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Abstract

This Ph.D. thesis presents a detailed investigation into Variational Quantum Algorithms
(VQAs), a promising class of quantum algorithms that are well suited for near-term quantum
computation due to their moderate hardware requirements and resilience to noise. Our
primary focus lies on two particular types of VQAs: the Quantum Approximate Optimization
Algorithm (QAOA), used for solving binary optimization problems, and the Variational Quantum
Eigensolver (VQE), utilized for finding ground states of quantum many-body systems.
In the first part of the thesis, we examine the issue of effective parameter initialization for
the QAOA. The work demonstrates that random initialization of the QAOA often leads to
convergence in local minima with sub-optimal performance. To mitigate this issue, we propose
an initialization of QAOA parameters based on the Trotterized Quantum Annealing (TQA).
We show that TQA initialization leads to the same performance as the best of an exponentially
scaling number of random initializations.
The second study introduces Transition States (TS), stationary points with a single direction
of descent, as a tool for systematically exploring the QAOA optimization landscape. This
leads us to propose a novel greedy parameter initialization strategy that guarantees for the
energy to decrease with increasing number of circuit layers.
In the third section, we extend the QAOA to qudit systems, which are higher-dimensional
generalizations of qubits. This chapter provides theoretical insights and practical strategies for
leveraging the increased computational power of qudits in the context of quantum optimization
algorithms and suggests a quantum circuit for implementing the algorithm on an ion trap
quantum computer.
Finally, we propose an algorithm to avoid “barren plateaus”, regions in parameter space with
vanishing gradients that obstruct efficient parameter optimization. This novel approach relies
on defining a notion of weak barren plateaus based on the entropies of local reduced density
matrices and showcases how these can be efficiently quantified using shadow tomography.
To illustrate the approach we employ the strategy in the VQE and show that it allows to
successfully avoid barren plateaus in the initialization and throughout the optimization.
Taken together, this thesis greatly enhances our understanding of parameter initialization and
optimization in VQAs, expands the scope of QAOA to higher-dimensional quantum systems,
and presents a method to address the challenge of barren plateaus using the VQE. These
insights are instrumental in advancing the field of near-term quantum computation.
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2.4 (a) Approximation ratio of the p = 5 QAOA as a function of TQA initialization
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max] (green triangle and
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time where TQA protocol itself achieves optimal performance, T ∗

TQA, see Fig. 2.2.
Data was obtained for N = 12 and averaged over 50 random graphs. . . . . 18
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3.2 Initialization graph for the QAOA for MaxCut problem on a particular instance of
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4.2 Circuit diagram of a Qudit-QAOA with ion trap native gates. The initial state
|+⟩⊗n is the equal superposition of all qudit levels. Vertical lines indicate the native
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boxes) where phase shift gates Za(−βt

a) are applied consecutively to implement∏︁
a ̸=0 Za(−βt

a) (dark red boxes). H† gates are used to transform back into the
computational basis , which completes the implementation of UB(βt)⊗n (light red
box). This pattern (gray box) is repeated p-times to implement a QAOA of circuit
depth p. We omit the angle in phase shift gates and qudit entangling gates in the
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qudit after the entangling layer and 100 random samples. . . . . . . . . . . . 40

4.6 Probability of sampling a valid coloring for different circuit depths p, see Eq. (4.19).
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5.1 (a) Illustration of the variational quantum circuit U(θ) |0⟩ that is considered in the
main text followed by the shadow tomography scheme [HKP20]. The variational
circuit consists of alternating layers of single-qubit rotations represented as boxes
and entangling CZ gates shown by lines. The measurements at the end are used
to estimate values of the cost function, its gradients, and other quantities. (b)
The original hybrid variational quantum algorithm shown by solid boxes can be
modified without incurring significant overhead as is shown by the dashed lines
and boxes. The modified algorithm tracks entanglement of small subregions and
restarts the algorithm if it exceeds the fraction of the Page value that is set by
parameter α. The full algorithm is efficient; rigorous sample complexity bounds
are provided in Appendix D.1. . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 (a) Sketch of the circuit, where the blue color shows the scrambling lightcone. The
lightcone first extends over k qubits, where the WBP occurs, and for larger circuit
depths extends to the full system size where the BP occurs. (b) The saturation of
the gradient variance Var[∂1,1E] and (c) saturation of the bipartite second Rényi
entropy S2(ρA) of the region A consisting of qubits 1, . . . , N/2 nearly to the Page
value happen at the similar circuit depths p, that increases with the system-size N .
(d) In contrast, the saturation of the second Rényi for two qubits (A′ = {1, 2}) is
system size independent, illustrating that WBP precedes the onset of a BP. Data
is averaged over 100 random initializations. Gradient variance is computed for the
local term σz

1σ
z
2, typically used in BP illustrations. Gradient variance for the full

Heisenberg Hamiltonian, Eq. (5.1), looks similar. . . . . . . . . . . . . . . . . 51

5.3 (a) Decreasing parameter ϵθ from 1 slows down the growth of the second Rényi
entropy with the circuit depth p. The chosen region contains two qubits. (b) The
encounter of BP in the variance of the gradient of the cost function is visible only
for the case ϵθ = 1, and it is preceded by the onset of a WBP. We use a system
size of N = 16 for (a) and N = 8, · · · , 16 for (b), color intensity corresponds to
system size, same as in Fig. 5.2. Data is averaged over 100 random instances,
variance is for the local term σz

1σ
z
2. . . . . . . . . . . . . . . . . . . . . . . . 52

5.4 We numerically illustrate the continuity bound Eq. (5.6) and its relation to the
learning rate η for t = 0, i.e. at the beginning of the optimization schedule. This
shows that one should be careful with the choice of the learning rate since a large
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5.5 (a-c) The application of the proposed algorithm to the problem of finding the
ground state of the Heisenberg model. For large learning rates η = 1 and 0.1 (red
and blue lines) the optimization gets into a large entanglement region as is shown
in (b), indicated by colored stars, forcing the restart of the optimization with
smaller value of η. For η = 0.01 the algorithm avoids large entanglement region
and gets a good approximation for the ground state. Finally, setting even smaller
learning rate (green lines) degrades the performance. The normalized second
Rényi entropy of the true ground state is S2/S

Page(k,N) ≈ 0.246. (c) Shows the
corresponding gradient norm. A small gradient norm equally corresponds to the
BP and the good local minima found with η = 0.01 and 0.001. We use a system
size of N = 10, subsystem size k = 2, and a random circuit (see Eq. (1.15)) with
circuit depth p = 100 and small qubit rotations (ϵθ = 0.05) to generate a BP-free
initialization. Here we choose α = 0.5 indicated by the gray dashed line, see the
last paragraph of Sec. 5.3.1 for a discussion on the choice of α. Data is averaged
over 100 random instances. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.6 Application of our algorithm to the problem of finding the ground state for the
Heisenberg model on a 3-regular random graph depicted in (a). Panel (b) shows
the energy as a function of GD iterations t and panel (c) illustrates the second
Rényi entropy of two-spin region A with k = 2 shown in panel (a). Since the
interactions are now nonlocal and we do not have any prior knowledge on the
entanglement properties of the target state we set α = 1 (gray dashed line).
For the initialization we use the small-angle initialization (SA) with ϵθ = 0.1 and
compare it to layerwise optimization (LW). LW encounters a WBP for both learning
rates that we consider (green star). In contrast, SA avoids the WBP for both
learning rates. Good performance and further convergence in the local minimum
is only achieved through a smaller learning rate of η = 0.01. We use a system size
of N = 10 and a random circuit from Eq. (1.15) with circuit depth p = 100. Data
is averaged over 100 random instances. . . . . . . . . . . . . . . . . . . . . . 57

A.1 Comparing the joint probability distribution of the distance to the global minimum
in parameter space dγ⃗,β⃗ and in terms of approximation ratio ∆rγ⃗,β⃗ for weighted
3-regular (top) and Erdős-Rényi graphs with edge probability 0.5 (bottom) reveals
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regular graphs. We initialize the parameters for k = 1 (left) and k = 2 (right)
and observe that for weighted 3-regular graphs the enlarged interval leads to an
increased spread of the local optimas in ∆rγ⃗,β⃗ (yellow region). The spread in
∆rγ⃗,β⃗ for Erdős-Rényi graphs remains largely unaffected, as expected from the
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CHAPTER 1
Introduction

1.1 Brief history of quantum computing
1.1.1 Schrödinger equation
Since the development of quantum mechanics over 100 years ago, it has greatly impacted
the development of many modern-day technological advances. From the transistors in our
computers to nuclear fission and LED light technology used to transfer data at light speed
through optical fibers all over the world, quantum mechanics is the basic building block of
many of our modern-day technologies. From a mathematical perspective, the central equation
of quantum mechanics is the Schrödinger equation, named after its creator Erwin Schrödinger.
It describes the time evolution of a quantum system and is a partial differential equation that
governs the behavior of the wave function |ψ⟩, a mathematical representation of the quantum
state of a particle or a system of particles. The Schrödinger equation is formulated in two
different forms: the time-dependent Schrödinger equation (TDSE) and the time-independent
Schrödinger equation (TISE). The TDSE, given by

iℏ
∂ |ψ⟩
∂t

= H |ψ⟩ , (1.1)

and describes the dynamics of the system as it evolves over time, where i is the imaginary
unit, ℏ is the reduced Planck constant (which we set to 1 in the remainder of this work), and
H is the Hamiltonian operator. The TISE, given by

H |ψ⟩ = E |ψ⟩ , (1.2)

and is used for stationary states. Solving the Schrödinger equation allows physicists to predict
how a quantum system will behave and the probabilities of various outcomes of quantum
measurements. The two equations have a remarkably simple form from a mathematical
perspective. We can readily write down the Hamiltonian of many interesting systems such as
chemistry molecules or materials in condensed matter physics [Tay06, AM76].
Solving the Schrödinger equation analytically has, however, unfortunately only been achieved
for a few simple systems, prominent examples are the hydrogen atom or the harmonic
oscillator [GS18, CTDL97]. For more complex systems, analytical solutions are often not
available, and one has to resort to numerical methods. However, these numerical techniques
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face a significant challenge when applied to large systems, mainly due to the exponential
scaling of the Hilbert space, which is the vector space of quantum states. The dimension
of the Hilbert space grows exponentially with the number of particles in the system, leading
to a rapid increase in the required computational resources. This problem, known as the
“exponential wall” or “curse of dimensionality”, severely limits the applicability of classical
numerical methods for solving the Schrödinger equation in complex systems.

1.1.2 Feynman’s idea for quantum computing
The challenge of simulating quantum systems efficiently prompted Richard Feynman to propose
the concept of quantum computation. In his visionary 1982 paper [Fey82], Feynman argued
that since conventional, classical computers struggle to simulate quantum systems efficiently
due to the exponential growth of the Hilbert space, a more natural approach to tackle this
challenge would be to use a quantum mechanical system, which inherently follows the same
rules, to simulate another quantum system. This idea laid the foundation for the development
of quantum computers and quantum algorithms.

Feynman’s original idea was to build a quantum computer using quantum bits, or qubits, which
can exist in a superposition of states, as opposed to classical bits that can only be in one of
two states (0 or 1). The unique feature of qubits, along with quantum entanglement and
the ability to perform quantum gate operations, would allow quantum computers to process
and manipulate information in a fundamentally different way compared to classical computers.
This would not only enable the simulation of arbitrary quantum systems beyond the reach of
classical computation, but also introduce a new avenue for computation in general.

Feynman’s original idea of building a quantum computer using quantum bits, or qubits, sparked
the development of the field of quantum algorithms and quantum information science. Over
the past few decades, numerous breakthroughs and advancements have taken place, shaping
the landscape of quantum computing as we know it today.

1.1.3 Early works on quantum computing
One of the earliest quantum algorithms, the Deutsch-Josza algorithm, was developed by David
Deutsch and Richard Jozsa in 1992 [DJ92]. This algorithm marked the beginning of quantum
computing, as it demonstrated that quantum computers could solve certain problems with
significantly fewer queries than their classical counterparts. The Deutsch-Josza algorithm
efficiently determines if a function is constant or balanced, providing an exponential speed-up
compared to classical algorithms. While this computational problem is not particularly relevant
from a practical perspective, the Deutsch-Josza algorithm gave a first hint at the computational
possibilties of quantum algorithms.

Another significant milestone in quantum computing was the discovery of Shor’s algorithm by
Peter Shor in 1994 [Sho94]. This quantum algorithm is capable of efficiently factoring large
numbers, providing an exponential speed-up compared to the best-known classical algorithms.
Prime factors are often the key components in many cryptographic schemes, particularly in
public key cryptography. The classical hardness of prime factorization, or the difficulty of
factoring large numbers into their prime components, plays a vital role in the security of these
encryption methods. The most well-known example is the RSA cryptosystem, which relies on
the product of two large prime numbers as its encryption key.

2



1.1. Brief history of quantum computing

The security of RSA and many other encryption schemes hinges on the fact that it is
computationally infeasible for an attacker to derive the prime factors of the public key, even
when the key itself is known. Classically, the best algorithms for factoring large numbers grow
exponentially with the number of digits, making it practically impossible to break encryption
keys that are sufficiently large.

Following Shor’s breakthrough, several other quantum algorithms were developed, such as
Grover’s algorithm [Gro96], which provides a quadratic speed-up for searching unsorted
databases. Grover’s algorithm further highlighted the potential of quantum computing by
offering a faster solution to a problem with broad applicability.

Since those early days of quantum computing, great progress has been made in the development
of quantum algorithms. A large number of quantum algorithms have been developed, addressing
a diverse range of problems, from optimization and simulation to cryptography and machine
learning. The abundance of quantum algorithms has even led to the creation of the “Quantum
Algorithm Zoo”, a comprehensive repository that catalogues these algorithms [Jor23].

These quantum algorithms, which are known to provide significant speed-ups over classical
algorithms, typically require fault-tolerant quantum computation. Fault-tolerant quantum
computing is a method of performing quantum computation that can effectively deal with
noise and errors that inevitably arise in realistic quantum systems. The basic idea is to ensure
that the computation remains accurate even in the presence of errors, thus enabling the
implementation of reliable and large-scale quantum algorithms.

1.1.4 Fault tolerant quantum computation
A crucial component of fault-tolerant quantum computing is quantum error correction (QEC).
QEC codes are designed to protect quantum information from decoherence and noise by
encoding the quantum information in a larger Hilbert space, allowing errors to be detected
and corrected without destroying the information [NC00, Got97, Sho95]. Many different
error-correcting codes have been proposed, such as the surface code [BK98] and the toric
code [Kit03], each with their own advantages and trade-offs.

Resource estimates for implementing popular fault-tolerant quantum algorithms have been
studied to understand the requirements for building practical, large-scale quantum computers.
For example, Shor’s algorithm has been analyzed in terms of resource requirements, with
estimates suggesting that millions of qubits and a large number of gates are needed [FMMC12,
GLF19]. Similarly, resource estimates have been provided for other quantum algorithms, such
as Grover’s algorithm and quantum simulations, which have been investigated in the context
of quantum chemistry and condensed matter physics [AGDLHG05, Kit02, BKWS20]. The
resource requirements for these algorithms vary widely, depending on the specific problem
being solved and the desired accuracy of the results.

The realization of a practical quantum computer capable of running these fault-tolerant
quantum algorithms is still an ongoing challenge. Many experimental platforms for quantum
computing have been developed, such as superconducting qubits [DS13], trapped ions [BR12],
photonic qubits [KMN07], and neutral atoms [BSK+17]. These diverse platforms offer unique
advantages and challenges in the pursuit of building a scalable quantum computer. Each of
these platforms has its own unique set of advantages and challenges in terms of scalability,
coherence times, and gate fidelity. While significant progress has been made in recent years,
building large-scale fault-tolerant quantum computers remains a major goal in the field.
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1.1.5 Current state of quantum computing
In October 2019, Google’s quantum computing team claimed to have achieved quantum
supremacy using a 53-qubit superconducting processor [AAB+19]. This milestone demonstrated
the potential of quantum computing, although it is important to note that quantum supremacy
was achieved for a specific task with limited practical applications. In particular, they used
the quantum computer to sample random bitstrings from a random quantum circuit that is
believed to be hard to simulate classically due to its large non-trivial entanglement [BIS+18].
The current generation of quantum computers is often referred to as Noisy Intermediate-
Scale Quantum (NISQ) devices, a term coined by John Preskill [Pre18]. NISQ devices are
characterized by having a modest number of qubits, typically ranging from tens to a few
hundred qubits, and relatively high error rates in comparison to the fault-tolerant quantum
computers that researchers ultimately aim to build.
The limitation of NISQ devices has let to the development of so-called NISQ algorithms, which
are quantum algorithms specifically developed to work around the limitation of the current
generation of quantum computers.

1.2 General motivation for Variational Quantum
Algorithms

On NISQ hardware, two qubit gates have an error rate of ∼ 1% while the errors for single qubit
gates are ∼ 0.1% [LMR+17]. This severely limits the number of gates that we can coherently
apply on current quantum hardware. One of the most popular schemes to work around this
limitation is the framework of variational quantum algorithms (VQAs) [PMS+14a, MRBAG16].
They use the quantum computer to implement a variational wave function with only a limited
number of gates

|ψ(θ)⟩ = U(θ) |0⟩⊗n =
p∏︂

j=1
U(θj) |0⟩⊗n , (1.3)

which typically consists of a repeating pattern of shallow variational unitaries U(θj) applied to
an initial state, typically |0⟩⊗n. The term shallow refers to the fact that the unitary can be
implemented with a small (polynomial scaling in system size n) number of gates on a quantum
computer. The parameter p, called circuit depth, controls how many times the unitary is
applied. The circuit depth p can thus be set such that noise does not corrupt the computation
too much. The smaller the circuit depth, the smaller the number of errors that can occur. A
more shallow circuit is however also typically associated with a less expressive ansatz, so that
these two aspects thus have to be balanced [MEAG+20].
Let us consider a Hamiltonian operator H, which describes the energy of a quantum system.
The ground-state energy EGS is the lowest eigenvalue of H, and the corresponding eigenstate
|ψGS⟩ is the ground-state wavefunction,

H |ψGS⟩ = EGS |ψGS⟩ , (1.4)

using the variational principle from standard quantum mechanics [Dir58], we know that

⟨ψtrial|H |ψtrial⟩ ≥ EGS, (1.5)

meaning that for any trial wave function |ψtrial⟩ the energy expectation value can only be
greater than the ground state energy.
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QPU CPU

Variational Quantum Algorithm

Measure qubits

Prepare wave function

Update step

Compute energy 
expectation value

U( ⃗θ)

Figure 1.1: High level illustration of a VQA. The Quantum Processing Unit (QPU) prepares
the variational wave function and measures the qubits. Wile the Classical Processing Unit
(CPU) computes the energy expectation value from the measurement data as well as the
update step. Arrows indicate the iterative nature of this process.

VQAs exploit this principle by using a hybrid quantum-classical approach to optimize a
parametrized quantum circuit, called an ansatz, to approximate the ground-state energy and
the corresponding quantum state of a given system. The ansatz is a trial wavefunction
|ψtrial⟩ = |ψ(θ)⟩ that depends on a set of classical parameters θ. By varying these parameters
and minimizing the expectation value of the energy, the algorithm iteratively refines the ansatz
to better approximate the true ground-state, see Fig. 1.1 for an illustration.

This idea has been applied in a variety of setting, ranging from using quantum computers for
machine learning to variationally implementing a time evolution [HCT+19a, CLB21, GS19].
However the two most prominent settings, that we will focus on in this work, are solving
classical optimization problems and finding ground states of chemistry Hamiltonians.

1.3 Quantum Approximate Optimization Algorithm
The Quantum Approximate Optimization Algorithm (QAOA) was first introduced by Farhi et
al. [FGG14a] in 2014 as a near-term quantum algorithm for approximately solving classical
combinatorial optimization problems. In particular, they introduced it for the graph partitioning
problem, known as MaxCut. There, the task is to partition a graph G = {E, V }, consisting
of edges E and vertices V , into two groups such that the partition cuts through a maximum
number of edges. The problem is known to be NP-hard which implies that there is no
known algorithm that can exactly solve the problem in polynomial time complexity (in system
size). However, there is a number of approximate algorithms with polynomial time complexity.
Mathematically we can frame the MaxCut problem as a minimization problem for the cost
function

C =
∑︂

i,j∈E

xixj, (1.6)

where xi and xj are binary variables. If two edges have the same value we get a contribution
of 1 in the sum, otherwise it is 0. The cost function can be mapped to a diagonal cost
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Hamiltonian by promoting the binary variable xi to a quantum operator, xi −→ 2σz
i + I, this

results in
HC =

∑︂
i,j∈E

σz
i σ

z
j , (1.7)

where we dropped constant energy shifts and irrelevant factors, σz
i is the standard Pauli-Z

matrix. Finding the MaxCut is thus equivalent to preparing the ground state of the diagonal
Hamiltonian HC . [FGG14a] propose to use the following variational ansatz state [see Fig. 1.2]

|β,γ⟩ =
p∏︂

j=1
e−iβjHBe−iγjHC |+⟩⊗n , (1.8)

to variationally prepare the ground state. Here HB is called the mixing Hamiltonian which is
defined as

HB = −
∑︂

i

σx
i , (1.9)

and the |+⟩⊗n state is its ground state, p is the circuit depth. Since HC and HB do not
commute, the mixing term allows to change the energy, i.e. it allows for transitions between
eigenstates of HC . The idea of the QAOA is thus to first prepare an equal superposition of all
possible graph partitions, i.e. |+⟩⊗n, and evolve the state to the ground state of HC using the
unitaries e−iγiHC and e−iβiHB . The parameters γi and βi are classical parameters that control
the time for which the unitaries are applied. The goal is to find parameters that minimize the
expectation value of the cost Hamiltonian with respect to the QAOA ansatz state

(β⋆,γ⋆) = arg min
(β,γ)
⟨β,γ|HC |β,γ⟩ . (1.10)

Typically, the optimal parameters are found in a loop with a classical computer, where the
quantum computer is used to implement the QAOA state and measure the expectation value,
while the classical computer is used to store and update the variational parameters. Starting
from some initial point, the parameters are iteratively updated in order to minimize the energy
expectation value. This procedure is repeated until convergence, which implies that a local
minima was found. Then, the QAOA state |β⋆,γ⋆⟩ is measured in the computational basis,
the obtained post-measurement states are bitstrings that encode a graph partition. The
bitstring with the lowest associated cost value is then the approximate MaxCut solution.
We illustrate this procedure in Fig. 1.2.
The performance of the QAOA is typically reported as a so-called approximation ratio

rβ,γ = ⟨β,γ|HC |β,γ⟩
Cmin

, (1.11)

where Cmin is the minimal cost function value for the MaxCut. For classical optimization
algorithms the Goemans-Williamson (GW) algorithm provides a performance guarantee of
0.87856 for all graphs [GW95]. Unfortunately, due to the heuristic and variational nature of
the algorithm, there are little known performance guarantees for the QAOA. In the original
work [FGG14a] were able to prove a performance guarantee for p = 1 of 0.6924, subsequently
[WL21] extended the result for up to p = 3 (under certain conditions on the graph). A general
performance guarantee for all p has so far been out of reach. In numerical simulations, the
QAOA has been reported to outperform the GW algorithm at circuit depths beyond around
p = 9 [Cro18, ZWC+18]. This result is however purely heuristic and it remains to be shown if
it holds beyond the system sizes that can be simulated classically. These promising numerical
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Measure ⟨HC⟩Update ( ⃗β, ⃗γ)

Figure 1.2: Quantum circuit of the QAOA circuit. The parameter p controls the depth of the
circuit. The variational parameters (β,γ) are updated in an iterative loop with a classical
computer to minimize the energy expectation value ⟨HC⟩. Each qubit is associated with one
vertex V in the graph G. Sampled bitstrings thus correspond to graph partitions, the MaxCut
is the bitstring with lowest corresponding energy.

results however give hope that the QAOA might be a promising algorithm for achieving a
quantum advantage on real quantum hardware in the near term.

The QAOA is particularly well suited for near-term quantum computing since the depth of the
quantum circuit can easily controlled by the circuit depth p such that the computation is not
fully corrupted by noise. In addition the unitaries have simple representation in terms of gates
that are easily implemented on both superconducting and ion trap hardware. In particular for
the quantum term we have that

e−iβjHB = e−iβj

∑︁
i

σix =
∏︂

i

e−iβjσx
i = Rx(−2βj)⊗n, (1.12)

where Rx is a single-qubit rotation gate around the x-axis. This is a standard gate in all
quantum hardware. For the classical term we have that

e−iγjHC = e−iγj

∑︁
k,l∈E

σz
kσz

j =
∏︂

k,l∈E

e−iγjσz
kσz

l . (1.13)

On superconducting hardware, for example, the term e−iγjσz
kσz

l can be implemented as

• •
Rz(−2γj)

(1.14)

using two CNOT gates and one Rz rotational gate.

The QAOA has been successfully implemented on superconducting hardware as well as ion
trap quantum computers [A+20b, PBB+20], however on both platforms an implementation
beyond around 20 qubits has so far been out of reach and circuit depth was limited. Notably,
in a recent work a neutral atom quantum processor was used to implement the algorithm on
289 qubits [EKC+22] for a hardware-native graphs, which is by far the largest implementation
of the algorithm so far.
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1. Introduction

1.4 Variational Quantum Eigensolver
The second widely studied Variational Quantum Algorithm (VQA), that we will discuss in
this work, is the Variational Quantum Eigensolver (VQE) [PMS+14b]. Introduced by Peruzzo
et al. [PMS+14b] in 2014, the primary aim of VQE is to approximate the ground state
|ψGS⟩ of a Hamiltonian H with a variational wave function |ψ(θ)⟩. Unlike the QAOA, the
Hamiltonian in VQE is typically non-diagonal. A quantum computer prepares a variational
function using a set of unitary gates, |ψ(θ)⟩ = U(θ) |ψ0⟩, where |ψ0⟩ is the initial state,
typically assumed to be a product state. The variational parameters are then iteratively
updated to minimize the expectation value of the Hamiltonian, also referred to as the cost
function E(θ) = ⟨ψ(θ)|H |ψ(θ)⟩.
There is a large number of different variational ansätze that have been proposed to perform
this task, with varying levels of complexity and computational efficiency. One example is
the Unitary Coupled Cluster (UCC) ansatz, which builds upon the classical coupled-cluster
method by using a unitary version of the cluster operators [RBM+17]. The UCC ansatz has
been demonstrated to provide accurate results for molecular systems [BNR+18]. Another
example, and the one we will be focusing on in this work, is the Hardware-Efficient Ansatz
(HEA) [KMT+17a]. This ansatz leverages the native gate set of a quantum processor to
construct a variational wave function, reducing the overall circuit depth and error rate. The
HEA is given by the following unitary

U(θ) =
p∏︂

l=1
Wl

(︄
N∏︂

i=1
Ri

l(θi
l)
)︄
, (1.15)

where θi
l ∈ [−π, π) are pN variational angles, concisely denoted as θ. We will be using

this variational circuit in this work. We choose the single qubit gates to be rotations
Ri

l(θi
l) = exp

(︂
−−i

2 θ
i
lGl,i

)︂
with random directions given by Gl,i ∈ {σx, σy, σy}. Wl is an

entangling layer that consists of two qubit entangling gates, they are typically either CNOT or
CZ gates. Often, the two qubit gates are arranged such that they follow the connectivity of
the underlying hardware (giving rise to the name). Since the emergence of ion trap quantum
computers, which offer all-to-all connectivity, this has become less of a requirement.
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Figure 1.3: Illustration of a HEA circuit, Rx, Ry and Rz indicate randomly chosen single-qubit
rotation gates, Wl is the entangling layer.

The VQE has been demonstrated on current hardware using different quantum platforms.
Peruzzo et al. [PMS+14b] used a photonic quantum processor to estimate the ground-state
energy of hydrogen (H2) at different internuclear distances. O’Malley et al. [OBK+16] employed
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superconducting qubits for simulating the hydrogen molecule (H2) and the helium hydride
cation (HeH+), achieving energy estimates with chemical accuracy. Furthermore, Shen et
al. [SZZ+17] implemented the VQE for simulating the dissociation profile of the hydrogen
molecule (H2) using a trapped ion quantum processor with energy estimates within chemical
accuracy. In recent years, the VQE has been extended to solve more complex problems, such
as electronic structure calculations of larger molecules [AAA+20] and simulations of strongly
correlated systems [CRO+21].
Whilst these experiments are promising, the VQE is still far away from outperforming any
sophisticated classical simulation, in addition, the algorithm is even more heuristic in nature
than the QAOA and offers no known analytical performance guarantees. This is due to the
fact that there exists a plethora of different variational ansätze as well as different problem
Hamiltonians. Each ansatz and problem Hamiltonian can lead to a vastly different optimization
landscape.

1.5 Ansatz Representability and Generalization to
Higher Dimensional Systems

For VQAs the choice of the quantum circuit, or ansatz, is crucial. The ansatz allows exploration
of the Hilbert space states explored during the optimization process. The ansatz representability,
i.e. what quantum states it can effectively prepare, is thus a crucial question.
Numerous studies have ventured to tackle the problem of ansatz design, with the aim
of understanding the conditions that allow an ansatz to efficiently represent the solution
to a given problem. These investigations have shown that the suitability of an ansatz
can depend on a multitude of factors, including the problem instance, the gate set, and
qubit connectivity [HMM+20, SJAG19]. Despite these advancements, the realm of ansatz
expressibility remains an active and open field of research.
While the central focus of this work is on the efficient optimization of variational parameters,
the subject of ansatz representability remains significant. A noteworthy avenue for potentially
expanding the representability of variational ansatz is the utilization of higher-dimensional
quantum systems, termed as qudits, where d local Hilbert space dimension of the system.
Qudits offer several advantages over qubits, including more efficient quantum error correction,
improved fault-tolerant quantum computation, and the potential for more compact quantum
circuits [Zhu17b, NLR20]. Accordingly, we will touch upon this active field of research in
Chapter 4 of this work by discussing a generalization of the QAOA to qudit systems.

1.6 Parameter Optimization
In VQAs, once the circuit ansatz is chosen, the central aim is to find optimal parameters such
that

θ⋆ = arg min
θ
E(θ), (1.16)

where E(θ) = ⟨ψ(θ)|H|ψ(θ)⟩ is the cost function or energy expectation value. In practice this
is carried out by an optimization algorithm, starting from some initial value θinit., that iteratively
updates the parameters until convergence to a local minimum [MRBAG16], see Fig. 1.4 for
an illustration. In general, there are two types of optimization algorithms: gradient-free and
gradient based optimization algorithms.
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1.6.1 Gradient-free optimization algorithms
In gradient-free algorithms, the cost function is evaluated at a number of points in the
optimization landscape to determine the optimal direction for descent. Prominent examples
for this are Nelder-Mead and COBYLA [NM65, Pow94]. Both construct a so-called simplex,
which is a polytope in the parameter space, to approximate the local landscape of the cost
function. These methods adjust the simplex based on the function values at its vertices to
iteratively move towards a local minimum. The main advantage of gradient-free methods is
that they do not require the computation of gradients, making them suitable for problems
where the gradients are difficult or expensive to calculate. However, these methods can be
less efficient than gradient-based methods, especially for high-dimensional problems.
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Figure 1.4: Illustration of an optimization landscape with multiple local minima. The goal of
variational algorithms is to find parameter values corresponding to a point with the lowest
possible cost function value. The shape of the landscape depends on the problem instance as
well as the variational ansatz that is used. θinit. indicates initial parameter values, θ⋆ converges
final parameters values. The two points are connected by dashed lines that indicate a path
that an optimization algorithm might take. Figure generated using Midjourney’s generative AI.

1.6.2 Gradient-based Optimization Algorithms
Gradient-based optimization algorithms, on the other hand, leverage the gradient of the cost
function to guide the search for the optimal parameters. Examples of gradient-based methods
include gradient descent,

θt+1 = θt − η∇θE(θ), (1.17)

where η is the learning rate which controls the step size. Other examples include conjugate gra-
dient, and the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm [NW06].
These methods typically provide faster convergence compared to gradient-free methods, but
they require the computation of gradients, which can be challenging in some cases.
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1.7. Obstacles for Variational Quantum Algorithms

There are two primary methods for gradient evaluation on a quantum computer: finite-difference
techniques and the parameter-shift rule. Finite-difference methods involve perturbing the
variational parameters and computing the differences, given by:

∂E(θ)
∂θj

≈ E(θ + sej)− E(θ − sej)
2s , (1.18)

where s is a small perturbation, and ej is the unit vector in the direction of the j-th parameter.
In contrast, the parameter-shift rule leverages the periodic structure of variational single-qubit
gates, such as the rotation gate R(θ) = e−i θ

2 G, where θ is the angle of rotation and G is the
generator of the rotation, typically represented by Pauli matrices. This periodicity enables the
exact computation of the gradient with a constant number of additional circuit evaluations:

∂E(θ)
∂θj

= 1
2

[︃
E(θ + π

2 ej)− E(θ − π

2 ej)
]︃
. (1.19)

The parameter-shift rule has been shown to be particularly effective for optimizing variational
circuits in quantum machine learning and quantum chemistry applications. It enables more
efficient and accurate optimization of quantum circuits compared to finite-difference methods.

1.7 Obstacles for Variational Quantum Algorithms
While there have been numerous successful implementations of VQAs, they have so far they
have not been able to outperform any classical algorithms. Generally, VQAs do not offer
any rigorous performance guarantee, unlike typical fault-tolerant algorithms. This is primarily
due to the lack of information about the high-dimensional energy landscape, or optimization
landscape, in which one attempts to find a high-quality minimum. The main obstacles for
VQAs are:

(I.) Finding good parameter initializations,

(II.) Enhancing ansatz expressibilty, and

(III.) Avoiding flat regions in parameter space, so-called “barren plateaus”.

The variational landscape is often characterized by a large number of local minima, where
the number of local minima usually scales exponentially with the parameter dimension. Good
algorithm performance thus hinges on a suitable parameter initialization to avoid convergence
in one of the many poor-quality local minima. In addition, the optimization landscape can have
large flat regions with vanishing gradients, so-called barren plateaus which can be encountered
both in the parameter initialization and during parameter optimization. The encounter of
barren plateaus thus completely prevents parameter optimization. Both the issue of local
minima, as well as barren plateaus, pose significant challenges for the successful implementation
of VQAs and a potential quantum advantage. In this work, we present the substantial progress
that we made on these issues that have led to a significant improvement as well as a better
understanding of the capabilities and limitations of VQAs. Lastly, there is circuit ansatz
expressibility which determines if the ansatz is in principle capable of expressing the solution
to the problem or not.
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1. Introduction

1.7.1 Contents of Chapter 2
In Chapter 2 we will address obstacle (I.) and present effective strategies for initializing the
QAOA. By carefully selecting suitable initial parameters, the algorithm’s performance can be
significantly improved. In particular, we present a simple strategy that allows to achieve the
same performance as the best out of an exponentially scaling number of random initializations.
The presented algorithm requires few computational resources compared to other currently
existing techniques and thus makes it highly appealing to be used as a standard initialization
technique.

1.7.2 Contents of Chapter 3
In Chapter 3 we present an extension to the results obtained in Chaper 2 where we introduce
a novel tool from energy landscape theory to systematically study the emergence of local
minima in the energy landscape. This leads us to propose an optimization strategy with
guaranteed performance improvement that successfully avoids poor-quality local minima. This
is the first analytical study of the QAOA landscape in the regime of large circuit depths, while
previous studies were purely limited to numerical observations. We believe that this work may
be extended in the future to potentially answer the question if the QAOA could outperform
classical methods under certain conditions, which has only been out of reach from an analytical
perspective.

1.7.3 Contents of Chapter 4
In Chapter 4 of this work we consider obstacle (II.) and present a generalization of the QAOA
to qudit systems. Furthermore, we propose a representation of the quantum circuit in terms
of native gates for ion trap quantum computers. This chapter contains the theory required
for experimental implementation of the algorithm. In particular, we will discuss the effect of
noise on the performance of the algorithm and realistic settings for a future experiment. A
successful implementation of the algorithm on qudits has the potential to become the first
implementation of a quantum algorithm on a qudit system. This could open up a new exciting
avenue for quantum computation in the NISQ era and beyond.

1.7.4 Contents of Chapter 5
In Chapter 5 we address obstacle (III.) and resolve the issue of barren plateaus by employing a
novel approach based on entanglement entropy applied to the VQE. Furthermore, we suggest
to use classical shadow tomography, a recently introduced scheme for efficient partial state
tomography, to efficiently estimate the entanglement entropy. This approach allows us to
identify and circumvent regions in the optimization landscape that exhibit vanishing gradients,
thereby improving the convergence properties of VQAs. In particular, our work establishes the
physical connection between barren plateaus and typical entanglement entropy thus providing
a new point of view on the problem.

1.7.5 Contents of Chapter 6
Finally, in Chapter 6 we summarize our results, comment on the open questions and future
directions as well as a broader outlook for quantum computing into the future.
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CHAPTER 2
Trotterized quantum annealing

initialization of the quantum
approximate optimization algorithm

2.1 Introduction
Recent technological advances have led to a large number of implementations [A+20b, AAB+20,
A+20a, W+19] of so-called Noisy Intermediate-Scale Quantum (NISQ) devices [Pre18]. These
machines, which allow to manipulate a small number of imperfect qubits with limited coherence
time, inspired the search for practical quantum algorithms. The quantum approximate
optimization algorithm (QAOA) [FGG14b] has emerged as a promising candidate for such
NISQ devices [ZWC+20, Cro18, WWJ+20].
The QAOA is a variational hybrid quantum algorithm where the classical computer operates a
NISQ device. The computer is responsible for the optimization of the cost function over a set
of variational parameters. The cost function is calculated using a NISQ device that prepares
a quantum state corresponding to chosen parameters and performs quantum measurements.
In QAOA of depth p the wave function is prepared by a unitary circuit parametrized by 2p
parameters, see Fig. 2.1(a). Each of the p layers consist of two unitaries: the first is generated
by a classical Hamiltonian HC that encodes the cost function of a combinatorial optimization
problem, and the second is generated by the mixing quantum Hamiltonian, HB.
While the p = 1 limit of QAOA allows for analytic considerations and derivation of performance
guarantees [FGG14b], subsequent work suggested that higher depth p may be required in
order to achieve a quantum advantage [BKKT19, Cro18]. However, increasing p leads
to a progressively more complex optimization landscape, that is characterized by a large
number of local suboptimal minima [ZWC+20, WWJ+20, GM19, SSL19], see Fig. 2.1(c).
The convergence of classical optimization algorithms into such sub-optimal solutions was
demonstrated to be a potential bottleneck of QAOA performance as finding a nearly optimal
minimum usually requires exponential in p number of initializations of the classical optimization
algorithm [FGG14b, ZWC+20].
The complexity of the energy landscape of large-p QAOA motivated the search for heuristic
ways of improving the convergence to a (nearly) optimal minimum values of variational
parameters. The recent work demonstrated concentration of QAOA landscape for typical
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2. Trotterized quantum annealing initialization of the quantum approximate
optimization algorithm

problem instances [BBF+18b], which implies existence of typical landscape and hints that
same variational parameter choice may work between different problem instances or sizes. A
particular example of such heuristic was proposed in Ref. [ZWC+20] which constructs good
initialization for the QAOA at level p+ 1 using solution at level p, thus requiring a polynomial
in p number of optimization runs. Other approaches, such as reusing parameters from similar
graphs [SSL19], using an initial state that encodes the solution of a relaxed problem [EMW20],
or utilizing machine learning techniques to predict QAOA parameters [AAG20, KSC+19] were
also proposed.

In this work we propose a different approach to the QAOA initialization, based on the relation
between QAOA and the quantum annealing algorithm. Quantum annealing uses adiabatic time
evolution to find the lowest energy state of HC , but often requires unfeasible evolution time
T [AL18]. We explore the observation that Trotterization of unitary evolution in quantum
annealing provides a particular choice of parameters for the QAOA [FGG14b]. This leads us
to introduce a one-parameter family of Trotterized quantum annealing (TQA) initializations
for QAOA, controlled by the time step or, equivalently, total time used in adiabatic evolution.

The central result of our work is the demonstration that TQA initialization for QAOA gives
comparable performance to the search over an exponentially scaling number of random
initializations. To this end, we establish that TQA initialization leads to convergence of QAOA
to a nearly optimal minimum for a certain range of time steps, see Fig. 2.1(c) for visualization.
Furthermore, we identify the optimal time step of TQA initialization and suggest a purely
experimental way of fixing this parameter of TQA initialization.

Our work reveals a connection between intermediate-p QAOA and short-time quantum an-
nealing. Previous studies [FGG14b, Cro18, ZWC+20] established correspondence between
quantum annealing with long annealing times and the QAOA protocol with large p (potentially
increasing exponentially with the problem size). More recent work proposed quantum annealing
inspired initialization strategies for the so-called ‘bang-bang’ modification of QAOA [LLL20]
that however also correspond to high circuit depths. Our work is different from this context,
since we establish that the best performance is achieved for a very coarse discretization of
quantum annealing, resulting in a realistic circuit depth. We show the existence of an optimal
step for TQA discretization that does not depend on problem size and QAOA depth. This
suggests an intimate relation between QAOA and TQA, since the optimal value of the time
step is in close correspondence to the point where proliferation of Trotter error occurs in
TQA [HHZ19].

2.2 Optimization landscape of the QAOA

2.2.1 Visualizing optimization landscape
The performance of the classical optimization in Eq. (1.10) strongly depends on the properties
of the optimization landscape. While this landscape can be readily visualized for p = 1, the
dependence of approximation ratio rγ⃗,β⃗ on 2p angles parametrizing QAOA was suggested to
become progressively more complex for larger values of p. In order to visualize the properties
of this high-dimensional landscape, we focus below on properties of points where rγ⃗,β⃗ achieves
(local) minima.

We quantify properties of minima using two different characteristics. First, we measure the
difference between the approximation ratio of the given minimum characterized by angles γ⃗, β⃗
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Figure 2.1: (a) The circuit that prepares a quantum state in the QAOA is parametrized by
a set of 2p angles γi, βi. (b) The optimization of ⟨HC⟩ is launched from a certain guess of
parameters and state preparation and measurements are iterated until the algorithm converges
to a set of optimized angles γ∗

i , β
∗
i . (c) The cartoon of the cost function ⟨HC⟩ landscape as a

function of variational parameters shows that random initializations are prone to converge to
sub-optimal local minima. In contrast, the family of TQA initializations proposed in this work
converges to the (nearly) optimal minimum.

and the global minimum characterized by angles γ⃗∗, β⃗
∗, ∆rγ⃗,β⃗ = r

γ⃗∗,β⃗
∗ − rγ⃗,β⃗. This definition

implies that the smallest possible value of ∆rγ⃗,β⃗ is 0, and larger values of ∆rγ⃗,β⃗ corresponds
to local minima with poor performance (i.e. much larger value of cost function) compared to
the global minimum. The second characteristics measures the distance between minima in
parameter space,

dγ⃗,β⃗ =
p∑︂

i=1

(︂
|βi − β∗

i |π2 + |γi − γ∗
i |π
)︂
, (2.1)

where | . . . |α denotes the absolute value modulo α which takes into account symmetries, see
Appendix A.1.

We calculate values of ∆rγ⃗,β⃗ and dγ⃗,β⃗ numerically. For a given graph realization we use
2p different random initializations of variational parameters γ⃗, β⃗ and optimize them using
the iterative BFGS algorithm [BRO70, Fle70, Gol70, Sha70]. The algorithm is accessed via
the scipy.optimize python module with default parameters [VGO+20]. Convergence is
achieved when the norm of the gradient is less than 10−5, maximum number of iterations is
set to 400p, where p is QAOA depth. In our simulations the routine typically converged before
using up the maximum number of allowed iterations. We use the converged angles with lowest
value of rγ⃗,β⃗ as an estimate for the global minimum γ∗

i , β
∗
i .

Figure 2.2 visualizes the structure of local minima via the joint probability distribution of ∆rγ⃗,β⃗

and dγ⃗,β⃗ for 50 different graphs using Kernel Density Estimation [Ros56, Par62]. We observe
that for QAOA with p = 5 the most typical local minima reached from random initialization
are far away from the best minimum (corresponding to ∆r

γ⃗∗,β⃗
∗ = 0 and d

γ⃗∗,β⃗
∗ = 0) both in

terms of quality of approximation ratio and parameter values. While this figure illustrates a
particular choice of system size and QAOA depth, a similar trend is observed for different N ,
p, and other graph ensembles, see Appendix A.1.

The tendency of random initialization to converge to suboptimal solutions highlights the
importance of better initialization methods. In the next section we investigate a family
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of initializations inspired by quantum annealing and demonstrate that it achieves a good
approximation ratio with a suitable choice of parameters.
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Figure 2.2: Joint probability distribution of distance to the global minimum in parameter
space dγ⃗,β⃗ and in terms of approximation ratio ∆rγ⃗,β⃗ reveals that the most probable outcome
of random initialization is a convergence to sub-optimal local minima (yellow region). The
orange dot corresponds to average values of dγ⃗,β⃗,∆rγ⃗,β⃗ for random initialization. In contrast,
TQA initialization leads to a local minima with a better approximation ratio that occasionally
outperforms the best random initialization (red dot, shifted from slightly negative values to
∆rγ⃗,β⃗ = 0 for improved visibility). The data is averaged over 50 random unweighted 3-regular
graphs with N = 12 vertices and QAOA at level p = 5.

2.3 Trotterized quantum annealing as initialization

2.3.1 Optimal time for TQA
Quantum annealing [KN98, BBRA99] was among the first algorithms proposed for quantum
computing [FGG+01, FGGS00], and was demonstrated to be universal for T → ∞ and
equivalent to digital quantum computing [AvK+08]. The general idea of quantum annealing
is to prepare the ground state |0⟩C of a classical Hamiltonian HC starting from the ground
state |0⟩B of the mixing Hamiltonian HB using adiabatic time evolution under Hamiltonian
H(t) = (t/T )HC + (1− t/T )HB. Practical execution of quantum annealing on NISQ devices
requires discretization to represent such unitary evolution via a sequence of gates, resulting in
the TQA algorithm. The first order Suzuki-Trotter decomposition allows to approximate the
time evolution with H(t) over time interval ∆t as e−i∆tH(t) ≈ e−iβHBe−iγHC +O(∆t2) with
β = (1− t/T )∆t and γ = (t/T )∆t.

Applying such decomposition to the quantum annealing protocol that is uniformly discretized
over p steps, so that ∆t = T/p and ti = i∆t we obtain the unitary circuit equivalent to the
depth-p QAOA ansatz (1.8) with angles being

γi = i

p
∆t, βi =

(︄
1− i

p

)︄
∆t. (2.2)
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Figure 2.3: Optimal time of TQA evolution T ∗ increases linearly with number of discretization
steps p. Top inset illustrates that optimal performance of TQA at time T ∗ is followed by the
rapid decrease in approximation ratio at longer times T ∗. Data is shown for N = 12. Bottom
inset shows finite size scaling of the time step δt, determined by the slope of the T ∗ vs p
dependence, that assumes approximately constant value with the graph size. All averaging is
performed over 50 random instances of unweighted 3-regular graphs.

In what follows we refer to such choice of angles as TQA initialization, controlled by the time
step ∆t at a fixed depth p.
The mapping between TQA and QAOA along with the universality of quantum annealing
for T →∞ was previously used as an argument for the existence of good QAOA protocols
at depths p → ∞ [FGG14b]. Typically the required evolution time of quantum annealing
is inversely proportional to the square of the minimal energy gap T ∝ ∆−2 encountered in
the Hamiltonian H(t) over the time evolution. Numerous studies established that the time
required for a good performance often blows up exponentially due to encounter of exponentially
small gaps in N [AL18].
In contrast to previous studies, we investigate TQA performance in a different setting that is
motivated by its subsequent usage as QAOA initialization. The QAOA is characterized by a
fixed circuit depth, p. Therefore, we fix p and study the performance of TQA as a function of
total time or, equivalently, time step ∆t, related as T = p∆t. Generally the performance of
quantum annealing tends to increase with the total annealing time. However in case of fixed
p, longer annealing time corresponds to a coarser discretization, which leads to larger Trotter
errors that scale proportionally to O(∆t2) at small values of ∆t. It is the interplay between
increased efficiency and Trotter errors that leads to the existence of an optimal annealing
time in the present setting. This is illustrated in Fig. 2.3 (top inset), where the approximation
ratio for the TQA protocol increases with T for small times, reaching a maximum at time T ∗

followed by a sharp downturn. The sharp decrease of QA performance after T ∗ was reported
by [HHZ19], who attributed a phase transition caused by proliferation of Trotter errors.
Main panel of Fig. 2.3 reveals a linear scaling of the optimal time T ∗ with the number of time
steps p. This is equivalent to the existence of an optimal time step δt, that determines T ∗ as

T ∗
TQA = δt p. (2.3)

The bottom inset in Fig. 2.3 shows that the time step δt defined as a slope of a linear fit
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Figure 2.4: (a) Approximation ratio of the p = 5 QAOA as a function of TQA initialization
time T reveals that a range of initialization times [T ∗

min, T
∗
max] (green triangle and star) yield

the performance within 1% of the minimal 1 − rγ⃗,β⃗. On the other hand, the study of the
distance between TQA initialization and converged value of angles reveals the existence of a
time T ∗

d where the QAOA performs the smallest parameter updates. (b) All three times T ∗
min,

T ∗
max, and T ∗

d defined in panel (a) increase linearly with QAOA circuit depth p. Moreover, the
T ∗

d is very close to the time where TQA protocol itself achieves optimal performance, T ∗
TQA,

see Fig. 2.2. Data was obtained for N = 12 and averaged over 50 random graphs.

of T ∗ with p converges with the problem size N . This gives a strong evidence that δt is a
well-defined quantity in the thermodynamic limit N → ∞. For the family of the 3-regular
graphs considered here we observe that the optimal time step tends to value δt ≈ 0.75. The
existence of an optimal time step that is of order one holds for three other graph ensembles,
considered in Appendix A.2, although the numerical value of this time step depends on the
specific graph ensemble.

We use the TQA initialization in Eq. (2.2) with time step ∆t = 0.75 for the QAOA and
observe in Fig. 2.2 that it allows to avoid the local minima and helps the QAOA to converge
to a minima that is very close to the global minima in terms of approximation ratio. This
result motivates the systematic analysis of the performance of TQA initialization.

2.3.2 TQA initialization of QAOA
We continue with a detailed study of the TQA initialization defined in Eq. (2.2) as a function
of time T at fixed p. The green line in Fig. 2.4(a) reveals that approximation ratio remains
constant for a range of times, denoted as [T ∗

min, T
∗
max]. This figure shows results for p = 5

QAOA applied to graphs with N = 12 vertices, but a similar trend holds for other values of
depth, problem sizes, and graph ensembles. The constant approximation ratio in a range of
T is naturally explained by the convergence of parameter optimization routine to the same
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2.4. Summary and Discussion

minimum for T ∈ [T ∗
min, T

∗
max], see cartoon in Fig. 2.1(c). In order to discriminate between

different times in the above range, we study the distance between initialization parameters
and optimized values of γ⃗, β⃗. The red line Fig. 2.4(a) shows that this distance has a well-
pronounced minimum at a time denoted as T ∗

d that is contained within the same interval
[T ∗

min, T
∗
max]. The TQA initialization with time T ∗

d is closest to the local minimum achieved
from it in a sense of distance defined in Eq. (2.1).

All three times T ∗
min, T ∗

max, and T ∗
d were defined above using the QAOA with fixed depth p.

Figure 2.4(b) reveals that all three times scale approximately linearly with p. This allows
to define a range of time steps for TQA initialization that yield the same performance of
optimized QAOA, ∆t ∈ [0.16, 0.92] for the present graph ensemble. Moreover, the time T ∗

d

nearly coincides with the optimal TQA time T ∗
TQA = δt p obtained in the previous section,

implying that ∆t = δt = 0.75 is the optimal value of time step. This result also holds for the
MaxCut problem on other graph families, see Appendix.

The similarity between the optimal time of the TQA protocol to the time where the angular
distance dγ⃗,β⃗ between the initial and final protocol is minimized, suggests that the performance
of the QAOA is bounded by the same phase transition that occurs in TQA [HHZ19]. However,
the QAOA is able to provide a significant improvement over TQA by doing additional opti-
mizations of variational parameters. Recent work [ZWC+20] suggested that such performance
improvement may be due to utilization of “diabatic pumps” that allow to return the population
from excited states back to the ground state. This could potentially explain the systematic
deviation of the QA protocol from TQA initialization as seen in Fig. A.3 in Appendix A.3.

Finally, we compare the performance of QAOA that used 2p random initializations to the
QAOA launched from TQA initialization with optimal time step δt. Surprisingly, Fig. 2.5 shows
that TQA initialization yields the same performance as the best result for random initialization
even for QAOA protocols with depth comparable to the problem size, N . Moreover, the inset
of Fig. 2.5 illustrates that the excellent performance of TQA initialization holds true for a
broad range of system sizes N , while Appendix A.4 presents equally encouraging results for
other graph ensembles. Note that the QAOA performance for fixed p decreases with system
size N , which was attributed to the fact that the QAOA with fixed p cannot “probe” the
whole graph. In order for the QAOA to achieve constant performance for increasing problem
size N , the depth of QAOA should increase at least as logN [ZWC+20].

2.4 Summary and Discussion
Our central result is the establishment of a family of TQA initializations for QAOA parametrized
by a time step ∆t. We find that TQA initialization allows the QAOA to find a solution close
to the global optima for a broad range of parameter ∆t. In this range our initialization
scheme achieves results similar to the best outcome of 2p random initializations, with a single
optimization run. Moreover we establish a heuristic way to identify the optimal ∆t for the
TQA initialization from the performance of the TQA protocol.

Our results open the door to more time-efficient practical implementations of the QAOA on
NISQ devices. To this end, we propose a two-step practical NISQ algorithm that capitalizes on
the success of TQA initialization and uses the heuristic results to establish an optimal value of
the time step. The first two steps of Algorithm 1 simulate the TQA protocol on a NISQ device,
thus obtaining an estimate for the optimal time in the TQA initialization. This can be readily
carried out on today’s NISQ devices [SKPK19]. The second part of the algorithm consists
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Figure 2.5: A single optimization run of the QAOA with TQA initialization with time δt p
yields equivalent performance to the best out of 2p random initializations. System size is
N = 12. Inset reveals that the comparable performance persists over the entire range of
considered system sizes. Averaging was performed over 50 random graphs.

of running the QAOA optimization loop using values of variational parameters according to
Eq. (2.2).

Algorithm 1 QAOA with TQA initialization
1: Choose p1 and p2 such that p1 < p2.
2: Estimate the slope δt using the TQA algorithm:

find optimal times T ∗
1,2 ← arg minT1,2

⟨︂
HC

⟩︂
p1,2

and set the value of time step δt← T ∗
2 −T ∗

1
p2−p1

, see Fig. 2.3.
3: Use TQA initialization γi ← i

p
δt and βi ← (1− i

p
)δt.

4: Run the QAOA parameter optimization, see Fig. 2.1.

Numerical simulations presented above suggest good performance of the above algorithm in
the idealized case when presence of noise, gate errors, and other imperfections are neglected.
Moreover, the fact that TQA initialization converges to a good minimum for the range of
times (equivalently, time steps) T ∈ [T ∗

min, T
∗
max], see Fig. 2.4, suggests that this algorithm

has a high tolerance towards imperfections in determining the value of δt. Determining the
performance of this algorithm on a real NISQ device or incorporating some of the imperfections
into the numerical simulation remains an interesting open problem.
In our studies we restricted our attention to the MaxCut problem and demonstrated success of
our approach for three different random graph ensembles. We expect that this results hold for
other graph ensembles, provided that concentration of QAOA landscape is true [BBF+18b]. It
is also interesting to check if our findings hold true beyond the MaxCut problem. Furthermore,
it will be interesting to study the finite size scaling for problem sizes N > 12 considered here
using Matrix Product States (MPS) [Sch11b] or neural-network quantum states [CT17, MC20].
In addition to practical NISQ algorithms, our finding suggest a previously unknown connection
between the QAOA at relatively small circuit depth and quantum annealing. The fact that
quantum annealing inspired initializations belong to a basin of attraction of a high-quality
minimum in the QAOA landscape, see Fig. 2.1(c), invites a more comprehensive study of the
QAOA landscape from this perspective. How many good quality minima typically exist in such
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landscape? How different are they from each other and what are their basins of attraction?
Can one use other information measures such as entanglement or Fisher information [ASZ+20]
to characterize the QAOA landscape? Finding answers to such questions may lead to other
prospective families of QAOA initializations.
While TQA provides a good initialization, the subsequent QAOA optimization is able to
significantly improve the performance. Understanding the underlying mechanisms of such
performance improvement is an outstanding challenge. In particular, there remains an intriguing
possibility that QAOA optimization routine implements some of the techniques, developed
to improve the annealing fidelity, such as diabatic pumps [ZWC+20], shortcuts to adiabatic-
ity [GORK+19], and counterdiabatic driving [SP17, CPSP19]. The fact that the optimal time
step coincides with the point of proliferation of Trotter errors [HHZ19], thus effectively taking
maximal possible value suggests interesting parallels to the Pontryagin’s minimum principle
considered in context of variational quantum algorithms [YRS+17].
To conclude, we hope that TQA initialization of the QAOA established in this work will help to
achieve practical quantum advantage by executing the QAOA on available devices and inspire
future research that could lead to better understanding of what happens under the hood of
QAOA optimization.
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CHAPTER 3
Recursive greedy initialization of the

quantum approximate optimization
algorithm with guaranteed improvement

3.1 Introduction
The quantum approximate optimization algorithm (QAOA) [FGG14b] is a prospective near-term
quantum algorithm for solving hard combinatorial optimization problems on Noisy Intermediate-
Scale Quantum (NISQ) [Pre18] devices. In this algorithm, the quantum computer is used
to prepare a variational wave function that is updated in an iterative feedback loop with a
classical computer to minimize a cost function (the energy expectation value), which encodes
the computational problem. A common bottleneck of the QAOA is the convergence of the
optimization procedure to one of the many low-quality local minima, whose number increases
exponentially with the QAOA circuit depth p [ZWC+20, SS21b].
Much effort has been devoted to finding good initialization strategies to prevent convergence
to such low-quality local minima. Researchers have proposed to: first solve a relaxed classical
optimization problem and to use that as an initial guess [EMW21], to use machine learning to
infer patterns in the optimal parameters [JCKK21], interpolating optimal parameters between
different circuit depths [ZWC+20], or to use the parallels between the QAOA and quantum
annealing [SS21b]. Recently the success of the interpolation strategies that appeal to annealing
was attributed to the ability of the QAOA to effectively speed up adiabatic evolution via the
so-called counterdiabatic mechanism [WL22]. This result was used to explain cost function
concentration for typical instances and concentration of optimal, typically smoothly varying,
parameters, which was previously introduced on Ref. [BBF+18a] and [ARCB21] respectively.
Despite this progress, all proposed initialization strategies remain heuristic or physically
motivated at best, and our understanding of the QAOA optimization remains limited. One of
the main puzzles is the exponential improvement of the QAOA performance with circuit depth
p, observed numerically [ZWC+20, Cro18]. Here we propose an analytic approach that relates
QAOA properties at circuit depths p and p+ 1. The recursive application of our result leads
to a QAOA initialization scheme that guarantees improvement of performance with p.
Our analytic approach relies on the consideration of stationary points of QAOA cost function
beyond local minima. Inspired by the theory of energy landscapes [Wal04], we focus on
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Figure 3.1: (a) Circuit diagram that implements the QAOA ansatz state with circuit depth p,
see Eq. (1.8). Gray boxes indicate the identity gates that are inserted when constructing a
TS, as indicated in Theorem 1. (b) Local minima Γp

min of QAOAp generate a TS Γp+1
TS for

QAOAp+1 that connects to two new local minima, Γp+1
min1,2 with lower energy.

stationary configurations with a unique unstable direction, known as transition states (TS). We
show that 2p+ 1 distinct TS can be constructed analytically for a QAOA at circuit depth p+ 1
(denoted as QAOAp+1) from minima at circuit depth p. All these TS for QAOAp+1 exhibit the
same energy as the QAOAp-minimum from which they are constructed, thus providing a good
initialization for QAOAp+1. Descending in the negative curvature direction connects each of
the 2p+ 1 TS to two local minima of QAOAp+1, which are thus guaranteed to exhibit lower
energy than the initial minima of QAOAp. Iterating this procedure leads to an exponentially
increasing (in p) number of local minima which are guaranteed to have a lower energy at
circuit depth p + 1 than at p. We visualize this hierarchy of minima and their connections
in a graph and propose a Greedy approach to explore its structure. We numerically show
that optimal parameters at every circuit depth p are smooth (i.e. the variational parameters
change only slowly between circuit layers) and directly connect to a smooth parameter solution
at p + 1 through the TS. Our results explain existing QAOA initializations and establish a
recursive analytic approach to study QAOA.
The rest of the chapter is organized as follows. In Section 3.2 we review the QAOA, present
newly found symmetries, and introduce the analytical construction of TS. In Section 3.3 we
show how TS can be used as an initialization to systematically explore the QAOA optimization
landscape. From this, we introduce a new heuristic method, dubbed Greedy for exploring the
landscape and provide a comparison to popular optimization strategies. Finally, in Section 3.4
we discuss our results and potential future extensions of our work. Appendices B.1-B.6 present
detailed proofs of our analytical results, as well as supporting numerical simulations.

3.2 QAOA optimization landscape
3.2.1 Energy minima and transition states
Previous studies of the QAOA landscape were restricted to local minima of the cost function
E(β,γ), since they can be directly obtained using standard gradient-based or gradient-free
optimization routines. Local minima are stationary points of the energy landscape (defined
as ∂iE(β,γ) = 0 for derivative running over all i = 1, . . . , 2p variational angles), where
all eigenvalues of the Hessian matrix Hij = ∂i∂jE(β,γ) are positive, that is the Hessian
at the local minimum is positive-definite. However, the study of energy landscapes [Wal04]
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of chemical reactions and molecular dynamics has shown that TS, which corresponds to
stationary points with a single negative eigenvalue of the Hessian matrix (index-1), also
plays an important role 1. There, TS are particularly relevant as they correspond to the
highest-energy configurations along a reaction pathway. They often serve as bottlenecks in
the reaction process and thus are crucial for understanding reaction rates, designing catalysts,
and predicting chemical behavior. By studying the role of transition states in the QAOA
landscape, we aim to uncover insights that could lead to improved optimization strategies
or better convergence properties of the algorithm. This motivates the construction of TS
achieved below.

3.2.2 Analytic construction of transition states
The structure of the QAOA variational ansatz allows us to analytically construct the TS of
QAOAp+1 using any local minima of QAOAp:

Theorem 1 (TS construction, simplified version). Assume that we found a local minimum
of QAOAp denoted as Γp

min = (β⋆,γ⋆) = (β⋆
1 , . . . , β

⋆
p , γ

⋆
1 , . . . , γ

⋆
p). Padding the vector of

variational angles with zeros at positions i and j, results in

Γp+1
TS (i, j) = (β⋆

1 , ..., β
⋆
j−1,0, β⋆

j , ..., β
⋆
p ,

γ⋆
1 , ..., γ

⋆
i−1,0, γ⋆

i , ..., γ
⋆
p)

(3.1)

being a TS for QAOAp+1 when j = i or j = i+ 1 and ∀i ∈ [1, p], and also for i = j = p+ 1.

Proof. The argument consists of two steps. First, by relating the first derivative over newly
introduced parameters to derivatives over existing angles we show that Eq. (3.1) is a stationary
point of QAOAp+1. More specifically, we observe that the gradient components where the
zero insertion is made satisfy the following relations

∂βl
|β,γ⟩⃓⃓⃓

Γp+1
TS (l,l)

= ∂βl−1 |β,γ⟩⃓⃓⃓Γp
min

,

∂βl
|β,γ⟩⃓⃓⃓

Γp+1
TS (l,l+1)

= ∂βl
|β,γ⟩⃓⃓⃓

Γp
min

,

∂γl
|β,γ⟩⃓⃓⃓

Γp+1
TS (l,l)

= ∂γl
|β,γ⟩⃓⃓⃓

Γp
min

,

∂γl+1 |β,γ⟩⃓⃓⃓Γp+1
TS (l,l+1)

= ∂γl
|β,γ⟩⃓⃓⃓

Γp
min

.

(3.2)

Since ∇E(β,γ)⃓⃓⃓
Γp

min

= 0, it directly follows that the TS constructed using Theorem 1 are

also stationary points. In the second step, we show that the Hessian at the TS has a single
negative eigenvalue. To this end in the Appendix B.2 we show that we can always write the
Hessian at the TS in the following form

H
[︂
Γp+1

TS (l, k)
]︂

=
(︄
H(Γp

min) v(l, k)
vT (l, k) h(l, k)

)︄
, (3.3)

where H(Γp
min) ∈ R2p×2p, v(l, k) ∈ R2p×2 and, h(l, k) ∈ R2×2. Here, the largest block H(Γp

min)
corresponds to the old Hessian at the stationary point. The matrix h(l, k) corresponds to

1Note, that on physical grounds we do not consider singular Hessians that have one or more vanishing
eigenvalues, see Appendix B.2.
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the second derivatives of the energy with respect to new parameters that are initially set to
zero, whereas matrix v(l, k) represents the “mixing” terms, with one derivative taking over the
old parameters and the second derivative corresponding to one of the new parameters, which
are initialized at zero. By employing this representation of the Hessian at the TS, we utilize
the eigenvalue interlacing theorem ([Ref. [Bel97], Theorem 4 on page 117] summarized in
Theorem 5) to establish that H[Γp+1

TS (l, k)] has at most two negative eigenvalues. Subsequently,
we prove that the determinant of H[Γp+1

TS (l, k)] is negative for each of the 2p+ 1 transition
states, which implies the presence of only one negative eigenvalue (i.e., the index-1 direction).
It is important to note that this result is independent of the choice of classical Hamiltonian,
which is fixed to encode MaxCut in this work.

The simplified theorem above ignores the possibility of vanishing eigenvalues of the Hessian,
which can be ruled out only on physical grounds. This issue and complete proof of the theorem
are discussed in Appendix B.2.

3.3 From transition states to QAOA intialization
3.3.1 Initialization graph
For each local minimum of QAOAp, Theorem 1 provides p+ 1 symmetric TS where zeros are
padded at the same position, i = j, like in Fig. 3.1(a), and additionally p non-symmetric TS
with j = i+ 1, where zeros are padded in adjacent layers of the QAOA circuit. Fig. 3.1(b)
shows how one can descend from a given TS along the positive and negative index-1 direction,
finding two new local minima of QAOAp+1 with lower energy. Thus Theorem 1 provides us
with a powerful tool to systematically explore the local minima in the QAOA in a recursive
fashion.
Such exploration of the QAOA initializations for a particular graph with n = 10 vertices
is summarized in Fig. 3.2. We find a unique minimum for QAOA1 using grid search (see
Appendix B.5) in the fundamental region defined in Eq. (B.52) from which we construct two
symmetric TS according to Eq. (3.1), descend from these TS in index-1 directions with the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) [BRO70, Fle70, Gol70, Sha70] algorithm, finding
two new local minima of QAOA2. These minima are connected to the minima of QAOA1,
since it was used to construct a TS. Repeating this procedure recursively for each of the
p+ 1 symmetric TS 2 we obtain the tree in Fig. 3.2. Assuming that all minima found in this
way from symmetric TS are unique, their number would increase as 2p−1p!. Numerically, we
observe that the number of unique minima is much smaller compared to the naïve counting,
increasing approximately exponentially with p.

3.3.2 Greedy maneuvering through the graph
The exponential growth of the number of minima in QAOA depth pmakes the naïve construction
and exploration of the full graph a challenging task. To deal with the rapidly growing number
of minima we introduce:

Corollary 1.1 (Greedy recursive strategy). Using the lowest energy minimum that is found
for QAOA depth p, we generate 2p+ 1 transition states (TS) for QAOAp+1. Each transition

2Note, that we restrict only to symmetric TS since we numerically find no performance gain from including
the non-symmetric TS in the initialization procedure.
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Figure 3.2: Initialization graph for the QAOA for MaxCut problem on a particular instance of
RRG3 with n = 10 vertices (inset). For each local minima of QAOAp we generate p+ 1 TS for
QAOAp+1, find corresponding minima as in Fig. 3.1(b), and show them on the plot connected
by an edge to the original minima of QAOAp+1. Position along the vertical axis quantifies the
performance of QAOA via the approximation ratio, and points are displaced on the horizontal
axis for clarity. Color encodes the depth of the QAOA circuit, and large symbols along with
the red dashed line indicate the path that is taken by the Greedy procedure that keeps
the best minima for any given p resulting in an exponential improvement of the performance
with p. The Greedy minimum coincides with an estimate of the global minimum for p = 6
(dashed line) obtained by choosing the best minima from 2p initializations on a regular grid.

state corresponds to the same state in the Hilbert space as the initial local minimum, so the
energy of all the transition states is the same and equal to the energy of the initial local
minimum. We then optimize the QAOA parameters starting from each of these transition
states and select the best new local minimum of QAOAp+1 to iterate this procedure. This
Greedy recursive strategy is guaranteed to lower energy at every step.

Proof. Let the initial local minimum at QAOA depth p have energy Ep. Since all the 2p+ 1
transition states are generated from this minimum and have the same energy Ep, when we
optimize the QAOA parameters for QAOAp+1 starting from these transition states, all the
converged local minima will have energy less than or equal to Ep. As a result, the energy can
either decrease or stay the same (provided that curvature vanishes, which we do not expect
on physical grounds, see Appendix B.2), but it cannot increase. Therefore, the Greedy
recursive strategy is guaranteed to lower or maintain the energy at every step.

The Greedy path that is taken by this strategy in the initialization graph is shown in Fig. 3.2
as a red dashed line. We can see that this heuristic allows to very effectively maneuver the
increasingly complex graph with its numerous local minima and find the global minimum for
circuit depths up to p = 7. A detailed description of the algorithm is presented in Appendix B.5.

To systematically explore how Greedy maneuvers the initialization graph, we compare it to two
initialization strategies proposed in the literature: The so-called Interp approach [ZWC+20]

27



3. Recursive greedy initialization of the quantum approximate optimization
algorithm with guaranteed improvement

interpolates the optimal parameters found for circuit depth p to p + 1 and uses it as a
subsequent initialization. This procedure creates a smooth parameter pattern that mimics an
annealing schedule. Numerical studies demonstrated that Interp has the same performance
as the best out of 2p random initializations. The second method that we use for comparison
is the Trotterized quantum annealing (TQA) method [SS21b], that initializes QAOAp using
γj = (1 − j

p
)∆t and βj = j

p
∆t. The step size ∆t is a free parameter determined in a

pre-optimization step. The TQA has similar performance to Interp at moderate circuit
depths, notably having lower computational cost. Obtaining an initialization for QAOAp within
the Interp framework requires running the optimization for all p′ = 1, . . . , p− 1, while in
the TQA the search for an optimal ∆t is performed directly for a given p.

Fig. 3.3 reveals that the Greedy approach yields similar performance to existing methods.
Moreover, the performance of TQA slightly degrades at higher p, however, Greedy is fully
on par with Interp initialization. The comparable performance between Greedy and earlier
heuristic approaches is surprising. Indeed, the Greedy method for QAOAp explores p+ 1
symmetric TSs and chooses the best out of the resulting up to 2(p+ 1) minima (if none are
equivalent), in contrast to Interp, which uses a single smooth initialization pattern at every
p and thus at a smaller computational cost.

3.3.3 Smooth pattern of variational angles and heuristic
initializations

We find that having a smooth dependence of the variational angles on p (referred to as a
“smooth pattern”) is an important characteristic for efficiently maneuvering the initialization
graph. A smooth pattern means that the variational angles change gradually and continuously
as the QAOA depth p increases, without abrupt jumps or discontinuities. This smoothness

2 4 6 8 10 12 14 16 18 20
Circuit depth p

10−5

10−4

10−3

10−2

10−1

1
−
r β
,γ

Greedy

Tqa

Interp

Greedy for graph in Fig. 2

Global

Figure 3.3: Performance comparison between different QAOA initialization strategies used
for avoiding low-quality local minima. Greedy approach proposed in this work yields the
same performance as Interp [ZWC+20] and slightly outperforms TQA [SS21b] at large p.
Global refers to the best minima found out of 2p initializations on a regular grid. Data is
averaged over 19 non-isomorphic RRG3 with n = 10, shading indicates standard deviation.
System size scaling for up to n = 16 and performance comparison for different graph ensembles
can be found in the Appendix B.6.
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Figure 3.4: (a) Cartoon of descent from two different TS at of QAOAp+1 generated from a
QAOAp minimum with a smooth pattern leads to the same new smooth pattern minima of
QAOAp+1, also reached from the Interp [ZWC+20] initialization. Two additional non-smooth
local minima typically have higher energy. (b) shows the corresponding initial and convergent
parameter patterns for the RRG3 graph shown in Fig. 3.2 for p = 10.

property can be visually inspected by plotting the variational angles as a function of p and
observing whether the curve appears continuous and smooth. Assuming we found a smooth
pattern of QAOAp, Theorem 1 produces a TS of QAOAp+1 by padding it with zeros, effectively
introducing a discontinuity (bump). Optimization from the TS with such a bump can proceed
by rolling down either side of the saddle, see Fig. 3.4(a), finding two new minima. Remarkably,
the eigenvector corresponding to the index-1 direction of the Hessian has dominant weight
on the variational angles with initially zero value, see B.4 for details. Thus descending along
the index-1 direction, we can either enhance or heal the resulting discontinuity in the pattern
of variational angles. As a result, among two new local minima of QAOAp+1 one typically
exhibits a smooth parameter pattern where the bump was removed, while the other minimum
has an enhanced discontinuity, see Fig. 3.4(b) for an example. Utilizing these observations in
a numerical study, we find that minima exhibiting a non-smooth parameter pattern exhibit
usually a worse or the same performance as smooth minima. In fact, in the Greedy procedure
we find that in most cases, in particular in the beginning of the protocol, smooth minima are
selected. However, there are cases where a non-smooth minimum is selected if it exhibits the
same energy as the smooth one. Greedy then branches off in the optimization graph into a
sub-graph involving only non-smooth minima. Usually, this process of branching off is followed
by a smaller gain in performance from increasing p.

The preferred smoothness of QAOA optimization parameters has been explored in the litera-
ture [ZWC+20, MBS+22, WL22] and is believed to be linked to quantum annealing [BBB+21]
(QA). In QA the ground state of the Hamiltonian HC is obtained by preparing the ground state
of HB and smoothly evolving the system to HC such that the system remains in the ground
state during the evolution. A fast change, as generated by a bump in the protocol, leads to leak-
age into excited energy levels and thus decreased overlap with the target ground state of HC .
Since the QAOA can be understood as a Trotterized version of QA [FGG14b, SS21b, ZWC+20],
for large p, we believe that a similar process is present in the QAOA and thus makes a smooth
parameter pattern preferable.

We find that smooth Greedy minima coincide with Interp minima as shown in Fig. 3.4(b).
The Interp naturally creates a smooth parameter pattern since the minima found at p is
interpolated to a QAOAp+1 initialization. The optimizer only slightly alters the parameters from
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its initial value, as can be seen in Fig. 3.4(b). Geometrically, the Interp initialization can be
obtained from the symmetric TS constructed by Theorem 1 as Γp+1

Interp = 1
p

∑︁p+1
i=1 Γp+1

TS (i, i). In
other words, Γp+1

Interp is the rescaled center of mass point of all symmetric TS, with the rescaling
factor (p+1)/p being physically motivated. Considering the center of mass of all TS smoothens
out discontinuities present in individual TS. The re-scaling is related to the notion of “total time”
of the QAOA, given by the sum of all variational angles, T = ∑︁

j |γj|+ |βj| [ZWC+20, LLL20],
that resembles the total annealing time in the limit p→∞. This parameter has been shown
to scale as T ∼ p [SS21b], naturally explaining the role of factor (p + 1)/p in yielding the
correct increased total time of QAOAp+1. In other words, the Interp strategy seems to
essentially execute a Greedy search without optimizing in the index-1 direction from the
TS. This insight lends credence to the success of Interp. However, only Greedy offers a
guarantee for performance improvement with increasing p, while for Interp this behavior is
supported only by numerical simulations.

3.4 Summary and Discussion
In this work we analytically demonstrated that minima of QAOAp can be used to obtain
transition states (TS) for QAOAp+1 which are stationary points with a unique negative
eigenvalue in the Hessian. These TS provide an excellent initialization for QAOAp+1, because
they connect to two new local minima with lower energy. This construction allows us to visualize
how local minima emerge at different energies for increasing circuit depth using an initialization
graph. Categorizing the local minima on this graph by their smooth (discontinuous) patterns
of variational parameters, we find that the smooth minima achieve the best performance.
Incorporating the smooth nature of minima allows us to establish a relation between the
Greedy approach for the exploration of the initialization graph and the best available
initialization strategy [ZWC+20].
The use of TS and their analytic construction for the study of QAOA provide the first
steps towards an in-depth understanding of the full optimization landscape of the QAOA.
The constructed TS are guaranteed to provide an initialization that improves the QAOA
performance, suggesting that our construction may be useful for establishing analytic QAOA
performance guarantees [FGG14b, WL21, FGG20] for large p in a recursive fashion. Of
particular interest is here an analytical understanding of the numerically observed exponential
performance improvement with circuit depth. On a practical side, the established relation
between heuristic initializations [ZWC+20] and Greedy exploration of TS suggests that our
construction of TS may be useful as a starting point for constructing simple initialization
strategies in a broader class of quantum variational algorithms, such as the variational quantum
eigensolver [KMT+17b, PMS+14b] and quantum machine learning [BLSF19a].
In addition, our results invite a more complete characterization of the QAOA landscape using
the energy landscapes perspective [Wal04]. What fraction of minima does our procedure find
out of the complete set of QAOA local minima? Are there more TS and are our analytically
constructed TS typical? How is the Hessian spectrum distributed at these minima and TS?
How do these properties depend on the choice of the QAOA classical Hamiltonian, particularly
for classical problems with intrinsically hard landscapes [CLSS21]? Answering these and related
questions will most likely lead to practical ways of further speeding up the QAOA by reducing
the overhead of the classical optimization [WVG+22].
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CHAPTER 4
Generalization of the quantum

approximate optimization algorithm to
qudits

4.1 Introduction
The field of quantum computing has seen tremendous advancements in recent years, with
substantial progress in hardware across various platforms [KEA+23, EBK+23] as well as first
promising demonstrations of quantum algorithms executed on hardware [EKC+22]. Despite
great advancements in hardware and algorithms, quantum computers have not yet achieved
quantum advantage, i.e., outperformed a classical computer for a practically relevant task.
This is largely due to noise and limited qubit connectivity, which restricts each qubit’s ability
to interact directly with other qubits in the system. These factors limit the expressibility and
the range of quantum circuits that can be implemented.
To address these challenges, we propose an alternative approach that involves qudits, quantum
systems with more than two levels, as the core computational units instead of qubits. Despite
being natively available on various hardware architectures, such as superconducting, ion trap,
and neutral atom quantum computers, the use of qudits for computation has so far been limited.
Notable experiments include IBM’s implementation of a generalized measurement (so-called
POVM) using a four-level qudit system [FMT+22] and a team in Innsbruck demonstrating a
universal gate set with up to seven energy levels [RMP+22] on an ion trap quantum computer.
These initial implementations highlight the potential of qudits, yet much of this potential
remains unexplored, in particular for the application of quantum algorithms.
Qudits allow for a richer exploration of the computational space due to the larger dimension of
the Hilbert space (dn where n is the number of qudits and d is the number of energy levels), as
compared to qubits (d = 2). This increased dimension utilized by qudits could be a promising
path to enhance the expressibility of near-term quantum algorithms.
To explore this, we propose a generalization of the quantum approximate optimization algorithm
(QAOA) to qudit systems. We apply the Qudit-QAOA to the problem of graph coloring, a
well-known NP-hard problem in computer science [Kar72]. There, the qudits’ d energy levels
can conveniently represent the colors of nodes in a graph, and the QAOA ansatz can evolve
the system to a configuration where no nodes connected by an edge have the same color,
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see Fig. 4.2 for an illustration. We will show, that in this setting, a correct coloring can be
interpreted as the ground state of the antiferromagnetic Potts model.

Next, we will study the issue of noise and explore how it affects the performance of the Qudit-
QAOA. In particular, we propose an efficient technique that allows for a highly computationally
efficient simulation of single qudit noise. Lastly, we explore how the algorithm can be
implemented on an ion trap quantum computer using hardware native gates.
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Figure 4.1: Illustration of a graph with six vertices that is colorable with three colors (yellow,
red, and blue). In the Qudit-QAOA each qudit is assigned to one vertex in the graph and each
qudit state represents one color. Here the initial state |+⟩⊗n is an equal superposition of all
possible colorings.

Note that this work is based on work by [BKKT20] who originally proposed an extension of
the QAOA to qudit systems. Our work extends on this in two main avenues: first, we provide
an alternative formulation of the Qudit-QAOA ansatz that allows for an expression in terms of
quantum gates. Secondly, we analyze the effect of noise on the Qudit-QAOA, a previously
entirely unexplored subject.

The remainder of the chapter is organized as follows: Sec. 4.2 discusses the basics of qudits
and how Pauli matrices can be generalized to higher dimensions. In Sec. 4.3 we discuss the
graph coloring problem and propose the Qudits-QAOA circuit. Furthermore, we show how
the effect of noise can be simulated efficiently and present numerical results for two different
graphs. In addition, we show that the Qudits-QAOA can be readily implemented on an ion
trap quantum computer using hardware native gates. In Sec. 4.4 we numerically study the
performance of the Qudit-QAOA under the effect of noise. Lastly, in Sec. 4.5 we summarize
the results and discuss their implications.

4.2 Qudits - Beyond Two-Level Systems

4.2.1 Qudits as generalizations of qubits
Qudits are d-level quantum systems that generalize the two-level systems commonly known as
qubits. A qudit, with d > 2, can exist in any superposition of its d basis states. These basis
states, also known as computational basis states, are often denoted as {|0⟩, |1⟩, ..., |d− 1⟩},
similar to the qubit basis states {|0⟩, |1⟩}. Each qudit state can then be expressed as a linear
combination of these basis states |ψ⟩ = ∑︁d−1

j=0 cj|j⟩ where cj are complex coefficients such
that ∑︁d−1

j=0 |cj|2 = 1 for normalization.
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4.3. Generalization of the QAOA to qudits

The set of local operations on a qudit is described by the group SU(d). In the case of
a qutrit, the Lie algebra of SU(3) is spanned by Gell–Mann matrices, which are a natural
generalization of the Pauli matrices from SU(2) to SU(3), with further generalizations towards
SU(d) [GM62]. For our purposes we require generalizations of the standard Pauli matrices σz

(phase flip), σx (bit-flip) and the Hadamard matrix H which implements a basis transformation
between the computational basis and the X-basis.

4.2.2 Generalization of Pauli matrices
In particular we have have the generalized Xd operator, which implements a cyclic shift

Xd =
d−1∑︂
j=0
|j ⊕ 1⟩⟨j|, (4.1)

where ⊕ denotes addition modulo d. For the generalized Zd we have

Zd =
d−1∑︂
j=0

ωj|j⟩⟨j|, (4.2)

where ω = e2πi/d, a dth root of unity, the operator thus introduces a relative phase to the
basis states. These generalized Pauli operations maintain many of the same basic properties
as their qubit counterparts, such as unitarity and tracelessness.

4.2.3 Generalization of the Hadamard gate
Finally, we turn our attention to the generalized Hadamard gate. The generalization of the
Hadamard gate to qudits can be expressed as

Hd = 1√
d

d−1∑︂
j,k=0

ωjk|j⟩⟨k|. (4.3)

Note that this is not yet a universal gate set, in particular we have not yet defined an entangling
gate. We will discuss the entangling gate used in this work in detail in Sec. 4.3.3.

4.3 Generalization of the QAOA to qudits
4.3.1 Graph coloring and Potts model
While the QAOA can be implemented for any binary optimization problem it was originally
suggested for the problem of MaxCut [FGG14a]. There the goal is to partition a graph
G = {E, V }, consisting of vertices V and edges E, such that the partition cuts through a
maximal number of edges, see Sec. 1.3 for a detailed discussion. The assignment of the
vertices is thus binary. In the QAOA the two energy levels of the qubits are use to represent
the two binary choices. However, when working with qudit systems which offer multiple energy
levels, graph coloring becomes a suitable problem to exploit the additional dimensions. In the
graph coloring problem, the task is to assign colors to the vertices of a graph such that no
two adjacent vertices have the same color. The goal is to find the smallest number of colors
required to properly color a graph, known as the chromatic number χ, this problem is known
to be NP-hard. In this context we can understand MaxCut as a special case of graph coloring
with just two colors or 2-coloring.
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4. Generalization of the quantum approximate optimization algorithm to qudits

We can frame the problem of finding a correct coloring as a minimization problem for the
following cost function

C =
∑︂

i,j∈E

δcicj
, (4.4)

where ci is the color of the i-th qudit, this is known as the antiferromagnetic Potts model in
condensed matter physics (see [Wu82] for a review). The aim is thus to find a set of colors
{ci} such that the cost function is minimized. There is an energy contribution if two colors
are the same, on two vertices connected by an edge, and no energy contribution if two colors
are different. A valid coloring where no two vertices connected by an edge have the same
color, thus has cost function value zero. In the complete graph coloring problem there is the
additional complexity of finding the minimal number of colors χ for which the cost function
has a ground state with zero energy. The problem can thus be formulated as

χ = min
d,{ci}N

i=1

d : C({ci}) = 0, ci ∈ 0, 1, . . . , d− 1 ∀i, (4.5)

which means that we find aim to find a set of colors {ci} such that the cost function C is zero
with the least number of colors d. If this problem is solvable, we find the chromatic number χ,
if not we simply find a low energy coloring which has a non-zero cost function value.
With this established, we can make a connection between the concept of colors in the graph
and quantum states of the qudits. To do so, we can express our cost function in terms of
quantum projectors. Each color ci corresponds to a specific quantum state |a⟩i of the i-th
qudit. The Kronecker delta in the cost function, δcicj

, is then equivalent to a projector in the
i-th and j-th qudit state spaces

δcicj
=

d−1∑︂
a=0
|a⟩i ⟨a|i ⊗ |a⟩j ⟨a|j . (4.6)

This equivalence is a natural one: the projector returns the value 1 (analogous to the Kronecker
delta) when the states |a⟩i and |a⟩j are the same, thus indicating that the vertices i and j share
the same color and contributing to the cost function. Conversely, if the states are different,
the projector returns 0 and the cost function does not increase. This way, the quantum
representation of the graph coloring problem naturally mirrors its classical counterpart, and
this is what allows us to use qudits to solve the problem.

4.3.2 Qudit-QAOA ansatz circuit
Similar to the QAOA ansatz for qubits in Eq. (1.8) the Qudit-QAOA requires two alternating
unitaries that drive the evolution from the equal superposition |+⟩⊗n to the ground state of
C. One unitary is the classical term that involves the diagonal Hamiltonian C and generates
entanglement between qudits, the second unitary is the non-diagonal quantum term that
generates a global single qudit rotation that allows to shift the weight of the wave function
between qudit states. Inspired by Ref. [BKKT20] we propose the following Qudit-QAOA
ansatz circuit

|β,γ⟩ =
p∏︂

t=1
UB(βt)⊗ne−iγtC |+⟩⊗n , (4.7)

where similar to the qubit case |+⟩⊗n is an equal superposition of all basis states, which is
equivalent to an equal superposition of all colors. The classical unitary e−iγtC entangles pairs
of qudits, we have that

e−iγtC =
∏︂

i,j∈E

e−iγtδcicj . (4.8)
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4.3. Generalization of the QAOA to qudits

UB(βt) is the non-diagonal quantum unitary, given by

UB(β) = H†
(︄∑︂

a ̸=0
eiβa |a⟩ ⟨a|

)︄
H, (4.9)

where H is the generalized Hadamard gates as defined in Eq. (4.3). The unitary implements a
phase shift of phase eiβa in the X-basis, where the basis transformation is implemented by the
Hadamard gates. For the variational parameters we have that β ∈ Rp(d−1) and γ ∈ Rp which
implies that there is total of pd variational parameters, see Appx. C.1 for a more detailed
discussion of the ansatz and its relation to the proposal in Ref. [BKKT20].

4.3.3 Hardware native qudit entangling gate for ion tap quantum
computer

Lastly we will discuss how the Qudit-QAOA can be run on an ion trap quantum computer.
In order to implement the ansatz from Eq. (4.7) on a quantum hardware we need to find a
representation of the classical and quantum unitary in terms of available gates. In recent
work by [HWG+23] a novel entangling gate was suggested for qudit entanglement on an ion
trap quantum computer. They experimentally demonstrate the implementation of the native
two-qudit entangling gate up to dimension d = 5 in a trapped-ion system. This is achieved
by generalizing a recently proposed light-shift gate mechanism to generate genuine qudit
entanglement in a single application of the gate. The action of the gate can be expressed as

G(γ) :

⎧⎨⎩|jj⟩ → |jj⟩|jk⟩ → eiγ |jk⟩ j ̸= k.
(4.10)

The gate thus implements a phase shift of eiγ on two qudits that are not in the same state, or
equivalently the same color. If we consider again the classical unitary from Eq. (4.8) we find
that the term e−iγtδcicj is equivalent to the entangling gate G(γ) up to a global phase, see
Appx. C.2 for details. This allows us to implement the classical unitary as

e−iγtC ∼
∏︂

i,j∈E

Gi,j(γt), (4.11)

or in words the native qudit entangling gate acts on pairs of qudits that are elements of the
edges E. This is a highly compact representation since it only requires a total of |E| entangling
gates. Typically entangling gates would only target pairs of qudit states rather then all of
them at once, which would require multiple gates per qudit pair which vastly increases errors.

4.3.4 Representation of quantum unitary using phase shifts
Next, we require a compact representation of the quantum unitary UB(β). Eq. (4.9) is straight
forward to implement using the phase shift gate presented in Ref. [RMP+22] given by

Zi(β) |j⟩ =

⎧⎨⎩e−iβ |j⟩ if i = j

|j⟩ else,
(4.12)

which allows to induce a phase shift on an arbitrary level. We can use this to implement the
term ∑︁

a ̸=0 e
iβa |a⟩ ⟨a| as ∑︂

a ̸=0
eiβa |a⟩ ⟨a| =

∏︂
a ̸=0

Za(−βa). (4.13)
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4. Generalization of the quantum approximate optimization algorithm to qudits

To implement the full quantum unitary UB(β) we also require generalized Hadamard gates
H which are also readily available [RMP+22]. This representation is highly optimal since the
phase shift gates are in fact implemented “in software” and does not induce any error. The
Hadamard gates have a constant error, which makes the errors of this gate independent of the
angles β which is highly desired since one aims at finding optimal parameters that minimize
the cost function.

4.3.5 Qudit-QAOA circuit using native ion trap gates
We can thus write down the full Qudit-QAOA circuit for ion traps using a hardware native
qudit entangling gate and virtual phase shift gates

|β,γ⟩ =
p∏︂

t=1

[︄[︂
H†
(︂ ∏︂

a ̸=0
Za(−βt

a)
)︂
H
]︂⊗n ∏︂

i,j∈E

Gi,j(γt)
]︄
|+⟩⊗n , (4.14)

we illustrate the circuit in Fig. 4.2. This circuit is highly compact and ideal for an implementation
on an ion trap qudit device. Ion traps offer all-to-all connectivity which implies that the term∏︁

i,j∈E Gi,j(γt) can be directly implemented without requiring an swaps with just |E| two qudit
entangling gates. For qutrits (d = 3) Gi,j has an error of roughly ∼ 1% while for higher d
is may be larger. The single qudit Hadamard gates have an error of ∼ 2× 10−4 d2

2 while the
phase shift gates are implemented in software at the end of the measurement and thus do
have any error. From previous experiments on the ion trap hardware we know that in order to
achieve a circuit fidelity of over 50% we can roughly implement total of p|E| < 50 gates.
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p-times

Figure 4.2: Circuit diagram of a Qudit-QAOA with ion trap native gates. The initial state
|+⟩⊗n is the equal superposition of all qudit levels. Vertical lines indicate the native qudit
entangling gates G(γ) as defined in Eq. (4.10), they are applied to pairs of qudits i, j ∈ E
to implement e−iγtC (light blue box). Generalized Hadamard gates H are used to implement
a basis transformation into the X-basis (green boxes) where phase shift gates Za(−βt

a) are
applied consecutively to implement ∏︁a ̸=0 Za(−βt

a) (dark red boxes). H† gates are used
to transform back into the computational basis , which completes the implementation of
UB(βt)⊗n (light red box). This pattern (gray box) is repeated p-times to implement a QAOA
of circuit depth p. We omit the angle in phase shift gates and qudit entangling gates in the
cartoon for simplicity.
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4.3. Generalization of the QAOA to qudits

4.3.6 Efficient noise simulation for qudit systems
In the NISQ era noise is one of the main limiting factors for quantum computation. For any
algorithm it is thus important to take into account the effect of noise in the computation. For
qudit systems the effect of noise has so far been largely unexplored. Mathematically noise can
be described as a completely positive (CP) map (also called a quantum channel) E(ρ) which
in Kraus representation can be expressed as

E(ρ) =
∑︂

α

EαρE
†
α with

∑︂
α

E†
αEα ≤ I, (4.15)

where Eα are non-unique Kraus operators [NC02]. To simulate a general quantum noise
channel it is thus required to construct the full dN × dN density matrix and act with Kraus
operators on the density matrix. For qudits this approach becomes rapidly intractable due to
the increased Hilbert space dimension compared to qubits. In order to numerically study the
effect of noise on qudit quantum computation we thus have to resort to alternative means
that allow to closely approximate a full density matrix simulation with reduced computational
costs.
To this end we will use a single qudit depolarizing noise channel which is given by

E(ρ) = (1− perr)ρ+ perr

d
I, (4.16)

with error probability perr. This implies that with probability 1− perr the qudit is unchanged
and with probability perr it is mapped to the maximally mixed state. The maximally mixed
state can be expressed as an average over all generalized Pauli unitaries applied to ρ

1
d
I = 1

d2

d−1∑︂
p,q=0

ZpXqρ(Xq)†(Zp)†, (4.17)

where Xp and Zq are powers of generalized Pauli matrices as defined in Eq. (4.1) and Eq. (4.2)
respectively, see Appx. C.3 for a proof of this equivalence. This allows us to approximate the
full depolarizing channel, Eq. (4.16), as a Monte Carlo sampling experiment where the state is
unchanged with probability 1− perr and with probability perr we apply ZpXq with integers p, q
randomly sampled between 0 and d− 1.
So far we have shown that we can approximate a single qudit depolarizing channel as a
sampling experiment for density matrices. Therefore, we have not yet gained any efficiency
in terms of the computational complexity of the simulation. The reduction in computational
complexity is achieved by sampling state vectors rather than density matrices. Using similar
arguments as in the derivation of Eq. (4.17) we can show that the sampling experiment can
be directly carried out using state vectors as illustrated in Fig. 4.3.
We can thus simulate single qudit depolarization noise using only state vectors with dimension
dN rather than the full density matrix, which has dimension dN × dN . In addition, the full
noisy Qudit-QAOA simulation can be carried out using only fast vector-vector multiplications.
This is since C is diagonal in the computational basis, the term e−iγtC is also diagonal and
can thus be implemented as a simple vector-vector multiplication, this holds also true for
the error term Zp. To implement the non-diagonal quantum unitary UB(βt), as well as Xq,
as a vector-vector multiplication, rather than a matrix-vector multiplication, we can use the
Fast-Walsh-Hadamard Transform (FWHT) to transform into the X-basis where the operators
become diagonal. This allows to carry out the full noisy simulation using only vector-vector
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4. Generalization of the quantum approximate optimization algorithm to qudits
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Figure 4.3: Decision diagram for approximating a single-qudit depolarizing channel as a
random choice experiment. State vectors sampled according to the diagram approximate the
single-qudit depolarizing channel provided a large enough number of samples are used.

multiplications. These techniques allow us to simulate substantially larger qudit systems than
a naive approach. For details on the FWHT and a discussion on the total computational
complexity see Appx. C.4.

4.4 Performance of Qudit-QAOA for graph coloring

4.4.1 Overlap of optimized Qudit-QAOA with valid graph colorings
To study the performance of the Qudit-QAOA and the effect of noise we consider two different
graphs: a triangular graph and a 4-regular graph with six vertices, see inset in Fig. 4.4 and
Fig. 4.5 respectively. Both graphs are three-colorable and the ground state energy is thus zero.

For optimizing the variational parameters we use COBYLA, a popular gradient-free algorithm,
we find that for the noisy simulation it performs significantly better than the gradient based
BFGS algorithm that is typically used in the noise-free settings (see Sec. 1.6 for a discussion
on optimization algorithms in VQAs).

We use single qudit depolarizing noise, as discussed in Sec. 4.3.6, for the error probability
we use 1%, such that is closely approximates the values of the ion trap quantum computer
discussed in Sec. 4.3.5. The depolarizing error that acts on each qudit independently once
after applying the entangling layer (i.e. e−iγtC). We omit errors induces by the single qubit
gates, since they are an order of magnitude smaller than the errors of the entangling gates.

Fig. 4.4 shows the overlap, of the optimized Qudit-QAOA state with the eigenstates of the
Potts model, Eq. (4.4), given by

Overlap = |⟨γ⋆,β⋆|Ei⟩|2, (4.18)

where (γ⋆,β⋆) are optimized parameters and |Ei⟩ are the eigenstates or equivalently colorings
of the graph. We evaluate the overlap for circuit depth p = 1 and p = 2 for a noise-free and
noisy simulation. We can see that in both cases a circuit depth of p = 1 is not sufficient to
prepare the ground state exactly, this is because the entangling gates act on pairs on qudits
and the QAOA has thus not “seen” the full graph. For p = 2 the noise-free QAOA is able to
express the ground state exactly and there are no more contributions of higher energy excited
states. In the noisy case, this is not the case and we see that we still observe higher energy
contributions due to the noise. In both instances we can observe the sixfold degeneracy of
the ground state, the degeneracy arises from the fact that the coloring can be permuted and
yields the same energy.
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(b)

Figure 4.4: Inset shows the triangular graph used for graph coloring. The graph is three
colorable, we use red, blue, and yellow as an example. The coloring is sixfold degenerate
since the coloring can be permuted 3! times. (a) The overlap of the optimized QAOA-Qudit
state with the eigenstates of the Potts model, Eq. (4.4), for a noise-free simulation with
circuit depths p = 1 (blue) and p = 2 (green). We can see that for p = 1 the ground state
cannot be expressed exactly and higher energy excitations are present. For p = 2 an exact
superposition of the degenerate ground states is prepared and no higher energy contributions
can be observed. (b) Under the presence of noise, this is no longer the case and both p = 1
(orange) and p = 2 (red) have higher energy contributions that reduce the overlap with the
ground state. For the noise, we consider a single qudit depolarization error with perr = 0.01
acting on each qudit after the entangling layer. The result is obtained using the Monte Carlo
technique described in Sec. 4.3.6. We use 100 random samples.

4.4.2 Optimization performance for cost function

Next, we consider a 4-regular graph with six vertices that is also three colorable. Due to the
larger size, a deeper circuit depth is required to prepare the ground state and we will thus be
able to study the effects of noise induced by the larger circuit depth. Fig. 4.5 illustrates the
change of the cost function, Eq. (4.4), during the parameter optimization. We compare the
noise-free with the noisy instance. As anticipated, in the noise-free case we are able to obtain
a lower cost function value compared to the noisy case. We can also see that a deeper circuit
generally leads to a lower final cost function value, this is not the case in the noisy simulation.
There we obtain the lowest cost function value for p = 2. The reason for this is twofold:
first, the noise can make the parameter optimization more challenging since it alters the
optimization landscape in a non-deterministic way. Secondly, the increased circuit depth leads
to a proliferation of noise until we are essentially implementing a random sampling. The cost
function expectation value for random sampling with equal probability is |E|/d = 12/3 = 4
(see Appx.C.5 for details), which is just slightly higher than what is reached for p = 5, this is
however only an expectation value and does not reveal any information about the underlying
probability distribution.

4.4.3 Optimization performance for sampling probability

In fact, a different metric to evaluate the performance of the algorithm might be better suited
to better reflect the goal of the algorithm, sampling a valid coloring. We thus consider the
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(b)

Figure 4.5: Inset shows a 4-regular graph with six vertices that is three colorable illustrated
using yellow, blue, and red color. (a) Cost function value during the parameter optimization
of the Qudit-QAOA for different circuit depths. (b) Result for a noisy simulation. We use a
single qudit depolarizing error perr = 0.01 applied to each qudit after the entangling layer and
100 random samples.

probability for sampling a valid coloring, defined as
Prob. of valid coloring =

∑︂
|Ei⟩ with Ei=0

|⟨β⋆,γ⋆|Ei⟩|2, (4.19)

where |Ei⟩ are the eigenstates of the Potts model (Eq. (4.4)). Fig. 4.6 reveals that the
probability of sampling a valid coloring in the noise-free simulation increases with circuit depth
p and is close to 1 beyond p = 5. This shows that the cost function expectation value can be
misleading since few higher energy contributions can already shift the value away from the
ideal zero value while in fact, the probability of sampling a valid coloring is well above 0.9.
For the noisy simulation, we can see that we reach a maximum probability of around 0.5 for
p = 5, beyond that the probability decreases again due to the noise. This implies that every
second sample would be a valid coloring. In contrast, the probability for a valid coloring by
randomly coloring the vertices is 6/729 ≈ 0.0082 (the ground state is six-fold degenerate and
there is a total of 729 possible ways to color the graph).
In comparison, a commonly used classical algorithm for graph coloring is greedy coloring where
the algorithm starts with the first vertex, assigns it the first color, and then moves on to the
next vertex, checking if the assignment of the first color would lead to a non-valid assignment
given the colored neighbors. If it does, it assigns the next available color. The algorithm
continues to do so for each uncolored vertex in the graph. The algorithm is not guaranteed to
find a valid coloring or a minimum number of colors for a given graph. The computational
complexity of greedy graph coloring is O(|V |+ |E|) and is thus highly efficient. For the small
graph sizes that we used in the simulation, the algorithm directly finds a valid coloring.
It is unclear if there are instances where the Qudit-QAOA can outperform greedy coloring,
numerical explorations are very limited due to the rapidly scaling Hilbert space and only very
small system sizes can be simulated. For a thorough comparison, we will thus have to resort
to real hardware which will allow us to study the performance for large graphs, beyond what
can be simulated classically. Note that an equivalent implementation of graph coloring on
qubits would require additional ancillary qubits to represent the degrees of freedom beyond
d > 2 as well as additional entangling gates. The Qudits-QAOA is thus ideal for studying this
problem on current hardware due to its compact quantum circuit.
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Figure 4.6: Probability of sampling a valid coloring for different circuit depths p, see Eq. (4.19).
We can see that the noiseless simulation achieves a significantly higher value compared to the
noisy simulation. The noiseless simulation converges to a probability above 0.9 beyond depth
p = 5, while the noisy simulation reaches a maximum at p = 5 of around 0.5. We use the
graph shown in Fig. 4.5 (a). For the noisy simulation, we use 100 random samples and an
error probability of perr = 0.01 for a single-qudit depolarizing noise.

4.5 Summary and Discussion
The main result of this work is that we propose a generalization of the QAOA to qudit quantum
information systems. Qudits are quantum systems with local Hilbert space dimension d > 2,
which is naturally available on most quantum computing platforms. However, the additional
energy levels have so far typically not been utilized for quantum algorithms. We show that
a generalization of the QAOA to qudits naturally implements a ground state search for the
Potts model on a graph. Furthermore, we show that this can be mapped to graph coloring, a
well-known NP-hard problem from classical computer science. There, the aim is to color the
nodes of a graph such that no two nodes connected by an edge are the same color.
Even though an implementation of graph coloring on qubits would also be possible, it would
require additional auxiliary qubits to encode the colors and a large number of non-local
entangling gates. While the number of qubits is somewhat limited on current quantum
computers, the required large number of entangling gates for qubits makes this approach
entirely unfeasible. However, on qudit quantum information systems this restriction is no
longer the case. The energy levels of the qudits can be naturally used to encode the colors
without requiring auxiliary qudits as well as a large number of entangling gates. In fact, we
show that the number of entangling gates for one QAOA layer is equivalent to the number of
edges in the graph. This thus allows for a highly compact circuit that is significantly more
expressible than a qubit circuit of the same size.
Next, we show that the unitaries used in the Qudit-QAOA can be implemented on an ion
trap quantum computer using native gates. In fact, the entangling gate that is required for
the instance of graph coloring is equivalent to a recently proposed native qudit entangling
gate [HWG+23]. The proposed circuit is straightforward to implement on ion traps and we
believe that it is ideal for testing the capabilities of qudit-based quantum algorithms. We
hope that the proposed circuit will be implemented by experimental physicists to explore the
capabilities of qudit-based quantum computing beyond what can be simulated classically. Due
to the rapidly scaling Hilbert space dimension, a small number of qudits is already enough to
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go well beyond what can be simulated. It will be very interesting to explore these realms in
the experiment and compare the performance of the Qudit-QAOA to classical algorithms. We
believe that this could be an exciting new path for exploring quantum advantage.
To study the anticipated performance of this algorithm on quantum hardware under the effect
of noise, we develop a novel Monte Carlo sampling scheme that allows us to study system sizes
beyond what would be possible with a naive brute force approach using the density matrix.
Our numerical results suggest that using the energy expectation value or cost function value
for tracking the performance of the Qudit-QAOA might be misleading. A valid coloring yields
a zero cost function value. However, due to the presence of noise, higher energy contributions
become unavoidable, leading to a cost function value that deviates significantly from the ideal
zero value. This leads us to propose a different figure of merit, namely the probability of
sampling a valid coloring. This quantity reveals that the Qudit-QAOA, even in the presence
of noise, is able to prepare a valid coloring with a high probability for modest circuit depths
of a few QAOA layers. This gives hope that the proposed Qudit-QAOA can be successfully
implemented by experimental physicists to explore the capabilities of qudit-based quantum
computing. In particular, it will be interesting to explore systems sizes beyond what can be
simulated classically. Due to the rapidly scaling Hilbertspace already a small number of qudits
will be enough. We believe that this could be an exciting new path for exploring a potential
quantum advantage.
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CHAPTER 5
Avoiding barren plateaus using classical

shadows

5.1 Introduction
Despite the large number of suggested applications, the variational approach encountered also
a number of obstacles, that have to be overcome for the future success of the method. In
particular, the infamous emergence of barren plateaus (BPs) implies that expressive variational
ansätze tend to be exponentially hard to optimize [MBS+18]. The main obstacle on the
way to optimization lies in the fact that gradients of the cost function are on average zero
and deviations vanish exponentially in system size, thus precluding any potential quantum
advantage. Moreover, it has been shown that the classical optimization problem is generally
NP-hard and plagued with many local minima [BK21].

The problem of BPs attracted significant attention, and numerous approaches were proposed in
the literature. In particular, the early research focused on avoidance of BP at the initialization
stage of variational algorithms [GWOB19, SMM+20, DBW+21, HSCC21, LCS+21]. In a
different direction, the relation between occurrence of BPs and the structure of the cost function
was studied [CSV+21, UB20]. Also notions of so-called entanglement-induced [OKW20] and
noise-induced [WFC+20] BPs were introduced. The relation between BPs and entanglement
has lead to various proposals that suggest controlling entanglement to mitigate BPs [KO21a,
KO21b, PNGY21, WZCK21]. However, measuring entanglement is hard, therefore making
these approaches impractical on a real quantum device.

In this work we introduce the notion of weak barren plateaus (WBPs), in order to diagnose
and avoid BPs in variational quantum optimization. WBPs emerge when the entanglement
of a local subsystem exceeds a certain threshold identified by the entanglement of a fully
scrambled state. In contrast to BPs, WBPs can be efficiently diagnosed using the few-body
density matrices and we show that their absence is a sufficient condition for avoiding BPs.
Based on the notion of WBPs, we propose an algorithm that can be readily implemented on
available NISQ devices. The algorithm employs classical shadow estimation [HKP20] during
the optimization process in order to efficiently estimate the expectation value of the cost
function, its gradients, and the second Rényi entropy of small subsystems. The tracking of
the second Rényi entropy enabled by the classical shadows protocol allows for an efficient
diagnosis of the WBP both at the initialization step and during the optimization process of
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variational parameters. If the algorithm encounters a WBP, as witnessed by a certain subregion
having a sufficiently large Rényi entropy, the algorithm restarts the optimization process with
a decreased value of the update step (controlled by the so-called learning rate). We support
the proposed procedure by rigorous results and numerical simulations. The structure of the
chapter is as follows.

In Sec. 5.2 we introduce the theoretical framework and present our main results. Sec. 5.2.2
introduces the phenomenon of BPs, which dramatically hinders the performance of VQEs.
In Sec. 5.2.3 we demonstrate WBPs to be a precursor to BPs. We explain why and how
WBPs can be efficiently diagnosed in experiments and contrast this with the much harder
task of detecting BPs. Finally, we propose a modification to the VQE algorithm, which allows
prevention of the occurrence of BPs by avoiding WBPs.

In Sec. 5.3 we present a bound for the expectation value of the second Rényi entropy in quantum
circuits drawn from a unitary ensembles forming a 2-design. This bound allows us to use the
second Rényi entropy, which is much easier to estimate, instead of the entanglement entropy.
In Sec. 5.3.1 we provide a formal definition of WBPs according to the value of the second
Rényi entropy of the subsystem and prove that the occurrence of a BP implies the occurrence
of a WBP. From this argument it follows that the absence of a WBP precludes the occurrence
of a BP. In addition, we provide an upper bound (whose proof is found in Appendix D.1) for
the measurement budget require in order to estimate a WBP using classical shadows. Finally,
in Sec. 5.3.2 we demonstrate numerically how the avoidance of WBPs precludes the presence
of a BP using the popular BP-free small-angle initialization [HSCC21, HBK21].

In Sec. 5.4, we explore how BPs and WBPs emerge at different stages in the VQE optimization
and perform a systematic performance analysis. Next, in Sec. 5.4.1 we explore the relation
of the learning rate and entropy growth for a single update of the VQE algorithm. We
analytically and numerically illustrate how a large learning rate leads to an uncontrolled growth
in subsystem entropies, essentially driving optimization to a WBP region. In Sec. 5.4.2
we explore the performance of the WBP-free VQE algorithm in different settings for the
Heisenberg model on a chain. Finally, in Sec. 5.4.3, we show that our approach allows for the
efficient convergence to both, area- and volume-law entangled ground states and compare it
to layerwise optimization [SMM+20], which is a popular heuristic for BP avoidance. This is
illustrated using the Heisenberg model on a random 3-regular graph, additional results for the
Sachdev-Ye-Kitaev (SYK) model can be found in the Appendix D.5 which exhibits a nearly
maximally entangled ground state.

Finally, in Sec. 5.5 we summarize our results, discuss their implications, and outline open
questions.

5.2 Avoiding barren plateaus in variational quantum
optimization

5.2.1 Variational quantum eigensolver
We focus our study on k-local Hamiltonians H, defined as sum of terms each containing at
most k Pauli matrices. We take k to be finite and fixed, while the number of qubits N ≫ k.
A particular example of a 2-local Hamiltonian from the many-body physics is provided by the
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Figure 5.1: (a) Illustration of the variational quantum circuit U(θ) |0⟩ that is considered in
the main text followed by the shadow tomography scheme [HKP20]. The variational circuit
consists of alternating layers of single-qubit rotations represented as boxes and entangling
CZ gates shown by lines. The measurements at the end are used to estimate values of the
cost function, its gradients, and other quantities. (b) The original hybrid variational quantum
algorithm shown by solid boxes can be modified without incurring significant overhead as is
shown by the dashed lines and boxes. The modified algorithm tracks entanglement of small
subregions and restarts the algorithm if it exceeds the fraction of the Page value that is set by
parameter α. The full algorithm is efficient; rigorous sample complexity bounds are provided
in Appendix D.1.

Heisenberg (XXX) model subject to a magnetic field
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σz
i , (5.1)

where VG refers to the vertex set of the graph G and, couplings are fixed J = hz = 1. In our
simulations we consider two different graphs: a ring corresponding to a one-dimensional (1D)
chain with periodic boundary condition, and a random 3-regular graph. The U(1) symmetry
related to the conservation of the z component of the spin under the action of H, as well as
translational invariance present for chains with periodic boundary condition, can be explored
to decrease the space of parameters by using a suitable gate set respecting this symmetry.
However, for the sake of generality we focus on the hardware-efficient unitary ansatz defined
in Eq. (1.15).

Obtaining the energy expectation value E(θ) = ⟨ψ(θ)|H |ψ(θ)⟩ requires measuring a subset
or all qubits in the circuit as we schematically show in Fig. 5.1 (a). For our example of a
2-local Hamiltonian on the 1D chain, the required measurements include the value of the σz

operator on all sites along with the σa
i σ

a
i+1 expectation values of all i = 1, . . . N (periodic

boundary condition is assumed, so that bits 1 and N + 1 are identified) and a = x, y, z.
Finding the optimal parameters θ⋆ requires minimization of the Hamiltonian expectation value
E(θ⋆) = minθ E(θ) performed by a classical computer.

There is a plethora of sophisticated classical optimization algorithms that were applied to this
minimization problem [OGB21, SIKC20, KB14, GZCW21]. We use the plain gradient-descent
(GD) algorithm due to its simplicity, which makes analytical considerations easier. A GD
update step is given by

θt+1 = θt − η∇θE(θ), (5.2)
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where η is the learning rate, which controls the update magnitude (see Sec. 1.6 for details).
This update step is repeated until convergence of E(θ), which results from finding a (local)
minimum of E(θ).
The resulting VQE algorithm is shown schematically in Fig. 5.1 (b) by solid lines. Following the
initialization of the variational angles θ, that may be chosen to be real random numbers, the
quantum computer is used to prepare the variational state and provide quantum measurement
results. The classical computer uses the measurements to estimate the value of the cost-
function and its gradient, and performs an update of the variational parameters controlled by
the learning rate η.

5.2.2 Barren plateaus and entanglement
Whilst the VQE described above is a promising framework for near-term quantum computing
due to its modest hardware requirements, its performance may be ruined by the issue of
barren plateaus [MBS+18, CSV+21, HSCC21]. Specifically, the BPs are defined as regions
in the space of variational parameters where the variance of the cost function gradient (and
consequently its typical value) vanishes exponentially in the number of qubits [MBS+18]:

Var[∂i,lE(θ)] ∼ O
(︃ 1

22N

)︃
. (5.3)

[MBS+18] were among the first to theoretically investigate BPs. They showed that the
appearance of a BP can be related to the circuit matching the Haar random distribution up to
the second moment. More precisely, they showed that BPs are a consequence of the unitary
ensemble E ∼ {U(θ)}θ forming a so-called 2-design [MBS+18] (see Appendix D.2 for details
and the definition of a t-design). To understand the different circuit depth at which BPs are
encountered, the authors in Ref. [CSV+21] introduced the concept of cost-function-dependent
BPs. In particular, they argued that the emergence of BP occurs at different circuit depths,
depending on the nature of the cost function.
In contrast, for a so-called global cost function, exemplified by the fidelity, Ref. [CSV+21]
found that BPs already occur at very modest circuit depths p ∼ O(1). The emergence of BP
for the fidelity is naturally related to “orthogonality catastrophe" in many-body physics: even
a small global unitary rotation applied to the many-body wave function results in it becoming
nearly orthogonal to itself. In terms of fidelity, this implies that it vanishes exponentially in
the number of qubits. Moreover, most global state features – such as expectation values
of general operators, fidelities with general states and global purities – cannot be efficiently
accessed on NISQ devices, and are therefore not practical from an algorithmic point of
view [FL11, HKP20, HBC+21, CCHL21]. Therefore, in what follows we do not consider the
global cost functions and corresponding BPs.
Local cost functions, that are the focus of the present work are characterized by a later onset
of BPs. Specifically, for a k-local cost function where k is fixed, the BPs will occur for circuit
depth p ∼ O(poly(N)) that increases polynomially in system size [MBS+18, CSV+21]. In
other words, for a large enough p the VQE algorithm will also suffer from a BP already at the
very first step of the GD optimization, provided random choice of variational angles θ. We
also note that gradient-free optimization strategies do not circumvent the BP problem since
the optimization landscape is inherently flat [ACC+21].
The potential emergence of BPs at the initialization stage of the VQE and other algorithms
spurred the investigation of different initializations strategies that avoid BPs. Until now, several
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BP-free initializations were considered in the literature. Ref. [GWOB19] suggests to initialize
the circuit with blocks of identities, Ref. [SMM+20] suggests to optimize the ansatz layer by
layer, and Ref. [DBW+21] suggests to use a matrix product state ansatz that is optimized by
a separate algorithm [CPSV20] and map that to a quantum circuit. In this work we will focus
on small single-qubit rotation as suggested in Ref. [HSCC21].

More recently, it was observed that the entanglement entropy defined as a trace of the reduced
density matrix, S = − tr ρA ln ρA (where ρA = trB ρ is the reduced density matrix where A
is the subset of qubits that are measured and B is the rest of the system) is another source
for the occurrence of BPs [OKW20]. The community has subsequently dubbed this kind of
BP, entanglement-induced BP [OKW20, KO21a, WZCK21, PNGY21]. In this work, we will
however show that entanglement-induced BPs and BPs for local cost functions, are in fact
one and the same. Avoiding entanglement-induced BPs is equivalent to avoiding BPs for local
cost functions, the details are presented in Sec. 5.3.

Experimentally probing a BP is a hard task. The estimation of the exponentially small gradient
in Eq. (5.3) requires a number of measurements that is exponential in the number of qubits,
and therefore invalidates any potential quantum speedup. Moreover, small values of gradient
encountered in BP have to be distinguished from the case when gradient vanishes due to
convergence to a local minimum. Experimentally diagnosing BPs via entanglement is also
impractical. For example, quantum circuits that implement 2-design and thus lead to BPs for
local cost functions are characterized by typical volume-law entanglement that approaches
nearly maximal values. Checking volume-law entanglement scaling on any device is a formidable
challenge.

In the process of variational quantum optimization, the majority of approaches to mitigate BPs
apply to the initialization stage [GWOB19, VBM+19, VC21] and not during the optimization.
In Sec. 5.4, we illustrate the importance of BP mitigation during the optimization. This
motivates the need to devise a BP mitigation strategy for the initialization and during the
optimization procedure that is efficient. This procedure is discussed in the algorithm proposed
below.

5.2.3 Weak barren plateaus and improved algorithm
In order to devise an efficient algorithm for BP-free initialization and optimization of the VQE
we introduce the notion of WBPs. Specifically, for a Hamiltonian that is k-local, we define
the WBP as the point where the second Rényi entropy S2 = − ln tr ρ2

A of any subregion of
k-qubits satisfies S2 ≥ αSPage(k,N), where the Page entropy in the limit k ≪ N corresponds
to the (nearly) maximal possible entanglement of subregion A,

SPage(k,N) ≃ k ln 2− 1
2N−2k+1 , (5.4)

where we explicitly used that the Hilbert space dimension of region A is 2k and its complement
B has Hilbert space dimension 2N−k. The naive choice for the parameter α is α = 1. Given
some a priori knowledge of the entanglement structure of the target state |GS⟩, the choice
can however be more informed to help avoid large entanglement local minima, see Sec. 5.3.

The notion of WBP is practical since it is defined by k-body density matrices, being much
easier to access on a real NISQ device. The fact that the prevention of a WBP is sufficient for
avoiding the BP may be understood by the intuition from quantum many-body dynamics and
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the process of thermalization or scrambling of quantum information. In the thermalization
process the small subsystems are first to become strongly entangled, as is witnessed by the
proximity of their density matrix to the infinite temperature density matrix. This intuition
suggests that it is enough to keep in check the density matrices of small subsets of qubits. If
their entanglement or other properties are far away from thermal, the system overall is still far
away from the BP.

Practically, the WBP can be diagnosed using the shadow tomography scheme [HKP20].
This scheme enables an efficient way of representing a classical snapshot of a quantum
wave function on a classical computer. In essence, the shadow tomography replaces the
measurements performed in the computational basis with a more general measurements, that
turns out to be sufficient for reconstructing linear and non-linear function of the state, such as
expectation values of few-body observables and second Rényi entropy of few-body reduced
density matrices respectively.

Relying on the shadow tomography, we propose the following modification of the VQE
shown by dashed lines in Figure 5.1 (b). In essence, we suggest to use the tomography to
simultaneously measure the cost function value and the k-body second Rényi entropy. For the
derivative we require an additional 2pN tomographies (two for each parameter) to compute the
gradient exactly using the parameter shift rule [MNKF18, SBG+19], a detailed derivation of
the computational cost for each operation is presented in Appendix D.1. Access to the second
Rényi entropy allows prevention of the appearance of WBPs not only at the initialization step,
but throughout the optimization cycle. The explicit algorithm works as follows.

Algorithm 2 WBP-free optimization with classical shadows
1: Choose α, default is α = 1 ▷ see Sec. 5.3.1 for details
2: Choose θ such that S2 < αSPage(k,N)
3: Choose learning rate η
4: repeat ▷ see Appendix D.1 for details
5: Obtain classical shadows ρ̂(t)(θ)
6: Use them to compute E(θ), ∇θE(θ) and S2(θ)
7: if S2 < αSPage(k,N) then
8: θ ← θ − η∇θE(θ)
9: else

10: Start again with smaller η ← η′

11: end if
12: until convergence of E(θ)

If a WBP is diagnosed at the initialization, one may have to take a different initial value of
the variational angles or change the initialization ensemble. These aspects are discussed in
detail in Sec. 5.3. In addition, the WBP can occur in the optimization loop. This can be
mitigated by keeping track of the second Rényi entropies in the optimization process. If the
WBP condition is fulfilled, one must restart the algorithm with a smaller learning rate. In
Sec. 5.4 we discuss the optimization process in greater details. In particular, we show how the
learning rate is related to the potential change in entanglement entropy, which implies that a
smaller learning rate is generally better at avoiding WBPs.
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5.3 Weak barren plateaus and initialization of VQE
5.3.1 Definition and relation to barren plateaus
As mentioned in the above, BPs for local cost functions are a consequence of the unitary
ensemble E ∼ {U(θ)}θ forming a 2-design [MBS+18, CSV+21], which leads to an exponentially
vanishing gradient variance, i.e., a BP. What is important to note is that the exponential decay
is simply a witness of the emergence of a 2-design. Another, equivalent witness is the second
Rényi entropy, where we have the following.

Theorem 2. (2-design and Rényi entropy) If the unitary ensemble E ∼ {U(θ)} forms a
2-design, then for typical instances the second Rényi of the state ρA concentrates around the
Page value

SPage(k,N)− 1
2N−2k+1 ≤ EE

[︂
S2(ρA)

]︂
≤ SPage(k,N),

for all subregions A of size k ≪ N .

These results are known in the literature, and in the context of random quantum circuits, can
be found in Refs. [PSW06, ODP07, DOP07]. However, for completeness we also provide a
proof in Appendix D.3.
The theorem above implies that a large amount of entanglement naturally follows from the
similarity between the considered circuit and a random unitary (2-design). Such similarity also
gives rise to the vanishing variance of local cost function gradients that define BPs. Therefore,
so-called entanglement-induced BPs [OKW20] and BPs for local cost functions are the same.
In fact, entanglement provides an intuitive picture for the emergence of BPs and its circuit
depth dependence. Every entangling layer in the circuit typically increases entanglement of the
resulting wave function, until it saturates to its maximal value for any subregion of k-qubits at a
circuit depth p ∼ O(poly(N)). If the second Rényi entropy for half of the subsystem k = N/2
has saturated, it has saturated for all smaller subsystem sizes and is thus a sufficient check for
a BP. Computing the second Rényi is however typically exponentially hard in subsystem size
on NISQ devices (for single-copy access this was recently proven in Ref. [CCHL21, HBC+21]).
It is therefore only practical to check a small subregion where k is small and independent of
system size.
The above considerations naturally lead us to introduce the notion of WBPs as a modification
of the BP that is computationally efficient to diagnose on NISQ devices. More formally we
have as follows.

Definition 3. (Weak barren plateaus) Let H be an N -qubit Hamiltonian, and A is a region
containing k qubits. We define a weak barren plateau by the second Rényi entropy of the
reduced density matrix ρA satisfying S2 ≥ αSPage(k,N) with α ∈ [0, 1).

This definition works for any k, however it is reasonable to use k that corresponds to the
number of spins involved in interaction terms in the Hamiltonian H since it provides a natural
length scale. Moreover, in such a case the reduced density matrix of subregion with k spins
contains all necessary information needed to extract the expectation values of Hamiltonian
terms localized inside this region.
While a WBP is a necessary condition for a BP, it is however not sufficient (which motivates
the term weak). From a practical perspective we are actually interested only in avoiding a BP.
For this, WBPs provide a powerful tool, since the following holds.
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Corollary 3.1. If we find a particular subregion A such that ρA does not satisfy the weak
barren plateau condition, i.e. Definition 2, it is on average also not in a barren plateau where
the variance is exponentially small.

Proof. This assertion immediately follows from negating Theorem 2.

The corollary above formalizes the intuition behind the dynamics of entanglement in a circuit:
if the state restricted to the smaller subsystem has not scrambled, then neither has the state
restricted to a larger subregion. In practice, using classical shadows we can efficiently check
one subregion of size k with a total measurement budget

T ≥ 4k+1 tr ρ2
A

ϵ2δ
, (5.5)

where ϵ is a desired accuracy and δ is a failure probability (over the randomized measurement
process). Parameters ϵ and δ do not depend on the number of qubits, whereas the factor
tr ρ2

A is upper bounded by one for weakly entangled states and can be as small as 2−k when
entanglement is large. Moreover, checking all size k subregions incurs an additional overhead of
only k lnN . A derivation of this result is presented in Appendix D.1, see Eq. (D.7). Provided
that k is small and does not scale with system size, N , this can be efficiently implemented on
NISQ devices.

If any of these subregions avoids the WBP condition, we are guaranteed to also avoid an
actual BP. For simplicity, in the numerical results below we check for the WBP condition for a
particular region containing the first k qubits, i.e., A = {1, · · · , k}.

This argument is also intuitive to see by considering a causal cone (blue region) that indicates
the extent of the so-called scrambled region (i.e., extend of a subregion with entropy close
to the maximal value) in the circuit, see Fig. 5.2 (a). Such a scrambled region grows with
every consecutive entangling layer Wl (see Eq. (1.15)). When this region extends beyond k
qubits, the WBP is reached (left orange dashed line). Later, when the “scrambling lightcone”
has extended to the full system, the BP is reached (right orange dashed line). Once the BP
is reached all smaller regions are also fully entangled and will satisfy the WBP condition on
average.

Fig. 5.2 provides a numerical illustration for the Corollary 3.1 stated above. We use the
hardware-efficient circuit, presented in Eq. (1.15), and compute the gradient variance and
second Rényi entropy as a function of circuit depth p for different system sizes N . We fix
|ψ0⟩ = |0⟩ as the initial state, which is simply all qubits in the zero state. Panel (b) shows the
exponential decay of the gradient variance that is usually used to diagnose a BP. Panel (c)
shows the corresponding bipartite second Rényi entropy. We see that it indeed approaches the
Page value (gray dashed line). The Page value is not fully reached since we are considering
the second Rényi instead of the von Neumann entanglement entropy, this difference however
becomes negligible once the subsystem size is decreased. This numerically illustrates that
when the 2-design is reached both the gradient variance and bipartite second Rényi entropy
have converged. In panel (d) we consider a smaller region of two qubits and see that the
second Rényi for this region saturates to its maximal value at a significantly lower circuit
depth. This illustrates the emergence of the WBP that precedes the onset of the BP after a
few more entangling layers. Before the WBP is reached, gradients are well behaved and do
not decrease exponentially with the system size.
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Figure 5.2: (a) Sketch of the circuit, where the blue color shows the scrambling lightcone.
The lightcone first extends over k qubits, where the WBP occurs, and for larger circuit depths
extends to the full system size where the BP occurs. (b) The saturation of the gradient
variance Var[∂1,1E] and (c) saturation of the bipartite second Rényi entropy S2(ρA) of the
region A consisting of qubits 1, . . . , N/2 nearly to the Page value happen at the similar circuit
depths p, that increases with the system-size N . (d) In contrast, the saturation of the second
Rényi for two qubits (A′ = {1, 2}) is system size independent, illustrating that WBP precedes
the onset of a BP. Data is averaged over 100 random initializations. Gradient variance is
computed for the local term σz

1σ
z
2 , typically used in BP illustrations. Gradient variance for the

full Heisenberg Hamiltonian, Eq. (5.1), looks similar.

Finally, we address the effects of the control parameter α, that enters in Definition 3 of the
WBP. The naive choice is α = 1, which means that a WBP is reached if the subregion is
maximally entangled with the rest of the system. However, in the case when some a priori
knowledge about the entanglement properties of the target state |GS⟩ is available, it can be
used to set a smaller value of α. If, for instance, the ground state is only weakly entangled,
a choice of α≪ 1 may be appropriate. In this way Algorithm 1 in Sec. 5.2.3 can also help
in avoiding convergence to highly entangled local minima. We discuss this in more detail in
Sec. 5.4.2.

5.3.2 Illustration of WBP-free initialization
In order to illustrate the notion of WBP in a more specific setting we apply it to the initialization
process of the VQE. Specifically, we focus on the family of initializations that was proposed
earlier in order to avoid the issue of BPs [HSCC21, HBK21]. The one-parametric family of
initializations restricts the single-qubit rotation angles from ansatz Eq. (1.15) as θi

l ∈ ϵθ[−π, π),
where ϵθ ∈ [0, 1) is the control parameter. This strategy allows the onset of the BP to be
delayed to arbitrary circuit depths by tuning ϵθ accordingly.

Similarly, it allows the onset of WBPs to be delayed. Depending on the parameter ϵθ one
can afford a deeper circuit without encountering a WPB in the initialization when compared
to the full parameter range (ϵθ = 1). It is straightforward to see that for ϵθ = 0, the ansatz
is WBP free for all circuit depths. Indeed, in the absence of the single-qubit rotations, the
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Figure 5.3: (a) Decreasing parameter ϵθ from 1 slows down the growth of the second Rényi
entropy with the circuit depth p. The chosen region contains two qubits. (b) The encounter
of BP in the variance of the gradient of the cost function is visible only for the case ϵθ = 1,
and it is preceded by the onset of a WBP. We use a system size of N = 16 for (a) and
N = 8, · · · , 16 for (b), color intensity corresponds to system size, same as in Fig. 5.2. Data is
averaged over 100 random instances, variance is for the local term σz

1σ
z
2.

entangling gates in Wl do not create any entanglement [since the CZ gates used in Eq. (1.15)
are diagonal in the computational basis], leaving |0⟩ invariant. Note that, for example, the
identity block initialization, proposed by [GWOB19] works in a similar way in that the unitary
is constructed such that it also implements the identity and one is equally left with the zero
state.

In Fig. 5.3 we numerically illustrate the influence of ϵθ on the growth of entanglement and
its relation to the gradient variance. Panel (a) illustrates the growth of the second Rényi
entropy in the circuit for three different small-angle parameters ϵθ and panel (b) shows the
corresponding gradient variance. Outside of the WBP the gradient variance vanishes at most
polynomially in system size N . This illustrates that the avoidance of a WBP is sufficient for
avoiding a BP and thus allows for a simple strategy for constructing BP-free initializations.

5.4 Entanglement control during optimization

5.4.1 Bounding entanglement increase at a single optimization step
In Sec. 5.2 we presented how the general VQE can be extended with minimal overhead to
avoid WBPs in the optimization procedure. The learning rate, as presented in Algorithm 1,
hereby plays a crucial role. A smaller learning rate, as observed in Fig. 5.1 (c)-(e) is more likely
to avoid a WBP. To understand this phenomenological observation on more rigorous grounds,
let us consider a sufficiently deep circuit (with a polynomial number of layers in system size),
so that the optimization landscape is dominated by WBPs. Careful selection of the parameters
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Figure 5.4: We numerically illustrate the continuity bound Eq. (5.6) and its relation to the
learning rate η for t = 0, i.e. at the beginning of the optimization schedule. This shows that
one should be careful with the choice of the learning rate since a large learning rate leads to a
big change in the trace distance and change in purity. We use a system size of N = 10 and a
random circuit with circuit depth p = 100 and small qubit rotations (ϵθ = 0.05) to generate a
BP-free initialization. Data is averaged over 500 random instances.

allows for an initialization outside of a WBP. However, to remain in the WBP-free region, the
optimization has to be performed in a controlled manner, such that the optimizer does not
leave the region of low entanglement due to large learning rate and does not end in a WBP.
Since WBPs are defined in terms of the second Rényi entropy S2, we need to bound the
change in S2 between iteration steps t and t+ 1. For practical purposes, we instead use the
purity (tr ρ2

A = e−S2). The change in purity is upper bounded by [CMNF16]
⃓⃓⃓
tr ρ2

A(t+ 1)− tr ρ2
A(t)

⃓⃓⃓
≤ 1− (1− TA(t))2 − T 2

A(t)
2k − 1 , (5.6)

where TA(t) ≡ T (ρA(t), ρA(t+ 1)) is the trace distance between the reduced density matrices
at iteration steps t and t+ 1, and we assume that region A has k qubits.
Assuming that the states at consecutive update steps of gradient descent are pertubatively
close (see Appendix D.4 for details), as measured by the trace distance, one can show that

T (ρA(t+ 1), ρA(t)) ≲
√︄
η2

4 (∇θE)TF(θ)∇θE, (5.7)

where Fi,j(θ) = 4 Re[⟨∂iψ|∂jψ⟩ − ⟨∂iψ|ψ⟩⟨ψ|∂jψ⟩] is the quantum Fisher information matrix
(QFIM) [Mey21] and η is the learning rate. Inequalities (5.6)-(5.7) imply that the learning rate
η can be used to limit the maximal possible change of the purity. Provided that the change in
purity is sufficiently small, the Taylor expansion can be used to argue that the corresponding
change in the second Rényi entropy S2, related to the purity as e−S2 = tr ρ2

A, also remains
controlled. Therefore, the choice of an appropriately small learning rate can guarantee the
avoidance of a WBP at t+ 1, provided the absence of one at t.
To illustrate the bound numerically, we prepare an initialization outside of the WBP using a
small angle parameter ϵθ and compute the change in the purity tr ρ2

A after one GD update
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step for different learning rates η. The results of this procedure for four different learning
rates are shown in Fig. 5.4. We see that larger learning rates correspond to a bigger change in
purity and are thus more prone to encounter a WBP. At the same time, all data points are
below the theoretical bound. While up to the best of our knowledge the bound Eq. (5.6) is
not proven to be tight, we observe that points corresponding to the extreme learning rates
closely approach the theoretical line.

Using Eq. (5.7), the bound can be efficiently approximated on NISQ hardware: the QFIM can
be estimated efficiently on a quantum device using techniques suggested in Ref. [GZCW21] or
Ref. [RBMV21] using classical shadows. For the computation of the gradient one can use the
parameter shift rule [MNKF18, SBG+19] also with shadow tomography. The expression can
thus be efficiently evaluated on a real device and used together with the continuity bound to
estimate a suitable learning rate η. However, in practice this might not be needed and simply
following Algorithm 1 could be more efficient and easier to implement.

5.4.2 Optimization performance with learning rate

Finally, we illustrate Algorithm 1 in practice. To this end we first prepare a WBP-free initial
state using small qubit rotation angles and compare the performance of GD optimization with
different learning rates. If we start with a large learning rate, η = 1, corresponding to red lines
in Fig. 5.5 (a)-(c), we see that the energy expectation value in Fig. 5.5 (a) rapidly (within
one or two update steps) converges to a value far away from the target ground state energy
EGS. At the same time, panel (b) reveals that this can be attributed to an onset of a WBP,
as the second Rényi entropy spikes up to the Page value. Finally, panel (c) shows that the
gradient norm also is convergent, though at non-zero value. We attribute this to the fact that
the system gets trapped in the WBP region.

As suggested by Algorithm 1, we thus decrease the learning rate to η = 0.1 and start again.
This time a WBP is avoided, the algorithm however gets stuck in a local minimum with large
entanglement entropy. In this instance a choice of parameter α that defines an onset of a WBP
in Def. 3 being smaller than one may be beneficial. For instance, setting α = 0.5 could help
avoiding the suboptimal local minima characterized by large entanglement, see gray dashed
line in Fig. 5.5 (b). Note that the large gradient persistent after many iterations for the blue
line in Fig. 5.5 (c) may also indicate that the learning rate is chosen too large for the width of
the local minima.

Provided that our algorithm uses α = 0.5, the system would satisfy a WBP condition even for
learning rate η = 0.1, forcing us to restart the algorithm with an even smaller learning rate.
Setting η = 0.01, we see that the algorithm is now able to converge very close to the true
ground state energy (violet line in Fig. 5.5 (a)-(c)). In particular, the norm of the gradient
assumes the smallest value among all learning rates. We note, that the further decrease of
the learning rate (i.e., to η = 0.001) degrades the performance of GD. While WBPs are not
encountered during the optimization process, the GD optimization converges slower within the
considered number of iterations and to a larger energy expectation value. This highlights the
fact that it is best to choose the highest possible learning rate, that still avoids a WBP. We
speculate, that an optimization strategy that adapts the learning rate at each optimization
step would give the best performance, though testing this assumption is beyond the scope of
the present work.
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Figure 5.5: (a-c) The application of the proposed algorithm to the problem of finding the
ground state of the Heisenberg model. For large learning rates η = 1 and 0.1 (red and blue
lines) the optimization gets into a large entanglement region as is shown in (b), indicated by
colored stars, forcing the restart of the optimization with smaller value of η. For η = 0.01 the
algorithm avoids large entanglement region and gets a good approximation for the ground
state. Finally, setting even smaller learning rate (green lines) degrades the performance. The
normalized second Rényi entropy of the true ground state is S2/S

Page(k,N) ≈ 0.246. (c)
Shows the corresponding gradient norm. A small gradient norm equally corresponds to the BP
and the good local minima found with η = 0.01 and 0.001. We use a system size of N = 10,
subsystem size k = 2, and a random circuit (see Eq. (1.15)) with circuit depth p = 100 and
small qubit rotations (ϵθ = 0.05) to generate a BP-free initialization. Here we choose α = 0.5
indicated by the gray dashed line, see the last paragraph of Sec. 5.3.1 for a discussion on the
choice of α. Data is averaged over 100 random instances.

5.4.3 Classical simulatability and performance comparison
Now that we have illustrated the procedure outlined in Algorithm 1 in detail, let us comment
on the restrictions that our algorithm imposes, its relation to classical simulatability and finally
compare our method with other common means for mitigating BPs.
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To avoid WBPs and thus BPs we require that the second Rényi entropy of a small subregion
is less than a fraction α of the Page value, where α ∈ (0, 1] and the default choice is α = 1.
While this restriction does place a limitation on the entanglement generated by the circuit
for a region of k qubits, it does not imply classical simulatabilty of the circuit. Indeed, it
is the scaling of the entanglement entropy with system size that is important for classical
simulatability of a quantum system. Only in the special case when the entanglement entropy
of the quantum state scales poly-logarithmically with the number of qubits, we can simulate
the states on a classical computer in polynomial time [Vid03, VdNDVB07, BH13]. In contrast,
the criteria for WBP, Def. 3 is generally consistent with volume-law entanglement as we
illustrate below, thus allowing our algorithm to be applied to systems that cannot be efficiently
simulated on a classical computer.

Here we focus on two types of systems: namely systems where the ground state satisfies
area law, which implies that the entanglement entropy of an arbitary bipartition of the state
scales with the size of the boundary S(ρA) ∼ |∂A|, as well as volume law, which implies that
it scales with the volume, S(ρA) ∼ |A| (see Ref. [ECP10] for a review on these concepts).
For area-law states in 1D the entanglement entropy is constant and therefore allows for an
efficient classical representation using techniques such as matrix product states [Sch11a]. The
1D Heisenberg model, considered in the previous subsection, is an example for such a system.

The Heisenberg model, however, can be made hard to simulate classically by considering
a random-graph geometry illustrated in Fig. 5.6 (a), instead of a 1D chain. This leads to
nonlocal interactions and a volume-law entanglement scaling for a typical bipartite cut. Due
to the non-local nature of the model we choose α = 1 since we have no prior knowledge
on the entanglement properties of the ground state. We again use the small-angle initializa-
tion [HSCC21, HBK21] to generate a BP-free initial state. We compare this with layerwise
optimization [SMM+20], which is another common heuristic for avoiding BPs. There the
circuit is initialized with a single layer, which is optimized, the circuit is then grown by one
layer at a time and optimized while keeping the parameters in the previous layers constant.

Fig. 5.6 (b)-(c) reveal that for the Heisenberg model on a graph layerwise optimization ends up
in a WBP during the optimization for both learning rates that we considered. The small-angle
initialization successfully avoids the WBP for both learning rates, however good convergence
is only achieved with η = 0.01. This is similar to the situation encountered in the Heisenberg
model in 1D, see Fig. D.1, where a too large learning rate prevents convergence to the basin of
attraction of the local minimum. Likewise to the case of 1D Heisenberg model, the fact that
learning rate η = 0.1 does not lead to convergence to a minimum can be revealed through the
norm of the gradient which stays large even after 500 iterations.

In addition to the Heisenberg model on the random graph, we also considered the SYK
model [Kit15] that features a volume-law entangled ground state [HG19]. In Appendix D.5
we illustrate that our method is also successful in preventing the BP occurrence and results in
finding the SYK ground state.

5.5 Summary and Discussion
The main result of this work is the introduction of the concept of WBPs, which in essence
provides an efficiently detectable version of BPs. In particular, we propose to use the classical
shadows protocol to estimate the second Rényi entropy of small subregions that are independent
of system size. If these subregions avoid nearly maximal entanglement – a condition sufficient
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Figure 5.6: Application of our algorithm to the problem of finding the ground state for the
Heisenberg model on a 3-regular random graph depicted in (a). Panel (b) shows the energy
as a function of GD iterations t and panel (c) illustrates the second Rényi entropy of two-spin
region A with k = 2 shown in panel (a). Since the interactions are now nonlocal and we do
not have any prior knowledge on the entanglement properties of the target state we set α = 1
(gray dashed line). For the initialization we use the small-angle initialization (SA) with ϵθ = 0.1
and compare it to layerwise optimization (LW). LW encounters a WBP for both learning
rates that we consider (green star). In contrast, SA avoids the WBP for both learning rates.
Good performance and further convergence in the local minimum is only achieved through a
smaller learning rate of η = 0.01. We use a system size of N = 10 and a random circuit from
Eq. (1.15) with circuit depth p = 100. Data is averaged over 100 random instances.

for avoiding WBPs – the system also avoids conventional BPs. Building on this definition of
the WBP, we proposed an algorithm that is capable of avoiding BPs on NISQ devices without
requiring a computational overhead that scales exponentially in system size.

In order to illustrate the notion of WBPs and the proposed algorithm, we studied a particular
BP-free initialization of the variational quantum eigensolver. Furthermore, we considered
an optimization procedure that uses gradient descent. Phenomenologically, we observed
that the encounter of a BP during the optimization crucially depends on the learning rate,
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which controls the parameter update magnitude between consecutive optimization steps. A
smaller learning rate is less likely to lead to the encounter of a BP during the optimization.
However, choosing the learning rate to be very small degrades the performance of GD. These
results support the feasibility of the proposed algorithm for efficiently avoiding BPs on NISQ
devices. While our results and numerical simulations are focused on VQEs, they readily
extend to other variational hybrid algorithms, such as quantum machine learning [BLSF19b,
HCT+19b, SBSW20], quantum optimization [FGG14b, SS21c, Har21], or variational time
evolution [BVC21, LDG+21].
Although the issue of avoiding BPs at the circuit initialization is a subject of active re-
search [GWOB19, DBW+21, SMM+20, HSCC21, LCS+21], the influence and role of BPs in
the optimization process has received much less attention [LJG+21]. Our results indicate
that entanglement, in addition to playing a crucial role for circumventing BPs at the launch
of the VQE, is also important for achieving a good optimization performance. In addition,
our heuristic results in Sec. 5.4 suggest that postselection based on the entanglement of
small subregions may help to avoid low-quality local minima that are characterized by higher
entanglement. Algorithm 1 allows for such postselection by appropriately tuning the value of
α. Doing so, however, requires some prior knowledge about the entanglement structure of the
target state. This may be inferred from the structure of the Hamiltonian (for instance, for a
Hamiltonian that is diagonal in the computational basis, the eigenstates are product states
with no entanglement), or by targeting small instances of the computational problem using
exact diagonalization.
Beyond that, one could imagine an algorithm where the learning rate is not only adapted
when a WBP is encountered, but dynamically adjusted at every step of the optimization
process. This may allow for efficiently maneuvering complicated optimization landscapes by
staying clear of highly entangled local minima. VQE, for instance, is known to have many
local minima [BK21], but a systematic study of their entanglement structure, required for
devising such dynamic entanglement post selection procedure, has yet to be done.
Another important question concerns the effect of noise, which has been suggested to be an
additional source for the emergence of BPs [WFC+20]. Noise cannot be avoided on NISQ
machines and has a profound impact on any near-term quantum algorithm, which is difficult
to analyze analytically. Fortunately, none of the tools we propose are especially susceptible to
noise corruption. In fact, both the classical shadow protocol and the estimation of observables
and purities are stable with respect to the addition of a small but finite amount of noise, and
there have even been some proposals for noise mitigation techniques [CYZF21, EG20].
Finally, we comment on the possibility of testing Algorithm 1 on a real NISQ device. While
the shadows protocol can readily be implemented on near-term devices to diagnose WBPs,
whether a variational circuit with enough entangling layers that lead to a BP can be realized
on a NISQ device is not entirely clear at this stage. Nevertheless recent results of Ref. [Mi 21]
observed convergence of the out-of-time correlators to zero, indicating that a 2-design might
already have been reached. This implies that large entanglement, as present in a BP, could
be realizable on available NISQ devices, and opens the door to experimental studies of the
effect of entanglement on the optimization performance on current NISQ machines using the
proposed shadows protocol.
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CHAPTER 6
Summary and Outlook

6.1 Summary of thesis content and open research
questions

Quantum computation is promising revolutionary advancements for computation but it still
requires significant hardware and algorithmic development to make useful quantum computation
a reality. Variational quantum algorithms (VQAs), are well suited for dealing with noise in the
current hardware generation due to their reduced circuit depth. However, VQAs present their
own challenges, namely the complexities of the optimization landscape and the variational
nature, resulting in limited performance guarantees. In this thesis, we have presented the
substantial progress that we have made towards resolving these obstacles.
Chapter 2 introduces an initialization technique for the Quantum Annealing Optimized Algo-
rithm (QAOA), called Trotterized Quantum Annealing (TQA). This counters the common issue
of convergence to high energy local minima in the optimization landscape that limits algorithm
performance. TQA matches the best performance achieved from exponentially many random
initializations. Its success in experiments and simulations suggests it may become a standard
QAOA initialization technique. In the future, it will be particularly interesting to further explore
the connection between Quantum Annealing and the QAOA at finite circuit depth from an
analytical perspective which may lead to further improved initialization techniques.
Chapter 3 further deepens our understanding of the optimization landscape’s properties and
efficient exploration strategies. We introduce Transition States (TS), as a tool for systematic
landscape exploration, and a greedy optimization strategy that guarantees performance
improvement. These insights could shape future work on performance bounds and QAOA’s
potential to outperform classical computation.
Chapter 4 explores another critical aspect of VQAs: circuit expressibility. In particular, extending
VQAs to higher-dimensional quantum systems or “qudits” to utilize a higher dimensional
Hilbert space for computation. We illustrate how the QAOA can be extended to qudits and
used for graph coloring, an NP-hard problem from classical computer science. A comparable
implementation on a qubit based quantum computer would require significantly more qubits
and entangling gates. Furthermore, we show that the Qudits-QAOA can be implemented on
an ion trap quantum computer using novel qudit entangling gates. This research may serve
as a foundation for a first quantum algorithm implementation on qudits, offering exciting
opportunities to probe system sizes beyond classical tractability.
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6. Summary and Outlook

The concluding Chapter 5 addresses barren plateaus, regions in parameter spaces with vanishing
gradients that prevent parameter optimization for VQAs in general (not only the QAOA). We
demonstrate that measuring reduced density matrices with the help of classical shadows can
diagnose barren plateau regions. An algorithm summarizing our findings allows initialization in
barren plateau-free regions and avoids encountering such regions by tracking entanglement
entropy. The current generation of quantum hardware can now leverage this technique,
offering a standard method for barren plateau avoidance. A particularly interesting topic for
future extension of this work is to explore the connection between circuit universality and the
entanglement structure generated by the quantum circuit.

6.2 Outlook for the future of quantum computing
Quantum computing is a rapidly evolving field, new technological and algorithmic advances are
announced every year. For example, while the early stages of quantum computing hardware
experiments were dominated by superconducting quantum hardware, recently ion trap and
neutral atom quantum computers have emerged as serious contenders. As these devices are
further scaled up and improved we will soon soon routinely operate in a regime where the
quantum circuits implemented by these machines can no longer be simulated classically.

An early example of this is a recent work by IBM where they used their superconducting
device to simulate the Ising model on a 2D hardware native grid. This allowed them to utilize
the full 127 qubits, despite the limited connectivity [KEA+23]. In this work, they explore a
system size that may be on the edge of what can still be simulated using state-of-the-art
techniques such as tensor networks. A claim that was however subsequently disproved. While
this model is still too simple to be practically relevant it gives hope that in future experiments
more complicated models can be explored. Furthermore, this result highlights that the field is
making great progress and we are rapidly approaching system sizes with the potential of a
quantum advantage.

While at this time it remains unclear if near-term quantum computing without error correction
will be able to achieve a quantum advantage, fault-tolerant quantum computing (FTQC)
stands on a thorough theoretical foundation that promises to achieve this goal. In particular,
we are not aware of any physical laws prohibiting us from building FTQC and implementing
algorithms with proven speed-ups. In this direction we have seen first promising results, for
example, Google implemented a surface code experiment where they showed that they were
able to successfully suppress quantum errors by increasing the code distance [AAA+23]. This
marks a first important step in making FTQC a reality.

We believe that this rapid pace of development will continue into the future. A defining
question to answer will be if NISQ machines are able to achieve a quantum advantage. If
it becomes clear that they are not sufficient, we can expect to see a so-called “quantum
winter”, a time period of greatly decreased funding and interest in the field. Many technologies
have seen their own respective “winter”, a recent example is machine learning which only
after decades of relative quietness saw its recent burst after great algorithmic and hardware
improvements.

Regardless of whether the NISQ era sees a quantum advantage or a quantum winter, the
long-term future of quantum computing remains bright. We stand on the cusp of a new
era where the boundaries of computation can be pushed far beyond current limits. With
continuous improvements in quantum algorithms, quantum error correction, and quantum
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6.2. Outlook for the future of quantum computing

hardware, we may see quantum computers tackling complex problems in fields ranging from
materials science to cryptography. As quantum computing matures we expect a profound
impact across a broad range of academic disciplines and industry applications. The future
may hold challenges, but with perseverance and continuous innovation, the quantum age may
just be over the horizon.
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APPENDIX A
Further numerical results for different

graph ensembles and discussion on
optimal TQA time

A.1 Optimization landscape for different graph
ensembles

We start by reviewing all graph ensembles used in the main text and Appendices. In particular,
we focus on symmetries that allow to reduce the space of QAOA parameters.

3 -regular unweighted graphs represent the graph ensemble considered in the main text. Each
vertex is connected exactly to three other vertices chosen at random. In order to sample
graphs from this ensemble we use the networkx Python package [HSSC08]. For 3-regular
unweighted graphs the space of variational parameters can be restricted using the fact that the
classical Hamiltonian has integer eigenvalues (thus γi are defined modulo π) and that shifting
any of angles βi by π/2 is equivalent to a spin flip of HC that has no effect [ZWC+20]. This
allows to restrict βi ∈ [−π

4 ,
π
4 ) and γi ∈ [−π

2 ,
π
2 ), and is reflected in the definition of distance

in Eq. (2.1) in the main text.

3 -regular weighted graphs are characterized by presence of random weights wij assigned to
each edge ⟨i, j⟩. These weights are chosen to be wij ∈ [0, 1). Presence of random weights
does not allow to restrict the domain of γi angles as before, though restriction βi ∈ [−π

4 ,
π
4 )

still works. Therefore the analogue of Eq. (2.1) for this and other weighted ensembles reads
d

(w)
γ⃗,β⃗

= ∑︁p
i=1(|βi − β∗

i |π2 + |γi − γ∗
i |).

E rdős-Rényi graphs represent a random graph ensemble where two edges are connected on
random with a fixed probability, chosen to be q = 0.5. In contrast to above examples, the fixed
value of q implies that edge connectivity increases with number of vertices as qN . Erdős-Rényi
graphs exhibit the same symmetries as 3-regular unweighted graphs.

The presence of an unbounded region of parameters γi in the weighted graph ensemble
represents an additional challenge in visualizing the QAOA optimization landscape and choice
of initialization parameter. In order to explore the importance of large values of |γi|, we
consider the sequence of enlarged intervals γi ∈ [−k π

2 , k
π
2 ) with k = 1, 2. Figure A.1 shows
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Figure A.1: Comparing the joint probability distribution of the distance to the global minimum
in parameter space dγ⃗,β⃗ and in terms of approximation ratio ∆rγ⃗,β⃗ for weighted 3-regular
(top) and Erdős-Rényi graphs with edge probability 0.5 (bottom) reveals that the distribution
is dependent on the initialization interval for weighted 3-regular graphs. We initialize the
parameters for k = 1 (left) and k = 2 (right) and observe that for weighted 3-regular graphs
the enlarged interval leads to an increased spread of the local optimas in ∆rγ⃗,β⃗ (yellow region).
The spread in ∆rγ⃗,β⃗ for Erdős-Rényi graphs remains largely unaffected, as expected from
the symmetry considerations. Similarly to Fig. 2.2, red squares correspond to the QAOA
minimum achieved from TQA initialization (shifted from small negative values of ∆rγ⃗,β⃗ to
zero for improved visibility), orange dots correspond to the average performance of random
initialization. Data is for 50 random graphs with N = 10 and p = 5.

the joint probability distributions similar to Fig. 2.2. We see that for 3-regular weighted graphs
the enlarged initialization interval k = 2 leads to a concentration of local optima further away
from the global solution compared to the k = 1 interval. When we repeat the same analysis
for Erdős-Rényi graphs, we observe that ∆rγ⃗,β⃗ is unaffected by the enlarged k = 2 interval.
This numerically confirms the symmetry considerations from above and allows us to restrict γ⃗
to the k = 1 interval in all further analysis. For unweighted graphs such restriction relies on
symmetry, and for weighted graphs this is motivated by the fact that an extended region of γi

worsens the performance of random initialization in the QAOA.

A.2 Optimal time for TQA
Below we discuss the dependence of the optimal time step δt of the TQA algorithm on the
graph ensemble. An analytical upper bound on the number of Trotter steps p needed to
approximate the time evolution with precision ϵ in terms of operator trace distance was obtained
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in Ref. [BACS07]. Translating this bound into the scaling of δt we obtain δt ∝ 1/(||HC ||FN),
where ||HC ||F is the Frobenius norm of the classical Hamiltonian. This norm exponentially
diverges with N , suggesting very small values of δt at large system sizes. This is not
surprising, since the bound of Ref. [BACS07] operates on the distance between two many-body
unitary operators. In contrast, the performance of the TQA algorithm is studied using the
approximation ratio that quantifies how close the expectation value of the local observable
HC , is to the ground state energy.
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iynéR–sődrE

Figure A.2: (Top) Optimal time time step of TQA evolution δt is largely independent of
system size and scales qualitatively similar to Eq. (A.1) shown in the bottom panel.

The effect of Trotterization on local observables was considered in Ref. [HHZ19]. This
work conjectured the existence of a finite value of the time step of order one, at which the
discretization of time evolution fails to approximate the local observables. This value of the
time step may be related to the convergence radius of the Baker-Campbell-Hausdorff series
expansion, which is governed by the norm of the classical Hamiltonian and its commutator
with HB. Phenomenologically, the Frobenius norm divided by the square root of Hilbert space
dimension and problem size N ,

sN = N2N/2

||HC ||F
, (A.1)

is expected to be N -independent in the thermodynamic limit.

Figure A.2 compares the dependence of δt on the system size with the phenomenological
scaling sN defined in Eq. (A.1). We observe that the expression sN qualitatively matches the
numerical scaling that we observe for δt between different graph ensembles. In particular, the
value of the time step is largest for weighted 3-regular graphs that are expected to have the
smallest norm of the classical Hamiltonian. However, sN fails to capture δt quantitatively,
highlighting the need to develop a better analytical understanding of the point that governs
the phase transition from localization to quantum chaos for local observables according to
Ref. [HHZ19].
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Figure A.3: Converged parameters γ⃗∗ (red) and β⃗
∗ (orange) show only slight alterations

from the TQA initialization indicated by the green and blue lines respectively. The QAOA
optimization modifies parameters at small i, while they remain TQA-like in the rest of the
protocol. The results were averaged over 50 random unweighted 3-regular graphs (a), weighted
3-regular graphs (b) and Erdős-Rényi graphs (c), all data is for p = 10 and N = 10.

A.3 Patterns in optimized parameters

The QAOA is inspired by TQA and is thus universal for p → ∞. However, for finite p the
converged QAOA parameters also display stark similarity to a QA protocol which was noticed
in some earlier works [ZWC+20, Cro18]. In Fig. A.3 we compare the TQA initialization and
final QAOA parameters. The QAOA parameters show only slight alterations at the beginning
of the protocol and remain close to their original values throughout the rest of the protocol.
This holds true for the three graph types that we considered in our analysis. In addition, the
small variation between optimal parameters for different graph instances is in line with the
concentration of the QAOA landscape demonstrated analytically at low p in Ref. [BBF+18b].
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Figure A.4: TQA initialization leads to the same QAOA performance as the best of 2p random
initializations for both weighted 3-regular graphs (top) and Erdős-Rényi graphs (bottom). We
average the results over 50 graph realizations, the main plot was obtained for system size
N = 10, inset is for circuit depth p = 10.

A.4 Random vs TQA initialization for other graph
ensembles

In addition to the unweighted 3-regular graphs, discussed in the main text, we also test
TQA initialization on weighted 3-regular graphs and Erdős-Rényi graphs. We find that TQA
initialization yields the same performance as the best of random initializations for weighted
3-regular graphs, see Fig. A.4. For Erdős-Rényi, TQA initialization even outperforms the best
of 2p random initializations.

67





APPENDIX B
Proof of transition state properties and

details for greedy algorithm

B.1 Restricting QAOA parameter space by symmetries
In this Appendix, we find the symmetry properties of the cost function

E(β,γ) = ⟨β,γ|HC |β,γ⟩

for the QAOAp (i.e. QAOA with circuit depth p) ansatz. Here we use bold notation for
both β and γ parameters to denote a length-p vector of angles, i.e. β = (β1, . . . , βp) and
γ = (γ1, . . . , γp). The use of symmetries allows to restrict the manifold of variational
parameters, leading to a more efficient exploration of the QAOA landscape. This section
expands upon previous results by [ZWC+20].
We begin by rewriting the exponents of both classical and mixing Hamiltonian as:

e−iβlHB =
n∏︂

k=1
e−iβlσ

x
k = (cos βl − i sin βl σ

x)⊗n, (B.1)

e−iγlHC =
∏︂
⟨j,k⟩

e−iγlσ
z
j σz

k =
∏︂
⟨j,k⟩

(cos γl − i sin γlσ
z
jσ

z
k). (B.2)

From here it is apparent that adding π to any of the parameters, βl, γl → βl + π, γl + π
for all l ∈ [1, p] does not change the cost function value E(β,γ). Indeed, this leads to an
appearance of an overall negative sign that cancels within the expectation value of the classical
Hamiltonian. Therefore we can easily restrict the search space to (i) βl, γl ∈ [−π

2 ,
π
2 ].

For β parameters we can restrict the parameter space even further. In Ref. [ZWC+20] the
authors restrict the parameters as βl ∈ [−π

4 ,
π
4 ] due to the following considerations. Consider

adding π
2 to β, the exponent e−i(βl+ π

2 )HB = e−iβlHBe−i π
2 HB leads to an additional product of

all σx operators,
e−i π

2 HB = (−iσx)⊗n. (B.3)
this operator flips all spins, effectively being a generator of the Z2 symmetry of the classical
Ising Hamiltonian, HC . Therefore, such a shift of βl will have no effect on the cost function
and we restrict (ii) βl ∈ [−π

4 ,
π
4 ].
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Yet another symmetry is recovered by taking the complex conjugate of the energy. As both
classical and mixing Hamiltonians are real-valued, one has

E∗(β,γ) = ⟨β,γ|HC |β,γ⟩∗ = E(−β,−γ). (B.4)

And because the energy is also real-valued (HC is Hermitian), we recover another symmetry
of the cost function: (iii) (β,γ)→ (−β,−γ).
The symmetries (i)-(iii) introduced above were discussed in Refs. [ZWC+20, SS21b]. But we
can restrict the search space even further. In particular, we demonstrate that for the QAOA
cost function for 3-regular random graphs (RRG3) the following additional symmetry holds:

(iv) Flipping sign of any of the βl → −βl for any l ∈ [1, p] together with shifts of γl,l+1
angles, as γl,l+1 → γl,l+1 ± π

2 . Note that for l = p only the γp angle has to be shifted.

Let us prove this property for regular graphs with odd connectivity (i.e. 3-regular, 5-regular,
. . . ). In order to demonstrate the property (iv) for j < p, it is enough to show that:

e−i π
2 HCeiβHBe−i π

2 HC ∼ e−iβHB , (B.5)

where ∼ stands for equivalence up to a global phase. In other words, we use the property that
e−i π

2 HC ∼ ∏︁i σ
z
i acts as a product of σz operators over all spins, that relies on the fact that

each vertex is connected to an odd number of edges (interaction terms). This leads to the
relation

e−i π
2 HCeiβHBe−i π

2 HC ∼ e−iβHB . (B.6)
Thus, the change of sign of βk can be compensated by the shifts of “adjacent” angles γk,k+1
by π/2, leading to the property (iv) when j < p. In the particular case of j = p, the property
(iv) for j = p is obtained using the following relation

ei π
2 HCe−iβHBHCe

iβHBe−i π
2 HC (B.7)

∼ei π
2 HCe−iβHBei π

2 HCHCe
−i π

2 HCeiβHBe−i π
2 HC (B.8)

=eiβHBHCe
−iβHB . (B.9)

Finally, let us rewrite the property (iv) by sequentially applying this symmetry for all indices j
starting from k and ending at p. Then we obtain the following property equivalent to (iv) and
dubbed (iv’):

(iv’) ∀j = [k, p] : βj → −βj, γj → γj ± π
2 .

This allows us to restrict all γ angles to the region [−π
4 ,

π
4 ]. Moreover, the sign-flip symmetry

(iii) allows us to make one of the γ angles, for instance, γ1, positive, cutting the search space
in half.
In addition, let us apply property (iv’) for k = 1 (i.e. including all layers of the unitary circuit)
and supplement it with a global sign flip, operation (iii). As a result, we obtain the following
symmetry:

γ1 → ±
π

2 − γ1, ∀j = [2, p] : γj → −γj (B.10)

This indicates that there is a p-dimensional plane in the landscape with coordinates γ =
(±π

4 ,0p−1) which acts as a mirror. This plane is characterized by a vanishing gradient of
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the cost function and the Hessian having p vanishing eigenvalues. However, it is located on
the edge of our search space and it has a vanishing expectation value of the cost function,
corresponding to the approximation ratio r = 0, which is very far from the good-quality local
minima.

In summary, collecting all symmetries discussed above, we restrict the fundamental search
region to

βl ∈
[︄
− π

4 ,
π

4

]︄
, ∀l ∈ [1, p], (B.11)

0 < γ1 <
π

4 , (B.12)

γj ∈
[︄
− π

4 ,
π

4

]︄
, ∀j ∈ [2, p]. (B.13)

B.2 Construction of transition states
In this section, we show how to use a local minimum of the QAOAp to construct a set of
2p+ 1 transition states (TS) at circuit depth p+ 1. These are stationary points with all but
one Hessian eigenvalue being positive. More precisely, we show the following statement:

Theorem 4 (TS construction, full version). Let Γp
min = (β⋆,γ⋆) = (β⋆

1 , . . . , β
⋆
p , γ

⋆
1 , . . . , γ

⋆
p)

be a local minimum of QAOAp. Define the following 2p + 1 points by padding this vector
with zeroes at distinguished positions:

Γp+1
TS (i, j) = (β⋆

1 , ..., β
⋆
j−1,0, β⋆

j , ..., β
⋆
p ,

γ⋆
1 , ..., γ

⋆
i−1,0, γ⋆

i , ..., γ
⋆
p)

(B.14)

with i ∈ [1, p+ 1] and j = i or j = i + 1. Then each of these points is either (i) a TS for
QAOAp+1 or (ii) has a non-regular Hessian.

Theorem 1 in the main text is a streamlined version of this statement that does not mention
the possibility of degenerate Hessians. We expect that the Hessian matrix of a local minimum
of QAOAp is non-degenerate in the absence of symmetries and provided the circuit is not
overparametrized [LJG+21] (if there exists some combination of variational angles, such that
its changes do not influence the quantum state, it leads to vanishing eigenvalue of Hessian).
Analogously, in the case of the Hessian at the TS of QAOAp+1, we numerically find that option
(ii) never happens. Below, we relate the two new additional eigenvalues of the Hessian at the
TS to the expectation value of a physical operator over the variational state. This expectation
value is non-zero in the absence of special symmetries or fine-tuning, providing a physical
justification for why we do not observe zero eigenvalues in the Hessian spectra of our TS.

B.2.1 Cost function gradient
Let us start by computing the energy gradient ∇E(β,γ). Derivatives of the quantum state
with respect to parameters βl, γl are given by the following expressions:

∂βl
|β,γ⟩ = −iU>lHBU≤l|+⟩,

∂γl
|β,γ⟩ = −iU≥lHCU<l|+⟩,

(B.15)
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where U≥l = UB(βp)UC(γp) · · ·UB(βl)UC(γl), U≤l = UB(βl)UC(γl) · · ·UB(β1)UC(γ1) and
analogously for U<l, and U>l. For simplified notation we use write |+⟩ instead of |+⟩⊗n. We
can now deduce the components of the energy gradient ∇E(β,γ) from Eq. (B.15). They
read

∂βl
E(β,γ) = i⟨+|U †

≤l[HB, U
†
>lHCU>l]U≤l|+⟩,

∂γl
E(β,γ) = i⟨+|U †

<l[HC , U
†
≥lHCU≥l]U<l|+⟩.

(B.16)

Our goal is to prove that given a local minimum Γp
min = (β⋆

1 , . . . , β
⋆
p , γ

⋆
1 , . . . , γ

⋆
p) for a QAOAp

the set of 2p+ 1 points

Γp+1
TS (l, k) = (β⋆

1 , ..., β
⋆
l−1, 0, β⋆

l , ..., β
⋆
p ,

γ⋆
1 , ..., γ

⋆
k−1, 0, γ⋆

k, ..., γ
⋆
p),

(B.17)

with l ranging from 1 to p+ 1 and either k = l or k = l + 1 are all TSs. The first step is to
prove that they are all stationary points. That is, each such point leads to a vanishing gradient.
From the above expression, it follows that we only have to consider gradient components
where the zero insertion is made since the others are zero due to the point Γp

min being a local
minimum (i.e. derivatives are vanishing). For the derivatives over newly introduced angles
using Eq. (B.15), we see that

∂βl
|β,γ⟩⃓⃓⃓

Γp+1
TS (l,l)

= ∂βl−1 |β,γ⟩⃓⃓⃓Γp
min

,

∂βl
|β,γ⟩⃓⃓⃓

Γp+1
TS (l,l+1)

= ∂βl
|β,γ⟩⃓⃓⃓

Γp
min

,

∂γl
|β,γ⟩⃓⃓⃓

Γp+1
TS (l,l)

= ∂γl
|β,γ⟩⃓⃓⃓

Γp
min

,

∂γl+1 |β,γ⟩⃓⃓⃓Γp+1
TS (l,l+1)

= ∂γl
|β,γ⟩⃓⃓⃓

Γp
min

,

(B.18)

where the index l ranges from 1 to p+ 1 for the (l, l) case and from 1 to p in the (l, l + 1)
case.
These observations reduce the derivatives over the new angles to derivatives over angles from
local minima of QAOAp. And these vanish by definition because we started in a local minimum
which is itself a stationary point, that is

∇E(β,γ)⃓⃓⃓
Γp

min

= 0. (B.19)

We emphasize that these arguments do not apply to two special cases that should be treated
separately.
In particular, Eq. (B.15) does not provide any information for: (i) the gradient component
∂β1 [·] when considering TS Γp+1

TS (1, 1) and Γp+1
TS (1, 2), and (ii) the gradient component ∂γp+1 [·]

when considering points Γp+1
TS (p+ 1, p+ 1). For case (i), we use that HB|+⟩ = n|+⟩ with n

being the number of qubits, to show that

∂β1 |β,γ⟩⃓⃓⃓Γp+1
TS (1,k)

=− in|β,γ⟩⃓⃓⃓
Γp

min

(B.20)

for k = 1, 2. This in turn implies

∂β1E(β,γ)⃓⃓⃓
Γ1

TS(1,k)
=(in− in)⟨β,γ|β,γ⟩⃓⃓⃓

Γp
min

= 0, (B.21)
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as desired. For case (ii) we have that

∂γp+1 |β,γ⟩⃓⃓⃓Γp+1
TS (p+1,p+1)

= −iHC |β,γ⟩⃓⃓⃓
Γp

min

, (B.22)

which handles the second special case:

∂γp+1E(β,γ)⃓⃓⃓
Γp+1

TS (p+1,p+1)
= (i− i)E(Γp

min) = 0. (B.23)

Putting everything together implies that all energy partial derivatives vanish for every Γp+1
TS

introduced in Theorem 1:

∇E(β,γ)⃓⃓⃓
Γp+1

TS (l,l)
= ∇E(β,γ)⃓⃓⃓

Γp+1
TS (l,l+1)

= 0 (B.24)

for all l ∈ [1, p + 1] except the pair (p + 1, p + 2) which exceeds the index range. In other
words: these 2(p+ 1)− 1 = 2p+ 1 points must all be stationary points.

B.2.2 Cost function Hessian
We now proceed with the study of the Hessian for each of the stationary states in the set
Γp+1

TS (l, k) with l ranging from 1 to p+ 1 and k being l or l + 1. Using basic row and column
operations we decompose the Hessian as follows:

H[Γp+1
TS (l, k)] =

(︄
H(Γp

min) v(l, k)
vT (l, k) h(l, k)

)︄
, (B.25)

where H(Γp
min) ∈ R2p×2p, v(l, k) ∈ R2p×2 and, h(l, k) ∈ R2×2. It is important to note that

the determinant of the Hessian at the point Γp+1
TS (l, k) remains unchanged by such reordering

of rows and columns. To see this, recall that switching two rows or columns causes the
determinant to switch signs. Since we switch x rows and x columns, we realize that the overall
sign does not change after all. In terms of matrix elements, v(l, k) ∈ R2p×2 reads

v(l, k) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂β1∂βl
E(β,γ)⃓⃓⃓

Γp+1
TS

∂β1∂γk
E(β,γ)⃓⃓⃓

Γp+1
TS

... ...
∂βl−1∂βl

E(β,γ)⃓⃓⃓
Γp+1

TS

∂βl−1∂γk
E(β,γ)⃓⃓⃓

Γp+1
TS

∂βl+1∂βl
E(β,γ)⃓⃓⃓

Γp+1
TS

∂βl+1∂γk
E(β,γ)⃓⃓⃓

Γp+1
TS

... ...
∂βp+1∂βl

E(β,γ)⃓⃓⃓
Γp+1

TS

∂βp+1∂γk
E(β,γ)⃓⃓⃓

Γp+1
TS

∂γ1∂βl
E(β,γ)⃓⃓⃓

Γp+1
TS

∂γ1∂γk
E(β,γ)⃓⃓⃓

Γp+1
TS

... ...
∂γk−1∂βl

E(β,γ)⃓⃓⃓
Γp+1

TS

∂γk−1∂γk
E(β,γ)⃓⃓⃓

Γp+1
TS

∂γk+1∂βl
E(β,γ)⃓⃓⃓

Γp+1
TS

∂γk+1∂γk
E(β,γ)⃓⃓⃓

Γp+1
TS

... ...
∂γp+1∂βl

E(β,γ)⃓⃓⃓
Γp+1

TS

∂γp+1∂γk
E(β,γ)⃓⃓⃓

Γp+1
TS

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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while h(l, k) ∈ R2×2 becomes

h(l, k) =

⎛⎜⎜⎝
∂βl
∂βl
E(β,γ)⃓⃓⃓

Γp+1
TS

∂βl
∂γk

E(β,γ)⃓⃓⃓
Γp+1

TS

∂βl
∂γk

E(β,γ)⃓⃓⃓
Γp+1

TS

∂γk
∂γk

E(β,γ)⃓⃓⃓
Γp+1

TS

⎞⎟⎟⎠ .

Our goal is to restrict the properties of the Hessian (B.25) using the fact that the Hessian at
circuit depth p is a positive-definite matrix, a consequence of the fact that we start at a local
minimum Γp

min. To this end, we use a powerful theorem from matrix analysis.

Theorem 5 (Eigenvalue interlacing theorem [Bel97] (Theorem 4 on page 117)). Let A ∈ Rn×n

be a symmetric matrix and B ∈ Rm×m with m < n be a principal submatrix (obtained by
removing both the i-th column and i-th row for some values of i). Suppose A has eigenvalues
λ1 ≤ λ2 ≤ · · · ≤ λn and B has eigenvalues κ1 ≤ · · · ≤ κm. Then

λk ≤ κk ≤ λk+n−m, (B.26)

for k = 1,m.

The eigenvalue interlacing theorem relates the ordered set of Hessian eigenvalues {λp+1
i } for

QAOAp+1 to the Hessian eigenvalues {λp
i } of QAOAp in the following way:

λp+1
k ≤ λp

k ≤ λp+1
k+2. (B.27)

Using the fact that Hp(Γp
min) has λp

k > 0 for all k, we see that the Hessian of QAOAp+1 at point
Γp+1

TS (l, k) has at most two negative eigenvalues, λp+1
1 , λp+1

2 < λp
1, whereas 0 < λp

1 < λp+1
j for

j ≥ 3. In what follows we establish that among these two eigenvalues, exactly one is negative
and the other one is positive. This is achieved by demonstrating that the full Hessian matrix
has a negative determinant,

detH
[︂
Γp+1

TS (l, k)
]︂
< 0, (B.28)

which rules out the possibility that the remaining eigenvalues λp+1
1,2 have the same sign (which

would cancel in the determinant).

Below we first prove Relation (B.28) for the cases where the insertion of the zeros is made at
the first (i) or at the last (ii) layer of the unitary circuit. We then conclude by considering
the general case (iii), where zeros are inserted in the “bulk" of the unitary circuit. Moreover,
whenever is clear from context, we will drop the indices (l, k) for better readability. Furthermore,
for all the cases considered below, we introduce a specific short-hand notation for the following
second-order derivative

b = ∂βl
∂γk

E(β,γ)⃓⃓⃓
Γp+1

TS

. (B.29)

This matrix element will play a special role in the calculation of detH(Γp+1
TS (l, k)). It is

important to note, that while the specific expression of b differs for all the stationary points
in the set given by Eq. (B.17), it has a non-zero value, b ̸= 0. Indeed, below we express b
as an expectation value of a non-vanishing operator over the QAOA variational state, that is
non-zero in the absence of special symmetries.
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Case (i): l = k = p+ 1

The first step is to compute the matrix elements of v(p+ 1, p+ 1). From now on we drop the
quantifying index and simply write v and h to reduce notational overhead. The first column
of v corresponds to vβj ,βp+1 = ∂βj

∂βp+1E(β,γ) evaluated at the TS Γp+1
TS :

∂βj
∂βp+1E(β,γ)⃓⃓⃓

Γp+1
TS

=

⟨+|U †
≤j[U

†
>j[HB, HC ]U>j, HB]U≤j|+⟩ = aj,

(B.30)

where we introduced the short-hand notation aj for better readability. Analogously, considering
matrix elements of the form vγj ,βp+1 = ∂γj

∂βp+1E(β,γ), we obtain

∂γj
∂βp+1E(β,γ)⃓⃓⃓

Γp+1
TS

=

⟨+|U †
<j[U

†
≥j[HB, HC ]U≥j, HC ]U<j|+⟩ = ap+1+j. (B.31)

Evaluating the second derivatives on Eq. (B.30) and Eq. (B.31) at j = p+ 1 corresponds to
the first column of the 2× 2 matrix h. In particular, evaluating Eq. (B.30) at j = p+ 1 leads
to U>j = I and U≤j = U which in turn implies that

∂2
βp+1E(β,γ)⃓⃓⃓

Γp+1
TS

=

⟨Γp
min|[[HB, HC ], HB]|Γp

min⟩ = ap+1. (B.32)

Note that above we used U>p+1 = I. This is because when the derivative is taken with respect
to the last layer (p+ 1) of the unitary circuit, there is no unitary to the left of it which, in the
notation introduced on Eq.(B.15) is equivalent to U>p+1 = I. Doing the same on Eq. (B.31)
gives

∂γp+1∂βp+1E(β,γ)⃓⃓⃓
Γp+1

TS

=

⟨Γp
min|[[HB, HC ], HC ]|Γp

min⟩ = b. (B.33)

Finally, let us look at the matrix elements of the form vβj ,γp+1 = ∂βj
∂γp+1E(β⃗, γ⃗) and

analogously vγj ,γp+1 , corresponding to the second column of v. Let us first inspect ∂γp+1E(β⃗, γ⃗):

∂γp+1E(β,γ) =
i⟨+|U †

<p+1[HC , U
†
p+1HCUp+1]U<p+1|+⟩. (B.34)

When evaluated at point Γp+1
TS , we obtain that [HC , U

†
p+1HCUp+1] = 0 since Up+1 = I and

HC commutes with itself. Hence, we see that as long as the second derivative is taken with
respect to an element (β or γ) at index j < p+ 1 the final result will be zero. As we already
saw in Eq. (B.33), ∂γp+1∂βp+1E(β,γ) is equal to b. Using similar arguments, we show that
∂γp+1∂γp+1E(β,γ) = 0 which corresponds to the hγp+1,γp+1 matrix element of h. We are then
ready to construct the Hessian at the TS under consideration:

H(Γp+1
TS ) =

(︄
H(Γp

min) v
vT h

)︄
, (B.35)
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with
vT =

(︄
a1 · · · a2p+1
0 · · · 0

)︄
and h =

(︄
ap+1 b
b 0

)︄
. (B.36)

Using the expression for the determinant of a block matrix [Bel97]

det
(︄
A B
C D

)︄
= det(A) det(D − CA−1B), (B.37)

we rewrite the determinant of the full Hessian as follows

det
[︂
H(Γp+1

T S )
]︂

=

det
(︄
ap+1 b
b 0

)︄
det
[︂
H(Γp

min)− vh−1vT
]︂

= −b2det
[︂
H(Γp

min)
]︂
. (B.38)

We used that vh−1vT = 0 in the last line. We then see that as long as b ≠ 0 the determinant
of the Hessian at the TS is negative, det[H(Γp+1

T S )] < 0. The explicit expression (B.33) for
b relates it to the expectation value of the commutator [[HB, HC ], HC ] over the variational
wave function. Since this commutator is a non-vanishing operator, its expectation value is
generically non-zero, b ̸= 0. This concludes the proof of Theorem 1 for the case when zeros
are inserted at the last layer of the unitary circuit.

Case (ii): l = k = 1

As before, we focus on computing the matrix elements of v = v(1, 1) and h = h(1, 1). Starting
from the first column of v, with matrix elements vβj ,β1 and vγj ,β1 for j ∈ [2, p+ 1] we find

∂βj
∂β1E(β,γ)⃓⃓⃓

Γp+1
TS

=

⟨+|[HB, U
†
≤j[U

†
>jHCU>j, HB]U≤j]|+⟩ = 0,

∂γj
∂β1E(β,γ)⃓⃓⃓

Γp+1
TS

=

⟨+|[HB, U
†
<j[U

†
≥jHCU≥j, HC ]U<j]|+⟩ = 0.

(B.39)

Moving onto the second column of v, with matrix elements vβj ,γ1 and vγj ,γ1 for j ∈ [2, p+ 1]
we obtain

∂γ1∂βj
E(β,γ)⃓⃓⃓

Γp+1
TS

=

⟨+|[HC , U
†
≤j[U

†
>jHCU>j, HB]U≤j]|+⟩ = cj,

∂γj
∂γ1E(β,γ)⃓⃓⃓

Γp+1
TS

=

⟨+|[Hc, U
†
<j[U

†
≥jHCU≥j, HC ]U<j]|+⟩ = cp+1+j

(B.40)

where for better readability we introduced the short-hand notation cj with j ∈ [2, p]. Finally,
evaluating the above expressions Eq. (B.39) and Eq. (B.40) at j = 1 leads to the matrix
elements of the 2× 2 matrix h. Altogether, we find

vT (1, 1) =
(︄

0 · · · 0
c1 · · · c2p+2

)︄
, h(1, 1) =

(︄
0 b
b cp+2

)︄
,
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where
b = ⟨+|[HC , [U †HCU,HB]]|+⟩ (B.41)

and the value of cp+2 follows from evaluating Eq. (B.40) at j = 1.

Invoking once again the expression for the determinant of a block matrix Eq. (B.37) we get

det
[︂
H(Γp+1

T S )
]︂

= det
[︂
H(Γp

min))det(h+ vTH(Γp
min)v

)︂
= det

[︄(︄
0 b
b cp+2

)︄
+
(︄

0 0
0 const

)︄]︄
det
[︂
H(Γp

min)
]︂
,

= −b2det
[︂
H(Γp

min)
]︂
. (B.42)

Using that the point Γp
min is a local minimum (with the Hessian being non-singular), we see

that as long as b ̸= 0 the determinant of the Hessian at the TS is negative. The fact that the
parameter b in Eq. (B.41) is non-vanishing can be inferred from the similar argument to the
one used at the end of Appendix B.2.2

Case (iii): l, k ∈ 2, p

So far we have proven that when the zeros insertion is made at the initial (I) or last (II) layer
of the unitary circuit the corresponding points Γp+1

TS of QAOAp+1 are TS. In both cases, we
proved that the determinant of the Hessian of QAOAp+1 at the given points is negative. In
order to do this, we used that one of the columns of the 2p × 2 matrix v was zero which
greatly simplified the computation of the determinant. In what follows, we show that these
simplifications, unfortunately, do not occur when the zeros insertion is made in the bulk of the
unitary circuits. However, we instead observe that the matrix v(l, k) is constructed by taking
the l-th (βl) and p+ 1 + k-th (γk) columns of the Hessian of QAOAp at the local minimum
Γp

min. This fact, together with the invariance of the determinant under linear operations
performed on rows or columns leads to the desired result.

We begin by explicitly computing the matrix elements of h(l, k) and v(l, k) and then relating
them to matrix elements of the Hessian H(Γp

min). For the sake of concreteness, we focus on
the particular case of symmetric TS, i.e. k = l. The other case, i.e. k = l + 1 can be covered
by an analogous chain of arguments. As before, in what follows we drop the quantifying
indices for better readability. Starting from h, we obtain

h =

⎛⎜⎜⎝
∂βl
∂βl
E(β,γ)⃓⃓⃓

Γp+1
TS

∂βl
∂γl
E(β,γ)⃓⃓⃓

Γp+1
TS

∂βl
∂γl
E(β,γ)⃓⃓⃓

Γp+1
TS

∂γl
∂γl
E(β,γ)⃓⃓⃓

Γp+1
TS

⎞⎟⎟⎠

=

⎛⎜⎜⎝
∂2

βl−1
E(β,γ)⃓⃓⃓

Γp
min

b

b ∂2
γl
E(β,γ)⃓⃓⃓

Γp
min

⎞⎟⎟⎠
=
(︄
H(Γp

min)βl−1,βl−1 b
b H(Γp

min)γl,γl

)︄
, (B.43)

where
b = ⟨+|U †

≤l−1[HC , [HB, U
†
>l−1HCU>l−1]]U≤l−1|+⟩. (B.44)
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One might be tempted by looking at the properties listed in Eq. (B.18) to relate ∂βl
∂γl
E(β,γ)⃓⃓⃓

Γp+1
TS

to ∂βl−1∂γl
E(β,γ)⃓⃓⃓

Γp
min

. However, upon closer inspection, we can see that these are not the

same. More specifically, we get

∂βl−1∂γl
E(β,γ)⃓⃓⃓

Γp
min

=

⟨+|U †
≤l−1[HB, [HC , U

†
>l−1HCU>l−1]]U≤l−1|+⟩. (B.45)

Comparing the above expression with Eq. (B.44) we realize that although not equal, they are
related via the Jacobi identity

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0, (B.46)

for operators A,B and C. More specifically, we obtain

b− ∂βl−1∂γl
E(β,γ)⃓⃓⃓

Γp
min

=

⟨+|U †
≤l−1[U

†
>l−1HCU>l−1, [HB, HC ]]U≤l−1|+⟩ = b̄.

(B.47)

Considering now the matrix elements of v we get

v =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂β1∂βl−1E(β,γ)⃓⃓⃓
Γp

min

∂β1∂γl
E(β,γ)⃓⃓⃓

Γp
min

... ...
∂βl−1∂βl−1E(β,γ)⃓⃓⃓

Γp
min

∂βl−1∂γl
E(β,γ)⃓⃓⃓

Γp
min

∂βl
∂βl−1E(β,γ)⃓⃓⃓

Γp
min

∂βl
∂γl
E(β,γ)⃓⃓⃓

Γp
min

... ...
∂βp∂βl−1E(β,γ)⃓⃓⃓

Γp
min

∂βp∂γl
E(β,γ)⃓⃓⃓

Γp
min

∂γ1∂βl−1E(β,γ)⃓⃓⃓
Γp

min

∂γ1∂γl
E(β,γ)⃓⃓⃓

Γp
min

... ...
∂γl−1∂βl−1E(β,γ)⃓⃓⃓

Γp
min

∂γl−1∂γl
E(β,γ)⃓⃓⃓

Γp
min

∂γl
∂βl−1E(β,γ)⃓⃓⃓

Γp
min

∂γl
∂γl
E(β,γ)⃓⃓⃓

Γp
min

... ...
∂γp∂βl−1E(β,γ)⃓⃓⃓

Γp
min

∂γp∂γl
E(β,γ)⃓⃓⃓

Γp
min

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

H(Γp
min)β1,βl−1 H(Γp

min)β1,γl... ...
H(Γp

min)βp,βl−1 H(Γp
min)βp,γl

H(Γp
min)γ1,βl−1 H(Γp

min)γ1,γl... ...
H(Γp

min)γp,βl−1 H(Γp
min)γp,γl

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (B.48)

Hence, we find that the 2p × 2 rectangular matrix v corresponds to the matrix formed by
taking columns H(Γp

min)m,βl−1 and H(Γp
min)m,γl

with m = 1, . . . , 2p of H(Γp
min). Using this
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result and the fact that the determinant is invariant under linear operations performed on rows
or columns, we get that

det(H(Γp+1
TS )) = det

(︄
H(Γp

min) v(l, k)
0 h(l, l)

)︄
, (B.49)

where we subtracted rows H(Γp
min)βl−1,m and H(Γp

min)γl,m with m = 1, . . . , 2p from vT , and
introduced

h =
(︄

0 b̄

b̄ 0

)︄
, (B.50)

Using once again the expression for the determinant of a block matrix Eq. (B.37), and the
fact that det(h(l, l)) = −b̄2 is negative (b̄ ̸= 0 due to similar argument as in Appendix B.2.2)
we obtain

det
[︂
H(Γp+1

TS )
]︂

= −b̄2det
[︂
H(Γp

min)
]︂
< 0, (B.51)

concluding our proof for the general TS.

B.3 Counting of unique minima
The number of minima found in the initialization graph construction presented in the main
text, naïvely scales as Nmin(p) = 2p−1p!. This follows from our recursive construction. Each
local minimum of QAOAp is used to construct p+ 1 symmetric TS and for each TS we then
find two new minima of QAOAp+1, see Figs. 5.1 and 5.2. This factorial growth is, however,
only sustained if every TS produces two new minima that are all distinct from each other.
Numerically, we find that this is not the case and that the number of unique minima is
significantly smaller. The increase in the number of unique minima is consistent with an
exponential dependence proportional to eκp [we find that Nmin(p) can be approximated as
Nmin(p) ≈ 0.19e0.98p]. However, the limited range of p does not allow us to completely rule
out factorial growth, see Fig. B.1. The much smaller number of unique minima, compared to
the naïve counting demonstrates that different TS often lead to similar minima, as illustrated
in Fig. 5.4.
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Figure B.1: Number of minima found in the initialization graph in Fig. 5.2 with system size
n = 10. The orange line describes a naïve counting argument (2p−1p!) while the blue line lists
the actual number of distinct minima that can be approximated as 0.19 e0.98p.
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B.4 Properties of the index-1 direction
The index-1 direction is the direction of negative curvature at a TS in a QAOAp+1 which we
use to find two new minima in QAOAp+1, as illustrated in Fig. 5.2(a). The index-1 direction
is obtained by finding the eigenvector corresponding to the unique negative eigenvalue of the
Hessian, H(Γp+1

T S ). Numerically we showed in Fig. 5.2(b) that optimization initialized along
the ± index-1 direction either heals or enhances the perturbation introduced by a creation of
the TS from the local minima of QAOAp.
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Figure B.2: (a) Illustration of the circuit implementing the QAOA at a TS. Gray gates
correspond to the zero insertion. The index-1 direction has mainly weight at the position of
the zeros as well as the two adjacent gates. (b) Numerical example of the index-1 vector and
the QAOA parameter pattern at the TS. Arrows correspond to the magnitude and sign of the
entries in the index-1 direction. Only entries at β1, β2, γ2 and γ3 have a large magnitude, all
other entries are nearly zero.

Interestingly, we find that the index-1 vector has dominant components at positions where
zero angles were inserted as well as the positions of adjacent angles. In contrast, all other
components of the index-1 vector have nearly zero weight, as illustrated in Fig. B.2. The
large contribution along the component corresponding to the zero insertion can be physically
motivated by the fact that the gate with the zero parameter does initially not have any effect
for driving the initial state |+⟩⊗n towards the ground state of HC . Hence, the energy can be
lowered by ‘switching on’ the action of this gate by moving the value of the corresponding
variational angle away from zero. Interestingly, we see that the neighboring gates with non-zero
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parameters are also changed along the index-1 direction. The next nearest neighboring gates
appear to be not involved in this process. We note that this numerical observation allows
to a priori guess the index-1 direction without having to diagonalize the Hessian H(Γp+1

T S ).
This may be useful for the practical implementation of our initialization on available quantum
computers.

B.5 Description of the Greedy algorithm
In the following, we provide a detailed description for the Greedy QAOA initialization, as
well as the sub-routines required to implement the algorithm. To this end, we first provide a
pseudo-code for a gradient-based QAOA parameter optimization routine. The algorithm is a
so-called variational hybrid algorithm, which implies that the quantum computer is used in
a closed feedback loop with a classical computer. There the quantum computer is used to
implement a variational state and measure observables while the classical computer is used to
keep track of the variational parameters and update them in order to minimize the energy
expectation value.

Algorithm 3 QAOA sub-routine
1: Given the circuit depth p, choose initial parameters Γp

init. = (βinit.,γinit.)
2: repeat
3: Implement |β,γ⟩ on a quantum device
4: Estimate E(β,γ) = ⟨β,γ|HC |β,γ⟩
5: Estimate gradient ∇E(β,γ)
6: Update (β,γ) using gradient information
7: until E(β,γ) has converged
8: Return minimum Γp

min

For very shallow circuit depths, such as p = 1, the optimization landscape is sufficiently low
dimensional and simple such that global optimization routines can be used to find the optimal
parameters. One of the most straightforward global optimization routines is the so-called grid
search. There, the parameters are initialized on a dense grid and a parameter optimization
routine, such as the QAOA sub-routine is carried out for each point in the grid. Then, only
the lowest energy local minimum is kept.

Algorithm 4 Grid search sub-routine
1: Given a circuit depth p, construct an evenly spaced grid on the fundamental region:

βi ∈
[︄
− π

4 ,
π

4

]︄
; γ1 ∈

(︄
0, π4

)︄
, γj ∈

[︄
− π

4 ,
π

4

]︄
, (B.52)

with i ∈ [1, p] and j ∈ [2, p]
2: QAOA sub-routine initialized from each point in grid
3: Return local minimum with the lowest energy Γp

min

Using the two sub-routines presented above we can provide a detailed pseudo-code for the
Greedy QAOA algorithm, see Fig. B.3 for a visualization.
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Algorithm 5 Greedy QAOA
1: Choose maximum circuit depth pmax
2: Choose small offset ϵ≪ 1
3: Grid search for p = 1 to find Γp=1

min ▷ See grid search sub-routine
4: repeat
5: Construct p+ 1 symmetric TS Γi,p+1

T S from Γp
min

6: Compute or approximate the index-1 unit vector v̂ for each TS
7: Construct points Γi,p+1

± = Γi,p+1
T S ± ϵv̂i for each TS

8: Run QAOA init. from Γi,p+1
± ▷ See QAOA sub-routine

9: Keep local minimum with the lowest energy Γp+1
min

10: p←− p+ 1
11: until p = pmax
12: Return minimum Γp=pmax

min

The index-1 direction v̂i can either be found explicitly by diagonalizing the Hessian matrix or
using the heuristic approximation outlined in the previous section. While explicit diagonalization
incurs classical computation costs that scale polynomially with p, and thus can be done
efficiently, approximation to index-1 direction is expected to give similar performance of QAOA
sub-routine at a lower classical computational cost.

Compute  andE(β, γ)
∇E(β, γ)

CPU

Update 
parameters 

Measure qubits

Prepare wave function

e−
iγ 1

H
C

e−
iβ

1H
B

e−
iγ p

H
C

e−
iβ

pH
B

| + ⟩
| + ⟩
| + ⟩
| + ⟩
| + ⟩

| + ⟩

QPU

Construct 
TS

2p + 1

QAOA sub-routine

QAOA sub-
routine from 

each TS

Choose lowest 
energy minimum

Initial minimum

Figure B.3: Flow diagram to visualize the Greedy QAOA initialization algorithm presented
in Algorithm 5.
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Figure B.4: Performance comparison on (a) RWRG3 and (b) RERG with system size n = 10.
Data is averaged over 19 non-isomorphic graphs.

B.6 Additional graph ensembles and system size scaling
In the main text, we numerically investigated the performance of our method on random
3-regular graphs (RRG3) with system size n = 10. In the following, we present results for
larger system sizes as well as two more graph types. Namely, weighted 3-random regular graphs
(RWRG3) where the Hamiltonian is given by HC = ∑︁

⟨i,j⟩∈E wijσ
z
i σ

z
j and wij are random

weights wij ∈ [0, 1), as well as random Erdős-Rényi graphs (RERG) with edge probability
pE = 0.5.
Fig. B.4 shows the performance comparison between Greedy, TQA, and Interp on
RWRG3 and RERG. We can see that for RWRG3 the performance of the three methods is
comparable, while for RERG the TQA performs worse that the other two methods. Greedy
and Interp yield (nearly) the same performance for both graph ensembles on the system size
that we considered (n = 10).
Fig. B.5 compares the performance for RRG3 with different system sizes. Interp and
Greedy yield very similar performance for smaller system sizes (n = 8 indicated by light
color) while it yields the same performance for larger system sizes (n = 16 indicated by
dark color). TQA performs slightly worse than Greedy and Interp for all system sizes
considered. We can furthermore see that gain in performance from every additional layer is
becoming less for bigger system sizes. This is due to the fact that in order for the QAOA to
“see” the whole graph, a circuit depth p scaling as p ∼ log n is required [FGG20].
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APPENDIX C
Mathematical details for Qudit-QAOA

ansatz and fast numerical simulation of
qudit noise

C.1 Comparison with previous formulations of the
Qudit-QAOA ansatz

The Qudit-QAOA ansatz used in this work is based on the original work in Ref. [BKKT20].
However, in our work we use different formulations of both the cost function C as well as
the quantum unitary UB. Our formulations allow for a direct representation in terms of gates
available on ion trap quantum computers. In the following we will discuss the differences and
similarities between the two formulations.

Ref. [BKKT20] uses the following classical cost function

C = −
∑︂

i,j∈E

∑︂
a,b

(1− δb,0) |a⟩i ⊗ |a⊕ b⟩j ⟨a|i ⊗ ⟨a⊕ b|j , (C.1)

which is directly formulated in terms of projectors. We can unfold this formula to obtain the
following

= −
∑︂

i,j∈E

∑︂
a,b

(1− δ0,b)(|a⟩i ⟨a|i)⊗ (|a⊕ b⟩j ⟨a⊕ b|j) (C.2)

= −
∑︂

i,j∈E

∑︂
a,b

|a⟩i ⟨a|i ⊗ |a⊕ b⟩j ⟨a⊕ b|j −
∑︂

i,j∈E

∑︂
a,b

δ0,b |a⟩i ⟨a|i ⊗ |a⊕ b⟩i ⟨a⊕ b|j (C.3)

= −
∑︂

i,j∈E

(︂
1i ⊗ 1j −

∑︂
a

|a⟩i ⟨a|j ⊗
∑︂

b

δ0,b |a⊕ b⟩j ⟨a⊕ b|j
)︂

(C.4)

= −
∑︂

i,j∈E

(︂
1i ⊗ 1j −

∑︂
a

|a⟩i ⟨a|i ⊗ |a⟩j ⟨a|j
)︂

(C.5)

Here we have that ∑︁i,j∈E 1i ⊗ 1j = |E| × 1⊗n where |E| is the number of edges in the graph.

= −|E| × 1⊗n +
∑︂

i,j∈E

∑︂
a

|a⟩i ⟨a|i ⊗ |a⟩j ⟨a|j (C.6)
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The projector in the second term (as seen in Eq. (4.6))is diagonal and only returns 1 if qudit i
is in the the same state as qudit j, i.e. it has the same color, which is precisely the desired
δci,cj

. We thus find
= −|E| × 1⊗n +

∑︂
i,j∈E

δci,cj
. (C.7)

This shows that our formulation of the cost function in terms of the antiferromagnetic Potts
model, Eq. (4.4), is equivalent to the formulation in Ref. [BKKT20] up to a constant shift in
energy.
Next, we have the classical unitary UB(βt) for which [BKKT20] defines the following unitary
that generates mixing on a single site

UB(β) =
∑︂

a

eiβa |ϕa⟩⟨ϕa|, (C.8)

where |ϕa⟩ are defined as |ϕa⟩ = Za |+⟩. The generalized plus state is given by |+⟩ =
d−1/2∑︁

a |a⟩ and the +1 eigenstate of the generalized X operator. In this definition we can in
fact pull out a global phase

UB(β) = eiβ0
∑︂

a

ei(βa−β0) |ϕa⟩ ⟨ϕa| , (C.9)

which is irrelevant (since probabilities are given by absolute squares and global phase thus
does not change any physically observable quantities). The parameter space of β can thus
be reduced to β ∈ (Rd−1)p. Let us now transform into the X-basis using a Hadamard
transformation. We can thus write

UB =
∑︂
a ̸=0

eiβaZa |+⟩ ⟨+| (Za)† =
∑︂
a ̸=0

eiβaH†XaH |+⟩ ⟨+|H†(Xa)†H, (C.10)

note that H |+⟩ ⟨+|H† = |0⟩ ⟨0|. This allows us to write

UB =
∑︂
a ̸=0

eiβaH†Xa |0⟩ ⟨0| (Xa)†H, (C.11)

since Xa |0⟩ = |a⟩ we can finally write

UB = H†
(︄∑︂

a ̸=0
eiβa |a⟩ ⟨a|

)︄
H, (C.12)

which is the definition used in this work, see Eq. (4.9).

C.2 Details on representation of Qudit-QAOA in terms
of ion trap native gates

In this section we discuss the details of how the Qudit-QAOA ansatz can be expressed in terms
of gates that are native to ion trap quantum computers.
First, we consider the unitary e−iγtC . In particular, we will show that, up to a global phase, it
is equivalent to the all-level entangling gate given in Ref. [HWG+22]

G(γ) :

⎧⎨⎩|jj⟩ → |jj⟩|jk⟩ → eiγ |jk⟩ j ̸= k
(C.13)
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that has to be applied to the pairs of qudits associated with the edges in the graph. To see
this we first write G(γ) out in its matrix form for qutrits (without loss of generality)

G(γ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
eiγ

eiγ

1
eiγ

eiγ

1
eiγ

eiγ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= eiγ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e−iγ

1
1

e−iγ

1
1

e−iγ

1
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= eiγe−iγδci,cj

(C.14)
Recalling the target unitary e−iγC = ∏︁

i,j∈E e
−iγδci,cj , we see that this is exactly a product of

G(γ) acting on pairs of qutrits that are edges of the graph, up to a global phase eiγ which we
can ignore (probabilities are given by absolute squares and a global phase does therefore not
change any physically observable quantities). Explicitly we thus have

e−iγtC ∼
∏︂

i,j∈E

Gi,j(γt), (C.15)

where γ ∈ Rp.
Next, we consider the quantum gate UB = H†

(︂∑︁
a ̸=0 e

iβa |a⟩ ⟨a|
)︂
H. The Hadamard gate H

is a standard gate that is available on all quantum computing platforms. To implement the
sum ∑︁

a ̸=0 e
iβa |a⟩ ⟨a| we can use a phase shift gate, given in [RMP+22] as

Zi(β) |j⟩ =

⎧⎨⎩e−iβ |j⟩ if i = j

|j⟩ else.
(C.16)

To see this, let us apply the phase shift gate on two qutrits levels (without loss of generality).
We have that

Z1(β1)Z2(β2) =

⎡⎢⎣1 0 0
0 e−iβ1 0
0 0 e−iβ2

⎤⎥⎦ , (C.17)

which we can quickly convince ourselves that this realizes the desired sum term. So we can
finally write

UB = H†
(︄ ∏︂

a ̸=0
Za(−βa)

)︄
H, (C.18)

which is a single qudit unitary that introduces relative phases between the basis states. Note
that the phase shift gate is applied “in software” and thus does not have an error.

C.3 Generalized Pauli representation of depolarizing
channel

In this section, we prove the equivalence in Eq. (4.17) used for the Monte Carlo strategy for
simulating noise with random sampling. To this end, consider the Pauli group in d dimensions
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and let |0⟩, . . . , |d− 1⟩ be the computational basis in Cd. Recall, that the generalized X and
Z operators act on these basis states like

X|k⟩ = |k ⊕ 1⟩ and Z|k⟩ = ωp
d|z⟩ for all k = 0, . . . , d− 1.

Here, ⊕ denotes addition modulo d (e.g. |(d − 1) ⊕ 1⟩ = |0⟩) and ωd = exp (2πi/d) is a
d-th root of unity. These transformation rules readily extend to powers of X and Z. For
p, q ∈ {0, . . . , d− 1}, we obtain

Xq|k⟩ = |k ⊕ q⟩ and Zp|k⟩ = ωpk
d |k⟩.

Up to global phases (which do not matter here), the generalized Pauli matrices encompass
the following d2 unitary operators: Pd = {ZpXq : p, q ∈ {0, . . . , d− 1}}.

Lemma 6. Averaging over all generalized Pauli unitaries produces the completely depolarizing
channel

T (A) = 1
d2

d−1∑︂
p,q=0

ZpXqA(Xq)†(Zp)† = tr(A)
d

I = D(A) for all d× d matrices A (C.19)

Proof. Let us start with computing the desired expression for A = |k⟩⟨l| with k, l = 0, . . . , d−1:

T (|k⟩⟨l|) = 1
d2

d−1∑︂
p,q=0

ZpXq|k⟩⟨l|(Xq)†(Zp)†

= 1
d2

d−1∑︂
p,q=0

Zp|k ⊕ q⟩⟨k ⊕ q|(Zp)†

= 1
d2

d−1∑︂
p,q=0

ωp(k⊕q)|k ⊕ q⟩⟨k ⊕ q|ω−p(k⊕q)

=1
d

⎛⎝1
d

d−1∑︂
p=0

ωp(k−l)

⎞⎠ d−1∑︂
q=0
|k ⊕ q⟩⟨l ⊕ q|

=δk,l

d

d−1∑︂
q=0
|k ⊕ q⟩⟨k ⊕ q|

=δk,l

d

d−1∑︂
q̃=0
|q̃⟩⟨q̃| = δk,l

d
Id.

The general claim now follows from decomposing A = ∑︁d−1
k,l=0 Ak,l|k⟩⟨l| and applying this

relation:

T (A) =
d−1∑︂

i,j=0
Ai,jT (|k⟩⟨l|) =

d−1∑︂
i,j=0

Ai,j
δi,j

d
Id =

(︄
d−1∑︂
i=0

Ak,k

)︄
1
d
Id = tr(A)

d
I.

C.4 Fast noisy simulation of Qudits-QAOA using the
Fast Walsh Hadamard Transform

In this section, we discuss the details of our highly efficient simulation of the noisy Qudit-QAOA.
First, let us recall that for the Qudit-QAOA we require two unitary operators. The classical
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unitary, e−iγtC , which is diagonal in the computational basis and UB(βt) which is only diagonal
in the X-basis. These two unitary operators have to be applied on the initial state |+⟩⊗n.
Since the classical unitary is diagonal, we can in fact directly apply it to the initial state
of length dn as a vector-vector multiplication which has time complexity O(N) where N
is the length of the vector (dn in this case). To also implement the quantum unitary as a
vector-vector multiplication, we use the Fast Walsh Hadamard Transform (FWHT) in order
to transform into the X-basis where the operator becomes diagonal. The standard FWHT
is defined for binary systems, below we present its generalization to arbitrary dimensionality.
This is effectively achieved by recursively applying the generalized Hadamard transform on
appropriate partitions of the state vector.

Algorithm 6 Generalized Fast Walsh-Hadamard Transform (gFWHT)
1: procedure gfwht(ψ, d)
2: Input: A state vector ψ, local Hilbert space dimension d
3: Output: The transformed state vector
4:
5: n← logd len(ψ) ▷ Calculate the number of qudits
6:
7: ψ̃ ← reshape(ψ, (d, dn−1)) ▷ Reshape the state vector
8: w ← zeros((d, dn−1)) ▷ Initialize an empty transformed state vector
9: for i ∈ {0, . . . , d− 1} do ▷ Iterate over the range of local Hilbert space dimensions

10: for j ∈ {0, . . . , d− 1} do ▷ Iterate over the range of local Hilbert space
dimensions

11: wij ←
∑︁d−1

k=0 ω
ijkψ̃ik ▷ Compute the wij element

12: end for
13: end for
14:
15: w ← reshape(w, len(ψ)) ▷ Reshape the transformed state vector
16: ψ ← gfwht(w, d) ▷ Recursively apply the gFWHT
17:
18: return ψ ▷ Return the transformed state vector
19: end procedure

The generalized FWHT (gFWHT) has time complexity O(N logN) and thus allows to
efficiently transform into the X-basis and apply the quantum unitary using vector-vector
multiplication. Once we have applied the quantum unitary we can transform back into the
computational basis.

We can also use this trick to efficiently simulate noise, in particular, we can note that the
noise term can be expressed as XqZp = H†ZqHZp we see that can also implement the noise
as a vector-vector multiplication by using the gFWHT (the gFWHT implements a Hadamard
transform). In particular we can introduce a helper variable αi ∈ {0, 1}, which we use to
express the noisy state |ψ⟩noisy as

|ψ⟩noisy =
⨂︂

i

(XqiZpi)αi |ψ⟩ =
⨂︂

i

(H†ZqiαiHZpiαi) |ψ⟩

= gFWHT−1
[︂⨂︂

i

ZqiαigFWHT(
⨂︂

i

Zpiαi |ψ⟩)
]︂
,

(C.20)
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if αi = 0 no error is applied to qudit i and for α = 1 a random element of the Pauli group
XqiZpi is applied, if we select the two values such that

P (αi = k) = pk(1− p)1−k, k ∈ {0, 1}, (C.21)

which will produce the depolarizing channel on average.

Note that in fact we only have to transform once into the X-basis for implementing Xq and
only transform back once we have also implemented the UB term. This procedure allows us to
simulate system sizes that would otherwise be well beyond classical computational resources.
A noisy observable is then obtained by sampling a set of {|ψ⟩inoisy} and computing the average
of the expectation values

⟨O⟩ ≈ 1
M

∑︂
i

⟨ψ|noisy, i O |ψ⟩noisy, i (C.22)

Fig. C.1 illustrates a p = 1 noisy qudit-QAOA circuit using the gFWHT that allows applying
both noise and unitary evolution gates as diagonal matrices, i.e. as a fast vector-vector
multiplication.
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Figure C.1: Circuit for p = 1 that is used to approximate the single qudit depolarizing channel
in our simulations. We use a gFWHT to implement both the noise and unitary gates as
vector-vector multiplication. This has both lower time and memory complexity than naive
matrix-vector multiplication.

C.5 Cost function expectation value for random
sampling

Recall the antiferromagnetic Potts model, C = ∑︁
i,j∈E δci,cj

, for a colorable graph we thus
have C ∈ [0, |E|]. The upper limit is however more of a theoretical one since it is highly
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unlikely that not a single edge does not have the same color. Let us now consider what the
expectation value is for an equal superposition of all colorings, i.e. the average cost function
under random coloring with uniform probability. Each vertex is a superposition of d colored
states |vi⟩ = 1√

d
(|c1⟩ + |c2⟩ + ... + |cd−1⟩), thus have |s⟩ = |v1⟩ ⊗ |v2⟩ ⊗ ... ⊗ |vn⟩. The

expectation value is thus

⟨s|C |s⟩ =
∑︂

i,j∈E

∑︂
c

⟨s| (|ci⟩ ⟨ci|)⊗ (|cj⟩ ⟨cj|) |s⟩ , (C.23)

we thus have

=
∑︂

i,j∈E

∑︂
c

⟨vi|ci⟩ ⟨ci|vi⟩ ⟨vj|cj⟩ ⟨cj|vj⟩ =
∑︂

i,j∈E

∑︂
c

1
d

1
d

= 1
d
|E|. (C.24)

This implies that any value below |E|/d is better than random guessing.
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APPENDIX D
Mathematical details for classical

shadows and further numerical results

D.1 Classical shadows and implementation details
Shadow tomography attempts to directly estimate interesting properties of an unknown
state without performing full state tomography as an intermediate step. [Aar17] and [AR19]
showcased that such a direct estimation protocol can be exponentially more efficient, both
in terms of Hilbert space dimension (2N in our case) and in the number of target properties
(we use L to denote this cardinality). These techniques do, however, require copies of the
underlying quantum state to be stored in parallel within a quantum memory and highly
entangled gates to be performed on all copies simultaneously. This is too demanding for
current and near-term quantum devices.

[HKP20] developed a more near-term friendly variant of this general idea known as prediction
with classical shadows. Similar ideas have been independently proposed by [PK19] and [MD19],
respectively. As explained in detail below, the key idea is to sequentially generate state copies
and perform randomly selected single-qubit Pauli measurements. Such measurements can be
routinely implemented in current quantum hardware and enable the prediction of many (linear
and polynomial) properties of the underlying quantum state. Importantly, the measurement
budget (number of required measurements) still scales logarithmically in the number of target
properties L, but it may scale exponentially in the support size k of these properties. This is
not a problem for local features, like subsystem purities or terms in a quantum many-body
Hamiltonian, but does prevent us from directly estimating global state features like fidelity
estimation.

The general measurement budget that is required to simultaneously estimate L local observables
using classical shadows, necessary for the energy expectation value estimation, is provided in
Theorem 7. Typically the estimation of L observables would scale linearly in L (essentially
every term is estimated individually). This is traded with a lnL dependence instead and
an exponential dependence on the support k of the operators. The cost for estimating the
subsystem purities and thus second Rényi entanglement entropies is provided in Eq. (D.7)
and is exponential in k (this dependence was recently proven to be unavoidable [CCHL21]).
However since for the WBP check outlined in the main text k is small, this is generally an
efficient operation. Lastly, the cost for estimating the gradients is given in Eq. (D.9). The

93



efficiency of using classical shadows to estimate the energy expectation value and gradients is
system dependent (see Ref. [HKP20] for the application of classical shadow tomography to the
lattice Schwinger model). For the estimation of the purities, the shadow protocol, however,
generally provides the most efficient technique currently available [EKH+20a]. One possibility
to circumvent these restrictions is to use a hybrid scheme where the energy and gradients are
estimated with either classical shadows or the usual approach dependent on the structure of
the Hamiltonian while the second Rényi entropies for the WBP check are always estimated
using classical shadows.

D.1.1 Data acquisition via classical shadows
We use randomized single-qubit measurements to extract information about a variational
N -qubit state represented by a density matrix

ρ(θ) = |ψ(θ)⟩⟨ψ(θ)| with θ ∈ Rm.

To this end, we repeat the following procedure a total of T times. For 1 ≤ t ≤ T we carry
out the following.

1. Prepare quantum state ρ(θ) on the NISQ device.

2. Select N single-qubit Pauli observables independently and uniformly at random.

3. Perform the associated N -qubit Pauli measurement (single shot) to obtain N classical
bits (0 if we measure ”spin down" and 1 if we measure “spin up").

4. Store N single-qubit “postmeasurement" states, |s(t)
i ⟩, where an i th qubit measurement

outcome, si, can take six possible values denoted as |0⟩, |1⟩ if qubit is measured in
z basis, |+⟩ and |−⟩ for x basis, and, finally, | + i⟩ and | − i⟩ for y basis. Here,
|±⟩ = (|0⟩ ± |1⟩) /

√
2 denote Pauli-x matrix eigenstates and | ± i⟩ = (|0⟩ ± i|1⟩) /

√
2

are two Pauli-y eigenstates. In practice, this is achieved by applying random single-qubit
Clifford gates that effectively implement a change of basis such that the usual z-basis
measurement can be used, see Fig. 5.1 (a) for a visualization.

5. (Implicitly) Construct the N -qubit classical shadow

ρ̂(t)(θ) =
N⨂︂

i=1

(︂
3|s(t)

i ⟩⟨s
(t)
i | − I

)︂
. (D.1)

Repeating this procedure a total of T times provides us with T classical shadows ρ(1)(θ), . . . , ρ(T )(θ).
These are random matrices that are statistically independent (because they are constructed
from independent quantum measurements). By construction, each classical shadow reproduces
the true underlying state in expectation (over both the choice of Pauli observable and the
observed spin direction):

E
[︂
ρ̂(t)(θ)

]︂
= ρ(θ) = |ψ(θ)⟩⟨ψ(θ)|, (D.2)

see e.g. Ref. [HKP20, Proposition S.2]. We can now approximate this ideal expectation value
by empirical averaging over all samples:

ρ(θ) ≈ 1
T

T∑︂
t=1

ρ̂(t)(θ).
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This approximation becomes exact in the limit T → ∞ of infinitely many measurement
repetitions. But the main results in Refs. [HKP20, PK19] highlight that convergence actually
happens much more rapidly.
This is, in particular, true for subsystem density matrices. The tensor product structure of
classical shadows, Eq. (D.1), plays nicely with taking partial traces. Let A ⊆ {1, . . . , N} be a
collection of |A| = k qubits. Then,

ρ̂
(t)
A (θ) = tr¬A

(︂
ρ̂

(t)
A

)︂
(D.3)

is a k qubit shadow that can be used to approximate the associated subsystem density matrix.
More precisely, Eq. (D.2) asserts

E
[︂
ρ

(t)
A (θ)

]︂
= tr¬A

(︂
E
[︂
ρ̂(t)(θ)

]︂)︂
= tr¬A(ρ(θ)) = ρA(θ) (D.4)

which can (and should) form the basis of empirical averaging directly for the subsystem in
question. Here is a mathematically rigorous result in this direction. In what follows, the range
(or weight) of an observable is the number of qubits on which it acts nontrivially. For example
coupling terms in the Heisenberg Hamiltonian (5.1) have range k = 2, while the external field
terms have range k = 1.

Theorem 7. Fix a collection of L range-k observables Ol, as well as parameters ϵ, δ > 0.
Then, with probability (at least) 1− δ, classical shadows of size

T ≥ 4k+1 ln(2L/δ)
ϵ2

suffice to jointly estimate all L expectation values up to additive accuracy ϵ. In other words,

ρ̂(θ) = 1
T

T∑︂
t=1

ρ̂(t)(θ) obeys |tr (Olρ̂(θ))− tr (Olρ(θ))| ≤ ϵ,

for all 1 ≤ l ≤ L.

We emphasize that it is not necessary to form global shadow approximations. If Ol only acts
nontrivially on subsystem Al ⊆ {1, . . . , N} (Ol = Õl ⊗ I¬Al

), then tr (Olρ̂(θ)) = tr
(︂
Ôlρ̂Al

)︂
.

Theorem 7 is slightly stronger than a related result in Ref. [HKP20] (it does not require median-
of-means estimation). Conceptually similar results have been established in Refs. [HKT+21]
and [EHF19, HKP21]. Notably, the authors of Ref. [ASS21] pointed out to us that they
provided a similar statement as in Theorem 7 in their work. We present a formal proof in
Appendix D.1.5 below.

D.1.2 Estimating subsystem purities
Suppose we are interested of estimating a collection of multiple subsystem purities

pA(θ) = tr
(︂
ρA(θ)2

)︂
= tr (ρA(θ)ρA(θ)) , (D.5)

where A ⊆ {1, . . . , N} labels different subsystems of size |A| = k each. Then, we can use the
corresponding subsystem shadows, Eq. (D.3), to approximate each pA by empirical averaging:

p̂A(θ) = 1
T (T − 1)

∑︂
t ̸=t′

tr
(︂
ρ̂t

Aρ̂
t′

A

)︂
. (D.6)
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It is important that we restrict our averaging operation to distinct pairs of classical shadows
(t ̸= t′). This guarantees that the expectation values factorize, i.e.

E
[︂
ρ̂t

Aρ̂
t′

A

]︂
= E

[︂
ρ̂t

A

]︂
E
[︂
ρ̂t′

A

]︂
= ρ2

A,

where the last equality is due to Eq. (D.3). Formula (D.6) is an empirical average over all distinct
shadow pairs contained in the data set. It converges to the true average pA(θ) = E [p̂A(θ)],
and the speed of convergence is governed by the variance. As data size T increases, this
variance decays as

Var [p̂A(θ)] ≤ 2
T

(︃
2× 4kp2(θ) + 1

T − 124k
)︃
,

see, e.g., Ref. [NCV+21, SM Eq. (12)]. In the large-T limit, this expression is dominated by
the first term in parentheses, 4× 2kp2(θ)/T , and Chebyshev’s inequality allows us to bound
the probability of a large approximation error. For ϵ > 0,

Pr
[︂⃓⃓⃓
p̂A(θ)− tr

(︂
ρA(θ)2

)︂⃓⃓⃓
≥ ϵ

]︂
≲

4k+1tr (ρ2
A)

Tϵ2 ,

provided that the total number of measurements T is large enough to suppress the higher-order
contribution in the variance bound (this is why we write ≲). In this regime, a measurement
budget that scales as

T ≥ 4k+1tr (ρ2
A)

ϵ2δ
(D.7)

suppresses the probability of a sizable approximation error (≥ ϵ) below δ. It is worthwhile
to point out that this bound depends on the subsystem purity under consideration. Smaller
purities are cheaper to estimate than large ones. It is also important to note that the accuracy
parameter ϵ has to be small enough in order to accurately capture the purity in the WBP
regime, which decays exponentially fast, but only with the subsystem size k.
The δ-dependence in Eq. (D.7) can be further improved to ln(1/δ) by replacing simple empirical
averaging in Eq. (D.6) by median-of-means estimation [HKP20]. Doing so would allow us to
estimate all possible L =

(︂
N
k

)︂
≤ Nk size-k subsystem purities with only a k lnN -overhead.

Median-of-means estimation does, however, worsen the dependence on ϵ by a constant amount.
Empirical studies conducted in Ref. [EKH+20b] showcase that such a trade-off only becomes
viable if one wishes to approximate polynomially many subsystem purities.

D.1.3 Estimating gradients
To perform the GD update step suggested in Algorithm 1 we require the knowledge of
gradient ∇θE(θ), which consists of pN derivatives ∂i,lE(θ). The derivative can naively be
approximated using finite difference, though for variational single-qubit rotation gates, as used
in the main text [see Eq. (1.15)], we can use the parameter-shift rule to compute the gradients
exactly (up to finite sampling errors) [MNKF18, SBG+19]. The parameter-shift rule is given
by

∂i,lE (θ) = 1
2 (E (θ + (π/2)ei,l)− E (θ − (π/2)ei,l)) ,

where i labels the qubits and l cycles through all circuit layers, and ei,l is the unit vector. In order
to approximate a single gradient, we need to estimate the difference of two energy expectation
values E(θ+) = ⟨ψ(θ+)|H|ψ(θ+)⟩ with θ+ = θ + (π/2)ei,l and E(θ−) = ⟨ψ(θ−)|H|ψ(θ−)⟩
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with θ− = θ − (π/2)ei,l (we suppress i and l indices in θ± for the sake of brevity). Typically,
the Hamiltonian itself can be decomposed into a sum of L ‘simple’ terms: H = ∑︁L

l=1 hl,
where often L can be proportional to the number of qubits, N . This allows expression of the
gradient as a linear combination of 2L expectation values,

∂i,lE (θ) = 1
2

L∑︂
l=1

(⟨ψ(θ+)|hl|ψ(θ+)⟩ − ⟨ψ(θ−)|hl|ψ(θ−)⟩) , (D.8)

each of which can be estimated by performing a collection of single-qubit Pauli measurements.
If each term hl is supported on (at most) k-qubits, then Theorem 7 applies. Performing
T ≈ 4k ln(L/δ)/ϵ2 randomized Pauli measurements on state ρ(θ+) and ρ(θ−) each allows us
to ϵ-approximate all 2L simple terms in Eq. (D.8).
Unfortunately, approximation errors may accumulate when taking the sum over all 2L terms.
Suppose that we obtain ϵ-accurate estimators Êl(θ±) of contribution of the local Hamiltonian
term to the energy El(θ±) = ⟨ψ(θ±)|hl|ψ(θ±)⟩. A triangle inequality over all approximation
errors then produces only⃓⃓⃓

∂i,lE(θ)− ∂̂i,lE(θ)
⃓⃓⃓

=1
2

⃓⃓⃓⃓
⃓

L∑︂
l=1

(︂
Êl(θ+)− El(θ+)− Êl(θ−) + El(θ−

)︂⃓⃓⃓⃓⃓
≤1

2

L∑︂
l=1

⃓⃓⃓
Êl(θ+)− El(θ+)

⃓⃓⃓
+ 1

2

L∑︂
l=1

⃓⃓⃓
Êl(θ−)− El(θ−)

⃓⃓⃓
= Lϵ.

This upper bound equals only ϵ if we rescale the accuracy of original approximation to ϵ/L.
Inserting this rescaled accuracy into Theorem 7 produces an overall measurement cost of

T ≥ 4k+1L2 ln(2L/δ)
ϵ2 . (D.9)

The number L of terms in the Hamiltonian typically scales (at least) linearly in the number of
qubits N . This implies that the measurement budget, Eq. (D.9), required to (conservatively)
estimate gradients scales quadratically in the system size and thus is parametrically larger than
the (conservative) cost of estimating purities of size-k subsystems, Eq. (D.7). To obtain the
full gradient ∇θE(θ) the procedure has to be repeated pN times since the parameter-shift
rule has to implemented for every variational parameter. It should be noted though, that in
principle this can be computed in parallel, provided large enough (quantum) computational
resources. For example, different NISQ computers could be used to estimate different gradient
components at the same time.

D.1.4 Example of error accumulation in an Ising model
The extra scaling with L2 in Eq. (D.9) is a consequence of error accumulation. If we use the
same measurement data to jointly estimate many Hamiltonian terms, then all these estimators
become highly correlated. And the effect of outlier corruption – which occurs naturally in
empirical estimation – becomes amplified.
Here, we illustrate this subtlety by means of a simple example. Let H = −J∑︁N−1

i=1 σz
i σ

z
i+1 be

the Ising Hamiltonian on a 1D chain comprised of N qubits (L = N − 1). Let us also assume
that N is even. This Hamiltonian is diagonal in the z basis |i1, . . . , iN⟩ = |i1⟩ ⊗ · · · ⊗ |iN⟩
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with i1, . . . , iN ∈ {0, 1}. So, in order to estimate H, it suffices to perform measurements
solely in this basis. Born’s rule asserts, that we observe bitstring ŝ1, . . . , ŝN with probability

Pr [ŝ1, . . . , ŝN ] = ⟨ŝ1, . . . , ŝN |ρ|ŝ1, . . . , ŝN⟩,

where ρ denotes the underlying N -qubit state. And, we can use these outcomes to directly
estimate the total energy. It is easy to check that

Ê =⟨ŝ1, . . . , ŝN |H|ŝ1, . . . , ŝN⟩

=− J
N∑︂

i=1
⟨ŝi|σz

i |ŝi⟩⟨ŝi+1|σz
i+1|ŝi+1⟩

obeys E
[︂
Ê
]︂

= tr (Hρ), regardless of the quantum state ρ in question. Also, estimating
individual terms in this sum is both cheap and easy. Convergence of the sum, however, does
depend on the underlying quantum state and the correlations within. To illustrate this, we
choose λ ∈ (0, 1) and set

ρ(λ) = (1− λ)|ψ⟩⟨ψ|+ λ|ϕ⟩⟨ϕ|,

where |ψ⟩ = |00 · · · 00⟩ is the Ising ground state and |ϕ⟩ = |01 · · · 01⟩ is a Néel state. These
states obey ⟨ψ|H|ψ⟩ = −J(N − 1) (ground state) and ⟨ϕ|H|ϕ⟩ = +J(N − 1) (highest
excited state), so

tr(Hρ(λ)) = −J(n− 1) (1− 2λ) .

The task is to approximate this expectation value based on computational basis measurements.
For each measurement, we either obtain outcome 0 · · · 0 (with probability 1− p) or outcome
01 · · · 01 (with probability p). This dichotomy extends to our estimator

Ê =

⎧⎨⎩⟨ψ|H|ψ⟩ = −J(N − 1) with prob. 1− λ,
⟨ϕ|H|ϕ⟩ = +J(N − 1) with prob. λ.

and we are effectively faced with estimating the (rescaled) expectation value of a biased coin.
The associated variance of such a coin toss can be easily computed and amounts to

Var
[︂
Ê
]︂

=E
[︃
Ê

2
]︃
−
(︂
E
[︂
Ê
]︂)︂2

= 4J2(N − 1)2λ(1− λ).

Unless λ ≠ 0, 1 (where the variance vanishes), this variance it is proportional to L2 = (N −1)2

and controls the rate of convergence. Asymptotically, a total number of

T ≥ Var
[︂
Ê
]︂
/ϵ2 = 4J2L2λ(1− λ)/ϵ2 = Ω(L2/ϵ2)

independent coin tosses are necessary (and sufficient) to ϵ-approximate the true expectation
value E

[︂
Ê
]︂

= tr (ρ(λ)H). This is a consequence of the central limit theorem and showcases
that a measurement budget scaling with the number L of Hamiltonian terms is unavoidable in
general.
We emphasize that this is a contrived worst-case argument that showcases how correlated
measurements can affect the approximation quality of a sum of many simple terms, while
each term individually is cheap and easy to evaluate. A generalization to the Heisenberg
Hamiltonian considered in the main text, see Eq. (5.1), is straightforward.
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D.1.5 Proof of Theorem 7
Theorem 7 is a consequence of the following concentration inequality. Let ∥O∥∞ denote the
operator and spectral norm of an observable. We also use ∥ · ∥1 to denote the trace norm.

Theorem 8. Fix a collection of L range-k observables Ol with ∥Ol∥∞ ≤ 1, a quantum state
ρ and let ρ̂ = 1

T

∑︁T
t=1 ρ̂

(t) be a classical shadow estimate thereof. Then, for ϵ ∈ (0, 1),

Pr
[︃

max
1≤l≤L

|tr (Olρ̂))− tr (Olρ)| ≥ ϵ
]︃
≤ 2L exp

(︄
− ϵ

2T

4k+1

)︄
.

This large deviation bound is a consequence of another well-known tail bound, see, e.g.,
Ref. [FR13, Theorem 7.30].

Theorem 9 (Bernstein inequality). Let X(1), . . . , X(T ) be independent, centered (i.e., E [Xt] =
0) random variables that obey |X(t)| ≤ R almost surely. Then, for ϵ > 0

Pr
[︄⃓⃓⃓⃓
⃓ 1T

T∑︂
t=1

X(t)
⃓⃓⃓⃓
⃓ ≥ ϵ

]︄
≤ 2 exp

(︄
− ϵ2T 2/2
σ2 +RTϵ

)︄
,

where σ2 = ∑︁T
t=1 E

[︃(︂
X(t)

)︂2
]︃
.

Proof of Theorem 8. Fix an observable O = Ol with 1 ≤ l ≤ L and define X(t) = tr
(︂
Oρ̂(t)

)︂
−

tr (Oρ). Then, by construction of classical shadows, each X(t) is an independent random
variable that also obeys E

[︂
X(t)

]︂
= 0, courtesy of Eq. (D.2). Next, let A ⊆ {1, . . . , N} with

|A| = k be the subsystem on which the range-k observable acts nontrivially, i.e., O = OA⊗I¬A

and ∥O∥∞ = ∥OA∥∞ ≤ 1. Then, Hoelder’s inequality (|tr (OAρA)| ≤ ∥OA∥∞∥ρA∥1) asserts⃓⃓⃓
X(t)

⃓⃓⃓
=
⃓⃓⃓
tr
(︂
OAρ̂

(t)
A

)︂
− tr (OAρA)

⃓⃓⃓
≤∥OA∥∞

(︂
∥ρA∥1 +

⃦⃦⃦
ρ̂

(t)
A

⃦⃦⃦
1

)︂
= ∥OA∥∞

(︄
1 +

∏︂
a∈A

⃦⃦⃦
3|s(t)

a ⟩⟨s(t)
a | − I

⃦⃦⃦
1

)︄

≤
(︂
1 + 2|A|

)︂
= 1 + 2k = R,

where we also use ∥ρA∥1 = tr(ρA) = 1 and the specific form of subsystem classical shadows
Eq. (D.3), that factorizes nicely into tensor products. Estimating the variance is more difficult
by comparison. However, Ref. [HKP20, Proposition S3] asserts

E
[︃(︂
X(t)

)︂2
]︃
≤ ∥O∥2

shadow ≤ 4k∥O∥∞ = 4k.

In turn, σ2 ≤ T4k and we conclude
Pr [|tr (Oρ̂)− tr (Oρ)| ≥ ϵ]

=Pr
[︄⃓⃓⃓⃓
⃓ 1T

T∑︂
t=1

X(t)
⃓⃓⃓⃓
⃓ ≥ ϵ

]︄

≤2 exp
(︄
− ϵ2T 2/2
T4k + (1 + 2k)Tϵ

)︄

≤2 exp
(︄
− ϵ

2T

4k+1

)︄
,
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where the last line is a rough simplification of the exponent. Such a tail bound is valid for
any O = Ol and the advertised statement follows from taking a union bound (also known as
Boole’s inequality) over all possible deviations:

Pr
[︃

max
1≤l≤L

|tr (Olρ̂))− tr (Olρ)| ≥ ϵ
]︃

≤
L∑︂

l=1
Pr [|tr (Olρ̂))− tr (Olρ)| ≥ ϵ]

≤2L exp
(︄
− ϵ

2T

4k+1

)︄
.

D.2 Unitary t-designs
Here, we briefly review the notion of unitary t-designs. The Haar measure is the unique left
and right invariant measure on the unitary group U(d), where d here stands for the dimension
of the full Hilbert space, d = 2N . Unitary t-designs are ensembles of unitaries that approximate
moments of the Haar measure. More precisely, let E be an ensemble of unitaries, i.e., a subset
of U(d) equipped with a probability measure. For an operator O acting on the t-fold Hilbert
space H⊗t, the t-fold channel with respect to E is defined as

Φt
E(O) =

∫︂
E

dUU⊗t(O)U †⊗t. (D.10)

Essentially, we are asking when the average of an operator O over the ensemble E equals an
average over the full unitary group. A unitary t-design [DCEL09a, GAE07] is an ensemble E
for which the t-fold channels are equal for all operators O,

Φt
E(O) = Φt

Haar(O).

Being a t-design means we exactly capture the first t moments of the Haar measure with larger
t better approximating the full unitary group. There are known constructions of t-designs for
t = 2 and t = 3 [DCEL09b, CLLW16, KG15, Web15, Zhu17a]. For t = 1, it is known that any
basis for the algebra of operators of H, including the Pauli group, is a 1-design. In practice,
one is more interested in when the ensemble of unitaries is close to forming a t-design. With
this, given a tolerance ϵt > 0 one refers to the ensemble E as being an approximate t-design if⃦⃦⃦

Φt
E − Φt

Haar

⃦⃦⃦
⋄
≤ ϵt,

where ∥·∥⋄ is the diamond norm – a worst-case distance measure that is very popular in
quantum information theory, see, e.g., [Wat18]. In the quantum-machine-learning literature
the distance between the two t-fold channels is known as the expressibility of the ensemble
E [HSCC21], the smaller the distance the more expressive the ensemble is.

D.3 Entanglement and unitary 2-designs
Random unitary operators have often been used to approximate late-time quantum dynamics.
In the crudest approximation, it is assumed that the unitary matrix is directly drawn from the
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Haar measure. Although modeling quantum dynamics by random unitaries is an approximation,
it has led to new insights into black hole physics [Pag93, HP07, SS08] and produced computable
models of information spreading and entanglement dynamics [NRVH17, NVH18, HQRY16,
vKRPS18].
In what follows, we consider a weaker situation where the random unitary operator is drawn
from an ensemble E forming a 2-design, and focus on the entanglement properties of N -qubits
random pure states

|ψ⟩ = U |ψ0⟩, (D.11)
with U ∼ E . These results have been previously obtained, for example, Refs. [PSW06, ODP07,
DOP07] and references therein.
Given a bipartition (A,¬A) of the system, we begin by studying the distance of the reduced
density matrix ρA to the maximally entangled state ρ∞

A = IA/dA, where dA is the dimension
of the Hilbert space HA associated with region A. The full Hilbert space dimension is denoted
by d = 2N .

D.3.1 Bounding the expected trace distance
Let us recall the following inequality relating the 1-norm (trace distance) ∥M∥1 = tr

√
M †M ,

and the 2-norm (Frobenius norm) ∥M∥2 =
√︂

tr(M †M)

∥M∥2 ≤ ∥M∥1 ≤
√
d∥M∥2. (D.12)

We are interested in bounding EE
(︂
∥ρA − IA/dA∥1

)︂2
. To do so we first use Jensen’s inequality

and afterwards employ the inequality (D.12),

EE
(︂
∥ρA − IA/dA∥1

)︂2
≤ EE

(︂
∥ρA − IA/dA∥2

1

)︂
≤ dAEE(∥ρA − IA/dA∥2

2).
(D.13)

The last term on the right-hand side is related to the purity:

EE(∥ρA − IA/dA∥2
2) = EE(tr ρ2

A)− 1/dA. (D.14)

As we see, the only nontrivial dependence on U comes from the purity of the reduced
density matrix. Let {|I⟩ = |iA, j¬A⟩}i,j be the computational basis for the Hilbert space
H = HA ⊗H¬A (such that it respects the bipartition).
Let us now proceed with the calculation of the average purity. We first compute the reduced
density matrix ρA and write it as a sum over products of matrix elements of the unitary
operator U :

ρA =
d¬A∑︂
j¬A

⟨j¬A|ρ|j¬A⟩ =
d¬A∑︂
j¬A

d∑︂
J,I

ρI,K⟨j¬A|I⟩⟨K|j¬A⟩,

=
∑︂

iA,kA

∑︂
j¬A

ρ(iA,j¬A),(kA,j¬A)|iA⟩⟨kA|,

=
∑︂

iA,kA

∑︂
j¬A

U(iA,j¬A),(0,0)U
∗
(kA,j¬A),(0,0)|iA⟩⟨kA|,

where the last line follows from Eq. (D.11).
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Afterwards, it can be easily verified that tr(ρ2
A) reads

tr
(︂
ρ2

A

)︂
=

∑︂
iA,kA

∑︂
j¬A,p¬A

U(iA,j¬A),(0,0)U(kA,p¬A),(0,0)U
∗
(kA,j¬A),(0,0)U

∗
(iA,p¬A),(0,0). (D.15)

Using the following identities for the first and second moment of the unitary group endowed
with the Haar measure∫︂

U(n)
dUHUi,jU

∗
i1,j1 = δi,i1δj,j1/d,∫︂

U(n)
dUHUi,jUl,mU

∗
i1,j1U

∗
l1,m1 =

1
d2 − 1(δi,i1δl,l1δj,j1δm,m1 + δi,l1δl,i1δj,j1δm,m1)−

1
d(d2 − 1)(δi,i1δl,l1δj,m1δm,j1 + δi,l1δl,i1δj,j1δm,m1),

(D.16)

we get that the following simple expression for the expected purity

EE(tr ρ2
A) = dA + d¬A

1 + dAd¬A

. (D.17)

Finally, substituting Eq. (D.17) into Eq. (D.14) we obtain

EE
(︂
∥ρA − IA/dA∥1

)︂
≤
√︄

d2
A − 1

dAd¬A + 1 ∼ O(
√︂
dA/d¬A) (D.18)

Note that the above result implies that when the complementary subsystem ¬A is (significantly)
larger than A, the expected deviation of ρA from the maximally mixed state is exponentially
small.

D.3.2 Bounding the expected second Rényi entropy
Let us now explore the average value of the second Rényi entropy, which, as mentioned in the
main text, can be easily estimated using the classical shadows protocol by [HKP20].
Computing the exact average value of the second Rényi is a complicated task. Hence, we
instead provide a lower and an upper bound for it. On one hand, via Jensen’s inequality, we
have that

− lnEE(tr ρ2
A) ≤ EE(S2(ρA)), (D.19)

which changes the focus of our attention to the expectation value of the purity of the reduced
density matrix EE(tr ρ2

A). Using the result from the previous subsection Eq. (D.17) and taking
the logarithm, we get the following lower bound:

− lnEE(tr ρ2
A) = − ln dA + d¬A

1 + dAd¬A

. (D.20)

Taking the large d limit and writing everything in terms of dA/d¬A we find

− lnEE(tr ρ2
A) ≈ ln dA −

dA

d¬A

+O
(︄
d2

A

d2
¬A

)︄
. (D.21)

On the other hand, we have that for any state ρA the following inequality holds:

S2(ρA) ≤ S(ρA) = − ln ρA tr ρA,
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where S(ρA) is the von Neumann entropy of ρA. Taking averages does not change this relation
and we conclude EE(S2(ρA)) ≤ EE(S(ρA)). The expectation value of the von Neumann
entropy is upper bounded by the Page entropy :

SPage(dA, d) = 1
ln 2

(︃
− dA − 1

2
dA

d
+

d∑︂
j=d/dA+1

1
j

)︃
. (D.22)

[Pag93] conjectured that this analytical formula accurately captures the von Neumann entropy
of a Haar random state. This conjecture was subsequently proven in Ref. [FK94]. Putting
everything together, we obtain

− ln dA + d¬A

1 + dAd¬A

≤ EE(S2(ρA)) ≤ SPage(dA, d). (D.23)

Considering now that the number of qubits inside region A is equal to k and assuming that
dA/d¬A = 1/2N−2k ≪ 1 we arrive at the expression in Theorem 2, that is

k ln 2− 1
2N−2k

≤ EE(S2) ≤ k ln 2− 1
2

1
2N−2k

. (D.24)

We see that whenever the unitary ensemble E forms a 2-design, the expected value of the
second Rényi entropy is close to the Page entropy.

D.4 Entanglement growth and learning rate
Here we detail the derivation of Eq. (5.7). We first upper bound the trace distance via

T (ρA, σA) ≤ T (|ψ⟩ , |ϕ⟩) =
√︂

1− f(|ψ⟩ , |ϕ⟩), (D.25)

where f stands for the pure state fidelity f(|ψ(θ)⟩ , |ψ(θ + δ)⟩) = | ⟨ψ(θ)|ψ(θ + δ)⟩ |2. Taylor
expanding the pure state fidelity around θ we get

f(|ψ(θ)⟩ , |ψ(θ + δ)⟩) = 1− 1
4δTF(θ)δ +O(δ4), (D.26)

where F(θ) is the QFIM given by

Fij(θ) = 4 Re{⟨∂iψ|∂jψ⟩ − ⟨∂iψ|ψ⟩ ⟨ψ|∂jψ⟩}. (D.27)

Assuming δ ≪ 1 we can neglect higher-order terms in δ and so

T (ρA, σA) ≲
√︄

1
4δTF(θ)δ =

√︄
η2

4 (∇θE)TF(θ)∇θE, (D.28)

where in the last equality we plug in the parameter change under GD (Eq. (5.2)), δ = −η∇θE.

D.5 Algorithm performance for SYK model
In this section we show the numerical results for the VQE applied to the ground state search of
the SYK model [Kit15]. The SYK model provides a canonical example for a volume-law model
where the ground state is nearly maximally entangled [HG19]. The nonlocal nature of the
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Figure D.1: (a-b) The application of our algorithm to the problem of finding the ground state
of the SYK model. For the initialization we consider the small-angle (SA) (ϵθ = 0.1) and
identity block (IB) initialization [GWOB19] (using one block). We can see that only through
the reset of the learning rate η, as suggested by Algorithm 1, WBPs are avoided during the
optimization. The entanglement entropy of the target state is nearly maximal (indicated by
the dotted line), we omit the WBP line for α = 1 for improved visibility. We measure energy
in units of J and use a system size of N = 10, subsystem size k = 2 and a random circuit
from Eq. (1.15) with circuit depth p = 100. Data is averaged over 100 random instances.

Hamiltonian does not allow for an efficient estimation of the energy expectation value of this
model using classical shadows. Thus, this model may be viewed as a theoretical example that
shows that application of our algorithm is not limited to area-law entangled states. We use a
small-angle initialization as well as the identity-block initialization [GWOB19] to illustrate our
method.
The SYK model is a quantum-mechanical model of 2N spinless Majorana fermions χi satisfying
the following anticommutation relations {χi, χj} = δij. The SYK model was introduced by
Kitaev [Kit15] as a simplified variant of a model introduced by Sachdev and Ye [SY93]. The
Hamiltonian of the model is

HSYK =
2N∑︂

i,j,k,l

Ji,j,lχiχjχkχl, (D.29)

where the couplings Ji,j,k,l are taken randomly from a Gaussian distribution with zero mean
and variance

var[Ji,j,k,l] = 3!
(N − 3)(N − 2)(N − 1)J

2.

We can study Majorana fermions using spin-chain variables by a nonlocal change of basis
known as the Jordan-Wigner transformation:

χ2i = 1√
2
σx

1 · · · σx
i−1σ

y
i , χ2i−1 = 1√

2
σx

1 · · · σx
i−1σ

z
i , (D.30)
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such that {χi, χj} = δi,j . With this representation, encoding 2N Majorana fermions requires
N qubits. For our studies, we set J = 1 and consider a system of N = 10 qubits.
We study performance of VQE for SYK model using two different initializations. Fig. D.1 (a)-
(b) show that the WBP is avoided during optimization for if the learning rate is chosen
appropriately. For a large learning rate (η = 1) both initializations encounter a WBP during
the optimization (indicated by the gray and blue star). Once the learning rate is decreased
(η = 0.1) the entanglement entropy slowly grows to the nearly maximal value associated
with the ground state of the SYK model (dotted line) instead of uncontrollably reaching
the Page value. For this model, it is important to use α = 1 (the default value) such that
the entanglement entropy can grow during the optimization. Only if there is some a priori
knowledge of the properties of the ground state, α can be chosen to be smaller.
The identity block initialization [GWOB19] here leads to the best optimization performance.
We attribute this to the fact that the identity block initialization allows for a faster growth
in entanglement since the parameter values are highly fine tuned. Our results suggest that
sensitivity of the initialization ansatz to small perturbations may be beneficial for the cases
when the ground state is nearly maximally entangled. These results highlight the advantage
of using our algorithm. The tracking of the second Rényi entanglement entropy during the
optimization reveals that the larger learning rates encounter a WBP while the smaller learning
rates successfully avoid it.
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