg-

ments (Figure 1A). The rate of mCG gain is elevated by about

25% in UM segments of gbM genes and increases 10-fold in

UM genes, to about the WT level in UM segments of gbM genes

(Figures 1B and 1C; Table S1A). The loss rate in ros1 mutants is

reduced by about 25% in gbM segments, by about 40% in UM

segments of gbM genes, and by over 60% in UM genes (Figures

1A–1C; Table S1B). This indicates that ROS1 preferentially sup-

presses mCG in UM genes but also affects the mCG loss and

gain rates in gbM genes.

New gbM clusters arose in UM genes of ros1mutants, but un-

like in the other genotypes, these are not restricted to genes with

gbM in other accessions (Table S2A). A new cluster arose in a
956 Cell Systems 14, 953–967, November 15, 2023
gene (AT4G08865) that contains gbM in only 0.4% of accessions

(Figure 1E), and clusters arose in AT4G34419 (gbM in 3.4% of

accessions) and AT5G63715 (gbM in 2.6% of accessions;

Table S2A). In contrast, no gene with a population gbM fre-

quency below 13.4% (a group that includes most Col-0 UM

genes21,52) gained a gbM cluster in other genotypes (Table

S2A), suggesting that ROS1 maintains a large subset of genes

in a perpetually UM state. Indeed, mean population gbM fre-

quencies in Col-0 UM genes that gain any gbM in ros1 (33%,

n = 104) and low-ROS1 genotypes (32%, n = 113 in drm1drm2

and 35%, n = 125 in ddcc) are significantly lower than such fre-

quencies in other lines (41%–50%, p < 7.46 3 10�09; n = 857,

Table S2B). These data show that in the absence of ROS1, gains

occur at greater frequency in genes that are unlikely to have gbM

in the population (i.e., most UM genes).

To further investigate the connection between ROS1 and like-

lihood of gbM gain, we subdivided Col-0 UM genes based on

their population gbM frequency into rarely methylated (RMGs;

gbM in <20% of accessions, n = 6,113), occasionally methylated

(OMGs; gbM in >20% and <50% of accessions, n = 1,500) and

frequently methylated genes (FMGs; gbM in >50% of acces-

sions, n = 662). WT and cmt mutant lines (cmt2, cmt3, and

cmt2cmt3) show a clear progression of mCG gain rates, which

increase with population gbM frequency (Figures 1F–1H; Table

S1A). In contrast, gain rates in ros1 mutants are more uniform,

so that the relative gain rate increase between WT and ros1 is

greatest in RMGs (14-fold) comparedwith FMGs (5-fold) (Figures

1F–1H; Table S1A). We therefore conclude that ROS1 regulates

the relative probability of gbM gain.

Histone variant H2A.Z broadly reduces the rate of
gbM gains
The histone variant H2A.Z shows a strong, quantitative anticor-

relation with gbM in Arabidopsis and is known to antagonize

gbM and DNAmethylation in general.30,55–60 We therefore inves-

tigated whether H2A.Z, similar to ROS1, shapes gbM epige-

netics by analyzing triple hta8 hta9 hta11 (h2az) mutants over

multiple generations. We observed a significant increase in the

gbMgain rate in h2az comparedwithWT, with the strongest rela-

tive effect in UM genes (8.8-fold increase), followed by UM re-

gions of gbM genes (2.6-fold increase) and gbM segments

(1.5-fold increase; Figures 1A–1C; Table S1A). Loss rates overall

decreased to about the same extent as in ros1 mutants, with an

even stronger decrease in UM regions of gbM genes, so that the

h2a.z loss rate there and in UM genes is about the same

(Figures 1A–1C; Table S1B). Thus, H2A.Z, like ROS1, preferen-

tially lowers mCG gains and increases mCG losses in UM se-

quences. However, unlike ROS1, H2A.Z has a significant effect

on mCG gain in gbM segments, and has a relatively stronger ef-

fect on epimutation rates in UM regions of gbM genes, whereas

the effects of ROS1 and H2A.Z are about the same in UM genes

(Figures 1A–1C; Tables S1A and S1B). Also, unlike in ros1 mu-

tants, Col-0 UM genes with methylation gains in h2az mutants

have an average population gbM frequency (47%, n = 73) similar

to that in WT data (Table S2B). Consistently, lack of H2A.Z

causes a smaller (and non-significant) relative mCG gain rate in-

crease in RMGs (4-fold) than in UM genes with higher population

gbM frequencies (�9-fold; Figures 1F–1H; Table S1A). There-

fore, H2A.Z does not preferentially influence RMGs as ROS1
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Figure 2. Existing methylation shapes MET1-

mediated mCG gain and loss

(A) Schematic showing expected dependence of

mCG gain rate on proximity to nearby methylated

sites produced by a local cooperative interaction.

Strength of the effect decreases with the distance

between a mCG site and a target CG site.

(B and C) Data profiles of methylation loss (B) and

gain (C) rates per cell cycle, plotted as a function of

distance to the nearestmCG site, plotted over whole

gbM genes. Gain rate plateaus at a level (5 3 10�7

per site per cell cycle; dashed line) comparable to

the gain rate in entirely unmethylated genes (Table

S1A). Rates shown as a 30 bp moving average.

Different genotypes show similar patterns of coop-

erative gain and loss, as does our data and pub-

lished data (MAL).

(D) Schematic of the simulated effective two state

model.

(E and F) Simulated profiles ofmCG loss (E, blue line)

and gain (F, red line) rates per cell cycle, plotted as a

function of distance to the nearest mCG, calculated

over whole gbM genes, where each line is the mean

of 4 simulated replicates (simulated over 30 gener-

ations from the Col-0 initial state). Solid black lines

represent the loss (E) and gain (F) rate profiles

averaged over published MAL data,45 with the light-

blue (E) and pink (F) bands corresponding to ±1

standard deviation (SD). Dotted black lines repro-

duce the Col-0 loss/gain rate profiles shown in

(B) and (C). Solid gray lines are mean gain/loss rates,

averaged over all WT datasets, with gray bands

showing ±1 SD. Rates are shown as a 10 bp moving

average. Model parameters given in Table S3C. In-

sets highlight loss rate at short length scales (E) and

enhanced gain rate at a length scale of �170 bp (F).

(G) Epimutation rates in simulation over modeled methylatable regions agree well with those from experimental data. Simulation rate analysis performed over 30

generations starting from Col-0 initial state using 4 simulation realizations and averaging, to closely resemble methodology used to calculate MAL rates. Model

parameters given in Table S3A.
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does but instead broadly suppresses gbM gain. Our results sug-

gest that regions of high H2A.Z are incompatible with gbMdue to

decreased mCG gain and increased loss, and indicate that

ROS1 and H2A.Z define the genic regions where MET1-medi-

ated gbM epigenetic dynamics can unfold.

Local cooperativity shapes MET1 de novo activity
We observed that gains of single mCG sites in UM genes were

often followed either by reversion to a UM state or by rapid

expansion of a gbM cluster (Figures 1D and 1E). This suggests

MET1-mediated gbMhas cooperative dynamics, where the rates

of mCG change are influenced by nearby mCG sites (Fig-

ure 2A).23–25,61 To examine this behavior, we plotted the likeli-

hood of mCG loss and gain within gbM genes relative to the

nearest mCG site (Figures 2B and 2C). In addition to our newly

generated data, we analyzed data from previous studies that as-

sessedmCG inheritance inWT ArabidopsisMALs over 30 gener-

ations (Table S1).45,62 The published data produced the same

general results as our WT data (Figures 2B and 2C; Table S1). In-

dividual lines within the MAL datasets produced similar patterns,

as did the two different MAL datasets overall (Figures S2A–S2C).

Rates of gain and loss are shaped by proximity to mCG sites

(Figures 2B and 2C), with loss rates rising with increasing dis-

tance to other mCG sites (Figure 2B). The effect of nearby
mCG on methylation gain is even clearer, with the likelihood of

gain over 100-fold above background within 25 bp of a methyl-

ated site, before dropping sharply (Figure 2C). The methylation

gain rate then rises again, peaking between 160 and 170 bp

from the nearest mCG site, before plateauing to a background

level (5 3 10�7 per site per cell cycle; indicated by the dotted

line in Figure 2C) by �1,000 bp away from the nearest mCG

site. Analysis of loci polymorphic for gbM between datasets

shows that the rate of mCG gain is indeed dependent on existing

proximate mCG and is not an intrinsic property of a locus (Fig-

ure S2D; STAR Methods).63 The profiles of transgenerational

gain and loss rates are consistent with those recently reported

for somatic Arabidopsis development,64 and are very similar be-

tween WT and all methyltransferase mutants, including the

quadruple ddcc mutant (Figures 2B and 2C), as well as ros1

and h2a.z mutants (Figures 2B and 2C). These results indicate

that nearby mCG strongly stimulates MET1 de novo activity as

well as either promoting MET1 maintenance activity or inhibiting

DNA demethylation (or both).

A mathematical model can faithfully reproduce the
observed steady-state gbM levels
To gain a quantitative understanding of gbM dynamics, we

developed a computational stochastic model that contains four
Cell Systems 14, 953–967, November 15, 2023 957
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Figure 3. Reproduction of steady-state gbM

by a mathematical model

(A) Simulated time courses for three example

methylatable region loci of different sizes (5, 10, and

21 CG sites) reaching steady state from all-U initial

states. Pink highlighted windows of mCG level

indicate the typical magnitude of mCG fluctuations

from steady state (calculated by SD of fluctuations),

and the red dashed vertical line indicates the time-

averaged steady-state mCG level (both calculated

between 50,000 and 100,000 generations). Black

dotted vertical line shows the average mCG level

of 30 Col-like accessions. Model parameters in

Table S3A.

(B) Local CG density in these same loci over a 60 bp

window centered on each CG site.

(C) Methylation patterns in these loci for Col-0 and

30 Col-like accessions. M-site: red; U-site: blue;

unknown methylation status, I: gray.
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gain/loss processes: spontaneous de novo, cooperative de

novo, background loss, and cooperative suppression of loss,

with power-law cooperativity decay (STAR Methods; Figures

2D and S2E–S2H; Table S3). Simulations over 30 generations

(1,020 cell cycles), to match the timescale of the published

MAL data,45,62 quantitatively recapitulate the experimental gain

and loss profiles within gbM genes (Figures 2E and 2F), indi-

cating that a simple mathematical model can encapsulate com-

plex epimutation patterns.

Over short timescales, such as 30 generations, it is essential to

simulate starting from the experimental Col-0 methylation state,

because epimutation rates are modulated by proximate mCG

(Figures 2B–2F). Due to the low rates of mCG loss and gain, a

simulation over 30 generations only slightly alters the initial

methylation pattern. However, as de novo methylation occurs

in completely UM regions (Figure 1C), and new gbM clusters
958 Cell Systems 14, 953–967, November 15, 2023
can appear and expand over just a few

generations (Figure 1D), we tested the

long-timescale behavior of the model to

investigate whether it can reproduce the

observed methylation patterns when run

from a completely UM initial state (all-U)

for 100,000 generations (3.4 million cell cy-

cles; sufficient to reach steady state).

Because our results indicate that ROS1

prevents a subset of genes from gaining

gbM (Figures 1F–1H) andH2A.Z broadly in-

fluences gbM epimutation rates (Figures

1A–1C and 1F–1H), we simulated over

genic regions that contain gbM in the Ara-

bidopsis population and have low H2A.Z

(Table S4; STAR Methods). The short-

term gain and loss profiles continue to be

reproduced well in these methylatable re-

gions by the model (Figure S2I; Table S5,

with the corresponding locus averaged ep-

imutation rates shown in Figure 2G), similar

to those over whole gbM genes (Figures 2E

and 2F). Within such methylatable regions
(three example loci of different lengths shown in Figure 3), overall

methylation levels are reproduced accurately (Figure 4A): the

distribution of individual locus mCG levels of 30 accessions

with Col-like gbM corresponds well with the steady-state mCG

levels produced by our model (simulations repeated 30 times

to match the number of accessions; Figures 3 and 4A; see

STARMethods; Figures S2 and S3 for description of model con-

struction and fitting).

To confirm that the steady-state methylation dynamics are in-

dependent of the initial methylation state, we also simulated

starting from a fully methylated state (all-M; Figures 4A, 4B,

and S3I). In both instances, the model is fully converged after

around 10,000 generations (Figure 4B): the model therefore pre-

dicts that eventual mCG patterns are not bistable (discussed

further in STAR Methods). Starting from an UM state, the first

mCG is gained, on average, after 340 generations (Figure 4C),
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Figure 4. Accurate prediction of a unique steady-state gbM level for

each gene

(A) Simulated steady-state methylatable regions mCG distribution, using three

initial state choices: the experimental Col-0 methylation (black solid),

completely unmethylated (blue dotted) and fully methylated (red dashed). All 3

simulations converge to the same steady state after 100,000 generations

(normalized for 30 replicates, model parameters in Table S3A). Distribution of

methylation levels over methylatable regions for high-coverage Col-like ac-

cessions shown in green (N = 30).

(B) Time to convergence of simulated methylatable regions model (in gener-

ations). Model is converged once simulations from the all-M initial state (red)

and the all-U initial state (blue) reach the same steady state. At each time point,

methylation level for each locus averaged across 740 replicates and then all

averaged together. Model parameters in Table S3A.

(C) Mean time to first methylation gain from an all-U initial state shown for loci

of different lengths, averaged over 740 locus replicates from methylatable

regions model simulations (model parameters in Table S3A).

(D) Mean time to first reach steady state as a function of methylatable region

locus length. Simulated over 100,000 generations from all-U initial state

(averaged over 740 replicates), model parameters in Table S3A.

(E) Correlation of mCG levels at individual methylatable regions between

simulations (averaged over 740 replicates) and data (averaged over 740 Col-

like accessions; R = 0.53, n = 7,980). Well-fitting loci (<20% difference in

methylation between data and simulation) are shown in blue (R = 0.85, n =

6,005), while poorly captured gene regions are shown in black. Simulations run

as in (D).

(F) Longer methylatable regions are more highly methylated in both simulation

results (black) and in the 740 Col-like accessions data (green). Loci were
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and a locus reaches steady state in around 3,700 generations on

average (Figure 4D). The time needed depends strongly on locus

size, so that loci with few CG sites reach steady state relatively

quickly (�2,000 generations), whereas loci with >200 CG sites

can take 10,000 generations or more (Figure 4D).

As good agreement is observed when calculating the epimu-

tation rates over the methylatable regions using the data and

the simulated methylation changes over 30 generations (Fig-

ure 2G; Tables S1 and S5), we estimated the steady-state gbM

distributions implied by the rate changes in cmt3, ddcc, ros1,

and h2azmutants (Figures S4A–S4D; Table S6; STAR Methods).

Both cmt3 and ddcc are predicted to cause only small decreases

in steady-state gbM (Figures S4A and S4B; Table S6), further

supporting the primary role of MET1 in shaping Arabidopsis

gbM. By far the largest change is predicted in h2az, with

steady-state mean gbM in methylatable regions increasing

from 44% to 68% (Figure S4D; Table S6). This increase is pre-

dicted to unfold over almost 2,000 generations (Table S6), which

explains why h2azmutants grown in the laboratory for a few gen-

erations show only small gbM increases55 (Table S1D).

To test the predictive power of the model with data that was

not used for fitting, we employed a much larger set of unique,

high-coverage Col-like accessions (N = 740) and simulated

from a completely UM initial state for 100,000 generations

(repeated 740 times to match the number of accessions; Fig-

ure S4E). The values for each gene were averaged across acces-

sions and comparedwith those equivalently averaged across the

740 simulated realizations. All replicates were simulated using

identical CG site positions and the same methylatable regions

annotation and parameter values (making them genetically iden-

tical), thus ensuring that methylation pattern differences be-

tween simulated replicates are purely epigenetic. We found

that simulated mCG levels within 75% of gene regions agreed

well with the data, having a Pearson’s R = 0.85 (Figure 4E).

When all gene regions were considered, the poorly captured

gene regions reduce the correlation to R = 0.53. The model

does best with regions that have classical gbM traits (longer,

less CG-dense genes with low H2A.Z35) (Figure S4F). Mean

mCG increases strongly with CG site number, which is captured

well by the model (Figures 4F and S4G). This occurs because the

overall cooperative feedback, and therefore the gain rate, in-

creases with the number of CG sites a locus contains.

The model accurately predicts steady-state gbM
patterns at individual loci
So far, we have used the model to predict gbM levels and

epimutation rates—the types of data used to fit the model. To

test the model’s generality, we examined its predictions for

steady-state distributions of mCG sites within each gene (gbM

patterns). The model quantitatively predicts the experimental

30-generation gain/loss rate profiles plotted as a function of dis-

tance to the nearest uCG site (Figure S5A, rather than the

nearest mCG as in Figure S2I). The predicted distributions of
grouped into percentiles by CG site number, with 99% of percentiles shown

and experimental methylation level averaged over N = 740. Simulated

methylation level for each locus was averaged over 740 replicates after

100,000 generations starting in all-U initial state. Model parameters in

Table S3A.
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Figure 5. GbM patterns are correctly repro-

duced by the mathematical model

(A) Genome browser views of AT2G18220 (left) and

AT4G39520 (right), with gene annotation in red and

the modeled methylatable region in purple. Methyl-

ation of individual cytosines agrees well between the

average of 30 Col-like accessions (data methylation,

green) and the average of 30 model realizations

(simulated methylation, black). Pearson’s R of the

correlation of these methylation patterns between

data and simulated results is shown above each

plot. Col-0 H2A.Z enrichment (blue) and positions

of individual CGs within the modeled region

(brown) are indicated. Simulated for 100,000 gen-

erations from all-U initial state, model parameters in

Table S3A.

(B) Pearson’s R values between the simulation and

data were calculated for each methylatable region

(as for those shown in A), and the distribution of

these R values is shown. Loci where the overall

methylation level is reproduced well (<20% differ-

ence in methylation between data and simulation)

are shown in blue, as in Figure 4E (N = 6,005), while

gene regions with a poorly captured overall

methylation level are shown in black. Simulated

as in (A).

(C) Distances between all M-M pairs within the same

methylatable gene region were calculated (STAR

Methods). Simulated (black) and observed (740 Col-

like accessions, green) distributions of M-M sepa-

ration distances are in good agreement, indicating

accurate reproduction of methylation patterns. Dis-

tribution of separation distances of all CG-CG site

pairs within the same methylatable gene regions

shown in orange. Model simulation results for

740 locus replicates after 100,000 generations

starting from all-U initial state. Model parameters in

Table S3A.

(D) Modeled methylatable regions were divided into

exons and introns, and average mCG was calcu-

lated for each region across Col-like accessions

(data, dark green for exons and light green for in-

trons, N = 30) and simulated realizations (simulation,

black for exons and gray for introns, N = 30).

Simulated for 100,000 generations from all-U initial

state, model parameters in Table S3A.

(E) Methylation is enriched over nucleosomes in the

simulation (black, simulated as in D, N = 30) and in

the methylatable regions data (green, N = 30).

Methylation patterns averaged over well-positioned

nucleosomes as defined in Lyons and Zilberman.65
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methylated/unmethylated neighboring CG site pairs are in good

agreement with the data, with mCG-mCG separations enriched

at short distances compared with uCG-mCG or uCG-uCG (Fig-

ure S5B). This is consistent with local cooperativity, which will

favor clustering of methylated sites.

Overall, spatial mCGmodel predictions and observed patterns

at individual targets are in good agreement (including at loci

where the model is less successful at predicting the steady-state

gbM level), revealing that methylation is enriched in areas of high

local CG density (Figures 3, 5A–5C, and S3I). This is an expected

feature of a cooperative process, as regions of high CG density

can generate greater positive feedback between nearby mCG

sites. Model predictions for mCG levels in exons and introns
960 Cell Systems 14, 953–967, November 15, 2023
agree well with the data, with higher methylation observed for

exons (Figure 5D), reflecting the greater CGdensity of exons (Fig-

ure S1B, right). The model also reproduces the reported gbM

enrichment within nucleosomes (Figure 5E),27,65 indicating that

this enrichment stems from the known tendency of nucleosomes

to center on CG-dense DNA,66,67 where cooperative interactions

drive higher mCG levels (Figures 2B–2F and S4G; confirmed by

simulating steady-state mCG after randomizing CG site posi-

tions; Figures S5C–S5E; STAR Methods). Hence, the model

accurately predicts steady-state gbM patterns as well as gbM

levels within methylatable regions given only CG site spacing

as input. The level of agreement genome-wide is remarkable

given the model was never fit to predict gbM patterns.



A B

C D

Figure 6. Epigenetic fluctuations explain gbM pattern variation in

Arabidopsis populations

(A) Mean magnitude of greatest methylation fluctuation around mean steady-

state mCG level (i.e., largest departure from steady-state mean methylation)

plotted as a function of methylatable region length. Simulation over 100,000

generations from all-U initial state, over 740 replicates: first 50,000 generations

of simulation used to equilibrate, with second 50,000 generations used to

measure fluctuations (STAR Methods, model parameters in Table S3A).

(B) Mean duration (in 1,000s of generations) of the greatest methylation fluc-

tuation away from steady state (i.e., duration of the fluctuation found to have

the largest departure from steady-state mean methylation), plotted as a

function of methylatable region length. Simulated as in (A).

(C) Shorter loci are more variable in both simulated results and data. Standard

deviation of overall methylation levels of individual methylatable regions be-

tween 740 Col-like accessions (data, green) or simulated realizations (simu-

lation, black) shown on y axis. Loci were grouped into percentiles of length,

with 99% of percentiles shown. Simulations run for 100,000 generations

starting from all-U initial state with 740 realizations for each locus. Model pa-

rameters in Table S3A.

(D) Correlation between the standard deviation of mCG levels of individual

methylatable regions within 740 Col-like accessions (locus variability in data)

and 740 simulated realizations (locus variability in simulation; R = 0.71, n =

7,980). Well-fitting loci (<20% difference in methylation between data and

simulation) shown in blue, as in Figure 4E (R = 0.78, n = 6,005), while gene

regions with a poorly captured overall methylation level shown in black. Sim-

ulations run over 100,000 generations from all-U initial state and averaged over

740 locus replicates (model parameters in Table S3A).
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GbM variation across natural accessions is accurately
predicted by the model
Ourmodel predicts a unique gbM steady state for each gene, but

this state is subject to substantial fluctuations, which can include

completely losing and regaining methylation (Figures 3 and S3I).

Over the second half of 100,000 generation simulations (using

the first half to ensure steady state has been reached), we found

that the largest absolute fractional fluctuation experienced by

each locus was 0.37 on average (a change of 1 representing a

transition from a fully unmethylated to a fully methylated state,

or vice versa), and lasted 3,400 generations on average
(Figures 6A, 6B, S6A, and S6B). This measure indicates the

largest departure from the steady-state mean methylation level

of a given locus and illustrates that gbM epigenetic fluctuations

can be very large and can last a long time. This stochastic vari-

ation strongly depends on the number of CG sites in the locus

(Figure 6A), with bigger fluctuations for smaller loci, and the

smallest loci remaining unmethylated for most of the simulation

(Figures 3, 6A, 6B, and S6A–S6C). Large clusters of CG sites

maintain an overall methylated state almost indefinitely, only oc-

casionally losing a patch of methylation (Figures 3, 6A, S3I, and

S6A–S6C). However, large fluctuations tend to last longer in loci

with more CG sites (Figure 6B). Consistently, loci with few CG

sites have more variable gbM across natural accessions, and

this is captured well by the model (Figure 6C).

We note in particular how locus AT2G20540 (rightmost in Fig-

ure 3) has three clear mCG bands that correspond to regions of

high local CG density, but in seven of the 30 accessions shown,

and in Col-0, the leftmost band is absent (Figure 3C). In the

simulation shown in Figure 3A, this band of methylation is spon-

taneously lost twice, each time remaining absent for several

thousand generations before being re-nucleated. Such behavior

is a hallmark of a cooperative process, as the feedback between

nearby mCG sites reinforces and stabilizes a small initial random

fluctuation.

Although the overall mCG levels of highly variable loci are pre-

dicted least accurately (Figure S4F), the variability itself is accu-

rately predicted, with strong positive correlation between the

variability of individual loci in the data and in the simulated results

(R = 0.71; Figure 6D). Thus, the stochastic fluctuations of the

model represent gbM variation across Arabidopsis accessions.

The ability of our purely epigenetic model to accurately predict

gbM variance across natural accessions indicates that gbM

patterns in Col-like accessions (74% of assayed accessions,

Figure S6D) are primarily different stochastic realizations of an

identical epigenetic inheritance process.

Modeling outlier gbM accessions
So far, we have modeled gbM with parameters that reflect the

epigenetic dynamics of Col-0 and accessions with globally

similar gbM. To explore the extent to which our model can repro-

duce gbM in accessions where it is substantially higher (Dör-10

and North Swedish accessions [NS, excluding Dör-10]) or lower

(Can-0, UKID116, Cvi-0 and Relicts [RL, excluding Can-0 and

Cvi-0]; Figures S6D and S7A), we focused on two model param-

eters: the overall strength of the cooperative interaction path-

ways relative to that for Col-0 (r*, such that r* = 1 for Col-0) and

the level of spontaneous de novo activity (r0
+; Figures S7B and

S7C). Adjusting only the cooperativity strength (Figure S7B) pro-

duces reasonable fits in all cases (Figures 7A–7D), though some-

times considerably underestimates the number of fully UM loci,

represented by the height of the spike at the origin (Figures 7C

and 7D). In comparison, adjusting only the spontaneous de

novo activity performs similarly for all but the most sparsely

methylated accessions (Figures 7A–7D and S7C). The best fit

to Can-0, UKID116 and Cvi-0, however, is found by adjusting

both the cooperativity and the spontaneous de novo strength

(Figure 7D). Overall, as the cooperative interaction is non-linear,

smaller changes in its strength are required to alter the methyl-

ation level. Our results indicate that relatively small changes to
Cell Systems 14, 953–967, November 15, 2023 961
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Figure 7. Genetic variation is associated with

global gbM variation in the population

(A) Distribution of mCG levels for loci within Dör-10

(black) and simulated steady states for adjusted

cooperative interaction strength (r�, orange) or

adjusted de novo activity level (r+0 , red). Col-0 dis-

tribution also included (green, r� = 1.00, r+0 = 4.0 3

10�6). Simulations run using methylatable regions

annotation, for 100,000 generations starting from

all-U initial state, normalized for 30 realizations.

Unspecified model parameters as in Table S3A.

(B) Distribution of mCG levels for loci within Northern

Swedish accessions (NS, black) and simulated

steady states for adjusted cooperative interaction

strength (r�, orange) or adjusted de novo activity

level (r+0 , red). Col-0 distribution also included

(green). Simulations as in (A).

(C) Distribution of mCG levels for loci within Relict

accessions (RL, black) and simulated steady states

for adjusted cooperative interaction strength (r�,
turquoise) or adjusted de novo activity level (r+0 ,

purple). Col-0 distribution also included (green).

Simulations as in (A).

(D) Distribution of mCG levels for loci within Cvi-0

(solid black), UKID116 (dashed), Can-0 (dotted),

and simulated steady states for adjusted coopera-

tive interaction strength (r�, purple) or both adjusted

cooperative interaction strength and de novo activity

level (r�and r+0 , blue). Adjusting only the de novo

activity level (r+0 , turquoise) and the Col-0 distribution

(green) are also included. Simulations as in (A).

(E) HTA9 was identified as a significant quantitative

trait locus at both false discovery rate 0.05 (dashed

blue line) and the Bonferroni threshold (a = 0.05;

dashed red line) with GWA analysis using global

gbM levels as the phenotype. y axis indicates the

�log10 of the p values of association between SNPs

and global gbM variation.

(F) Accessions harboring minor HTA9-G allele

exhibit significantly enhanced global gbM levels

compared with those with HTA9-A allele (p = 2.6 3

10�9, mixed linear model GWA). Number of acces-

sions in each group indicated on top.

(G) Expression of HTA9 is lower in accessions with

theHTA9-G allele (p = 0.01,Wilcoxon rank sum test).

FPKM, fragments per kilobase of transcript per

million mapped reads. Number of accessions in

each group indicated on top.

(H) Genes whose gbM levels are associated with

HTA9 SNPs (HTA9-associated) have significantly

lower gbM than HTA9-independent genes (p =

3.7 3 10�42, two-tailed t test). Number of acces-

sions in each group indicated on top.

(I) Levels of H2A.Z enrichment in Col-0 are signifi-

cantly higher in HTA9-associated genes (p = 7.1 3

10�17, two-tailed t test). Number of genes indicated

on top.

(J) Expression of HTA8, HTA9, and HTA11 in relicts

(N = 20) and other accessions (N = 595). p values

correspond to Wilcoxon rank sum test.

(K and L) Frequency of gbM within RMGs in ROS1

haplogroups (K) and ROS3 haplogroups (L) based

on the amino acid sequence, and an additional

ROS1-St group that contains accessions with a

premature stop codon. Different letters indicate significant differences at p < 0.05 (one-way ANOVA), i.e., groups denoted with ‘‘a’’ are statistically different from

‘‘b’’ and ab ones are different from neither a nor b. The number of accessions is indicated for each haplogroup (top).
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the gbM system can accommodate the entire range of gbM

levels observed across the Arabidopsis population.

H2AZ and MET1 polymorphism is associated with high
gbM in natural populations
The necessity to modify model parameters to reproduce the

methylation patterns of outlier accessions implies genetic differ-

ences in gbM factors that ultimately impinge on MET1 or active

demethylation. To reveal such factors, we performed mixed

model genome-wide association (GWA) analysis using the global

gbM level of each accession as the phenotype. At the most strin-

gent statistical threshold, this identified one locus (Figures 7E

and S7D–S7F), which contains HTA9, one of three genes encod-

ing the H2A.Z protein in Arabidopsis.68 The minor HTA9 allele

(HTA9-G) is found exclusively in the north, mainly in northern

Sweden (Figure S7G; Table S7A), a region where accessions

tend to have high gbM.19,50 Indeed, accessions harboring the

HTA9-G allele exhibit greatly enhanced global gbM (Figure 7F)

and show significantly lower expression of HTA9 (Figure 7G).

In addition to global gbM, we detected HTA9 associations with

gbM variation in 4,074 individual genes (Figures S7H–S7J;

Table S7B). These genes have relatively low gbM across acces-

sions (Figure 7H) and exhibit significantly enhanced deposition of

H2A.Z in Col-0 (Figure 7I). Therefore, genes with high H2A.Z

appear to be more sensitive to the effects of HTA9 genetic vari-

ation.HTA9 expression is not significantly different between low-

gbM RL and other accessions (Figures 7J and S6D), but HTA8

and HTA11, the other two Arabidopsis H2A.Z genes, have

>40% higher expression in RL (Figure 7J), which may partly ac-

count for the low gbM in these accessions.

At a lower statistical threshold, we also identified a region con-

taining MET1 associated with global gbM levels of accessions

(FigureS7D).AMET1haplotype (H9) is associatedwith highglobal

gbM, and the two largest MET1 haplotypes (H7 and H10) have

significantly different global gbM (Figure S7K; Table S7A). Taken

together, our results indicate that H2A.Z variation is an important

driver of global gbM variation in natural Arabidopsis populations,

andMET1variation also likely contributes tonatural gbMvariation.

ROS1 pathway polymorphism is associated with RMG
gbM in natural populations
We did not detect associations between ROS1 genetic poly-

morphism and global gbM levels of accessions. However, our

genetic results (Figures 1A–1Cand 1F–1H) predict that natural ac-

cessions with reduced ROS1 activity should have an overabun-

dance of gbM in genes that are rarelymethylated in the population

(RMGs), which would not necessarily translate into substantially

elevatedglobal gbM. To test this hypothesis, we examined the as-

sociation between ROS1 amino acid polymorphism and RMG

gbM frequency across accessions.We defined nine ROS1 haplo-

types,anda tenthgroupcontainingalleleswithprematurestopco-

dons (Figure S7L; Table S7A). Accessions carrying a premature

stop codon (ROS1-St) display a high frequency of RMG gbM (Fig-

ure 7K). Furthermore, GWA analysis using the number of methyl-

ated RMGs as the phenotype identified several single nucleotide

polymorphisms (SNPs) around ROS1 that are marginally associ-

atedwithRMGgbMfrequency (FigureS7M).Thisanalysis alsode-

tected a significant association (SNPChr5:23536319; Figure S7N)

near ROS3, an RNA-binding protein that functions in the ROS1
pathway tomediate active DNAdemethylation.69 Basedon amino

acid sequence variation, wedefined nineROS3 haplogroups (H1–

H9). GWA SNP Chr5:23536319 is linked with ROS3-H8, which is

associated with high RMG gbM frequency (Figures 7L and S7O;

Table S7A). Dör-10, the accession with the highest gbM

(Figures S6D and S7A), harbors both the ROS1-St and ROS3-H8

alleles, as well the HTA9-G allele (Figures 7F, 7K, and 7L;

Table S7A)—an allelic combination that may account for the

extraordinarily high Dör-10 gbM levels (Figures S6D and S7A).

Taken together, these results indicate that theROS1pathwaypro-

tectsUMgenes frommethylation in thepopulation, andROS1and

H2A.Z together define the scope and scale of Arabidopsis gbM in

nature.

DISCUSSION

Our results demonstrate that gbM epigenetic dynamics are

dominated by MET1. In addition to its canonical semiconserva-

tive maintenance activity,9 MET1 has de novo activity that is

stimulated by proximate mCG (Figures 1, 2C, and S2D). Proxi-

mate mCG also boosts the efficiency of MET1-mediated mainte-

nance (Figure 2B). A balance of de novo and maintenance not

only maintains existing gbM but initiates and expands new

gbM clusters (Figures 1C, 1D, 2B–2F, 3, 4C, and 4D). Rates of

mCG loss and gain, including gain rates in completely UM se-

quences, are barely altered either in our cmt3 and cmt2cmt3

data, or in published cmt3 and suv4/5/6 data (Figures 1A–1C

and S1G). This argues against the proposal that CMT3 plays a

central role in gbM establishment.70 Although a role for CMT3

in gbMmaintenance is supported by the very low gbM observed

in plant species that lack CMT3,36 our results indicate that Arabi-

dopsis cmt3 mutants should have only very modestly altered

steady-state gbM (Figure S4A; Table S6). This suggests either

that CMT3 has a stronger influence on gbM in other species,

or that the correlation between CMT3 loss and low gbM is not

causal. It is also possible that the effect of CMT3 loss on gbMdy-

namics increases over time, perhaps due to global epigenetic al-

terations that unfold over many generations.

Our results also show that MET1 activity within genes is regu-

lated by ROS1 and H2A.Z (Figures 1A–1C), but their effects are

different. ROS1 activity is strongest in UM genes that are rarely

methylated in the population, weakens as population gbM fre-

quency rises, and is weakest in gbM genes (Figures 1A–1C and

1F–1H). This suggests that ROS1 (likely in collaborationwith other

factors) determines the population gbM frequency of each gene.

H2A.Z also preferentially affects mCG epimutation in UM se-

quences (Figures 1A–1C), likely because these have high H2A.Z

levels.55,60 However, H2A.Z reduces gains and enhances losses

in all sequences we analyzed (Figures 1A–1C and 1F–1H), and

therefore appears to broadly suppress gbM. This suggests that

gbM may only stably exist in sequences with low H2A.Z, but

because DNA methylation reduces H2A.Z abundance,60 H2A.Z

and gbM may have a complex, dynamic relationship. This is not

included in the model, where we treat H2A.Z as a static back-

ground that constrains gbM regions. However, this is one of

several factors that could dynamically alter on long timescales,

including mCG-induced mutation of CG sites.71 The observation

that H2A.Z affects mCG epimutation rates also relates to our

earlier conclusion that H2A.Z has a global but small effect on
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DNA methylation levels.55 The h2az epimutation rate changes

require many generations to reach a new gbM steady state

(Table S6), so that laboratory measurements after a few genera-

tions show small effects in h2azmutants, whereas our population

genetic analyses indicate that even a modest change in H2A.Z

expression can cause a major long-term alteration of the gbM

landscape (Figures 7E–7J). Indeed, the long timescales involved

in these processes underline the importance of modeling, where

they are easily accessible.

The gbM epigenetic dynamics we describe unify mCG estab-

lishment, maintenance and loss, and predict a unique steady

state for each sequence (i.e., absence of bistability). Our model

does not contain distinct establishment and maintenance

phases: the apparent distinction between the two is driven by

the sensitivity of de novo methylation and semiconservative

maintenance to proximate mCG. Without nearby mCG to stimu-

late cooperative effects, gbM establishment in an UM region is

very rare, much rarer than cooperative de novo mCG addition.

Nonetheless, establishment and maintenance are a single,

continuous process. Any level of methylation is stable over a

few generations due to high maintenance fidelity and low de

novo activity (even with cooperativity). However, this stability is

ephemeral. Due to the slight imbalance between de novo addi-

tion and maintenance failure, the methylation level will drift to-

ward a unique steady state (Figures 3, 4A, 4B, and S3I) over

several thousand generations (Figure 4D). For shorter loci, the

steady state is highly unstable, as they cycle throughmethylation

establishment, maintenance, and loss (Figure 3). Thus, our

model differs fundamentally from previous models that predict

bistability.23–25,72 Because cooperative feedbacks in our model

stabilize the methylated, but not the UM state, most loci that

can support gbM are predicted to bemethylated at anymoment.

This is consistent with typical genic gbM population frequencies

of either >90% or <10%,21,52 with our data indicating that the

<10% genes are kept UM by ROS1 and H2A.Z.

Our model flows directly from MET1 properties: the frequency

and spatial distribution of de novo activity and maintenance fail-

ure. Because the reported de novo andmaintenance failure rates

for mammalian Dnmt1 are both about a 1,000-fold greater,26,73

and its cooperativity patterns might also differ, the epigenetics

we describe may be profoundly unlike those of mammalian

mCG. However, as our model successfully predicts gbM fea-

tures that are common across plants and invertebrates,

including enrichment in exons and nucleosomes27–29,65 (Figures

5D and 5E), it likely generally describes MET1/Dnmt1-mediated

gbM epigenetics in these lineages.

Our results have important implications for the relative contri-

butions of genetics vs. epigenetics to gbM pattern variation

across different timescales. Our hypothesis that the same pro-

cesses shape gbM over short and long timescales is validated

by our success in predicting long-term steady-state gbM pat-

terns using a model fundamentally based on short-term epige-

netic dynamics (Figures 3 and 5). Over short timescales, such

as 30 generations, our model recapitulates the observed epige-

netic gbM dynamics (Figures 2E–2G and S2I). However, over

thousands of generations, steady-state gbM levels and overall

patterns are genetically determined by the interaction of global

regulatory factors—H2A.Z, ROS1, ROS3, MET1, and likely

others—with local CG site number and density. Nevertheless,
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around this gbM steady state, there are continuous stochastic

fluctuations at each gene, which can be large and last for thou-

sands of generations (Figures 3, 6A, and 6B). As demonstrated

by comparing multiple realizations simulated with identical un-

derlying genetics (i.e., identical CG site positions and parameter

values specifying the methylation system), these intrinsic fluctu-

ations are both generated and inherited epigenetically, and they

closely match the gbM differences within the Arabidopsis

population (Figure 6D). Thus, stochastic epigenetic inheritance

generates most of the observed gbM variation between natural

Arabidopsis accessions. This confirms the hypothesis thatArabi-

dopsis gbM variation is primarily epigenetic20 and indicates that

gbM is an epigenetic genotype that can mediate phenotypic

evolution in the Arabidopsis population.21 Against the backdrop

of our currently changing climate, understanding and protecting

the diversity of natural populations is vital: our results show that

diversity loss may not only be genetic74 but may also have an

important and hitherto unappreciated epigenetic component.
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24. Lövkvist, C., Dodd, I.B., Sneppen, K., and Haerter, J.O. (2016). DNA

methylation in human epigenomes depends on local topology of CpG

sites. Nucleic Acids Res. 44, 5123–5132. https://doi.org/10.1093/nar/

gkw124.

25. Sontag, L.B., Lorincz, M.C., and Georg Luebeck, E. (2006). Dynamics, sta-

bility and inheritance of somatic DNA methylation imprints. J. Theor. Biol.

242, 890–899. https://doi.org/10.1016/j.jtbi.2006.05.012.

26. Wang, Q., Yu, G., Ming, X., Xia, W., Xu, X., Zhang, Y., Zhang, W., Li, Y.,

Huang, C., Xie, H., et al. (2020). Imprecise DNMT1 activity coupled with

neighbor-guided correction enables robust yet flexible epigenetic inheri-

tance. Nat. Genet. 52, 828–839. https://doi.org/10.1038/s41588-020-

0661-y.

27. Chodavarapu, R.K., Feng, S., Bernatavichute, Y.V., Chen, P.Y., Stroud, H.,

Yu, Y., Hetzel, J.A., Kuo, F., Kim, J., Cokus, S.J., et al. (2010). Relationship

between nucleosome positioning and DNA methylation. Nature 466,

388–392. https://doi.org/10.1038/nature09147.

28. Feng, S., Cokus, S.J., Zhang, X., Chen, P.Y., Bostick, M., Goll, M.G.,

Hetzel, J., Jain, J., Strauss, S.H., Halpern, M.E., et al. (2010).

Conservation and divergence of methylation patterning in plants and ani-

mals. Proc. Natl. Acad. Sci. USA 107, 8689–8694. https://doi.org/10.1073/

pnas.1002720107.

29. Lewis, S.H., Ross, L., Bain, S.A., Pahita, E., Smith, S.A., Cordaux, R.,

Miska, E.A., Lenhard, B., Jiggins, F.M., and Sarkies, P. (2020).

Widespread conservation and lineage-specific diversification of

genome-wide DNA methylation patterns across arthropods. PLoS

Genet. 16, e1008864. https://doi.org/10.1371/journal.pgen.1008864.

30. Zemach, A., McDaniel, I.E., Silva, P., and Zilberman, D. (2010). Genome-

wide evolutionary analysis of eukaryotic DNA methylation. Science 328,

916–919. https://doi.org/10.1126/science.1186366.

31. Choi, J., Lyons, D.B., Kim, M., Moore, J.D., and Zilberman, D. (2020). DNA

methylation and histone H1 jointly repress transposable elements and

aberrant intragenic transcripts. Mol. Cell 77, 310–323.e7. https://doi.org/

10.1016/j.molcel.2019.10.011.

32. Takuno, S., and Gaut, B.S. (2012). Body-methylated genes in Arabidopsis

thaliana are functionally important and evolve slowly. Mol. Biol. Evol. 29,

219–227. https://doi.org/10.1093/molbev/msr188.

33. Zemach, A., and Zilberman, D. (2010). Evolution of eukaryotic DNA

methylation and the pursuit of safer sex. Curr. Biol. 20, R780–R785.

https://doi.org/10.1016/j.cub.2010.07.007.

34. Lyons, D.B., Briffa, A., He, S., Choi, J., Hollwey, E., Colicchio, J.,

Anderson, I., Feng, X., Howard, M., and Zilberman, D. (2023). Extensive

de novo activity stabilizes epigenetic inheritance of CG methylation in

Arabidopsis transposons. Cell Rep. 42, 112132. https://doi.org/10.1016/

j.celrep.2023.112132.

35. Muyle, A.M., Seymour, D.K., Lv, Y., Huettel, B., and Gaut, B.S. (2022).

Gene body methylation in plants: mechanisms, functions, and important

implications for understanding evolutionary processes. Genome Biol.

Evol. 14, evac038. https://doi.org/10.1093/gbe/evac038.

36. Bewick, A.J., Ji, L., Niederhuth, C.E., Willing, E.M., Hofmeister, B.T., Shi,

X., Wang, L., Lu, Z., Rohr, N.A., Hartwig, B., et al. (2016). On the origin

and evolutionary consequences of gene body DNA methylation. Proc.

Natl. Acad. Sci. USA 113, 9111–9116. https://doi.org/10.1073/pnas.

1604666113.

37. Wendte, J.M., Zhang, Y., Ji, L., Shi, X., Hazarika, R.R., Shahryary, Y.,

Johannes, F., and Schmitz, R.J. (2019). Epimutations are associated

with CHROMOMETHYLASE 3-induced de novo DNA methylation. eLife

8, e47891. https://doi.org/10.7554/eLife.47891.

38. Niederhuth, C.E., Bewick, A.J., Ji, L., Alabady, M.S., Kim, K.D., Li, Q.,

Rohr, N.A., Rambani, A., Burke, J.M., Udall, J.A., et al. (2016).

Widespread natural variation of DNA methylation within angiosperms.

Genome Biol. 17, 194. https://doi.org/10.1186/s13059-016-1059-0.
966 Cell Systems 14, 953–967, November 15, 2023
39. Zhang, Y., Wendte, J.M., Ji, L., and Schmitz, R.J. (2020). Natural variation

in DNA methylation homeostasis and the emergence of epialleles. Proc.

Natl. Acad. Sci. USA 117, 4874–4884. https://doi.org/10.1073/pnas.

1918172117.

40. He, L., Huang, H., Bradai, M., Zhao, C., You, Y., Ma, J., Zhao, L., Lozano-

Durán, R., and Zhu, J.K. (2022). DNAmethylation-free Arabidopsis reveals

crucial roles of DNA methylation in regulating gene expression and devel-

opment. Nat. Commun. 13, 1335. https://doi.org/10.1038/s41467-022-

28940-2.

41. Tirot, L., Bonnet, D.M.V., and Jullien, P.E. (2022). DNAmethyltransferase 3

(MET3) is regulated by Polycomb group complex during Arabidopsis

endosperm development. Plant Reprod. 35, 141–151. https://doi.org/10.

1007/s00497-021-00436-x.

42. Quadrana, L., Bortolini Silveira, A., Mayhew, G.F., LeBlanc, C.,

Martienssen, R.A., Jeddeloh, J.A., and Colot, V. (2016). The Arabidopsis

thaliana mobilome and its impact at the species level. eLife 5, e15716.

https://doi.org/10.7554/eLife.15716.

43. Jullien, P.E., Susaki, D., Yelagandula, R., Higashiyama, T., and Berger, F.

(2012). DNA methylation dynamics during sexual reproduction in

Arabidopsis thaliana. Curr. Biol. 22, 1825–1830. https://doi.org/10.1016/

j.cub.2012.07.061.

44. Watson, J.M., Platzer, A., Kazda, A., Akimcheva, S., Valuchova, S.,

Nizhynska, V., Nordborg, M., and Riha, K. (2016). Germline replications

and somatic mutation accumulation are independent of vegetative life

span in Arabidopsis. Proc. Natl. Acad. Sci. USA 113, 12226–12231.

https://doi.org/10.1073/pnas.1609686113.

45. Schmitz, R.J., Schultz, M.D., Lewsey, M.G., O’Malley, R.C., Urich, M.A.,

Libiger, O., Schork, N.J., and Ecker, J.R. (2011). Transgenerational epige-

netic instability is a source of novel methylation variants. Science 334,

369–373. https://doi.org/10.1126/science.1212959.

46. Hazarika, R.R., Serra, M., Zhang, Z., Zhang, Y., Schmitz, R.J., and

Johannes, F. (2022). Molecular properties of epimutation hotspots. Nat.

Plants 8, 146–156. https://doi.org/10.1038/s41477-021-01086-7.

47. Du, J., Zhong, X., Bernatavichute, Y.V., Stroud, H., Feng, S., Caro, E.,

Vashisht, A.A., Terragni, J., Chin, H.G., Tu, A., et al. (2012). Dual binding

of chromomethylase domains to H3K9me2-containing nucleosomes di-

rects DNA methylation in plants. Cell 151, 167–180. https://doi.org/10.

1016/j.cell.2012.07.034.

48. Du, J., Johnson, L.M., Jacobsen, S.E., and Patel, D.J. (2015). DNAmethyl-

ation pathways and their crosstalk with histonemethylation. Nat. Rev.Mol.

Cell Biol. 16, 519–532. https://doi.org/10.1038/nrm4043.

49. Rajakumara, E., Law, J.A., Simanshu, D.K., Voigt, P., Johnson, L.M.,

Reinberg, D., Patel, D.J., and Jacobsen, S.E. (2011). A dual flip-out mech-

anism for 5mC recognition by the Arabidopsis SUVH5 SRA domain and its

impact on DNA methylation and H3K9 dimethylation in vivo. Genes Dev.

25, 137–152. https://doi.org/10.1101/gad.1980311.

50. Dubin, M.J., Zhang, P., Meng, D., Remigereau, M.S., Osborne, E.J., Paolo

Casale, F., Drewe, P., Kahles, A., Jean, G., Vilhjálmsson, B., et al. (2015).
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REAGENT or RESOURCE SOURCE IDENTIFIER

Critical commercial assays

DNeasy plant mini kit Qiagen 69104

Ultra II DNA Library prep kit NEB E7645L

EZ DNA Methylation Lightning Kit Zymo D5046

Methylated NEBNext Multiplex Oligos NEB E7535L

Deposited data

Raw and analyzed BS-seq data This paper GEO: GSE204837

H2A.Z ChIP-seq data Coleman-Derr and Zilberman55 GEO: GSE39045

30 generation MAL BS-seq data Schmitz et al.45 SRA: SRA035939

30 generation MAL BS-seq data Becker et al.62 ENA: PRJEB2678

Generational bs-seq data Hazarika et al.46 GEO: GSE178684

Generational bs-seq data Shahryary et al.75 GEO: GSE64463

1001 Epigenomes bs-seq data Kawakatsu et al.19 GEO: GSE43857

RNA sequencing data Kawakatsu et al.19 GEO: GSE80744

Nucleosome positions Lyons and Zilberman65 GEO: GSE96994

Experimental models: Organisms/strains

cmt2-3 NASC NASC ID: N683827

cmt2-4 NASC NASC ID: N689216

cmt3-11 NASC NASC ID: N16392

drm1-2drm2-2 Chan et al.76 N/A

drm1-2drm2-2cmt3-11 Chan et al.76 N/A

hta8-1hta9-1hta11-1 Coleman-Derr and Zilberman55 N/A

ros1-3 Penterman et al.54 N/A

Software and algorithms

Stochastic modelling code This paper https://doi.org/10.5281/zenodo.8332883

BSMAP 2.90 Xi and Li77 N/A

Bisulfite alignment pipeline Lyons and Zilberman65 N/A

R https://www.r-project.org/ N/A

SeqMonk https://www.bioinformatics.

babraham.ac.uk/projects/seqmonk/

N/A
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contacts, exper-

imental, bisulfite analysis and population genetics: Daniel Zilberman (daniel.zilberman@ist.ac.at).

Materials availability
This study did not generate new materials.

Data and code availability
All newly generated bisulfite-seq data are available in GEO under accession GSE204837. Additionally, this paper analyzes existing,

publicly available data (see key resources table above).

All original stochastic modelling code is available on GitHub: https://github.com/BriffaAKR/gbM_modelling.git, and is publicly

available at Zenodo: 10.5281/zenodo.8332883

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Arabidopsis thaliana: Biological materials and growth conditions
Arabidopsis thaliana plants were sown on soil, stratified for 2 days at 4�C and grown in a growth chamber under long day conditions

(16 hours light, 8 hours dark), using the generational pattern described in Figure S1A. Two replicate leaves from the same plant at G0

were tested in each genotype, to confirm that differences in sequencing and bisulfite conversion did not produce errors. For WT

(Col-0), cmt2 (cmt2-3), cmt3 (cmt3-11) and drm1drm2 (drm1-2drm2-2), plants were grown for six total generations (G0-G5), in

two separate branching lineages, giving a total of 20 individual triplet comparisons. For cmt2cmt3 (cmt2-4cmt3-11), h2az (hta8-

1hta9-1hta11-1) and ros1 (ros1-3) genotypes, plants were grown for 4 total generations (G0-G3), again in two separate branching

lineages (giving a total of 12 individual comparisons). For ddcc plants (drm1-2drm2-2cmt2-4cmt3-11), three separate G0 plants

were grown for four generations (Lines A-C), each in two branching lineages, resulting in a total of 36 individual comparisons.

cmt2cmt3 and ddcc lines were generated by crossing cmt2-4 (SALK_201637) and cmt3-11 (CS16392) lines, and cmt2-4 and

ddc76 lines respectively and selfing to obtain homozygous progeny.

METHOD DETAILS

Leaf genomic DNA isolation, library preparation, bisulfite conversion, and sequencing
Genomic DNA (gDNA) was extracted from 1-month-old Arabidopsis thaliana rosette leaves with the DNeasy plant mini kit (Qiagen,

cat. no. 69104) per themanufacturer’s instructions. Librarieswere prepared from roughly 500 ng of purified gDNA that was sheared to

approximately 400 bp on aDiagenode Bioruptor Pico water bath sonicator. Libraries were producedwith the Ultra II DNA Library prep

kit according to manufacturer’s instructions (New England Biolabs, cat. no. E7645L). Bisulfite conversion of DNA was carried out ac-

cording to manufacturer’s protocol (Zymo, EZ DNA Methylation Lightning Kit, cat. no. D5046). DNA was converted twice to ensure

complete bisulfite conversion of unmethylated cytosine. NEBNext Multiplex Oligos with methylated adaptors (cat. no. E7535L) were

used for generating multiplexed libraries during PCR amplification of libraries. Sequencing was carried out as single-end 75 bp reads

on Illumina NextSeq 550 at the John Innes Centre.

Sequence Alignments and Segmentation
RNA sequencing data for 625 Arabidopsis accessions was retrieved from GEO: GSE80744.19 Bisulfite sequence reads were ac-

cessed for the mutation accumulation lines (MAL),45,62 1001 methylomes,19 and Hazarika46 experiments from the Sequence Read

Archive (SRA). In-house, Hazarika and published MAL sequence reads were aligned to the Arabidopsis TAIR10 genome reference

sequence,78 using an in-house alignment pipeline as previously described.65 1001 Methylomes sequence reads were aligned using

BSMAP 2.9077 and known SNPs and indels79 were masked. Genes and transposons were annotated using the Araport11 annota-

tion.80 Methylomes were segmented into Unmethylated, gbM and TE-like methylated segments as previously described31

(Table S4B). For the Col-0 data, a segmentation model was created by segmenting the combined reads from all of the Generation

3 samples in data from Schmitz et al.45 Genes were defined as gbM genes if they both contained a gbM segment and any TE-like

segment was both less than a quarter the length of the gbM segment and smaller than 3 CG sites (n=14,581, Table S4C). Genes

were defined as unmethylated genes if they contained no gbM segment or TE-like segment and did not overlap with any gene

that did (n=12,045).

Methylation Calling
Methylation status of individual CG sites was called by comparing the counts of aligned reads indicating methylated and unmethy-

lated status at the site. Fisher’s Exact test (p<0.005) was used to determine whether there was sufficient read coverage at the site to

distinguish the site from a fully unmethylated site with an error rate similar to the methylation rate observed in the chloroplast of the

sample in question (as an estimate of bisulfite conversion inefficiency), or from a fully methylated site with a similar error rate. For sites

where these tests indicated coverage was sufficient, a binomial test (p<0.05) was used to identify sites with significantly more meth-

ylated reads than expected from an unmethylated site. These sites were considered to bemethylated. Sites which did not have signif-

icantly moremethylated reads than an unmethylated site but did have sufficient reads to pass the Fisher’s exact test were considered

to be unmethylated.

Calculation of Gain and Loss Rates
For the MAL, sites with significantly more methylated reads than would be expected for an unmethylated site, but with less than 45%

reads methylated, were classified as partially methylated, generally treated as missing data and assumed to consist of somatic

changes and heterozygously methylated sites. A consensusmethylation call wasmade for each site based on concordance between

methylation calls for the two sibling replicates representing each line. A ‘parental consensus’ methylation state was calculated for

each CG site by taking the majority methylation state among those generation 3 lines where sibling replicates agreed. For MAL,

methylation state changes over 30 generations were identified by comparing parental consensus states with the states in individual

lines where sibling replicates agreed, and masking known DMRs45 so that we could focus on spontaneous changes at individual

sites. One MA line from the Becker et al. dataset (Line 79) was an outlier in comparison to other MAL results and was therefore

excluded. Over the course of 30 generations, most changes will have segregated out into the homozygously methylated or
Cell Systems 14, 953–967.e1–e17, November 15, 2023 e2
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homozygously unmethylated state (see below). This, and the exclusion of sites that are heterozygously methylated at the beginning of

the experiment, using the partial methylation cutoff and the ‘parental consensus’ means that MAL gains reflect those that change

over the course of 30 generations from homozygously unmethylated to homozygously methylated and losses reflect those that

change over thirty generation from homozygously methylated to homozygously unmethylated. The number of gains and losses

was then divided by 30 to produce a per generation rate.

For our bisulfite sequencing data, sites with significantly more methylated reads than would be expected for an unmethylated site,

but with less than 25% reads methylated, were classified as partially methylated, and generally treated as missing data, again to

exclude somatic methylation gain. Changes over sets of three generations were identified, using a methylation level cutoff of 70%

in the parent (for losses) and offspring (for gains) to exclude segregating heterozygotes. This more severe methylation cutoff

(70%) was required due to the increased noise in data sampled at individual generations, in comparison to the MAL data sampled

across 30 generations. To reduce noise, and further exclude segregating heterozygously methylated sites, only sites where parental

and offspring statuses were maintained in the six closest relatives were considered. The result of this is that gains reflect those which

change over one generation from homozygously unmethylated to homozygously methylated and losses reflect those which change

over one generation from homozygously methylated to homozygously unmethylated. This method will not capture all changes, but

will underestimate the rate by a factor of two. To illustrate, a gain represents a site that begins as homozygously unmethylated (U,U) in

Generation 0. Occurrence of a gain will result in the site being heterozygously methylated (U,M) at Generation 1 (we assume that

changes happen on only one chromosome due to the low rate of epimutation). Mendelian segregation predicts three potential out-

comes in Generation 2: 25%of all (U,M) sites will return to being (U,U), andwill not result in a gain inmethylation. 25%of all (U,M) sites

will become (M,M), fixing the gain in the population. Using our method, only these changes will be detected. The final 50% of (U,M)

sites will remain (U,M) in Generation 2. These gains will not be detected, as their methylation level in Generation 2 is not expected to

be above 70%, the cutoff used here. Half of these (U,M) sites will eventually, over multiple generations, become fixed as (M,M) and

therefore result in methylation gain. However, our method does not detect these gains as they are not yet fixed in the population, and

we therefore multiply by two the number of gains that we do detect to include these sites. The branching structure of our lineage

means that multiple comparisons can be drawn for each genotype using different plants (N=12-36, Figure S1A). For example, com-

parisons inWT consist of the following (where ‘Gen’ stands for generation, ‘Rep’ for replicate, and ‘sib’ for sibling – the plant that does

not contribute to the next generation):

1. Gen0Rep1-Gen1LineA-Gen2LineA

2. Gen0Rep1-Gen1LineA-Gen2LineAsib

3. Gen0Rep1-Gen1LineB-Gen2LineB

4. Gen0Rep1-Gen1LineB-Gen2LineBsib

5. Gen0Rep2-Gen1LineA-Gen2LineA

6. Gen0Rep2-Gen1LineA-Gen2LineAsib

7. Gen0Rep2-Gen1LineB-Gen2LineB

8. Gen0Rep2-Gen1LineB-Gen2LineBsib

9. Gen1LineA-Gen2LineA-Gen3LineA

10. Gen1LineA-Gen2LineA-Gen3LineAsib

11. Gen2LineA-Gen3LineA-Gen4LineA

12. Gen2LineA-Gen3LineA-Gen4LineAsib

13. Gen3LineA-Gen4LineA-Gen5LineA

14. Gen3LineA-Gen4LineA-Gen5LineAsib

15. Gen1LineB-Gen2LineB-Gen3LineB

16. Gen1LineB-Gen2LineB-Gen3LineBsib

17. Gen2LineB-Gen3LineB-Gen4LineB

18. Gen2LineB-Gen3LineB-Gen4LineBsib

19. Gen3LineB-Gen4LineB-Gen5LineB

20. Gen3LineB-Gen4LineB-Gen5LineBsib

Individual comparisons between plants with rates that were strong outliers (values +/- 1.5 S.D. from the average) were excluded.

For all methods, rates of change per site were estimated by dividing inferred gains/losses by the number of U calls/M calls in the

previous generation. The resulting rates per generation were converted to per cell cycle by a fixed estimate of 34 germ cell cycles per

generation.44

Population gbM frequency
Population gbM frequency of each genewas obtained fromShahzad et al.21 andwere calculated as described there. Briefly, the pop-

ulation gbM frequency represents the number of accessions having gbM at a given gene as a percentage of the total available calls of

gbM, teM or unmethylated across 948 Arabidopsis accessions. In order to investigate the frequency of methylation gains in different

groups of UM genes, we subdivided Col-0 UM genes based on their population gbM frequency. We first excluded genes that con-

tained TE-like methylation in greater than 1% of accessions and then subdivided the remaining UM genes into rarely methylated
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(RMGs; gbM in <20% of accessions, n=6113), occasionally methylated (OMGs; gbM in >20% and <50%of accessions, n=1500) and

frequently methylated genes (FMGs; gbM in >50% of accessions, n=662)

Epimutation gain profiles within polymorphic loci
Substantial gbM polymorphism exists within various epimutation datasets. This allowed us to analyze gain rates with respect to dis-

tance to the nearest mCG and compare these to gain rates in relation to the same sites when they are unmethylated (and exist within

genes that lack gbM). Genes were identified which were unmethylated (UM) in the published data (MAL45) and gene bodymethylated

(gbM) within at least one dataset of our newly generated data (n=2766; Figure S2D, left). On the right, we show the inverse analysis:

genes were identified which were gbM in the MAL data and unmethylated within at least one dataset of our newly generated data

(n=1615; Figure S2D, right). Analogously to Figure 2C, the gain rate distribution for each sample is plotted with respect to the position

of the nearest M site of the gbM dataset (e.g., the MAL dataset for the panel on the right).

Choice of accessions for modelling
Col-like accessions were defined as accessions where the proportion of called sites called as M, in segments annotated as gbM in

Col-0 (Schmitz parental consensus data set), is within 1 SD of themean among all samples (N=891). CG sites where SNPs resulted in

the loss of a CG site with respect to Col-0 were removed from themodel and data. The model was run with identical initial conditions,

with the variation between accessions arising from stochasticity. Accessions’ global mean gbM was calculated by identifying the

region of broadly gbM-methylatable genome space, defined as regions that are covered by gbM segments (defined as described

above in the section sequence alignments and segmentation) in at least 5 Arabidopsis accessions, and counting CG sites in that

space called asmethylated in the accession by binomial test, as a proportion of sites called asmethylated or unmethylated. Individual

accessions’ global mean gbM was calculated excluding any portion of the broadly gbM-methylatable space that is overlapped by a

teM segment in the accession in question.

To fit the model, accessions with more than 60% of CG sites called as either methylated or unmethylated (adequate coverage)

were divided into groups based on their global mean gbM. The 10 most hypo- and hyper-gbM accessions (�1%) were identified

as potential outliers and removed from the broader group. The remainder of accessions were divided into deciles by global mean

gbM. The 10 accessionswith highest proportion of CG sites called asmethylated or unmethylated (best coverage) in each of the three

deciles closest to Col-0 (Deciles 3, 4 and 5) were chosen to determine model parameters (N=30).

For a wider comparison of themodel, simulations were compared to all unique, high-coverage Col-like accessions. Duplicate sam-

ples of individual accessions were removed (N=798). Accessions with less than 50% of CG sites called as either methylated or un-

methylated were considered to have inadequate coverage and were removed, resulting in a final accession set for modelling

of N=740.

To analyze accessions with non-Col-like levels of methylation, two groups were chosen: Northern Swedish accessions (NS), which

have elevated gbM, and Relict (RL) accessions, which have unusually low levels of gbM. Dör-10, a Northern Swedish accession

which has the highest known level of gbM was analyzed separately, as were two Relict accessions (Can-0 and Cvi-0), which have

extremely low levels of gbM, and a third accession (UKID116), which has similarly low levels of gbM.

Methylatable Gene Regions
Genes for modelling were selected from the Araport 11 annotation, annotated as protein coding – (n=27,473). Genes that contained

TE-like methylation in greater than 1% of accessions were discarded to retain non-TE genes only (n=19,082). The segments chosen

for modelling comprise the region in each gene between the first and last CG sites overlapped by gbM segments spanning at least 3

CG sites, in at least 5% of the accessions from the 891 which constitute the Col-0 like data set, resulting in the regions that were

broadly methylatable (n=13,138). These segments were further trimmed to remove the ends of segments where H2A.Z ChIP-Seq

signal, smoothed over 5 adjacent 50bp bins, was above 1.2. H2A.Z ChIP data was obtained from Coleman-Derr and Zilberman.55

Segments were also removed if the mean H2A.Z ChIP-Seq signal along the remaining segment exceeded 1.2, resulting in the

H2A.Z-low methylatable annotation (n=8,843). Our modelling method considers methylation levels in each locus in isolation of the

surrounding DNA and therefore overlapping genes (where gbM in one gene may affect gbM in the other, overlapping gene) cannot

be appropriately modelled. To prevent this, if segments overlapped by more than 20%, the smaller segment was discarded (n=416),

as were any gene regions containing fewer than 5 CG sites (n= 447). This left us with 7980 loci in our final modelling dataset

(Table S4A).

Correlation of spatial patterns of methylation within simulated and experimental loci
We calculated the methylation percentage of each CG within a locus in the simulated data (30 iterations, modelled as in Figure 4A

from the all-U initial state) and the experimental data (30 accessions). For each locus, we generated Pearson’s linear correlation co-

efficients (R) describing howwell the patterns of simulated and observed per-site mCG levels correlated across a single locus. These

R values are included in the genome browser examples in Figure 5A. The distribution of these coefficients for all loci (n=7837) in our

final analysis is shown in Figure 5B, with modelled genes for which the overall methylation level is poorly captured shown in black and

well-modeled genes in blue, defined as in Figure 4E.
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Analysis of methylation patterns over well-positioned nucleosomes
The locations of well-positioned nucleosomes as defined in Lyons and Zilberman65 were obtained. Methylation patterns in data, aver-

aged across 30 Col-like accessions, were plotted over these nucleosomes and showed enrichment over the nucleosome, as has

been previously described to occur as a core feature of gbM in plants and animals.27,65 Simulated methylation patterns, generated

only from the number and position of CG sites, using the all-U initial state and simulated for 100,000 generations were also plotted

over these regions (black) and saw a similar enrichment over the nucleosome as the data, despite being generated with no informa-

tion on nucleosome positioning.

Analysis of sparsely methylated regions
Co-ordinates of sparsely methylated regions within gbM genes (SPMRs) and the gene IDs for the gbM genes concerned (Hazarika

gbM genes) were downloaded from Hazarika et al.46 Regions within the Hazarika gbM genes that were not SPMRs were defined as

non-SPMRs. Non-SPMRs were bimodal with respect to mCG and so were partitioned into methylated (M_non_SPMRs) and unme-

thylated (U_non_SPMRs) (Figures S1B–S1D). 91% of M_non_SPMR CG sites and 92% of SPMR CG sites fall within our gbM seg-

ments. Epimutation rates in both published MAL data and our bisulfite sequencing data were calculated in SPMRs, M_non_SPMRs

and U_non_SPMRs (Figure S1E; Table S1).

Reanalysis of published methylation data
Bisulfite sequencing data was downloaded from Hazarika et al.46 and methylation levels were calculated by averaging the percent-

age of C reads/total reads at each site over each genomic region. Samples are of highly variable coverage (4-83X). In the original

analysis, in order to make single site methylation calls in all samples, methylation states of individual cytosines were imputed based

on the methylation status of nearby cytosines.81 This method may not be appropriate to make single site mCG calls in sparsely

methylated genes, especially to subsequently identify rare epimutations within an otherwise unchangedmethylation pattern of neigh-

boring sites. We therefore excluded samples of coverage <10X (WT Line 1 Generation 11, suvh4/5/6 Line 4 Generations 5 and 13,

suvh4/5/6 Line 8 Generation 8 and 9) and assigned methylation status without imputation in all remaining samples. Sites with signif-

icantly more methylated reads than would be expected for an unmethylated site (see Methylation Calling), but with less than 25%

reads methylated, were classified as partially methylated, and generally treated as missing data. A ‘parental consensus’ methylation

state was calculated for each CG site by identifying sharedM or U calls in the three samples at the earliest generations for each ge-

notype. Methylation state changes were identified by comparing parental consensus states with the states in individual samples and

converted to per generation rates depending on the number of generations since the parental consensus. Rates were calculated in

different genomic regions.

Genome-wide association mapping
Three types of genome-wide association (GWA) analyses were performed to identify single nucleotide polymorphisms (SNPs) asso-

ciated with the natural variation of gbM in Arabidopsis accessions. Genome-wide average gbM levels of accessions were used to

identify the genetic factors influencing global gbM. Global gbM levels are influenced by sequencing coverage and thus analyses

were carried out using multiple cutoffs for sequencing coverage.

Additionally, gbM levels of individual genes were used for GWA analysis to identify SNPs linked with local gbM variation. Further-

more, gbM frequency in rarely methylated genes (RMGs) was used for GWA analysis. RMGs are defined as genes with gbM in <20%

of accessions and which have mean H2A.Z ChIP-seq signal <4 in Col-0 gene bodies. GWA mapping was performed using 1001 ge-

nomes SNP data79 with an accelerated mixed model (AMM)82 implemented in PyGWAS: Python library for running GWAS (version

1.7.4). SNPswithMinor Allele Frequency (MAF) >5% in the population were considered. 0.05 False Discovery Rate (FDR) correction83

was implemented to account for multiple tests and identify SNPs associated with gbM variation.

Haplotype analyses
ROS1 and ROS3 nucleotide sequences of Arabidopsis accessions were retrieved from http://signal.salk.edu/atg1001/3.0/

gebrowser.php.79 Sequences were translated with the EMBOSS Transeq pipeline, and aligned usingMEGA5.84 Amino acid polymor-

phisms were identified and accessions identical (100%) for predicted full length protein sequences were classified as a haplogroup.

Haplogroups comprising less than 15 accessions were discarded from association analyses to have a reasonable number within

each haplogroup. The ROS1 stop codon group includes all the accessions with a premature stop codon irrespective of the stop

codon position and predicted protein amino acid sequence identity. Associations between ROS1 and ROS3 haplogroups and

gbM variation were examined using the linear model ANOVA.

Modelling gene body methylation dynamics
Methylation dynamics are modelled over both short timescales (30 plant generations) and long timescales (100,000 plant genera-

tions, corresponding to over three million cell cycles). Despite the remarkably high fidelity of the maintenance pathway, over these

long timescales maintenance failure events will accumulate. We study the role of cooperative de novo and cooperative maintenance

pathways (indicated by experimentally observed gain/loss rate profiles, Figures 2B, 2C, and S2A–S2D) in generating stable
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methylation dynamics consistent with the experimentally observed methylation patterns. The term ‘cooperative’ is used to denote,

for example, that the probability of a specific unmethylated CG site (uCG) gaining methylation is enhanced by the presence of other

nearby methylated sites (mCG).

A single copy of each diploid chromosome is modeled through multiple cell cycles, assuming that the methylation dynamics are

unaffected by whether that chromosome is currently in a diploid or haploid cell environment. Below we discuss in detail how this

choice relates to the experimental setups. Furthermore, we model only the CG sites and assume that the methylation dynamics

of each gene are independent from all others so that each gene can be modelled individually.

We assume that methylation gain and loss is an intrinsically stochastic process, in which case unmethylated sites (and even re-

gions) can, at times, exist in locations that in principle can be methylated. We therefore created an annotation of such ‘methylat-

able-regions’, identified using the frequency of methylation across Arabidopsis accessions and the Col-0 H2A.Z thresholds, as

described in detail in the section: methylatable gene regions. In brief, we selected accessions with overall gbM levels similar to

Col-0 (N=891)19 and used these to define genes that could contain gbM. Accessions were considered similar to Col-0 if they

have a global gbM level within one standard deviation of the mean, because independent Col-0 samples vary substantially within

this interval (Figure S6D). Gene ends were then removed using the location of methylation in these accessions, and the level of

H2A.Z in Col-0. This procedure produced a single, continuous,methylatable region per gene in 7980 genes (Table S4A). Unless other-

wise stated, all simulations are performed using this methylatable-regions annotation. Methylatable-regions consisting of only four

CG-sites or fewer are not simulated. Subtleties occurring when genes overlap are also discussed above in the section methylatable

gene regions. For comparison we also simulate gain/loss-rate profiles and steady-state methylation levels when applying the coop-

erative feedbackmodel to a whole gbM genes annotation, as discussed in the section: simulations using alternative annotations. The

sections model fitting and model predictions provide details of the model fitting and subsequent predictions.

The methylation dynamics are simulated stochastically using the direct Gillespie algorithm,85 as described below, with the coop-

erativity implemented using an independent interaction between, for example, each target uCG and every mCG. All timescales and

rates are defined relative to the cell cycle duration (here taken to be the time between successive DNA replication events).

Construction of Two-State Model
Themodel does not keep track of the individual methylation status of the top and bottom strand cytosines of each CG site. Instead, a

single CG site is defined to be in one of three states: fully-methylated (M), hemi-methylated (H) or un-methylated (U). Initially we as-

sume that there is no active demethylation occurring in gene bodies (e.g., through the DNA glycosylase pathways, such as the DNA

demethylase ROS1). We later revisit this assumption, however, in light of potential ROS1 activity. The possible methylation gain and

loss transitions between the three states are illustrated and defined in Figure S2E.

During replication, all M sites are converted to H sites. On average, we assume that half of the pre-existing H sites will be meth-

ylated on the stand of DNA corresponding to the lineage that we follow; these therefore remain as H, whereas the remainder of the

pre-existing H sites transform to U sites.

It is known that the MET1 maintenance pathway is extremely efficient,86 a result recapitulated by our analysis. In the analysis

below, we assume that MET1-mediated re-methylation is not only highly efficient but occurs rapidly after replication on a timescale

much faster than the cell cycle duration. This assumption simplifies our analysis. If, however, maintenance is slower (but still highly

efficient within a cell cycle), our conclusions are nevertheless unchanged. We first define a maintenance failure rate, f, which is the

probability per cell cycle that an H site generated during replication is not converted to an M. This gives a remethylation mainte-

nance rate

r+H = 1 � f = 1 � eg;

with 0< e � 1, and where 0<g< 1 is a further cooperative ‘suppression-factor’, which reduces the chance of a maintenance failure

occurring if there are existingM sites nearby (see below). In the limit of g/1, e is the backgroundmaintenance failure rate that a single

isolatedM site immediately before replication, in an otherwise completely unmethylated gene, is not fully remethylated in the period

between successive DNA replication events.

The de novomethylation of a U site, r+U � 1, is composed of both a spontaneous and a cooperative pathway as discussed below.

As expected, in the experimentally relevant region of parameter-space (i.e., very efficient maintenance byMET1, e � 1),H sites only

exist transiently, up to one cell cycle, before being resolved to U orM. As a result, the intermediate state, H, can be integrated out to

create a two-state model consisting of only U and M states with effective direct transitions between these two states. This simplifi-

cation was confirmed to have negligible effect on the simulation results by first implementing the three-state model described above

using aGillespie algorithm that was interrupted at the end of every cell cycle to explicitly simulate every replication event. In the exper-

imentally applicable region of parameter-space, the three-state and two-state models produced almost identical methylation dy-

namics. Crucially, however, as replication is no longer explicitly simulated for the two-state model, a single Gillespie time increment

can span multiple cell cycles, speeding up the simulation by several orders of magnitude. This speed up was helpful in simulating

methylation dynamics over very long time periods of 105 plant generations.

In the two-state model, the effective M/U loss-rate, r�, to first order is given by:

r� = probðM/UÞ
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= pðRpnÞðM/HÞ 3 pðMaintÞðH/HÞ3pðRpnÞðH/UÞ
zð1ÞðegÞ
�
1

2

�
=

eg

2

where pðRpnÞ represents the probability of the specified event occurring at replication, and pðMaintÞ the probability of the specified event

occurring during maintenance. Similarly, the effective gain-rate, to first order, is given by:

r+ = probðU/MÞ = pðMaintÞðU/HÞ 3 pðRpnÞðH/HÞ 3 pðMaintÞðH/MÞz
�
2r+0 + 2r+Coop

��1
2

�
ð1Þ = r+0 + r+Coop

where r+U = 2r+0 + 2r+Coop is decomposed into two components. Firstly, a constant spontaneous de novo gain-rate, r+0 , which is

assumed to be a uniform background across all CG sites. Secondly, r+Coop represents the cooperative gain rate. We discuss the pre-

cise implementation of this contribution in the next section. The explicit factor of 2 in the parameterization of r+0 and r+Coop is included to

account for the fact that in each U site there are two possible unmethylated cytosine targets for the pathways to act on. Only the first

order contributions to the effective rates are included, as self-consistently, we find that the fitted values for r+Coop, r
+
0 and e per cell cycle

are all several orders of magnitude smaller than one.

In our previous work modelling decay of methylation levels at transposable elements (TEs) in various A. thaliana mutants34 we

assumed a constant methylation gain and loss rate per cell cycle without explicit cooperativity, despite the rapidly falling methylation

level. In light of our current work, it seems likely that both cooperative de novo and cooperative maintenance will also shape MET1

activity in TEs. The previously calculated rates for TEs in Lyons et al.34 therefore constitute effective ’average’ methylation gain/loss

rates (including cooperativity) during the decay dynamics.

Gillespie simulation: cooperative gains
We simulate using the ‘direct’ Gillespie algorithm.85 An intermediate cooperative gain propensity, r+Coop ðiÞ, is calculated for every pair

of U andM sites (UM-pair) in the current gene-region. The functional form of r+Coop ðiÞðxÞ, depends on x, the base-pair separation be-

tween the two CG-sites in the UM-pair and is discussed in a later section. The cooperative gain propensity, r+Coop, for a given U site is

then found by summing all the individual contributions from each of the UM-pairs for that particular U site: r+Coop =
P
ðiÞ
r+Coop ðiÞðxÞ. The

overall gain propensity for that individual U site is then given by r+ = r+0 + r+Coop as defined in the previous section, while M sites are

assigned r+ = 0. The total gain propensity for the gene-region, r+total, is the sum over all the individual site-propensities. Similarly,

a loss propensity, r�, is calculated for every individualM site, as described in detail in the next section, along with r� = 0 for U sites.

The individual-site loss propensities are also summed to give r�total and finally the total propensity for the entire gene-region is defined

as rtotal = r+total + r�total.

At a time, t, the next event (i.e., gain or loss) will occur at time: t +Dt, where Dt =
ln

�
1

rand1

�

rtotal
and rand1 is a uniformly distributed

random number between 0 and 1. The site to be updated at this time is found using the propensity threshold: rtotal � rand2, where

rand2 is a second random number from the same distribution. The smallest individual site-propensity for which the cumulative

sum of site-propensities, up to and including that site-propensity, exceeds the threshold determines the identity of the next site

to be updated (i.e., gain/loss of methylation) at time t +Dt.

We assume that there are no cooperative interactions between CG sites in different genes. For a UM-pair separated by x =

300 bp, the cooperative gain amplitude is over a factor of 1000 smaller than its maximum value, therefore, this assumption is unlikely

to have a significant impact on the simulated dynamics.

Gillespie simulation: cooperative maintenance
Wemodel a cooperative maintenance pathway using a similar approach to that for the cooperative gains. We assume that the pres-

ence of otherM sites in the locus increases the chance of a site being maintained after replication. Again, we approach this in a pair-

wise fashion, this time considering allMM-pairs in a locus. As the bare (i.e., non-cooperative) maintenance failure rate, e, is already so

small, we multiply the contributions from the individual MM-pairs to the enhanced maintenance rate. This is to ensure that the total

maintenance probability can never exceed 1 at anyM site. EachMM-pair contributes a ‘suppression-factor’ to the maintenance fail-

ure rate: ð1 � bðiÞðxÞ), (Figure S2H), where x is the base pair separation between the two sites of theMM-pair, and 0< bðiÞðxÞ< 1, for all

x. The loss-rate at an individual M target-site is then calculated as probðM/UÞ = r� = eg
2 , where:

g =
Y
ðiÞ

�
1 � bðiÞðxÞ

�

The product is taken over all MM-pairs that contain the specific M target-site being maintained. The functional form of bðiÞðxÞ is
discussed below and is the same for every MM-pair in the locus. Simulations omitting cooperative maintenance produce a uniform
e7 Cell Systems 14, 953–967.e1–e17, November 15, 2023



ll
OPEN ACCESSArticle
loss rate (equal to e=2), thus failing to reproduce the suppression of methylation losses observed at short-length scales

(Figure S2K).

Active demethylation
We constructed themodel under the assumption of no active demethylation. However, it is possible that DNA demethylases, such as

ROS1, could also target the modelled gene-regions. One scenario is that a ROS1 pathway could renormalize the U/M transition

probability so that the values of the parameters r+0 and r+Coop also include the action of ROS1 rapidly removing some hemi-methylation

before the next replication event. In addition, ROS1 may be actively demethylating M sites. This is largely captured by the current

model by the existing maintenance failure pathway (i.e., some proportion of the parameters e and bðiÞ could in principle arise from

ROS1 action). An alternative parameterization for a ROS1 active demethylation pathway, however, might be to include a sponta-

neous (non-cooperative)M/U interaction (analogous to r+0 for the spontaneous gains). This is not included in the model as the cur-

rent resolution of the loss-rate data is insufficient to support fitting to an additional parameter.

Functional form of cooperative interactions
As discussed in detail below, the experimental methylation gains around a given mCG site fall away as an approximate power law

(Figure S2F, see section simulated gain and loss rates for description of gain/loss rate profiles plotted as a function of distance to

the nearest M-site). Consequently, the cooperative gain interaction strength for each uCG site is calculated using an (offset) po-

wer-law decay as a function of distance to existing mCG sites. By using a simple, monotonically decaying interaction with a single

power-law, we could reproduce the rapid fall in gain rate at a length-scale of �30 bp. This form, (equivalent to setting the parameter

a1 = 0 in the equation defined in the following paragraph), however, fails to generate the second peak at �170 bp (Figure S2J),

demonstrating that this enhancement of the gain rate does not emerge from the intrinsic spatial distribution of CG sites. As

�170 bp corresponds to the nucleosome repeat length,67 we hypothesize that the 3D chromatin conformation reduces the effective

distance between the target uCG and promoting mCG sites, thus generating an enhanced cooperative interaction when their sep-

aration matches the nucleosome repeat length. This motivated including a secondary, weaker, component to the cooperative gain

interaction, with a maximum amplitude at �170 bp (Figure S2G).

Mathematically, the interactions are formulated as follows. The magnitude of the cooperative gain-rate for an individual UM-pair,

r+Coop ðiÞðxÞ, is a function of x, the base-pair separation between theUM-pair: x = jxU � xMj. We split r+Coop ðiÞðxÞ into a primary compo-

nent, r
ð1Þ
Coop ðiÞðxÞ, and a secondary component, r

ð2Þ
Coop ðiÞðxÞ, for which the interaction has the same functional-form as the primary

component but with the origin translated by xnucl, a distance on the length scale of the nucleosome repeat length:

r+Coop ðiÞðxÞ = r
ð1Þ
Coop ðiÞðxÞ+ r

ð2Þ
Coop ðiÞðxÞ
r
ð1Þ
Coop ðiÞðxÞ =

8><
>:

a0; 0< x < x+plat

a0

����x
+
plat � x+div
x � x+div

����
l+

; xR x+plat
r
ð2Þ
Coop ðiÞðxÞ =

8><
>:

a0a1; 0< jx � xnuclj< x+plat

a0a1

���� x+plat � x+div
jx � xnuclj � x+div

����
l+

; jx � xnucljR x+plat

For 0< x < x+plat, for the primary component, and for 0< jx � xnuclj< x+plat for the secondary component, both have a constant magni-

tude described by a0 and a0a1, respectively. This parameterisation was chosen so that the strength of the secondary component

could be scaled relative that of the primary component when introducing the interaction-strength dependence on CG-density

(described below). All other parameters are assumed to be equivalent for the primary and secondary components of the cooperative

gain interaction. The parameter xplat defines the end of this constant plateau, beyond which the interaction has a power-law decay.

The location of the power-law divergence is specified by xdiv, where xdiv < xplat. Finally, the power-law decay constant is specified by

l+. As described above, the secondary interaction could occur due to the 3D organization of the DNA providing an alternative,

shorter, interaction route between the two CG-sites in the UM-pair. The overall functional form of r+CoopðiÞðxÞ is shown in Figure S2G.

Themodel also includesmCG loss, whichmay occur either through active demethylation (e.g., via ROS1) or passively due tomain-

tenance failure after DNA replication. We find that a cooperative maintenance mechanism (by which surrounding mCG sites

reduce the probability of amaintenance failure at the targetmCG site) must be included to qualitatively reproduce the loss rate profile.

Excluding this interaction (equivalent to setting b0 = 0 in the equation below), as expected, produces a simulated loss rate profile that

is constant as function of distance to the nearestM-site (Figure S2K). This is inconsistent with the observed loss-rate profile. As with
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the cooperative gains, we find the cooperative maintenance interaction to be well described by a power-law (Figure S2F). The coop-

erative maintenance interaction is, therefore, described analogously to the cooperative gain interaction (defined above):

bðiÞðxÞ =

8><
>:

b0; 0< x < x�plat

b0

����x
�
plat � x�div
x � x�div

����
l�

; xR x�plat;

with the functional form ð1 � bðiÞðxÞÞ shown in Figure S2H. Choice of this functional form ensures convergence at long distances to

the background (non-cooperative) methylation loss rate. We allow the amplitude (b0Þ, plateau length (x�platÞ, divergence location (x�div)
and power-law decay constant (l�) parameters to all have values independent of those used for the cooperative gain interaction.

We chose a power-law to describe the decay of both the cooperative gain and cooperative maintenance interactions with

increasing separation of the UM- or MM-pair. This is consistent with the linear form of the loss-rate over one order of magnitude,

when plotted as a function of distance to the nearestM-site, using a log-log scale as shown in Figure S2F (here loss rate is calculated

over the whole gene length). A linear best-fit (to the log-log transformed data 20< x < 200 bp) is also shown. Note that the gradient of

this linear-fit to the overall loss-rate does not provide the value of the power-law l�, because l�describes the contribution to the total

interaction that arises from only a single MM-pair. Hence, the entire shape of this interaction strength profile for a single MM-pair

(Figure S2H) differs from the full losses profile (Figures 2E and S2I, right), due to the latter including interactions with multiple

mCGs. The structure of the equivalently plotted gain-rate (again calculated over the whole gene length) is more complex as there

is the secondary-interaction peak at xz170 bp (log10ðxÞz2:2Þ. In this case, we therefore, make a linear fit to the log-log transformed

gain-rate over only a narrow window of 25< x < 47 bp, where the primary cooperative gain pathway is dominant. The linear fit is

plotted over the entire length-scale of the gain-rate data and at large x-values, beyond the range of the secondary interaction

peak, it is also quite consistent with the gain rate data. We note however, that as the resolution for the gain and loss rates becomes

low at larger length-scales (of the order x > 500bp), we cannot conclusively rule out the possibility of an exponentially decaying inter-

action strength, though fits to an exponential were not as good. Once again, the shape of this gains interaction strength profile for a

single UM-pair (Figure S2G) differs from the full gains profile (Figures 2F and S2I, left), due to the latter including interactions with

multiple mCGs.

For themodel to correctly reproduce the observed distribution of steady-state methylation levels for gene-regions of varying length

(LlocusÞ, and average CG-density (rCG), it was necessary to vary the strength of the cooperative gain interaction and of the cooperative

maintenance interaction, as a function of CG-density. We define Llocus to be the base pair distance between the first and last CG sites

in the gene-region and chose the unconventional definition of rCG = NCG � 1
Llocus

, where NCG is the number of CG sites in the gene-region,

so that 1=rCG is equivalent to the average CG site spacing.

To introduce as few extra parameters as possible, we used the linear scaling:

a0ðrCGÞ =
�
amrCG +ac; 0< rCG < ro
amr0 +ac; rCG R r0

where am < 0 so that the cooperative gain interaction strength decreases with increasing CG-density, and the maximum CG-density

threshold, r0, prevents a vanishing interaction strength. Similarly, we vary the strength of the cooperativemaintenance interaction, b0,

as a function of CG-density using:

b0ðrCGÞ =
�
bmrCG + bc; b0 > 0

0; otherwise

where bm < 0. The cooperative maintenance strength is capped to have a minimum value of zero. Finally, when we model the outlier

Arabidopsis accessions, we vary the strength of the cooperative gain and cooperative maintenance using a single scale-factor, r�, so
that ac/r�ac and bc/r�bc.

In summary, the final model contains four gain/loss processes: spontaneous de novo (one parameter); cooperative de novo (eight

parameters); background maintenance failure (one parameter); cooperative suppression of maintenance failure (five parameters), to

give 15 parameters in total.

Calculation of diploid methylation gain and loss rates
We simulate the methylation dynamics of a single chromosome. All bisulfite sequencing used here, however, measured the methyl-

ome of diploid leaf tissue. Each of the two copies forming a chromosome pair will have had a different trajectory, alternating between

a haploid and diploid environment to reach the final leaf tissue that is sequenced. Our model contains no information on whether the

simulated chromosome is currently in a haploid or diploid cell, or any other details about its environment. We therefore treat the two

chromosome copies as indistinguishable.

The simulated gain and loss rates are compared to two different data sets: firstly, the existing Mutation Accumulation Line

experiments (MAL),45,62 and secondly the WT dataset presented in this work. These two approaches use contrastingly shaped
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lineage-trees and consequently involve complementary assumptions. We convert the rates from both experimental data sets, and

the simulated data, into the diploid gain/loss rate per cell cycle, i.e., for methylation gains, this is the rate that a homozygous U

site, is converted to a homozygous M site.

As we now show, the diploid gain/loss rate is equivalent to the haploid gain/loss rate found by simulating a single chromosome. If

we define r to be the haploid gain rate per plant generation for a single chromosome, then for a diploid cell, the total number of newly

heterozygous-methylated sites generated by a methylation gain on one of the chromosomes in a single generation is 2r. In these

experiments the plants are self-fertilized each generation, so for the heterozygous sites, there is a 25%chance that Mendelian segre-

gationwill result in a homozygous gain/loss, a 25%chance the gain/loss disappears so that the original homozygous state is retained,

and a 50% chance that it remains heterozygous at each subsequent reproductive cycle. Eventually, therefore, there is 50% chance

that a heterozygous gain is ‘fixed’ into a homozygous gain and a 50% chance it reverts to a homozygous U site. This factor of ½

cancels the initial factor of two and hence the diploid gain gate is equal to the haploid gain rate on a single chromosome.

We note that after the male and female cell-lineages diverge to form the reproductive tissues, the rate of producing new hetero-

zygous gains doubles as there are now four chromosomes on which a gain could occur. For the purposes of this discussion, we

chose to define the start of the generational cycle as the divergence point of the male and female lineages. Meiosis and fertilization

then occur mid-way through this cycle. Neglecting the (negligible) possibility of a gain occurring at the same CG site in both the male

and female lineage during a single generation, upon fertilization, there is a 50% probability that (in our followed lineage) the CG site

reverts to homozygous unmethylated and a 50%probability that it persists as a heterozygous gain in the now single germline lineage.

The total number of new heterozygous gains formed so far is therefore double the number of haploid gains. As there is only a single

germline lineage for the remainder of the generational cycle, heterozygous gains continue to be formed at double the haploid gain

rate. Consequently, the new heterozygous gains are produced at the same overall rate from before and after the male and female

lineages diverges, and the first opportunity for self-fertilizedMendelian segregation then occurs part way through the following gener-

ational cycle (with losses behaving equivalently).

Themutation accumulation line experiments have a narrow and very deep tree, following 4 lines in the Schmitz et al. dataset45 and 8

in Becker et al.62 (we excluded 1 outlier line, as discussed above), all for 30 consecutive plant generations. Consider a heterozygous

methylation gain occurring in the first generation. After five reproductive cycles, for example, there is a probability of only

ð0:5Þ5 � 3% that the CG site will still be in a heterozygous state. We assume, however, that all gains and losses occurring during

the observed 30 generations have fully segregated out at the point of bisulfite sequencing. With this approximation, our analysis

of these 30 generation datasets directly measures the diploid gain/loss rates over 30 generations. Finally, this is converted to the

per cell cycle gain/loss rate by dividing the gain/loss rate for the entire experiment by the number of intermediate generations (in

this case, 30 generations) and by the number of cell divisions through the germline lineage over one generation. For the latter, we

assume that there is a constant number of cell divisions of 34 per generation.44

In reality, a proportion of the sites will remain in the heterozygous state at the end of the experiment. To analyze the Schmitz et al.

and Becker et al. datasets, both the Generation 0, parental germline state, and the Generation 30, final germline state, are recon-

structed from sibling offspring lines, as described previously. Defining the generational cycle to begin at the divergence of the

male and female lineages is therefore consistent with aligning it to the experimental measurement of germline methylation state. Het-

erozygous sites in the initial or final experimental state are most likely to be classified as indeterminate methylation (I sites). As gains/

losses are only identified at CG sites where both the initial and final methylation state can be called as either U or M, heterozygous

methylated sites in the final observed state are excluded from the measured gain/loss rates. Excluding heterozygous sites that were

formed prior to Generation 0 from the analysis is consistent with our assumption that all gains and losses are initiated during the

30-generation experiment. Excluding all heterozygous sites remaining in the final state at Generation 30, however, produces a slight

underestimate of the true gain and loss rates.

We now estimate an upper limit to the fraction of gains lost due to the assumption that all will have fully segregated by the end of the

experiment. Again, we use ‘r’ to represent the haploid gain rate per generation. Over the 30-generation experiment, 2r heterozygous

gains will occur per generation. Theoretically, if we could wait until all the heterozygous gains generated during the 30 generations

then fully segregated out, this would lead to 30r diploid gains in total. Over the 30-generation experiment, heterozygous sites formed

during the xth generation will have 30 � x self-fertilized Mendelian segregation opportunities. On average, therefore, 100% of the

heterozygous gains occurring in the 30th generation will have been missed, and 50% from the 29th generation and 25% from the

28th etc. The total number of heterozygous gains yet to segregate is given by the sum: 2r
�
1 + 1

2 + 1
4 + 1

8 +.:
	
= 4r. Half of these

are expected, on average, to be fixed into full diploid changes, so that 2r gains have been uncounted. This fraction is 2
30 � 7% of

the total number of diploid gains over the entire 30 generations. An identical argument applies to the fraction of losses not accounted

for. Finally, we note, however, that heterozygous sites do not explain all the CG sites identified experimentally as indeterminately

methylated. The majority are likely due to somatic methylation gains. As they are concentrated close to existing methylation, we

anticipate that they correspond to sites that are unmethylated in the germline but having a high gain probability. Excluding these sites,

therefore results in a small underestimate of the gain rate.

In contrast, the bisulfite sequencing data presented in this work uses a much broader and shallower lineage tree. As described

above in the section calculation of gain and loss rates, gain and loss rates are calculated by comparing sets of three samples, tran-

sitioning between (for gains): homozygously unmethylated, to heterozygously methylated, to homozygously methylated over three

consecutive generations. Identified methylation gains/losses are homozygous (present on both chromosomes). This rate is therefore
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then doubled to give the eventual diploid gain/loss rate per generation, reflecting the additional 50% of the heterozygous changes

that will eventually become fixed in the changed state. Again, we convert to a rate per cell cycle.

These two contrasting approaches (first the 30-generation MAL analysis, and secondly the three-consecutive generation analysis

presented in the work) rely on different sets of assumptions. Despite this, they produce broadly consistent gain/loss rate profiles

(Figures 2E, 2F, and S2I) and overall epimutation rates (Figure 2G), increasing our confidence in these calculated rates.

Simulated gain and loss rates
We focused on fitting the model to our analysis of four lines of the 30-generation data set of Schmitz et al.,45 as this data set provided

the greatest spatial resolution. We simulate a single copy of each chromosome for 30 generations, assuming 34 cell cycles per gen-

eration.44 For a direct comparison to the experimental data, the simulation is also repeated for four independent replicates. The

random-number seed was increased by one for every new gene-region and for each replicate. We note that as expected, simulating

over a greater number of replicates reduces the fluctuations seen in the gain and loss rates, especially at long length-scales.

The simulation uses the experimental Col-0 state to assign CG sites an initial status of eitherM orU. To achieve the best resolution,

we use the ‘Col-0 consensus state’, generated by collating high coverage bisulfite sequencing from twenty different Col-0 plants

grown under consistent conditions. In this consensus state, 1.77% of sites have indeterminate (I) status, most likely indicating

that the CG site either has a large proportion of somatic methylation changes, or that it is heterozygous in the germline. For consis-

tency with the experimental analysis, we entirely exclude these I sites from the simulation for the fit to the experimental gains/losses

data. Gains and losses are identified by comparing the final simulated state to initial state for each gene, e.g., to qualify as a gain, a

site must have statusU in the initial state and statusM in the final state (as is the case for the experimental gain/loss analysis). Overall

simulated epimutation rates within methylatable regions can then be calculated as for the experimental data (Figure 2G; Table S5).

To quantify how the gain and loss rates vary as a function of surrounding M-sites, we plot spatially resolved gain/loss rate distri-

butions as a function of distance to the nearest M-site. The signature of cooperative gains feedback is then an enhanced gain-rate

when the distance to the nearest M-site is small. Conversely, cooperative maintenance corresponds to a suppressed loss rate at a

small distance to the nearest M-site. The total distribution for the number of gains as a function of base pair distance to the nearest

M-site (in the same methylatable-gene-region) is compiled from all simulated genes and all replicates, along with the equivalent dis-

tribution for the number of losses. Gain (or loss) rates are calculated by dividing the distributions for number of gains (or losses) by the

normalization: the distribution of the number of U-sites (orM-sites) sites in the initial state, again as a function of distance to the near-

estM-site. Finally, we convert to an average gain and loss rate per cell cycle, as described above for the experimental case. Also, see

above for further details of how we relate the modelled gain and loss rates per cell cycle to those measured experimentally. Both the

modelled and experimental gain and loss rate distributions are plotted after smoothing over a 10 base pair window. In Figures 2E, 2F,

S2I–S2M, and S5A ‘All experimental data sets’ includes 8 lines from the Becker et al. dataset,62 4 lines from the Schmitz et al. data-

set45 and theWT dataset presented in this work. We simulate the gain and loss rate distributions both for the whole gbM genes anno-

tation (Figures 2E, 2F, and S2M) and for methylatable regions (Figures S2I and S2L).

Simulated steady-state methylation patterns
The steady-statemethylation patterns predicted by themodel are investigated by simulating for 100,000 generations for the specified

number of replicates. Inmany cases, our simulations use a fully unmethylated initial state, however, we also confirmed that themodel

has a unique steady-state by also simulating from an experimental Col-0 or fullymethylated initial state (Figure 4A).We confirmed that

a simulation time of 100,000 generations is ample for the model (parameterized according to Table S3A) to reach steady-state (Fig-

ure 4B). As the steady-state is independent of the initial state choice (Figures 4A and 4B), when using the experimental Col-0 initial

state we could safely arbitrarily assign an initial state of U to the CG sites with unknown methylation status in the Col-0

consensus state.

We compare the modelled steady-state methylation states, for a certain number of replicates, to those observed for an equivalent

number of A. thaliana accessions, using the 1001methylomes resource.19 Each independently simulated replicate is taken to repre-

sent a single accession, to investigate the extent to which our stochastic model of the purely epigenetic aspects of methylation dy-

namics can account for the observed natural variation in gene body methylation level across Col-like accessions (defined above). All

Col-like accessions are, therefore, assumed to have genetically equivalent methylation machinery (equivalent to modelling replicates

with an identical set of parameters). This approach neglects all effects of selection pressure that may affect the observedmethylation

patterns and assumes that no significant changes occur to the methylation machinery, the H2A.Z distribution (and thus the bound-

aries of the methylatable-regions), and finally the CG-site positions, over the simulated timescales. Consequently, we neglect any

SNPs occurring at CG-sites in the Col-like accessions or outlier accessions (which incidentally are rare, <2% in Cvi-0), instead

assuming a CG-site structure identical to Col-0 for every modelled replicate. This approach allows us to isolate the purely epigenetic

contributions to the methylation dynamics from those influenced by genetic mutations over much longer time-scales (such as

changes to the underlying CG-site positions). We also neglect any possible outcrossing between different accessions over this time-

scale: such outcrossing may occasionally occur, but provided it is between the same accession or with another Col-like accession,

then statistically equivalent methylomes will be combined, which will not change the steady-state methylation distributions.

For each methylation-state (either a simulated replicate, or measured A. thaliana accession), we calculate the mean methylation

level, CMD, for each methylatable-region, where CMD = NM

NM+NU
, with NM and NU being the number of CG-sites identified with status
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M and U respectively in that methylatable region. For the simulated states, this calculation is performed at the end of the simulated

period (100,000 generations). The total number of CG-sites in the simulations of the methylatable region is NCG = NM + NU, by defi-

nition. This is not the case for the observed methylation states, where some CG-sites are assigned a status X, either due to having an

indeterminate methylation status (as described previously), or a SNP occurring at that site, so that NCG = NM +NX +NU. In the rare

event that NM +NU = 0 for a methylatable region in an accession, we assign CMD = 0. Histograms of the distribution of CMD
(Figures 4A, 7A–7D, S3A–S3C, S3H, S4A–S4E, S4G, and S7A–S7C) are normalized to the number of replicates (either simulated

or observed accessions).

The clear spike at CMD = 0 (Figure 4A) corresponds to fully unmethylated regions. Due to the stochastic nature of the dynamics, at

any time there will be a number of methylatable-regions that by chance are completely unmethylated (most likely to be methylatable-

regions containing few CG-sites). The fraction of completely unmethylated methylatable-regions is directly controlled by the magni-

tude of the spontaneous de novo contribution: the higher the spontaneous de novo rate, the less likely it is that a locus will be

completely unmethylated. The height of this peak can therefore be fit largely independently of the other parameters, thus providing

a strong constraint on the strength of the spontaneous de novo rate. We note that the extra structure in the CMD distribution arises due

to the fractional definition of methylation level: a value of CMD = 1=2 can be obtained for any gene-region with an even value of NCG,

whereas a value of approximately CMD = 49=100, for example, can only be obtained from a much more limited subset of gene-

regions.

Finally, to study the variability of methylation levels between replicates, we also calculated the standard deviation of CMD, sCMD, over

all replicates for every gene-region.

Model fitting
We manually fitted the model (final parameterization given in Table S3A), simultaneously to two very different data sets (both calcu-

lated over methylatable regions): firstly, the short-timescale (30-generation) spatially resolved Col-0 gain/loss rate profiles (described

above, Figures S2I and S2L), and secondly, the long-timescale steady-state distributions of CMD (described above, Figure 4A)

compiled for 30 Col-like accessions. We chose to fit the model manually as these two data sets have very different, and difficult

to quantify, uncertainty levels. Furthermore, we discovered that one standard measure of fit-quality: the R-value calculated over in-

dividual methylatable regions (Figure 4E), is dominated by the �20% outlying loci for which the mean methylation level is captured

poorly by the model. Indeed, very small improvements to this R-value are possible, at the expense of introducing a considerable sys-

tematic bias (away from the observed values) in themodelled methylation level of themajority of well-fitting loci. Although the generic

model assumptions might be poor approximations for the�20%of outlier loci in our manual fit, we elected not to implement an auto-

matic fit, as that would require the arbitrary exclusion of these outlier loci, rather than selecting appropriate loci tomodel based purely

on generic biological characteristics (such as mean H2A.Z level across the locus).

To perform the fit to the steady-state methylation levels, distributions of CMD (not shown) were separated into subsets of

gene-regions, grouped according to both the length of the gene-region, Llocus, and the mean CG-density, rCG, as defined

previously. Subgroups were defined as: Lmin % Llocus < Lmax for Lmin = f0;13103;23103;43103;63103;13104g bp and Lmax =

f13103;23103; 43103; 63103;13104;33104g bp and 1
rmax

% 1
rCG

< 1
rmin

, for 1
rmax

= f3; 6; 9;.;96; 99g bp and 1
rmin

= f6;9;12;.;99;

102g bp, with r� 1 increasing in units of 3 bp. We compared the simulated steady-state methylation distributions after 100,000 gen-

erations to 30 Col-like replicates, selected for their high sequencing coverage (described above).

Splitting the gene-regions into sub-groups of CG-density revealed the necessity to include a linear variation of the cooperative

interaction strength as a function of mean CG-site density over the gene-region. A prior attempt to fit the model parameters using

only the spatial gain/loss rate profiles omitted the above CG-site density-based correction to the cooperativity strength (i.e.,

am = bm = 0). For this parameterization (Table S3B, splitting the mCG level distributions by CG-site density (Figure S3H) revealed

that the model systematically over-methylated CG-rich methylatable regions and under-methylated CG-poor methylatable regions.

The consequence of the CG-site density dependent correction is to reduce the cooperative feedback per CG-site for loci of higher

CG-site density. It is likely that the requirement for this correction is (at least in part) due to assuming that each mCG site indepen-

dently enhances the cooperativity strength. In reality, however, the contribution of each individual sitemay be reducedwhen there are

many mCG sites in close vicinity. Finally, we note that the need to vary the strength of the cooperative interaction amplitude as a

function of mean CG site density cannot be justified from considering only the spatial gain/loss rate profiles.

Themajority of parameters could be fit quite precisely (and are therefore well constrained) by the short-timescale spatially-resolved

gain/loss rate profiles. Only the gradients of the CG-density corrections (am; bm; r0 and corresponding adjustments to ac; bc) relied

solely on the long-timescale steady-state simulations. It was challenging to accurately capture the increase inmeanmethylation level

with increasing locus length (CMD½Llocus�). We found that slight adjustments to the power-law exponents (� ±5%) were possible while

still maintaining a good fit to the gain/loss rate distributions, while having a noticeable effect on CMD½Llocus�. The other influential pa-

rameters were: e; ac and a1, though the latter waswell constrained by the gain/loss rate distributions (aswere the plateau lengths and

the positions of the power-law divergences), while the sensitivity to e was similar to that of the power-laws. After fixing all other pa-

rameters, an initial estimate of am; ac; bm and bc was found by independently manually fitting the individual sets of histograms gener-

ated with a fixed value of rCG to a value of a0 and b0 before then using a linear fit to the resulting values of a0ðrCGÞ and b0ðrCGÞ to
extract corresponding values of am; ac; bm and bc.
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We obtained an initial, order of magnitude, fit for the value of the spontaneous background de novo gain rate, r+0 ; from the long

length-scale tails (at �1000 bp distance to the nearest M-site) of the spatial gain-rate profile (Figure S2L). This was then refined to

more precisely capture the height of the spike at CMD = 0 in the distribution of steady-state methylation levels (Figure 4A).

We made an additional test of the parameter-sensitivity of the model, by repeating all simulations with each individual parameter

increased and decreased by 10%. None of these parameter alterations qualitatively affected the model results. For the following pa-

rameters, however, noticeable quantitative shifts (reducing the fit quality) occur to the results of both the short and long-timescale

simulations: x+plat; x
�
plat; x

+
div; x

�
div; l

�; bc. Similar quantitative shifts are seen for xnucl (in gain/loss rate simulations) and ac; r
+
0 (in

steady-state simulations). All these parameters are therefore well constrained by a combination of both the gain/loss rate and

steady-state methylation level fits. The remaining parameters: l+; a1; e; am; bm; r0, are less well constrained at the level of a 10%

shift of the parameter-value.

Finally, we investigated the sensitivity of our model to potential genetic diversity in the methylation machinery, by adjusting the

overall strength of the cooperative interaction pathways (parameterization details discussed above) and/or spontaneous de novo

strength. Simulated methylation patterns are compared to A. thaliana methylation-outlier accessions (see Choice of accessions

for modelling), assuming the same methylatable-regions as identified for Col-like accessions (Figures 7A–7D and S7A–S7C). We

note, however, that methylation-outlier accessions may also have accession-specific methylatable-regions.

Model predictions
The fully parameterized model was simulated to steady-state (100,000 generations, all-U initial state) for 740 replicates and

compared to all non-redundant Col-like accessions with sequencing coverage > 50% (see Figures S4E and S4G). The performance

of the model at the individual gene level was tested by comparing the predicted and observed values of both CMD and sCMD, both aver-

aged over the 740 simulated/observed accession replicates respectively, for each individual methylatable region (Figures 4E and 6D).

We note that at no point was the variation in methylation level (even for the initial 30 Col-like accessions), sCMD, used in the fits.

To examine the spatial distribution of methylated/unmethylated sites, we grouped neighboring CG sites into pairs: either uCG-uCG

(denoted UU), uCG-mCG (UM) or mCG-mCG (MM). Additionally, an XX-neighbour-pair is defined to be a pair of neighbouring CG

sites, at least one of which cannot be identified as eitherM orU from the sequencing data. Note that there are no XX-neighbour pairs,

by definition, for the simulated states. For each of these four (or three) groups, we calculated the observed (and simulated) distribution

of pair-separations (measured in bp). All three simulated distributions are normalized to the total number of pairs (of any type), totaled

over all 740 realizations. Equivalently, the four experimental distributions are all normalized to the total number of pairs (of any type),

totaled over all 740 accessions. The three simulated distributions are shown directly (Figure S5B). For the experimental distributions,

we add the XX-neighbour pairs distribution to each of the other three to produce the green bands. The bottom of each green band

therefore corresponds to the case that none of the XX-neighbour pairs (if their methylation status were known) contribute to the de-

picted distribution. The top of each green band corresponds to the case that all the XX-neighbour pairs contribute to the depicted

distribution. The simulated distributions are therefore expected to lie somewhere within the green bands. Although each XX-neigh-

bour pair can only actually belong to one of the three distributions, the fraction of XX-neighbour pairs that corresponds to each dis-

tribution will vary considerably as a function of pair separation. This is because the sites with unknown methylation status are not

evenly distributed, but instead are concentrated close to existing methylation. The predicted and observed distributions are in

good agreement (Figure S5B). mCG-mCG separations are greatly enriched at short distances compared to uCG-mCG or uCG-

uCG. This is a further demonstration of local cooperativity, which will favor clustering of methylated sites.

To investigate the spatial patterns across whole loci, we also calculated the long-range mCG-mCG (MM) correlation function for all

CG-pairingswithin an individual locus (Figure 5C). Pairings ofCG-sites betweendifferentmethylatable-regions are not considered.We

combine counts over all loci to compile a histogram of the CG-site separation (in bp) of everyMM-pair. We note that any pairings con-

taining a CG-site of unknownmethylation status in an individual Col-like accession are excluded from the data analysis. The simulated

histogram is then normalized by dividing the number ofMM-pairs observed at a specific CG-site separation, with the total number of

CG-site pairs of any type (i.e.,UU,UM, orMM). The observed data histogram is normalized equivalently, this time dividing by the total

number of CG-site pairs but excluding all those that contain at least one CG-site of unknown methylation status. This normalization

choicemeans that the difference in amplitude between the two distributions at a given separation reflects the accuracy of themodel’s

prediction of the total number ofMM-pairs generated at that separation. The strong enhancement in the correlation function at short

length-scales reflects thestrongcooperativityofmethylationgains,withmethylationmore frequentlyobserved in regionsof locally high

CG-density (as expected for distance-dependent cooperative feedback interactions, Figures S2G and S2H). Additionally, a second

peak in the correlation function is seen centered on 167 bp, corresponding to a periodicity of highly methylated regions consistent

with the nucleosome repeat distance (and consistent with the methylation enhancement observed under nucleosomes, Figure 5E).

Finally, as an additional test of the model, we also compared the simulated and the experimental gain/loss rate distributions as a

function of distance to the nearest U-site (Figure S5A) (calculated analogously to the distance to the nearest M-site distributions

described previously, Figure S2I). We did not fit to these distributions.

Simulations using alternative annotations
In addition to simulating the methylatable-regions, we also simulated whole gbM genes fitting the model to the Col-0 30-generation

gain/loss rate profiles using a whole gbM gene annotation. Here we omitted the CG-density correction (i.e., am = bm = 0) with the
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parameterization given in Table S3C. Using this annotation, we could also reproduce well the spatial gain/loss rate profiles

(Figures 2E and 2F: loss, gain; Figure S2M: gain-tail), though the fit to the gain rate profile was noticeably poorer over length-scales

of 200 to 400 bp. However, long-timescale (100,000 generations) simulations to steady-state revealed that with this fit to the whole

gbM genes annotation gain/loss rate profiles, the model drastically over-methylates gbM genes (Figure S3A).

Conversely, using this same parameterization (Table S3C) to simulate only the regions of Col-0 observed to be highly methylated

(gbM segments annotation) produced a severely under-methylated steady-state (Figure S3B). This result is consistent with stochas-

tic gene-body methylation dynamics: at any point in time a significant fraction of CG-sites that in principle could be methylated at

other times happen to currently be in the unmethylated state. Applying the model to only the regions currently methylated, then ex-

cludes many CG-sites that are actually playing an active role in gbM methylation dynamics. Due to the cooperative feedback pro-

cesses, the steady-state methylation level predicted by the model is highly sensitive to the number and positions of CG-sites

modelled. It is, therefore, necessary to identify which regions of the genes are ‘permissive’ to the cooperative feedback interactions,

hence the need for a methylatable-regions annotation.

For the whole gbM genes annotation, steady-state (100,000 generations) simulation, we calculated the spatially resolved methyl-

ation level, averaged over all gbM genes (Figure S3D). Additionally, a single example gene is shown in Figure S3E, comparing the

average methylation across 30 simulated realizations and the observed methylation, averaged across 30 Col-like accessions of

each individual CG-site. Towards the center of the example gene, there exist several unmethylated CG-sites that are captured

very well by the model. Averaging over all gbM genes (to produce Figure S3D), however, smooths out all these spatial methylation

patterns (as the unmethylated sites appear in different locations in every gene), to produce a constant methylation level across the

center gene-body. As a result, this gene-averaged methylation profile provides very limited information about the spatial methylation

patterns. We do, however, see clear changes in methylation level at the 5’ and 3’ gene ends, indicating that this must be a generic

feature of all modelled genes.

The experimental Col-0 gene-averaged methylation level (Figure S3D) declines towards the 3’ end of the genes. This decline is

reproduced well by the model, although the absolute level is too high. The model, however, fails to reproduce the observed, and

stronger, 5’ end decline, instead predicting a peak of mCG aligned with a corresponding enrichment of the CG dinucleotide density

(Figures S3D and S3E). Due to the nonlinear cooperative interaction, the over-methylation of 50 gene ends drives higher average

methylation of the entire gene (Figures S3D and S3E). In addition, we note that, as expected, simulating unmethylated genes to

steady-state (100,000 generations, using the model parameterization fitted to whole gbM genes, Table S3C) predicts a high methyl-

ation contrary to that observed (Figure S3C). These findings indicate that only certain regions of some genes are subject to methyl-

ation, and that the epigenetic dynamics that we measure, and model, only apply to these methylatable regions.

The regions that become over-methylated in our simulation (unmethylated genes and 5’ gene ends) are enriched for histone variant

H2A.Z (Figures S3D–S3F).60 DNA methylation and H2A.Z are anticorrelated in plants and animals, and they can affect each other’s

distribution (Figures S3D–S3F).30,55–60 Consistently, genes over-methylated by the model have relatively high H2A.Z, whereas the

genes under-methylated by the model have relatively low H2A.Z compared to the accurately modelled genes (Figure S3G). This rai-

ses the possibility that gbM epigenetic dynamics are influenced by H2A.Z. Here, we take an empirical approach of excluding the

H2A.Z rich gene-ends from the simulations, implemented via the methylatable-regions annotation described previously.

Properties of modelled steady-state methylation
Given that models of methylation dynamics applied to mammalian systems23 show unambiguous bistability of the steady-state

methylation, it is instructive to consider the stability of the fluctuating methylation levels around steady-state for the model that

we present here. The most immediate difference between these two types of models is in the nature of the feedback interactions.

In the mammalian bistable model23 strong non-linear feedbacks exist in both directions. Existing methylation further enhances

methylation gains to stabilize a high mCG level, while unmethylated sites enhance methylation losses to stabilize a low mCG state.

In contrast, both of the feedbacks in our present model (cooperative de novo, and cooperative maintenance, Figure 2D) reinforce a

methylated state. There is no opposing feedback to reinforce an unmethylated state.

For the present model, the situation is complicated, however, as the scale of the feedbacks are strongly dependent on the number

of CG sites within a locus, and their local density. Therefore, for long and CG-rich loci, there is strong feedback reinforcing mCG, thus

producing a high mCG level (Figure 4F) with strongly suppressed fluctuations (Figure 6C). This can also be seen in the rightmost

example gene of Figure 3, and gives rise to the narrow width of the steady-state mCG level distributions of long loci (Figure S4G,

bottom). However, we note that if long loci contain sufficiently wide CG-poor regions, then these areas of much weaker cooperative

feedback can produce a partial separation between CG-rich areas. Consequently, large patches of methylation can be lost and sus-

tained in an unmethylated state, independently of neighboring regions which maintain a high mCG level (for example as seen in Fig-

ure 3, right).

The time taken to approach steady state for the longest loci is � 10 thousand generations (Figure 4D). The simulations to produce

the distributions in Figure S4G were run for 10 times this duration. Therefore, if there were any inherent bistability for long loci, there

should have been ample time for at least some of the 740 replicates to explore the corresponding lowly methylated state. This would

have produced a bimodal distribution of steady-state mCG levels for loci of similar CG-site number and density. Instead, the distri-

butions show a clear single peak with a mean level above 50% (Figure S4G, bottom right plots), despite all simulations being initiated

from a fully-unmethylated state. As the panels in Figure S4G group data for multiple genes, we also confirmed the equivalent distri-

butions for a small number of example genes (not shown) are comparable to those of Figure S4G.
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As locus length decreases, the mCG-reinforcing feedback decreases, and fluctuation magnitude increases. The distributions of

steady-state mCG levels therefore become broader, with a decreased mean value (Figure S4G, middle rows). Very lowly methylated

loci (or regions within larger loci) can have long lifetimes, as the rate of spontaneous de novomethylation is so low. Hence, patches of

methylation can disappear for long times (see Figure 3, right). This spontaneous de novo gain rate is much lower than that for the

cooperative gains, and therefore causes a separation of timescales, which makes the unmethylated state metastable rather than bi-

stable, due to the lack of any feedback to stabilize it. In comparison, the state where a locus has only one or two CG sites methylated

is very unstable. The precise dynamics here will be unique to each locus, given that the gain and loss rates are extremely dependent

on the exact CG-site configuration of a locus. For very short loci, this generates a very wide distribution of steady-state mCG levels,

with a strong skew towards lowly methylated states (as seen in the top plots of Figure S4G).

Additional biological insights from modelling
To investigate the relative importance of the primary and secondary components of the cooperative gain interaction, we simulated

the number of gains predicted by the model over 30 generations, in methylatable regions, in the absence of the secondary gain

pathway (parameterization in Table S3A, but with the secondary cooperative gain component, r
ð2Þ
Coop, set to zero, Figure S2J). Simi-

larly, the strength of the cooperative maintenance contribution was assessed by simulating the number of losses in methylatable re-

gions predicted by the model in the absence of cooperative maintenance (parameterization in Table S3A, but with b0 = 0, Fig-

ure S2K). This provides a uniform loss rate at the level of the background loss rate (e), therefore failing to capture the suppression

of loss-rate observed at short-length scales. The impact of the various cooperative gain/loss interactions are summarized in

Table S5 (again assessed over 30 generations). The cooperative suppression of losses accounts for a �4-fold loss reduction over

30 generations, whereas cooperative promotion of gains accounts for �6-fold increase in gains (Table S5). This illustrates that

although the gains cooperativity is much stronger over short distances (Figures 2B and 2C), cooperative gain and loss dynamics

make comparable contributions to gbM epigenetic inheritance and are therefore of roughly equal importance.

Fitting to the long length-scale tail (x = 1000 bp) of the spatially resolved gain-rate distribution provides a good estimate of the

background spontaneous de novo gain rate. This is of interest because both the methylatable-regions annotation (Figure S2L),

and the whole gbM genes annotation can be analyzed with this approach (Figure S2M). For the whole gbM genes annotation, the

vast majority of unmethylated CG-sites at such large separations to the nearest M-site occur at the 5’ and 3’ ends (the portions

excluded from the methylatable-regions annotation). The analysis, therefore, will give a reasonable estimate of the spontaneous

de novo rate specifically in these unmethylated gene-ends. In contrast, the analysis for the methylatable-regions provides the spon-

taneous de novo rate within themethylatable-region. Upon fitting the parameters, we find that at this long length-scale, x � 1000 bp,

the contribution from the cooperative gain interactions is negligible. Notably, comparing the spontaneous de novo rate calculated for

these two regions reveals a �10 fold difference: 4310-6 per site per cell cycle for methylatable regions (Table S3A), and 5310-7 per

site per cell cycle for the gene-ends (found using the whole gbM genes annotation, Table S3C). Interestingly, the methylatable-re-

gions spontaneous de novo rate is similar to the gain rate observed in the UM segments within gbM genes in WT (3310-6 per site

per cell cycle for the Schmitz dataset, Table S1). However, the spontaneous de novo rate found using the whole gbM genes anno-

tation is instead comparable to the gain rate observed in WT UM genes (6.4310-7 per site per cell cycle for the Schmitz dataset,

Table S1). This raises the intriguing possibility that similar methylation dynamics might apply to both the unmethylated ends of

gbM genes and to the entirety of UM genes.

Analysis of UM gene steady state mCG
We have no evidence to support cooperative methylation dynamics in unmethylated genes. Therefore, here we consider the simplest

scenario of a uniform, constant, spontaneous gain and loss rate. We denote a to be the haploid gain rate (uCG/mCG), and b to be

the haploid loss rate (mCG/ uCG), where this total loss rate will be a composite of active demethylation and passive losses through

maintenance failure. A heterozygous gain (or loss) can occur on either chromosome so that the diploid gain (or loss) rate will be double

the haploid rate. We assume that in the natural population outcrossing events are negligibly rare, with plants reproducing by selfing

(inbreeding). In which case, only 50% of heterozygous gains, will be converted to homozygous gains through Mendelian segregation

(and equivalently for losses). The homozygous gain and loss rates are also therefore represented by a and b respectively. TheWT gain

and loss rates per cell cycle for unmethylated genes are given in Figure 1C: a = 1:7310� 7 and b = 2:1310� 4 per cell cycle. The

average methylation level across a gene is then described by the ordinary differential equation:

dM

dt
= aU � bM;

with the steady-statemethylation level given by aU � bM = 0, whereM is the fraction of methylated CG sites, andU is the fraction of

unmethylated CG sites in the gene. Assuming that the fraction of hemi-methylated sites is negligible on account of the highly efficient

maintenance,34 such that U = 1 � M, the steady-state methylation level, M�, becomes:

M� =
a

a+b
:

This provides a steady-state methylation of M� = 83 10� 4, corresponding to a methylation level of � 0:1%.
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Assessing the scale of simulated methylation fluctuations
The fluctuations in methylation level were investigated by simulating 740 replicates in methylatable regions, starting from the all-U

initial state each time. The time of the first methylation gain was recorded for each locus, and averaged over the 740 replicates.

This is compared to the theoretically expected value of: 1=ðNCG r+0 Þ cell cycles, or 1=ðNCG r+0 nccÞgenerations (red curve in Figure 4C).

A steady-state methylation level was found for each replicate of each locus, by first simulating (from the all-U initial state) for an equil-

ibration-time of 50,000 generations (ample time to reach steady-state, Figure 4B). The simulation was then continued for another

50,000 generations (denoted by T below), over which the overall methylation level of the locus, CMD, was time-averaged to find

the steady-state methylation level, CMD, where:

CMD =
1

T

ZT

0

CMD dt:

The time for an individual locus to first reach steady-state is then defined as the time themethylation level of that locus first reached

the value of CMD. This calculation is repeated independently for each replicate of each locus, with the mean and standard deviation

over replicates then shown in Figures 4D and S3J respectively. An estimate of the typical magnitude of fluctuations away from the

mean steady-state methylation level is found from the standard deviation of the methylation level over time, S, where:

S2 =
1

T

ZT

0

CMD
2
dt � ðCMDÞ2

Again, this quantity is calculated individually for each replicate of each locus, with the mean over replicates shown in Figure S6C.

Finally, we study the ‘greatest’ fluctuation occurring in the second 50,000 generations of the above 100,000 generation simulations.

Herewe use ‘greatest’ to refer to the fluctuation showing the largest deviation inmethylation level from the time-averagedmean. Both

the magnitude and duration of this fluctuation are recorded for each replicate of each locus, with the mean and standard deviation

over replicates shown in Figures 6A and S6A respectively for the magnitude, and in Figures 6B and S6B respectively for the duration.

Hence, the magnitude of the greatest fluctuation refers to the largest departure from the time-averaged mGG level over the second

50,000 generation simulation period (where mCG level refers to the mean mCG fraction over an individual locus). Similarly, the dura-

tion of the greatest fluctuation refers to the total time (in generations) over which the mCG level departed from the mean, for the spe-

cific fluctuation found to be the greatest magnitude. We note that the magnitude of the greatest fluctuation will depend on the length

of the time-interval, T, that is studied: the longer the time-interval, the higher the likelihood that more extreme fluctuations will be

observed.

Fits to mutant mean gain and loss rates over methylatable regions
The large fluctuations and insufficient range, particularly in the observedmutant loss rate distributions (as a function of distance to the

nearestM-site), preclude a full fitting to the gain/loss rate distributions (Figures 2B and 2C). Instead, we therefore used the observed

mean gain/loss rate over methylatable regions (Table S1). Although the simulated mean gain/loss rates for the model fit to Col-0 are

close to those found for ourWT data set (Figure 2G; Tables S1 and S5), there are still�10% discrepancies. We therefore calculated a

target mean gain and loss rate for eachmutant (Table S6) by applying the same relative change from the simulatedmeanWT rates as

is found from comparing the mean rate for each mutant to the corresponding newly measured mean WT rates (as these were all

measured using a consistent experimental design). The simulated gain/loss rate distributions were found by fitting the overall coop-

erativity strength (r�), and the background loss rate (e), to the target mean gain/loss rates.

As relatively recently generated mutants are used, we assume that their methylation state is still very close to that of the Col-0

consensus state. Consequently, as before, we use the Col-0 consensus state for the initial state and simulate for 30 generations,

using 100 replicates to find the simulated mean gain/loss rates over methylated regions. Parameters are as for the full model

(Table S3A) but with the overall cooperativity strength (r�) and background loss rate (e) adjusted according to Table S6. For h2az,

caps were introduced to the cooperative interaction to ensure that 0< r+Coop < 1 and: 0<g< 1: Using these parameter values, the

steady-state methylation level distribution, and the time to reach steady-state were then found for each mutant, similarly to the

description above for Col-like accessions, though only using 30 modelled replicates for each simulation and from the Col-0

consensus initial state.

Finally, we note that for the ros1 mutant, we could alternatively produce a very similar fit to that produced by altering the overall

cooperativity strength by adjusting the spontaneous de novo rate (r+0 ) instead of the overall cooperativity strength. These results

are not shown, as they did not appreciably alter the steady-state state methylation level. We emphasize that all fits to mutant rates

are tentative due to the restricted amount of data available for the fit (only a single average gain and loss rate per mutant, as opposed

to the spatially resolved Col-0 gain/loss rate distributions and the steady-state methylation levels available for the WT population).

Long-timescale (steady-state) simulations only reflect the direct consequences of the altered short-timescale (30 generation) methyl-

ation dynamics. Time to steady-state calculations are estimates, as it is unknown which side of the steady-state each locus is in the

initial state and therefore loci are assumed to transition in the direction of the overall mean of the distribution. Any potential indirect

effects, such as altered methyltransferase targeting are not accounted for.
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Simulations using randomised CG-site positions
The stochastic model indicates that both the observed enhancement of mCG level in exons vs introns (Figure 5D) and the mCG

enhancement under well-positioned nucleosomes (Figure 5E) are both driven by the local CG density.

To confirm this, we conducted additional simulations using randomized CG-positions to act as a control. Methylatable regions

were simulated as described previously. The start and end genomic positions of each methylatable region were enforced exactly

as previously. Additionally, the experimentally observed number of CG sites (for Col-0) was used for each locus. Within every locus,

the experimentally prescribed number of CG siteswere randomly allocated a positionwithin that locus, with the constraint that no two

CG sites could overlap (each CG site occupies exactly 2 bp). Stochastic simulations were then performed as previously (model pa-

rameters in Table S3A): 30 replicates were simulated from a fully unmethylated initial state for 100,000 generations and the final

methylation state recorded.

Randomizing CG site positions within each individual locus produces a relatively modest adjustment to the CG-CG site pair cross

correlation function (see Figure 5C for experimental CG site positions compared to Figure S5C for randomized CG sites). The cor-

responding change to the simulated M-M pair cross correlation function is minimal (Figure S5C, blue for experimental CG site posi-

tions and black for randomized CG sites). This is to be expected given that the gain and loss interaction profiles are unchanged, while

the changes to the CG site distribution are subtle.

The effect of randomizing CG sites on themCG level of exons vs introns however is stark. ThemCG level distributions for exons and

introns (averaged over the 30 simulated replicates) were calculated as for Figure 5D but with a slight modification. In cases where no

CG sites lie within either the annotated exons or annotated introns for a particular locus, the locus was then excluded (n=1368, unlike

for Figure 5D), to ensure an equal number of exon and intron regions were compared. Randomizing the CG site positions removes the

enhanced CG density found for exons (Figure S1B, right). The resulting mCG level distributions for exons and introns then become

equivalent (Figure S5D), confirming that the enhancement of mCG level in exons compared to introns was indeed driven by the

greater CG site density of exons.

Similarly, the mCG level averaged over well positioned nucleosomes (after using randomized CG site locations) was calculated

equivalently to in Figure 5E. The fluctuations in the simulated mCG level in Figure S5E no longer reproduce the mCG oscillations

observed for Col-0. Instead, the simulated mCG level now fluctuates erratically (Figure S5E). Randomly generated CG site distribu-

tions create regions of higher or lower CG site density. However, these regions will no longer be aligned with the nucleosome posi-

tions, which normally center on CG-dense DNA, and will no longer be correlated with exons/introns. We, therefore, interpret the

peaks and troughs in simulated mCG level (Figure S5E) as reflecting these regions of randomly generated high and low CG density.

QUANTIFICATION AND STATISTICAL ANALYSIS

All stochastic modelling was performed using python via the distribution: anaconda3-5.2.0, which included the following libraries:

dask; matplotlib; numpy; pandas; scipy. Analysis of aligned bisulfite data was performed using R-3.6.0, including the following li-

braries: tidyr, GenomicRanges, data.table scales, stringr, ggplot2, and SeqMonk.

All details of statistical tests, including replicate numbers and p-values are included in the appropriate Figures, Figure legends and

Tables, with further information provided in the methods details.
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