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THE REGULARISED INERTIAL DEAN–KAWASAKI EQUATION:
DISCONTINUOUS GALERKIN APPROXIMATION AND MODELLING FOR

LOW-DENSITY REGIME

Federico Cornalba1,2,* and Tony Shardlow2

Abstract. The Regularised Inertial Dean–Kawasaki model (RIDK) – introduced by the authors and
J. Zimmer in earlier works – is a nonlinear stochastic PDE capturing fluctuations around the mean-
field limit for large-scale particle systems in both particle density and momentum density. We focus
on the following two aspects. Firstly, we set up a Discontinuous Galerkin (DG) discretisation scheme
for the RIDK model: we provide suitable definitions of numerical fluxes at the interface of the mesh
elements which are consistent with the wave-type nature of the RIDK model and grant stability of the
simulations, and we quantify the rate of convergence in mean square to the continuous RIDK model.
Secondly, we introduce modifications of the RIDK model in order to preserve positivity of the density
(such a feature only holds in a “high-probability sense” for the original RIDK model). By means of
numerical simulations, we show that the modifications lead to physically realistic and positive density
profiles. In one case, subject to additional regularity constraints, we also prove positivity. Finally, we
present an application of our methodology to a system of diffusing and reacting particles. Our Python
code is available in open-source format.
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1. Introduction

The Regularised Inertial Dean–Kawasaki model (RIDK; see [15]) is a stochastic PDE describing fluctuations
of large-scale particle systems, which, crucially, are of inertial type. Specifically, RIDK not only keeps track of
the particle density, but also the particle momentum density. It was originally derived from inertial Langevin
dynamics, which is an established and accurate microscopic representation for a wide range of phenomena such
as, but non limited to, active matter [10], nucleation for colloids/thermal advection [43], thin-liquid films rupture
[27], density/agent-based models [24,32], bacterial dynamics [48].
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In order to give minimal context to RIDK, let a density 𝜌𝜖 and momentum density 𝑗𝜖 be defined by

𝜌𝜖(𝑥, 𝑡) :− 1
𝑁

𝑁∑︁
𝑖=1

𝑤𝜖(𝑥− 𝑞𝑖(𝑡)), 𝑗𝜖(𝑥, 𝑡) :− 1
𝑁

𝑁∑︁
𝑖=1

𝑝𝑖(𝑡)𝑤𝜖(𝑥− 𝑞𝑖(𝑡)), (1.1)

for a smoothed delta function 𝑤𝜖 and regularisation parameter 𝜖 > 0, associated with an 𝑁 -particle system, with
positions and velocities {𝑞𝑖,𝑝𝑖}𝑁

𝑖=1 undergoing inertial Langevin dynamics for potential energy 𝒱, dissipation
parameter 𝛾 > 0 and noise intensity 𝜎 ∈ R. On the periodic domain 𝐷 = T𝑑, for N ∋ 𝑑 ≥ 1, RIDK is the system
of stochastic PDEs for (𝜌, 𝑗) ≈ (𝜌𝜖, 𝑗𝜖) given by

𝜕𝜌

𝜕𝑡
= −∇ · 𝑗, (RIDK-𝜌)

𝜕𝑗

𝜕𝑡
= −𝛾 𝑗 − 𝑘B𝑇 ∇𝜌−∇𝒱 𝜌 + 𝜎

1√
𝑁

√
𝜌 𝜉𝜖, (RIDK-𝑗)

where 𝑘B𝑇 = 𝜎2/2𝛾 (the fluctuation-dissipation property) and the Gaussian noise 𝜉𝜖 ∈ R𝑑 has independent,
mean zero, white-in-time and correlated-in-space components with spatial covariance kernel of von Mises-type
(see (A.1); this kernel is the periodic analogous of a Gaussian kernel with variance 𝜖2). Subject to technical
constraints on the initial data, the system is well-posed (see [15]). Note that (RIDK) may also include additional
terms such as particles reacting or interacting weakly according to a pair potential.

1.1. Main results

We further consolidate the analysis of (RIDK) by addressing two important aspects, specifically:
– we provide a numerical approximation of (RIDK) by means of the discontinuous Galerkin method in space

(more on this in Sect. 1.1.1), and
– we improve modelling aspects in the low 𝜌-density regime (more on this in Sect. 1.1.2).

1.1.1. A Discontinuous Galerkin (DG) framework

The density 𝜌 is governed by a conservation law, and we choose a DG approximation to ensure local conserva-
tion of 𝜌. We derive and prove convergence of a Raviart–Thomas mixed finite-element approximation in space.
The Raviart–Thomas elements are an important class of discontinuous basis functions and are the minimal set
of elements that are mapped by the divergence operator onto the piecewise polynomials. Key to defining a DG
method is the numerical flux, which defines the flow between individual elements. The numerical flux (given in
(Flux) below) is found by solving a wave equation across element edges and therefore depends on the wave-speed√

𝑘B𝑇 and jump quantities J𝜌K. We summarise the convergence result (for a full statement, see Prop. 6.2).

Proposition 1.1 (Informal statement for Prop. 6.2). Let 𝑢 = (𝜌, 𝑗) (respectively, 𝑢ℎ = (𝜌ℎ, 𝑗ℎ)) be the solution
to (RIDK) (respectively, its DG approximation on a mesh with mesh-width ℎ, with 𝑞 being the order of the
chosen finite element discretisation, see (DG)) up to some fixed time 𝑇 > 0. Set

𝑞 :−
{︂

1/2 if 𝑞 = 0,

𝑞 if 𝑞 > 0.
(1.3)

Assume the validity of the scaling

𝑁𝜖𝜃 = 1, 𝜃 ≥ 2𝑠 + 𝑑, for some 𝑠 > max{𝑑/2 + 1; 𝑞 + 3}. (1.4)

Furthermore, assume that the noise in (DG) is obtained as a truncation of the full (RIDK) noise on the first
𝐽 ∝ 𝜖−1 ln(ℎ2𝑞) Fourier modes, as detailed in (6.3). Then we have

sup
0≤𝑡≤𝑇

E
[︁⃦⃦

𝑅ℎ𝑢(𝑡)− 𝑢ℎ(𝑡)
⃦⃦2

𝐿2(T𝑑)

]︁
≤ 𝐶(𝛿, 𝑇, 𝑑)

{︁
1 + E

[︁
‖𝑢0‖2𝐻𝑠×[𝐻𝑠]𝑑

]︁}︁
𝑒𝐶2(𝒱,𝑇 ) ℎ2𝑞,

where 𝑢0 is the initial datum, where 𝑅ℎ is a suitable projection operator, and where 𝛿 is a suitable regularisation
parameter (see Rem. 2.2).
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Figure 1. Five snapshots of the particle density 𝜌(·, 𝑡) for (RIDK) at 𝑡 = 0, 2.5, 5, 7.5, 10 with
parameters defined by equations (1.5) and (1.6).

The justification for (1.4) is technical, and is deferred to Remark (2.3).
Our implementation [12] relies on a semi-implicit Euler–Maruyama time-stepping method, and makes use

of the Python package Firedrake [46]. We use this implementation to illustrate the behaviour of RIDK; for
a one-dimensional example, see Figure 1, which shows four snapshots across the time interval [0, 10] of the
𝑥-profile of 𝜌 with initial data

𝑗0(𝑥) = 0, 𝜌0(𝑥) = [2𝜋(1 + 𝜋)]−1(1 + 𝑥), 𝑥 ∈ (0, 2𝜋], (1.5)

(note that 𝜌0 has unitary mass) and parameters

𝛾 = 0.25, 𝜎 = 0.25, 𝜖 = 0.05, 𝑁 = 103, 𝒱(𝑥) = 0.5 cos(𝑥)2. (1.6)

Conspicuously, the particle density 𝜌 in Figure 1 becomes negative and this is not physical. The non-negativity
is not caused by the numerical approximation, but rather is a fundamental limitation of the RIDK model; in fact,
RIDK is akin to a damped wave equation and therefore has no maximum principle or guarantee of positivity
for the density (more on this in Sect. 1.2).

1.1.2. Modelling in low-density regime

We propose modelling modifications to (RIDK) that lead to positive density profiles. The most promising
one (see Sect. 7.2) is concerned with separating the time scale of density and momentum density, and speeding
up the dynamics of the latter in the low density regime. This results in excessive momentum (which may lead
to negativity) to quickly dissipate. Explicitly, we consider the modified system in (𝜌,𝐽)

𝜕𝜌

𝜕𝑡
= −∇ · 𝐽 , (Mod-𝜌)

𝜙𝜏 (𝜌)
𝜕𝐽

𝜕𝑡
= −𝛾 𝐽 − 𝑘B𝑇 ∇𝜌−∇𝒱 𝜌+ + 𝜎

1√
𝑁

√︀
𝜌 𝜙𝜏 (𝜌) 𝜉𝜖, (Mod-𝐽)

where 𝜌+ :− max{𝜌, 0} and 𝜙𝜏 is a function smoothly transitioning from value zero (on the (−∞, 𝜏/2) interval)
to value one (on the (𝜏,∞) interval). We discuss the extent to which (Mod) preserves positivity of the density. In
particular, we provide a maximum principle-based argument that guarantees non-negativity (nevertheless, this
setting is so far limited by the lack of a well-posedness theory), discuss associated numerical approximations,
and show relevant simulations. Several related open questions are discussed.

In a second approach, instead of speeding up the momentum dynamics, we add extra diffusion to the density
evolution. This approach appears to be less successful and numerical simulations suggest strong dependence of
the results on the size of the added diffusion. A brief discussion in given in Section 7.1.
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Finally, we present a two-dimensional example with two populations of reacting/diffusing agents; specifically,
we set up the corresponding RIDK dynamics, and compare its behaviour with that of the agents’ system: this
example follows the setting of the over-damped counterpart treated in [32].

1.2. Related literature

1.2.1. Inertial models

Interest in analysis and simulation of DK-type equations has grown substantially during the last decade, with
applications ranging from active matter [10], nucleation for colloids/thermal advection [43], thin-liquid films rup-
ture [27], density/agent-based models [24,32], bacterial dynamics [48]. As far as inertial Dean–Kawasaki models
are concerned, analytical well-posedness of (RIDK) (in the form of existence of high-probability mild solutions)
has been addressed in the case of independent particles in dimension 𝑑 = 1 [13], weakly interacting particles in
dimension 𝑑 = 1 [14], and in any dimension 𝑑 ≥ 1 with optimal scaling [15]. In terms of numerical works, we
cite the finite-element discretisations of the inertial models [32, 34] for the general fluctuating hydrodynamics
approximation for reaction-diffusion and agent-based systems, as well as the more specific work [24] for the
description of co-evolving opinion and social dynamics within agent-based systems.

1.2.2. Trade-off: RIDK vs. original Dean–Kawasaki model

The (RIDK) model is the inertial counterpart to the classical (over-damped) Dean–Kawasaki model [19, 33]
in particle density only (corresponding to formally taking the limit 𝛾 →∞ in (RIDK)), which reads

𝜕𝜌

𝜕𝑡
=

𝑁

2
Δ𝜌 +∇ · (√𝜌 𝜉), (DK)

where 𝜉 is a space-time white noise. While they both describe fluctuations in systems of finitely many particles,
(RIDK) and (DK) are substantially different mathematical objects, and have different strengths and weaknesses.
On one hand, the (RIDK) model is more advantageous than (DK), as it:

(i) allows for a richer description of the particle system, as it also includes the momentum density;
(ii) has a more interpretable, less mathematically challenging noise (it is not in divergence form);
(iii) allows for smoother solutions, and;
(iv) features densities with only position 𝑥 and time 𝑡 as independent variables, thus retaining the same inter-

pretability of the (DK) model1.

On the other hand, (RIDK) loses out to (DK) when it comes to the regularity of the deterministic component
(heat vs. wave-type drift): This is one of the main reasons for which the (DK) has been, so far, more extensively
studied. Furthermore, unlike (DK), the derivation of (RIDK) relies on a close-to-equilibrium assumption for
the underlying particle system: namely, such an assumption allows to compare the gradient term −𝑘B𝑇 ∇𝜌 in
(RIDK) and the microscopic term

[︀
𝑗𝜖,2(𝑥, 𝑡)

]︀
ℓ
:− −𝑁−1

𝑁∑︁
𝑖=1

𝑑∑︁
𝑘=1

𝑝ℓ,𝑖(𝑡)𝑝𝑘,𝑖(𝑡)
𝜕

𝜕𝑥ℓ
𝑤𝜖(𝑥− 𝑞𝑖(𝑡)), ℓ = 1, . . . , 𝑑, (1.8)

which arises from a time differentiation of – and is otherwise not closable in terms of – the densities in (1.1);
essentially, the identification of −𝑘B𝑇 ∇𝜌 and (1.8) is achieved by assuming that the velocities {𝑝𝑖}𝑁

𝑖=1 are
close to the equilibrium with variance 𝑘B𝑇 , see [15] for an expanded discussion. Unsurprisingly, this comparison
deteriorates for regimes of low particle density, leading to negativity of the density, as already shown in Figure 1.

As already mentioned, (RIDK) and (DK) are mathematically quite different: More specifically, recovering
(DK) from (RIDK) can currently be done only to a very limited extent: Specifically, we are not aware of any

1Closed mesoscopic representations of under-damped particle systems can be derived by including the velocity as an independent
variable in the mesoscopic densities: this is precisely what is done for Vlasov–Fokker–Planck systems (see, e.g., [26]).
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rigorous result quantifying the – formal – over-damped limit 𝛾 → ∞. On the contrary, the two models are
better understood on their own in terms of the limit of 𝑁 →∞ (with (DK) recovering the heat equation) and
the simultaneous limit of 𝑁 → ∞, 𝜖 → 0 as prescribed by (1.4) (with (RIDK) recovering the wave equation).
Finally, (DK) is also understood when it comes to large deviations principle when associated with removing
regularisations for the noise square-root singularity at the origin [28].

1.2.3. Over-damped Dean–Kawasaki model

The seminal results [38, 39] show that for (DK) – and natural variations associated with weakly interacting
particle systems – the only admissible martingale solution is precisely the empirical distribution of the underlying
particle system. This boils down to the rigid interplay of (highly singular) noise and drift in the setting of a
stochastic Wasserstein gradient flow. These results were preceded by – and are the natural outcome of – a bulk
of works indicating the need for various regularisations in the equation’s drift in order to obtain non-trivial
solutions [2, 36, 37, 50]. DK models have also been linked to large-deviation principles in more general settings
(for instance, zero-range processes, see [21]).

A second group of works is related to analytical regularisations of (DK) equations (coming from using either
coloured, truncated, or smoothed noise). We mention fluctuation weak error estimates for a regularised DK SPDE
started from general initial particle profiles, along with non-negativity of the solution, comparison principle,
entropy estimates [23], existence of kinetic solutions for regularised versions of (DK) and generation of a random
dynamical system [28], uniqueness of invariant measures and mixing for the corresponding Markov process
[30], derivation of large-deviation principles for fluctuations of the symmetric simple-exclusion process [22],
well-posedness for versions of (DK) with correlated noise [29], and derivation of underlying particle dynamics
corresponding to (DK) with correlated noise [20]. Additionally, rates of CLT convergence of stochastic gradient
descent dynamics in overparametrised shallow neural networks to conservative stochastic PDEs close to (DK)
have been recently derived in [31].

As for numerical discretisations of (DK), we mention structure-preserving finite-element and finite-difference
schemes for approximating the fluctuation density of 𝑁 particles to arbitrary precision in 𝑁−1 ([11] for inde-
pendent Brownian motions, Cornalba et al. [16] for weakly interacting particles), convergence analysis of a finite
element approximation to a weak formulation for a regularised (DK) equation [5], full reconstruction of dissi-
pative operators in gradient flow equations [40], finite-volume schemes for stochastic gradient flow equations
with hybrid space discretisation of the deterministic and the stochastic DK dynamics taking advantage of both
central and upwind schemes, and positivity-preserving schemes based on Brownian bridge techniques [47], and
finite-volume schemes for stochastic gradient flow equations with applications to Landau–Lifshitz Navier–Stokes
equations [25].

Remark 1.2. Recently, we have seen several authors turn to Discontinuous Galerkin methods as a way to
numerically simulate stochastic PDE models, including conservation laws (see, e.g., the review paper [41]).

1.3. Summary of contents

We recall useful properties of (RIDK) in Section 2, and we set up the DG method in Section 3 for approxi-
mating RIDK spatially. We study a noise-free, linear problem associated to (RIDK) in Section 5, and quantify
the convergence of our DG approximation in space for the full system in Section 6. In Section 7, we propose
modifications to (RIDK) in order to address the aforementioned out-of-equilibrium and density-positivity issues:
these modifications are discussed both analytically and numerically. Finally, Section 8 provides a comparison
between a reacting/diffusing system of two populations of agents (in inertial form) and the associated RIDK
model.

The appendix is devoted to technical lemmas for the (RIDK) model (Sect. A), and computing relevant Itô
differentials (Sect. B).
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2. well-posedness for ridk model

We recall relevant notions from [15]. We set 𝐷 :− T𝑑. For any 𝑠 > 𝑑/2, define the function spaces

𝒲𝑠 :− 𝐻𝑠(𝐷)× [𝐻𝑠(𝐷)]𝑑, (2.1)

𝑉 𝑠+1 :−
{︀
𝑗 ∈ [𝐻𝑠(𝐷)]𝑑 : ∇ · 𝑗 ∈ 𝐻𝑠(𝐷)

}︀
, (2.2)

where 𝐻𝑠(𝐷) is the usual Sobolev space of functions with 𝑠 square-integrable weak derivatives. The model
(RIDK) is rewritten in the abstract stochastic PDE form

d𝑢(𝑡) = 𝐴 𝑢(𝑡) d𝑡 + 𝐹 (𝑢(𝑡)) d𝑡 + 𝐵𝑁 (𝑢(𝑡)) d𝑊𝜖(𝑡),
𝑢(0) = 𝑢0,

(2.3)

where 𝑢 = 𝑢𝜖 = (𝜌, 𝑗), 𝑊𝜖 :− (0, 𝜉𝜖) is a 𝒲𝑠-valued 𝑄-Wiener noise (see Sect. A.1 for full details), 𝐴 is the
wave-type differential operator given by

𝐴 𝑢 : 𝒟(𝐴) := 𝐻𝑠+1(𝐷)× 𝑉 𝑠+1 ⊂ 𝒲𝑠 →𝒲𝑠,

𝑢 = (𝜌, 𝑗) ↦→
(︀
−∇ · 𝑗, −𝛾 𝑗 − 𝑘B𝑇 ∇𝜌

)︀
,

where 𝐹 (𝜌, 𝑗) = [0,−∇𝒱 𝜌], and where the stochastic integrand 𝐵𝑁 is given by

𝐵𝑁 (𝜌, 𝑗)(𝑎, 𝑏) := 𝜎 𝑁−1/2(0,
√

𝜌 𝑏1, . . . ,
√

𝜌 𝑏𝑑) ∈ R× R𝑑.

As (RIDK-𝜌) is a conservation law, we denote the total mass of the system as

𝑚𝜌 :−
∫︁

𝐷

𝜌0(𝑥) d𝑥. (2.4)

We have the following well-posedness result for (2.3).

Proposition 2.1. Assume the scaling 𝑁𝜖𝜃 = 1, for some 𝜃 > 2𝑑. For initial data (𝜌0, 𝑗0) ∈ 𝒲𝑠 with 𝜌0 positive
and uniformly bounded away from zero, for every 𝜈 ∈ (0, 1) and a suitable 𝑇 (𝜌0) > 0, there exists 𝑁(𝜈, 𝑇 ) ∈ N,
a measurable set 𝐹𝜈 ⊂ Ω with P(𝐹𝜈) ≥ 𝜈, and a unique non-negative process 𝑢 solving (2.3) on 𝐹𝜈 in a mild
solution sense, meaning that

𝑢(𝑡) = 𝑆(𝑡) 𝑢0 +
∫︁ 𝑡

0

𝑆(𝑡− 𝑠) 𝐹 (𝑢(𝑠)) d𝑠 +
∫︁ 𝑡

0

𝑆(𝑡− 𝑠) 𝐵𝑁 (𝑢(𝑠)) d𝑊𝜖(𝑠) (2.5)

on 𝐹𝜈 and 𝑡 ≤ 𝑇 , for 𝑁 ≥ 𝑁(𝜈, 𝑇 ), and where {𝑆(𝑡)}𝑡≥0 is the 𝐶0-semigroup associated with the operator 𝐴.
Furthermore, equation (2.7) holds.

If, in addition, the more restrictive scaling (1.4) is satisfied, then 𝑢 is also a path-wise solution up to time
𝑇 = 𝑇 (𝜌0), namely, we have

𝑢(𝑡) = 𝑢0 +
∫︁ 𝑡

0

𝐴𝑢(𝑠) d𝑠 +
∫︁ 𝑡

0

𝐹 (𝑢(𝑠)) d𝑠 +
∫︁ 𝑡

0

𝐵𝑁 (𝑢(𝑠)) d𝑊𝜖(𝑠) (2.6)

on 𝐹𝜈 and 𝑡 ≤ 𝑇 .

We recall the proof of the proposition from [15] in Section A.2.

Remark 2.2. As discussed in [15], the process 𝑢 is defined on the entire probability space, but only solves
(RIDK-𝜌)–(RIDK-𝑗) with high-probability (i.e., on 𝐹𝜈). More precisely, upon modifying the noise factor 𝐵𝑁

by replacing the square root function with a smooth ℎ𝛿 ∈ 𝐶⌈𝑑/2⌉+2 such that ℎ𝛿(𝑧) =
√︀
|𝑧| for |𝑧| ≥ 𝛿, and

performing a truncation on a 𝒲𝑠-sphere with sufficiently large radius 𝑘 (this modified noise is denoted by 𝐵𝑁,𝛿),
then one has a mild solution defined on the whole probability space Ω. On the set 𝐹𝜈 , the noises 𝐵𝑁 and 𝐵𝑁,𝛿

coincide, and we therefore say that 𝑢 satisfies the dynamics (RIDK-𝜌)–(RIDK-𝑗) on the set 𝐹𝜈 . The cut-off
parameter 𝛿 is chosen so that min𝑥∈𝐷 𝜌0(𝑥) > 𝛿.



THE RIDK EQUATION: DG APPROXIMATION AND MODELLING FOR LOW-DENSITY REGIME 3067

Remark 2.3. The well-posedness of (2.3) in [15] (in terms of mild solutions) is related to the scaling regime
𝑁𝜖𝜃 = 1, with constraint 𝜃 > 2𝑑: this constraint boils down to the relation

E
[︀
‖𝑢(𝑡)‖2𝒲𝑠

]︀
∝ 𝑁−1𝜖−2𝑠−𝑑, (2.7)

which explicitly links the Sobolev space index 𝑠 to the critical threshold 𝜃𝑐 :− 2𝑠+𝑑, and the Sobolev embedding
requirement 𝑠 > 𝑑/2, which allows the embedding into the continuous functions. Form a physics perspective,
the constraint 𝜃 > 2𝜃 implies particle overlap (as each particle’s volume is proportional to 𝜖𝑑).

The scaling in (1.4) is more restrictive, as we also want to account for: (i) standard interpolation error
estimates of our DG method, as will become apparent in Theorem 5.2, and (ii) a stronger notion of solution
(analytically strong solution), see (2.6) above.

3. discontinuous galerkin framework

We develop the weak form for the Raviart–Thomas mixed finite-element approximation in space, including
the numerical flux.

3.1. Basic notation

Consider a tesselation 𝒯ℎ of 𝐷 = T𝑑 consisting of simplicial elements 𝐾 (triangles, tetrahedrons, . . . ) with
maximum side-length ℎ. We denote by ℰℎ the set of facets 𝑒 (edges of triangles, faces of tetrahedrons. . . ) In
dimension 𝑑 = 1, the simplicial elements are simply intervals.

For 𝑞 ∈ N0, let polynomials of degree-𝑞 on 𝐾 ⊂ 𝐷 be denoted 𝒫𝑞(𝐾). For 𝑞 ∈ N, denote the Raviart–
Thomas elements of order 𝑞 (see, for instance, [35], Chap. 3 or [9]) by ℛ𝒯 𝑞(𝐾) = (𝒫𝑞−1(𝐾))𝑑 + 𝑥𝒫𝑞−1(𝐾).
Let 𝐻(div, 𝐷) :− {𝑣 ∈ [𝐿2(𝐷)]𝑑 : ∇ · 𝑣 ∈ 𝐿2(𝐷)} and ℛ𝒯 𝑞 :− {𝑣 ∈ 𝐻(div, 𝐷) : 𝑣|𝐾 ∈ ℛ𝒯 𝑞(𝐾) ∀𝐾 ∈ 𝒯ℎ}. Due
to existence of the weak divergence, any 𝑣 ∈ ℛ𝒯 𝑞 has continuous normal component across every 𝑒 ∈ ℰℎ. Let
𝒟𝒢𝑞 = {𝑣 ∈ 𝐿2(𝐷) : 𝑣|𝐾 ∈ 𝒫𝑞(𝐾) ∀𝐾 ∈ 𝒯ℎ}. We define the function spaces

𝑉 :−
{︂

𝑢 = (𝜌, 𝑗) ∈ 𝒲𝑠 :
∫︁

𝐷

𝜌(𝑥) d𝑥 = 𝑚𝜌

}︂
, (3.1)

𝑉0 :−
{︂

𝑢 = (𝜌, 𝑗) ∈ 𝒲𝑠 :
∫︁

𝐷

𝜌(𝑥) d𝑥 = 0
}︂

, (3.2)

for 𝑠 as in (1.4), and where 𝑚𝜌 has beed defined in (2.4). Their DG counterparts are denoted by

𝑉ℎ :−
{︂

𝜌ℎ ∈ 𝒟𝒢𝑞 :
∫︁

𝐷

𝜌ℎ(𝑥) d𝑥 = 𝑚𝜌

}︂
×ℛ𝒯 𝑞+1, (3.3)

𝑉ℎ,0 :−
{︂

𝜌ℎ ∈ 𝒟𝒢𝑞 :
∫︁

𝐷

𝜌ℎ(𝑥) d𝑥 = 0
}︂
×ℛ𝒯 𝑞+1. (3.4)

We denote the 𝐿2-inner product (respectively, 𝐿2-norm) by (·, ·) (respectively, by ‖ · ‖). Furthermore, we use
the notation

⟨(𝜌, 𝑗), (𝜑,𝜓)⟩ :− 𝑘B𝑇 (𝜌, 𝜑) + (𝑗,𝜓). (3.5)

Finally, throughout the paper, we use the letted “ d” to indicate the standard Itô differential.

3.2. Derivation of weak form

In order to derive the weak form of (RIDK), we multiply (RIDK-𝜌) by a test function 𝜑 : 𝐾 → R and integrate
over an element 𝐾 with boundary 𝜕𝐾, obtaining∫︁

𝐾

𝜑 d𝜌 d𝑥 = −
∫︁

𝐾

𝜑 (∇ · 𝑗) d𝑥 d𝑡 = −
∫︁

𝜕𝐾

𝜑 (𝑗 · 𝑛) d𝑆 d𝑡 +
∫︁

𝐾

(∇𝜑) · 𝑗 d𝑥 d𝑡,
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where 𝑛 is the outward-pointing normal on 𝐾. For piecewise-constant elements, where∇𝜑 vanishes, conservation
of mass holds and

d
∫︁

𝐾

𝜌 d𝑥 = −
∫︁

𝜕𝐾

(𝑗 · 𝑛) d𝑆 d𝑡.

With 𝒱 = 0 (for simplicity), testing (RIDK-𝑗) with 𝜓 : 𝐾 → R𝑑 and then applying the divergence theorem
entails ∫︁

𝐾

𝜓 · d𝑗 d𝑥 = −𝛾

∫︁
𝐾

𝜓 · 𝑗 d𝑥 d𝑡− 𝑘B𝑇

∫︁
𝐾

𝜓 · ∇𝜌 d𝑥 d𝑡 + 𝜎
1√
𝑁

∫︁
𝐾

√
𝜌 (𝜓 · d𝜉𝜖) d𝑥

= −𝛾

∫︁
𝐾

𝜓 · 𝑗 d𝑥 d𝑡− 𝑘B𝑇

∫︁
𝜕𝐾

(𝜓 · 𝑛) 𝜌 d𝑆 d𝑡

+ 𝑘B𝑇

∫︁
𝐾

(∇ ·𝜓) 𝜌 d𝑥 d𝑡 + 𝜎
1√
𝑁

∫︁
𝐾

√
𝜌 (𝜓 · d𝜉𝜖) d𝑥.

Under the condition that (𝜓 · 𝑛)𝜌 is continuous across 𝜕𝐾, we can sum over 𝐾 ∈ 𝒯ℎ, drop the null contri-
bution −𝑘B𝑇

∑︀
𝐾

∫︀
𝜕𝐾

(𝜓 · 𝑛) 𝜌 d𝑆, and derive the following weak form: for initial condition (𝜌0, 𝑗0) ∈ 𝑉 , find
(𝜌, 𝑗) : [0, 𝑇 ] → 𝑉 such that

(𝜑, d𝜌) = −
∑︁

𝐾∈𝒯ℎ

∫︁
𝜕𝐾

𝜑 (𝑗 · 𝑛) d𝑆 d𝑡 + (∇𝜑, 𝑗) d𝑡,

(𝜓, d𝑗) = −𝛾(𝜓, 𝑗) d𝑡 + 𝑘B𝑇 (∇ ·𝜓, 𝜌) d𝑡 +
𝜎√
𝑁

(
√

𝜌𝜓, d𝜉𝜖)

holds for any (𝜑,𝜓) ∈ 𝑉0. We keep the boundary terms in 𝑗 as this is useful for the following analysis. Including
the external potential 𝒱, we write the weak formulation as: find 𝑢 = (𝜌, 𝑗) : [0, 𝑇 ] → 𝑉 such that

d⟨𝑢(𝑡), 𝑣⟩ = 𝑎(𝑢(𝑡), 𝑣) d𝑡 + ⟨𝐹 (𝑢(𝑡)), 𝑣⟩d𝑡 + ⟨𝐵𝑁 (𝑢(𝑡)) d𝑊𝜖, 𝑣⟩, ∀𝑣 = (𝜑,𝜓) ∈ 𝑉0, (3.6)

where we have defined the bilinear form 𝑎 as

𝑎(𝑢, 𝑣) :− −𝑘B𝑇
∑︁

𝐾∈𝒯ℎ

∫︁
𝜕𝐾

𝜑 (𝑗 · 𝑛) d𝑆 + 𝑘B𝑇 (∇𝜑, 𝑗)

− 𝛾(𝜓, 𝑗) + 𝑘B𝑇 (∇ ·𝜓, 𝜌). (3.7)

Given the regularity of the solution 𝑢 in Proposition 2.1, such a solution 𝑢 also solves the weak formulation
(3.6), as detailed in the proof of Proposition 2.1.

3.3. Discontinuous Galerkin method

For the discontinuous Galerkin method, we approximate 𝜌 and 𝑗 by discontinuous functions with jump
discontinuities on the facets 𝑒 ∈ ℰℎ. Their values must be assigned on the facets: in accordance with the
notation in [3], we introduce the numerical flux ℎ𝑒,𝐾

𝜌 (respectively, ℎ𝑒,𝐾
𝑗 ) to replace 𝜌 (respectively, 𝑗) on the

facet 𝑒 of the element 𝐾. These fluxes will be defined in Section 3.3.1 below. Then, the weak form with numerical
fluxes becomes: seek (𝜌ℎ, 𝑗ℎ) : [0, 𝑇 ] → 𝑉ℎ such that

(𝜑ℎ, d𝜌ℎ) = −
∑︁

𝐾∈𝒯ℎ

∫︁
𝜕𝐾

𝜑ℎ ℎ
𝑒,𝐾
𝑗 · 𝑛d𝑆 d𝑡 + (∇𝜑ℎ, 𝑗ℎ) d𝑡, (3.8a)

(𝜓ℎ, d𝑗ℎ) = −𝛾(𝜓ℎ, 𝑗ℎ) d𝑡− (∇𝒱 𝜌ℎ,𝜓ℎ) d𝑡− 𝑘B𝑇
∑︁

𝐾∈𝒯ℎ

∫︁
𝜕𝐾

(𝜓ℎ · 𝑛) ℎ𝑒,𝐾
𝜌 d𝑆 d𝑡

+ 𝑘B𝑇 (∇ ·𝜓ℎ, 𝜌ℎ) d𝑡 +
𝜎√
𝑁

(
√

𝜌ℎ𝜓ℎ, d𝜉ℎ,𝜖) (3.8b)

for all (𝜑ℎ,𝜓ℎ) ∈ 𝑉ℎ,0, where 𝜉ℎ,𝜖 is a suitable truncation of 𝜉𝜖 to be specified later.
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3.3.1. Definition of fluxes

We define numerical fluxes by solving the wave equation attained by neglecting the dissipation and noise com-
ponents of (RIDK) in one-dimensional cross-sections normal to 𝑒 ∈ ℰℎ (following the method of Godunov [49],
intuition in the one dimensional case is discussed in Rem. 3.1 below). Specifically, we set

ℎ𝑒,𝐾
𝜌 :− {𝜌}+

1
2
√

𝑘B𝑇
J𝑗K, (Flux-𝜌)

ℎ𝑒,𝐾
𝑗 :− {𝑗}+

√
𝑘B𝑇

2
J𝜌K, (Flux-𝑗)

where we have used {·} to denote the average value on either side of 𝑒 and J𝜑K = 2{𝜑𝑛} or J𝜓K = 2{𝜓 · 𝑛} to
denote the jump for scalar or vector quantities. The fluxes are consistent as ℎ𝑒,𝐾

𝜌 ≡ 𝜌 and ℎ𝑒,𝐾
𝑗 ≡ 𝑗 if 𝜌 and 𝑗

are continuous (as jumps across edges are null, and average values across edges coincide with the values on the
edge). If 𝐾+, 𝐾− share a facet 𝑒, then ℎ

𝑒,𝐾+
𝜌 = ℎ

𝑒,𝐾−
𝜌 and ℎ𝑒,𝐾+

𝑗 = ℎ
𝑒,𝐾−
𝑗 and we may drop the 𝐾 superscript.

For 𝑗 ∈ ℛ𝒯 𝑞+1, the normal components of 𝑗 is continuous across 𝑒 ∈ ℰℎ and ℎ𝑒
𝜌 = {𝜌}.

Remark 3.1. To give an intuition for the definitions (Flux), consider the non-dissipative linear part of the
noise-free version of (RIDK), in dimension one, and without boundary conditions, namely

𝜌𝑡 = −𝑗𝑥, 𝑗𝑡 = −𝑘B𝑇𝜌𝑥, 𝑡 > 0, 𝑥 ∈ R. (3.10)

Equation (3.10) is a wave equation with wave speed 𝑐 =
√

𝑘B𝑇 > 0 in 𝜌, and initial conditions 𝜌(0, 𝑥) = 𝜌0(𝑥)
and 𝜌𝑡(0, 𝑥) = −𝑗′0(𝑥). Its general solution is 𝜌(𝑡, 𝑥) = 𝐴(𝑥− 𝑐𝑡) + 𝐵(𝑥 + 𝑐𝑡) for 𝐴, 𝐵 : R → R. To match 𝐴, 𝐵
to the initial data, put 𝐴 + 𝐵 = 𝜌0 and −𝑐𝐴′ + 𝑐𝐵′ = −𝑗′0. Then 2𝑐𝐵′ = −𝑗′0 + 𝑐𝜌′0 and 𝐵 = (1/2𝑐)(𝑐𝜌0 − 𝑗0).
Similarly, 𝐴 = (1/2𝑐)(𝑐𝜌0 + 𝑗0).

To derive the flux for a discontinuous Galerkin method, consider initial data with a jump at 𝑥 = 0, namely,

𝜌0(𝑥, 𝑡) =
{︂

𝜌−, 𝑥 < 0
𝜌+, 𝑥 ≥ 0;

𝑗0(𝑥, 𝑡) =
{︂

𝑗−, 𝑥 < 0,

𝑗+, 𝑥 ≥ 0,
(3.11)

for constants 𝜌±, 𝑗±. The solution to equation (3.10) is then given by

𝜌(𝑥, 𝑡) =

⎧⎨⎩
𝜌−, 𝑥 < −𝑐𝑡,
1
2 (𝜌+ + 𝜌−) + 1

2𝑐 (𝑗+ − 𝑗−), −𝑐𝑡 < 𝑥 ≤ 𝑐𝑡,

𝜌+, 𝑐𝑡 < 𝑥,

(3.12)

and

𝑗(𝑥, 𝑡) =

⎧⎨⎩
𝑗−, 𝑥 < −𝑐𝑡,
1
2 (𝑗+ + 𝑗−) + 𝑐

2 (𝜌+ − 𝜌−), −𝑐𝑡 < 𝑥 ≤ 𝑐𝑡,

𝑗+, 𝑐𝑡 < 𝑥.

(3.13)

Since 𝑐 =
√

𝑘B𝑇 , the analogy between (3.12), (3.13) and (Flux) is now apparent.

3.4. Weak formulation of (3.8)

Taking once more into account that 𝜓ℎ ∈ ℛ𝒯 𝑞+1 leads to J𝜓ℎK = 0, the weak formulation (3.8) reduces to:
find (𝜌ℎ, 𝑗ℎ) : [0, 𝑇 ] → 𝑉ℎ such that

(𝜑ℎ, d𝜌ℎ) = −
∑︁
𝑒∈ℰℎ

∫︁
𝑒

J𝜑ℎK · ℎ𝑒
𝑗 d𝑆 d𝑡 + (∇𝜑ℎ, 𝑗ℎ) d𝑡, (DG-𝜌)
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(𝜓ℎ, d𝑗ℎ) = −𝛾(𝜓ℎ, 𝑗ℎ) d𝑡− (∇𝒱𝜌ℎ,𝜓ℎ) d𝑡 + 𝑘B𝑇 (∇ ·𝜓ℎ, 𝜌ℎ) d𝑡 +
𝜎√
𝑁

(
√

𝜌ℎ𝜓ℎ, d𝜉ℎ,𝜖) (DG-𝑗)

for all (𝜑ℎ,𝜓ℎ) ∈ 𝑉ℎ,0. Defining the bilinear form 𝑎ℎ with arguments 𝑢ℎ = (𝜌ℎ, 𝑗ℎ) and 𝑣ℎ = (𝜑ℎ,𝜓ℎ)

𝑎ℎ(𝑢ℎ, 𝑣ℎ) :− −𝑘B𝑇
∑︁
𝑒∈ℰℎ

∫︁
𝑒

J𝜑ℎK · ℎ𝑒
𝑗 d𝑆 + 𝑘B𝑇 (∇𝜑ℎ, 𝑗ℎ)− 𝛾(𝜓ℎ, 𝑗ℎ) + 𝑘B𝑇 (∇ ·𝜓ℎ, 𝜌ℎ), (3.15)

and setting 𝑊ℎ,𝜖 :− (0, 𝜉ℎ,𝜖), we can rewrite (DG) as follows: find (𝜌ℎ, 𝑗ℎ) = 𝑢ℎ : [0, 𝑇 ] → 𝑉ℎ such that

d⟨𝑢ℎ(𝑡), 𝑣ℎ⟩ = 𝑎ℎ(𝑢ℎ(𝑡), 𝑣ℎ) d𝑡 + ⟨𝐹 (𝑢ℎ), 𝑣ℎ⟩d𝑡 + ⟨𝐵𝑁 (𝑢ℎ) d𝑊ℎ,𝜖, 𝑣ℎ⟩, ∀𝑣ℎ ∈ 𝑉ℎ,0. (3.16)

3.5. Rewriting (3.16)

Let 𝑄ℎ be the projection operator on to 𝑉ℎ with respect to the ⟨·, ·⟩-inner product defined in (3.5) (explicitly,
if 𝑧 ∈ 𝐿2× [𝐿2]𝑑, then ⟨𝑄ℎ𝑧, 𝑣ℎ⟩ = ⟨𝑧, 𝑣ℎ⟩ for all 𝑣ℎ ∈ 𝑉ℎ). Furthermore, for 𝑧 = (𝜌, 𝑗) ∈ 𝒲𝑠 ∪ {𝒟𝒢𝑞 ×ℛ𝒯 𝑞+1},
we define 𝐴ℎ𝑧 as the unique element of 𝑉ℎ,0 such that ⟨𝐴ℎ𝑢, 𝑣ℎ⟩ = 𝑎ℎ(𝑢, 𝑣ℎ) for all 𝑣ℎ ∈ 𝑉ℎ,0.

Taking these definitions into account, as well as the smoothing of the noise integrand (i.e., using 𝐵𝑁𝛿 instead
of 𝐵𝑁 ), equation (3.16) can be seen as the variational formulation of the abstract equation

d𝑢ℎ(𝑡) = 𝐴ℎ𝑢ℎ(𝑡) d𝑡 + 𝑄ℎ𝐹 (𝑢ℎ) d𝑡 + 𝑄ℎ𝐵𝑁,𝛿(𝑢ℎ(𝑡)) d𝑊ℎ,𝜖(𝑡),
𝑢ℎ(0) = 𝑢ℎ,0,

(3.17)

where 𝑢ℎ,0 will be chosen below in Lemma 6.1. The well-posedness of (3.17) is readily settled since the it is an
SDE with smooth coefficients.

4. properties of linear setting

We prove relevant properties related to the bilinear forms 𝑎 (see (3.7)) by 𝑎ℎ (see and (3.15)). Specifically,
we discuss:

– a suitable inf-sup condition (also known as LBB condition [6]), see Lemma 4.1, and
– continuity, see Lemma 4.2.

First, we define two useful norms, namely

⃦⃦
(𝜌, 𝑗)

⃦⃦2

† :−

⎧⎨⎩
∑︁
𝑒∈ℰℎ

⃦⃦
J𝜌K
⃦⃦2

𝐿2(𝑒)
+
⃦⃦
𝑗
⃦⃦2 +

⃦⃦
∇ · 𝑗

⃦⃦2
, if 𝑞 = 0,

‖∇𝜌‖2 + ‖𝑗‖2 + ‖∇ · 𝑗‖2, if 𝑞 > 0,

(4.1)

and ⃦⃦
(𝜌, 𝑗)

⃦⃦2

⋆
:−
⃦⃦
𝜌
⃦⃦2 +

∑︁
𝑒∈ℰℎ

⃦⃦
J𝜌K
⃦⃦2

𝐿2(𝑒)
+
⃦⃦
𝑗
⃦⃦2

, (4.2)

where we recall that ‖ · ‖ is the standard 𝐿2 norm.

Lemma 4.1 (inf-sup condition for bilinear forms 𝑎 and 𝑎ℎ). We have the following statements:

(i) There exists a constant 𝐶 > 0 such that

inf
𝑒ℎ=(𝜌ℎ,𝑗ℎ)∈𝑉ℎ,0

sup
𝑣ℎ∈𝑉ℎ,0

|𝑎ℎ(𝑒ℎ, 𝑣ℎ)|
‖𝑣ℎ‖⋆‖𝑒ℎ‖⋆

≥ 𝐶,

where 𝑉ℎ,0 is given in (3.4), and ‖ · ‖⋆ is defined in (4.2).
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(ii) There exists a constant 𝐶 > 0 such that

inf
𝑒ℎ=(𝜌ℎ,𝑗ℎ)∈𝑉ℎ,0

sup
𝑣ℎ∈𝑉ℎ,0

|𝑎(𝑒ℎ, 𝑣ℎ)|
‖𝑣ℎ‖‖𝑒ℎ‖

≥ 𝐶,

where ‖𝑒ℎ‖2 :− ‖𝜌ℎ‖2 + ‖𝑗ℎ‖2.

Lemma 4.2 (Continuity of bilinear forms).

(i) Suppose that 𝑢ℎ = (𝜌ℎ, 𝑗ℎ) ∈ 𝐿2(𝐷) ×𝐻(div, 𝐷) and that 𝜌ℎ is piecewise constant (thus choosing 𝑞 = 0).
Then we have, for a constant 𝐶 > 0,⃒⃒

𝑎ℎ(𝑢ℎ, 𝑣ℎ)
⃒⃒
≤ 𝐶

⃦⃦
𝑢ℎ

⃦⃦
†

⃦⃦
𝑣ℎ

⃦⃦
⋆
, ∀𝑣ℎ ∈ 𝑉ℎ,0,

where ‖·‖⋆ (respectively, ‖·‖†) is defined in (4.2) (respectively, (4.1)).
(ii) Fix 𝑞 > 0, and take 𝑢ℎ = (𝜌ℎ, 𝑗ℎ) ∈ {𝒟𝒢𝑞 ∩ 𝐶0(𝐷)} ×ℛ𝒯 𝑞+1. Then there exists 𝐶 > 0 such that⃒⃒

𝑎(𝑢ℎ, 𝑣ℎ)
⃒⃒
≤ 𝐶

⃦⃦
𝑢ℎ

⃦⃦
†

⃦⃦
𝑣ℎ

⃦⃦
, ∀𝑣ℎ ∈ 𝑉ℎ,0.

Remark 4.3. As will become apparent from the proof Lemma 4.1, the validity of this inf-sup condition follows
from – and further justifies – the definition of the numerical fluxes (Flux).

Proof of Lemma 4.1. Part (i). As the bilinear form 𝑎ℎ is not coercive, we will need to make a special choice of
𝑣ℎ to prove the result. For 𝑒ℎ = (𝜌ℎ, 𝑗ℎ) and 𝑣ℎ = (𝜑ℎ,𝜓ℎ) ∈ 𝑉ℎ,0, the bilinear form 𝑎ℎ(𝑒ℎ, 𝑣ℎ) reads

𝑎ℎ(𝑒ℎ, 𝑣ℎ) = −𝑘B𝑇
∑︁
𝑒∈ℰℎ

∫︁
𝑒

J𝜑ℎK · ℎ𝑒
𝑗 d𝑆 + 𝑘B𝑇 (∇𝜑ℎ, 𝑗ℎ)− 𝛾(𝜓ℎ, 𝑗ℎ) + 𝑘B𝑇 (∇ ·𝜓ℎ, 𝜌ℎ). (4.3)

Now we define 𝑣ℎ as a special perturbation of 𝑢ℎ. More precisely, we put 𝜑ℎ = 𝜌ℎ and 𝜓ℎ = 𝑗ℎ +𝜅ℎ for some
𝜅ℎ ∈ ℛ𝒯 𝑞+1 satisfying

−∇ · 𝜅ℎ = 𝜂 𝜌ℎ on 𝐷 (4.4)

(note the solvability condition
∫︀

𝐷
∇ · 𝜅ℎ d𝑥 = 0 for a continuous field 𝜅ℎ on a periodic domain holds as

(𝜌ℎ, 𝑗ℎ) ∈ 𝑉ℎ,0), where 𝜂 > 0 is to be specified.
The equation (4.4) is, of course, underdetermined. We look for a solution 𝜅ℎ such that

‖𝜅ℎ‖ ≤ 𝐶‖𝜂𝜌ℎ‖, (4.5)

is satisfied, with 𝐶 > 0 being some constant.
Since the divergence operator maps ℛ𝒯 𝑞+1(𝐾) onto 𝒫𝑞(𝐾), the equation (4.4) admits at least a solution.

If we in addition demand that 𝜅ℎ is curl-free, then 𝜅ℎ ∈ ℛ𝒯 𝑞+1 is uniquely defined (by the discrete Helmholz
decomposition [4]). This is the minimum 𝐿2(𝐷) solution to equation (4.4) in ℛ𝒯 𝑞+1 and by uniqueness also in
𝐻(div, 𝐷): in particular, there exists a solution in 𝐻1(𝐷) that satisfies equation (4.5) (see [7]).

The extra terms due to 𝜅ℎ (i.e., the terms making up the difference 𝑎ℎ(𝑢ℎ, 𝑣ℎ − 𝑢ℎ)) amount to

− 𝛾(𝜅ℎ, 𝑗ℎ)− 𝜂𝑘B𝑇‖𝜌ℎ‖2. (4.6)

Furthermore, we have the identity

𝑎ℎ(𝑢ℎ, 𝑢ℎ) = −𝛾(𝑗ℎ, 𝑗ℎ)−
∑︁
𝑒∈ℰℎ

∫︁
𝑒

(𝑘B𝑇 )3/2

2
J𝜌ℎK2 d𝑆. (4.7)
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The identity (4.7) is shown as follows: The flux choice (Flux) and the continuity property of 𝑗ℎ give

J𝜌ℎK · ℎ𝑒
𝑗 = J𝜌ℎK ·

(︂
{𝑗ℎ}+

√
𝑘B𝑇

2
J𝜌ℎK

)︂
= J𝜌ℎK · {𝑗ℎ}+

√
𝑘B𝑇

2
J𝜌ℎK2.

The divergence theorem implies∫︁
𝐾

∇𝜌ℎ · 𝑗ℎ d𝑥+
∫︁

𝐾

(∇ · 𝑗ℎ)𝜌ℎ d𝑥 =
∫︁

𝜕𝐾

𝜌ℎ 𝑗ℎ · 𝑛 d𝑆.

Taking 𝜌ℎ = 𝜑ℎ and 𝑗ℎ = 𝜓ℎ in (3.15) entails

𝑎ℎ(𝑢ℎ, 𝑢ℎ) = −𝛾(𝑗ℎ, 𝑗ℎ)−
∑︁
𝑒∈ℰℎ

∫︁
𝑒

(︃
𝑘B𝑇 J𝜌ℎK · 𝑗ℎ +

(𝑘B𝑇 )3/2

2
J𝜌ℎK2 + 𝑘B𝑇𝑗ℎ · J𝜌ℎK

)︃
d𝑆

= −𝛾(𝑗ℎ, 𝑗ℎ)−
∑︁
𝑒∈ℰℎ

∫︁
𝑒

(𝑘B𝑇 )3/2

2
J𝜌ℎK · J𝜌ℎK d𝑆,

and (4.7) is settled.
Combining (4.7) and (4.6), we deduce

𝑎ℎ(𝑒ℎ, 𝑣ℎ) ≤ −𝛾
⃦⃦
𝑗ℎ

⃦⃦2 − 𝛾(𝜅ℎ, 𝑗ℎ)−
∑︁
∈ℰℎ

∫︁
𝑒

(𝑘B𝑇 )3/2

2
J𝜌ℎK2 d𝑆 − 𝜂𝑘B𝑇‖𝜌ℎ‖2.

The Cauchy–Schwartz inequality and the bound (4.5) promptly give

−𝛾
⃦⃦
𝑗ℎ

⃦⃦2 − 𝛾

∫︁
𝐷

𝜅ℎ · 𝑗ℎ d𝑥 ≤ −𝛾
⃦⃦
𝑗ℎ

⃦⃦2 +
1
2
𝛾
⃦⃦
𝜅ℎ

⃦⃦2 +
1
2
𝛾
⃦⃦
𝑗ℎ

⃦⃦2

≤ −1
2
𝛾
⃦⃦
𝑗ℎ

⃦⃦2 +
1
2
𝛾𝐾2𝜂2

⃦⃦
𝜌ℎ

⃦⃦2
.

We conclude that

𝑎ℎ(𝑒ℎ, 𝑣ℎ) ≤ −1
2
𝛾
⃦⃦
𝑗ℎ

⃦⃦2 +
(︂
−𝑘B𝑇𝜂 +

1
2
𝛾𝐾2𝜂2

)︂⃦⃦
𝜌ℎ

⃦⃦2 −
∑︁
𝑒∈ℰℎ

∫︁
𝑒

1
2
(𝑘B𝑇 )3/2J𝜌ℎK · J𝜌ℎK d𝑆.

Set 𝜂 :− 𝑘B𝑇/(𝛾𝐾2). Then, −𝐶1 :− −𝑘B𝑇𝜂 + 1
2𝛾𝐾2𝜂2 < 0. Thus,

|𝑎ℎ(𝑒ℎ, 𝑣ℎ)| ≥ 𝐶1

⃦⃦
𝜌ℎ

⃦⃦2 + 𝐶
∑︁
𝑒∈ℰℎ

⃦⃦
J𝜌ℎK

⃦⃦2

𝐿2(𝑒)
+

1
2
𝛾
⃦⃦
𝑗ℎ

⃦⃦2
.

Also, ⃦⃦
𝑣ℎ

⃦⃦2

⋆
=
⃦⃦
𝜌ℎ

⃦⃦2 +
∑︁
𝑒∈ℰℎ

⃦⃦
J𝜌ℎK

⃦⃦2

𝐿2(𝑒)
+
⃦⃦
𝑗ℎ + 𝜅ℎ

⃦⃦2

≤
(︀
1 + 𝐾2𝜂2

)︀⃦⃦
𝜌ℎ

⃦⃦2 +
∑︁
𝑒∈ℰℎ

⃦⃦
J𝜌ℎK

⃦⃦2

𝐿2(𝑒)
+
⃦⃦
𝑗ℎ

⃦⃦2
.

Putting all together, we obtain

sup
𝑣ℎ∈𝑉ℎ,0

|𝑎ℎ(𝑒ℎ, 𝑣ℎ)|
‖𝑣ℎ‖⋆

≥
𝐶1‖𝜌ℎ‖2 + 𝐶

∑︀
𝑒∈ℰℎ

‖J𝜌ℎK‖2𝐿2(𝑒) + 1
2𝛾‖𝑗ℎ‖2

(1 + 𝐾2𝜂2)‖𝑢ℎ‖⋆

≥ 𝐶
⃦⃦
𝑒ℎ

⃦⃦
⋆
,

and Part (i) is settled. As for Part (ii), the only difference is the lack of the boundary terms for 𝜌ℎ (we consider
𝑎ℎ instead of 𝑎). Therefore, we get the same result, only with ‖ · ‖ replacing ‖ · ‖⋆. �
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Proof of Lemma 4.2. For Part (i), 𝑞 = 0 and 𝜑ℎ is piecewise constant. Therefore, we obtain

𝑎ℎ(𝑢ℎ, 𝑣ℎ) = −𝑘B𝑇
∑︁
𝑒∈ℰℎ

∫︁
𝑒

J𝜑ℎK · ℎ𝑒
𝑗 d𝑆 − 𝛾(𝜓ℎ, 𝑗ℎ)− 𝑘B𝑇

∑︁
𝑒

∫︁
𝜕𝑒

2J𝜓ℎK ℎ𝑒
𝜌 d𝑆 + 𝑘B𝑇 (∇ ·𝜓ℎ, 𝜌ℎ)

= −𝑘B𝑇
∑︁
𝑒∈ℰℎ

∫︁
𝑒

J𝜑ℎK · {𝑗ℎ} d𝑆 − (𝑘B𝑇 )3/2
∑︁
𝑒∈ℰℎ

∫︁
𝑒

J𝜑ℎK · J𝜌ℎK d𝑆 − 𝛾(𝜓ℎ, 𝑗ℎ) + 𝑘B𝑇 (∇ ·𝜓ℎ, 𝜌ℎ),

where we have used the continuity of 𝑗ℎ,𝜓ℎ. As 𝜑ℎ is piecewise constant, applying the divergence theorem in
the first term in the right-hand-side above yields

𝑎ℎ(𝑢ℎ, 𝑣ℎ) = −𝑘B𝑇 (∇ · 𝑗ℎ, 𝜑ℎ)− (𝑘B𝑇 )3/2
∑︁
𝑒∈ℰℎ

∫︁
𝑒

J𝜑ℎK J𝜌ℎK d𝑆 − 𝛾(𝜓ℎ, 𝑗ℎ) + 𝑘B𝑇 (∇ ·𝜓ℎ, 𝜌ℎ).

The Cauchy–Schwartz inequality promptly gives

|𝑎ℎ(𝑢ℎ, 𝑣ℎ)| ≤ 𝐶(𝑘B𝑇, 𝛾)

(︃
‖∇ · 𝑗ℎ‖‖𝜑ℎ‖+

∑︁
𝑒∈ℰℎ

⃦⃦
J𝜑ℎK

⃦⃦
𝐿2(𝑒)

⃦⃦
J𝜌ℎK

⃦⃦
𝐿2(𝑒)

+ ‖𝜓ℎ‖‖𝑗ℎ‖

)︃
≤
⃦⃦
𝑢ℎ

⃦⃦
†

⃦⃦
𝑣ℎ

⃦⃦
⋆
,

and Point (i) is settled. As for Point (ii), we use the divergence theorem, (3.7), and the continuity of 𝜌ℎ to
obtain

𝑎(𝑢ℎ, 𝑣ℎ) = −𝑘B𝑇 (∇ · 𝑗ℎ, 𝜑ℎ)− 𝛾(𝜓ℎ, 𝑗ℎ)− 𝑘B𝑇 (𝜓ℎ,∇𝜌ℎ),

and the proof is concluded by application of the Cauchy–Schwarz inequality. �

5. Linear error analysis

For the zero potential (𝒱 = 0) and deterministic (𝜎 = 0) problem, we quantify the error arising from
approximating 𝑎 (see (3.7)) by 𝑎ℎ (see and (3.15)). Let 𝑠 be as in (1.4). For any 𝑧 = (𝜌, 𝑗) ∈ 𝒲𝑠−1 with mass
𝑚𝜌 (i.e.,

∫︀
𝐷

𝜌(𝑥) d𝑥 = 𝑚𝜌), we define the Ritz–Galerkin projection 𝑅ℎ𝑧 as the unique element of 𝑉ℎ such that

𝑎(𝑅ℎ𝑧, 𝑣ℎ) = 𝑎(𝑧, 𝑣ℎ), ∀𝑣ℎ ∈ 𝑉ℎ,0.

Similarly, we define the projection �̃�ℎ𝑧 as the unique element of 𝑉ℎ such that

𝑎ℎ(�̃�ℎ𝑧, 𝑣ℎ) = 𝑎ℎ(𝑧, 𝑣ℎ), ∀𝑣ℎ ∈ 𝑉ℎ,0.

For 𝑞 ≥ 0, and 𝑧 = (𝜌, 𝑗) being sufficiently regular, let ℐ𝑞𝑧 denote the canonical interpolation operator defined
component-wise on 𝒞𝒢𝑞 and ℛ𝒯 𝑞+1. Furthermore, let ℐ𝑞,𝑚𝑧 be the same as ℐ𝑞𝑧, but with the first component
shifted so as to have the same mass as 𝜌.

The main result of this section is the following.

Lemma 5.1 (Ritz–Galerkin error). For 𝑧 = (𝜌, 𝑗) ∈ 𝐶0 ∩𝒲𝑠−1 with mass 𝑚𝜌, there exists a constant 𝐶 > 0
such that

max
{︀⃦⃦

𝑧 − �̃�ℎ𝑧
⃦⃦
;
⃦⃦
𝑧 −𝑅ℎ𝑧

⃦⃦}︀
≤

⎧⎨⎩
𝐶ℎ1/2‖𝑧‖𝒲2 , if 𝑞 = 0,

𝐶ℎ𝑞‖𝑧‖𝒲𝑞+2 , if 𝑞 > 0.

(5.1)

The proof of Lemma 5.1 relies on Lemmas 4.1 and 4.2, as well as on the following standard interpolation
estimate for the norm ‖ · ‖† introduced in (4.1).
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Theorem 5.2 (Interpolation error). Assume that 𝒯ℎ is shape regular with mesh width ℎ. There exists a constant
𝑐 > 0 such that

(i) for 𝑞 = 0, ⃦⃦
𝑧 − ℐ0𝑧

⃦⃦
† ≤ 𝑐 ℎ1/2

⃦⃦
𝜌
⃦⃦

𝐻1(𝐷)
+ 𝑐 ℎ

[︁⃦⃦
𝑗
⃦⃦

𝐻1(𝐷)
+
⃦⃦
∇ · 𝑗

⃦⃦
𝐻1(𝐷)

]︁
,

(ii) for N ∋ 𝑞 ≥ 1, ⃦⃦
𝑧 − ℐ𝑞𝑧

⃦⃦
† ≤ 𝑐 ℎ𝑞

⃦⃦
𝜌
⃦⃦

𝐻𝑞+1(𝐷)
+ 𝑐 ℎ𝑞+1

[︁⃦⃦
𝑗
⃦⃦

𝐻𝑞+1(𝐷)
+
⃦⃦
∇ · 𝑗

⃦⃦
𝐻𝑞+1(𝐷)

]︁
,

for all 𝑧 = (𝜌, 𝑗) ∈ 𝒲𝑞+2.

Proof of Theorem 5.2. Consider 𝑞 > 0. Let 𝜋𝑞 denote the projection onto the degree-𝑞 piecewise continuous
Lagrange interpolant of degree 𝑞 on 𝒯ℎ (with a standard set of interpolation points [42], Def. 3.3). For 𝜌 ∈
𝐻𝑞+1(𝐷), standard approximation theory gives that⃦⃦

𝜌− 𝜋𝑞𝜌
⃦⃦

𝐻1(𝐷)
≤ 𝐶 ℎ𝑞

⃦⃦
𝜌
⃦⃦

𝐻𝑞+1(𝐷)

(e.g., [42], Eq. (3.12)). Hence, ‖∇𝜌−∇𝜋𝑞𝜌‖𝐿2(𝐷) ≤ 𝑐 ℎ𝑞 ‖𝜌‖𝐻𝑞+1(𝐷).
Consider 𝑞 = 0. Let 𝜋0 denote the projection onto the piecewise constant interpolant on 𝒯ℎ. Let 𝐾 ∈ 𝒯ℎ have

boundary 𝜕𝐾 (which consists of a fixed number of 𝑒 ∈ ℰℎ). We obtain⃦⃦
J𝜌− 𝜋0𝜌K

⃦⃦
𝐿2(𝜕𝐾)

≤ 𝐶
⃦⃦
𝜌− 𝜋0𝜌

⃦⃦1/2

𝐿2(𝐾)

⃦⃦
𝜌− 𝜋0𝜌

⃦⃦1/2

𝐻1(𝐾)

≤ 𝐶ℎ1/2
⃦⃦
𝜌
⃦⃦1/2

𝐻1(𝐾)
,

where the first inequality follows from T1.6.6 of [8]. Summing over the facets 𝑒 ∈ ℰℎ gives∑︁
𝑒∈ℰℎ

⃦⃦
J𝜌− 𝜋0𝜌K

⃦⃦2

𝐿2(𝑒)
≤ 𝐶

∑︁
𝐾∈𝒯ℎ

ℎ
⃦⃦
𝜌
⃦⃦2

𝐻1(𝐾)
= 𝐶ℎ

⃦⃦
𝜌
⃦⃦2

𝐻1(𝐷)
.

We now turn to terms in ‖·‖† that involve 𝑗. Let Πℛ𝒯 𝑗 denote the canonical interpolant in ℛ𝒯 𝑞+1 (this is
the 𝑗-component of ℐ𝑞𝑧). Then, ⃦⃦

𝑗 −Πℛ𝒯 𝑗
⃦⃦

𝐿2(𝐷)
≤ 𝐶 ℎ𝑞+1

⃦⃦
𝑗
⃦⃦

𝐻𝑞+1(𝐷)

by standard approximation theory for Raviart–Thomas elements (e.g., [9], Chap. III, Prop. 3.6 with 𝑘 = 𝑞).
The divergence operator commutes with interpolation in the sense that ∇ ·Πℛ𝒯 𝑗 equals the projection of ∇ · 𝑗
onto 𝒟𝒢𝑞. This leads to ⃦⃦

∇ · 𝑗 −∇ ·Πℛ𝒯 𝑗
⃦⃦

𝐿2(𝐷)
≤ 𝐶 ℎ𝑞+1

⃦⃦
∇ · 𝑗

⃦⃦
𝐻𝑞+1(𝐷)

(e.g., [9], Chap. III, Prop. 3.8). Due to the definition of ‖·‖†, this completes the proof. �

Proof of Lemma 5.1. We first treat the case 𝑞 > 0. For any 𝑦ℎ ∈ 𝑉ℎ, we have 𝑅ℎ𝑧 − 𝑦ℎ ∈ 𝑉ℎ,0 and, by the
inf-sup condition in Lemma 4.1(ii),⃦⃦

𝑅ℎ𝑧 − 𝑦ℎ

⃦⃦
≤ sup

𝑤ℎ∈𝑉ℎ,0

|𝑎(𝑅ℎ𝑧 − 𝑦ℎ, 𝑤ℎ)|
‖𝑤ℎ‖

·

By definition of 𝑅ℎ, it holds 𝑎(𝑅ℎ𝑧, 𝑤ℎ) = 𝑎(𝑧, 𝑤ℎ) for all 𝑤ℎ ∈ 𝑉ℎ,0. Hence,⃦⃦
𝑅ℎ𝑧 − 𝑦ℎ

⃦⃦
≤ sup

𝑤ℎ∈𝑉ℎ,0

|𝑎(𝑧 − 𝑦ℎ, 𝑤ℎ)|
‖𝑤ℎ‖

·
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We now choose 𝑦ℎ :− ℐ𝑞,𝑚𝑧. Since 𝑧 ∈ 𝐶0 and 𝑦ℎ ∈ 𝐶(𝐷)×ℛ𝒯 𝑞+1, we can exploit the continuity of 𝑎 (Lem. 4.2)
and deduce ⃦⃦

𝑅ℎ𝑧 − ℐ𝑞,𝑚𝑧
⃦⃦
≤
⃦⃦
𝑧 − ℐ𝑞,𝑚𝑧

⃦⃦
† sup

𝑤ℎ∈𝑉ℎ,0

‖𝑤ℎ‖
‖𝑤ℎ‖

=
⃦⃦
𝑧 − ℐ𝑞,𝑚𝑧

⃦⃦
†. (5.2)

We deduce that ⃦⃦
𝑧 −𝑅ℎ𝑧

⃦⃦
≤
⃦⃦
𝑧 − ℐ𝑞,𝑚𝑧

⃦⃦
+
⃦⃦
𝑅ℎ𝑧 − ℐ𝑞,𝑚𝑧

⃦⃦
(5.2)

≤
⃦⃦
𝑧 − ℐ𝑞,𝑚𝑧

⃦⃦
+
⃦⃦
𝑧 − ℐ𝑞,𝑚𝑧

⃦⃦
†. (5.3)

It is easy to see that the difference of ℐ𝑞𝑧 and ℐ𝑞,𝑚𝑧 is bounded by the right-hand-side of (5.1). All is left to do
is apply Theorem 5.2 to achieve the desired estimate. The same proof also applies when 𝑅ℎ is replaced by �̃�ℎ.

In the case 𝑞 = 0, we define 𝑅ℎ using the 𝑎ℎ form (so 𝑅ℎ and �̃�ℎ coincide in this particular case): in this case,
the inf-sup condition as described in Lemma 4.1(i) holds with respect to the ‖·‖⋆-norm (4.2), which equals the
𝐿2-norm plus the norm of jumps in 𝜌 on facets. The continuity described in Lemma 4.2(i) now gives, following
the above argument, ⃦⃦

𝑅ℎ𝑧 − ℐ0,𝑚𝑧
⃦⃦

⋆
≤
⃦⃦
𝑧 − ℐ0,𝑚𝑧

⃦⃦
† sup

𝑤ℎ∈𝑉ℎ,0

‖𝑤ℎ‖⋆

‖𝑤ℎ‖⋆

=
⃦⃦
𝑧 − ℐ0,𝑚𝑧

⃦⃦
†, (5.4)

where the †-norm (4.1) is defined in terms of jumps of 𝜌 rather than ∇𝜌. This leads to⃦⃦
𝑧 −𝑅ℎ𝑧

⃦⃦
⋆
≤
⃦⃦
𝑧 − ℐ0,𝑚𝑧

⃦⃦
⋆

+
⃦⃦
𝑅ℎ𝑧 − ℐ0,𝑚𝑧

⃦⃦
⋆

(5.4)

≤
⃦⃦
𝑧 − ℐ0,𝑚𝑧

⃦⃦
⋆

+
⃦⃦
𝑧 − ℐ0,𝑚𝑧

⃦⃦
† ≤

⃦⃦
𝑧 − ℐ0,𝑚𝑧

⃦⃦
+
⃦⃦
𝑧 − ℐ0,𝑚𝑧

⃦⃦
†.

Once again, the difference of ℐ𝑞𝑧 and ℐ𝑞,𝑚𝑧 is trivially bounded as per the right-hand-side of (5.1). Using
Theorem 5.2 once again completes the proof. �

Remark 5.3. The definitions of 𝑅ℎ, �̃�ℎ, as well as the statement of Lemma 5.1 can be modified in a straight-
forward way to allow for a constraint with arbitrary mass. However, we prefer to stick to a notation which
reflects the fact that (RIDK) conserves mass.

6. error analysis for ridk

We now turn to the error analysis of the DG approximation for (RIDK). We work with the abstract systems
(2.6) and (3.17) for the RIDK solution 𝑢 and its semi-discrete DG approximation 𝑢ℎ.

Lemma 6.1 (Error equation). Set 𝑒ℎ :− 𝑅ℎ𝑢−𝑢ℎ, where 𝑢 (respectively, 𝑢ℎ) solves (2.6) (respectively, (3.17))
with initial datum 𝑢0 (respectively, 𝑢ℎ,0 :− 𝑅ℎ𝑢0). Then

𝑒ℎ(𝑡) =
∫︁ 𝑡

0

𝑒𝐴ℎ(𝑡−𝑠) d(𝑄ℎ(𝑅ℎ − 𝐼)𝑢) +
∫︁ 𝑡

0

𝑒𝐴ℎ(𝑡−𝑠) 𝐴ℎ(𝐼 −𝑅ℎ) 𝑢 d𝑠 +
∫︁ 𝑡

0

𝑒𝐴ℎ(𝑡−𝑠) 𝑄ℎ(𝐹 (𝑢ℎ)− 𝐹 (𝑢)) d𝑠

+
∫︁ 𝑡

0

𝑒𝐴ℎ(𝑡−𝑠) 𝑄ℎ(𝐵𝑁,𝛿(𝑢ℎ)−𝐵𝑁,𝛿(𝑢)) d𝑊ℎ,𝜖(𝑠) +
∫︁ 𝑡

0

𝑒𝐴ℎ(𝑡−𝑠) 𝑄ℎ𝐵𝑁,𝛿(𝑢) (d𝑊𝜖 − d𝑊ℎ,𝜖)(𝑠). (6.1)

Proof. Set ℒ𝑢 d𝑠 :− d𝑢−𝐴𝑢 d𝑠 and ℒℎ𝑢 d𝑠 :− d𝑢−𝐴ℎ𝑢 d𝑠. We obtain

𝑄ℎℒ𝑢 d𝑠− ℒℎ𝑢ℎ d𝑠 = 𝑄ℎ(𝐹 (𝑢)− 𝐹 (𝑢ℎ)) d𝑠 + 𝑄ℎ(𝐵𝑁,𝛿(𝑢)−𝐵𝑁,𝛿(𝑢ℎ)) d𝑊ℎ,𝜖(𝑠)
+ 𝑄ℎ𝐵𝑁,𝛿(𝑢)(d𝑊𝜖 − d𝑊ℎ,𝜖)(𝑠) =: d𝜂.
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This implies that ℒℎ𝑢ℎ d𝑠 = 𝑄ℎℒ𝑢 d𝑠− d𝜂 and

ℒℎ(𝑅ℎ𝑢− 𝑢ℎ) d𝑠 = ℒℎ𝑅ℎ𝑢 d𝑠−𝑄ℎℒ𝑢 d𝑠 + d𝜂.

Substituting for ℒℎ and ℒ, we obtain

ℒℎ(𝑅ℎ𝑢− 𝑢ℎ) d𝑠 = d(𝑅ℎ𝑢−𝑄ℎ𝑢) + (𝑄ℎ𝐴𝑢−𝐴ℎ𝑅ℎ𝑢) d𝑠 + d𝜂.

Moreover, we have the consistency equality

𝑄ℎ𝐴𝑢 = 𝐴ℎ𝑢. (6.2)

To show (6.2), it is sufficient to show that ⟨𝑄ℎ𝐴𝑢, 𝑣ℎ⟩ = ⟨𝐴𝑢, 𝑣ℎ⟩ = ⟨𝐴ℎ𝑢, 𝑣ℎ⟩ for all 𝑣ℎ ∈ 𝑉ℎ,0. Since 𝑢 is
continuous, ℎ𝑒,𝑇

𝜌 = {𝜌} and 𝚥ℎ,𝑒 · 𝑛+ = {𝑗} · 𝑛+, so the forms agree, and (6.2) is settled.
Combining (6.2) with the fact that 𝑄ℎ𝑅ℎ = 𝑅ℎ and that and 𝐴ℎ�̃�ℎ = 𝐴ℎ, we have shown that

ℒℎ(𝑅ℎ𝑢− 𝑢ℎ) d𝑠 = d(𝑄ℎ(𝑅ℎ − 𝐼)𝑢) + 𝐴ℎ(�̃�ℎ −𝑅ℎ) 𝑢 d𝑠 + d𝜂.

Let 𝑒ℎ = 𝑅ℎ𝑢− 𝑢ℎ. By definition of ℒℎ, we see that d𝑒ℎ −𝐴ℎ𝑒ℎ d𝑠 = 𝜏ℎ d𝑠 + d𝜂 for d𝜏ℎ = d(𝑄ℎ(𝑅ℎ − 𝐼)𝑢) +
𝐴ℎ(�̃�ℎ −𝑅ℎ) 𝑢 d𝑠. Putting everything together gives (6.1). �

Proposition 6.2 (Error bound). Let the assumptions of Proposition 2.1 and Lemma 6.1 be satisfied. Assume
the validity of the scaling (1.4), which is

𝑁𝜖𝜃 = 1, 𝜃 ≥ 2𝑠 + 𝑑, for some 𝑠 > max{𝑑/2 + 1; 𝑞 + 3},

where 𝑞 is the order of the DG discretisation. Suppose that 𝑢0 ∈ 𝒲𝑠, and that 𝐹 is Lipschitz continuous with
respect to the 𝒲𝑠-norm. Finally, define 𝑊ℎ,𝜖 as the truncation of the noise in (A.3) over the index set{︀

𝑗 ∈ Z𝑑 : |𝑗|1 ≤ 𝜖−1
⃒⃒
ln
(︀
ℎ2𝑞
)︀⃒⃒}︀

, (6.3)

where 𝑞 is as in (1.3). Then we have the estimate

sup
0≤𝑡≤𝑇

E
[︁⃦⃦

𝑅ℎ𝑢(𝑡)− 𝑢ℎ(𝑡)
⃦⃦2

𝐿2(T𝑑)

]︁
≤ 𝐶(𝛿, 𝑇, 𝑑)

{︀
1 + E

[︀
‖𝑢0‖2𝒲𝑠

]︀}︀
𝑒𝐶2(𝒱,𝑇 ) ℎ2𝑞, (6.4)

Proof. Lemma 6.1 and (B.2) give

E
[︁⃦⃦

𝑒ℎ(𝑡)
⃦⃦2
]︁
≤ 𝐶

{︃
E

[︃⃦⃦⃦⃦∫︁ 𝑡

0

𝑒𝐴ℎ(𝑡−𝑠) 𝑄ℎ(𝑅ℎ − 𝐼) d𝑢

⃦⃦⃦⃦2
]︃

+ E

[︃⃦⃦⃦⃦∫︁ 𝑡

0

𝑒𝐴ℎ(𝑡−𝑠) 𝐴ℎ(�̃�ℎ −𝑅ℎ) 𝑢 d𝑠

⃦⃦⃦⃦2
]︃

+ E

[︃⃦⃦⃦⃦∫︁ 𝑡

0

𝑒𝐴ℎ(𝑡−𝑠) 𝑄ℎ(𝐹 (𝑢ℎ)− 𝐹 (𝑢)) d𝑠

⃦⃦⃦⃦2
]︃

+ E

[︃⃦⃦⃦⃦∫︁ 𝑡

0

𝑒𝐴ℎ(𝑡−𝑠) 𝑄ℎ(𝐵𝑁,𝛿(𝑢ℎ)−𝐵𝑁,𝛿(𝑢)) d𝑊𝜖(𝑠)
⃦⃦⃦⃦2
]︃

+ E

[︃⃦⃦⃦⃦∫︁ 𝑡

0

𝑒𝐴ℎ(𝑡−𝑠) 𝑄ℎ𝐵𝑁,𝛿(𝑢) (d𝑊𝜖 − d𝑊ℎ,𝜖)(𝑠)
⃦⃦⃦⃦2
]︃}︃

=:
5∑︁

𝑖=1

𝑇𝑖.

We estimate the five terms separately.
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Term 𝑇1. We use Lemma 5.1, Proposition 4.36 of [18], as well as (2.7) to write

𝑇1 ≤
∫︁ 𝑡

0

E
[︁⃦⃦

𝑒𝐴ℎ(𝑡−𝑠) 𝑄ℎ(𝑅ℎ − 𝐼)𝐴𝑢
⃦⃦2
]︁
d𝑠 + E

[︃⃦⃦⃦⃦∫︁ 𝑡

0

𝑒𝐴ℎ(𝑡−𝑠) 𝑄ℎ(𝑅ℎ − 𝐼)𝐵𝑁,𝛿(𝑢) d𝑊𝜖(𝑠)
⃦⃦⃦⃦2
]︃

≤ 𝐶ℎ2𝑞

∫︁ 𝑡

0

E
[︀
‖𝐴𝑢‖2𝒲𝑞+2

]︀
d𝑠 + E

[︂∫︁ 𝑡

0

⃦⃦
𝑒𝐴ℎ(𝑡−𝑠) 𝑄ℎ(𝑅ℎ − 𝐼)𝐵𝑁,𝛿(𝑢)

⃦⃦2

𝐿0
2(𝒲𝑠)

d𝑠

]︂
≤ 𝑁−1𝜖−2(𝑞+3)−𝑑𝐶ℎ2𝑞

∫︁ 𝑡

0

E
[︀
‖𝑢‖2𝒲𝑞+3

]︀
d𝑠 + 𝜖−1ℎ2𝑞

(︂∫︁ 𝑡

0

E
[︀
‖𝐵𝑁,𝛿(𝑢)‖2𝒲𝑞+2

]︀
d𝑠

)︂
≤ 𝑁−1𝜖−2(𝑞+3)−𝑑𝐶(𝛿, 𝑇 )

{︀
1 + E

[︀
‖𝑢0‖2𝒲𝑞+3

]︀}︀
ℎ2𝑞.

where 𝛿 is the cut-off level of the stochastic integrand 𝐵𝑁,𝛿.
Term 𝑇2. Using (B.3), Lemma 5.1, as well as (2.7), term 𝑇2 is estimated as

𝑇2 = E

[︃⃦⃦⃦⃦∫︁ 𝑡

0

𝑒𝐴ℎ(𝑡−𝑠) 𝐴ℎ

(︀
�̃�ℎ −𝑅ℎ

)︀
𝑢 d𝑠

⃦⃦⃦⃦2
]︃

≤ 𝐶

{︃
E
[︁⃦⃦(︀

�̃�ℎ −𝑅ℎ

)︀
𝑢(𝑡)

⃦⃦2
]︁

+ E
[︁⃦⃦

exp(𝐴ℎ𝑡)
(︀
�̃�ℎ −𝑅ℎ

)︀
𝑢(0)

⃦⃦2
]︁

+ E

[︃⃦⃦⃦⃦∫︁ 𝑡

0

exp(𝐴ℎ(𝑡− 𝑠))
(︀
�̃�ℎ −𝑅ℎ

)︀
d𝑢

⃦⃦⃦⃦2
]︃}︃

≤ 𝑁−1𝜖−2(𝑞+3)−𝑑𝐶(𝛿, 𝑇 )E
[︀
‖𝑢0‖2𝒲𝑞+3

]︀
ℎ2𝑞.

Term 𝑇3. The Lipschitz continuity of 𝐹 , Lemma 5.1, Proposition 4.36 of [18] and (2.7) allow us to deduce

𝑇3 ≤ 𝐶(𝑇 )
∫︁ 𝑡

0

E
[︁⃦⃦

𝐹 (𝑢ℎ(𝑠))− 𝐹 (𝑢(𝑠))
⃦⃦2
]︁
d𝑠

≤ 𝐶(𝐹, 𝑇 )
∫︁ 𝑡

0

E
[︁⃦⃦

𝑢ℎ(𝑠)− 𝑢(𝑠)
⃦⃦2
]︁
d𝑠

≤ 𝐶(𝐹, 𝑇 )
{︂∫︁ 𝑡

0

E
[︁⃦⃦

𝑢(𝑠)−𝑅ℎ𝑢(𝑠)
⃦⃦2
]︁
d𝑠 +

∫︁ 𝑡

0

E
[︁⃦⃦

𝑅ℎ𝑢(𝑠)− 𝑢ℎ(𝑠)
⃦⃦2
]︁
d𝑠

}︂
≤ 𝑁−1𝜖−2(𝑞+2)−𝑑𝐶(𝐹, 𝑇 )E

[︀
‖𝑢0‖2𝒲𝑞+2

]︀
ℎ2𝑞 + 𝐶(𝑇, 𝐹 )

∫︁ 𝑡

0

E
[︁⃦⃦

𝑒ℎ(𝑠)
⃦⃦2
]︁
d𝑠.

Term 𝑇4. Since 𝐵𝑁,𝛿 is a Lipschitz approximation of the square root, Lemma 5.1 and (2.7) allow us to deduce

𝑇4 ≤
∫︁ 𝑡

0

E
[︁
‖𝐵𝑁 (𝑢ℎ(𝑠))−𝐵𝑁 (𝑢(𝑠))‖2𝐿0

2

]︁
d𝑠

≤ 𝐶(𝛿)𝑁−1𝜖−1

{︂∫︁ 𝑡

0

E
[︁⃦⃦

𝑢(𝑠)−𝑅ℎ𝑢(𝑠)
⃦⃦2
]︁
d𝑠 +

∫︁ 𝑡

0

E
[︁⃦⃦

𝑅ℎ𝑢(𝑠)− 𝑢ℎ(𝑠)
⃦⃦2
]︁
d𝑠

}︂
≤ 𝑁−1𝜖−2(𝑞+2)−𝑑ℎ2𝑞𝐶(𝛿, 𝑇 )E

[︀
‖𝑢0‖2𝒲𝑞+2

]︀
+ 𝐶𝑁−1𝜖−1

∫︁ 𝑡

0

E
[︁⃦⃦

𝑒ℎ(𝑠)
⃦⃦2
]︁
d𝑠.

Term 𝑇5. Lemma A.1 promptly implies that

𝑇𝑟𝐿2(𝐷)(𝑊𝜖 −𝑊ℎ,𝜖) ≤ 𝜖−𝑑ℎ2𝑞. (6.5)
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Combining (6.5) with (2.7), and also using the scaling (1.4), we obtain

𝑇5 ≤ 𝑁−1𝜖−𝑑𝐶(𝑑, 𝑇 )E
[︀
‖𝑢0‖2

]︀
ℎ2𝑞 ≤ 𝐶(𝑑, 𝑇 )E

[︀
‖𝑢0‖2

]︀
ℎ2𝑞.

Combining all contributions, we obtain

E
[︁⃦⃦

𝑒ℎ(𝑡)
⃦⃦2
]︁
≤ 𝑁−1𝜖−2(𝑞+3)−𝑑𝐶(𝛿, 𝑇, 𝑑)E

[︀
‖𝑢0‖2𝒲𝑞+3

]︀
ℎ2𝑞 + 𝐶2(𝐹, 𝑇 )𝑁−1𝜖−1

∫︁ 𝑡

0

E
[︁⃦⃦

𝑒ℎ(𝑠)
⃦⃦2
]︁
d𝑠,

and the proof is completed by using the Gronwall lemma and the scaling (1.4).

�

7. Modelling for low-density regime

We propose and discuss modifications to (RIDK) which address the positivity issue of the density 𝜌. The first
modification is applied in all cases: we turn off the noise and potential for 𝜌 ≤ 0 by introducing 𝜌+ :− max{𝜌, 0}.

𝜕𝜌

𝜕𝑡
= −∇ · 𝑗,

𝜕𝑗

𝜕𝑡
= −𝛾 𝑗 − 𝑘B𝑇 ∇𝜌−∇𝒱𝜌+ + 𝜎

1√
𝑁

√︀
𝜌+ 𝜉𝜖.

On a modelling basis, these terms do not make sense (as there are no particles). Analytically, the square root√
𝜌 is not well-defined for 𝜌 < 0 and a regularisation of this type is already part of the well-posedness theory.

7.1. Extra diffusion

The most obvious way of regularising (RIDK) for positivity is to add extra diffusion to the equation for 𝜌 (i.e.,
adding the term 𝐷0Δ𝜌, 𝐷0 > 0, to the 𝜌-equation) so as to get a strongly damped wave equation. Such a system
is easy to analyse and maintains the conservation of mass in 𝜌. Additionally, it is easy to simulate and, for large
diffusion, it is observed numerically to have positive solutions. See Figure 2 for a one-dimensional example with
𝐷0 = 0.5. This approach leads to very smooth profiles and the stochastic dynamics have largely been lost. There
is no obvious way of choosing the diffusion constant 𝐷0 and, for example, with a smaller diffusion 𝐷0 = 0.1 in
Figure 3, the density profile becomes negative in some regions of space. More investigations are needed for this
correction.

7.2. Density-dependent time-scales

In this approach, we separate the time scale for the position and momentum in the particle system. In
the low-density regime, we speed up the dynamics in the momentum 𝑝 in a way that causes particles to
move more quickly to equilibrium. Intuitively, this causes any excessive momentum density, which may lead to
non-negativity, to dissipate. We are able to quantify this analytically and present a maximum principle-based
argument that guarantees non-negativity in Proposition 7.1.

For the derivation, consider (𝑝𝑖, 𝑞𝑖) following Langevin dynamics

d𝑞𝑖 = 𝑝𝑖 d𝑡, d𝑝𝑖 = −𝛾𝑝𝑖 d𝑡 + 𝜎 d𝛽𝑖(𝑡),

for i.i.d. Brownian motions 𝛽𝑖(𝑡) (we exclude the potential 𝒱 for simplicity). In the derivation of (RIDK), we
now replace 𝑗𝜖(·, 𝑡) = 𝑁−1

∑︀
𝑖 𝑝𝑖(𝑡)𝑤𝜖(· − 𝑞𝑖(𝑡)) by 𝐽 𝜖(·, 𝑡) = 𝑗𝜖(·, 𝑡) for d𝑡/d𝑡 = 1/𝜙𝜏 for a function 𝜙𝜏 > 0 to

be specified. Then, we obtain

d𝐽 𝜖/d𝑡 = 𝑁−1
𝑁∑︁

𝑖=1

(d𝑝𝑖/d𝑡) 𝑤𝜖(· − 𝑞𝑖) + 𝑝𝑖 𝑤′𝜖(· − 𝑞𝑖) d𝑞𝑖/d𝑡.
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Figure 2. Example profiles of 𝜌 from solving (RIDK) with extra diffusion 𝐷0Δ𝜌, with 𝐷0 = 0.5.
The density profiles of 𝜌 are smooth and always positive in this simulation.

Figure 3. Example profiles of 𝜌 from solving (RIDK) with extra diffusion 𝐷0Δ𝜌, with 𝐷0 = 0.1.
For large times, 𝜌 takes some negative values.

As d𝑝𝑖(𝑡) = −(d𝑡/d𝑡) 𝛾 𝑝𝑖(𝑡) d𝑡 + 𝜎
√︀

d𝑡/d𝑡 d𝛽𝑖(𝑡), the equation for 𝐽 𝜖 becomes

d𝐽 𝜖 = (−𝛾𝐽 𝜖 − 𝑘B∇𝜌𝜖)
1
𝜙𝜏

d𝑡 + 𝜎
1√

𝑁𝜙𝜏

√
𝜌𝜖 d𝜉𝜖. (7.2)

When used in the derivation of RIDK, (𝜌𝜖,𝐽 𝜖) lead to the following variation in the unknown (𝜌,𝐽) ≈ (𝜌𝜖,𝐽 𝜖)

𝜕𝜌

𝜕𝑡
= −∇ · 𝐽 ,

𝜙𝜏 (𝜌)
𝜕𝐽

𝜕𝑡
= −𝛾 𝐽 − 𝑘B𝑇 ∇𝜌−∇𝒱 𝜌+ + 𝜎

1√
𝑁

√︀
𝜌 𝜙𝜏 (𝜌) 𝜉𝜖,

which is exactly (Mod). Now, dropping the requirement 𝜙𝜏 > 0 in (Mod), we choose 𝜙𝜏 to be a smooth
monotonic function taking value 0 (respectively, value 1) on the interval (−∞, 𝜏/2) (respectively, (𝜏,∞)).

We see in Figure 4 an example of the behaviour of this system with 𝜏 = 0.2 (all other parameters are as in
the simulations for Fig. 1) and observe non-negative profiles for the density 𝜌.

Provided suitable regularity assumption are satisfied (see Rem. 7.3) we can prove that (Mod) guarantees
positivity in the following continuous setting.
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Figure 4. Example profiles of 𝜌 from solving (Mod) with 𝜏 = 0.2. The density profiles for 𝜌
are always positive in this simulation.

Proposition 7.1. Assume that a space- and time-continuous solution (𝜌,𝐽) to (Mod) exists, and that (𝜌,𝐽)
is twice differentiable in space and once differentiable in time in the region {(𝑥, 𝑡) : 𝜌(𝑥, 𝑡) < 0}.

Then, provided that 𝜌0 > 0, we have inf𝑥∈𝐷,𝑡∈[0,𝑇 ] 𝜌(𝑥, 𝑡) ≥ 0.

Remark 7.2. It is to be noted that the choice of 𝜙𝜏 in (Mod) implies that the dynamics of (RIDK) and (Mod)
are identical as long as 𝜌 ≥ 𝜏 uniformly.

Proof of Proposition 7.1. In order to conclude, we seek to end up in a position where we can apply the standard
heat equation maximum principle. Set 𝑄𝑡 :− 𝐷 × (0, 𝑡) and 𝑤 :− 𝜌 + 𝜈𝑡. Then the system (𝑤,𝐽) solves

𝜕𝑤

𝜕𝑡
= −∇ · 𝐽 + 𝜈, (7.4a)

𝜙𝜏 (𝑤 − 𝜈𝑡)
𝜕𝐽

𝜕𝑡
= −𝛾 𝐽 − 𝑘B𝑇 ∇𝑤 −∇𝒱 · (𝑤 − 𝜈𝑡)+ + 𝜎

1√
𝑁

√︀
𝜌 𝜙𝜏 (𝑤 − 𝜈𝑡) 𝜉𝜖. (7.4b)

We distinguish two cases.

Case 1. It holds min𝑄𝑇−𝜈
𝑤 ≥ 0: then min𝑄𝑇−𝜈

𝜌 ≥ −𝜈𝑇 .
Case 2. It holds min𝑄𝑇−𝜈

𝑤 < 0. The definition of 𝜙𝜏 and the fact that 𝑤 − 𝜈𝑡 ≤ 𝑤 imply that, at
(𝑥min,𝜈 , 𝑡min,𝜈) :− arg min𝑄𝑇−𝜈

𝑤, the system (7.4) reduces to

𝜕𝑤

𝜕𝑡
= −∇ · 𝐽 + 𝜈,

0 = −𝛾 𝐽 − 𝑘B𝑇 ∇𝑤,

or, equivalently, using the regularity of (𝜌, 𝑗) at (𝑥min,𝜈 , 𝑡min,𝜈),

𝜕𝑤

𝜕𝑡
=

𝑘B𝑇

𝛾
Δ𝑤 + 𝜈.

At this stage, one can apply the standard contradiction for the heat equation maximum principle (granted
by the fact that 𝜕𝑤/𝜕𝑡 ≤ 0 and Δ𝑤 ≥ 0), and deduce that min𝑄𝑇−𝜈

𝑤 = min 𝜌0.

Putting the two cases together, we obtain min𝑄𝑇−𝜈
𝑤 ≥ min{−𝜈𝑇 ; min 𝜌0}. Using the continuity of 𝜌 and the

definition of 𝑤, we conclude by writing

min
𝑄𝑇

𝜌 = lim
𝜈→0

min
𝑄𝑇−𝜈

𝜌 ≥ lim
𝜈→0

{︂
min
𝑄𝑇−𝜈

𝑤 − 𝜈𝑇

}︂
≥ min{0; min 𝜌0}.

�
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Figure 5. Example profiles of 𝜌 from solving (Mod) with 𝜏 = 0.05. The density profile 𝜌 takes
some negative values near 𝑡 = 10.

Remark 7.3. Even though Proposition 7.1 is a step in the right direction when it comes to models which
preserve positivity of the density, its application relies on a well-posedness theory for the solution (in particular,
suitable space and time differentiability in the region {(𝑥, 𝑡) : 𝜌(𝑥, 𝑡) < 0}): such a well-posedness theory is still
missing, and is deferred to future works.

Remark 7.4. As far as maximum principles in the discrete setting are concerned, we have so far looked at
schemes at the prototype scheme

𝜌ℎ(𝑥, 𝑡)− 𝜌ℎ(𝑥, 𝑡− 𝛿𝑡)
𝛿𝑡

= −∇ℎ · 𝑗ℎ(𝑥, 𝑡), (7.6)

𝜙𝜏
𝑗(𝑥, 𝑡)− 𝑗(𝑥, 𝑡− 𝛿𝑡)

𝛿𝑡
= −𝛾 𝑗ℎ(𝑥, 𝑡)− 𝑘B𝑇 ∇ℎ𝜌ℎ(𝑥, 𝑡)

+ 𝜎
1√
𝑁

√︀
𝜌ℎ(𝑥, 𝑡− 𝛿𝑡)𝜙𝜏 (𝜉𝜖,ℎ(𝑥, 𝑡)− 𝜉𝜖,ℎ(𝑥, 𝑡− 𝛿𝑡)), (7.7)

where 𝛿𝑡 is a timestep, ∇ℎ· and ∇ℎ are (non-local) numerical discretisations of the divergence and gradient,
such that the operator ∇ℎ · ∇ℎ is non-negative.

The aim is to choose 𝜙𝜏 so as to obtain a discrete maximum principle. Mimicking Proposition 7.1, suppose
that 𝑤ℎ = 𝜌ℎ + 𝜈 𝑡 for some 𝜈 > 0 attains its minimum at 𝑥min, 𝑡min with a negative value, 𝑤ℎ(𝑥min, 𝑡min) < 0.
To eliminate the left-hand side of (7.7), we need to impose 𝜙𝜏 = 0 at (𝑥min, 𝑡min). It must also be zero at
neighbouring values of 𝑥min in order to evaluate the term ∇ℎ ·𝑗ℎ and at neighbouring values of 𝑡min to eliminate
the noise term. With this assumption, we find 0 = −𝛾𝑗ℎ − 𝑘B𝑇 ∇ℎ𝜌ℎ and can now deduce that

𝑤ℎ(𝑥min, 𝑡min)− 𝑤ℎ(𝑥min, 𝑡min − 𝛿𝑡)
𝛿𝑡

=
𝑘B𝑇

𝛾
∇ℎ · ∇ℎ𝑤ℎ(𝑥min, 𝑡min) + 𝜈.

The left-hand side is negative and, if ∇ℎ · ∇ℎ is a non-negative operator, the right-hand side is positive, leading
to a contradiction.

The assumptions so far discussed for 𝜙𝜏 are quite demanding, and it is unclear how to make practical choices
for 𝜙𝜏 . So far, we have found no scheme for which we can guarantee positivity as a computationally convenient
𝜙𝜏 is not forthcoming. The semi-implicit time-stepper that has been implemented with DG (which uses the local,
more simplistic choice of 𝜙𝜏 given for the continuous case, see discussions following (Mod)) can lead to negativity
of the density; see for example Figure 5. In practise, we are able to avoid negative regions by increasing 𝜏 and
refining the discretisation parameters. Again, more analysis is required to quantify the preceding considerations.
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Figure 6. Particle model at 𝑡 = 0: left-hand (respectively, right-hand) plot shows the initial
density of type-𝐴 (respectively, type-𝐵) particles.

8. Example: ridk for reacting/diffusing populations in two dimensions

In order to demonstrate the applicability of our DG framework, we focus on a DK model associated with
a system of reacting/diffusing particles in two dimensions: first, we describe the underlying particle model
and then present a DK model for the same dynamics. We compare numerical simulations of such a model to
the particle system (using the time-scale regularisation presented in Sect. 7.2) and verify that, under suitable
conditions, the microscopic dynamics can be replicated.

8.1. The particle system

Consider 𝑁 particles with position 𝑞𝑖 and momentum 𝑝𝑖 of type 𝑇𝑖 ∈ {𝐴, 𝐵} following Langevin dynamics

d𝑞𝑖 = 𝑝𝑖 d𝑡, d𝑝𝑖 = −𝛾 𝑝𝑖 d𝑡−∇𝒱(𝑞𝑖) d𝑡 + 𝜎 d𝛽𝑖(𝑡),

for dissipation 𝛾 and noise coefficient 𝜎 in an external potential 𝒱. The particles react as 𝐴+𝐵 ↦→ 2𝐵 with rate
𝜅 in a ball of radius of size 𝑟 (that is, if one particle each of type 𝐴 and 𝐵 are within distance 𝑟 of each other,
the type-𝐴 particle changes type with probability 1− exp(−𝜅 Δ𝑡) on a time interval of length Δ𝑡).

In the numerical experiments that follow, 𝛾 = 0.3, 𝜎 = 0.2, 𝒱(𝑥, 𝑦) = 1
8 (cos(𝑦/2)2 + 2 cos(1 + 𝑥/2)2). There

are initially 𝑁 = 5000 particles, consisting of 𝑁𝐴 = 4500 particles of type 𝐴 and 𝑁𝐵 = 500 particles of type 𝐵
reacting in a ball of radius 𝑟 = 0.15 with rate 𝜅 = 0.2. Initially, the particles have zero momenta and positions
given by i.i.d. samples from the normal distributions 𝑁(𝜇𝑖, 𝜎

2
𝑖 𝐼) for 𝜇𝐴 = [4.5, 1.5], 𝜇𝐵 = [4.2, 5], 𝜎𝐴 = 0.8,

𝜎𝐵 = 0.25. Snapshots of the densities found by simulating the particle model are shown in Figures 6–8. Particles
of different types start off separated according to the initial distributions (Fig. 6), fall into the potential well and
start mixing (Fig. 7), before rapidly converting to type-𝐵 particles (Fig. 8). This example follows [32], which
has a similar example in one dimension for the over-damped case.

8.2. The associated RIDK dynamics

The Dean–Kawasaki version of this model is the following coupled system of SPDEs:

𝜕𝜌𝐴

𝜕𝑡
= −∇ · 𝑗𝐴 − 𝑘 𝜋𝑟2 𝑁 𝜌𝐴 𝜌𝐵 1𝜌𝐵>𝜌th ,

𝜙𝜏 (𝜌𝐴)
𝜕𝑗𝐴

𝜕𝑡
= −𝛾 𝑗𝐴 − 𝑘B𝑇 ∇𝜌𝐴 −∇𝒱 𝜌𝐴 + 𝜎

1√
𝑁

√︁
𝜌𝐴 𝜙𝜏 (𝜌𝐴) 𝜉𝐴

𝜖 ,

𝜕𝜌𝐵

𝜕𝑡
= −∇ · 𝑗𝐵 + 𝑘 𝜋𝑟2 𝑁 𝜌𝐴 𝜌𝐵 1𝜌𝐵>𝜌th ,
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Figure 7. Densities for the particle model at 𝑡 = 12. Both types of particle move into the well
of the potential 𝒱(𝑥, 𝑦) = 1

8 (cos(𝑦/2)2 + 2 cos(1 + 𝑥/2)2) with minimum (𝑥, 𝑦) = (𝜋 − 2, 𝜋).

Figure 8. Densities for the particle model at 𝑡 = 25. The reaction has converted most particles
to type-𝐵, which inhabit the bottom of the potential well.

𝜙𝜏 (𝜌𝐵)
𝜕𝑗𝐵

𝜕𝑡
= −𝛾 𝑗𝐵 − 𝑘B𝑇 ∇𝜌𝐵 −∇𝒱 𝜌𝐵 + 𝜎

1√
𝑁

√︁
𝜌𝐵 𝜙𝜏 (𝜌𝐵) 𝜉𝐵

𝜖 .

This is derived by taking two separate particle and momentum densities 𝜌𝑖, 𝑗𝑖 for 𝑖 ∈ {𝐴, 𝐵} and two independent
copies 𝜉𝑖

𝜖 of the RIDK noise term 𝜉𝜖. Given the interaction radius is 𝑟 and there are 𝑁 particles, in two
dimensions, the RIDK equations for 𝜌𝑖, 𝑗𝑖 are coupled by the reaction term 𝜅 𝜋𝑟2 𝑁 𝜌𝐴 𝜌𝐵 1𝜌𝐵>𝜌th , where 𝜅
is the reaction rate and 𝜌th is a threshold for 𝐵 particles before reaction is allowed. Without this factor, the
exponential growth starts very early as the particle density is much more widely spread than for the particle
model.

8.3. Simulations

To match the particle simulation, we take 𝑗𝐴 = 𝑗𝐵 = 0 at time 𝑡 = 0, and 𝜌𝑖 as the pdf of the density
N(𝜇𝑖, 𝜎

2
𝑖 ) scaled by the type mass 𝑁 𝑖/𝑁 (of particles of type 𝑖 ∈ {𝐴, 𝐵}). We take 𝜌th = 0.012 to match the

behaviour of the particle system.
See Figures 9 and 10 for simulation of the unregularised system (𝜙𝜏 (𝜌) ≡ 1). We see similar dynamics to the

particle model with the density first concentrating in the well, where the particles react and rapidly convert
to type 𝐵. There are regions of negative particle densities (indicated by orange) as we saw in one-dimension
(Fig. 1).
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Figure 9. Particle densities 𝜌𝑖 (left 𝑖 = 𝐴; right 𝑖 = 𝐵) for the RIDK model at 𝑡 = 10. The
orange regions indicate negative densities (𝜌𝑖 < 0).

Figure 10. Particle densities for the RIDK model at 𝑡 = 25, where most of the mass is shown
on the right (type-𝐵 particles) and some negative density remains on the left in the type-𝐴
density.

Figure 11. Particle densities for the RIDK model (time-scale regularisation with 𝜏 = 0.05) at
𝑡 = 10.
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Figure 12. Particle densities for the RIDK model (time-scale regularisation) at 𝑡 = 25.

Figure 13. Type-𝐵 mass profiles for particle model (black dashed) and RIDK system unreg-
ularised (blue solid) and regularised (dotted blue; 𝜏 = 0.02). Notice that the blue solid line
overshoots and exceeds total-mass one (it is compensated by negative mass in type 𝐴).

Next we simulate RIDK with the time-scale regularisation (𝜙𝜏 defined by Sect. 7.2 with 𝜏 = 0.05). The
simulations are shown in Figures 11 and 12. There are no longer any regions of negative density. We compare
the evolution of total probability mass of particle 𝐵 in Figure 13. The DG simulation conserves total mass∫︀

𝐷
𝜌𝐴(𝑡, 𝑥) + 𝜌𝐵(𝑡,𝑥) d𝑥 = 1. However, we see the mass of the 𝐵 particles overshoot one in Figure 13, as there

are regions with negative density for the 𝐴 particles (see Fig. 11). When the time-scale regularisation is used,
the transition 𝐴 ↦→ 𝐵 is more sudden and the mass of 𝐵 particles never overshoots.

8.4. Conclusions

Using a RIDK model to simulate a system of diffusing/interacting particles appears to be effective and
physically plausible: in particular, specific truncations on the densities grant non-negativity of the densities,
and a good description for the transfer of mass (from type 𝐴 to type 𝐵).

Many aspects remain open. Firstly, the simulations are still quite sensitive to the specific regularisation and
truncation levels chosen for the density, and more insight is needed to address this point. Secondly, for the sake
of simplicity, our RIDK model does not include noise fluctuations at the level of the particle reaction: it would
be interesting to assess the impact of adding such a noise to the model (i.e., in the spirit of [34]).



3086 F. CORNALBA AND T. SHARDLOW

Appendix A. selected technical features of ridk model

A.1. Noise expansion

Let 𝐷 :− T𝑑. For each 𝜖 > 0, we define the von Mises kernel as

𝑤𝜖(𝑥− 𝑦) :− 𝑍−𝑑
𝜖 exp

{︃
−
∑︀𝑑

ℓ=1 sin2((𝑥ℓ − 𝑦ℓ)/2)
𝜖2/2

}︃
, 𝑥,𝑦 ∈ 𝐷, (A.1)

for some normalisation constant 𝑍𝜖. The noise 𝜉𝜖 in (RIDK) can be explicitly expanded using the spectral
properties of the convolution operator 𝑃𝜖 : 𝐿2(𝐷) → 𝐿2(𝐷) : 𝑓 ↦→ 𝑤𝜖 * 𝑓 , which, due to the separability of the
kernel 𝑤𝜖, are readily available from the one-dimensional case ([13], Sect. 4.2). More specifically, with {𝑒𝑗}𝑗∈Z
being the trigonometric system

𝑒𝑗(𝑥) :=

⎧⎪⎪⎨⎪⎪⎩
𝜋−1/2 cos(𝑗𝑥), if 𝑗 > 0,

𝜋−1/2 sin(𝑗𝑥), if 𝑗 < 0,

(2𝜋)−1/2, if 𝑗 = 0,

it is not difficult to see that the family {𝑓𝑗,𝑠}𝑗∈Z𝑑 defined as

𝑓𝑗,𝑠(𝑥) := 𝐶(𝑑)

{︃
𝑑∏︁

ℓ=1

𝑒𝑗ℓ
(𝑥ℓ)

}︃(︀
1 + |𝑗|2

)︀−𝑠/2
, 𝑗 ∈ Z𝑑,

is, for some suitable normalisation constant 𝐶(𝑑), an 𝐻𝑠-orthonormal basis of eigenfunctions for 𝑃√2𝜖 for any
𝜖 > 0. Furthermore, the eigenvalue of 𝑃√2𝜖 corresponding to the eigenfunction 𝑓𝑗,𝑠 is

𝜆𝑗,𝜖 =
𝑑∏︁

ℓ=1

𝜆𝑗ℓ,𝜖, (A.2)

where the eigenvalues from the one-dimensional case are given by

𝜆𝑗,𝜖 = 1𝑗=0 + 1𝑗 ̸=0𝑍
−1√

2𝜖

∫︁
T

𝑒−
sin2(𝑥/2)

𝜖2 cos(𝑗𝑥) d𝑥 = 𝐼𝑗

(︁{︀
2𝜖2
}︀−1

)︁
/𝐼0

(︁{︀
2𝜖2
}︀−1

)︁
,

with 𝐼𝑗 denoting the modified Bessel function of first kind and order 𝑗 ([1], Eq. (9.6.26)). As a result, the
stochastic process

𝑊𝜖 :=
∑︁
𝑗∈Z𝑑

√
𝛼𝑗,𝑠,𝜖 (0, 𝑓𝑗,𝑠, 0, . . . , 0) 𝛽1,𝑗 + · · ·

+
∑︁
𝑗∈Z𝑑

√
𝛼𝑗,𝑠,𝜖 (0, . . . , 0, 𝑓𝑗,𝑠) 𝛽𝑑,𝑗 , 𝛼𝑗,𝑠,𝜖 := (1 + |𝑗|2)𝑠𝜆𝑗,𝜖, (A.3)

with i.i.d. families {𝛽ℓ,𝑗}𝑑
ℓ=1 of independent Brownian motions, is a 𝒲𝑠-valued 𝑄-Wiener process representation

of the R× R𝑑-valued stochastic noise (0, 𝜉𝜖), where 𝒲𝑠 is defined in (2.1).
We also prove a handy result concerning the decay of the sequence {𝜆𝑗,𝜖}𝑗∈Z𝑑 as defined in (A.2), which is

directly related to Lemma 3.2 of [15].

Lemma A.1. For ℎ small enough, the following bound holds∑︁
𝑗∈Z𝑑 : |𝑗|1>𝜖−1| ln(ℎ2𝑞)|

𝜆𝑗,𝜖 ≤ 𝐶(𝑑)𝜖−𝑑ℎ2𝑞.
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Proof. Consider the case 𝑑 = 1 first. We take 𝛼 = 𝛽 = 1/2 in Lemma 3.2 of [15]. This means that

𝜆𝑗,𝜖 ≤
(︂

𝜖−1/
√

2− 1
𝜖−1/

√
2

)︂𝑗−𝜖−1/
√

2

for 𝑗 > 𝜖−1/
√

2. (A.4)

Additionally, for small enough ℎ, we obtain

𝜖−1
⃒⃒
ln
(︀
ℎ2𝑞
)︀⃒⃒
− 𝜖−1/

√
2 ≥

(︀
𝜖−1/

√
2
)︀⃒⃒

ln
(︀
ℎ2𝑞
)︀⃒⃒

. (A.5)

Combining (A.4) and (A.5) gives

∑︁
𝑗∈Z : |𝑗|>𝜖−1|ln(ℎ2𝑞)|

𝜆𝑗,𝜖 ≤ 2
∑︁
𝑛≥0

(︂
𝜖−1/

√
2− 1

𝜖−1/
√

2

)︂𝑛+(𝜖−1/
√

2)|ln(ℎ2𝑞)|

≤ 2
(︀
𝜖−1/

√
2
)︀
(1/𝑒)− ln(ℎ2𝑞) ≤ 2𝜖−1ℎ2𝑞. (A.6)

The extension to arbitrary 𝑑 > 1 is done by observing that

∑︁
|𝑗|1>𝜖−2| ln(ℎ2𝑞)|

𝜆𝑗,𝜖 ≤ 𝜖1−𝑑
𝑑∑︁

ℓ=1

∑︁
|𝑗ℓ|>2𝜖−1| ln(ℎ2𝑞)|

𝜆𝑗,𝜖.

�

A.2. Proof of Proposition 2.1

The validity of (2.5) and (2.7) is settled using Theorem 1.1 of [15]. We now proceed to the proof of (2.6).
We exploit the equivalence between different notions of solutions to SPDEs, as presented in Appendix F of
[44]. We split the proof in several steps.

Step 1: Basic regularity of 𝑢. As 𝑠− 1 > 𝑑/2, 𝑢 solves

𝑢(𝑡) = 𝑆(𝑡) 𝑢0 +
∫︁ 𝑡

0

𝑆(𝑡− 𝑠) 𝐹 (𝑢(𝑠)) d𝑠 +
∫︁ 𝑡

0

𝑆(𝑡− 𝑠)𝐵𝑁,𝛿(𝑢(𝑠)) d𝑊𝜖(𝑠) (A.7)

on the probability space Ω and up to some time 𝑇 , where 𝐵𝑁,𝛿 is Lipschitz with respect to the 𝒲𝑠−1 norm.
Using the a priori estimates as in Theorem 1.1 of [14], we get

E
[︂∫︁ 𝑇

0

‖𝐵𝑁,𝛿(𝑢(𝑡))‖2𝐿0
2(𝒲𝑠−1) d𝑡

]︂
< ∞. (A.8)

Step 2: 𝑢 is a mild solution =⇒ 𝑢 is an analytically weak solution. In this step, we want to apply ([44],
Appendix F, Prop. F.0.5(ii)). Inequality (A.8) allows us to use Proposition 6.2 of [18] to deduce that the
stochastic integral in (A.7) has a predictable version. Additionally, for any 𝜁 ∈ 𝐴*, with the adjoint operator
𝐴* being

𝐴* : 𝐻𝑠 × 𝑉 𝑠 : (𝜑,𝜓) ↦→ (∇ ·𝜓,−𝛾𝜓 +∇𝜑),

where 𝑉 𝑠 is defined in (2.2), we have∫︁ 𝑇

0

E
[︂∫︁ 𝑡

0

‖⟨𝑆(𝑡− 𝑡)𝐵𝑁,𝛿(𝑢(𝑡)), 𝐴*𝜉⟩‖𝐿0
2(𝒲𝑠−1) d𝑡

]︂
d𝑡
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≤
∫︁ 𝑇

0

E
[︂∫︁ 𝑡

0

‖⟨𝐵𝑁,𝛿(𝑢(𝑡))‖𝐿0
2(𝒲𝑠−1)‖𝐴*𝜉‖𝒲𝑠−1 d𝑡

]︂
d𝑡

(A.8)
< ∞.

Furthermore, it is immediate to see that P(
∫︀ 𝑇

0
‖𝐹 (𝑢(𝑡))‖𝒲𝑠−1 d𝑡 < ∞) = 1. Therefore, we have verified all

assumptions of Appendix F, Proposition F.0.5(ii) from [44], and we use it to deduce that 𝑢 is an analytically
weak solution.

Step 3: 𝑢 is an analytically weak solution =⇒ 𝑢 is an analytically strong solution. In this step, we want to
apply ([44], Appendix F, Prop. F.0.4(ii)). The process 𝑢 takes values in 𝒲𝑠 ⊂ 𝒟(𝐴) = 𝐻𝑠 × 𝑉 𝑠 due to the
assumption 𝑢0 ∈ 𝒲𝑠 (and the same existence theory described above with 𝑠 replacing 𝑠− 1). Furthermore,
using once again the a priori estimates as in Theorem 1.1 of [14], we deduce that

P
(︂∫︁ 𝑇

0

‖𝐴𝑢(𝑡)‖𝒲𝑠−1 d𝑡 < ∞
)︂

= 1, P
(︂∫︁ 𝑇

0

‖𝐹 (𝑢(𝑡))‖𝒲𝑠−1 d𝑡 < ∞
)︂

= 1,

P
(︂∫︁ 𝑇

0

‖𝐵𝑁,𝛿(𝑢(𝑡))‖2𝐿0
2(𝒲𝑠−1) d𝑡 < ∞

)︂
= 1.

We have verified all assumptions of Appendix F, Proposition F.0.4(ii) from [44], and we use it to deduce
that 𝑢 is an analytically strong solution. Therefore, (2.6) is proved.

Step 4: 𝑢 is a high-probability path-wise solution to (RIDK). This follows from Remark 2.2.

Appendix B. Relevant Itô differentials

Lemma B.1 (Relevant vector-valued Itô differentials). Let 𝑠 satisfy (1.4), and let 𝑢 be the process solving (2.6).
For any fixed 𝑡 > 0, consider the functionals

𝑔1(𝑧) : 𝒲𝑠−1 ↦→ 𝑉ℎ : 𝑧 ↦→ (�̃�ℎ −𝑅ℎ)𝑧,

𝑔2(𝑧) : 𝒲𝑠−1 ↦→ 𝑉ℎ : 𝑧 ↦→ 𝑄ℎ(𝑅ℎ − 𝐼)𝑧,

𝑔3(𝑠, 𝑧) : 𝒲𝑠−1 ↦→ 𝑉ℎ : 𝑧 ↦→ 𝑒(𝑡−𝑠)𝐴ℎ(�̃�ℎ −𝑅ℎ)𝑧.

where 𝑅ℎ, �̃�ℎ have been introduced in Section 5. Then we have

d𝑔1(𝑢) = (�̃�ℎ −𝑅ℎ) d𝑢, (B.1)
d𝑔2(𝑢) = 𝑄ℎ(𝑅ℎ − 𝐼) d𝑢, (B.2)

d𝑔3(𝑠, 𝑢) = −𝑒(𝑡−𝑠)𝐴ℎ𝐴ℎ(�̃�ℎ −𝑅ℎ)𝑢 d𝑠 + 𝑒(𝑡−𝑠)𝐴ℎ(�̃�ℎ −𝑅ℎ) d𝑢. (B.3)

Proof. We use the vector-valued Itô formula given in Theorem 3.8 of [17], on the time interval [0, 𝑡], and where
𝐾 :− 𝒲𝑠−1 and 𝐺 :− 𝑉ℎ.

As for 𝑔1, assumptions (i), (iii) and (vi) of Theorem 3.8 from [17] are trivially satisfied. Assumption (ii)
holds as �̃�ℎ −𝑅ℎ ∈ ℒ(𝒲𝑠−1, 𝑉ℎ): this can be easily deduced using Lemmas 4.1, 4.2 and standard interpolation
estimates from Chapter 3 of [45]. Assumption (iv) holds since 𝐴𝑢 ∈ 𝒲𝑠−1, and (v) holds since the stochastic
integrand 𝐵𝑁 (𝑢) is Lipschitz, so all moments (in particular, the fourth moment) can be bounded. We can use
Theorem 3.8 of [17] and get (B.1). Similar considerations settle also (B.2). As for 𝑔3, everything is identical
except for point (i) (the time differentiability of 𝑔3 is trivial given the fact that the exponential 𝑒(𝑡−𝑠)𝐴ℎ has a
finite-dimensional input). Using Theorem 3.8 of [17] and (B.1) we get (B.3). �
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