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Abstract
Distributed Key Generation (DKG) is a technique to boot-
strap threshold cryptosystems without a trusted party. DKG
is an essential building block to many decentralized protocols
such as randomness beacons, threshold signatures, Byzantine
consensus, and multiparty computation. While significant
progress has been made recently, existing asynchronous DKG
constructions are inefficient when the reconstruction thresh-
old is larger than one-third of the total nodes. In this paper,
we present a simple and concretely efficient asynchronous
DKG (ADKG) protocol among n = 3t + 1 nodes that can
tolerate up to t malicious nodes and support any reconstruc-
tion threshold ℓ ≥ t. Our protocol has an expected O(κn3)
communication cost, where κ is the security parameter, and
only assumes the hardness of the Discrete Logarithm. The
core ingredient of our ADKG protocol is an asynchronous
protocol to secret share a random polynomial of degree ℓ≥ t,
which has other applications, such as asynchronous proactive
secret sharing and asynchronous multiparty computation. We
implement our high-threshold ADKG protocol and evaluate it
using a network of up to 128 geographically distributed nodes.
Our evaluation shows that our high-threshold ADKG protocol
reduces the running time by 90% and bandwidth usage by
80% over the state-of-the-art.

1 Introduction

The problem of Distributed Key Generation (DKG) is to gen-
erate a public/private key pair in a distributed fashion among
a set of mutually distrustful nodes so that each node holds
a share of the secret key in the end. The secret-shared pri-
vate keys can later be used in a threshold cryptosystem, e.g.,
to produce threshold signatures [8, 29], to decrypt cipher-
texts of threshold encryption [23, 38], or to generate common
coins [12]. To use the secret key, a threshold number of the
nodes needs to reveal partial results computed using their
shares. We refer to this threshold as the reconstruction thresh-
old. Typically, the reconstruction threshold is set to be one

higher than the number of corrupt nodes tolerated by the DKG
protocol, and we refer to such constructions as low-threshold
DKG. In contrast, in a high-threshold DKG construction, the
reconstruction threshold can be much higher than the number
of corrupt nodes.

High-threshold distributed key generation enables thresh-
old cryptosystems with stronger secrecy as an adversary now
needs to acquire extra secret shares or partial results to break
security. Furthermore, many applications call for high re-
construction thresholds. For instance, many state-of-the-art
Byzantine Fault Tolerant (BFT) protocols [4, 28, 33, 41, 57]
rely on threshold signature with a high threshold (2t+1 out of
3t +1 where t is the fault threshold) to improve the communi-
cation efficiency. Asynchronous agreement protocols rely on
shared randomness to circumvent the FLP impossibility [25],
and high-threshold cryptosystems give simpler and more effi-
cient shared randomness [12, 17, 18]. Note that many of these
applications assume asynchronous networks. Thus, we focus
on high-threshold asynchronous DKG (ADKG) in this paper.

Most DKG protocols assume synchronous networks [14,
15, 26, 29, 32, 34, 44, 47, 49, 52] (see §8). ADKG has been
studied only recently [3,21,22,27,39] and the state-of-the-art
high-threshold ADKG protocol is very inefficient compared
to its low-threshold counterpart. More specifically, the high-
threshold DKG protocol of Das et al. [22] requires 500×more
computation and 6×more communication than its low thresh-
old counterpart. (We will elaborate on the reasons behind
these inefficiencies in §8.)
Our results. In this paper, we design a simple and con-
cretely efficient high-threshold asynchronous distributed key
generation protocol for discrete-logarithm-based threshold
cryptosystems. In an asynchronous network of n ≥ 3t + 1
nodes, where at most t nodes could be malicious, our protocol
achieves an expected communication cost of O(κn3). Our pro-
tocol supports any reconstruction threshold ℓ ∈ [t,n− t−1],
i.e., ℓ+1 nodes are required to use the secret key (e.g., to pro-
duce a threshold signature or decrypt a threshold encryption).
At the end of our protocol, each node receives a threshold
secret share of a randomly chosen secret z∈Zq, where Zq is a
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Table 1: Comparison of existing high-threshold ADKG protocols. All of these protocols can tolerate t < n/3 malicious nodes. We measure
the computation cost in terms of number of elliptic curve group exponentiations. Abbreviations used are, Decisional Diffie-Hellman (DDH),
Symmetric External Diffie-Hellman (SXDH), Decisional Composite Residuosity (DCR), and Discrete Logarithm (DL).

Secret key
from a Field?

High
Threshold?

Communication
Cost (per node)

Computation
Cost (per node)

Total Round
Complexity

Cryptographic
Assumption

Setup
Assumption

Kokoris et al. [39] ✓ ✓ O(κn3) O(n3) O(n) DDH RO & PKI
Abraham et al. [3, 21, 27] ✗ ✗† O(κn2) O(n2) O(1) SXDH RO & PKI
Das et al. [22] ✓ ✓ O(κn2) O(n3)‡ O(logn) DCR & DDH RO & PKI

This work ✓ ✓ O(κn2) O(n2) O(logn) DL RO & PKI

† These works do not discuss whether their protocols support high-threshold
or not. But we believe their protocols can be made to support high-threshold
with minor modification.

‡ Their computation cost is O(n3) elliptic curve group operations instead of
elliptic curve group exponentiations.

field of size q. Our protocol can thus be used with off-the-shelf
discrete-logarithm-based threshold cryptosystems [8, 23, 29].
We present an ideal-functionality-based definition of ADKG
and rigorously prove the security of our ADKG protocol using
the real-ideal indistinguishability paradigm.

The core ingredient of our high-threshold ADKG is a sim-
ple and concretely efficient protocol to sample a polynomial
z(·) ∈ Zq[x] of degree ℓ such that each node receives an evalu-
ation point of z(·). Here on, we refer to this as the distributed
polynomial sampling protocol. We believe our distributed ran-
dom polynomial sampling protocol will be of independent
interest beyond high-threshold ADKG. For example, it can
be used to improve the efficiency of asynchronous proactive
secret sharing, robust pre-processing of asynchronous multi-
party computation, etc (see §6). We also want to note that our
distributed random sampling protocol can be used to sample
polynomials of degrees larger than n− t, although this comes
with additional trade-offs.

For ℓ > t, our protocol is significantly more efficient than
the best previous ADKG protocol of Das et al. [22]. Moreover,
our protocol only assumes hardness of Discrete Logarithm
(DL), whereas the high-threshold ADKG protocol of [22]
assumes hardness of both Decisional Diffie-Hellman (DDH)
and Decisional Composite Residuosity (DCR).

Along the way, we also provide a mechanism to re-
duce the worst-case computation cost of the state-of-the-
art asynchronous multi-valued validated byzantine agree-
ment (MVBA) protocol that does not rely on an external
source for shared randomness [22]. Specifically, we reduce
the per node computation cost from O(n3) elliptic curve group
operation to O(n2) elliptic curve group exponentiations.
Implementation and evaluation. We implement* our ADKG
protocol in python with rust for cryptographic opera-
tions. Our implementation supports both curve25519 and
bls12381 elliptic curves and any reconstruction threshold
ℓ ≥ t. We evaluate our protocol with up to 128 nodes in ge-
ographically distributed Amazon EC2 instances. For ℓ= 2t,
with 64 nodes and either curve, our single-thread imple-

*Available at https://github.com/sourav1547/htadkg

mentation takes about 15 seconds and each node sends 3.5
Megabytes of data. This is less than 1/10 of the running time
and uses less than 1/5 of the bandwidth compared to the best
previous high-threshold ADKG protocol.
Paper organization. The rest of the paper is organized as fol-
lows. In §2, we describe our system model, define the ADKG
problem, and present an overview of our ADKG protocol. We
describe preliminaries used in our protocol in §3. We present
the detailed design of our high-threshold ADKG protocol
and some optimizations in §4 and analyze it in §5. In §6, we
discuss additional applications of our distributed polynomial
sampling primitive. In §7 we provide implementation details
and our evaluation results. We discuss related work in §8 and
conclude in §9.

2 System Model and Overview

2.1 Notations and System Model

We use κ to denote the security parameter; for example, when
we use a collision-resistant hash function, κ denotes the size
of the hash function’s output. We use |S| to denote the size
of a set S. Let Zq be a finite field of order q. For any integer
a, we use [a] to denote the ordered set {1,2, . . . ,a}. Also, for
two integers a and b where a < b, we use [a,b] to denote the
ordered set {a,a+1, . . . ,b}.

For any element x ∈ Zq, we use JxK to denote the (n, t +1)
secret sharing of x, i.e., x is secret shared using a polynomial
of degree t. Also, for any node i, we use JxKi to denote the
share held by node i. For any vector xxx, we use JxxxK to denote
element-wise secret sharing of the vector JxxxK. Similarly, we
use JxxxKi to denote the share of xxx held by node i.
Threat model and network assumption. We consider a net-
work of n nodes where every pair of nodes are connected via
a pairwise private and authenticated channel. We consider the
presence of a malicious static adversary A that can corrupt up
to t nodes out of at least 3t+1 nodes in the network. Once the
ADKG protocol terminates, A also sees ℓ−t additional shares
of the secret key. We want to emphasize that, for the security
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Functionality FADKG

Parameters: Maximum number of malicious nodes t,
the total number of nodes n≥ 3t +1, and the reconstruc-
tion threshold ℓ∈ [t,n− t−1]. Let G be an elliptic curve
group of order q with a random generator g and scalar
field Zq.

1. Wait for C1 and C2, the set of nodes A will corrupt
and the set of additional nodes whose shares A will
learn. Check that |C1| ≤ t and |C1∪C2| ≤ ℓ.

2. Sample a uniformly random element z ∈ Zq. Gener-
ate (n, ℓ+ 1) Shamir secret shares of z, denoted as
JzK.

3. Compute gz,gJzK and send (g,gz,JzKi,gJzK) to party i.

Figure 1: Asynchronous Distributed Key Generation functionality

guarantees of our protocol to hold, it is important that for the
latter set of nodes, A only learns their final ADKG shares
and not their internal states. We consider a static adversary
in the sense that both the set of nodes A will corrupt and the
set of additional nodes whose share A will learn are fixed a
priori before the start of the protocol. We assume the network
is asynchronous, i.e., A can arbitrarily delay any message
but must eventually deliver all messages sent between honest
nodes.

Our threat model is inspired by the typical use cases of
high-threshold cryptographic schemes. For example, BFT
protocols using threshold signatures often require that the
signature remains unforgeable for any adversary that corrupts
t nodes and also learns partial signatures from t additional
nodes. More generally, cryptographic schemes that use high-
threshold ADKG allow A to corrupt up to t nodes during
the execution of the ADKG protocol; and after the ADKG
protocol finishes, these schemes seek to prevent A from com-
puting any function of the ADKG secret key z even if A is
given some information that is computed from ℓ−t additional
shares that belong to honest nodes. Our threat model captures
this by allowing A to acquire these ℓ− t additional shares.

We also assume a public key infrastructure (PKI). This
is because we use Asynchronous Complete Secret Shar-
ing (ACSS) as a building block, and state-of-the-art ACSS
protocols use PKI [21]. ACSS can also be instantiated without
PKI at a higher cost [5], so the PKI assumption of our proto-
col can be removed at the cost of efficiency if the application
calls for it.

2.2 Definition of ADKG

As mentioned in §1, in this paper, we focus on ADKG for
discrete logarithm-based cryptosystems such as ElGamal en-

cryption [24] and BLS signatures [8, 9].
A distributed key generation protocol for a discrete log-

arithm cryptosystem amounts to secret sharing a uniformly
random value z ∈ Zq and making public the value y = gz,
where g is a random generator of a group G of order q. With n
nodes, at the end of the protocol, each node outputs a (n, ℓ+1)-
threshold Shamir share [51] of the secret z, where ℓ+1 valid
shares are needed to use z. More precisely, let z(·) ∈ Zq[x] be
a random polynomial of degree ℓ such that z(0) = z. At the
end of the DKG protocol, the ith node outputs its share of the
secret key z(i) = JzKi, and every node outputs the public key
y = gz. Additionally, applications of DKG such as threshold
signatures and threshold encryption, require that in addition
to y, threshold public keys of all nodes, i.e., gz(i) for all i ∈ [n],
are also publicly known.

For an ADKG protocol, the polynomial degree ℓ used for
sharing the secret key is called the reconstruction threshold.
We say an ADKG protocol is low-threshold if ℓ = t, and is
high-threshold if ℓ > t.

We formalize the above using the ideal functionality FADKG

defined in Figure 1. Intuitively, for any given reconstruction
threshold ℓ≥ t, FADKG samples a uniform random polynomial
z(x) of degree ℓ over the fieldZq. Let z(0) be the ADKG secret
key. FADKG then outputs one share to each node, i.e., outputs
z(i) to node i. FADKG additionally outputs the ADKG public
key gz, and the threshold public keys gJzK to all nodes.

An ADKG protocol that realizes the functionality FADKG

is called (t, ℓ)-secure if the following Security property holds
in the presence of an adversary A that corrupts a set C1 of up
to t nodes and observes up to ℓ− t additional shares from a
set of C2 nodes.
Security. For every probabilistic polynomial-time (PPT) ad-
versary A , there exists a PPT simulator S such that given gz,
gJzK, and JzKi for each i ∈ C1 ∪C2 by the ideal functionality
FADKG, S produces a view such that the joint-distribution of
A’s view and honest parties’ outputs in the ideal world is
indistinguishable from that of the real world.
Remark. Note that our security definition captures all the
properties of the DKG definitions presented in [22, 29].

2.3 Overview of our Protocol

Overview of existing ADKG protocols. Existing DKG pro-
tocols have the following typical structure: Each node runs
a concurrent instance of verifiable secret sharing (VSS) to
share a randomly chosen secret with every other node. For
any reconstruction threshold ℓ, nodes use degree ℓ polyno-
mial to share their secret. Once nodes agree on t +1 finished
secret-sharing instances via an agreement protocol, they lo-
cally aggregate the corresponding shares to compute the share
of the final secret key z. Briefly, the intuition is that the ag-
gregated secret key contains the contribution of at least one
honest node and thus remains hidden from the adversary.
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[1,0,1,1]
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Sharing Phase Agreement Phase Key Derivation Phase

MVBA
Random-

ness  
Extraction

Interpolate and
output 

Interpolate and
output 

Interpolate and
output 

Randomness Extraction Phase

Figure 2: Overview of our protocol in a network of 4 nodes where node 4 is malicious. During the sharing phase, each node secret shares
two random secrets using a low-threshold ACSS protocol. During the agreement phase, nodes run the Multi-valued Validated Byzantine
Agreement (MVBA) protocol to agree on a subset of size n− t valid ACSS instances. During the randomness extraction phase, nodes use the
randomness extractor to extract secret shares of ℓ+1 random coefficients of the polynomial z(x) = z0 + z1x+ z2x2 + · · ·+ zℓxℓ. Nodes then
interact with each other to assist node i in computing z(i). During the key derivation phase, nodes interact to compute the ADKG public key
gz(0) and threshold public keys of every other node.

In asynchrony, instead of running VSS, nodes run asyn-
chronous complete secret sharing (ACSS) to share their ran-
dom secrets (§3.1). The main source of inefficiency of high-
threshold ADKG comes from high-threshold ACSS. In par-
ticular, the high-threshold ACSS designed and used in [22]
is two to three orders of magnitude more expensive compu-
tationally than its low-threshold counterpart. To put things
into perspective, with n = 128 nodes and curve25519 as the
underlying elliptic curve, running n parallel high-threshold
ACSS takes 504 seconds, whereas running n parallel low-
threshold ACSS takes only 0.19 seconds. Similarly, in their
high-threshold ADKG, each node incurs about 6× higher
communication cost than in the low-threshold counterpart.

Our Approach. Our protocol deviates from the common wis-
dom that high-threshold ADKG needs to use high-threshold
ACSS to secret share high-degree polynomials. Instead, we
design a high-threshold ADKG by sampling a random de-
gree ℓ polynomial in a distributed manner, such that each
node obtains one evaluation point on the random polynomial.
This way, our approach only uses low-threshold ACSS (i.e.,
to share degree-t polynomial), which is orders of magnitude
faster than the best-known high-threshold ACSS schemes. In
addition to high-threshold ADKG, this random polynomial
sampling protocol can also improve the efficiency of asyn-
chronous proactive secret sharing, robust pre-processing of
asynchronous multi-party computation, and possibly other
problems (see §6).

We now provide a simplified overview of our construction
for the specific case of ℓ= 2t. Besides low-threshold ACSS,
our construction also uses a Multi-valued Validated Byzantine
Agreement (MVBA) [11] subroutine, where each node inputs
a value and agrees on a set of at least n− t values.

Each node samples two randomly chosen secrets and shares
them using a low-threshold ACSS scheme, i.e., an ACSS
scheme where t +1 valid secret shares are sufficient to recon-
struct the secret. Nodes then run a MVBA protocol to agree

on a subset of nodes, denoted T , whose ACSS terminated at
all nodes. The MVBA protocol guarantees that T includes at
least n− t nodes.

Once the MVBA protocol terminates, each node locally
holds shares of two secret shared vectors of size at least n− t
each. Each vector contains (n, t +1) threshold secret shares
of up to possibly t biased secrets from the malicious nodes
and at least n−2t uniformly random secrets from the honest
nodes. The idea is that nodes use these shares of the possibly
biased secret shared vectors to generate (n, t +1) threshold
secret shares of ℓ+1 random coefficients of a polynomial.

In order to produce threshold secret shares of the ℓ+ 1
uniformly random coefficients, our protocol uses a random-
ness extractor, which outputs uniformly random values from
a mixed set of random and biased values. One approach for
randomness extraction is to multiply the above vector of ran-
domness with a hyperinvertible matrix [6], which intuitively
ensures each output value has contributions from at least one
new uniformly random input and therefore is also uniformly
random.

More specifically, each node locally computes the threshold
secret shares of the ℓ+1 random coefficients z0,z1,z2, . . . ,zℓ
by locally applying the randomness extractor to the ACSS
outputs included in the MVBA output T . Here, we crucially
use the linearity of the randomness extractor. Then, consider
the polynomial z(x) defined as:

z(x) = z0 + z1x+ z2x2 + · · ·+ zℓxℓ

Our protocol uses z0 = z(0) as the ADKG secret key and
z(k) as the ADKG secret key share of node k. However, so
far, each node k, only has Jz0,z1,z2, . . . ,zℓKk. Thus, the next
step of our protocol is to assist node k in computing z(k).
In particular, each node i, uses Jz0,z1,z2, . . . ,zℓKi to locally
compute secret share of z(k) for each k ∈ [n], i.e., Jz(k)Ki, and
sends it to node k via private channel. Node k, upon receiving
sufficiently many shares of z(k), recovers z(k) using error
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Table 2: Notations used in the paper

Notation Description

n Total number of nodes
t Maximum number of malicious nodes
ℓ Reconstruction threshold of ADKG
Zq Field of order q where q is prime
G Group of order q with hard Discrete Logarithm
g,h Random and independent generators of G
z,gz ADKG secret and public key
z(i) ADKG secret share of ith node
gz(i) ADKG threshold public key of ith node
κ Security parameter
pki,ski Public and private keys of ith node.
ai,bi Secrets chosen by ith node during sharing phase
ai(·),bi(·) Polynomial chosen by ith node to share ai,bi
vvvi,uuui Pedersen commitment of ai(·) and bi(·)
pok(·) NIZK proof for Proof of Knowledge
T MVBA protocol output

correcting code.
Challenges. Proving the security of our high-threshold
ADKG protocol is more challenging than one might expect.
The primary source of difficulty is due to the fact that, in our
protocol an adversary corrupting any node i, in addition to the
evaluation point z(i), also learns secret shares of the coeffi-
cients of z(·), i.e., Jz0,z1,z2, . . . ,zℓKi, and all the secret shares
of z(i), i.e., Jz(i)Kk for each k ∈ [n]. This introduces further
challenges in ensuring that nodes output the correct ADKG
public key gz(0) and the threshold public key gz(k) of each
node k ∈ [n]. Addressing these challenges while maintaining
the efficiency and simplicity of the overall protocol is quite
challenging. We will discuss these in more detail in §5 when
we have the appropriate context.

3 Preliminaries

In this section, we describe the preliminaries used in our
protocol. We summarize the notations in Table 2.

3.1 Asynchronous Complete Secret Sharing
An ACSS protocol consists of two phases: Sharing and Re-
construction. During the sharing phase, a dealer L shares
a secret s ∈ Zq using Sh. During the reconstruction phase,
nodes use Rec to recover the secret. We say that (Sh,Rec) is a
t-resilient ACSS protocol if the following properties hold with
probability 1−negl(κ) against any non-uniform probabilistic
polynomial time (PPT) adversary that corrupts up to t nodes:

• Correctness. If L is honest, then Sh will result in every hon-
est node i eventually outputting JsKi. Once Sh is complete,
if all honest nodes start Rec, they will output s as long as at
most t nodes are malicious.

• Secrecy. If L is honest, then for any non-uniform PPT ad-
versary A controlling up to t nodes, there exists a PPT
simulator S such that the output of S and A’s view in the
real-world protocol are indistinguishable.

• Agreement. If any honest nodes outputs in Sh, then there
exists a secret s̃∈Zq such that each honest node i eventually
outputs Js̃Ki and s̃ is guaranteed to be correctly reconstructed
in Rec. Moreover, if L is honest, s̃ = s.

We also require the ACSS scheme to satisfy the following
Homomorphic-Partial-Commitment property.

• Homomorphic-Partial-Commitment: If some honest
node terminates Sh for a secret s, then every honest node
outputs commitments of JsKi for each i ∈ [n]. Furthermore,
these commitments are additively homomorphic across dif-
ferent ACSS instances.

We observe that if an ACSS protocol outputs a Pedersen
commitment of the underlying polynomial, then it guarantees
Homomorphic-Partial-Commitment. We describe Pedersen
commitment and Pedersen polynomial commitment [46] next.
Pedersen commitment. Let g,h ∈G, be two uniformly ran-
dom and independent generators of an elliptic curve group
G. Given g,h, a Pedersen commitment c to a message m, is
c = gm ·hr. The opening proof of a Pedersen commitment is
the tuple (m,r). Upon receiving opening to a commitment c,
the verifier checks its correctness by checking that c = gmhr.
Pedersen commitment is information-theoretically hiding and,
assuming the hardness of discrete logarithm, computationally
binding.
Pedersen polynomial commitment. To commit to a degree-d
polynomial a(x), the committer samples a random degree d
polynomial â(x), where:

a(x) = a0 +a1x+a2x2 + · · ·+adxd

â(x) = â0 + â1x+ â2x2 + · · ·+ âdxd

Here, the coefficients ak and âk for k ∈ [0,d] are elements
of Zq and âk are uniformly random. Then the commitment to
a(x) is the vector vvv computed as:

vvv =
[
ga0hâ0 ,ga1hâ1 ,ga2hâ2 , . . . ,gad hâd

]
(1)

Note that given the Pedersen commitment of a polynomial
a(·) with randomness â(·), we can compute ga(i)hâ(i), the Ped-
ersen commitment of a(i), by evaluating in the exponent. The
polynomial commitment is additively homomorphic and infor-
mation theoretically hiding. Moreover, assuming the hardness
of discrete logarithm, the polynomial commitment is compu-
tationally binding. The size of the commitment is linear in the
degree of the polynomial.

Given a commitment vvv and share αi, α̂i, a node checks
whether αi = a(i) and α̂i = â(i) by checking whether

gαihα̂i =
d

∏
k=1

(vvv[k])ik (2)
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Our paper uses the low-threshold ACSS scheme from Das
et al. [21], which improves upon the low-threshold ACSS of
Yurek et al. [58]. For completeness, we describe the Sharing
phase of the ACSS scheme of [21] in Appendix B. We want
to note that it is possible to further improve the concrete
computation cost of the low-threshold ACSS phase using
recent techniques from [60].

3.2 Multi-valued Validated Byzantine
Agreement

Multi-valued validated Byzantine agreement (MVBA) [11]
is an agreement protocol that guarantees a set of nodes, each
with an input value, to agree on the same value satisfying a
predefined external predicate P(v) : {0,1}|v|→ {0,1} glob-
ally known to all the nodes. A MVBA protocol with predicate
P(·) provides the following guarantees except for negligible
probability.

• Termination. If all honest nodes input a value satisfying
the predicate, all honest nodes eventually output.

• Agreement. All honest nodes output the same value.

• External Validity. If an honest node outputs v, then
P(v) = 1.

Remark 1. Due to the FLP [25] impossibility result, a deter-
ministic agreement is impossible under asynchrony and thus
requires randomness (commonly via a threshold-signature
based common-coin). To break this circularity, we use the
recent ideas from [22], whose Sharing, Key Proposal, and
Agreement phases can be viewed as a MVBA protocol. Look-
ing ahead, the MVBA construction of [22], after our improve-
ments in §4.6, has communication cost of O(κn3), expected
latency of O(logn) rounds, and each node incurs a computa-
tion cost of O(n2) group exponentiations.
Remark 2. Our protocol also uses an MVBA with slightly
strong validity requirement [59], where the predicate P(v,e)
additionally can have some variable e depending on the exe-
cution state of the node as the input. Indeed, the MVBA of
Das et al. [22] satisfies this property. We will explain more
details in §4.2.

3.3 Randomness Extraction using a
Hyperinvertible Matrix

We use the randomness extraction technique based on hyper-
invertible matrices [6], which are matrices whose every square
sub-matrix is invertible. Using a hyperinvertible matrix, each
node can perform a series of local linear operations on the
shares of m input secrets and extracts shares of m− t uniform
random secrets.

Let Jx1,x2, . . . ,xmKi be shares of m secrets x1,x2, . . . ,xm
held by node i. We use the following Vandermonde matrix.

Then, nodes compute their shares of m− t output secrets
y1,y2, . . . ,ym−t as follows:

y1
y2
...

ym−t

=


1 ω1 . . . ω

m−1
1

1 ω2 . . . ω
m−1
2

...
...

. . .
...

1 ωm−t . . . ω
m−1
m−t




x1
x2
...

xm−1
xm


If at least m− t input secrets are independent and uniformly
random, and the matrix is hyper-invertible, then the m− t out-
put secrets y1,y2, . . . ,ym−t are guaranteed to be independent
and uniformly random. Looking ahead, this suits our purpose
because at most t input secrets in our protocol come from
corrupt nodes, and the remaining m− t will be independent
and uniformly random.

4 Design

We summarize our ADKG protocol in Algorithm 1 and de-
scribe it in this section.

The public parameters for our ADKG protocol are a pair
of randomly and independently chosen generators (g,h) of a
group G of prime order q, in addition to any public param-
eters of the MVBA protocol. Our protocol consists of four
phases: Sharing, Agreement, Randomness Extraction, and Key
Derivation phase.

4.1 Sharing Phase
During the sharing phase, each node i samples two uniformly
random secrets ai,bi ∈ Zq and secret-shares them with all
other nodes using ACSS schemes (lines 2-3 in Algorithm 1).
Looking ahead in our protocol, each invocation of the ran-
domness extractor will produce t+1 random values (cf. §4.3).
Since we need ℓ+1 random values and ℓ can be up to 2t, we
need each node to share two uniform random values.

Nodes use the low-threshold ACSS from [21, §5.3] to share
the secrets. Let ai(·),bi(·) ∈ Zq[x] as shown below be the two
polynomials of degree t used during the ACSS scheme.

ai(x) = ai +ai,1x+ai,2x2 + . . .+ai,txt

bi(x) = bi +bi,1x+bi,2x2 + . . .+bi,txt

where ai,k,bi,k ∈ Zq are chosen at random. Let âi and b̂i be
the randomness used in the Pedersen commitment of ai and
bi, respectively.

The Agreement property of the ACSS scheme guarantees
that, once the sharing phase of ith ACSS instance terminates,
each honest node outputs one evaluation points on ai(·) and
bi(·). Also, each node j will also output JâiK j, and Jb̂iK j. Each
node additionally outputs the Pedersen commitments ui and
vi of ai and bi, respectively, where:

ui = gaihâi ; vi = gbihb̂i (3)
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Algorithm 1 High-threshold ADKG for node i
INPUT: ℓ,g,h,ski,{pk j} for each j ∈ [n]
OUTPUT: z(i),gz,{gz( j)} for each j ∈ [n]

SHARING PHASE:
1: S := {}, K := {}, R := {}, H := {}
2: Sample random secrets ai,bi← Zq
3: ACSS(ai,bi) with randomness (âi, b̂i);
4: S := S∪{ j} when j-th ACSS terminates at node i

AGREEMENT PHASE:
21: if |S|= n− t then
22: Let Si := S, invoke MVBA(Si) with predicate P(S j,S)
23: ▷ S j is the input value of some node j, S

is node i’s local variable defined in the Sharing Phase. P(S j,S)
only returns 1 once S j ⊆ S.

24: Let T be the output of the MVBA protocol
25: for each j ∈ [n]\T do
26: Let Ja jKi := 0; Jâ jKi := 0
27: Let Jb jKi := 0; Jb̂ jKi := 0
28: Let u j := 1G; v j := 1G

RANDOMNESS EXTRACTION PHASE:
31: Wait for the agreement phase to terminate
32: Let M,M̃ be hyperinvertible matrix described in §4.3.
33: Let Jz0,z1,z2, . . . ,ztKi := M · Ja1,a2, . . . ,anKi
34: Let Jzt+1,zt+2, . . . ,zℓKi := M̃ · Jb1,b2, . . . ,bnKi
35: Let Jẑ0, ẑ1, ẑ2, . . . , ẑtKi := M · Jâ1, â2, . . . , ânKi
36: Let Jẑt+1, ẑt+2, . . . , ẑℓKi := M̃ · Jb̂1, b̂2, . . . , b̂nKi

37: Let z(·), ẑ(·) be the ℓ-degree polynomial defined in §4.3
38: Send ⟨RANDEX,Jz( j)Ki,Jẑ( j)Ki⟩ to node j, ∀ j ∈ [n].

39: upon receiving ⟨RANDEX,Jz(i)K j,Jẑ(i)K j⟩ from j do
40: K := K∪{( j,Jz(i)K j)}, R := R∪{( j,Jẑ(i)K j)}
41: Run OEC on the set K and R
42: Let z(i) := OEC(K) and ẑ(i) := OEC(R).

KEY DERIVATION PHASE:
51: Let πi := {pok.Prove(z(i),g,gz(i)),pok.Prove(ẑ(i),h,hẑ(i))}
52: Send ⟨KEY,gz(i),hẑ(i),πi⟩ to all

53: Let [c0,c1,c2, . . . ,ct ] := M ⋆ [u1,u2, . . . ,un]
54: Let [ct+1,ct+2, . . . ,cℓ] := M̃ ⋆ [v1,v2, . . . ,vn]

▷ ⋆ denotes inner product in the exponent. ui,vi are
the Pedersen commitments of ai,bi in the ACSS respectively, as
described in §4.1.

55: upon receiving ⟨KEY,gz( j),hẑ( j),π j⟩ from node j do
56: Validate π j and check whether c( j) = gz( j)hẑ( j)

57: if All the condition above are valid then
58: H := H ∪{( j,gz( j))}
59: if |H| ≥ ℓ+1 then
60: Interpolate gz(0) and any missing gz( j)

61: output z(i), gz(0), and gz( j) for each j ∈ [n]

4.2 Agreement Phase
During the agreement phase, nodes run an multi-valued vali-
dated Byzantine agreement (MVBA) protocol to agree on a
subset of valid ACSS instances that terminated. More specifi-
cally, each node waits for n− t ACSS instances to terminate
locally. Let Si be the set of first n− t ACSS instances that
terminates node i. Node i then inputs Si to the MVBA pro-
tocol. Node i also maintains a set S of all ACSS instances
that terminate at node i. Note that the S is ever growing. For
any value S j input to the MVBA by node j, node i uses the
predicate P(S j,S) to check that |S j| ≥ n− t and S j ⊆ S, i.e.,
all ACSS instances in S j terminated at node i.

Let T be the output of the MVBA protocol, |T | ≥ n− t.
Hence, T includes at least n− 2t honest nodes. After the
MVBA protocol outputs the set T , node i sets Ja jKi,Jb jKi, to
be equal to 0 for each j ∈ [n]\T . This implies that for each
j ∈ [n]\T , a j and b j are set to be equal to 0 as field elements.

4.3 Randomness Extraction Phase
Let aaa and bbb be the vectors defined as below,

aaa = [a1,a2, . . . ,an]; where a j = 0,∀ j ∈ [n]\T

bbb = [b1,b2, . . . ,bn]; where b j = 0,∀ j ∈ [n]\T

Let JaaaKi and JbbbKi be the vectors consisting of element-wise
secret shares of vectors aaa and bbb, respectively, held by node i.
Each node i then locally compute the secret share of the vector
[z0,z1,z2, . . . ,zℓ] where the elements are defined as below

z0
z1
...
zt

=


1 ω1 . . . ω

n−1
1

1 ω2 . . . ω
n−1
2

...
...

. . .
...

1 ωt+1 . . . ω
n−1
t+1




a1
a2
...

an

 (4)


zt+1
zt+2

...
zℓ

=


1 ω1 . . . ω

n−1
1

1 ω2 . . . ω
n−1
2

...
...

. . .
...

1 ωℓ−t . . . ω
n−1
ℓ−t




b1
b2
...

bn

 (5)

where the matrix is the hyperinvertible matrix.
Using the (n, t +1) secret shares of aaa and bbb, each node i lo-

cally computes the element wise (n, t +1) secret shares of the
vector [z0,z1,z2, . . . ,zℓ], by applying the operations specified
in equation (4) and equation (5) to their shares of the vectors
aaa and bbb, respectively.

Let z(·) ∈ Zq[x] be the polynomial of degree ℓ defined as,

z(x) = z0 + z1x+ z2x2 + · · ·+ zℓxℓ (6)

Each node has a (n, t + 1) share of every coefficient
of the polynomial z(·). Each node i then locally com-
putes Jz( j)Ki for every other node j. We denote by zzz
the vector [z(1),z(2), . . . ,z(n)]. In addition to computing
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JzzzKi, nodes additionally compute shares of the vector ẑzz =
[ẑ(1), ẑ(2), . . . , ẑ(n)] in the same way using equation (4) and
equation (5) where, instead of using JaaaKi and JbbbKi, nodes
use Jâ1, â2, . . . , ânKi and Jb̂1, b̂2, . . . , b̂nKi, respectively. Recall
from §4.1 that âk and b̂k for any k ∈ T are the randomness
used in the Pedersen commitment of ak and bk, respectively,
and âk = b̂k = 0 for all k ∈ [n]\T .

Node i then sends ⟨RANDEX,Jz( j)Ki,Jẑ( j)Ki⟩ to node j.
Upon receiving ⟨RANDEX,Jz′(i)K j,Jẑ′(i)K j⟩ from node j, node
i reconstructs z(i) and ẑ(i) using online error correction (see
Appendix A for more details on online error correction).

4.4 Key Derivation Phase
During the key derivation phase, each node first computes the
Pedersen commitments to z(i) for each i ∈ [n] using the pub-
licly available information. Recall from sharing phase (§4.1)
each for every ACSS j that terminates, node i outputs the
Pedersen commitment to the corresponding secrets. Let u j,v j
be the corresponding commitments, where

u j = ga j hâ j ; v j = gb j hb̂ j

Let [c0,c1,c2, . . . ,cℓ] be the vector defined as below:
c0
c1
...
ct

=


1 ω1 . . . ω

n−1
1

1 ω2 . . . ω
n−1
2

...
1 ωt+1 . . . ω

n−1
t+1

⋆


u1
u2
...

un




ct+1
ct+2

...
cℓ

=


1 ω1 . . . ω

n−1
1

1 ω2 . . . ω
n−1
2

...
1 ωℓ−t . . . ω

n−1
ℓ−t

⋆


v1
v2
...

vn


Here the ⋆ operation denotes the inner product in the expo-

nent, i.e.,

c0 = ∏
k∈[n]

u
ω

k−1
1

k

We will now define the function c(·) : Zq→G as:

c(x) =
ℓ

∏
i=0

cxi

i

It is easy to see that ci = gzihẑi . Also, c(i) = gz(i)hẑ(i). Let
ccc be the vector defined as:

ccc = [c(1),c(2), . . . ,c(n)]

Let πi be the non-interactive zero-knowledge proof of
knowledge of z(i) and ẑ(i) with respect to gz(i) and hẑ(i), re-
spectively [50]. In particular, let

πi =
{
pok.Prove

(
z(i),g,gz(i)

)
;pok.Prove

(
ẑ(i),h,hẑ(i)

)}

Each node i then sends ⟨KEY,gz(i),hẑ(i),πi⟩ to every node.
Also, node i, upon receiving ⟨KEY,gz( j),hẑ( j),π j⟩ from node
j checks whether π j is a valid proof of knowledge. Node i
additionally checks whether c( j) = gz( j)hẑ( j) or not. Upon
receiving ℓ+1 valid KEY messages, a node can compute the
public key gz(0) and the missing threshold public keys gz( j)

for each j ∈ [n] using Lagrange interpolation in the exponent.

4.5 Reducing Common-Case Computation

One way to compute c(k) for any k ∈ [n] is to first compute ci
for all i ∈ [0, ℓ] and then evaluate the function c(·) at k. It is
easy to see that computing c(k) for all k ∈ [n] naïvely would
require each node to perform O(n2) group exponentiations.
Using number theoretic transform (NTT), a node can compute
c(k) for all k in O(n logn) group exponentiations as follows.
Each node first uses NTT to compute ci for all i ∈ [0, ℓ]. Then,
each node use NTT one more time to compute c(k) for all
k ∈ [n], using ci for all i ∈ [0, ℓ]. We design an optimization
that can further reduce it to O(n) exponentiation in the fault-
free case, i.e., without any byzantine behavior. Our approach
also maintains the cost of O(n logn) group exponentiations in
the presence of arbitrary faults.

During key derivation phase, every node upon receiving
the message ⟨KEY,gz′(i),hẑ′(i)⟩ from node i, validates them for
proof of knowledge. Upon successful validation, each node
optimistically assumes that z′(i) = z(i) and ẑ′(i) = ẑ(i), i.e.,
they are valid evaluations of the polynomials z(·) and ẑ(·).
Upon receiving ℓ+1 such KEY messages, the node optimisti-
cally compute gz′(0) and hẑ′(0) by interpolating in the expo-
nent. The node additionally computes c0 and checks whether
gz′(0)hẑ′(0) = c0. If the check passes, the node outputs gz′(0) as
the ADKG public key. Otherwise, if the check fails, it falls
back to the original protocol. Specifically, it finds the invalid
KEY messages using the check we described in §4.4, removes
them from the set of received KEY messages, and computes
the correct ADKG public key as per §4.4.

To compute the threshold public keys, each node waits for
all n KEY messages for a pre-specified time. Upon receiving
all n KEY messages, nodes checks that the threshold keys in-
cluded in the message lie on a degree ℓ polynomial using [16].
Otherwise, if the check fails or a node does not receive all n
KEY messages within the pre-specified time, the node com-
putes the threshold public keys of other nodes using NTT.

We will prove in §5.2 that this approach ensures correct-
ness, i.e., nodes always output the correct ADKG public key
and threshold public keys.

4.6 Reducing the Computation Cost of MVBA

We will now describe how to reduce the worst-case com-
putation cost of the multi-valued validated byzantine agree-
ment (MVBA) protocol of [22] from O(n3) group operations
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to O(n2) group exponentiations. We will first briefly describe
the MVBA protocol of Das et al. [22].
MVBA protocol of [22]. The protocol has three phases:
Sharing, Key-proposal, and Agreement. During the sharing
phase, each node secret shares a random value using an ACSS
scheme. Each node i then waits for a set Ki of t + 1 ACSS
instances to terminate locally, and then reliably broadcasts Ki
during the key-proposal phase. During the agreement phase,
nodes run n parallel asynchronous binary agreement (ABA)
protocol. For the i-th ABA, nodes aggregate the ACSS in-
stances in Ki and use the aggregated secret to generate shared
randomness [12]. Additionally, nodes aggregate the polyno-
mial commitments of the ACSS instances in Ki, which require
them to perform O(n2) group operations for each ABA. Since
there are n such ABA instances, in the worst case, each node
will need to perform O(n3) group operation.
Our approach. We reduce the computation cost of the agree-
ment phase of their MVBA protocol to O(n2) group opera-
tions by adopting the distributed aggregation verification idea
from [20]. The main idea is to have only one node perform the
aggregation and let each node verify only one position of the
aggregated commitment. Specifically, during the key-proposal
phase, node i first aggregates the polynomial commitments
of the ACSS instances in Ki, and then reliably broadcasts the
tuple (Ki,vvvi) where vvvi is the aggregated commitment. Upon
receiving the tuple (Ki,vvvi) as the proposal during the i-th re-
liable broadcast, each node j, locally compute the correctly
aggregated commitment ṽvvi[ j] using the publicly available
information and checks whether vvvi[ j] = ṽvvi[ j]. A node j partic-
ipates in the reliable broadcast only if this check is successful
in addition to the checks in [22]. Lastly, when (if) the i-th
key proposal reliable broadcast terminates, nodes use vvvi to
compute shared randomness for the i-th ABA instance.

It is easy to see that the for each ABA instance, every node
needs to perform a linear number of group operations. Hence,
each node will perform O(n2) group operations in total. Also,
note that vvvi is a commitment to a polynomial of degree t.
Hence, t +1 distinct points uniquely determine the polyno-
mial. Since the reliable broadcast successfully terminates
only if at least t + 1 honest nodes participate, this implies
that vvvi and ṽvvi match in at least t +1 evaluation points and are
commitments to the same polynomial.

5 Analysis

5.1 Security

Intuition. Intuitively, the security of our ADKG protocol fol-
lows from the fact that the randomness extraction phase out-
puts ℓ+1 independent and uniformly random values, which
are then used as the coefficients of a degree-ℓ polynomial.
Since each node only learns one point on this polynomial,
the ADKG secret key remains hidden from an adversary who
learns at most ℓ points.

We will now formalize the above intuition using the real-
ideal paradigm. More precisely, we will prove that for every
PPT adversary A , there exists a PPT simulator S that, given
gz, gJzK, and JzKi for each i∈ C1∪C2 by the ideal functionality
FADKG, produces a view such that the joint-distribution of
A’s view and honest parties’ outputs in the ideal world is
indistinguishable from that of the real world.

In order to prove security, we first prove the following
important lemma.

Lemma 1. Let JzKi be the share of node i. These shares lie
on a polynomial z(x) of degree at most ℓ, i.e., z(i) = JzKi.
Assuming the hardness of the discrete logarithm, all honest
nodes output the same public key gz and the same threshold
public keys gz(i) of all nodes i ∈ [n].

Proof. The Termination property of the MVBA protocol
of [22] ensures that the agreement phase terminates at all
honest nodes. Moreover, the Agreement and External validity
property ensures that all honest nodes agree on the MVBA
output T , and |T | ≥ n− t.

During the randomness extraction phase, each node i com-
putes the tuple Jz(k)Ki,Jẑ(k)Ki for every k∈ [n] and sends them
to node k using RANDEX message. The Correctness property
of online error correction ensures that every honest node out-
puts the correct evaluation point on the polynomial z(·). Thus,
any subset of ℓ+1 valid shares uniquely identity z = z(0).

The External validity property of the MVBA guaran-
tees that every ACSS instance included in T will termi-
nate at all honest nodes. Thus, by the Homomorphic-Partial-
Commitment property of the ACSS scheme, each node will
output the Pedersen commitment of every ACSS instance in
T . Since multiplication by the Hyperinvertible matrix is de-
terministic, every node agrees on the Pedersen polynomial
commitment to z(·).

Let ccc = [c(1),c(2), . . . ,c(n)] be the commitment vector
where c(i) is the Pedersen commitment to z(i). Honest nodes
can compute ccc using only publicly available information. Dur-
ing the key derivation phase, for any KEY message from node
i, i,e., ⟨KEY,gz′(i),hẑ′(i)⟩, the Proof-of-knowledge NIZK proof
guarantees that node i knows z′(i) and ẑ′(i). Thus, by the bind-
ing property of the Pedersen commitment scheme, z′(i) = z(i)
and ẑ′(i) = ẑ(i). Since each honest node only uses valid KEY

messages to compute the ADKG public key, every honest
node will output the same public key gz(0).

In addition to computing gz(0), nodes use the set of valid
KEY messages to interpolate the threshold public keys of every
node i. Hence, nodes agree on the threshold public key gz(i)

of each node i.

We describe the simulator S in Figure 3 and summarize it
below. Let C = C1∪C2 and H = [n]\C1. S samples a random
element α∈Zq and sets h= gα. Then, S simulates the sharing
and agreement phases of the ADKG protocol per the protocol
specification. Specifically, for each node i ∈ H , S samples
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Inputs. C1 and C2.
Notations. Let C = C1∪C2 and H = [n]\C1.

1. Send C1,C2 to FADKG and receive g,gz,gJzK, and JzKi for
each i ∈ C .

2. Sample a uniformly random α ∈ Zq and sets h = gα.

3. For each node i ∈ H , sample uniformly secrets ai,bi ∈
Zq. Follow the protocol for every honest node during the
sharing phase and the agreement phase. Let T be the output
of the agreement phase.

4. Let z′(x) be the resulting polynomial of degree ℓ specified
by T . Then, during the randomness extraction phase, each
node j possess Jz′(i)K j for all i ∈ [n].

5. Let z(x) be the polynomial of degree ℓ such that z(0) = z
and z(i) = JzKi for each i ∈ C .

6. For each node i ∈ C , compute Jz(i)K j for all j ∈ H such
that Jz(i)Kk = Jz′(i)Kk for all k ∈ C1. Also, for each i ∈ C ,
compute the corresponding Pedersen commitment random-
ness Jẑ(i)K j for all j ∈H such that the underlying Pedersen
commitments do not change. Use knowledge of α to com-
pute these values.

7. On behalf of each node j ∈ H , sends
⟨RANDEX,Jz(i)K j,Jẑ(i)K j⟩ to node i for all i ∈ C .

8. For each honest node j ∈ [n] \ C , compute gz( j) by in-
terpolating in the exponent. Additionally, compute hẑ( j)

as gz′( j)hẑ( j)/gz( j). Generate NIZK proof π j for proof of
knowledge of gz( j) and hẑ( j) using the NIZK simulator.
Finally, send ⟨KEY,gz( j),hẑ( j),π j⟩.

Figure 3: Description of the ADKG simulator S .

uniformly random secrets ai,bi and secret shares them using
the ACSS protocol. S then runs the agreement phase for each
honest node. Let T be the output of the MVBA protocol.

For each node i ∈ [n], let z′(i), ẑ′(i) ∈ Zq be its share and
for Pedersen commitment computed as per §4.3. Then, by
construction, after applying the randomness extractor to the
secret shares received during the sharing phase, each node
j ∈H possesses Jz′(i)K j and Jẑ′(i)K j. Also, let ci, j be the cor-
responding Pedersen commitment, i.e., ci, j = gJz′(i)K j hJẑ′(i)K j .

Next comes the key step of our simulator. Let z(x) be the
polynomial of degree ℓ such that z(0) = z and z(i) = JzKi
for each i ∈ C . For each i ∈ C , S computes Jz(i)K j for all
j ∈H such that Jz(i)Kk = Jz′(i)Kk for all k ∈ C1. S computes
these values by interpolating a polynomial of degree t that
evaluates to z(i) at 0 and to Jz(i)Kk at k for all k ∈ C1. For each
i ∈ C , j ∈ H , S also computes the corresponding Pedersen
commitment randomness Jẑ(i)K j as:

Jẑ(i)K j =
(
Jz′(i)K j− Jz(i)K j

)
α
−1 + Jẑ′(i)K j

This ensures ci, j = gJz(i)K j hJẑ(i)K j . Then, on behalf of each
node j ∈H , S sends ⟨RANDEX,Jz(i)K j,Jẑ(i)K j⟩ to each node

i ∈ C .
Next, for each node j ∈ [n] \ C , S does the following:

(i) It ignores the RANDEX messages sent to it; (ii) It com-
putes gz( j) by interpolating with gz(i) for each i ∈ C and gz(0)

in the exponent; (iii) It computes hẑ( j) as gz′( j)hẑ′( j)/gz( j);
(iv) It generates NIZK proof π j for proof of knowledge of
gz( j) and hẑ( j) using the NIZK simulator; (v) Lastly, it sends
⟨KEY,gz( j),hẑ( j),π j⟩ on behalf of node j.

Theorem 1 (Security). The joint distribution of the honest
parties’ output and A’s view is identically distributed in the
ideal world and the real protocol execution.

Proof. We first observe that A’s shares of the secret key, the
threshold public keys, and the ADKG public key in the simu-
lated world match those output by the FADKG. Then, we will
prove that A’s view is identically distributed in the real proto-
col execution and the simulated world through a sequence of
hybrids.
Hybrid 0. This corresponds to the real-world execution.
Hybrid 1. Same as Hybrid 0 except that the common random
string element h is sampled as gα for a known uniform random
α ∈ Zq. Hybrid 1 is indistinguishable from Hybrid 0 as the
distribution of h is identical in both hybrids.
Hybrid 2. Same as Hybrid 1, except that we simulate the
NIZK proofs of equality of discrete logarithms used during
the key-derivation phase. Since Schnorr’s protocol [50] for
proving the knowledge of discrete logarithm is perfect zero-
knowledge, Hybrid 2 is identically distributed as Hybrid 1.
Hybrid 3. This corresponds to the simulated world.

The differences between Hybrid 3 from Hybrid 2 are that
the randomness extraction messages of all honest parties are
generated by steps 5 and 6 of Figure 3, and the KEY messages
as generated by step 7 of Figure 3.

Hybrid 3 is identically distributed as Hybrid 2 due to the
perfect hiding of the Pedersen commitment scheme, the per-
fect secrecy of Shamir secret sharing, and the fact that the
output of the randomness extractor is uniformly random. The
perfect hiding property of the Pedersen commitment scheme
reveals no information about the underlying message. The
security of the (n, t+1) Shamir secret sharing scheme ensures
that less than or equal to t shares reveal no information about
the remaining shares. Thus, when we replace the output of the
randomness extraction phase with uniformly random shares
received from FADKG (while ensuring consistency of RANDEX
and KEY messages sent by honest nodes), Hybrid 3 maintains
the same distribution as Hybrid 2.

Lastly, consider the joint distribution of honest nodes output
and view of A’s view in both the real world and the ideal
world. In both worlds, the view of the A , in particular the
threshold public keys, uniquely determines the honest parties’
outputs. In the real execution, Lemma 1 guarantees that the
honest parties output the same threshold public keys and their
secret shares are consistent with the threshold public keys. In
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the ideal world, S ensures that the threshold public keys in A’s
view and the shares of nodes in C match the FADKG output.
Therefore, the fact that Hybrid 0 is identically distributed as
Hybrid 3 also implies that the joint distribution of the honest
parties’ output and the A’s view is identically distributed in
the ideal world and the real protocol execution.

5.2 Analysis of Optimization in §4.5
It is easy to see that the in the optimistic case, an honest
node will perform only O(n) group exponentiations. Now, we
will illustrate that if an adversary A can violate correctness,
i.e., make any honest node output gz′(0) for z′(0) ̸= z(0), we
can use A to build an adversary ADL that breaks the discrete
logarithm assumption.

ADL upon receiving the discrete logarithm tuple (g,h), runs
the ADKG simulator up until (including) the randomness
extraction phase of the ADKG protocol. This implies that
ADL knows both z(0) and ẑ(0). Let gz′(0) and hẑ′(0) be the
ADKG public key and the associated randomness, output by
any honest node. Also, let α be such that h = gα. Then, by
construction:

c0 = gz(0)hẑ(0) = gz′(0)hẑ′(0)

=⇒ z(0)+αẑ(0) = z′(0)+αẑ′(0)

=⇒ α =
z′(0)− z(0)
ẑ(0)− ẑ′(0)

(7)

Since we assume z(0) ̸= z′(0), equation (7) is well defined.
For every KEY message from node i with valid proof-of-

knowledge proof, ADL uses the proof-of-knowledge extractor
to extract z′(i) and ẑ′(i). ADL then computes z′(0) and ẑ′(0)
by interpolation and computes α, the discrete logarithm of h
with respect to g, using equation (7).

Finally, let z̃(·) be the polynomial of degree ℓ, such that a
honest node output gz̃(k) for every k ∈ [n] as the ADKG public
key. Then, z̃(·) = z(·) as they agree on all n points, including
n− t ≥ ℓ points sent by honest nodes.

5.3 Performance
Lemma 2. The expected total communication cost of our
ADKG protocol is O(κn3).

Proof. The sharing phase consists of O(n) ACSS instances,
as for any given ℓ ∈ [t,n− t − 1], each node need to share
at most two uniform random secrets. Each of which has a
communication cost of O(κn2). The MVBA protocol from
Das et.al. [22] has cost O(κn3). In the randomness extraction
phase, every node sends an O(κ)-size message to every other
node, which has cost O(κn2) in total. In the key derivation
phase, every node broadcasts an O(κ)-size message, which
has cost O(κn2) in total. Therefore, the total communication
cost of our ADKG protocol is O(κn3).

Lemma 3. The expected computation cost per node in our
ADKG protocol is O(n2), measured in the number of elliptic
curve exponentiations.

Proof. Each node incurs the computation cost of one ACSS
dealer and n− 1 ACSS non-dealer node. During the agree-
ment phase each node incurs the computation cost of one
RBC broadcaster, n−1 RBC non-broadcaster node, and the
computation cost of n parallel ABA instances.

In each ACSS instance, each node needs to perform O(n)
exponentiations, hence a total of O(n2) exponentiations in the
sharing phase. Also, in the MVBA protocol, each node incurs
a computation cost of O(n2) group exponentiations (ref. §4.6).
During the randomness extraction phase, in the worst case,
each node incurs O(n3 logn) computation cost. However,
these costs are due to Reed-Solomon decoding and do not
involve any elliptic curve operations and hence are not a
bottleneck. Finally, during the key derivation phase, each
node needs to perform O(n logn) group exponentiations in
the worst case.

Lemma 4. Our ADKG protocol terminates in O(logn)
rounds in expectation.

Proof. The ACSS has expected O(1) round latency, the
MVBA protocol has expected O(logn) round latency [22],
and rest of the ADKG protocol has constant steps. Therefore
the expected latency of the protocol is O(logn) rounds.

Remark. Like [22], our protocol will also terminate in O(1)
rounds in the common case where there is synchrony and no
failures. We refer the reader to [22] for more details.

Combining all of the above, we get the following theorem.

Theorem 2 (ADKG). In a network of n≥ 3t+1 nodes where
a PPT adversary A corrupts up to t nodes and additionally ob-
serves shares of ℓ− t additional nodes, assuming hardness of
discrete logarithm, Algorithm 1 implements a high-threshold
ADKG protocol with expected communication cost of O(κn3),
expected computation cost of O(n2) per node and expected
O(logn) rounds (κ is the security parameter).

6 Extension and Other Applications

As we mention in §1, the core component – specifically, the
first three phases, sharing, agreement, and randomness extrac-
tion – of our high-threshold ADKG protocol can be distilled
as a mechanism to secret share a random polynomial of degree
ℓ. Here on, we will refer to this as the distributed polynomial
sampling. A distributed polynomial sampling protocol for
a network of n nodes {1,2, . . . ,n} guarantees that after the
protocol execution, each node i outputs z(i), which is some
uniformly random degree-ℓ polynomial z(·) evaluated at i.
We will illustrate below that it has other applications besides
ADKG.
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6.1 Asynchronous Random Double Sharing
Our distributed polynomial sampling protocol above also im-
plies an asynchronous protocol to generate double sharings
of random values, which means generating a degree-t sharing
and a degree-2t sharing of some random secret z. Consider
the secret z and let ℓ = 2t. After the randomness extraction
phase, each node i holds z(i) where z(·) is a polynomial of
degree 2t. Moreover, as a result of multiplying JaaaKi with the
hyperinvertible matrix, node i also receives a share of z on
a degree-t polynomial. Now, we show an application of our
double sharing protocol.

Secure multi-party computation (MPC) allows different par-
ties to jointly evaluate a function over their inputs while keep-
ing the inputs secret [56]. Typically the function is expressed
as an arithmetic circuit that contains addition and multiplica-
tion gates, and the parties compute the function by evaluating
additions and multiplications of the secret shares of their input
values. While the addition of secret shares is straightforward,
multiplication is more involved. One approach for secure mul-
tiplication of secret shared values is using double sharing of
random values [19].

Briefly, the secure multiplication protocol proceeds in an
offline-online manner [40]. During the offline phase, nodes
prepare double shares of random values via our double sharing
protocol above, i.e., nodes receive secret shares of a random
field element z using both degree t and degree 2t polynomials,
denoted JzKt and JzK2t , respectively. Note that the offline phase
is independent of the values that will be multiplied later in
the online phase.

During the online phase, nodes perform the secure multi-
plication. Given degree-t secret sharing of x and y, i.e., JxKt

and JyKt , nodes obtain degree-t secret share of xy as follows.
Each node i locally multiplies its shares JxKt

i and JyKt
i to get

the share JxyK2t
i . Nodes than publicly reconstruct the value

xy+ z by revealing JxyK2t
i + JzK2t

i . Upon reconstructing xy+ z,
nodes compute their share JxyKt of the multiplication as:

JxyKt
i = xy+ z− JzKt

i (8)

Security analysis. Our security analysis will be based on
the simulation argument, i.e., we will illustrate that, given
the adversarial shares, a simulator, S , can simulate the rest
of the protocol transcript. Without loss of generality, let us
assume the adversary A corrupts the first t nodes. Given the
adversarial shares, S samples random values for zi for each
i ∈ [0, ℓ]. S then uses these values to compute z(k) for each
k ∈ [n]. Then, for each k ∈ [n], S uses z(k) and shares of
adversarial nodes to compute Jz(k)K j for every j ∈ [t +1,n].

6.2 Proactive Secret Sharing
In proactively secure systems, nodes periodically refresh their
secrets to prevent attacks against long-term adversaries [10].
Our distributed polynomial sampling protocol will also be

useful in proactively secure systems such as CHURP [42]
and COBRA [55] where nodes want to refresh their secrets
using possibly high-degree polynomials. In particular, nodes
will sample the coefficients z1,z2, . . . ,zℓ and set z0 = 0. Each
node i then locally adds z(i) to their old share to get the newly
updated share.

We want to note that, although our distributed polynomial
sampling is secure against an adversary that corrupts up to t
nodes during the share refresh protocol, the distributed poly-
nomial sampling can be used to re-randomize secrets shared
using degree ℓ polynomial. More specifically, the refresh pro-
tocol is secure only if the adversary corrupts at most t nodes
during the refresh protocol; but once the refresh protocol
terminates, the adversary can learn up to ℓ new shares.

7 Implementation and Evaluation

7.1 Implementation Details
We have implemented a prototype of our ADKG protocol
in python 3.7.13 on top of the open-source asynchronous
DKG implementation of [22]. Our implementation supports
any reconstruction threshold ℓ≥ t.

We use rust libraries for elliptic curve operations and
asyncio for concurrency, though our prototype only runs
on a single processor core. We use the low-threshold ACSS
protocol from [21, §5.3]. Our implementation uses the asyn-
chronous binary agreement protocol from [18] and reliable
broadcast protocol from [21].

In our implementation, we use both the curve25519 and
bls12381 elliptic curves. We use the Ristretto group over
curve25519 implementation from [2] and the bls12381
implementation from Zcash [31] (with a python wrapper
around each) for primitive elliptic curve operations. Note that
bls12381 supports pairing, so our implementation can be
used for pairing-based threshold cryptosystems such as [8].
However, a downside of pairing friendly curves is that they are
less efficient for applications that do not need them, in terms
of both communication and computation costs. For example,
a group element in curve25519 is 32 bytes, whereas group
elements in bls12381 are 48 and 96 bytes. Furthermore, our
micro-benchmark illustrates that a group exponentiation in
bls12381 is 6× slower than that of curve25519.
MVBA implementation. We reuse the MVBA protocol im-
plementation from [22]. As a result, we inherit the optimiza-
tion that the shared randomness for an asynchronous binary
agreement (ABA) protocol is computed only if it is needed
by the ABA instance [22, Appendix A]. We also merge the
sharing phase of the MVBA protocol with the sharing phase
of our high-threshold ADKG protocol. More specifically, in
the sharing phase of the MVBA protocol, nodes need to secret
share a random secret using low-threshold ACSS. Since the
MVBA protocol of [22] also uses the low-threshold ACSS
of [21], the communication pattern of their sharing phase is
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Table 3: Evaluation of high-threshold ADKG schemes. Average runtime is measured as the average time difference between the start of the
ADKG and the time a node output keys. Bandwidth usage is the amount of data a node sends during the ADKG protocol.

Avg. runtime (in seconds) Bandwidth usage/ node (in Megabytes)

Scheme Curve ℓ n = 16 n = 32 n = 64 n = 128 n = 16 n = 32 n = 64 n = 128

Das et al. [22]

curve25519 t 1.10 2.96 9.56 39.56 0.17 0.68 2.78 11.24
bls12381 t 1.32 3.16 10.66 42.28 0.17 0.73 2.96 11.98
curve25519 2t 10.64 37.76 152.56 — 0.95 4.20 18.97 —
bls12381 2t 11.50 40.43 164.37 — 0.97 4.13 19.29 —

This work curve25519 2t 1.29 3.19 12.48 46.55 0.20 0.82 3.32 13.10
bls12381 2t 1.47 4.03 14.50 50.35 0.21 0.84 3.48 13.44

identical to ours. Thus, we merge the ACSS instances into a
single ACSS instance that secret shares three random secrets.

7.2 Evaluation Setup
We evaluate our ADKG implementation with a varying num-
ber of nodes: 16, 32, 64, 128. For a given n ≥ 3t + 1, we
evaluate with a reconstruction threshold of ℓ= 2t. Note that
the bandwidth usage of our algorithm is identical for any
ℓ ∈ [t,n− t− 1]; the impact of ℓ on computation is also in-
significant. So our experimental results are representative of
any reconstruction threshold.

We run all nodes on Amazon Web Services (AWS)
t3a.medium virtual machines (VM) with one node per VM.
Each VM has two vCPUs and 4GB RAM and runs Ubuntu
20.04. We place nodes evenly across eight AWS regions:
Canada, Ireland, North California, North Virginia, Oregon,
Ohio, Singapore, and Tokyo. We create an overlay network
among nodes where all nodes are pair-wise connected, i.e.,
they form a complete graph.
Baselines. The only existing asynchronous DKG implemen-
tation is for the protocol [22]. Thus, we only compare with
their protocol.

7.3 Evaluation Results
With our evaluation, we aim to demonstrate that our high-
threshold ADKG protocol is significantly more scalable than
the prior-best high-threshold ADKG protocol.
Runtime. We measure the time difference between the start of
the ADKG protocol and when a node outputs the shared pub-
lic key and its secret share. We then average this time across
all nodes to compute the runtime of our ADKG protocol. We
report the results in Table 3.

For ℓ= 2t and curve25519 as the elliptic curve, our high-
threshold ADKG protocol takes approximately 12.48 seconds
for 64 nodes, which is only 8.2% that of the high-threshold
ADKG protocol of [22], for the same experimental setup.
Also, our high-threshold ADKG protocol introduces only 30%
additional overhead compared to their low-threshold ADKG
protocol.

Bandwidth usage. We measure bandwidth usage as the
amount of bytes sent by a node in the entire ADKG protocol.
We report bandwidth usage per node in Table 3. Consistent
with the analysis from §5, the bandwidth usage of our protocol
increases quadratically with the number of nodes.

Our bandwidth usage is significantly lower than the high-
threshold ADKG protocol of [22]. Using the 64 nodes ex-
periment, with curve25519 as the elliptic curve, each node
in [22] sends 18.9 Megabytes of data; whereas, in our pro-
tocol, each node only sends 3.32 Megabytes, which is only
about 18% of the bandwidth usage of [22].

We also note that, although in bls12381 group elements
are 16 bytes longer than in curve25519, this does not no-
ticeably affect the total protocol bandwidth usage due to the
comparable costs of other data, field integers, and hashes.
Remark. Note that the evaluation results reflect the common-
case performance of both protocols, which have the same
asymptotic O(n2) computation cost per node. Our evaluation
demonstrates that our protocol has significantly smaller con-
stants in the computation cost compared to Das et al. [22]
for the common case. For the worst-case computation cost,
compared to [22], our protocol improves the per node worst-
case computation cost from O(n3) group operations to O(n2)
group exponentiations (with further optimization using multi-
exponentiations [43]). Concretely, our worst-case computa-
tion cost is similar to our common-case computation cost.

8 Related Work

Numerous works have studied the problem of Distributed Key
Generation with various cryptographic assumptions, network
conditions and with other properties [3, 14, 15, 21, 26, 27, 29,
32, 34, 36, 37, 39, 44, 49]. We will roughly categorize prior
works into two categories based on the network assumption:
Synchrony and Asynchrony.
Synchronous DKG. DKG in the synchronous network has
been studied for decades [14, 15, 26, 29, 32, 34, 44, 47, 49, 52].
The first DKG protocol [47] was proposed by Pedersen which
was later shown, by Gennaro et al. [29], to allow an attacker
to bias the public-key [29]. Gennaro et al. also proposed an
expensive approach to fix this issue, which was later improved
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by Neji et al. [44]. Canetti et al. [14] extended Gennaro et
al. [29] to be adaptively secure. Gurkan et al. [34] designed
a publicly verifiable secret sharing (PVSS) based DKG pro-
tocol with a linear size public-verification transcript but with
only O(logn) fault-tolerance and has the secret key as a group
element. Based on a new PVSS scheme, Groth [32] designed
a new DKG protocol that is non-interactive, assumes the exis-
tence of a broadcast channel, and has the secret key as a field
element. Recently, Shrestha et al. [52], proposed a new DKG
protocol with a communication cost of O(κn3) that does not
rely on a Byzantine broadcast channel.
Asynchronous DKG. Our protocol is closely related to the
protocol of [22] and follows the same high-level idea. Each
node shares a secret via n parallel instances of ACSS and then
agrees on a large set of finished ACSS instances for aggre-
gating the corresponding shares to obtain the final key set.
Naturally, the high-threshold ADKG protocol of [22] relies
on a high-threshold ACSS and this is the primary source of in-
efficiency in their high-threshold ADKG. More concretely, in
terms of computation cost, their high-threshold ACSS is 2 to
3 orders of magnitude more expensive than the low-threshold
counterpart (500 seconds compared to 0.2 seconds). Their
ACSS also results in a high-threshold ADKG with 6× or
more communication cost.

Our new construction circumvents the bottleneck of hav-
ing the expensive high-threshold ACSS by solving the high-
threshold ADKG based on the following insight. The problem
of ADKG with reconstruction threshold ℓ is nothing but sam-
pling a random polynomial of degree ℓ such that every node
learns only one evaluation point on the polynomial. With this
insight, the new goal is to sample ℓ+1 random coefficients,
which is equivalent to sampling a random polynomial of de-
gree ℓ. Thus, we design a protocol to sample ℓ+1 coefficients
in a secret shared manner using only low-threshold ACSS
instances. As a result, compared to [22], our protocol only
relies on the low-threshold ACSS schemes and is almost as
efficient as the low-threshold ADKG protocol.

A handful of other works has also studied the DKG problem
in partially synchronous or asynchronous networks [3, 21, 27,
37, 39]. For partial synchrony, the protocol of Kate et al. [37]
has O(κn4) total communication cost and one-third resilience.
Tomescu et al. [54] improves Kate et al. [37] by a factor
of O(n/ logn) in computation at the cost of a logarithmic
increase in communication.

For asynchrony, the first DKG scheme by Kokoris et al. [39]
has a total communication cost of O(κn4) and expected round
complexity of O(n). Abraham et al. [3] proposed an ADKG
protocol with a communication cost of O(κn3 logn), and was
later improved to O(κn3) by Gao et al. [27] and Das et al. [21],
respectively. However, since Abraham et al. use the PVSS
scheme of Gurkan et al. [34], all three constructions [3,21,27]
of ADKG are not compatible with off-the-shelf threshold
encryption or signature schemes, as they inherit the limitation
that the secret key is a group element.

DKG implementations. There have been many synchronous
DKG implementations [1, 30, 35, 45, 48, 49, 53], but the only
asynchronous DKG implementation is due to [22].

9 Conclusion

We presented a simple and concretely efficient protocol for
high-threshold asynchronous distributed key generation for
discrete logarithm based threshold cryptosystems. At the core
of our protocol is a novel mechanism to sample a polynomial
of any specified degree in a distributed manner such that each
node learns only one evaluation point on the polynomial. Our
distributed polynomial sampling protocol uses low-threshold
asynchronous complete secret sharing, and multi-valued val-
idate byzantine agreement protocol in a modular way. As a
result, an improved protocol for these primitives would im-
mediately improve our distributed key generation protocol.

In a network of n nodes, our protocol improved the worst-
case computation cost by a factor of n while maintaining the
expected communication cost and expected round complexity
of O(κn3) and O(logn), respectively. Finally, we provide a
prototype implementation and evaluate our prototype using
up to 128 geographically distributed nodes to illustrate the
efficiency of our protocol.

In this paper, we prove the security of our ADKG protocol
in the stand-alone setting. However, note that our simulator
is straight-line, i.e., it does not rewind the adversary. Hence,
we believe it is possible to extend our security proof to the
Universal composability (UC) framework [13]. We leave the
formal security proof in the UC framework to future work.
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A Online Error Correction

Our protocol uses the Online-Error-Correction (OEC) proto-
col introduced by Ben-Or, Canetti, and Goldreich [7]. The
OEC takes a set T consisting of tuples ( j,a j) where j is an
index j ∈ [n] and a j is a fragment of a Reed-Solomon code-
word. The OEC algorithm then tries to decode a message M
such that Reed-Solomon encoding of M matches with at least
2t +1 elements in T . More specifically, the OEC algorithm
performs up to t trials of reconstruction, and during the r-th
trial, it uses 2t + r+1 elements in T to decode. If the recon-
structed message M′ whose encoding matches with at least
2t + 1 tuples in T , the OEC algorithm successfully outputs
the message; otherwise, it waits for one more fragment and
tries again. We summarize the OEC algorithm in Algorithm 2.
The OEC algorithm is error-free and information-theoretically
secure against any adversary that corrupts up to t fragments
among a total of n≥ 3t +1 fragments.

Algorithm 2 Online Error-correcting (OEC)

1: Input: T // T consisting of tuples ( j,a j) where j ∈ [n] and
a j is a fragment

2: for 0≤ r ≤ t do // online Error Correction
3: Wait till |T | ≥ 2t + r+1
4: Let M := RSDec(t +1,r,T )
5: Let T ′ := RSEnc(M,m, t +1)
6: if 2t +1 fragments in T ′ match with T then
7: return M

B Asynchronous Complete Secret Sharing

We describe the Pedersen commitment based ACSS protocol
due to [21], which improves upon the ACSS scheme of Yurek
et al. [58]. Here, we will only describe part of the sharing
phase of the protocol, as this is what is needed to understand
our protocol. During the sharing phase, the dealer chooses
two random polynomials a(x) and â(x) of degree t where:

a(x) = a0 +a1x+a2x2 + ·+atxt (9)

â(x) = â0 + â1x+ â2x2 + ·+ âtxt (10)

Let a0 = m. The dealer then reliably broadcasts ci = gaihâi

for each i ∈ [0, t]. Additionally, the dealer sends the tuple
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a(i), â(i) to node i. Node i, upon receiving α,β from the
dealer, checks the validity of the received message by check-
ing whether:

gαhβ =
t

∏
k=0

(ck)
ik (11)

If the above check passes, node i sends a vote for the dealer.
Otherwise, node i multi-casts a complaint against the dealer
and triggers the fallback protocol.
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