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ABSTRACT
Computing the solubility of crystals in a solvent using atomistic simulations is notoriously challenging due to the complexities and conver-
gence issues associated with free-energy methods, as well as the slow equilibration in direct-coexistence simulations. This paper introduces
a molecular-dynamics workflow that simplifies and robustly computes the solubility of molecular or ionic crystals. This method is con-
siderably more straightforward than the state-of-the-art, as we have streamlined and optimised each step of the process. Specifically, we
calculate the chemical potential of the crystal using the gas-phase molecule as a reference state, and employ the S0 method to determine the
concentration dependence of the chemical potential of the solute. We use this workflow to predict the solubilities of sodium chloride in
water, urea polymorphs in water, and paracetamol polymorphs in both water and ethanol. Our findings indicate that the predicted solubility
is sensitive to the chosen potential energy surface. Furthermore, we note that the harmonic approximation often fails for both molecular
crystals and gas molecules at or above room temperature, and that the assumption of an ideal solution becomes less valid for highly soluble
substances.
© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0173341

I. INTRODUCTION

The solubility quantifies the maximum amount of a material,
known as the solute, that can be dissolved in a solvent at equilib-
rium. A knowledge of the solubility is crucial for a wide range of
applications, ranging from pharmaceutical drug formulation to crys-
tal growth, and from chemical synthesis to the phase separation of
mixtures.1–3 For example, to ensure that a drug is absorbed at a suit-
able rate, it should have an appropriately high or low solubility,4
so it is useful to estimate the solubility as part of the screen-
ing process even before the drug is synthesised experimentally.
A range of approaches have been adopted in the literature to predict
solubilities,5 from informatics-based methods6 to explicit-solvent
computational models.7–20

However, predicting solubility computationally poses chal-
lenges for several reasons. First, the thermodynamic equilibrium

between the solute and the solution is governed by both ener-
getic and entropic factors. Addressing the entropic components
often demands intricate and costly computations. Second, it is not
straightforward to design the thermodynamic cycles necessary to
perform these computations. Finally, it is important to model the
molecular interactions accurately. Empirical force fields are often
parameterised to describe either the liquid or the solid phase of
a material accurately, but capturing both simultaneously is much
more challenging.

The solubility of a crystal corresponds to the solution concen-
tration c at which there is an equilibrium between the solid solute
and the solution; at a known pressure P and temperature T, the
equilibrium is reached when the chemical potentials of the two
phases are equal, μcrystal(P, T) = μsol(P, T, c). In principle, it may
be possible to determine this equilibrium using direct-coexistence
simulations21,22 by placing the crystal in the same simulation box
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as a solution, and determining what the concentration of the solu-
tion is once the amount of crystal no longer changes.23,24 However,
such simulations are difficult in practice, since crystal dissolu-
tion and precipitation are complex kinetic processes which usually
require equilibration times beyond typical timescales of molecular-
dynamics (MD) simulations, particularly so when either solutes or
solvents are large molecules and the systems of necessity entail large
numbers of atoms. Moreover, many atomic and molecular systems
have numerous polymorphs, i.e., several distinct possible crystal
structures. Although typical solubility ratios of different crystalline
polymorphs are within a factor of two, there are exceptions,25 and
each polymorph can in principle have significantly different solubil-
ity properties.1,3 Predicting which polymorph will be the most stable
or the most soluble under specific conditions requires a consider-
ation of numerous possible crystal structures, further complicating
computational efforts.

To avoid direct-coexistence simulations, one can indepen-
dently compute the free energies of the crystal26–28 and the
solution.7,29–31 For atomic crystals, the Einstein crystal method26,32

can be used to obtain the absolute free energy by exploiting hamil-
tonian thermodynamic integration,26 also commonly referred to
as artificial or alchemical thermodynamic integration, to switch
between the Einstein crystal potential (U0), for which each atom
is attached to its equilibrium position by a harmonic spring,
and the potential of interest (U1). For molecular crystals of
flexible molecules, the extended Einstein crystal method was
developed,7,8,11,33 where the molecular crystal is transformed into an
Einstein crystal of independent molecules via a multi-step workflow,
including turning on additional harmonic restraints on selected
atoms of each molecule to control the orientation of the molecules,
subsequently turning on Van der Waals and electrostatic inter-
actions between molecules, and finally turning off all harmonic
restraints. This workflow can be somewhat convoluted, and it can
be difficult to determine which atoms needs to be tethered and what
spring strength is needed on each tethered atom.

The free energy of the molecule in the solution can be com-
puted as the free-energy difference between a solvated and a gas-
phase molecule. In a dilute solution, this can be determined by
computing the chemical potential of a single solute molecule in
a box of solvent using hamiltonian thermodynamic integration
by switching on the interactions between the solute and the sol-
vent.7 In practice, such an approach suffers from origin singularities
when the particle is first inserted.34 This singularity can be cir-
cumvented using the cavity method: a cavity can be switched on
and increased in size to accommodate the solute molecule, the
solute molecule then added, and finally the cavity is gradually
switched off.7 For sufficiently dilute solutions, an ideal-dilute solu-
tion approximation can be used to estimate the chemical potential
at other concentrations; in other words, if Henry’s law applies to
the solute, μsol(x) = μsol(x → 0) + kBT ln x, where x is the mole frac-
tion of the solute. If the solute is not very poorly soluble, it is
likely that deviations from ideality will necessitate several labori-
ous calculations of the solvation free energy as the concentration
increases.11

The chemical potentials of the solute in solution and in the
crystal must have a common origin. In the procedure outlined
above, this is achieved by the stepwise calculation of the extended
Einstein crystal’s free energy. Since the calculation passes through

a freely rotating state, the rotational partition function cancels
out, and as long as the intramolecular partition functions in the
crystal and the solution are the same, a consistent thermody-
namic state is obtained.7,11 In the context of computing solid–liquid
phase equilibria, it has been suggested that a simpler alternative
approach can be used which avoids this effective stepwise solid–fluid
transformation;9,10 by computing the absolute free energy of the
molecule in the gas phase explicitly, the liquid or solution free energy
can be determined relative to the same origin as the molecular
crystal.

In this work, we introduce a set of steps that simplify the calcu-
lation of solubilities. We use a combination of thermodynamic inte-
gration (TI),26 free-energy perturbation (FEP)35 and the S0 method30

to compute the chemical potentials required. In our approach, we
employ a Debye crystal reference for solid phases, reducing the need
for manual intervention compared to the extended Einstein-crystal
method previously discussed. We show how we can compute chem-
ical potentials with a common baseline by using a gas-phase Debye
molecule reference. We showcase this workflow by calculating the
solubilities of an ionic solid (sodium chloride) and molecular crystals
with varied solubilities, including paracetamol in water, paracetamol
in ethanol, and urea in water.

II. METHODS
The general workflow is illustrated in Fig. 1. The absolute

chemical potentials of the crystalline phase, the ideal-gas molecule
and the solute are each computed separately. By “absolute,” we mean
that the chemical potentials have a common origin, irrespective of
the reference state from which they are computed. Specifically, the
baseline of the chemical potential for a system comprising molecules
with internal bonding, irrespective of the phase, is perhaps most nat-
urally taken to be the chemical potential of an isolated molecule
with intramolecular interactions. For instance, when determining
the chemical potential of a crystalline phase relative to the iso-
lated atoms, we should deduct the baseline chemical potential of the
isolated molecule. This procedure mirrors constructing a thermody-
namic cycle between the crystal and the solution via the gas-phase
molecule state.

For the crystal, we use a reference Debye harmonic crystal
(Sec. II A). We then determine the baseline chemical potential of
an isolated molecule in the gas phase; to do this, we again use a har-
monic reference state in which all pairs of atoms are connected with
harmonic springs, and separately add analytical chemical potentials
of translational and rotational degrees of freedom (Sec. II B). Finally,
for the solute, we split the calculation into two parts. We first com-
pute the solvation free energy at a certain low concentration using
a combination of TI and FEP (Sec. II C 1), and then determine the
chemical potential of the solution as a function of concentration with
the S0 method (Sec. II C 2).

A. Crystalline states
We use the Debye crystal reference27,36,38 as the starting point

of TI. This reference gives a chemical potential baseline of iso-
lated atoms; we account for this in the next step of the calculation
by shifting the baseline to that of isolated molecules. The Debye
crystal has all pairs of atoms connected with harmonic springs
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FIG. 1. A schematic illustration of the molecular-dynamics workflow for determining chemical potentials. (a) Crystalline solute. We use the normal-mode approximation to
construct a reference Debye crystal with a known free energy, and then use thermodynamic integration (TI) to switch off the Debye harmonic interaction as the potential
of interest is switched on. (b) Isolated molecule. We construct a normal-mode Debye-molecule landscape with a known free energy. We constrain the molecule’s centre of
mass and rotational motion, shown pictorially with a cyan pin, and account for these contributions analytically. We then follow one of two routes: we either (1) use hamiltonian
thermodynamic integration until most of the potential is switched on and compute the final part by a free-energy perturbation (FEP) method, or (2) use thermodynamic
integration to a tethered interacting molecule, and then another thermodynamic integration to switch off the tethering. (c) Solution. We start with the pure solvent or a very
dilute solution. We use a free-energy perturbation to add an additional solute molecule with a soft potential, and then use either thermodynamic integration or further free-
energy perturbations to switch the soft potential to the fully interacting system. Finally, we use the S0 method to compute how the chemical potential changes from this initial
low concentration as the solute is concentrated.

[as schematically shown in Fig. 1(a)], and it has the same mass-
weighted hessian matrix as the physical crystal. The hessian can
be computed by expanding the potential energy surface around
the (local) minimum-energy state in a numerical normal-mode
approximation.39 To this end, we first find the potential-energy
minimum by conjugate gradient minimisation.40 To estimate the
second derivative of the potential energy using a finite-difference
approach,38 we successively move each pair of atoms by an arbi-
trary small displacement relative to each other in each Cartesian
direction in turn while keeping other distances unchanged, as imple-
mented in i-PI.41 The estimated second derivative is then scaled
by the square roots of the masses of the two atoms. Once all
components of the mass-weighted hessian matrix are known, we
numerically find its eigenvalues. These eigenvalues, κi, correspond
to the square roots of the normal-mode angular frequencies,39,42

ωi =
√

κi, where i identifies each of the normal modes. The
Helmholtz energy of the Debye crystal with a constrained centre of
mass (CM) at T0 is

Ah = kBT0

3N−3

∑
i=1

ln
h̵ωi

kBT0
, (1)

where the sum excludes the three normal modes with zero eigen-
values corresponding to translations of the entire system. For TI,
we define a simple linear scaling of the overall potential of a sys-

tem, U(λ) = λU1 + (1 − λ)U0,43 so that the potential changes from
the reference harmonic potential U0 to the potential of interest
U1 as the parameter λ changes from 0 to 1. Using hamiltonian
thermodynamic integration (“λ-TI”), the Helmholtz energy of the
system governed by U1 is26,27,32,38

A1 = A0 + ∫
1

0
⟨U1 −U0⟩λdλ, (2)

where in this case, A0 = Ah given by Eq. (1). Once we have the
Helmholtz energy, we can obtain the Gibbs energy,27 e.g., via
G = A + PV , and hence the chemical potential μ = G/N.

Since the harmonic approximation is just the potential energy
expanded to quadratic terms, at sufficiently low temperatures, the
integral is smooth and the procedure is efficient by design. As the
temperature increases, however, anharmonic effects begin to play a
role and the λ-TI becomes progressively more difficult. In particular,
rotations about single bonds within each molecule can be acti-
vated at higher temperatures, and although in principle this should
not lead to a discontinuity in ⟨U1 −U0⟩λ at λ = 1, the potential
energy difference can become large and the numerical integration
may require many data points and long equilibration times. It is
thus preferable to perform the λ-TI at sufficiently low temperatures
when the integral is well-behaved. Once the Gibbs energy is deter-
mined at the initial low temperature T0, we can find how it changes
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with temperature by numerically integrating the Gibbs–Helmholtz
equation,

G(T)
T
= G(T0)

T0
− ∫

T

T0

H(T′)
(T′)2 dT′, (3)

where H = U + PV is the enthalpy of the system.

B. Gas-phase molecule
To obtain a consistent origin for the absolute chemical poten-

tials of the crystal and the solution, we subtract the free energy
of the gas-phase molecule from the free energy of the crystal ref-
erenced to the isolated atom state. To compute the free energy
of the isolated molecule, we perform a λ-TI between a harmonic
reference and the physical system [Fig. 1(b)]. It is advantageous,
and indeed often necessary, to constrain the centre of mass (CM)
and the rotational degrees of freedom of the molecule when per-
forming TI, and then one can add explicit free-energy contribu-
tions from the free ideal-gas particle to correct for the CM con-
straint (Acm), as well as the rigid-body rotations of the entire
molecule (Arot).

The Helmholtz energy associated with the free CM in a volume
V at temperature T is

Acm = −kBT ln [V(mkBT
2πh̵2 )

3/2
], (4)

and the rotational Helmholtz energy is44

Arot = −kBT ln [
√

π(2kBT
h̵2 )

3/2√
I1I2I3], (5)

where I1, I2 and I3 are the principal components of the moment of
inertia tensor. The rotational partition function sometimes entails a
division by a symmetry number to account for the number of equiv-
alent rotations of the molecule; however, in this framework, we do
not do so because the same degeneracies are also ignored when sam-
pling the free energy of molecular crystals with restricted molecular
orientations.

When performing the λ-TI from the reference system to the
potential of interest, although in principle one can use any harmonic
or ideal-gas reference, choosing a reference harmonic molecule that
has the same frequency modes and equilibrium configuration as the
real molecule is statistically efficient. Selecting such a reference sys-
tem follows the same procedure as setting up the Debye crystal in
Sec. II A, except that a total of 6 degrees of freedom are removed
(three translational and three rotational). The classical Helmholtz
energy of such a constrained Debye molecule at temperature
T0 is

Ah(V , T0) = kBT0

3N−6

∑
i=1

ln
h̵ωi

kBT0
, (6)

where ωi is the angular frequency of normal mode i.
Finally, the Helmholtz energy of the real molecule with a fixed

CM and orientation can be obtained using λ-TI [Eq. (2)]. As with
the Debye crystal, in order to improve the numerical convergence
of this thermodynamic integration, this step should be performed

at some low temperature T0 at which the system is quasi-harmonic.
Although for fairly rigid molecules this procedure works well, for
molecules with different conformers or rotating bonds, the inte-
grand can still adopt very large values as λ→ 1. To circumvent this,
one can envisage two approaches, as illustrated in Fig. 1(b). The first
approach is to perform a FEP in lieu of the final stage of the TI from
1 − ε to 1, i.e.,

A(λ = 1) − A(λ = 1 − ε) = kBT0 ln ⟨exp [− ε(U0 −U1)
kBT0

]⟩
λ=1

, (7)

where ε is a small number close to zero. This procedure avoids
the end-point problem at λ = 1 in TI because in FEP, for the
large values of U0 −U1 involved, the exponential almost van-
ishes and thus has little influence on the ensemble average of
Eq. (7). Note that FEP requires sufficient overlap between the two
states to get statistically unbiased estimates, so a small ε is often
needed.45,46 The second approach is to perform a TI between the
harmonic reference and a tethered molecule (the physical system
plus harmonic springs connecting each atom to its equilibrium
position), and another TI between the tethered and the untethered
molecule. Finally, the temperature dependence of the free energy
from T0 to T can be computed using the Helmholtz-energy analogue
of Eq. (3).

C. Solute in solution
1. Solvation free energy

The solvation free energy is the free-energy difference between
a solute molecule that is fully interacting with a dilute solution and
the same molecule in the ideal-gas state. To compute it, in prin-
ciple we can use λ-TI [Eq. (2)] between these two states directly.
Here the potential of interest U1 corresponds to the molecule
fully interacting with its surroundings at some concentration of
the solution. The reference potential U0 corresponds to the solute
molecule not interacting with its surroundings, but where the
intramolecular energy of the molecule, as well as the interactions
between solvents, are the same as in U1. Typically, we use a solu-
tion with one molecule dissolved in a box of the solvent for this
purpose.

Many procedures for the hamiltonian switching are
available.14,47 The simplest is to use linear λ scaling and get
the free energy difference using Eq. (2). However, a naïve imple-
mentation of the λ-TI results in a divergent integrand in Eq. (2) as
λ→ 0: when the “ghost” molecule and the rest of the system are not
interacting, atoms can overlap and result in an infinite value for
U1 −U0. To circumvent this problem, one can instead perform a
FEP at the end point λ = 048 [as highlighted with the blue arrow in
Fig. 1(c)], i.e.,

A(λ = ε) − A(λ = 0) = −kBT ln ⟨exp [− ε(U1 −U0)
kBT

]⟩
λ=0

, (8)

and then compute the integral in Eq. (2) from ε to 1 in λ only. Here,
the large values of U0 −U1 will contribute little to the ensemble
average in Eq. (8).

Another approach that avoids numerical convergence issues in
TI is the use of multiple-step FEP using a λ-dependent soft-core
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potential. For example, a possible soft-core functional form of the
Lennard-Jones potential is47

Usoft
LJ = λ4εLJ

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎣
αLJ(1 − λ)2 + ( r

σLJ
)

6⎤⎥⎥⎥⎥⎦

−2

−
⎡⎢⎢⎢⎢⎣

αLJ(1 − λ)2 + ( r
σLJ
)

6⎤⎥⎥⎥⎥⎦

−1⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (9)

where εLJ and σLJ are appropriate energy and distance units, and
αLJ controls the switching protocol. Similarly, a soft-core Coulomb
interaction is

Usoft
C = λ

qiqj

4πε0εC[αC(1 − λ)2 + r2]1/2
, (10)

where qi and qj are the charges on the two interacting atoms, ε0 is
the electric constant, εC is the dielectric constant, and αC controls
the switching.

When using multiple-step FEP, one uses a number of inter-
mediate states, for example, U(λi) with λi = i/M for i ∈ {0, 1, . . . ,
M − 1}. Compared to forward or backward FEP, we have found
it to be statistically efficient to combine a forward and a back-
ward FEP at half steps.49 For example, to compute the free-energy
difference between two potential-energy surfaces Ua and Ub, one
runs the simulation using the potential U1/2 = (Ua +Ub)/2, and the
estimator is

Ab − Aa = −kBT ln ⟨exp [−Ub −Ua

2kBT
]⟩

U1/2

+ kBT ln ⟨exp [−Ua −Ub

2kBT
]⟩

U1/2

. (11)

As the efficiency of FEP crucially depends on the overlap between
the two states involved, the half-step scheme reduces the difference
in energy by half and thus enhances the efficiency.

2. Concentration-dependent chemical potential
In the previous step, we computed the solvation free energy,

and hence chemical potential μsol
0 , at some low concentration c0.

To find how this quantity changes as a function of solution con-
centration, we use the recently proposed S0 method,30 as shown
schematically by the green arrow in Fig. 1(c). The S0 method is
based on the thermodynamic relationship between fluctuations in
particle numbers and derivatives of the chemical potentials with
respect to the molar concentration,29 and only uses the static struc-
ture factors computed from equilibrium MD simulations.30 Specif-
ically, we perform multiple equilibrium MD simulations at differ-
ent concentrations and find μsol(c) by numerical integration with
respect to ln c,

μsol(c) = μsol(c0) + kBT ln (c/c0)

+ kBT∫
ln c

ln c0

d ln (c)[ 1
S0

M–M − S0
M–S
√

c/cS
− 1], (12)

where the subscripts M and S denote solute and solvent molecules,
respectively. S0

M–M is the static structure factor in the k→ 0 limit

between solute molecules and S0
M–S is the equivalent between solute

and solvent molecules.

III. RESULTS
A. Sodium chloride in water

To model NaCl and water, we used the JC/SPC/E23 force
field, with the Lennard-Jones interactions truncated at 1 nm with
tail corrections, and long-range Coulomb interactions were treated
using a particle–particle particle-mesh solver. Since NaCl is made
up of individual ions, we do not need to explicitly compute the
free energy of the gas-phase molecule in this case, as the ref-
erence state for the solvation free energy and the crystal free
energy are both a pair of ideal-gas NaCl ions with an analytic free
energy.

For the solid phase, we performed a λ-TI from the Debye crystal
to the physical system at 298.15 K. The result is consistent with a λ-
TI first performed at a lower T of 50 K and then an integration along
an isobar [Eq. (3)]. The chemical potential for each ion pair in the
solid phase 298.15 K is (−190.145 ± 0.015) kcal/mol.

To compute the solvation free energy, we used i-PI41 to per-
form TI between two states: (i) a pair of Na and Cl ions that are
non-interacting and a box of water (with 510 water molecules), and
(ii) Na and Cl ions that are fully interacting with water and with each
other and a box of water. We note that finite-size effects of such sys-
tems with long-range electrostatics may be corrected by developing
methods similar to Refs. 50 and 51, but for our system we have found
the finite-size effects in energy to be negligible. Crucially, a com-
bination of a stochastic velocity rescaling thermostat52 and a weak
local Langevin thermostat was used to ensure sufficient equilibra-
tion of the ghost molecule and robust temperature control. The time
step was 1 fs, and each MD run lasted for ∼1.5 ns. We used FEP
from λ = 0 to λ = 0.0001, and linear λ scaling in the TI over a dense
grid for the rest. The FEP at λ = 0 is necessary because the TI inte-
grand is divergent at that point due to the singularity of the LJ and
the Coulomb potential related to the ions. In Fig. 2(a), we show the
comparison of the excess chemical potential μsol

0 (λ) computed using
FEP and the combination of TI and FEP (TIFEP),48 as a function
of the switching parameter λ. At λ < 0.02, both methods yield simi-
lar results. At higher λ, however, the direct FEP has a much higher
statistical error and a systematic bias. Our estimated solvation free
energy is μsol

0 = (−177.30 ± 0.05) kcal/mol.
The final step is to obtain the μsol of NaCl ion pairs at differ-

ent concentrations. Excess chemical potentials for NaCl ion pairs
(μex

NaCl) were computed using the S0 method [Eq. (12)] in Ref. 30.
Simulations of NaCl water solutions at different molar concentra-
tions were performed using LAMMPS53 at 298.15 K and 1 bar
using the Nosé–Hoover thermostat and barostat. As detailed in
Ref. 30, a fixed number of 32 640 water molecules together with
between 128 and 10 880 NaCl ion pairs were used. The ideal chem-
ical potential is given by the first two terms on the right-hand side
of Eq. (12), and is shown by the dashed black curve in Fig. 2(b).
By combining the ideal and excess parts of the chemical potential,
we computed μsol of NaCl ion pairs at different salt molalities m
(i.e., the chemical amount of the solute per unit mass of the sol-
vent), shown as the blue curve in Fig. 2(b). In the same figure,
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FIG. 2. (a) Chemical potential of solvation μsol
0 of an NaCl ion pair computed using

free-energy perturbation (FEP) and a combination of thermodynamic integration
and free-energy perturbation (TIFEP). (b) The blue curve shows the chemical
potentials μsol for NaCl ion pairs as a function of molality m at 298.15 K. The
dashed black line is the ideal chemical potential. The grey horizontal line indi-
cates the chemical potential of the ion pairs in the solid phase. The statistical
uncertainties are indicated by the widths of the curves.

we also show the chemical potential of the ion pairs in the crys-
tal, μcrystal (grey horizontal line). The point at which the blue curve
and grey line cross gives the solubility of NaCl in water; for this
model, we estimate the solubility to be (3.87 ± 0.14) molNaCl kg−1

water.
This estimate is lower than the experimental result of 6.15 mol kg−1

at 25 ○C,54 but is consistent with previous simulation results
computed using osmotic ensemble Monte Carlo,55 the Bennett
acceptance ratio method56 and thermodynamic integration,18 all
employing the same force field.

B. Urea in water
The properties of urea–water mixtures have been investigated

using a range of empirical potentials.57–62 For our investigation,
we used the CHARMM3663 parameterisation from CHARMM-
GUI,64,65 since unlike several other commonly used empirical poten-
tials, we verified that the experimentally known crystalline poly-
morphs are at least mechanically stable at suitable thermodynamic
conditions. The potential entails combinations of Lennard-Jones
and Coulomb interactions, coupled with bond, angle, dihedral and
improper constraints that maintain a relatively rigid molecular
structure.66 We do not use any further rigid-body constraints. We
remark that since harmonic bonds are used, simulations should not
be run with the Nosé–Hoover thermostat,67,68 and alternatives such
as stochastic velocity rescaling52 or the Langevin thermostat should
be used instead. For the solution phase, water molecules are mod-
elled with a CHARMM-modified66,69 TIP3P70 potential so as to be
compatible with the urea CHARMM force field; the water model
entails a three-site potential with Coulomb and Lennard-Jones

interactions at each water atom, and harmonic bond and angle
constraints.

For the bulk of our work, we considered two crystalline poly-
morphs of urea, namely forms I71 and B172 (Fig. 3). For both
polymorphs, we performed a λ-TI first at a low temperature (25 K)
using a Debye crystal reference, followed by TI in T along the 1 bar
isobar. The free energy computed for the crystals is thus referenced
to isolated atoms. For the gas phase, the workflow for computing
the free-energy reference to the isolated atoms is similar to that of
crystals, except that both translations and rotations are constrained
in the TI simulations. The analytic translational and rotational free-
energy corrections [Eqs. (4) and (5)] are added at the end. The
volume of the gas used in Eq. (4) was 1000a3

0, where a0 is the Bohr
radius. The chemical potentials of the crystalline polymorphs (μI and
μB1) are calculated by subtracting the free energy of the gas-phase
molecule from the free energies of the crystal polymorphs. These
chemical potentials are shown in Fig. 3(a). Consistently with previ-
ous work,72,73 form I is the most stable form at ambient pressure. By
way of comparison, the harmonic-approximation chemical poten-
tials μI

h and μB1
h are also plotted in Fig. 3(a); the difference to the true

chemical potentials accounting for anharmonicity is rather large in
both cases.

The solvation free energy is computed using multiple-step FEP
with the soft-core potentials, with the switching parameters αLJ = 0.5
and αC = 10 Å 2 in Eqs. (9) and (10). We used a total of 20 windows,
and performed the FEP in the middle step as described in Eq. (11).
We confirmed that using more windows did not change the esti-
mate. By contrast, a forward or backward FEP would require many
more windows to reach convergence. Each independent run lasts for
∼5 ns. We used a time step of 1 fs since the resulting μsol

0 is consistent
with that computed using a smaller time step of 0.1 fs. The calcu-
lations were performed using i-PI.41 A combination of a stochastic
velocity rescaling thermostat52 and a weak local Langevin thermostat
was used for ergodic sampling of the solute molecule and efficiency.
The pressure was kept at 1 bar. As discussed above, the com-
puted solvation free energy is already referenced to the gas-molecule
state.

As a sanity check, we computed the solvation free energy of
urea in its own melt, which is just the chemical potential of the melt
μmelt [the red symbols in Fig. 3(a)]. μmelt computed at different tem-
peratures agree well with the values obtained from TI of the melted
phase with respect to T [Eq. (3)], as shown using the red curve in
Fig. 3(a). The crossover between μmelt and μI or μB1 is the melting
point of the specific crystalline phase, and we estimate TI

m = (425
± 7) K and TB1

m = (405 ± 5) K. We then performed independent
direct-coexistence simulations in elongated boxes (3840 atoms for
form I with typical box dimensions of 71 × 22 × 22 Å3 and 5760
atoms for form B1 with typical box dimensions of 90 × 27 × 21 Å3).
We first determined the equilibrium lattice parameters as a func-
tion of temperature at 1 bar, then melted half the box along x at a
high temperature whilst keeping the remaining half the molecules
frozen, and finally evolving the system at fixed Px until one phase
grew at the expense of the other. The melting point for form I
determined with this method is in the range 415–430 K, and for
form B1 it is in the range 400–410 K. Since both ranges are consis-
tent with estimates from free-energy calculations, this suggests that
the computed chemical potentials had a consistent choice of base-

J. Chem. Phys. 159, 184110 (2023); doi: 10.1063/5.0173341 159, 184110-6

© Author(s) 2023

 28 N
ovem

ber 2023 08:28:28

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 3. (a) Chemical potentials of urea in different phases computed using the
CHARMM force field. The blue and purple solid curves show the chemical poten-
tials of crystal form I (μI

) and crystal form B1 (μB1
), respectively. The dashed

curves show the harmonic free energies of the corresponding phases. The red
crosses with error bars show the estimate of the chemical potential of melted
urea (μmelt

), and the red curve shows the values from the thermodynamic inte-
gration of the liquid along the 1 bar isobar. The blue and the purple shaded areas
show estimates of the melting temperatures of forms I and B1 with uncertainty,
computed using the coexistence method. The orange symbols show the solvation
free energy μsol

0 at the concentration c0 = 0.49 mol dm−3 with error estimates. (b)
Chemical potentials of urea in solution of different molalities m (i.e., the amount of
urea dissolved in a kilogram of water) computed using the CHARMM force field.
(c) Chemical potentials of urea in solution of different molalities computed using
the GAFF force field. In (b) and (c), the orange curve shows the chemical poten-
tials μsol for urea as a function of the urea molality. The dashed black line is the
ideal chemical potential. The blue and purple horizontal lines indicates the chem-
ical potential of phase I and B1. The statistical uncertainties are indicated by the
width of the curves.

line, and the correctness of the workflow. The experimental melting
point of form I urea is 406 K;74 the close agreement with simu-
lation is perhaps somewhat surprising given the simplicity of the
force field.

TABLE I. Solubilities of urea in water expressed as molalities at different tempera-
tures for the CHARMM potential.

T (○C) T (K)
Solubility of
I (mol kg−1)

Solubility of B1
(mol kg−1)

20 293.15 0.054± 0.002 0.083± 0.003
40 313.15 0.236± 0.009 0.36± 0.01
60 333.15 1.17± 0.04 1.82± 0.07
80 353.15 4.2± 0.1 6.9± 0.2
100 373.15 17.2± 0.7 33± 1

We computed the solvation free energy of urea in water (μsol
0 ) at

20 ○C intervals between 0 and 100 ○C. Once a “ghost” urea molecule
was added, the simulation box contained one urea molecule and
123 water molecules, corresponding to a concentration of about
0.49 mol dm−3. These results are indicated using orange symbols
with error bars in Fig. 3(a). To obtain chemical potentials of the
solute at other concentrations, we used the S0 method. We simu-
lated urea–water mixtures at different molar concentrations using
LAMMPS53 at the temperatures specified above and a pressure of
1 bar. The simulation box contained about 10 000 molecules. We
used a time step of 1 fs, with runs of ∼1 ns each. To compute S(k),
we collected a snapshot per 1000 steps of the trajectory. We used the
positions of oxygen atoms as the positions of water molecules, and
the positions of carbon atoms as the positions of urea molecules. The
S(k) values were then fitted to the Ornstein–Zernike form30 with
a maximum cutoff in the wave vector k2

cut = 0.004/Å 2. The S0 val-
ues between urea–urea and urea–water can then be used to compute
the concentration-dependent μsol(c) using Eq. (12). As an example,
μsol at 20 ○C at different molalities is shown as the orange curve in
Fig. 3(b). The shaded area indicates the statistical uncertainty, which
principally comes from the error in the estimation of μsol

0 . The ideal
chemical potential is shown as the dashed black curve. Finally, the
chemical potentials of the crystalline forms I and B1 are plotted as
blue and purple horizontal lines. As the concentration increases, the
solution becomes less ideal. The crossover points between the orange
curve and the two horizontal lines indicate the solubilities of the cor-
responding phases. In this case, the ideal-solution assumption turns
out to be rather accurate in the solubility prediction. However, the
agreement becomes worse at other temperatures considered; e.g., at
80 ○C, it would lead to an underestimate in the solubility by about
15%. We summarise the solubilities at other temperatures in Table I.
The solubilities increase steeply with temperature, and the solubil-
ity of form B1 is higher than that of form I at all temperatures
considered.

It has been shown that using different urea models can result in
considerably different thermodynamic properties in solution.58 To
check the role of the choice of force field in determining the solu-
bility, we used the AMBER-GAFF-ESP-2018 force field (GAFF)75,76

for both urea and water. We performed the solubility calculations
for urea form I in water with GAFF, following the same workflow
as with CHARMM.77 In Fig. 3(c), we show μsol at 20 ○C computed
using GAFF as a function of urea molality. At this temperature, the
solubility of form I of urea is (5.1 ± 0.3) mol kg−1, about 100 times
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the solubility predicted for the CHARMM potential under the same
conditions.

Experimentally, urea dissolves very readily in water; the sol-
ubility in 100 g of water ranges between ∼70 g (12 mol kg−1)
at 0 ○C to ∼700 g (120 mol kg−1) at 100 ○C.74,78,79 These solubilities
are considerably higher than the CHARMM predictions obtained
in Table I. The GAFF solubility at 20 ○C is closer to, but still
lower than, the experimental value. On the other hand, the crys-
talline phase is less well described by the GAFF potential than by
CHARMM; at temperatures above 20 ○C, form I is not dynam-
ically stable under the GAFF force field, and readily transforms
into an analogue of form III in MD simulations. These results
thus demonstrate the sensitivity of the solubility prediction on the
assumed potential energy surface, and the challenge of accurately
modelling both the crystalline and the solution phases with the same
potential.

C. Paracetamol in water and in ethanol
We used the CHARMM3663 parameterisation from

CHARMM-GUI64,65 for paracetamol, water and ethanol, since
all common crystalline polymorphs of paracetamol are at least
metastable with this potential.

Specifically, we considered two crystalline polymorphs of
paracetamol, namely forms I80 and II.81 For both polymorphs, we
computed the free energy of the Debye crystal at 25 K and then used
λ-TI to the potential of interest, followed by a TI in T along the
1 bar isobar. For both polymorphs, it is important to perform the
λ-TI from the Debye crystal at T ≲ 40 K, as the internal rotational
modes become activated at higher T, causing numerical problems
with the integrand of Eq. (2) as λ→ 1. We used a time step of
0.25 fs and, as with the case of urea above, a combination of a
stochastic velocity rescaling thermostat52 and a weak local Langevin
thermostat.

For the gas phase, we computed the free-energy difference
between the Debye molecule reference and the molecule with a
constrained CM and rotations at T = 100 K. Because rotations
about bonds are possible and lead to different conformers, vanilla
λ-TI is thwarted by divergences in the integrand. Instead, both
the tethering approach and the FEP at the end point, as outlined
in Sec. II, help to circumvent the issue. We used a time step of
0.25 fs, and the same combined thermostat as for the solid phases.
The analytic translational and rotational free-energy corrections
are added in the end. The volume of the gas used in Eq. (4) was
1587a3

0. The total free energy of the gas molecule at 100 K was
estimated to be (−41.84 ± 0.04) kcal/mol. The free energies at
other temperatures were then determined using TI along the 1 bar
isobar.

The chemical potentials of the crystalline polymorphs (μI and
μII) are baseline adjusted, so the reference state is the gas-phase
molecule. These chemical potentials are shown in Fig. 4(a), together
with the harmonic-approximated μI

h and μII
h in dashed lines; the

difference is of the order of 1 kcal/mol.
For computing solvation free energies, we used the multiple-

step FEP with the soft-core potentials described in Sec. II C 1,
with αLJ = 0.5 and αC = 10 Å 2. We used a total of 20 windows and
performed the FEP in the middle step as described above. We con-
firmed that using more windows did not change the estimate. For

FIG. 4. (a) Chemical potentials of paracetamol in different phases computed using
the CHARMM force field. The blue and purple solid curves show the chemical
potentials of paracetamol in crystal forms I (μI

) and II (μII
), respectively. The

dashed curves show the harmonic free energies of the corresponding phases.
The red crosses with error bars show the estimate of the chemical potential
of the paracetamol melt (μmelt

), and the red curve shows the values from the
TI of the liquid along the 1 bar isobar. The blue shaded area shows the esti-
mate of the melting temperature of phase I with statistical uncertainty computed
using the interface-pinning method for solid–liquid coexistence. The orange sym-
bols show the solvation chemical potentials μsol–water

0 of paracetamol in water
at c0 = 0.47 mol dm−3 with error estimates, and the green symbols show the solva-
tion chemical potentials μsol–EtOH

0 in ethanol at c0 = 0.23 mol dm−3. (b) The green
curve shows the chemical potentials μsol for paracetamol dissolved in ethanol
(EtOH) as a function of molality m (i.e., amount of paracetamol per kilogram of
ethanol). The dashed black line is the ideal chemical potential. The blue and pur-
ple horizontal lines indicate the chemical potentials of forms I and II, respectively.
Statistical uncertainties are indicated by the widths of the curves.

the solvation free energy of paracetamol in water (μsol–water
0 ), the

simulation box contained one paracetamol molecule and 118 water
molecules (c0 = 0.47 mol dm−3). The time step was 1 fs, and each
independent run lasted about 1.5 ns. For the solvation free energy
of paracetamol in ethanol (μsol–EtOH

0 ), we used a simulation box
comprising one paracetamol molecule and 73 ethanol molecules
(c0 = 0.23 mol dm−3), and each independent FEP run lasted about
5 ns. These solvation free energies (μsol–water

0 and μsol–EtOH
0 ) are
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shown in Fig. 4(a). The large gap between the two sets of solva-
tion energies indicates that paracetamol solvation in ethanol is rather
more favourable than in water when using the CHARMM force
field.

In addition, we computed the solvation free energy of parac-
etamol in its own melt, μmelt, shown using the the red symbols in
Fig. 4(a). These values agree well with the TI results of the melt
[Eq. (3)] [red curve in Fig. 4(a)]. We estimate the melting points of
form I and II to be TI

m = (440 ± 11) K and TII
m = (407 ± 11) K. As a

sanity check on our free-energy calculations, we also computed the
melting point of form I of paracetamol using interface pinning.82–84

We took an elongated box of crystal form I (roughly 107× 29× 35 Å3

with 504 molecules, with α = γ = 90○ and β ≈ 98○), equilibrated it
at 1 bar and a range of temperatures to determine optimal box
parameters, melted half the box at a high temperature and locally
equilibrated the system. We then performed interface-pinning sim-
ulations in which only the x component of the pressure was cou-
pled to a barostat. We used a Steinhardt–Ten Wolde-style order
parameter85,86 on the carbonyl oxygen to classify molecules as being
either in the crystal or the liquid phase, and then, using PLUMED,87

applied a harmonic restraint with spring constant κ to bias the num-
ber of crystalline molecules to be close to half the total molecules
in the system, N0 ≈ N/2. We computed the chemical-potential dif-
ference between form I and the melt via Δμ = κ(N0 − ⟨Ncryst⟩),38,82

by determining the average number of crystalline molecules as a
function of temperature. Using this approach, we estimate that the
melting point, at which Δμ = 0, is (451 ± 5) K. These results are con-
sistent with Fig. 4(a), giving us confidence that all the relevant factors
have been considered in the free-energy calculations. The exper-
imental melting point of form I paracetamol is 442 K88 (169 ○C),
in close agreement with simulation despite the assumptions of
the force field.

For the concentration dependence of μsol, we used
the S0 method. We simulated paracetamol–water and
paracetamol–ethanol mixtures at different molar concentra-
tions using LAMMPS,53 although for paracetamol–water this
proved not to be necessary, since at low concentrations the solu-
tion is nearly ideal. The simulation box contained about 10 000
molecules. The time step was 1 fs and each run lasted about 1 ns.
Snapshots where taken every 1000 steps, and the co-ordinates of
oxygen atoms in water, nitrogen atoms in paracetamol, and the
carbon bonded to oxygen in ethanol were used for recording the
positions of the corresponding molecules. In the estimation of S0,
the cutoff in the wave vector was k2

cut = 0.0025/Å 2.

TABLE II. Solubility of paracetamol in water expressed as molalities at different
temperatures.

T (○C) T (K)
Solubility of
I (mol kg−1)

Solubility of
II (mol kg−1)

20 293.15 (3.5 ± 0.5) × 10−8 (9.1 ± 1.0) × 10−8

40 313.15 (5.1 ± 0.8) × 10−7 (1.3 ± 0.2) × 10−6

60 333.15 (1.1 ± 0.1) × 10−5 (2.5 ± 0.3) × 10−5

80 353.15 (1.6 ± 0.2) × 10−4 (3.6 ± 0.4) × 10−4

100 373.15 (3.3 ± 0.4) × 10−3 (7.2 ± 0.8) × 10−3

TABLE III. Solubility of paracetamol in ethanol expressed as molalities at different
temperatures.

T (○C) T (K)
Solubility of
I (mol kg−1)

Solubility of
II (mol kg−1)

20 293.15 0.82± 0.03 1.47± 0.05
30 303.15 0.95± 0.04 1.79± 0.07
40 313.15 1.34± 0.05 2.7± 0.1

We show in Fig. 4(b) the solution chemical potential μsol for
paracetamol in ethanol at 20 ○C as a function of the paraceta-
mol molality (green curve). The chemical potentials of the two
crystalline polymorphs are plotted as blue and purple horizontal
lines. At higher concentrations, the solution becomes less ideal, and
indeed the ideal-solution assumption would lead to an overesti-
mate in the solubilities by a factor of two to three. The solubilities
of paracetamol in water or ethanol at all temperatures consid-
ered are provided in Tables II and III. The solubilities increase
with temperature in both water and ethanol, and the solubility
of form II is about double that of form I under all conditions
considered.

The CHARMM22 potential with SwissParam89 parameters
has been used to identify the source of stabilisation of dif-
ferent polymorphs of paracetamol relative to density functional
theory-level calculations;90 this work illustrates that empirical force
fields likely do not capture all the relevant physics. However,
the CHARMM36 force field with optimised partial charges has
been shown to be a satisfactory potential for studying the nucle-
ation of paracetamol in acetonitrile,91,92 and this reparameterised
potential has also been used to investigate the solubility of
paracetamol in ethanol11 using the cavity method. In this work,
previous experimental values93–96 were averaged to obtain a solu-
bility mole fraction of 0.0585 ± 0.0040 at 20 ○C, or a molality of
1.35 mol kg−1. The solubility of paracetamol with the CHARMM36
potential with reoptimised partial charges was (0.085 ± 0.014)11

(or 2.0 mol kg−1), a slight overestimate compared to the experimen-
tal result. By contrast, using the CHARMM-GUI parameterisation
of the charges results in a slight underestimate of the solubility
(m = 0.82 mol kg−1, or x = 0.036). Both parameterisations appear
to be reasonable, but the solubility is very sensitive to the details of
the model’s parameters. However, the solubility of paracetamol in
water at 20 ○C is m = 0.0845 mol kg−193 (or x = 0.0015), increasing to
∼ m = 0.48 mol kg−1 (x ≈ 0.0086) at 70 ○C,97 which is very different
from the values we have obtained, suggesting that the interactions of
paracetamol with water are accounted for less well.

IV. CONCLUSIONS
In summary, we present a workflow that enables simple and

robust computation of solubilities of molecular or ionic crystals. As
illustrated in Fig. 1, we compute the free energies of the gas, the crys-
tal and the solution phases separately. The workflow mainly uses
thermodynamic integration from reference systems with known
free energies to physical systems, with free-energy perturbations
incorporated at the end points of the TI to avoid numerical
issues and to increase efficiency. Compared to the state-of-the-art
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methods,7,8,10,11,20,33 we streamline many steps. For example, we
compute the chemical potential of the crystal using the gas-phase
molecule as a baseline, which avoids the convoluted many-step
switching in the extended Einstein crystal method.7,8 Using Debye
crystals or Debye molecules as the starting points of the TI ensures
high statistical efficiency, as these reference potential-energy sur-
faces closely resemble the potentials of interest. Constraining the
CM and the rotation of the gas-phase molecule further reduces
the sampling space. For the solute, the FEP at half steps [Eq. (11)]
requires fewer windows than forward or backward FEP. We use
the S0 method to compute the concentration dependence of the
chemical potential of the solute, which overcomes the ideal-solution
assumption and avoids separate solvation free-energy calculations at
different concentrations that would otherwise be necessary.11

We have applied the workflow to systems of a range of sol-
ubilities: sodium chloride in water, urea in water, paracetamol in
water, and paracetamol in ethanol. We additionally computed the
solid–liquid equilibria for urea and paracetamol using the same
workflow, for validation. From these calculations, we have observed
that the harmonic approximation for both the gas molecules and the
crystals often breaks down at higher temperatures. Even at room
temperature, for molecular crystals, the error can be of the order
of a kcal mol−1, as in the case of urea and paracetamol. The ideal-
solution assumption can also fail: it is reasonably accurate for dilute
solutions, but can result in an error of a factor of two in the solu-
bility predictions of more soluble substances, such as paracetamol in
ethanol.

We have shown that quantitative solubility predictions hinge
on the accuracy of the potentials chosen. For instance, the sol-
ubility of urea in water at 20 ○C predicted using GAFF is two
orders of magnitude higher than the CHARMM analogue. As men-
tioned above, it is challenging to design empirical force fields that
provide a good representation of both solution and solid phases
simultaneously.7,18,98 In part, this is because the local environment
in the solution is very different from that in the solid, and the mean
polarisation of the molecules is rather different. This is challeng-
ing to account for with pairwise potentials, but it may be possible
to design more flexible models, for example with explicit polarisa-
tion or three-body terms, that can better represent the two phases.98

Solubility calculations could provide a useful tool for parameterising
such empirical potentials. Beyond enhancing empirical force fields,
an alternative approach entails the use of machine-learning poten-
tials (MLPs), which capture the accuracy of quantum-mechanical
calculations, but at a considerably reduced computational cost.99

Given that MLPs have the capacity to model accurately the intri-
cate interactions at the atomic and molecular levels that are crucial
for describing molecular solutions, including accounting for small
differences in charge density in different phases,100 they stand out
as a promising tool for refining solubility predictions. Nonethe-
less, due to the higher computational demands of MLPs compared
to classical force fields, integrating them with an efficient work-
flow, such as ours, becomes essential to ensure the tractability of
calculations.

In this paper, we have focused on classical chemical poten-
tials, but of course one could also account for the influence of
nuclear quantum effects (NQEs). For instance, to obtain the chem-
ical potentials of the molecule in solution, one can still use the
workflow presented in Fig. 1(c) while using the path-integral

molecular dynamics (PIMD) formalism101 to represent the whole
system. NQEs on the chemical potentials of the gas or the
crystalline phases can be taken into account by integrating the
quantum centroid virial kinetic energy with respect to the fictitious
mass from the infinite mass to the physical masses using PIMD
simulations.102–104

We expect that our workflow for calculating solubilities will be
useful across various technologically significant systems. For exam-
ple, for electrolytes, the ability to compute solubilities easily may
deepen our understanding of the solvation of conducting ions in
batteries. Similarly, in drug design, a clearer insight into solubil-
ity properties of drugs would enable drug delivery and absorption
to be optimised. Moreover, the method can shed light on the pre-
cipitation of crystals from solutions, the behaviour of co-solvents,
as well as extraction and purification methods in the chemical
industry.
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