
1. Introduction
The state-of-the-art Earth System Models (ESMs) have limitations in their projections of changes in spatial 
and temporal patterns of precipitation and the frequency of weather-extremes in a warmer world (Dai, 2006; 
IPCC, 2021; Meehl et al., 2000). There are large uncertainties in the way ESMs deal with clouds and precipita-
tion in the tropics (Bony & Dufresne, 2005; Bony et al., 2015; Brient & Bony, 2013; Ceppi et al., 2017). Climate 
models have significant biases in rainfall intensity such as overestimations and underestimations of the mean 
precipitation in many key tropical and polar regions (Flato et al., 2013; Sabeerali et al., 2013) leading to uncer-
tainties in the greenhouse effect by water vapor and clouds. These uncertainties are in large part due to modeling 

Abstract Cumulus parameterization (CP) in state-of-the-art global climate models is based on the 
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errors (Palmer, 2001). Clouds cover on average two-thirds of the planet. Depending on their optical depth and 
cloud top pressure, clouds affect Earth's radiative energy budget differently. While high clouds mainly absorb 
long waves and re-emit them back to the surface and contribute to global warming, low clouds, that are abundant 
over extended regions of the globe, have mostly a cooling effect by reflecting shortwaves back to space  and 
contribute to Earth's albedo. Unfortunately recent studies suggest that these (favorable) low-level clouds that help 
keep our planet relatively cool, may become significantly reduced in a warmer climate (Flato et al., 2013) and 
may even disappear all together in the most extreme warming scenarios (Schneider et al., 2019). This is in fact a 
positive climate feedback phenomenon that would exacerbate global warming and may contribute to the uncer-
tainty of future climate projections. Overall, the representation of moist convection and clouds is one of the most 
significant modeling errors in climate science.

The need for improved sub-grid models of moist convection, a.k.a, cumulus parameterizations (CP), in coarse 
resolution global climate models (GCMs) has been an active research area since the 60s (Arakawa,  2004; 
Stensrud, 2007). CPs in most state-of-the-art GCMs are based on the quasi-equilibrium assumption (QEA) that 
views convection as the action of an ensemble of cumulus clouds, in a state of equilibrium with respect to 
a slowly varying atmospheric large scale state (Arakawa & Schubert,  1974; Stensrud,  2007; G. J. Zhang & 
McFarlane, 1995). Despite significant improvements, GCMs (and ESMs) are still unable to represent adequately 
the multiscale spacial and temporal variability of precipitation and atmospheric dynamics in the tropics (Dai, 2006; 
Hung et  al.,  2013; Randall et  al.,  2003). This limitation has been associated with the incompatibility of the 
QEA with the observed organization and dynamical interactions (with the environment and with each other) of 
cloud systems in the tropics, over a large spectrum of scales (Khouider, 2019; Moncrieff & Klinker, 1997; Rio 
et al., 2019).

Convective systems range from the convective cells of 1–10 km and a few minutes, to mesoscale systems of 
100–500 km and a few hours, to synoptic scale convectively coupled waves of 1,000–5,000 km and a few days, 
to intra-seasonal planetary scales disturbances such as the Madden-Julian oscillation (MJO), monsoons, and the 
inter-tropical convergence zones (Houze, 2004; Khouider et al., 2013; Kiladis et al., 2009; Murakami et al., 1986; 
Nakazawa, 1988; C. Zhang, 2005, 2013). The “CP deadlock” was first broken by the cloud resolving convective 
parametrization (CRCP) concept, which uses a 2d cloud resolving model in place of a CP (Grabowski, 2016; 
Randall et  al.,  2003). However, the insurmountable CRM's computational overhead made the CRCP method 
impractical. But it led the GCM community to look beyond the QEA theory as the community came to realize that 
the unresolved degrees of freedom associated with unresolved processes are very important (Palmer, 2001, 2022).

The last two decades have seen a surge of novel ideas to overcome the QEA which led to new breakthroughs 
in CP (Rio et al., 2019). While some models are designed to capture specific physical processes of organized 
convection, in a deterministic fashion (e.g., Khouider et al., 2011; Moncrieff et al., 2017; Pan & Randall, 1998; 
Tompkins,  2002), many probabilistic models that mimic the stochastic nature of convection have also been 
proposed and used (Bengtsson & Karnich, 2016; Buizza et al., 1999; D'Andrea et al., 2014; Dorrestijn et al., 2013; 
Hagos et al., 2018; Khouider et al., 2010, 2003; J. Lin & Neelin, 2000, 2003; Majda & Khouider, 2002; Plant & 
Craig, 2008; Suselj et al., 2019a, 2019b; Y. Wang et al., 2016; Y. Wang & Zhang, 2016). See Berner et al. (2016) 
for a comprehensive review. Khouider et al. (2010) in particular used a stochastic multicloud model (SMCM) CP, 
based on a Markov jump lattice system, to represent the subgrid variability associated with the multiple cloud 
types that characterize organized tropical convection (Johnson et al., 1999).

The last few years have seen an increase in data driven-machine learning strategies to improve CPs and GCMs 
(Brenowitz & Bretherton, 2018; Cardoso-Bihlo et al., 2019; Dorrestijn et al., 2015; Gentine et al., 2018; Gottwald 
et al., 2016; Schneider et al., 2017). The ongoing search for the most reliable CPs will allow further breakthroughs 
in ESMs and in our basic understanding of organized moist convection (Rio et al., 2019).

The implementation and testing of the SMCM in both idealized (Ajayamohan et al., 2016; Deng et al., 2015; 
Frenkel et al., 2012; K. Peters et al., 2013) and state-of-the-art, coupled atmosphere-ocean, GCMs (Goswami 
et al., 2017a, 2017b, 2017c; Khouider, 2019; K. Peters et al., 2017) demonstrated the feasibility of a realistic 
representation of the temporal and spacial variability of tropical precipitation and the associated atmospheric multi-
scale dynamical modes, such as the MJO, convectively coupled waves, and monsoon systems (Khouider, 2019). 
Goswami et al. (2017c) in particular implemented the SMCM in the Climate Forecasting System version 2 of the 
U. S. National Centers for Environmental Predictions in lieu of the preexisting relaxed Arakawa-Schubert scheme 
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(Saha et al., 2014) while K. Peters et al. (2017) used the deep convective area fraction from the SMCM to improve 
the triggering of deep convection and the mass flux closure in the ECHAM 6.5 GCM.

Apart from K. Peters et al. (2017), the implementations of the SMCM so far relied on imposed vertical heating 
structure functions–one for each one of the congestus, deep, and stratiform cloud types–that together mimic the 
observed temperature and humidity tendency profiles (the equivalents of Q1 and Q2 of Yanai et al. (1973); see 
Section 4.2) and their dynamical evolution throughout the convection life-cycle (Johnson et al., 1999; Mapes 
et  al.,  2006). However, these vertical structure functions and other model parameters depend heavily on the 
observed current climatology and are mostly-only suited for the tropics (Casey et al., 2007; Goswami et al., 2017c; 
J.-L. Lin et al., 2004; Schumacher et al., 2007; Stachnik et al., 2013). Because of these structural limitations of the 
heating profiles on which these earlier versions of the SMCM CP rely, the resulting models are not suitable for 
climate change projections. The goal here is to instead use the SMCM as a building block to propose a stochastic 
plume model within the framework of a state-of-the-art mass flux CP. This also constitutes a more significant 
effort compared to what has been done in K. Peters et al. (2017) and it results in a unified shallow-deep, scale 
aware, and stochastic multi-cloud plume mass-flux CP. Here, the new parameterization is introduced and tested in 
the context of the single-column Community Climate Model (SCAM) (Gettelman et al., 2019; Neale et al., 2010; 
Randall et al., 1996; M. Zhang et al., 2016).

The paper is organized as follows. The new unified shallow-deep stochastic multi-cloud plume mass-flux CP 
is described in Section 2. Section 3 summarizes the observational test cases that are used to test and validate 
the new CP. The validation results are presented in Section 4 and Section 5 provides a summary discussion and 
conclusions.

2. A Unified Stochastic Multi-Cloud Plume-Based Mass-Flux Scheme
The new unified shallow-deep stochastic multi-cloud plume cumulus parameterization (SMCPCP), presented 
here, is based on the Zhang-McFarlane (G. J. Zhang & McFarlane, 1995, hereafter: ZM95) cumulus parametriza-
tion. Loosely speaking the ZM scheme is modified in the way the plume ensemble is used to produce a bulk mass 
flux and the associated bulk entrainment and detrainment rates. Instead of assuming that convective plumes can 
detrain at all levels, beyond the level of minimum moist static energy (MSE), as done in ZM, we use a scheme 
where the plume ensemble is formed by plumes whose detrainment levels are determined in a probabilistic fash-
ion based on the SMCM of Khouider et al. (2010), with the stochasticity introducing subgrid variability to break 
away from the QEA.

To unify the treatment of shallow and deep convection, the original SMCM is extended to four cloud types by 
including shallow cumulus cloud types in addition to the readily existing congestus, deep, and stratiform cloud 
types. The mathematical framework for the four cloud SMCM remains the same, for both the case without 
local interactions and the case with local interactions introduced in Khouider (2014) and Khouider et al. (2010), 
respectively. The four cloud types have a relatively long time memory, as they define the convective systems life 
cycle, and interact with each other across both time and space. In essence, this is where the QEA, which attempts 
to keep convective activity in equilibrium with respect to the slowly varying large scale dynamics, fails. Instead, 
the SMCM introduces variability at the subgrid scale in the CP in both time and space as it mimics this multiple 
scale convective organization.

In a nutshell a mass flux scheme for CP, whether it is based on a spectral plume model (e.g., Arakawa & 
Schubert,  1974, ZM95) or it uses a bulk mass flux model (Tiedke,  1984; Tiedtke,  1993), is a mathematical 
framework that approximates the updraft and downdraft mass fluxes associated with the vertical displacement of 
air parcels between the mixed layer and the free troposphere, and the associated dynamical and thermodynamical 
variables. According to QEA, a steady state model is assumed and conveniently used for the updraft and down-
draft dynamics. In this context, the conservation of upward mass flux, M(z), for example, takes the form

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝐸𝐸(𝜕𝜕) −𝐷𝐷(𝜕𝜕). (1)

Here, E(z) and D(z) are, respectively, the entrainment and detrainment rates of environmental air into the cloud 
and of cloud air into the environment. There are two big challenging issues associated with Equation 1. One is 
associated with defining E(z) and D(z) and the other is related to setting a proper boundary condition at cloud 
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base so that the M-equation can be solved from bottom to top, and it need to be solved until the top of the tallest 
cumulus cloud, which also needs to be predicted. The later, that is, finding the cloud top, is perhaps the hardest 
problem because it depends on the many unknown parameters that control turbulent mixing of the rising plumes 
and their local buoyancy acceleration, to name a few. Nonetheless, this boils down to finding a model for the 
entrainment and detrainment rates E(z) and D(z), respectively. This is in fact a free boundary problem as the cloud 
top height and the E(z)-D(z) couplet are intimately related and closure assumptions are needed at many levels.

The solution to both issues needs to be both physically sound and computationally efficient. Here, we are mainly 
concerned with the issue of computing the bulk mass flux profile and the associated bulk entrainment and detrain-
ment rates using a stochastic model; for the cloud base mass flux issue, below, we use a combined convective 
available potential energy (CAPE) and turbulent kinetic energy closures to treat simultaneously deep and shallow 
convection, respectively. An original idea on how to use the SMCM framework to relax the quasi-equilibrium 
closure, for the cloud base mass flux, is proposed in Khouider and Leclerc (2019) but this new closure is not 
employed here to focus on the effect of using the SMCM to change the entrainment and detrainment rates. None-
theless, in a nutshell, the relaxed quasi-equilibrium closure using the SMCM framework amounts to proposing 
and using evolution equations (that can be either deterministic-mean field limit or stochastic) for the cloud area 
fractions (CAF) of multiple cloud types, to obtain closed prognostic equations for the cloud work function and 
cloud base mass flux of Pan and Randall (1998). The inclusion of both the stochastic closure based on the SMCM 
and the SMCPCP, in the same parametrization scheme, will be the subject of future research.

2.1. The Stochastic Multi-Cloud Plume Model

We assume a steady state plume model as in ZM95. Let

𝑚𝑚𝑗𝑗(𝑧𝑧) = 𝑀𝑀
𝑗𝑗

𝑏𝑏
𝑒𝑒
𝜆𝜆𝑗𝑗(𝑧𝑧−𝑧𝑧𝑏𝑏), 𝑧𝑧𝑏𝑏 ≤ 𝑧𝑧 ≤ 𝑧𝑧

𝑗𝑗

𝐷𝐷
 (2)

be the total mass flux associated with the sub-ensemble of plumes that all detrain at the same level 𝐴𝐴 𝐴𝐴
𝑗𝑗

𝐷𝐷
 and have 

the same fractional entrainment rate λj, j = 0, 1, 2, …. Here zb is the cloud base height and 𝐴𝐴 𝐴𝐴
𝑗𝑗

𝑏𝑏
 is the associated 

mass flux at cloud base, which, for the time being, we assume is given. Also, z is the height coordinate variable, 
with z = 0 at the surface, and j is the index of the convecting plume sub-ensemble. As we will see later, the calcu-
lation of 𝐴𝐴 𝐴𝐴

𝑗𝑗

𝑏𝑏
 follows the QEA-based CAPE closure of ZM95 for deep convection and the turbulent kinetic energy 

closure of Bretherton and Park (2008) for shallow convection, consistent with the control SCAM model to which 
the new parameterization is compared to (see Section 2.7).

We assume that there is a one-to-one correspondence between the fractional entrainment rates λj and the detrain-
ment levels zj:

𝑧𝑧 → 𝜆𝜆𝑧𝑧, 

and that the two variables can be interchangeably used to index the plume sub-ensemble (ZM95; Arakawa & 
Schubert, 1974).

Consider the total mass flux, M(z), of the grand ensemble of plumes that detrain at level z or higher or equiva-
lently that have an entrainment rate λj ≤ λz. For a fixed level z, we have

𝑀𝑀(𝑧𝑧) =
∑

𝑗𝑗𝑗𝑗𝑗𝑗𝑗≤𝑗𝑗𝑧𝑧

𝑚𝑚𝑗𝑗(𝑧𝑧) =
∑

𝑗𝑗𝑗𝑗𝑗𝑗𝑗≤𝑗𝑗𝑧𝑧

𝑀𝑀
𝑗𝑗

𝑏𝑏
𝑒𝑒
𝑗𝑗𝑗𝑗(𝑧𝑧−𝑧𝑧𝑏𝑏). (3)

The summation is over all plumes j whose entrainment rate λj ≤ λz or equivalently the detrainment level zj ≥ z. Let 
Nz be the number of detrainment levels zj greater or equal to z or equivalently the number of entrainment rates λj 
such that λj ≤ λz. We assume that Nz is a random variable with a probability distribution to be specified. For large 
enough Nz, we have approximately

𝑀𝑀(𝑧𝑧) ≈
𝑁𝑁𝑧𝑧

𝜆𝜆𝑧𝑧 ∫

𝜆𝜆𝑧𝑧

0

𝑀𝑀𝑏𝑏(𝜆𝜆)𝑒𝑒
𝜆𝜆(𝑧𝑧−𝑧𝑧𝑏𝑏)𝑑𝑑𝜆𝜆𝑑 (4)

Mathematically speaking, Equation 4 is only loosely related to Equation 3 as explained above. One has to view 
Equation 3 as a mere physical motivation for Equation 4, which, from now on, becomes our main definition for 
the bulk updraft mass flux.
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To determine the distribution of Nz, we use a hybrid method that combines a counting process in the vertical and 
a lattice model in the horizontal. The horizontal lattice model is based on the SMCM while the counting process 
is reminiscent to the equilibrium statistics model of Craig and Cohen (2006).

To start, we consider a square lattice overlaid over the averaging horizontal area of size AL with a size NL × NL 
lattice sites. Let zk be a fixed vertical level on the GCM grid. We denote by Pn,m,k the number of plumes going 
through the lattice site n, m, 1 ≤ n, m ≤ NL, that detrain at an arbitrary level z ≥ zk.

We divide the plumes into groups belonging to three cloud types or categories: shallow cumulus, cumulus conges-
tus, and deep convection according to their detrainment levels. The shallow cumulus group or type includes all 
plumes that detrain near the level of free convection (LFC), that is, having a cloud-top height below or near say 
2 km, and the cumulus congestus type comprises all plumes that detrain near the freezing level (FRZ) while the 
deep convection type regroups all plumes detraining far above FRZ, typically near the level of neutral buoyancy 
of non mixing parcels. We assume that each one of these cloud types has its own probability distribution function 
(PDF) of detrainment levels. The PDFs are accordingly centered near three specified levels and they are intention-
ally allowed to overlap, consistent with observations of cloud top echo heights (See e.g., Figure 1 of Zermelo-Daz 
et al. (2015)). Our approach is illustrated in Figure 1. Figure 1b, in particular, illustrates the three cloud types 
of interest and the corresponding detrainment level PDFs, each centered at a chosen level zx or equivalently a 
fractional entrainment rate λx.

We introduce an order parameter σn,m that takes values from 0, 1, 2, 3, and 4, at each site or cell (n, m) of the hori-
zontal lattice, according to whether the given site is respectively a clear sky or it is occupied by one of the cloud 
types: shallow cumulus, cumulus congestus, deep, or stratiform. See Figure 1a. This is an extension of the origi-
nal SMCM (Khouider, 2014; Khouider et al., 2010), which had only congestus, deep, and stratiform cloud types.

Let 𝐴𝐴 𝐴𝐴
𝜎𝜎

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
 be the number of plumes with a detrainment level zD ≥ zk, originating over the lattice site (n, m), condi-

tional on the realization of σn,m. Clearly when σn,m = 0, we have 𝐴𝐴 𝐴𝐴
𝜎𝜎

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
= 0 . Let dσ be the detrainment level of a 

random plume of type σ, σ = 1, 2, 3. Stratiform clouds are not considered part of the convecting plumes although 
they contribute in the SMCM dynamics, to account for the interaction of cumulus clouds with stratiform cloud 
decks which have been recognized, a long time ago, to be of paramount importance for organized convection 
(Majda & Shefter, 2001; Mapes, 2000; Pan & Randall, 1998). There is a possibility for taking advantage of the 
availability of this additional-stratiform order parameter value (σ = 4) to systematically include stratiform anvils 
within the SMCPCP framework. This however is postponed to the near future so we can focus on the modifica-
tion and stochasticization of the vertical distribution of the convective mass flux and the associated entrainment 
and detrainment rates. Let 𝐴𝐴 𝜎𝜎 be the probability distribution of dσ and fσ be the associated density functions for 
σ = 1, 2, 3.

Figure 1. (a) The multicloud model lattice. The global climate models (GCM) grid box is divided into a certain number of microscopic site and each site is either clear 
sky or occupied a cloud of certain type, shallow, congestus, deep as illustrated by the different colors. (b) Sketch of the plume detrainment level distribution functions 
and the associated cloud types. The detrainment probability distribution functions are centered near and below the empirical detrainment levels (dashed lines) formed by 
the trade wind inversion, the 0°C or freezing/melting level, and the tropopause, which serve to cap sallow cumulus, cumulus congestus, and deep cumulonimbus clouds.
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Let us assume that σnm = σ was realized, that is, that we know that clouds of type shallow, congestus, or deep 
do occur at lattice site (n, m). Then, for σ = 1, 2, 3, the conditional probability of the plume number is given by,

Prob
{

𝑃𝑃
𝜎𝜎

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
= 𝑗𝑗|𝜎𝜎𝑛𝑛𝑛𝑛𝑛 = 𝜎𝜎

}

≡ Prob{𝑗𝑗 plumes of type 𝜎𝜎 detrain at 𝑧𝑧𝐷𝐷 ≥ 𝑧𝑧𝑛𝑛𝑛 over the site (𝑛𝑛𝑛 𝑛𝑛)}

= Prob{𝑗𝑗 plumes of type 𝜎𝜎 detrain at 𝑧𝑧𝐷𝐷 ≥ 𝑧𝑧𝑛𝑛𝑛 over the site (𝑛𝑛𝑛 𝑛𝑛)|𝑑𝑑𝜎𝜎 ≥ 𝑧𝑧𝑛𝑛} × Prob{𝑑𝑑𝜎𝜎 ≥ 𝑧𝑧𝑛𝑛}.
 (5)

Using statistical mechanics arguments, Craig and Cohen (2006), demonstrated, in a cloud resolving simulation, 
that the number of convecting plumes, in an ensemble that contribute to a given mass flux amount, is Poisson 
distributed. Inspired by this result, we assume that the number of plumes of type σ, for σ = 1, 2, 3, occurring 
over the site (n, m) and detraining at a level z ≥ zk given that dσ ≥ zk is Poisson, with rate Λ{σ,n,m,k}. For the sake 
of simplicity we assume that Λ depends only on the size of the lattice site and not on the specific location of the 
site. In particular, this dependency of the maximum size of the plume ensemble on the GCM grid size makes the 
new CP scale aware, even when the number of lattice sites is fixed, and at the same time determines the assumed 
size of the microscopic (cloud) cells. Moreover, given the conditional nature of this distribution, it is meaningful 
to assume that Λ is independent of the detrainment level zk, which is already accounted for in Equation 5 through 

𝐴𝐴 𝜎𝜎 . Accordingly, we set

Λ = 𝛼𝛼

(

Δ𝑋𝑋

𝐿𝐿𝐿𝐿𝐿𝐿

)𝛽𝛽

, (6)

where ΔX is the horizontal extend of the averaging area of the ensemble (in practice the GCM grid size), L is 
a reference length scale and NL is the number of lattice points while α and β are scaling parameters. While the 
values of NL, α, β can be obtained from data (e.g., cloud resolving simulations), here, for the purpose of the single 
column validation, we assume that Λ takes the fixed value of Λ = 1 (one plume per lattice site). Variations of Λ 
with the lattice size can be re-incorporated in the future to make the SMCPCP resolution aware, especially in the 
context of full 3d simulations.

2.2. The Cloud Type Lattice Model

The order parameter σ n,m defines a continuous time Markov process on the state space 𝐴𝐴 Σ = {0, 1, 2, 3, 4}
𝑁𝑁𝐿𝐿×𝑁𝑁𝐿𝐿 

denoted here by σt. Each possible realization X ∈ Σ is called a configuration. See Figure 1a.

We introduce the area fractions

�̄�𝜎𝕝𝕝 =
1

𝑁𝑁
2

𝐿𝐿

∑

𝑛𝑛𝑛𝑛𝑛

𝟙𝟙{𝜎𝜎𝑛𝑛𝑛𝑛𝑛=𝑙𝑙} =
𝑁𝑁𝑙𝑙

𝑁𝑁
2

𝐿𝐿

𝑛 𝑙𝑙 = 1𝑛 2𝑛 3𝑛 4𝑛 (7)

of shallow cumulus, cumulus congestus, deep convective clouds, and stratiform clouds, respectively. The corre-
sponding numbers of sites that are occupied by shallow cumulus, cumulus congestus, and deep convecting 
(cumulonimbus) clouds are denoted by 𝐴𝐴 𝐴𝐴𝑙𝑙 = 𝐴𝐴

2

𝐿𝐿
�̄�𝜎𝑙𝑙, 𝑙𝑙 = 1, . . . , 4 , respectively. In Equation 7, 𝐴𝐴 𝟙𝟙{𝜎𝜎=𝑙𝑙} is the indicator 

function that takes the value 𝐴𝐴 𝟙𝟙 if σ = l and 0 otherwise.

As time progresses, transitions from one configuration to the next occur according to transition probabilities 
defined through an infinitesimal generator 𝐴𝐴  , a matrix of dimension the cardinality of Σ. However, for the sake of 
simplicity, we assume that the transition rates depend only on the environmental state (i.e., the GCM variables) 
and ignore local interactions between lattice sites. Thus, the σn,m's, defined at the different sites, are independent 
identically distributed random variables and the infinitesimal generator is fully described through the transition 
rates at a single site. As a result, the area fractions in Equation 7 define a coarse-grained stochastic process that 
can be regarded as a multidimensional stochastic birth-death process with immigration, for the cloud type popu-
lations and its coarse grained transition rates are easily obtained from the microscopic transition rates, in closed 
form and without any approximation. This in particular allows a seamless simulations of the 𝐴𝐴 𝐴𝐴𝐴𝑙𝑙 's as a stand alone 
coarse grained Markov process with an insignificant computational overhead (Khouider et  al.,  2010). None-
theless, a similar coarse graining procedure could be applied to the case with local interactions albeit an extra 
assumption of strong mixing (Khouider, 2014).

We denote by Rlk the transition rate from state l to state k, 0 ≤ l, k ≤ 4. On physical grounds some transitions are 
forbidden on the infinitesimal time and the associated transition rates are thus set to zero. Namely, infinitesimal 
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transitions (or sudden jumps) from deep to congestus, from congestus to shallow, from deep to shallow, and from 
stratiform to any other cloudy state are not allowed. We have

𝑅𝑅21 = 𝑅𝑅32 = 𝑅𝑅31 = 𝑅𝑅04 = 𝑅𝑅14 = 𝑅𝑅24 = 𝑅𝑅41 = 𝑅𝑅42 = 𝑅𝑅43 = 0. (8)

For simplicity, the death rates, corresponding to transitions for a given cloud type to clear sky, that is, from state 
1, 2, 3, or 4 to sate 0 are assumed independent of the large scale state. We set

𝑅𝑅𝑙𝑙0 =
1

𝜏𝜏𝑙𝑙0
, 𝑙𝑙 = 1, 2, 3, 4. (9)

The remaining–non death transition rates (namely for births and immigration, in the jargon of population dynam-
ics) are set to depend on specific large-scale indicators or predictors that determine whether the underlying 
environment is favorable to the formation of clouds of certain types or to clear sky. Here, we make the tacit 
assumptions that shallow cumulus is favored in regions of high convective inhibition (CIN), strong trade wind 
inversion, or strong subsidence, congestus clouds are favored when there is high CAPE but the mid troposphere 
is dry while deep convection is favored when there is both high CAPE and the mid-troposphere is moist. Deep 
convective clouds are assumed to transition to stratiform clouds according to a prescribed transition rate inde-
pendent of the large scale state (Majda & Shefter, 2001; Mapes, 2000).

Following Khouider et al. (2010), we assume that the transition rates take the form of Arrhenius-like functions 
and set

𝑅𝑅01 =
1

𝜏𝜏01
𝐹𝐹 (𝐶𝐶𝑁𝑁,𝑊𝑊𝑁𝑁 )

𝑅𝑅02 =
1

𝜏𝜏02
Γ(𝐶𝐶𝐿𝐿) ∗ Γ(𝐷𝐷) ∗ [1 − 𝐹𝐹 (𝐶𝐶𝑁𝑁,𝑊𝑊𝑁𝑁 )]

𝑅𝑅03 =
1

𝜏𝜏03
Γ(𝐶𝐶) ∗ (1 − Γ(𝐷𝐷)) ∗ [1 − 𝐹𝐹 (𝐶𝐶𝑁𝑁,𝑊𝑊𝑁𝑁 )]

𝑅𝑅12 =
1

𝜏𝜏12
Γ(𝐶𝐶𝐿𝐿) ∗ Γ(𝐷𝐷) ∗ [1 − 𝐹𝐹 (𝐶𝐶𝑁𝑁,𝑊𝑊𝑁𝑁 )]

𝑅𝑅13 =
1

𝜏𝜏13
Γ(𝐶𝐶) ∗ (1 − Γ(𝐷𝐷)) ∗ [1 − 𝐹𝐹 (𝐶𝐶𝑁𝑁,𝑊𝑊𝑁𝑁 )]

𝑅𝑅23 =
1

𝜏𝜏23
Γ(𝐶𝐶) ∗ (1 − Γ(𝐷𝐷)) ∗ [1 − 𝐹𝐹 (𝐶𝐶𝑁𝑁,𝑊𝑊𝑁𝑁 )]

𝑅𝑅34 =
1

𝜏𝜏34
,

 (10)

where 𝐴𝐴 𝐴𝐴 (𝐶𝐶𝑁𝑁,𝑊𝑊𝑁𝑁 ) = 0.5[Γ(𝐶𝐶𝑁𝑁 ) + Γ(𝑊𝑊𝑁𝑁 )] and Γ(X) = 1 − exp(−X), if X > 0 while Γ(X) = 0 if X ≤ 0. Here, X is 
a generic variable spanning the large scale predictors CAPE, C = CAPE/CAPE0, low level CAPE, CL = LCAPE/
LCAPE0, dryness, 𝐴𝐴 𝐴𝐴 = ( −0) /MTD0, the large scale subsidence at the top of the planetary boundary layer, 
WN = −min(0, W/W0), and CIN, CN = −CIN/CIN0. Further, 𝐴𝐴  is the relative humidity at 700 hPa with 𝐴𝐴 0 = 5% 
so that deep convection is inhibited when the mid-troposphere is dry and LCAPE stands for low-level CAPE 
and is defined as the part of the CAPE integral between LFC and the freezing level. CAPE0 = 1,000  J/Kg, 
LCAPE0 = 100 J/Kg, MTD0 = 10%, W0 = 1 m/s and CIN0 = 50 J/Kg are reference scales used for normalization. 
We note that here CIN is considered as a negative definite quantity, so that when CIN is large, Γ(CN) approaches 
unity. Also, CAPE and LCAPE can be replaced by other like quantities that can be used to measure the convective 
potential such as vertical velocity as done in K. Peters et al. (2017) or even the cloud work function of Arakawa 
and Schubert (1974).

Noteworthy, the transition rates in Equation 10 are not used as such but they directly yield the coarse grained 
birth, death, and cloud type switching rates to seamlessly evolve the cloud area fraction in Equation  7. For 
example, the probability to have the congestus population N2 augmented by one individual, during a short time 
lapse Δt, is given by

Prob{𝑁𝑁2(𝑡𝑡 + Δ𝑡𝑡) = 𝑁𝑁2(𝑡𝑡) + 1} =
[

𝑁𝑁1(𝑡𝑡)𝑅𝑅12 +
(

𝑁𝑁
2

𝐿𝐿
−𝑁𝑁1(𝑡𝑡) −𝑁𝑁3(𝑡𝑡) −𝑁𝑁4(𝑡𝑡)

)

𝑅𝑅02

]

Δ𝑡𝑡 + 𝑜𝑜(Δ𝑡𝑡). 

Here the transition rates Rkj are fixed. The interested reader is referred to Khouider  (2019) and Khouider 
et al. (2010) for more details.
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The parameters τlk, l, k = 0, …, 4 constitute the set of the transition time scales that define the transition rates 
Rlk, l, k = 0, …, 4 together with their explicit dependencies on the large scale dynamics and thermodynamics–the 
predictors. In practice, τkl's are either determined from data using statistical inference as done in Cardoso-Bihlo 
et al. (2019), De La Chevrotiere et al. (2014), and De La Chevrotière et al. (2015) or prescribed in an ad hoc 
fashion based on physical intuition as done in Khouider et al. (2010). De La Chevrotière et al. (2015) inferred 
the seven transition timescales for the original three cloud-type SMCM using large eddy simulation (LES) for 
a tropical Atlantic field experiment test case (Khairoutdinov et al., 2009) while Cardoso-Bihlo et al. (2019) did 
the same using radar cloud data from the Indian Ocean field campaign known as DYNAMO (Feng et al., 2014). 
The later–DYNAMO parameters are augmented with ad hocly chosen values for the transitions from and to the 
shallow cumulus state (4 in total: τ01, τ12, τ13, τ10) and used here as a benchmark test case. The sensitivity to this 
parameter choice is tested by comparing to results obtained with three variants of the parameter set, one is an 
extension of the parameters obtained by De La Chevrotière et al. (2015) based on LES data while the other two 
are based on intuition. The first of the last two is a slight modification of the DYNAMO parameters while the 
other is completely an educated guess. The actual values are reported in Table 1.

It is worth noting here that the Bayesian inference framework, used to learn the transition time scales τk,l 
(Cardoso-Bihlo et  al.,  2019; De La Chevrotière et  al.,  2015) could easily be extended to include, as deemed 
necessary, other parameters such as the dryness and the subsidence reference scales MTD0 and W0, respectively, 
to have a somewhat more complete learning process.

2.3. The Stochastic Bulk Mass Flux Model

With the relative cloud-type plume numbers, or the cloud-type area fractions, defined through the stochastic-lattice 
plume model above, we are ready to derive the stochastic bulk mass flux equations. First, we note that a sufficient 
condition to achieve a Poisson process for the distribution of plumes in Equation 5 is to assume that the individual 
probabilities

𝑝𝑝𝑘𝑘𝑘𝑘𝑘(𝑗𝑗) = Prob{𝑗𝑗 plumes of type 𝑘𝑘 detraining at 𝑧𝑧𝐷𝐷𝑘 for 𝑧𝑧𝑘𝑘 ≤ 𝑧𝑧𝐷𝐷 ≤ 𝑧𝑧𝑘𝑘+1|𝑧𝑧𝑘𝑘 ≤ 𝑑𝑑𝑘𝑘 ≤ 𝑧𝑧𝑘𝑘+1} 

are Poisson distributed with the same rate Λ, independently of σ, as readily justified by the Craig and Cohen (2006) 
model. We obtain from Equation 4, after taking expectations over the Poisson distribution,

𝑀𝑀(𝑧𝑧) =
Λ𝑀𝑀𝑏𝑏

𝑁𝑁
2

𝐿𝐿
∫

𝜆𝜆𝑧𝑧

0

𝑒𝑒
𝜆𝜆(𝑧𝑧−𝑧𝑧𝑏𝑏)[𝑁𝑁1𝑓𝑓1(𝜆𝜆) +𝑁𝑁2𝑓𝑓2(𝜆𝜆) +𝑁𝑁3𝑓𝑓3(𝜆𝜆)]𝑑𝑑𝜆𝜆𝑑 (11)

Description Parameter

Value

SMCM SMCM1 SMCM2 SMCM3

(DYNAMO-radar) (GATE-LES) (Ad hoc) (Guess)

Clear sky to shallow cumulus τ01 1 1 9 2

Clear sky to congestus τ02 5.6 32 32 2

Clear sky to deep τ03 0.1 12 12 0.75

Shallow cumulus to congestus τ12 3 1 12 2

Shallow cumulus to deep τ13 0.14 1 1 1

Congestus to deep τ23 0.31 0.25 0.25 1.5

Deep to stratiform τ34 2 0.25 0.25 1

Shallow cumulus to clear sky τ10 5 2 20 5

Congestus to clear sky τ20 7 2 2 7

Deep to clear sky τ30 14.3 9.5 9.5 10

Stratiform to clear sky τ40 30 1 1 20

Note. See text for details.

Table 1 
Transition Time Scale Parameters (in Hours) Used in the Five Different Experiments Performed for Each One of the Six 
Study Cases
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where fl, l = 1, 2, 3 are the probability densities illustrated in Figure 1b that are associated with the plume distri-
butions 𝐴𝐴 1,2,3 , which in turn are assumed to make up 𝐴𝐴 𝜎𝜎 . Here, N1, N2, and N3 are the numbers of lattice sites 
that are occupied by shallow, congestus, and deep cumulus, respectively, while the Poisson parameter Λ is given 
in Equation 6, although as already noted the value Λ = 1 is used for the single column runs herein.

Note that Equation 11 can be alternatively written in terms of the CAF as

𝑀𝑀(𝑧𝑧) = Λ𝑀𝑀𝑏𝑏
∫

𝜆𝜆𝑧𝑧

0

𝑒𝑒
𝜆𝜆(𝑧𝑧−𝑧𝑧𝑏𝑏)[�̄�𝜎1𝑓𝑓1(𝜆𝜆) + �̄�𝜎2𝑓𝑓2(𝜆𝜆) + �̄�𝜎3𝑓𝑓3(𝜆𝜆)]𝑑𝑑𝜆𝜆𝑑 (12)

where 𝐴𝐴 𝐴𝐴𝐴𝑙𝑙 = 𝑁𝑁𝑙𝑙∕𝑁𝑁
2

𝐿𝐿
 for l = 1, 2, 3 as defined in Equation 7.

2.4. Entrainment and Detrainment Calculation

For convenience, we use the short-hand notation

𝑓𝑓 (𝜆𝜆) = �̄�𝜎1𝑓𝑓1(𝜆𝜆) + �̄�𝜎2𝑓𝑓2(𝜆𝜆) + �̄�𝜎3𝑓𝑓3(𝜆𝜆) (13)

and rewrite Equation 12 simply as

𝑀𝑀(𝑧𝑧) = Λ
∫

𝜆𝜆𝑧𝑧

0

𝑚𝑚𝜆𝜆(𝑧𝑧)𝑓𝑓 (𝜆𝜆)𝑑𝑑𝜆𝜆𝑑 (14)

The precise formulation of λz as a function of z, which is used here, will be given below in Section 2.5. For now, 
we note that this function is a strictly decreasing function of z, zb ≤ z ≤ z∞, where z∞ is the detrainment level of 
the deepest penetrating plume, and rewrite the bulk mass flux equation in Equation 1 as

1

𝑀𝑀(𝑧𝑧)

𝜕𝜕𝑀𝑀(𝑧𝑧)

𝜕𝜕𝑧𝑧
= 𝜖𝜖(𝑧𝑧) − 𝛿𝛿(𝑧𝑧), (15)

where ϵ(z) = E(z)/M(z) and δ(z) = D(z)/M(z) are respectively the bulk entrainment and bulk detrainment rates per 
unit mass flux. After differentiating Equation 14, we obtain

𝜖𝜖(𝑧𝑧) − 𝛿𝛿(𝑧𝑧) =
Λ

𝑀𝑀(𝑧𝑧)
𝑚𝑚𝜆𝜆𝑧𝑧

(𝑧𝑧)𝑓𝑓 (𝜆𝜆𝑧𝑧)
𝑑𝑑𝜆𝜆𝑧𝑧

𝑑𝑑𝑧𝑧
+

Λ

𝑀𝑀(𝑧𝑧) ∫

𝜆𝜆𝑧𝑧

0

𝜕𝜕𝑚𝑚𝜆𝜆(𝑧𝑧)

𝜕𝜕𝑧𝑧
𝑓𝑓 (𝜆𝜆)𝑑𝑑𝜆𝜆 

=
Λ𝑀𝑀𝑏𝑏

𝑀𝑀(𝑧𝑧) ∫

𝜆𝜆𝑧𝑧

0

𝜆𝜆𝜆𝜆
𝜆𝜆(𝑧𝑧−𝑧𝑧𝑏𝑏)𝑓𝑓 (𝜆𝜆)𝑑𝑑𝜆𝜆 +

Λ𝑀𝑀𝑏𝑏

𝑀𝑀(𝑧𝑧)
𝜆𝜆
𝜆𝜆𝑧𝑧(𝑧𝑧−𝑧𝑧𝑏𝑏)𝑓𝑓 (𝜆𝜆𝑧𝑧)

𝑑𝑑𝜆𝜆𝑧𝑧

𝑑𝑑𝑧𝑧
. 

Consequently, we set

𝜖𝜖(𝑧𝑧) =
Λ𝑀𝑀𝑏𝑏

𝑀𝑀(𝑧𝑧) ∫

𝜆𝜆𝑧𝑧

0

𝜆𝜆𝜆𝜆
𝜆𝜆(𝑧𝑧−𝑧𝑧𝑏𝑏)𝑓𝑓 (𝜆𝜆) 𝑑𝑑𝜆𝜆 =

∫
𝜆𝜆𝑧𝑧

0
𝜆𝜆𝜆𝜆

𝜆𝜆(𝑧𝑧−𝑧𝑧𝑏𝑏)𝑓𝑓 (𝜆𝜆) 𝑑𝑑𝜆𝜆

∫
𝜆𝜆𝑧𝑧

0
𝜆𝜆
𝜆𝜆(𝑧𝑧−𝑧𝑧𝑏𝑏)𝑓𝑓 (𝜆𝜆) 𝑑𝑑𝜆𝜆

 (16)

and

𝛿𝛿(𝑧𝑧) = −
Λ

𝑀𝑀(𝑧𝑧)
𝑀𝑀𝑏𝑏𝑒𝑒

𝜆𝜆𝑧𝑧(𝑧𝑧−𝑧𝑧0)𝑓𝑓 (𝜆𝜆𝑧𝑧)
𝑑𝑑𝜆𝜆𝑧𝑧

𝑑𝑑𝑧𝑧
= −

𝑒𝑒
𝜆𝜆𝑧𝑧(𝑧𝑧−𝑧𝑧𝑏𝑏)𝑓𝑓 (𝜆𝜆𝑧𝑧)

∫
𝜆𝜆𝑧𝑧

0
𝑒𝑒
𝜆𝜆(𝑧𝑧−𝑧𝑧𝑏𝑏)𝑓𝑓 (𝜆𝜆) 𝑑𝑑𝜆𝜆

𝑑𝑑𝜆𝜆𝑧𝑧

𝑑𝑑𝑧𝑧
. (17)

Since λz is a decreasing function of z, δ(z) is non-negative and peaks precisely at (detrainment) levels correspond-
ing to the centers of individual cloud-type PDFs that form up f(λz) in Equation 13, consistent with Figure 1 of 
Zermelo-Daz et al. (2015).

To facilitate the approximation of the integrals in Equations 14, 16, and 17, we assume the simple Gaussian 
shapes for the distributions f1, f2, f3:

𝑓𝑓𝑗𝑗(𝜆𝜆) =
1

√

2𝜋𝜋𝜋𝜋𝑗𝑗

exp

{

−
(𝜆𝜆 − 𝜆𝜆𝑗𝑗)

2

2𝜋𝜋2
𝑗𝑗

}

, 𝑗𝑗 = 1, 2, 3, (18)
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where λj and αj, j = 1, 2, 3 are respectively the means and standard deviations of the plume entrainment rates 
corresponding to shallow cumulus, cumulus congestus, and deep cumulonimbus cloud types, respectively.

It remains to approximate the integrals

𝐼𝐼
𝑗𝑗

1
=

1

𝛼𝛼𝑗𝑗

√

2𝜋𝜋
∫

𝜆𝜆𝑧𝑧

0

exp

{

𝜆𝜆(𝑧𝑧 − 𝑧𝑧𝑏𝑏) −
(𝜆𝜆 − 𝜆𝜆𝑗𝑗)

2

2𝛼𝛼2
𝑗𝑗

}

𝑑𝑑𝜆𝜆 (19)

and

𝐼𝐼
𝑗𝑗

2
=

1

𝛼𝛼𝑗𝑗

√

2𝜋𝜋
∫

𝜆𝜆𝑧𝑧

0

𝜆𝜆 exp

{

𝜆𝜆(𝑧𝑧 − 𝑧𝑧𝑏𝑏) −
(𝜆𝜆 − 𝜆𝜆𝑗𝑗)

2

2𝛼𝛼2
𝑗𝑗

}

𝑑𝑑𝜆𝜆𝑑 (20)

for j = 1, 2, 3, to obtain ϵ(z) and δ(z). These integrals are further simplified and written in closed form in terms 
of the error function (erf) and coded as such.

2.5. Entrainment Function

To define the entrainment function λz = λ(z) we follow ZM95 and define λz based on MSE. We consider the steady 
state equation of the MSE of a convecting plume, with a fractional entrainment rate λ, rising from a cloud base 
zb to its detrainment level zD:

𝑑𝑑𝑑𝑢𝑢

𝑑𝑑𝑑𝑑
= 𝜆𝜆(𝑑 − 𝑑𝑢𝑢), 𝑑𝑑𝑏𝑏 ≤ 𝑑𝑑 ≤ 𝑑𝑑𝐷𝐷, (21)

where hu is the MSE of the rising plume and h is the MSE of the environment. The idea is to use this equation to 
compute λ as a function of the detrainment level zD under the two physical assumptions:

1.  hu(zb) = h(zs) ≡ h0, where zs is the surface level, that is, the plume rising from the surface conserves its MSE 
and it is unsaturated below zb.

2.  hu(zD) = h*(zD) ≡ h*, the environmental saturation MSE. In other words, at its detrainment level, the rising 
plume is in thermodynamic equilibrium with the environment at saturation.

A quick integration of the ordinary differential equation in Equation 21 yields

ℎ0 − ℎ
∗ = 𝜆𝜆

∫

𝑧𝑧𝐷𝐷

𝑧𝑧𝑏𝑏

(

ℎ0 − ℎ
(

𝑧𝑧
′
))

𝑒𝑒
𝜆𝜆(𝑧𝑧′−𝑧𝑧𝐷𝐷)𝑑𝑑𝑧𝑧′. (22)

A one-to-one function for λ in terms of zD is then obtained by inverting this equation. An easy and cheap way to do 
this is to simply approximate this integral based on the mean value theorem. However, the mid-point approxima-
tion breaks down when h*(z)'s concavity varies significantly with height. Thus, instead, we compute the integral 
in Equation 22 with more accuracy (using a composite Newton-Cotes rule) and then invert the resulting equation 
for λ using the Newton-Raphson method. Let

𝐹𝐹 (𝜆𝜆) = 𝜆𝜆
∫

𝑧𝑧

𝑧𝑧𝑏𝑏

(

ℎ0 − ℎ
(

𝑧𝑧
′
))

𝑒𝑒
𝜆𝜆(𝑧𝑧′−𝑧𝑧)𝑑𝑑𝑧𝑧′ − (ℎ0 − ℎ

∗(𝑧𝑧)) 

and

𝐹𝐹
′(𝜆𝜆) =

∫

𝑧𝑧

𝑧𝑧𝑏𝑏

(

ℎ0 − ℎ
(

𝑧𝑧
′
))

𝑒𝑒
𝜆𝜆(𝑧𝑧′−𝑧𝑧)

[

1 + 𝜆𝜆
(

𝑧𝑧
′ − 𝑧𝑧

)]

𝑑𝑑𝑧𝑧
′ 

its derivative. Given an initial guess λ0, we define

𝜆𝜆𝑖𝑖+1 = 𝜆𝜆𝑖𝑖 −
𝐹𝐹 (𝜆𝜆𝑖𝑖)

𝐹𝐹 ′(𝜆𝜆𝑖𝑖)
, 𝑖𝑖 = 0, 1, 2,⋯ . (23)

This yields approximate solution λ∗ of F(λ) = 0, when i is sufficiently large. An initial guess λ0 = 10 −5 m −1 and a 
maximum of four iterations are used. It has to be noted that the authors haven't investigated whether this iterative 
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process converges for all initial guesses λ0 and given background moist static energies but the computations seem 
to be stable and led to reasonable results, for all the case studies considered.

2.6. Fixing the Detrainment Level Distributions Parameters

To complete the definition of the detrainment level distributions in Equation 18, which can be loosely thought of 
as the cloud top distributions for each cloud type, we need to specify the means and standard deviation parameters 
λj, αj for each fj(λ), j = 1, 2, 3. Consider the model levels that are closest to the lifting condensation level, the LFC, 
the freezing level, and the level of neutral buoyancy, denoted here for convenience as by zlcl, zlfc, zfrz, zlnb, respec-
tively, that are associated with the given environmental profile. Let λlcl, λlfc, λfrz, λlnb be the fractional entrainment 
rates of plumes that detrain at each one of these levels, respectively, based on an appropriate inversion of Equa-
tion 22. Let 0 < δj < 1 and γj > 0, j = 1, 2, 3, be a set of tunable parameters.

We set

𝜆𝜆1 = 𝛿𝛿1𝜆𝜆𝑙𝑙𝑙𝑙𝑙𝑙

𝜆𝜆2 = 𝛿𝛿2𝜆𝜆𝑙𝑙𝑓𝑓𝑓𝑓

𝜆𝜆3 = 𝛿𝛿3𝜆𝜆𝑙𝑙𝑓𝑓𝑓𝑓 + (1 − 𝛿𝛿3)𝜆𝜆𝑙𝑙𝑙𝑙𝑙𝑙

 (24)

and

𝛼𝛼1 = 𝛾𝛾1𝜆𝜆1

𝛼𝛼2 = 𝛾𝛾2(𝜆𝜆𝑙𝑙𝑙𝑙𝑙𝑙 − 𝜆𝜆𝑙𝑙𝑓𝑓𝑓𝑓)

𝛼𝛼3 = 𝛾𝛾(𝜆𝜆𝑙𝑙𝑓𝑓𝑓𝑓 − 𝜆𝜆𝑙𝑙𝑙𝑙𝑙𝑙).

 (25)

Preliminary numerical experiments revealed that the values δ1 = 0.6, δ2 = 1.25, δ3 = 0.2, γ1 = 0.35, γ2 = 0.15 and 
γ3 = 1.0 are a good choice for a wide range of test cases. They are fixed as such and used for the results presented 
here. Further tuning is probably required for 3d simulations.

2.7. Implementation

The model used is CAM5, the atmospheric component of CESM1.2.2 which can be downloaded from the UCAR 
website: https://svn-ccsm-models.cgd.ucar.edu/cesm1/release_tags/cesm1_2_2, which we run in single column 
mode.

Generally speaking, a single column climate model (SCM) is an idealized version of a GCM where the horizon-
tal variations are ignored, leading to an isolation of the atmospheric vertical motion. As such SCM's are ideal 
testbeds for convection parameterizations while keeping the computational cost to the minimum (Gettelman 
et al., 2019; M. Zhang et al., 2016). In a way, an SCM simulates the atmospheric processes using a single/isolated 
GCM grid column thus the name SCM.

We recall here that our main strategy for achieving a stochastic mass flux CP is to modify the ZM scheme so 
that the updraft mass flux and the associated entrainment and detrainment rates are calculated according to the 
probabilistic formulations in Equations 14, 16, and 17, respectively. The stochasticity arises from the SMCM 
CAFs that act as weights in the definition of the PDF f(λ) in Equation 13. In addition to the realism of having a 
dynamically evolving detrainment level distribution, the SMCM introduces variability at subgrid level into the 
cumulus scheme and we obtain a naturally unified shallow-deep convective parametrization.

While the MSE profile, h(z), is used to compute the entrainment function λ(z) using Newton-Raphson in Equa-
tion 23, the SMCM is run in parallel to produce the CAF 𝐴𝐴 𝐴𝐴𝐴𝑗𝑗, 𝑗𝑗 = 1, . . . , 4 . To this end, the large scale predictors, 
CAPE, LCAPE, middle tropospheric dryness (D), vertical velocity at the top of the boundary layer (W), CIN, and 
the strength of the inversion are fed to the SMCM routine to estimate the transition rates in Equation 10 at each 
GCM time step (and at each column of the GCM, if run in full 3D mode; it is not the case here!).

The bulk mass flux and the bulk fractional entrainment rates are estimated from adequate approximations of 
the integrals in Equations 14 and 16, respectively. A composite Simpson rule and semi-exact evaluations based 
on known values of the erf function 𝐴𝐴

(

erf(𝑦𝑦) =
2

√

𝜋𝜋
∫

𝑦𝑦

0
𝑒𝑒
−𝑥𝑥2

𝑑𝑑𝑥𝑥

)

 have been tested and the results were found to be 
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only mildly sensitive to the choice of either method. To guarantee conservation of mass with machine precision, 
instead of approximating the derivative 𝐴𝐴

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 in Equation 17 in a similar fashion, we use the mass conservation equa-

tion in Equation 15 to estimate δ(z) from the already-made estimations of M(z) and ϵ(z):

𝛿𝛿(𝑧𝑧𝑘𝑘) ∶= 𝜖𝜖(𝑧𝑧𝑘𝑘) +
𝑀𝑀𝑘𝑘+1 −𝑀𝑀𝑘𝑘

𝑧𝑧𝑘𝑘+1 − 𝑧𝑧𝑘𝑘
, (26)

where k = 1, 2, … are the model levels. We note that this is possible because the mass flux M is known a priori 
at all levels.

When implementing the SMCPCP in SCAM, we altered the way convection is triggered. This was possible only 
because the SMCM is a shallow-deep unified scheme. In the original-ZM CP the trigger is based on a thresh-
old CAPE value. In other words, the ZM convection routine is called only when CAPE is larger than a certain 
threshold value. Since in the SMCPCP the mass flux is calculated based on the evolving SMCM's CAF, it will be 
automatically zero if the CAF are all zero. As such the CAPE trigger is not needed and the stochastic convective 
cloud fraction aggregate 𝐴𝐴 𝐴𝐴𝐴1 + 𝐴𝐴𝐴2 + 𝐴𝐴𝐴3 becomes implicitly the new convection trigger function. This also allows 
the ZM-SMCM code to be called and used even when the SMCM predicts only shallow convection (or only 
congestus) and no deep cloud fraction.

Meanwhile, the cloud base mass flux is split into its shallow and deep components,

𝑀𝑀𝑏𝑏 =

⎧

⎪

⎨

⎪

⎩

�̄�𝜎1𝑀𝑀𝑏𝑏𝑏𝑏+(�̄�𝜎2+�̄�𝜎3)𝑀𝑀𝑏𝑏𝑏𝑏

�̄�𝜎1+�̄�𝜎2+�̄�𝜎3

, if �̄�𝜎1 + �̄�𝜎2 + �̄�𝜎3 > 0.

0, otherwise,

 (27)

In Equation 27 Mbc represents the deep convective cloud base mass flux while Mbs represents its shallow cumulus 
counterpart. Mbc is computed based on the original CAPE closure and Mbs is based on the boundary layer turbu-
lence closure of Bretherton and Park (2008).

This essentially implies that, convection strength in SMCPCP is seamless. It also means that, SMCPCP is not 
only a shallow-deep unified scheme, but this framework also unifies the triggers and closures of shallow and deep 
convection. We recall that since SMCPCP is a unified scheme, the shallow convection parameterization scheme 
in CAM is turned off when SMCPCP is used.

3. Data and Observation Test Cases
The comparative results from two case studies that cover both tropical ocean and midlatitude-land convection, 
namely, the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) which took place in 2006 (denoted 
here TWP06 for short) and the Atmospheric Radiation Measurement Program Intensive Observation Period of 
1995 (ARM95), are reported here. Details on these field campaigns and the inherent weather events can be found 
for example, in Gettelman et al. (2019) and M. Zhang et al. (2016) and references therein. Nonetheless, a brief 
summary of their main weather features are given below for the sake of convenience. We emphasize the fact that 
when combined, these two field experiments contain a rich variety of convection regimes covering land, ocean, 
and coastal areas, which help to highlight some of the key features of the new parametrization when compared 
to the default ZM scheme as implemented in CAM and to the available observations. Although not shown here, 
many other test cases including GATE, TOGA-COARE, ARM97, have showed similar performance for both 
models, which proves the robustness and representativity of the reported results.

The observed surface fluxes and vertical velocity are used to force the models while the corresponding tempera-
ture and relative humidity profiles, and precipitation time series are used as benchmarks to validate the models. 
The (air) surface temperature and vertical velocity profile time series for the 2 test cases are shown in Figure 2 
while the corresponding precipitation records are reported in Figure 3. As we can readily see from these figures, 
while the time span of the test cases are comparable, roughly 2.5 and 3 weeks, the variabilities of the illustrated 
forcing fields vary strongly from one case to another, as discussed below.

The forcing fields from both test cases have a temporal resolution of 20 min while the vertical velocity is given at 
18 and 40 pressure levels in ARM95 and TWP06, respectively.
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The Tropical Warm Pool International Cloud Experiment also known as TWP-ICE, was undertaken in the 
Darwin, Northern Australia, from 21 January to 13 February 2006 with a view to improve the parameterization 
of tropical convection and clouds in numerical weather prediction and climate models (May et al., 2008). It was 
expected during this campaign to understand convection and cloud characteristics which are representative of 
conditions typical for wide areas of the tropics. A large amplitude MJO passed through the region and, as it can 
be surmised from Figures 2a and 2c, different phases of the Australian monsoon were observed, including active 
(21–25 January), suppressed (26 January to 2 February), clear skies (3–5 February) and break (6–13 February) 
conditions. It should be noted that the break conditions are different from the clear sky conditions in that, during 
the break phase, isolated convective events were observed. The isolated events tended to be localized in coastal 
regions and they exhibited a strong diurnal cycle. For more details, we refer the reader to the corresponding 
precipitation time series plot in the result section below and to Figure 4 of May et al. (2008).

ARM95, on the other hand, is an intensive observation period (IOP) conducted over the southern Great Plains 
site of the ARM program, supported by the United States Department of Energy, covering an 18-day period in 
summer of 1995, starting from 0000 UTC 18 July and ending at 2300 UTC 4 August (M. Zhang et al., 2016). 

Figure 2. Observation test cases used to validate the new convective parameterization. The two main fields used to force 
the model simulations are plotted, namely, the (air) surface temperature (a) and (b) and the (pressure) vertical velocity ω 
time-height color maps, in Pa s −1, (c) and (d). TWP06 (a, c); ARM95 (b, d). See text for details.
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This campaign was led by the SCM Working Group, a subgroup under ARM motivated to improve the parame-
terization of physical processes in the single column setup of a GCM. In this IOP, three distinct weather regimes 
of mid-latitude land-convection were observed. In the first 10 days, variable cloudiness and precipitation were 
observed as associated with an upper level trough over North America. Clear sky conditions associated with 
a high pressure system prevailed in the following 3  days. Increasing cloudiness, thunderstorms, and intense 
precipitation, probably associated with mesoscale convective systems, were observed in the last few days of 
the campaign as can be seen in Figure 4a of Xu and Randall (2000). The forcing field time series in Figures 2b 
and 2d are consistent with this behavior, especially from the reduced diurnal cycle in the surface temperature and 
from the strong and extended upward vertical velocity during those last few days of increased cloudiness. This is 
also reflected in the precipitation time series reported in the result section where a corresponding extended rainy 
period was recorded.

4. Numerical Tests and Validation
4.1. Model Set-Up

The SMCPCP is implemented in SCAM and tested for the two IOP test cases discussed in Section 3, against 
the control SCAM which uses the original Zhang-McFarlane scheme (ZM95). Details on the benefits of single 
column models for climate model development and on precisely how SCAM was carved out of CAM can be 
found in Gettelman et al. (2019) and references therein. Gettelman et al. (2019) particularly emphasizes that in 
its latest version (CAM6) SCAM can be run in three different modes: The large-scale temperature profile can be 
either (a) nudged to the corresponding observed temperature profile, (b) nudged to the corresponding temperature 
profile obtained from the full 3D CAM simulation, or (c) the model is run freely without any nudging and the 
full radiative transfer is used to force the temperature field instead. The idea behind (a) and (b) is that the nudging 
helps alleviate some of the most apparent shortcomings of the single column set up, namely, the missing effects of 

Figure 3. Precipitation time series (in mm per hour) throughout the intensive observation period period for TWP06 (a, b, c) and ARM95 (d, e, f). The two top panels 
(a, d) show the observed (green shading) and simulated times series using the CTRL (blue) and stochastic multicloud model (SMCM) (red) models. The middle and 
bottom panels (b, e) and (c, f) are for the convective (green) versus the large scale (magenta) precipitation for the CTRL and SMCM models, respectively.
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horizontal advection and convergence and momentum transfer, and as such the third option result in temperature 
profiles that deviate significantly from their observed counterparts.

Unfortunately, Option 1 is not available in CAM5, which is the version in which we have presently implemented 
the SMCPCP and Option 3 is computationally too expensive. Thus, to avoid testing the models in unphysical 
regimes, in which the model climatologies have significantly diverged over time from reality, we divided each 
one the two IOP's (that are roughly 20 days long) into three periods of 1 week or less. In other words, for each 
test case, the simulations were run for the total duration of the IOP but the models were reinitialized at the end 
of each sub period lasting at most 1 week. The TWP06 simulations are thus initialized/re-initialized on 2 August 
1996, 24 January 2006 and 1 February 2006 while the ARM95 simulations were initialized/reinitialized on 18 
July 1995, 25 July 1995, and 2 August 1995. This allowed to reduce the deviation (in both models) from the 
observed mean temperature from as much as 8°, if the free runs were instead made for the total duration of the 
test cases without re-initializations, down to 2°. These resulting temperature and humidity biases are not shown 
here for the sake of streamlining.

SCAM is run for the duration of the test case under consideration with a 10 min time step and 30 vertical levels, 
based on a hybrid σ − p coordinate system (Neale et al., 2010). The lowest level is at ∼992.55 hPa while the 
highest is at ∼3.64 hPa and there are 5 full levels below 900 hPa. The forcing fields are updated every two time 
steps and the vertical velocity is interpolated linearly to fit into the model's vertical resolution.

To test the sensitivity of the results to the transition time scales (τkl, k, l = 0, 1, 2, 3, 4) in Equation 10, we consider 
the suite of experiments for the SMCPCP listed in Table 1 that use 4 different sets of these parameters. As already 
mentioned, the four parameter sets in Table 1 are obtained based on a combination of rigorous inference from 
observational and LES data and educated guesses. Because of the importance of these parameters in terms of the 
SMCM sensitivity, we briefly describe here these parameter sets.

We recall that the SMCM used here is extended from the original model first introduced in Khouider et al. (2010) 
to include the shallow cumulus cloud type as the fourth cloudy state of the Markov process. Thus, all the transi-
tion timescales involving this new cloud type are novel to this study.

Noteworthy, despite the sensitivity of the results to the transition scales as discussed below, the results shown here 
are highly encouraging, in the sense that the most desired features of the new parameterization remained robust. 
Further research for finding the most optimal set of transition time scale parameters for the SMCM, using statisti-
cal inference from observed data, is still ongoing and this may potentially lead to a highly competitive–improved 
version of the SMCPCP.

Since the SMCM0 set of transition timescales on the first column in Table 1 is the closest to reality, we use it 
as our default parameter set and below, we refer to the SCAM model using the SMCPCP scheme based on this 
parameter set as simply SMCM while the control SCAM model is referred to as CTRL, for the sake of brevity. 
For all the other parameter sets, the corresponding SMCPCP experiments are referred to as SMCM1, SMCM2, 
and SMCM3, respectively.

4.2. Main Features of the SMCPCP

The precipitation timeseries for the TWP06 and ARM95 test cases are reported in Figure  3. The top panels 
compare the observed (green) hourly rainfall with its simulated counterpart using the CTRL (blue) and the 
SMCM (red) single column models. We recall that TWP06 is for convection over a tropical ocean and coastal 
areas while ARM95 is for mid-latitude continental convection. Overall, the two models seem to be in agreement 
in terms of capturing the observed main rainy episodes despite some significant departures in amplitude and 
timing, especially for the ARM95 test case. There are also significant departures between the models and the 
observation toward the end of the TWP06 experiment.

While none of the models seem to clearly outperform the other, there are some desirable features that seem to be 
present in the SMCM and not in the CTRL. For instance, the SMCM shows overall more variability and appears 
to capture higher rainfall events, that are comparable to the observation, especially during the suppressed period 
of the TWP06 IOP, roughly between 24 January and 12 February, corresponding to the period with weak vertical 
velocity in Figure 2f, where convection does not seem to be very strong. Also, putting together the vertical veloc-
ity plot in Figure 2d and the ARM95 rainfall time series in Figure 3d, one may speculate that the precipitation 
peaks around that period, that are predicted by the two models but not present in the observations (28 July for 
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CTL and 30 July for SMCM), are perhaps a direct result of the few weak lifting events that are seen to occur 
during this period. The discrepancy between the models and the observation may be due to the presence (in the 
real world) of physical processes such as dry intrusions or microphysical details (turbulent eddies and variability 
in aerosols), which are meant to inhibit precipitation but are not captured by the single column framework due to 
the missing horizontal transport.

The simulated total precipitation is divided into its convective and large scale components akin to the parts of rainfall 
accounted for by the convection parameterization (i.e., sub-grid precipitation) and by rainfall generated from conden-
sation occurring at the grid scale. The bottom four panels in Figure 3 contain the plots of the convective and large 
scale precipitation time series for TWP06 and ARM95 as simulated by the CTRL and the SMCM models. While both 
models depict relatively much less large scale rain, SMCM seems to predict higher amounts when it does. This is remi-
niscent to the fact that the SMCM does not always promote deep convection but instead allows for the environment 
to progressively moisten. Also, based on many other experiments not shown here, apart from isolated instances such 
as the one event around 20 July in ARM95, the SMCM's large scale precipitation seems to occur in connection with 
major (strongly peaked and/or long-lasting) convective rain episodes, either within or following right after convection 
events. This may be an indication that the large scale precipitation in the SMCM is likely linked to the presence of 
environmental moisture from cumulus cloud detrainment, and as such it could be rightfully associated to stratiform 
rain (as it is often referred by the GCM community) following deep convection, as it occurs in organized convective 
systems (Khouider & Majda, 2006; Majda & Shefter, 2001; Mapes, 2000). On the one hand, organized stratiform 
precipitation is often associated with propagating mesoscale convective systems that can occur within monsoon 
intra-seasonal oscillations and MJO convective envelopes (Ajayamohan et al., 2016; Choudhury & Krishnan, 2011; 
Deng et al., 2016; Kumar et al., 2017; Moncrieff, 2010; Moncrieff et al., 2017; Parker & Johnson, 2004; Schumacher 
& Houze, 2003) and on the other hand it has been argued in several studies that the increase in the simulated large 
scale precipitation, at the expense of convective precipitation, improves the fidelity of the underlying model in terms 
of simulating tropical weather and climate variability (Abhik et al., 2017; Chattopadhyay et al., 2009; Choudhury 
& Krishnan, 2011; Ganai et al., 2019; Kumar et al., 2017; Tao et al., 2010; Tokay et al., 1999) as top-heavy heat-
ing seems to be beneficial (Lappen & Schumacher, 2014) for the same dynamical reasons of exciting the second 
baroclinic mode for example, (Khouider & Majda, 2006; Majda & Shefter, 2001; Moncrieff et al., 2017). Given the 
aforementioned success stories behind the implementation of the SMCM in GCMs, this feature is good news.

The observed and simulated perturbation temperature (with respect to the corresponding time-mean vertical profile 
associated with the IOP, not shown) and the relative humidity (with respect to saturation over liquid water) for both 
the observations and the two model simulations are reported in Figure 4. In agreement with the observation made 
by Gettelman et al. (2019), in these single column free runs, the temperature and accordingly the relative humidity 
profiles deviate rather quickly from the corresponding observed profiles, resulting in mean biases of up two degrees 
(results not shown). As pointed out in that article, such biases are mainly due to the lack of horizontal coupling and 
other physical processes that are not represented by the SCM and as such it is not something expected to be corrected 
by the convective parametrization. Perhaps akin to the lack of lateral coupling, the ARM95 observed temperature 
perturbations in Figure 4g, show two successive streaks of positive and negative anomalies that are perhaps asso-
ciated with a packet of vertically propagating gravity waves that are totally absent in the two model simulations.

Nonetheless, the SMCM seems to better capture the structure and strength of the significant moisture anomaly 
during the first week of TWP06 experiment, shown in Figures 4d–4f. The SMCM shows a near surface as well 
as an upper tropospheric positive moisture anomaly in agreement with the observation, which may be associated 
with the unification of shallow and deep convection and the resulting intermittency of deep convection and a 
more progressive moistening of the atmospheric column prior to deep convection.

The observed and simulated profiles of the apparent heat source and moisture sink, known as Q1 and Q2, respec-
tively (Yanai et al., 1973), for the TWP06 and ARM95 cases are reported in Figure 5. To be precise, we recall that

𝑄𝑄1 = 𝑐𝑐𝑝𝑝
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
− 𝑐𝑐𝑝𝑝

(

�̄�𝜔
𝑅𝑅𝜕𝜕

𝑐𝑐𝑝𝑝𝑝𝑝
− �̄�𝜔

𝜕𝜕𝜕𝜕

𝜕𝜕𝑝𝑝

)

, 𝑄𝑄2 = −𝐿𝐿
𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
− 𝐿𝐿�̄�𝜔

𝜕𝜕𝜕𝜕

𝜕𝜕𝑝𝑝
, 

where cp is the specific heat at constant pressure, T is (large-scale) temperature, 𝐴𝐴 𝐴𝐴𝐴 is the (imposed) vertical (pres-
sure) velocity, R is the gas constant, L is the latent heat of condensation, and q is the (large-scale) specific humidity.

Unlike the temperature and humidity profiles in Figure 4, the simulated Q1 and Q2 are overall in good agreement 
with the observations, consistent with the agreements shown in the precipitation timeseries in Figure 3. This is 

 19422466, 2023, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022M

S003391 by C
ochraneA

ustria, W
iley O

nline L
ibrary on [20/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Journal of Advances in Modeling Earth Systems

KHOUIDER ET AL.

10.1029/2022MS003391

17 of 27

another indication that the biases in the state variables are more likely due to the lack of horizontal coupling rather 
than to deficiencies in the CP. Nonetheless, there are a few important details in which the SMCM seems to better 
match the observations. Overall the CTRL model seems to be unable to capture some of the observed deeply 
penetrating heating and cooling events unlike the SMCM which seems to do so. This is the case, for instance, 
for the strong heating episode in the TWP06 case near Jan 23 and the observed succession of discrete events 
between 23 and 30 January. Also, toward the end of the TWP06 IOP, the heating anomalies in the CTRL seem to 
be capped below roughly 200 mb while they penetrate higher in both the observations and the SMCM. The same 
is true for the ARM95 test case, especially in terms of the succession of heating events before 26 July. The deeply 
penetrating heating and cooling events in the SMCM and observation time-height plots seem to cancel each other 
out in the time-mean profiles, as shown on the most-right panels of Figure 5; These panels show more agreement 
between the two models and the observations, and more so between the two models themselves. This may be 
justified by the near balance, on average, between cooling due adiabatic lifting and latent heating according to the 
weak temperature gradient approximation, which is heavily controlled by the imposed vertical velocity, but the 
episodic penetrative convective events have many more significant consequences to be ignored such as the impact 
of convection on cloud cover and the transport and distribution of aerosols and other important chemical tracers.

We now turn into the details of the sub-grid parameterization and present in Figure 6 the time-height plots of the 
bulk updraft mass flux, Mu, the bulk entrainment rates, Eu, and the bulk detrainment rate, Du, for the TWP06 and 
ARM95 IOP's as they are simulated by both the SMCM and CTRL models. Although, there aren't any observations 
(of these variables) to compare to, one could infer from such plots, at least qualitatively, to what degree of realism the 
small scale process of convection is being emulated. As expected both models produce disturbances in those three 
quantities that are consistent with the occurrences of the major precipitation and heating-and-drying events seen in 
Figures 3 and 5. However, there are some fundamental differences inherent to how those disturbances are presented.

Figure 4. Time-height filled contour plots for the perturbations, from the corresponding mean profile, of temperature (a–c, g–i) and relative humidity (d–f, j–l). 
The observations are shown in panels (a, d, g, j) while the CTRL and stochastic multicloud model model simulations are in panels (b, e, h, k) and panels (c, f, i, l), 
respectively. The top two rows are for the TWP06 test case while the bottom two are for ARM95. The temperature units are in Kelvin and relative humidity is in 
percent.
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While the CTRL presents somewhat smooth and long lasting Mu, Eu, Du events, the SMCM shows high frequency 
and more intermittent events. This likely results from the fact that the original ZM scheme used by the CTRL 
model is slaved to the large-scale dynamics, as per the quasi-equilibrium constraint, while the SMCPCP has 
significant degrees of freedom provided by the stochastic dynamics, which allows it to produce or rather emulate 
the subgrid variability of deep convection. Indeed the SMCM time series of Mu for example, are more in line 
with high-resolution simulations of deep convection, which show that single convective events are more abrupt 
and last only one to 2 hr and not days (e.g., Kuang & Bretherton, 2006; J. M. Peters et al., n.d.). Although one 
can argue that the goal of a CP is to represent the bulk effect of convection, the difference in event statistic and 
scaling is important for a realistic emulation of the interactions between convection and large scale dynamics, 
which are inherently nonlinear, happen rather discontinuously–on much finer scales (Arakawa, 2004), and are 
believed to be central for a better representation of organized convective systems at synoptic and intra-seasonal 
scales (Majda, 2007a, 2007b; Moncrieff & Klinker, 1997; Khouider, 2019; Randall et al., 2003).

Other fundamental differences between the CTRL and SMCM simulations of Mu, Eu and Du in Figure 6, include an 
overall deeper penetration in the upper troposphere of Mu disturbances in the SMCM, consistent with the deeper 
Q1 and Q2 instances that are captured by the SMCM model and not by the CTRL, very distinct shallow/congestus 
episodes of convection such as during the suppressed period of the TWP06 IOP between 23 January and 2 Febru-
ary, a more vertically spread out entrainment and more importantly the tri-modality exhibited by the detrainment, 
which occurs at the three main stable layers, near the inversion level, the freezing level, and the tropopause, 

Figure 5. Time-height filled contour plots for Q1 (a–c, g–i) and Q2 (d–f, j–l), both in units of Kelvin per day. The observations and the CTRL and stochastic 
multicloud model (SMCM) simulations are in panels (a, d, g, h) and panels (b, e, h, k) and (c, f, i, l), respectively. The fourth and last column depicts the time-mean 
vertical profiles of Q1 (d, l) and Q2 (h, p) for the observations (gray) and the CTRL (blue) and SMCM (red) simulations. The top two panels are for TWP06 while the 
bottom two are for ARM95.
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consistent with observations (Johnson et al., 1999; Zermelo-Daz et al., 2015) and the model design as illustrated 
Figure 1. This has also been observed in other test cases (results not shown). In the CTRL, mass flux detrainment 
seems to occur only at the top of the cloud “aggregates” that are too bulky to emulate the subgrid variability due 
to intermittency of individual plume events. The detrainment events at lower level, which are a direct result of 
the addition of congestus cloud types, are important for mid-tropospheric moistening (Derbyshire et al., 2004; 
Hohenegger & Stevens, 2013; Johnson et al., 2015; Kuang & Bretherton, 2006; Waite & Khouider, 2010). Both 
the deepening and the tri-modality of convection (updraft mass flux) in SMCM are evident in the mean vertical 
profiles depicted on the two most right panels in Figure 6. The deepening of convection in the SMCM may indeed 
be correcting a major deficiency in CAM5 which tends to produce lower cloud tops compared to CloudSat obser-
vations as it has recently been reported in M. Wang and Zhang (2018).

4.3. Sensitivity to the Stochastic Transition Timescales

As pointed out above, the SMCM's transition timescales are highly uncertain and that efforts to learn them from 
data are underway (Cardoso-Bihlo et al., 2019; De La Chevrotière et al., 2015). It is thus important to know how 
sensitive to these parameters, the SMCPCP could be? In Figure 7, we plot the TWP06 precipitation time series 

Figure 6. Time-height color-filled contours updraft mass flux per unit mass (Mu, in units of millibar per hour) and associated bulk entrainment and (Eu, in mb/hour/
meter) detrainment (Du, in mb/hour/meter) as simulated by the CTRL (a–c, g–i) and the stochastic multicloud model (d–f, j–l) models for the TWP06 test case (a–f) and 
the ARM95 (g–l) test cases. The panels of the last (right) column depict the corresponding time-mean vertical profiles.
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obtained with the SMCPCP and the associated stochastic CAF of shallow, 
congestus, deep and stratiform cloud types as predicted by the SMCM when 
the different sets of transition time scales in Table 1 are used.

As we can see from Figure  7, the SMCM cloud area fraction time series 
change drastically from one parameter set to another. This is expected 
since those parameters affect directly the transition probabilities of the 
Markov chain which in turn directly affect the probability distribution of the 
lattice-stochastic process, that is, the filling fractions. However, the simulated 
precipitations remain fairly close to one another and to the observations. The 
amounts of convective versus large-scale precipitation are also not very sensi-
tive to the probability transition parameters, as for example, the same strong 
peak in large scale precipitation near 23 January that appears to characterize 
the SMCM runs as opposed to the CTRL run. This suggests that the stability 
of the simulated precipitation by the SMCPCP to changes in the transition 
timescales is not something solely inherent to stability of the SCAM model. 
Moreover, although not shown here, the other features such as the deeper and 
tri-modal nature of convection have also persisted.

4.4. Effect of Stochasticity: Similarity of Ensemble Members and 
Ensemble Spread

To assess the effect of the randomness on the SMCM simulations, we repeat 
the SMCM runs for both the TWP06 and the ARM95 test cases 10 times, 
each time with a randomly chosen seed used in the code's random number 
generator. This results in two 10-member ensembles of simulations for the 
two experiments. The corresponding precipitation time series and the Q1 and 
Q2 time-mean vertical profiles are shown in Figure 8. The observation mean 
profiles of Q1 and Q2 are not repeated here for the sake of clarity. The reader 
may refer to Figure 4 for a comparative view of the observed versus the simu-
lated Q1 and Q2 profiles.

As can be seen from the figure panels, there is spread in both the precipitation 
time series and the Q1 and Q2 mean profiles. The spread is similar in the two 
experiments. Moreover, despite the large spread shown in the precipitation 
time series, for example, the individual ensemble members show very similar 
behaviors. They all show precipitation peaks of comparable strength albeit 
they do not always happen at the exact same time and are not at all identical 
strength-wise. More importantly, when the model is successful in capturing 
the observed precipitation, all the members seem to do so, as in the rainy 
period between 17 and 22 January in the TWP06 experiment, for example, 
and when the model fails to capture the exact timing of a major precipita-
tion event, such as the ARM95 major event of 20 July, or when it shows a 
“fictitious” rainfall event, that is not recorded in the observation, such as the 
simulated event between 30 and 31 July, it fails similarly in all its ensemble 
members.

On the one hand, the last point in the above discussion is consistent with 
the idea that such systematic failures are perhaps associated with the limi-
tations of the SCAM framework that does not represent physical processes 
associated with horizontal dynamics such as the advection of moisture and 
temperature such as occasional dry intrusion. On the other hand, the whole 
discussion, nonetheless, demonstrates that although there is inherently some 

significant spread associated with the SMCM's randomness, the large scale effects are somewhat stable and that 
in this sense each single member can be deemed representative of the ensemble. This highly desirable feature 
of the SMCM is likely rooted from the fact that the stochastic dynamics are based on a Markov process with 

Figure 7. The TWP06 precipitation time series simulated by the 
single-column Community Climate Model model using the stochastic 
multi-cloud plume cumulus parameterization parametrization based on the 
different sets of transition time scales listed in Table 1. The total precipitation 
(a) from observations (green) and from the SCAM-SMCPCP simulation using 
the SMCM1 (blue), SMCM2 (magenta), and SMCM3 (orange) timescales 
(See Figure 3 for SMCM0 and CTRL). The contributions from convective 
(green) and the large-scale (magenta) precipitation for stochastic multicloud 
model (SMCM) 1 (b), SMCM2 (c), and SMCM3 (d). The SMCM cloud 
area fraction time series obtained for the TWP06 test case with transition 
timescales: SMCM0 (e), SMCM1 (f), SMCM2 (g),SMCM3 (h). Each panel 
depicts the congestus (blue), shallow cumulus (red), deep convective (green), 
and stratiform (black) cloud type area fractions.
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obeys detailed balanced with respect to a slowly varying equilibrium measure that depends only on the grid-scale 
predictors. Also, the fact that, in the long run, the Gilespie algorithm, utilized here, provides an unbiased sampling 
of the equilibrium measure makes the different ensemble members independent and identically distributed, under 
identical large scale conditions.

Nevertheless, when affordable, the ensemble runs can be beneficial and the spread could provide a probabilistic 
solution that can take into account some of the uncertainties due to natural climate variability and due to model 
error. This is illustrated in Figures 8 (III) and 8 (IV), which both show a relatively significant spread in both the 
Q1 and the Q2 mean profiles, despite the underlying smoothing associated with the time averaging. Moreover, 
it is interesting to see that the largest discrepancies between the various ensemble members in the time-mean 
profiles occurs in areas where the model errors are the largest or the profiles themselves are more oscillatory, such 
as below 600 mb for the Q2 profiles and above 350 mb for the Q1 profiles.

5. Conclusion
An extended version of the SMCM of Khouider et al. (2010) has been proposed here and used to design a stochas-
tic multicloud plume CP (SMCPCP) which is in essence a stochastic version of the ZM scheme (ZM95). The 
extended SMCM incorporates shallow cumulus clouds in addition to congestus, deep, and stratiform cloud types 
that characterize the original SMCM (Khouider et al., 2010). In addition to the generalization of the SMCM, 
this extension allows the treatment of shallow convection within the framework of the ZM scheme resulting 
in a unified shallow-deep CP (Park, 2014a, 2014b). We obtain a spectral mass-flux stochastic CP based on an 

Figure 8. Stochastic multicloud model ensemble simulations. Each dashed line on the six panels represents one ensemble member while the thick black line is for the 
mean ensemble. (I) and (II) the precipitation time series for the TWP06 and ARM95 experiments, respectively, with the observation plotted in red. (III) and (IV) are for 
the Q1 (a) and Q2 (b) time mean profiles.
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ensemble of randomly evolving plumes, determined from sampling predetermined distributions of detrainment 
levels or equivalently entrainment rates, conditional on the CAF from the SMCM. Empirically known stability 
layers of tropical convection (Johnson et  al.,  2015), namely the trade wind inversion, the freezing level, and 
the  level  of neutral buoyancy are used as a design principle to set the parameters of the detrainment level distri-
butions of shallow cumulus, cumulus congestus, and cumulonimbus cloud types, respectively.

The SMCM predicts the area fractions of the four cloud types above and the first three are in turn used to deter-
mine the portions of the plume ensemble that belong to shallow cumulus, cumulus congestus, and deep cumu-
lonimbus clouds. The dynamically evolving distributions are used to determine the bulk mass flux profile as the 
expected value of the plume ensemble based on (conditional) the SMCM CAF realizations. The bulk entrainment 
and detrainment rates are then obtained from the variation with height of the stochastic bulk mass flux.

The new stochastic parameterization is implemented here in the context of the single-column Community Atmos-
pheric Model (Neale et al., 2010, CAM5) and validated based on test cases from two IOP that are made available 
through the CAM repository (Gettelman et al., 2019) involving a mixture of tropical convection over the ocean, 
monsoonal, and midlatitude land convection, namely the TWP-ICE and ARM95 experiments. The new param-
eterization is validated against the deterministic ZM scheme, which is the default CP in CAM5, in terms of its 
capacity to reproduce the observed precipitation timeseries, the temperature and relative humidity perturbations, 
and the corresponding latent heating and cooling and drying and moistening profiles. A large uncertainty in the 
SMCM remains the choice of the time scales associated with the transition probabilities of the Markov process 
between the various cloud types and clear sky conditions. Accordingly, here we considered four different sets of 
transition time scales to apprehend the sensitivity of the model to these parameters.

As can be seen in Figures 3 and 7, all the model experiments including the control runs (CTRL), using the default 
ZM scheme, capture the overall trends of the precipitation timeseries. Noteworthy, the stochastic runs exhibit 
more variability. However, an important key difference between the CTRL and stochastic experiments lies in 
the relative amounts of stratiform precipitation due to grid-scale condensation versus convective precipitation, 
which is produced by the CP, predicted for each test case. Two such occurrences are particularly noticeable 
in the ARM95 test case where in both cases all the SMCPCP runs exhibit significant amounts of large-scale 
precipitation while the CTRL exhibits mainly only convective precipitation. This was also the case in other test 
cases though the results are not shown here. A better representation of grid scale precipitation in climate models 
is believed to be paramount for improved simulation of convectively coupled waves, the MJO and monsoon 
dynamics (Abhik et al., 2017; Ajayamohan et al., 2016; Choudhury & Krishnan, 2011; Deng et al., 2016; Ganai 
et al., 2019; Lappen & Schumacher, 2014; Kumar et al., 2017; Mapes, 2000; Moncrieff et al., 2017).

We note however that our main goal here is not per se to demonstrate–just yet–the superiority of the SMCPCP over 
the original Zhang-Macfarlane scheme in the general setting, because the performance of the parameterization in 
the context of a full 3D/realistic climate simulation will largely differ from the single column setting. Thus, the 
results presented here should be regarded as mainly a sanity check used to demonstrate that the numerical code is 
working and the scheme's performance is acceptable. Nonetheless, the plots of subgrid quantities such as updraft 
mass flux and entrainment and detrainment rates, despite the lack of observational references, suggest that the 
SMCM provides a better representation of convective processes in many respects. For instance the updraft events 
are more intermittent and exhibit life cycles that are measured in hours and not days (unlike the CTRL), consist-
ent with LES results (Kuang & Bretherton, 2006; J. M. Peters et al., n.d.). Updrafts are generally deeper in the 
SMCM than in the CTRL leading to occasionally deeper heating and drying events for which the Q1 and to some 
extend the Q2 bursts are deeper, a feature shared by the SMCM simulations and the corresponding observation 
as shown in Figure 5. The deepening of convection by the SMCM may be correcting a serious shortcoming in 
CAM5, which tends to predict lower cloud top heights as compared to CloudSat data (M. Wang & Zhang, 2018).

More importantly, the SMCM simulations systematically exhibit the tri-modal structure of tropical convection, 
visible in the bulk detrainment profiles (Figure 6 and other test cases not shown here) consistent with its design 
principle (Figure 2b). While the CTRL only rarely showcases three detrainment levels, the tri-modality of cumu-
lus convection is widely accepted and believed to be a universal feature of organized convection as it is associated 
with the three main stability layers (the trade wind inversion, the freezing level, and the neutral buoyancy near 
the tropopause) that are responsible for the prevalence of the three main cloud types (shallow cumulus, cumu-
lus congestus, and cumulonimbus) associated with organized convective systems (Johnson et al., 2015; Kiladis 
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et al., 2009; Mapes, 1993; Mapes & Houze, 1993; Mapes et al., 2006; Wu & Moncrieff, 1996; Zermelo-Daz 
et al., 2015).

Given the preceding success of the SMCM in the representation of atmospheric tropical dynamics and rainfall varia-
bility at synoptic and intra-seasonal/planetary scales (Dorrestijn et al., 2016; Goswami et al., 2017a, 2017b, 2017c; 
Khouider, 2019; K. Peters et al., 2017), the confirmation of the SMCPCP in a fully coupled CAM and CESM 
is expected. Such research work is currently undertaken by the authors and collaborators and the results will be 
reported elsewhere in the near future.

As it can be expected the simulated CAF timeseries in Figure 7 are very sensitive to the choice of the transition 
timescales. Nonetheless, this did not prevent the SMCPCP to simulate the overall trends of the precipitation 
timeseries and reproduce almost identical large scale and similar small scale features, such as deep penetration 
and tri-modality of convection independently on the choice of transition parameters. Indeed, despite this extreme 
sensitivity, bursts of deep-convective CAF associated with all the major convective precipitation events are visi-
ble in all the test cases and in all the model experiments. Nonetheless, the uncertainty of the transition timescale 
and other important parameters remains the main challenge of the SMCM and more research is needed in order 
to comprehensively learn these parameters from data. Arguably, this also can be viewed as a major advantage of 
the SMCM since the transition timescales and other parameters—such as the reference scales of the large scale 
predictors CAPE0, CIN0, DTM0, and W0, as needed, can be systematically learned from data. Also, unlike a 
brute-force machine learning strategy that for example, tries to learn the whole temperature and moisture tenden-
cies from observation data, the SMCM uses physics to reduce the learning task to a well defined and significantly 
smaller set of parameters.

Cardoso-Bihlo et al. (2019) was able to use a Bayesian inference technique for an MJO case study but the sheer 
computational complexity did not allow a comprehensive study based on the whole observational data set of 
5 months. Instead, three sets of transition timescales are obtained for three short data spans of 1–3 days corre-
sponding to a suppressed, initiation, and active MJO periods. The refinement of the Bayesian inference methodol-
ogy based on a variational inference to replace the Markov Chain Monte Carlo sampling which is currently used 
combined with an optimization of the parallelization technique may speed up the code and allow the inference of 
more comprehensive and perhaps lead to universal transition timescales for the SMCM.

Finally, as discussed in Section 4.4, given that the SMCM is based on a Markovian process with a slowly evolv-
ing equilibrium distribution, as the large-scale predictors vary in both time and space, the effect of random 
sampling does not affect the physics of the model. The set of 10 ensemble members chosen randomly based on 
the random choice of the seed of the random number generator, showed comparable results in terms of the overall 
performance of the SMCPCP. Nonetheless, the stochasticity induces somewhat significant spread especially in 
areas where the model error is large. This is in essence consistent with the idea that stochastic parameterizations 
could help alleviate the model error problem in a probabilistic weather forecasting and climate predictions by 
adding spread into the predictive ensembles in areas where the model errors are the greatest (Berner et al., 2016; 
Palmer, 2001). The SMCM is a good candidate to accomplish this goal in a way that does not compromise the 
desired physical features sought by the parameterization.

Data Availability Statement
The data used in this study are available through the CESM data repository (Hack et al., 2014; Phillips et al., 2020) 
and the software (the single column CAM model using the SMCPCP) can be downloaded from Khouider (2023).
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