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Although much is known about how single neurons in the hippocampus represent an animal’s position, how circuit interac-
tions contribute to spatial coding is less well understood. Using a novel statistical estimator and theoretical modeling, both
developed in the framework of maximum entropy models, we reveal highly structured CA1 cell-cell interactions in male rats
during open field exploration. The statistics of these interactions depend on whether the animal is in a familiar or novel
environment. In both conditions the circuit interactions optimize the encoding of spatial information, but for regimes that
differ in the informativeness of their spatial inputs. This structure facilitates linear decodability, making the information easy
to read out by downstream circuits. Overall, our findings suggest that the efficient coding hypothesis is not only applicable
to individual neuron properties in the sensory periphery, but also to neural interactions in the central brain.
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Significance Statement

Local circuit interactions play a key role in neural computation and are dynamically shaped by experience. However, meas-
uring and assessing their effects during behavior remains a challenge. Here, we combine techniques from statistical physics
and machine learning to develop new tools for determining the effects of local network interactions on neural population ac-
tivity. This approach reveals highly structured local interactions between hippocampal neurons, which make the neural code
more precise and easier to read out by downstream circuits, across different levels of experience. More generally, the novel
combination of theory and data analysis in the framework of maximum entropy models enables traditional neural coding
questions to be asked in naturalistic settings.

Introduction
The dual role of the hippocampal formation in memory (Scoville
and Milner, 1957; Eichenbaum, 2000) and spatial navigation
(O’Keefe and Dostrovsky, 1971; Morris et al., 1982) is reflected
in two distinct views on hippocampal coding: the place field view
(Moser and Paulsen, 2001; McNaughton et al., 2006) that reduces
spatial information to tuning properties of individual neurons,

and the ensemble view (Harris et al., 2003; Harris, 2005) that
focuses on subsets of units that are co-activated together as the
substrate for memory (Hopfield, 1982). Nonetheless, recent
results blur the line between the two (Meshulam et al., 2017;
Stefanini et al., 2020; Hazon et al., 2022). Furthermore, it remains
unclear how experience shapes the organization of CA1 popula-
tion responses and what effects such changes may have on the
encoding of spatial information.

Experience affects the properties of hippocampal cells in
many ways. From a single-cell perspective, reliable position-de-
pendent spiking is detectable after a few minutes in a novel envi-
ronment (Wilson and McNaughton, 1993; Leutgeb et al., 2004),
with a gradual reduction in overall firing, sharpening of place
fields and sparsification of responses with increasing familiarity
(Karlsson and Frank, 2008). From a pairwise interactions’ per-
spective, total correlations among pairs of place cells are stronger
in novel environments (Gava et al., 2021), although less is known
about their structure and computational role. CA1 inhibition,
the primary mechanism for circuit interactions in this region, is
weaker in novel environments as compared with familiar ones
(Nitz and McNaughton, 2004; Sheffield et al., 2017; Arriaga and
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Han, 2019). In parallel, the main afferents to CA1 are initially
noisier (Cohen et al., 2017; Pedrosa and Clopath, 2020) and
have weaker spatial tuning, which improves with familiarity
(Leutgeb et al., 2004; Hafting et al., 2005; Barry et al., 2012).
Moreover, CA1 needs both inputs for detailed spatial repre-
sentation (Brun et al., 2002, 2008). Taken together, these
observations suggest that the CA1 circuit is in a different
dynamic regime during novelty, with distinct local circuit
interactions.

Circuit interactions shape both spatial tuning and noise
correlations. In general, noise correlations are considered
to be an obstacle to optimal information coding, especially
in sensory areas (Moreno-Bote et al., 2014; Kanitscheider et
al., 2015; Rumyantsev et al., 2020). Nevertheless, there are
scenarios where they can improve coding quality at the
population level (Tkacik et al., 2010; da Silveira and Berry,
2014; Valente et al., 2021; Panzeri et al., 2022), which might
be relevant for the hippocampus. Traditionally, the impor-
tance of noise correlation on population coding has been
assessed by comparing the information content of the popula-
tion responses with an alternative code where the neurons
preserve their tuning but whose responses are otherwise in-
dependent (Stefanini et al., 2020; Hazon et al., 2022). While
attractive as a statistical analysis, such manipulations may
not represent a neural code that is biologically realizable.
Since mechanistically circuit interactions shape both single-
cell and pairwise statistics (Sheffield and Dombeck, 2019),
they cannot be decoupled in the real brain. In this paper, we
explore the consequences of such a constraint for the hippo-
campal neural code.

Measuring CA1 noise correlations is fraught with technical
difficulties (Mathis et al., 2013; Tocker et al., 2015; Dunn et al.,
2015; Posani et al., 2017). Free behavior in 2D environments
renders traditional approaches for estimating noise correla-
tions inapplicable, because of the lack of stimulus repeats.
Existing approaches struggle to account for complex depend-
encies as they are either too data inefficient (Mathis et al.,
2013) or make strong assumptions about the functional form
of the interactions (Dunn et al., 2015). Moreover, oscillations
(Colgin, 2013) act as global sources of co-modulation obscur-
ing the fine structure of pairwise neural co-variability. The key
challenge is to partition neural covariability into an explainable
component, driven by position, oscillations, and other global
signals, and unexplained, or “excess” correlations, which reflect
local interactions.

Here, we develop a new statistical test for detecting excess
correlations in freely moving animals, and explore their sig-
nificance for the encoding of spatial information in CA1.
Our method allows us to robustly detect network interac-
tions by comparing hippocampal responses against a maxi-
mum entropy null model (Savin and Tka�cik, 2017) that
optimally captures the cells’ place preference and population
synchrony (Engel et al., 2001). When applied to CA1 tetrode
recordings from rats during open field exploration, our anal-
ysis detects structured excess correlations, more prominently
during novelty. These highly structured excess correlations
optimize spatial information and facilitate its downstream
readout in both the familiar and novel environment, with
differences reflecting the different selectivity of spatial inputs
in the two environments. Taken together, our results suggest
that CA1 local circuitry readjusts to changes in its inputs so
as to improve population-level stimulus representation, in
line with efficient coding predictions (Tkacik et al., 2010).

Materials and Methods
Experimental procedures
Datasets and subjects
We analyzed data from two previously published datasets (Kaefer et al.,
2019; Stella et al., 2019). All procedures involving experimental animals
were conducted in accordance with Austrian animal law (Austrian fed-
eral law for experiments with live animals) under a project license
approved by the Austrian Federal Science Ministry. Four adult male
Long–Evans rats (Janvier) were used for the experiments by Stella et al.
(2019). We further analyzed two wild-type littermate control animals
from Kaefer et al. (2019), generated by breeding two DISC1 heterozy-
gous Sprague Dawley rats. Rats were housed individually in standard
rodent cages (56X40X26 cm) in a temperature and humidity-controlled
animal room. All rats were maintained on a 12/12 h light/dark cycle and
all testing performed during the light phase. Food and water were avail-
able ad libitum before the recording procedures and bodyweight at the
time of surgery was 300–375 g.

Surgery
The first four animals (Stella et al., 2019) were implanted with micro-
drives housing 32 (2� 16) independently movable tetrodes targeting the
dorsal CA1 region of the hippocampus bilaterally. Each tetrode was fab-
ricated out of four 10-mm tungsten wires (H-Formvar insulation with
Butyral bond coat California Fine Wire Company) that were twisted and
then heated to bind them into a single bundle. The tips of the tetrodes
were then gold-plated to reduce the impedance to 200–400 kU. During
surgery, the animal was under deep anesthesia using isoflurane (0.5–3%
MAC), oxygen (1–2 l/min), and an initial injection of buprenorphine
(0.1mg/kg). Two rectangular craniotomies were drilled at relative to
bregma (centered at AP ¼ �3.2; ML ¼ 61.6), the dura mater removed
and the electrode bundles implanted into the superficial layers of the
neocortex, after which both the exposed cortex and the electrode shanks
were sealed with paraffin wax. Five to six anchoring screws were fixed
on to the skull and two ground screws (M1.4) were positioned above
the cerebellum. After removal of the dura, the tetrodes were initially
implanted at a depth of 1–1.5 mm relative to the brain surface. Finally,
the micro-drive was anchored to the skull and screws with dental
cement (Refobacin Bone Cement R). Two hours before the end of the
surgery the animal was given the analgesic Metacam (5mg/kg). After a
one-week recovery period, tetrodes were gradually moved into the dor-
sal CA1 cell layer (stratum pyramidale).

The last two animals (Kaefer et al., 2019) were implanted with micro-
drives housing 16 independently movable tetrodes targeting the right
dorsal CA1 region of the hippocampus. Each tetrode was fabricated out
of four 12-mm tungsten wires (California Fine Wire Company) that
were twisted and then heated to bind into a single bundle. The tips of
the tetrodes were gold-plated to reduce the impedance to 300–450 kV.
During surgery, the animal was under deep anesthesia using isoflurane
(0.5–3%), oxygen (1–2 l/min), and an initial injection of buprenorphine
(0.1mg/kg). A rectangular craniotomy was drilled at�3.4 to�5 mm AP
and �1.6 to �3.6 mm ML relative to bregma. Five to six anchoring
screws were fixed onto the skull and two ground screws were positioned
above the cerebellum. After removal of the dura, the tetrodes were ini-
tially implanted at a depth of 1–1.5 mm relative to the brain surface.
Finally, the microdrive was anchored to the skull and screws with den-
tal cement. Two hours before the end of surgery the analgesic Metacam
(5mg/kg) was given. After a one-week recovery period, tetrodes were
gradually moved into the dorsal CA1 cell layer.

After completion of the experiments, the rats were deeply anesthe-
tized and perfused through the heart with 0.9% saline solution followed
by a 4% buffered formalin phosphate solution for the histologic verifica-
tion of the electrode tracks.

Behavioral procedures
Each animal was handled and familiarized with the recording room
and with the general procedures of data acquisition. For the first
four animals (Stella et al., 2019), 4–5 d before the start of recording,
animals were familiarized at least 30min with a circular open-field
environment (diameter¼ 120 cm). On the recording day, the animal
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underwent a behavioral protocol in the following order: exploration
of the familiar circular open-field environment (40 min), sleep/rest
in rest box (diameter ¼ 26 cm, 50 min). Directly after this rest ses-
sion the animals also explored a novel environment for an addi-
tional 40min and rested after for 50 min. The novel environment
recordings were performed in the same recording room but in an
enclosure of a different geometric shape but similar size (e.g., a
square environment of 100-cm width). The wall of both the familiar
and novel environment enclosures was 30 cm in height, which lim-
ited the ability of the animal to access distal room cues. In addition,
in two animals a 50-min sleep/rest session was performed before the
familiar exploration.

For the last two animals (Kaefer et al., 2019), 2–3 d before the start of
recording, animals were familiarized with a circular open-field environ-
ment (diameter¼ 80 cm). On the recording day, the animal underwent a
behavioral protocol in the following order: 10-min resting in a bin
located next to the open-field environment, exploration of the familiar
open-field environment (20min), sleep/rest in the familiar open-field
environment (20min), exploration of a novel open-field environment
(20min), sleep/rest in the novel open-field environment (20min). While
the familiar environment was kept constant, the novel environment dif-
fered on every recording day. The novel open-field arenas differed in
their floor and wall linings, and shapes. The recordings for the familiar
and novel conditions were performed in the same recording room.

During open-field exploration sessions, food pellets (MLab rodent
tablet 12mg, TestDiet) were scattered on the floor to encourage foraging
and therefore good coverage of the environment.

Data acquisition
A headstage with 64 or 128 channels (4� 32 or 2� 32 channels, Axona
Ltd) was used to preamplify the extracellular electric signals from the
tetrodes. Wide-band (0.4Hz to 5 kHz) recordings were taken and the
amplified local field potential and multiple-unit activity were continu-
ously digitized at 24 kHz using a 128-channel (resp. 64-channels) data
acquisition system (Axona Ltd). A small array of three light-emitting
diode clusters mounted on the preamplifier headstage was used to track
the location of the animal via an overhead video camera. The animal’s
location was constantly monitored throughout the daily experiment.
The data were analyzed offline.

Data processing
Spike sorting
The spike detection and sorting procedures were performed as previ-
ously described (O’Neill et al., 2006). Action potentials were extracted by
first computing power in the 800–9000Hz range within a sliding win-
dow (12.8ms). Action potentials with a power .5 SD from the baseline
mean were selected and spike features were then extracted by using prin-
cipal components analyses. The detected action potentials were segre-
gated into putative multiple single units by using automatic clustering
software (http://klustakwik.sourceforge.net/). These clusters were man-
ually refined by a graphical cluster cutting program. Only units with
clear refractory periods in their autocorrelation and well-defined cluster
boundaries were used for further analysis. We further confirmed the
quality of cluster separation by calculating the Mahalanobis distance
between each pair of clusters (Harris et al., 2000). Afterwards, we also
applied several other clustering quality measures and selected only cells
which passed stringent measures. In particular we implemented: isola-
tion distance and l-ratio (Schmitzer-Torbert et al., 2005), Inter Spike
interval (ISI) violations (Hill et al., 2011) and contamination rate. We
employed the code available on GitHub: https://github.com/cortex-lab/
sortingQuality. The criteria for the cells to be considered for analysis
were: (1) isolation distance.10th percentile, (2) ISI violations,0.5, and
(3) contamination rate ,90th percentile. Periods of waking spatial ex-
ploration, immobility, and sleep were clustered together and the stability
of the isolated clusters was examined by visual inspection of the
extracted features of the clusters over time. Putative pyramidal cells and
putative interneurons in the CA1 region were discriminated by their
autocorrelations, firing rate, and waveforms, as previously described
(Csicsvari et al., 1999).

Data inclusion criteria
We set a minimum average firing rate of.0.25Hz for each cell, across
both familiar and novel environments. Tetrodes were 0.4 mm apart,
guaranteeing that no two tetrodes would pick up the same cell (Henze et
al., 2000). Nonetheless, we monitored for that possibility by measuring
the cross-correlogram of cells on different tetrodes, and found no suspi-
cious pairs of cells that could be duplicates. The final dataset consisted of
294 putative excitatory and 128 putative inhibitory cells across 6 animals.
Considering only pairs of units recorded on different tetrodes, the data-
set includes a total of 9511 excitatory-excitatory (EE) pairs, 7848 excita-
tory-inhibitory (EI), and 1612 inhibitory-inhibitory (II) pairs.

Spiking data were binned in 25.6-ms time windows, reflecting the
sampling rate for positional information. We excluded bins where (1)
the animal was static (speed, 3 cm/s); (2) sharp-wave ripple oscillatory
activity was high, i.e., periods with power in the band 150–250 Hz in the
top fifth percentile (Csicsvari et al., 2000; O’Neill et al., 2006); (3) theta
oscillatory activity was particularly low, with power in the band 5–15 Hz
in the lowest fifth percentile; it is known that hippocampal theta oscilla-
tions support encoding of an animal’s position during spatial navigation
and reduces overall synchrony of population (Buzsáki and Moser, 2013;
Mizuseki and Buzsaki, 2014).

Null model of population responses and detection of excess
correlations
We construct a null model for population responses ðy1; :::; yNÞ that
takes into account the position of the animal, s and the population syn-

chrony, k ¼
XN
i

yi, but is otherwise maximally variable. We use this

model to generate a large ensemble of surrogate datasets, that match the
data with respect to tuning but without additional noise correlations.
Using these surrogates allow us to estimate an empirical distribution of
(total) pairwise correlations under the null model, which we then com-
pare to data.

Under the assumption that spike counts have mean l ðs; kÞ with
Poisson noise, the distribution of the joint neural responses under the
null model factorizes as:

pindðy js;KÞ ¼
Y

Poissonðyijl iðs; kÞÞ: (1)

The Poisson distribution has maximal entropy over a very large class
of distributions on N 0 (Harremoës, 2001; Johnson, 2007). One impor-
tant caveat is that the population synchrony depends on the neural
responses themselves, which introduces the additional constraint that

k ¼
X
i

yi for each of these surrogate draws, something that we enforce

by rejection sampling (Press et al., 1992). The only remaining step is to
estimate the tuning function of each cell, l iðs; kÞ, which we achieve
using a nonparametric approach based on Gaussian Process (GP;
Rasmussen, 2003) priors.

Tuning function estimation
Here, we briefly describe the key steps of the approach and refer the
reader to (Savin and Tkacik, 2016) for further details. For an introduc-
tion to Gaussian Processes inference, we refer the reader to (Rasmussen,
2003).

The data are given as T input pairs, D ¼ fxt; ytgt¼1;2;:::;T , where xt
denotes the input variables, defined on a 3D lattice for the 2d�position
of the animal in the environment and population synchrony, defined as

k ¼
XN
n¼1

yðnÞt ; yt denotes spike counts of N neurons in the tth time bin

(dt ¼ 25:6ms).
Neural activity of each single neuron is modeled as an inhomogene-

ous Poisson process with firing rate dependent on input variables, l ðxtÞ.
We use a Gaussian Process (GP) before specify the assumption that the
neuron’s tuning is a smooth function of the inputs, with an exponential
link function, f ¼ logl ; f ;GPðm; cÞ, with mean function mð�Þ and
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covariance function cð�; �Þ. In particular, we use a product of squared ex-
ponential (SE) kernels for the covariance function:

cðx; x9Þ ¼
Y3
d¼1

cdðxd; x9dÞ ¼
Y3
d¼1

r dexpðxd � x9dÞ=2s 2
d; (2)

This allows the prior covariance matrix C to be decomposed
as a Kronecker product: C ¼ C1 � C2 � C3, dramatically increas-
ing the efficiency of the fitting procedure (Flaxman et al., 2015).
We denote the set of parameters that uniquely determine f as
u ¼ fm; r ;sg.

We choose input points xp ¼ ðs; kÞ that corresponded to the binned
2D location s of the animal (5-cm bins) and binned population syn-
chrony k [10 equally weighted bins, each containing 10% of the data, i.e.,
the bin edges correspond to the ð0th; 10th:::; 100thÞ percentiles]. Our
aim is to find a distribution over expected log-firing rates at each input
point xp; we denote these by fp ¼ f ðxpÞ.

Given a set of parameters û ¼ f m̂; r̂ ; ŝ g, and a set of input values
xp (as defined above), we infer the predictive distribution over log-firing
rates given data and parameters as pðfpjD; xp; û Þ. This distribution can
be computed by marginalizing over f, which denotes a collection of func-
tion values of f evaluated at a given set of points X ¼ fx1; :::xlg, i.e.,
f ¼ f ðXÞ;Nðm̂; ĈÞ 2 Rl, where Ĉij ¼ cðxi; xjjr̂ ; ŝ Þ.

pðfpjD; xp; û Þ ¼
ð
pðfpjD; xp; û ; fÞpðfjD; û Þdf (3)

This distribution is intractable, but can be approximated by
using a Laplace approximation for pðfjD; û Þ so that ultimately
pðfpjD; xp; û Þ � Nðmfp ;s fp Þ.

The parameters û used in the previous paragraph are fitted for each
cell by maximizing the marginal likelihood of the data given parameters:
û ¼ argmaxu logPu ðfy1; :::; yTg; jfx1; :::; xTgÞ. This step and the previ-
ous one are repeated until the convergence of data log-likelihood. We
refer the reader to refs (Flaxman et al., 2015; Savin and Tkacik, 2016) for
detailed derivations and computational implementation of the learning
algorithm.

Finally, thanks to the exponential link function, the inferred firing
rate of an individual input point l ðxpÞ ¼ expðfpÞ is log-normally dis-
tributed, whose mean and variance can be computed as:

Eðl ðxpÞÞ ¼ expðmfp1s 2
fp
=2Þ (4)

and

Varðl ðxpÞÞ ¼ expðs 2
fp
� 1Þexpð2mfp1s 2

fp
Þ: (5)

This completes our probabilistic inference of single-cells tuning func-
tions. Computing Varðl ðxpÞÞ allows us to propagate the uncertainty of
tuning function estimation throughout all our analyses, as explained in
the following subsection.

Generating surrogate data
At each moment in time, given the position s and population syn-
chrony k, the GP tuning estimate provides a distribution over pos-
sible firing rates for cell i, l iðs; kÞ, as a log normal distribution,
logl i ;Nðmfp ;s fp Þ. This captures uncertainty about the tuning of
the cell, given the data. Our method allows us to propagate this
uncertainty throughout all the subsequent analyses by sampling
firing rates from this distribution (formally, by treating neural
responses as arising from a doubly stochastic point model). We
generate surrogate spike counts in two steps. First, we sample the
mean firing from this pðl ijs;KÞ distribution. Second, for each l i

sample, we draw the corresponding spike count from Poissonðl iÞ.
Applying this procedure for all cells and all time points generates a
surrogate dataset from the unconstrained null model. We enforce

the constraint
X
i

yi ¼ k by discarding and redrawing samples that

do not satisfy it. In rare cases (,2% of data), it was not possible to
replicate the desired k statistic, i.e., achieving the desires k required
.500 re-samplings. Such time bins were excluded from subsequent
analysis (both for for real data and all surrogates). We generate a
total of 1000 surrogate datasets.

Inference of excess correlations
We use the pairwise correlations between neural responses as the test
statistic and compare it to the distribution of pairwise correlations
expected under the null model that assumes that the firing rate of cells is
only driven by the stimulus and the synchrony of the population, with-
out further pairwise interactions.

Given the Pearson correlation coefficient between the activities of
cells i and j computed on real data, cij, and cgij the same quantity com-
puted on a surrogate dataset fyg1:tg for g ¼ 1; 2; :::1000. We define the
quantity we refer to as “excess correlations” as:

wij ¼
cij � hcgij i
sðcgij Þ

; (6)

where h�i denotes the sample average and s the sample standard devia-
tion of cgij . Assuming that the cgij distribution is normal, this quantity is
closely related to confidence bounds, and p-values (via the error func-
tion). An excess correlation is deemed significant if jwijj.4:5, which cor-
responds to a p-value threshold of p¼ 0.05 with a Bonferroni correction
for.7500 multiple comparisons. This threshold was chosen so as to
counteract the effect of multiple comparisons, and make sure that our
results are not influenced by spurious correlations.

Validation procedures
To validate our method, we construct an artificial dataset with
known interactions, by sampling from a coupled stimulus depend-
ent MaxEnt model. We consider N¼ 50 neurons and binary activa-
tions y ¼ ðy1; :::yNÞT for any given time window. The distribution
of responses y given a location-stimulus s and synchrony level k is

pðyjs; kÞ / exp h
X
i

fiðsÞyi1
X
i.j

Wijyiyj � h0ðkÞ
X

i

yi
� �

; (7)

where s 2 fs1; :::; sKg is a spatial position chosen from a set of discrete
locations uniformly spaced in the environment, and k�dependent pa-
rameter h0ðkÞ is chosen to ensure that

X
i

yi ¼ k on average. The spatial

input tuning to each cell, fi ¼ fiðsÞ, is modeled as a 2D. Gaussian bump
with continuous boundary conditions, mean randomly drawn from a
uniform on ½0; 1� � ½0; 1� and fixed covariance 0:1I. The parameter h is
used to vary the input strength, as explained in the following subsections.
For validation in Figure 1 and Extended Data Figure 1-1, we use h¼ 2,
3, 4. We try to match the general statistics of the data as closely as
possible. In particular, we match the true time-dependent occu-
pancy, st, observed in a 20-min exploration session, and the corre-
sponding time-dependent synchrony observed in the same session,
kt, by sampling one population activity vector (after adequate burn-
in time) at each time point yðtÞ; Pðyjst; ktÞ using Gibbs sampling
(Geman and Geman, 1984).

Given this artificial dataset, we analyze it with the same processing pipe-
line that we use for the neural recordings and compare the estimated inter-
actions wij with the ground truth couplings Wij, which are randomly and
independently drawn from Nð0; 1Þ. Furthermore, we generate data with
the same constraints but without any interactions. We asses the ability of
our statistical test to detect true interactions using the receiver operating
characteristic (ROC), and estimate false positive rates for our statistical test.

Additional validation for instability in tuning
We further validated our method on synthetic data simulated using
unstable tuning inputs. We model this phenomenon by spatially tuned
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inputs that are fluctuating over time, but with stable network interac-
tions, which we want to infer. Specifically, the synthetic data were gen-
erated using Equation 7 while introducing heterogeneity in input
tuning and input strength. In particular, we considered a distribu-
tion of input strengths, different for each cell (hi ;Nð2; 1Þ), mix-
ture-of-Gaussians input tuning functions with a variable number
of components Ni ; Poisð3Þ and components weights wij that were
re-drawn for each iteration of Gibbs sampling from a Dirichlet dis-
tribution over Ni�dim positive real vectors with parameter a ¼ 2.
This setup ensures both significant heterogeneity across cells and a
substantial degree of tuning instability.

Single-cell tuning characterization
To describe the tuning properties of single cells, we employed several
standard measures: (1) gain, defined as peak firing rate over mean; (2)

sparsity, hl xi2x=hl 2
xix, where l x denotes the average firing at location x,

is a measure of how compact the firing field is relative to the recording

apparatus (Jung et al., 1994); (3) spatial information, hl x

l
log

l x

l
ix, where

l ¼ hl xix, is the leading term of the MI between average spiking and
discretized occupancy for small time windows (Skaggs et al., 1992; Souza
et al., 2018).

Decoding of spatial position from data
We partitioned the environment in equally spaced 2D bins with bin side
length of 20 cm. This choice was because of the fact that, to properly esti-
mate the average co-activation of cells one needs many samples and a
finer subdivision of the environment made this task extremely difficult.
We refer to each bin with an index s 2 S. The data were randomly split
in two sets, 75% for training and 25% for testing. Given the training

Figure 1. Detecting excess correlations among hippocampal CA1 cells during naturalistic behavior. A, Method schematic. A null model for population responses takes into account the
inferred place field tuning of each cell and the moment-to-moment global synchrony, but is otherwise maximally unstructured. For each cell pair, this model predicts a null distribution for
(total) pairwise correlation (gray distribution), which is compared with the correlation estimate from data (dashed red line). The normalized discrepancy between the data correlation cij and
the null model expectation mij for a pair of neurons (i, j) is referred to as “excess correlation,” wij, and serves as a proxy for cell-cell interaction. B, Method validation on synthetic data.
Detection accuracy is assessed using simulated data with known positive (green) or negative (red) interactions. C, Synthetic data matches a real 20-min exploration session with respect to spa-
tial occupancy (top) and observed synchrony indices (bottom represented here as proportion of simultaneously active cells in a ;500-ms example raster). D, Receiver operating characteristic
(ROC) shows the probability of correctly detecting positive (green) and negative (red) interactions for different detection thresholds. E, Novel-like scenario: unstable and noisy multipeak tuning.
Input strength was drawn random from Nð2; 1Þ. Number of peaks chosen as Poisson with average¼ 3. At each time point, peak weights were re-drawn from a Dirichlet distribution with
parameter a¼ 2. The average population firing was always kept to 20% of the population. Left, Example inferred tuning functions. Right, ROC. F, Inhibitory-like scenario: high-firing and
weak spatial tuning, noisy multipeak tuning. Number of peaks chosen as Poisson with average¼ 5. At each time point, peak weights were re-drawn from Dirichlet distribution with parameter
a¼ 2. The average population firing was kept to 50% of the population. Left, Example inferred tuning functions. Right, ROC.
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data, we estimated the average cell-by-cell activation (cPVs) and the co-

variance of the neurons activity ( dCOVs) for each spatial bin s. At test
time, decoding was implemented by comparing the cosine similarity of
these prototypes to the cell-by-cell average activation (denoted by popu-
lation vector PV) and the cell-cell covariance (COV) for each nonover-
lapping 10 consecutive 25.6-ms time bins and picking the decoded bin
as that with the highest similarity in terms of Pearson correlation. For
the analyses on larger networks with 100, 200, 500 cells, we also used a
Bayesian maximum a posteriori (MAP) decoder for which we inferred
the conditional probability of spiking of cell i given location s, PðyijsÞ, on
4 � 105 samples. We then tested the decoder on additional 105 samples.
Cells were assumed to be conditionally independent of each other, hence
PðyjsÞ ¼

Y
i

PðyijsÞ. For simplicity, we used an uniform prior over pos-

sible positions. Hence the decoded position given a population vector y
is given by:

ŝMAP ¼ argmaxsPðsjyÞ ¼ argmaxs PðyjsÞ: (8)

Linear separability of pairs of stimuli
To investigate the linear separability of population responses to
different locations, we randomly selected 500 times two distinct
locations in the environment and selected all the 250-ms popula-
tion responses in a 10-cm surrounding of the two positions. We
then found the best hyperplane that separated the two sets of
responses by using a soft-margin linear SVM with hinge loss, and
reported the training error. We also computed the principal com-
ponents of the population responses to both locations together,
and reported the variance explained by the first PC.

Models of hippocampal population responses with adjustable
network structure
Stimulus-dependent MaxEnt model
In order to explore the effects of the noise correlation structure on the
coding properties of the hippocampal system, we employed a statistical
model of the collective behavior of a population of place cells that
allowed us to vary the couplings among cells while keeping fixed the out-
put firing rate. A similar, stimulus-dependent maxent model was intro-
duced in (Granot-Atedgi et al., 2013). A stimulus-independent version
was used in (Meshulam et al., 2017) to prove that correlation patterns in
CA1 hippocampus are not because of place encoding only, but also to in-
ternal structure and pairwise interactions. Our model includes spatially-
selective inputs with adjustable strength, h 2 R, and noise correlations
modeled as a matrix W describing the strength of interaction between
cell pairs. Additionally, we constrained average population firing rates to
be the same for each possible choice of h andW, as a way of implement-
ing metabolic resource constraints.

More specifically, consider N neurons with binary activations
y ¼ ðy1; :::yNÞT. The distribution of responses y given a location-stimu-
lus s we considered is

pðyjsÞ / exp h
X
i

fiðsÞyi1
X
i.j

Wijyiyj � h0
X

i

yi
� �

; (9)

where s 2 fs1; :::; sKg is a spatial position chosen from a set of dis-
crete locations uniformly spaced in the environment (the unit
square, ½0; 1� � ½0; 1�). The spatial input tuning to each cell, fi ¼ fiðsÞ,
is modeled as a 2D. Gaussian bump with continuous boundary con-
ditions, mean randomly drawn from a uniform on ½0; 1� � ½0; 1� and
fixed covariance 0:1I. The parameter h0 allows us to fix the average
population firing rate to 20% of the population size, and is found by
grid optimization. Once the input tuning fi is fixed for each cell, we
select the connections Wij for each cell pair by sampling from the
data-inferred excess correlations of cell pairs with similar input tun-
ing, and then scaling according to the results found during method
validation (Extended Data Fig. 1-1G). We did so separately for fa-
miliar and for novel environments.

Inference of input quality from data
We fixed the appropriate parameter h, separately for familiar-like and
novel-like network interactions, by matching average marginal statistics
of firing rate maps obtained from the model to the data. We used three
measures: single-cell spatial information, sparsity, and gain. Separately
for familiar and novel environments, we randomly chose 50 tuning func-
tions and selected pairwise connections (rescaled from data, Extended
Data Fig. 1-1G) depending on tuning similarity. We then simulated pop-
ulation activity according to real occupancy (as in validation) for
h 2 f0:5; 1; :::; 5g, computed firing rate maps and their statistics. We
selected the h value so as to minimize the sum of (absolute) deviations of
the averages of the three measures.

Optimization of connections for fixed input and fixed firing rate
Given h,ffið�Þg, we optimize the connections W so as to maximize the
mutual information (Shannon, 1948) between population activity and

spatial position, MIðy; sÞ ¼
X
y;s

pðyjsÞpðsÞ log pðyjsÞ
pðyÞ , via sequential least

squares programming (SLSQP; Virtanen et al., 2020). We further con-
strain the population average firing to 20% of the neural population, and
eachWij is restricted to lie in ½�1; 1�. Both reflect biological resource con-
straints on the optimal solution.

Most simulations use N¼ 10 neurons, which allows the mutual
information to be computed in closed form (by enumerating all pos-
sible patterns). Reported estimates are obtained by averaging across
1000 randomly initialized networks (different fið�Þ centers, and ini-
tial conditions for the optimization). To ensure that our results gen-
eralize to large networks, we also performed limited numerical
simulations for N¼ 20 (only for h¼ 2 and h¼ 4, averaging over 10
networks.

Comparison of data-like interactions with optimization results
To measure how “optimal” real data excess correlations are, we randomly
sampled 10-cell networks 1000 times as explained above. We measured
the MI between population activity and spatial position using data-like
interactions (sampled from data excess correlations as in Fig. 3), and com-
pared the to the MI measured on the same network with null interactions;
we report average ratio6 SD in Figure 4B.

Optimal coding for large networks
The exact computation of the mutual information MIðy; sÞ is very
resource intensive and only applicable to small networks (N � 20).
To investigate the effects of noise correlations at larger scales we
need to rely on efficient approximations. The mutual information
between population binary responses y and location-stimulus s can
be written as

MIðy; sÞ ¼
X
y;s

pðsjyÞpðyÞ log pðsjyÞ �
X
y;s

pðsjyÞpðyÞ log pðsÞ
¼ HðsÞ � HðsjyÞ;

;

(10)

where H denotes (conditional) entropy. Assuming that p(s) is a uniform
distribution over stimuli, we have HðsÞ ¼ 2logB, where B is the number
of bins used to discretize each dimension of the 2D environment. We
generally use B¼ 16. The challenge is to compute HðsjyÞ. For a given y,
denote with ĥðyÞ :¼ �

X
s

pðsjyÞ log pðsjyÞ. Then we have:

HðsjyÞ ¼ �
X
y;s

pðsjyÞpðyÞ log pðsjyÞ

¼
X
y

pðyÞĥðyÞ

¼
X
s

pðsÞ
X
y

pðyjsÞĥðyÞ
: (11)

We used the last expression and estimated HðsjyÞ by drawing 106
samples from pðyjsÞ for each stimulus s using Gibbs sampling
(Geman and Geman, 1984). We reported the estimated average
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across stimuli and confidence intervals in the figures. The quantity

ĥðyÞ ¼ �
X
s

pðsjyÞlogpðsjyÞ is the entropy of the posterior distribu-

tion on stimuli given a certain binary vector. The main obstacle to com-

puting ĥ is that, for each stimulus s, we need to know the proportionality
constant Zs ¼

X
y

pðyjsÞ (i.e., the partition function), that makes the

probability (Eq. 9) sum up to 1. We computed Zs exhaustively for N � 20
by enumerating all the possible binary vectors. For N 	 20 we estimated
it using a simple Monte Carlo method by randomly drawing 109 inde-
pendent N�dim binary samples for each stimulus, and then regularizing
by applying a mild 2D Gaussian smoothing (s ¼ 0:5 bins) on the log-
transformed Zs among neighboring stimuli.

Total versus noise entropy in full versus factorized models
The mutual information can be understood as the difference between
total entropy (HðyÞ) and conditional, or noise, entropy (HðyjsÞ):
MIðy; sÞ ¼ HðyÞ � HðyjsÞ. The introduction of non-zero second order
interactions in Equation 9 will affect differently the two terms. In gen-
eral, introducing correlations will diminish the total entropy HðyÞ
(which implies that the total possible information is reduced) but can
also affect the noise entropyHðyjsÞ (whose reduction implies a reduction
in uncertainty of the response given stimulus).

“Topology”model simulations
We aimed at characterizing the influence of higher order structure on the
coding of the network. We used the same model as in Equation 9 with 50
place cells, but allowed connections to be either – J, 0 or 1J, where
J 2 ½0; 1� is the connection strength. We employed three different strat-
egies to select the units to connect, as described in the main text, based on
their tuning similarity. We kept fixed the number of positive (1J) and
negative (–J) couplings to 6% and 3% respectively. For each choice of tun-
ing, connectivity rule and strength J we used the parameter h0 to enforce
the population average firing to be 20% of the population size.

Network analysis
Graph theoretical measures
All the measures were conducted using the library NetworkX (release 2.4)
in Python 3.7. We considered unweighted and nondirected graphs where
each cell was a vertex and an edge connected each cell pair that had a signif-
icant excess correlation (jwijj.4:5). A graph G ¼ ðV;EÞ formally consists
of a set of verticesV and a set of edges E between them. An edge eij connects
vertex viwith vertex vj. The neighborhood for a vertex vi is defined as its im-
mediately connected neighbors: Ni ¼ fvj : eij 2 E _ eji 2 Eg and its size
will be denoted by ki ¼ jNij.

We measured:
1. Clustering coefficient: This measure represents the average clustering

coefficient of each node, which is defined as the fraction of detected tri-
angles that include that node as a vertex. Formally, the local clustering
coefficient ci for a vertex vi is given by the proportion of links between
the vertices within its neighborhood divided by the number of links
that could possibly exist between them, hence measuring how close its
neighborhood is to forming a clique. If a vertex vi has ki neighbors,
kiðki � 1Þ

2
edges could exist among the vertices within the neighbor-

hood. Thus, the local clustering coefficient for vertex vi can be defined as

ci ¼ 2jfejk : vj; vk 2 Ni; ejk 2 Egj
kiðki � 1Þ

and the average clustering coefficient as

cG ¼ 1
n

X
vi2V

ci

1. Average shortest path length: This measure can be computed only if
the graph is connected. If not, we computed this measure on the
largest connected subgraph.

aG ¼
X
u;v2V

dðu; vÞ
nðn� 1Þ

where u, v are distinct vertices, d(u, v) is the shortest path length between
u, v and n is the size of the graph G.

Analysis of local network motifs
We tested for the over-expression of particular interaction patterns by
counting the number of triangles (i.e., three all-to-all interacting cells)
composed by three inhibitory cells, two inhibitory and one excitatory,
one inhibitory and two excitatory or three excitatory cells. We tested
these counts against the counts from the same networks with shuffled
edges. We employed an edge-shuffling procedure that preserved both
the total number of edges and the number of incident edges per node,
separately for the EE, EI, and II subnetworks (i.e., an edge connecting
two excitatory cells could be exchanged only with another edge con-
necting two excitatory edges, etc.). To do this, we randomly selected
two edges of each subnetwork, say AB and CD. If A 6¼ C 6¼ D and
B 6¼ C 6¼ D we removed the two edges and inserted the “swapped”
ones, AC and BD. We repeated this procedure 100 times for each sub-
network to yield one shuffled network. We repeated this procedure
1000 times, which gave us a null distribution to test the original counts
against. In Extended Data Figure 2-4, we reported the counts of each
pattern, separately for familiar and novel environments, normalized
against our null distribution.

Betti numbers
We computed the Betti numbers of the clique-complex induced by the
graphs. These are distinct from the graphs Betti numbers (Giusti et al.,
2015). A clique in a graph is an all-to-all connected set of vertices. The
clique complex X(G) of an undirected graph G is an abstract simplicial
complex (that is, a family of finite sets closed under the operation of tak-
ing subsets), formed by the sets of vertices in the cliques of G. Intuitively,
the clique-topology can be characterized by counting arrangements of
cliques which bound holes. Formally, the dimensions of the homology
groups HmðXðGÞ;Z2Þ yield the Betti numbers bm (Giusti et al., 2015).
Given our low connectivity (9%), bm was almost always zero for m 	 2.
On the other side, b0 simply counts the number of connected compo-
nents, so in our analysis we focused on b1. This is the number of cycles,
or holes, that are bounded by 1D cliques. Graphically, these are four
edges that form a square, or five edges that form a pentagon, etc. Notice
that three edges that form a triangle do not count toward b1, because
they represent a 2D clique (i.e., three vertices that are all-to-all con-
nected). This is why a higher clustering coefficient (i.e., more triangles)
implies a lower b1.

Scripts and code availability
The code used for the detection of interactions, together with the code
used for analyses throughout the paper, is available at https://github.
com/Savin-Lab-Code/CA1_network_interactions.

Results
Measuring excess correlations without stimulus repeats
To investigate cell-cell interactions between CA1 neurons and
their role in spatial information coding, we devised a procedure
to infer excess correlations from simultaneous tetrode recordings
of hundreds of isolated units in dorsal hippocampus of freely
behaving rats. Our approach starts by constructing a null model
for population responses that exactly accounts for the measured
spatial selectivity of each recorded neuron as well as for the
moment-to-moment measured global neural synchrony, but is
otherwise maximally unstructured (Fig. 1A; Extended Data Fig.
1-1A–E). Given this null model, surrogate neural rasters can be
sampled (Fig. 1A, left) and their statistics directly compared with
those of real data (Savin and Tka�cik, 2017; Extended Data Fig. 1-
1D–F). Unique to our solution is a rigorous propagation of
uncertainty about the inferred single-cell place tuning (see
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Materials and Methods) as a way of taking into account data lim-
itations on the estimation of neural tuning. For every cell pair,
the model predicts the expected distribution of pairwise correla-
tions against which the measured total correlation for that pair
can be tested for significance (Fig. 1A, right); we report “excess
correlation” w as the (normalized) amount of total correlation
that is not explained by the null model. Since our approach ex-
plicitly discounts for correlations arising from overlapping place
fields and sources of global modulation (e.g., because of locking
to the underlying brain oscillations or influence of behavioral
covariates such as running velocity; Extended Data Fig. 1-1A,B),
it differs from previous attempts to use total correlations to
probe the intrinsic network mechanisms (Gava et al., 2021).
Although it does not necessarily detect individual synaptic con-
nections (Das and Fiete, 2020), this is in keeping with traditional
definitions of noise correlations, which estimate correlations
conditioned on the stimulus. It isolates the fine structure of sta-
tistical dependencies beyond global shared co-variability and
potentially offers a clearer window into the net effects of local cir-
cuit interactions on neural activity.

We validated our detection method by constructing synthetic
datasets of spiking CA1 neurons whose responses were modu-
lated by the position of an artificial agent and by an assumed net-
work of interactions (Fig. 1B, left; see Materials and Methods).
We ensured that the synthetic data matched overall firing rates,
the moment by moment synchrony and the highly irregular oc-
cupancy observed in a real 20-min exploration session (Fig. 1B,
middle). Excess correlations identified by our method strongly
overlap with the ground truth, as measured by the area under the
receiver operating characteristic (Fig. 1B, right). The inferred
excess correlations were also well aligned with the ground truth
interaction strengths (Extended Data Fig. 1-1G). We did not find
any tendency of cells that are more (or less) similarly tuned to
show higher (or lower) inferred wijs (linear regression, r¼ 0.023,
p¼ 0.24). Inference quality did not change when using weaker or
stronger inputs (Extended Data Fig. 1-1H). Introducing instabil-
ity and additional noise in the tuning of single cells (Fig. 1E) or
high-firing inhibitory-like cells (Fig. 1F) did not alter our ability
to detect network interactions. Overall, our estimator outper-
formed standard noise correlation detection (Extended Data Fig.
1-1I) and proved robust across parameter variations that capture
documented familiar versus novel environment differences in
CA1 activity.

We next analyzed CA1 tetrode recordings of six wild-type
rats exploring familiar and novel 2D environments separated by
a short period of rest (Fig. 2A,D; Kaefer et al., 2019; Stella et al.,
2019). The two environments were of similar size (Extended
Data Fig. 2-1A) and different in color and geometry. Putative
units were filtered by using several clustering quality measures,
based on the Mahalonobis distance and the interspike interval
(Harris et al., 2000; Schmitzer-Torbert et al., 2005; Hill et al.,
2011), to ensure that they were well isolated (Extended Data Fig.
2-1F; see Materials and Methods). Our subsequent analyses only
included cells active in both environments (with. 0.25 spike/s
to ensure reasonable statistical power). As expected, spatial occu-
pancy, behavior, and firing fields differ across the two environ-
ments (Extended Data Fig. 2-1A–C). Nonetheless, our null-model
did not differ across familiarity levels in terms of model fit quality,
as estimated by marginal log-likelihood (Extended Data Fig. 2-1D).
Further, the differences in behavior between conditions are unlikely
to bias excess correlations, as downsampling the familiar data to
match novel occupancy and speed exploration statistics did not
affect the estimates (Extended Data Fig. 2-1E). Considering only

pairs of cells that were simultaneously recorded on different tetro-
des, our final dataset includes a total of 9511 excitatory-excitatory
(EE), 7848 excitatory-inhibitory (EI), and 1612 inhibitory-inhibitory
(II) pairs (see Materials and Methods for animal-by-animal details).
We set the threshold to declare an excess correlation significant at
jwj.4:5 (corresponding to a strict Bonferroni correction for the
largest number of pairs analyzed, see Materials and Methods). We
detected both positive and negative excess correlations among cell
pairs (Fig. 2B,C). Interestingly, cell pairs with negative excess corre-
lations can have positive total correlations (Fig. 2C), illustrating the
idea that total correlations are not necessarily a good predictor of
local circuit interactions.

Excess correlation networks in familiar and novel
environments
What is the structure of the inferred excess correlations? We
found a generally sparse inferred connectivity pattern in the
excitatory-excitatory (EE) subnetwork, with ; 6% ð624=9511Þ
of pairs in the familiar and ; 9% ð860=9511Þ of pairs in the
novel environment showing significant excess correlations
(Fig. 2E, left). This connectivity level is substantially above the
Bonferroni corrected detection threshold, but also implies that
the null model accounts for most of the observed total correla-
tion structure, which makes excess correlations nontrivial to
estimate by simpler means. The fraction of interactions is larger
among excitatory-inhibitory (EI) cell pairs (Fig. 2E, middle;
1056/7848 significant pairs in familiar, 1143/7848 significant
pairs in novel environment), where, as expected, negative inter-
actions dominate; the fraction is highest at ; 30% among posi-
tive interactions in the inhibitory-inhibitory (II) subnetwork
(Fig. 2E, right; 1008/1612 significant pairs in familiar, 952/1612
significant pairs in novel environment).

We next focused on interaction changes induced by a
switch from the familiar to the novel environment (Fig. 2D).
We observed an increase in EE significant excess correla-
tions, possibly mediated by decreased inhibition during nov-
elty. Consistently, we found putative inhibitory cells to be less
synchronous and slightly less active in novel environments
(Extended Data Fig. 2-1H), in line with previous reports (Nitz
and McNaughton, 2004), while excitatory neurons were more
synchronous but did not differ in terms of their average firing
rates (Extended Data Fig. 2-1G). Total correlations were gener-
ally stronger in novel environments (Extended Data Fig. 2-1I;
Cheng and Frank, 2008; Gava et al., 2021). Consistent with the
view that CA1 circuit modifications during spatial learning
originate in altered spike transmission among connected excita-
tory and inhibitory neurons (Dupret et al., 2013; McKenzie et
al., 2021), we found an increase in positive EI significant excess cor-
relations, while their negative counterpart remained unchanged.
This increase could not be attributed to increased reliability of
monosynaptic EI connections (Extended Data Fig. 2-2E), especially
since cell pairs on the same tetrode were excluded from this analysis
(Csicsvari et al., 1998). We did not observe significant changes in
the number of II interactions.

Are interaction changes explained by fine time scale oscilla-
tory modulation of hippocampal firing? We measured the simi-
larity of cell-pair theta-locking histograms, and compared it
against the inferred wijs. We found no significant relation in the
EE subnetwork and no significant changes across familiarity lev-
els (Extended Data Fig. 2-2A,B, left). The correlation between
theta-phase locking similarity and excess correlation was small
but significant for EI cell pairs (Extended Data Fig. 2-2A,B, mid-
dle), and was strongest within the II subnetwork (Extended Data
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Fig. 2-2A,B, right). Nonetheless, this relation was not sig-
nificantly different across experience (Extended Data Fig.
2-2B). Finally, since excitatory cells further exhibit theta-
phase precession, which might be itself experience depend-
ent (Cheng and Frank, 2008), co-processing cells could lead

to spurious excess correlations. We controlled for this effect
by introducing different degrees of spike jitter, and repeating
the analysis. Despite this disruption of individual cell preces-
sion, we found that inferred interactions could still be
inferred reliably (Extended Data Fig. 2-2C,D). Overall, the

Figure 2. Excess correlations across familiar and novel environments. A, Neural activity was recorded using tetrodes implanted in the dorsal CA1 area of the hippocampus. B, C, Example pairs
of pyramidal cells simultaneously recorded during free exploration of a familiar environment with significant positive (B) and negative (C) excess correlation w (gray histogram, distribution of
correlation coefficients derived from the null model; red dashed line, measured raw pairwise correlation). D, Experimental paradigm. Aix animals explored a familiar environment, then rested
in a sleep box (rest data not used), after which they explored a novel environment (20–40min for each condition). Each animal contributed to one experimental session. E, Proportion of signif-
icant excess correlations for different cell types (triangle, pyramidal cell; circle, putative interneuron), positive (green) and negative (red) excess correlations, for both the familiar (top row,
blue) and the novel (bottom row, orange) environment (stars, significant difference under binomial test at p, 0.001). Error bars indicate SEM across N¼ 6 animals. Shaded regions mark the
fraction of interactions detected in the familiar environment that remain in the novel environment. F, Paired comparison (colormap, binned pair count) between excess correlations wij detected
in familiar versus novel environment for each cell-pair within EE (left), EI (middle), and II (right) subnetworks. G, Example of an estimated excitatory subnetwork. Circles show the place field of
each neuron, with edges showing significant excess correlations (green, positive; red, negative excess correlations); line thickness corresponds to interaction strength. H, Left, Proportion of sig-
nificant excess correlations in the excitatory subnetwork increases with place field overlap, measured as the Pearson correlation of 2D firing rate maps, for positive interactions (blue, familiar
environment; orange, novel environment; shaded area, 99th percentile confidence interval for the mean). Right, Analogous plot for negative excess correlations. I, J, Left, Distribution of log
node-degree of E cells normalized by the total number of E cells in each session, for the novel (I) and familiar (J) environment. Inset, Quantile-quantile plot comparing this distribution to the
normal expectation. Right, Excitatory subnetwork has a significantly higher clustering coefficient (orange/blue line, data) compared with the expected distribution for an Erdos–Renyi (ER) net-
work with a matched connection density. See Extended Data Figures 2-1, 2-2, 2-3, 2-4 and Extended Data Tables 2-1, 2-2 for more information.
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changes in excess correlation structure across experience do
not seem to be trivially explained in terms of known oscilla-
tory structure in neural responses.

How conserved are significant excess correlation pairs across
environments? The largest overlap was found in the II subnet-
work, where 77.5% of detected interactions were preserved in
both familiar and novel. EI excess correlations showed less over-
lap (31.1%), while the overlap was weakest (16.8%) in the EE
subnetwork. All reported overlaps were statistically significant
under a permutation test (1000 random shuffles of cell labels;
p,10�3 for all subnetworks). Significance was confirmed by
comparing the Jaccard similarity of the adjacency matrices of fa-
miliar and novel subnetworks against the null distributions con-
structed from random graphs with the same numbers of vertices
and edges (1000 Erdos–Renyi graphs; p,10�3 for II and EI sub-
networks, p¼ 0.009 for EE). Moreover, the similarity of excess
correlations across the two environments extended beyond
the binary presence or absence of significant edges. Figure 2F
compares the strength of excess correlations, w, in the famil-
iar versus novel environment for EE, EI, and II cell pairs. For
all subnetworks, w are significantly correlated across the two
environments, with the reported correlation strength related
to the network overlap (Fig. 2E). Taken together, these find-
ings corroborate the idea that cell-cell interactions do not
reconfigure randomly across environments, likely because of
underlying network constraints (English et al., 2017; Levy et
al., 2023; Huszár et al., 2022).

Because spatial information is encoded predominantly by py-
ramidal cells (Skaggs et al., 1992; Frank et al., 2001), we analyzed
the EE subnetwork in further detail (Fig. 2G). Our key statistical
observation is shown in Figure 2H: the proportion of significant
excess correlations increases nonlinearly with place field overlap
for positive interactions, and is roughly constant for negative
interactions. In the novel environment, the proportion of posi-
tive excess correlations increases ; 3-fold over the observed
range of place field overlap. In the familiar environment, the
modulation with place field overlap is less pronounced, possibly
indicating a shift toward a more decorrelated representation of
space (Karlsson and Frank, 2008).These effects are consistent
on an animal-by-animal basis (Extended Data Fig. 2-3C) and per-
sist even after excluding the first 5min of exploration, known for
presenting unstable place fields (Wilson and McNaughton, 1993;
Extended Data Fig. 2-3A–C).

We further characterized the topology of familiar and novel
EE excess correlation networks. The number of interactions that
a neuron engages in (its node degree) appears to be log-normally
distributed in both environments, with clustering coefficients
that are significantly higher than expected from matched inde-
pendently randomly connected (Erdos–Renyi) graphs (Fig. 2I,J).
This effect was more pronounced during novelty (Extended Data
Fig. 2-4A).

Accordingly, interacting excitatory triplets were overrepre-
sented, more strongly so in the novel environment (Extended
Data Fig. 2-4C). Finally, we found a linear relationship between
the log-number of nodes and the shortest path length (i.e.,
the minimal distance between randomly chosen node pairs,
Extended Data Fig. 2-4B), which is a defining feature of small-
world networks (Watts and Strogatz, 1998). These results add
to the array of documented small-world topology seen across
brain scales (Bassett and Sporns, 2017), from anatomic connec-
tivity (Perin et al., 2011), to human imaging functional connec-
tivity (Bassett et al., 2008).

Effects of network interactions on CA1 single-cell and
population spatial coding
To explore how the network structure affects spatial information
encoding at the population level, we constructed a statistical
model of interacting excitatory cells responding to spatial inputs
(Fig. 3A). Our model, a version of pairwise-coupled, stimulus-
driven maximum entropy distribution over binary spiking units
(see Materials and Methods; Granot-Atedgi et al., 2013) allows
us to vary cell-cell excess correlations (to study the effect of
network topology and interaction strength) as well as the
strength of the spatial inputs (to study the effect of differences
between the novel vs familiar environment) while maintaining
a fixed average firing rate for the population. Mechanistically,
the model describes pairwise network interactions as the
source of the excess correlations measured in the data and
spatially selective inputs as the primary driver of cell selec-
tivity, with tuning further refined by the local circuit inter-
actions. This marks an important departure from classic
theoretical analyses of the effects of neural correlations on
neural coding. In standard approaches, marginal statistics
as fixed and the second order interactions are manipulated
independently of tuning. In contrast, here we acknowledge
that circuit interactions necessarily also shape marginal sta-
tistics and thus the two cannot be controlled independently
in the brain. We used our model to assess spatial coding at
the population level as a function of the structure of net-
work interactions.

We contrasted spatial coding in two networks which were
identical in their input tuning and average firing rates, but dif-
ferent in the pattern of network interactions. Interactions in the
“structured” network followed the relationship between place
field overlap and excess correlation w observed in real data
(note that spatial inputs and place fields overlap are strongly
correlated in our statistical regime, see Fig. 3C and Extended
Data Fig. 3-1A); interactions in the “random” network were
drawn from the same data-derived distribution for w, but inde-
pendently of the overlap in (input) tuning (Fig. 3A). Finally, in
keeping with traditional neural coding analyses on the role of
correlations, we also considered the “no interactions” case in
the absence of any covariability of neural responses (Extended
Data Fig. 3-2). For each case, we further simulated the effects of
familiar versus novel environment by adjusting the strength of
the feed-forward spatial input, in analogy to previous experi-
mental results (Brun et al., 2002, 2008; Leutgeb et al., 2004;
Hafting et al., 2005; Barry et al., 2012; Cohen et al., 2017). In the
simplest version of the model, higher input strength corresponds
to higher spatial informativeness of input tuning, which is why
we refer to this parameter as “input quality.” We adjusted the
input quality to best resemble, on average, familiar versus novel
data in terms of various marginal statistics [spatial information,
measuring single-cell informativeness (Skaggs et al., 1992; Souza
et al., 2018); sparsity, capturing size, and sharpness of place fields
(Jung et al., 1994); and peak-over-mean firing values; see Materials
and Methods and Extended Data Fig. 3-1B; see Extended Data
Fig. 3-1C,D for distributional model-data match].

We quantified the coding performance of our networks by
estimating the mutual information between population activity
and spatial position and by estimating the average decoding
error. For tractability, we simulated populations of 50 place cells
(Fig. 3). As expected, higher input quality in the familiar envi-
ronment leads to overall higher information values (Fig. 3B) and
lower decoder error (Extended Data Fig. 3-2B). Less trivial are
the effects of network connectivity: in both environments,
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structured (data-like) interactions significantly outperform
random ones, with larger improvements seen in the novel
environment. This suggests that network interactions among
hippocampal cells adjust to maintain a high-fidelity spatial
representation even when they receive lower quality, noisy
inputs. Improved decodability offered by structured interactions,
probed with different decoders, persists in larger networks with
100, 200, and 500 cells (PV decoder, Mann–Whitney U test, all
ps, 0.001; MAP decoder, Mann–Whitney U test, all ps, 0.001).
Qualitatively similar results are observed with more realistic inputs,
where single cells have irregular spatial input tuning (Epsztein et
al., 2011) and variable input strengths as considered in Extended
Data Figure 3-1C (Mann–Whitney U test, p, 0.001). These pop-
ulation benefits are also reflected in a general improvement of
single-cell spatial tuning (Fig. 3C), and single neuron spatial in-
formation (Fig. 3D; Souza et al., 2018).

Do the structured interactions better predict other popula-
tion-level aspects of the real hippocampal code? We assessed the
importance of pairwise (co-firing) statistics for the decoding per-
formance, highlighted by previous work (Stefanini et al., 2020;
Fig. 3E). For the random network, the decoding performance
improvement with co-firing statistics relative to population-vec-
tor decoding is small and comparable in the novel versus familiar
environment. In contrast, for the structured network and data,
the improvement is significantly larger in the novel environment
(Fig. 3F); the improvement reaches 3-fold in novel relative to the
familiar environment on real data, perhaps because of the larger
population size.

The structure of the population responses also affects the
ability of downstream circuits to read out stimulus relevant in-
formation. To assess this, we focused on the task of discriminat-
ing between randomly selected pairs of locations. We began by
measuring the fraction of variance explained by the first princi-
pal component of the population activity patterns for the two
locations (Fig. 3G,H). For the structured network model (and
the data), the fraction was ; 0.1 across experience. In contrast,
in the random network the variance along the first principal
component was 2-fold lower in the novel versus familiar envi-
ronment. Thus, structured interactions appear to organize neural
responses in the novel environment so that the code maintains a
collective correlated response even when the input quality is
weak. This effect might aid downstream areas to better differenti-
ate responses to different stimuli (Ni et al., 2018). Therefore, we
assessed the linear separability of spatial positions based on neu-
ral population responses, as a measure of whether information is
readily available to downstream brain areas (Fig. 3I,J). For the
random network, the performance of a linear classifier trained to
discriminate random positions is significantly worse in the novel
environment. In contrast, the performance is restored to a high
value (; 0:9) regardless of the environment by data-like interac-
tions in the structured model, matching observations on real
data (see Extended Data Fig. 3-2F for separability of positions as
a function of their distance).

Taken together, our results suggest an important coding
role for the interaction patterns inferred in Figure 2H and
the corresponding structured networks explored in Figure 3
and Extended Data Figure 3-2. In comparison to the random

Figure 3. Effects of network interactions on spatial encoding. A, A schematic of the circuit
model with variable excess correlations and fixed population firing rate (see Materials and
Methods). Two connectivity patterns are compared: “structured” (mimicking the inferred
excess correlation vs tuning similarity relationship) versus “random.” B, Estimated spatial in-
formation (MI; error bar, 99th percentile CI for the mean) using structured and random inter-
actions, in the novel-like and familiar-like scenario (see text). Structured interactions
significantly increase the spatial information (***p, 0.001 or **p, 0.01 under a nonpara-
metric Mann–Whitney U test). C, Effective single-cell tuning for random versus structured
models in the novel-like (orange; left) and familiar-like (blue; right) scenarios. D, Average
single place cell spatial information (Ispike) for random versus structured interactions (dashed
bars) and data (solid bar) in the novel-like (orange; left) and familiar-like (blue; right) scenar-
ios E, The performance of a simple population vector (PV) decoder is compared with the per-
formance of a decoder which takes into account the co-variability of neurons (COV). F,
Improvement in decoding performance, measured as error of PV decoder minus error of COV
decoder, evaluated on 4 � 104 samples for random (left), data-like structure (center), and
data (right). Random 50% of data were used for train/test. Decoding error measured in spa-
tial bins. Error bars and significance tests as in B. G, Fraction of variance explained by the
first principal component for responses to random pairs of stimuli, used to measure the effect
of structured interactions on population responses to different stimuli. H, Fraction of variance
explained by the first principal component of population vectors for 103 random pairs of loca-
tions in the maze for random (left) versus data-like structure (center) versus data (right). The
fraction is unchanged between the novel and familiar environments on structured network
and on real data but differs significantly on the random network (error bars and significance
tests as in B). I, Linear separability of responses to pairs of stimuli. The schematic depicts the
2D PCA projection of the responses to a random pair of stimuli (light gray vs dark gray)
when using random (left) and structured (right) excess correlations. J, Linear SVM

/

classification accuracy of the responses to random pairs of stimuli trained on 1000 pairs of
same versus different positions for random (left) versus data-like structure (center) versus
data (right). See Extended Data Figures 3-1, 3-2, 3-3 for more information.
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network, the data-like, structured network (1) encodes more
information about position especially when the input is of
low quality; (2) improves single-cell spatial information and
allows for easy retrieval with different decoders (population
vector, covariance decoder, naive Bayes); (3) preserves linear
separability under changes of input quality. Consistent con-
clusions hold for the comparison between the data-like,
structured network and an uncoupled population (Extended
Data Fig. 3-2).

CA1 interactions match predictions of an optimal coding
model
While Figure 3 suggests that interactions between cells self-
organize to improve spatial information coding relative to a ran-
dom or an unconnected (Extended Data Fig. 3-2) network, it is
not clear whether the observed organization is in any sense con-
sistent with an optimal organization. To address this question,
we numerically optimized cell-cell interactions among a popula-
tion of place cells, so as to maximize the mutual information
between the population activity and spatial position (Fig. 4A). In
essence, this amounts to finding “efficient coding” solutions for
network structure given inputs to individual cells that are corre-
lated because of place field overlaps (Tkacik et al., 2010). As before,
an important control parameter is the overall magnitude (quality)
of the input spatial tuning, h, which we now vary parametrically.
Resource constraints were simulated by constraining the opti-
mization to keep the average population firing rate constant
and the interactions bounded, jWijj � wmax ¼ 1 (see Materials
and Methods).

As the input quality increases, the information gain because
of optimal interactions decreases, indicating that optimization
benefits novel environments (with noisy spatial inputs) more

than familiar environments (with reliable spatial inputs; Fig. 4B),
providing an explanation for the differences observed in Figure
3B. When comparing the performance of data-like interactions
(Fig. 3) against the optimal ones, in terms of mutual information
improvements relative to a corresponding unstructured network,
we found that the data estimated performance is close to optimal
in both in familiar and novel environments (Fig. 4B; within opti-
mal CI: familiar 10.6%, novel 17.2%; avg. improvement relative
to optimal: fam. 0.371, nov. 0.583). We further find that an over-
lap in tuning similarity between two cells correlates with optimal
pairwise interaction between them when input quality is low, but
this correlation grows weaker with increasing input quality (Fig.
4C), consistent with theoretical expectations (Tkacik et al., 2010).

How do interactions improve spatial coding? We found that
optimal interactions reduce the entropy of the stimulus-depend-
ent population responses (“noise entropy”) while largely preserv-
ing the total output entropy (Extended Data Fig. 3-3A). This
explains the improvement at the level of single-cell place fields
(Fig. 3C,D). Considering a factorized distribution, where each
(improved) place field is preserved, but cells are made independ-
ent, one observes an even higher difference between total and
noise entropy (Extended Data Fig. 3-3B). Accordingly, shuffling
position-dependent responses so as to keep single-cell tuning
fixed while removing excess correlations (Hazon et al., 2022)
improves decoding accuracy (Extended Data Fig. 3-3C). These
results explain a seeming paradox of shuffling-based analyses
usually reporting negative effects of correlations (Hazon et al.,
2022): if place cells could preserve their (improved) place fields
but be independent, then the spatial information would benefit.

Does optimization predict a clear relationship between the
tuning similarity and interaction strength for pairs of cells?
Figure 4D shows two such relationships, for high and low input

Figure 4. Predicted optimal network interactions. A, A schematic of the circuit model. Individual neurons, which receive spatially tuned inputs (with overall strength controlled by parameter h),
are pairwise connected with interactions W; interactions are numerically optimized to maximize the mutual information between spatial position and population responses while constraining popula-
tion mean firing rates and jWijj � wmax (here, wmax ¼ 1). B, Average ratio between mutual information (MI) in optimized versus noninteracting (W ¼ 0) networks. Dashed vertical lines denote
two chosen input quality levels, together with firing rate map of an example cell (“low quality” h¼ 2, orange, resembling novel environment; “high quality” h¼ 4, blue, resembling familiar envi-
ronment). In all simulation plots we show averages over 1000 replicate optimizations with random initial assignments of place fields (see Materials and Methods); shaded area, 95th percentile CI for
the mean. Vertical bars represent mean 6 SD of MI ratio for networks using data-like interactions; t test against baseline: novel env. p, 0.001, familiar env. p, 0.01. C, Average alignment
(Spearman’s correlation) between pairwise input similarity and optimal Wij as a function of input quality. D, Average magnitude of optimal Wij as a function of tuning similarity for the two environ-
ments. E, Data proxy for D, computed using the excitatory-excitatory excess correlations wij estimated from data versus place field overlap. Note the vertical scale difference between D and E: excess
correlations wij are a statistical proxy for the true interactions W; the two are expected to be correlated but not identical (Extended Data Fig. 1-1G). F, Proportion of optimal Wij ¼ wmax ¼ 1 as a
function of tuning similarity. See Extended Data Figure 4-1 for more information.
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quality, predicted ab initio by maximizing spatial information.
The optimal relationships closely resemble the analogous curves
inferred from data (Fig. 4E). A similar resemblance is not
observed if one maximizes spatial information carried by indi-
vidual cells, highlighting the importance of information coding
at the population, not individual-cell, level.

As an alternative comparison to experiments, we studied the
proportion of optimized couplings that reached maximal allow-
able strength (positive: Fig. 4F; negative: Extended Data Fig. 4-
1B). In the data, cells are deemed to be interacting when their
excess correlation exceeds a threshold, and so Figure 2H repre-
sents a direct counterpart to our theoretical prediction. We find
a clear qualitative match that includes the decrease in proportion
of strong interactions for familiar environments (Extended Data
Fig. 4-1C). We further observe that the proportion of optimal
couplings reaching the constraint wmax scales nonlinearly with
the tuning similarity, as in the data; the shape of the nonlinearity
depends on the imposed wmax (Extended Data Fig. 4-1A). This
shows how constraints shape the optimal solution, and suggests
that CA1 prioritizes interactions among similarly tuned cells to
counterbalance the limits on biological resources.

Although our simulations use a coarse-grained and down-
scaled model of a real neural population (precluding exact
comparisons), we observe an excellent qualitative match
between theoretical predictions and the data. Taken together,
these modeling results suggest that the network interactions
in familiar versus novel environments observed in the CA1
data can be parsimoniously explained by the requirement of
improving the fidelity of the population-level spatial repre-
sentation across experience.

Data-like nonlinearity generates small-world networks with
improved spatial coding
So far, our analysis of data as well as of optimized networks has
identified a consistent pattern: the nonlinear dependence of
interaction probability on tuning similarity (Figs. 2H, 4F). Figure
3 further showed that the pattern is necessary, since coding bene-
fits were absent in randomized networks. The key remaining

question is whether the observed connectivity pattern is not only
necessary, but also sufficient, to convey spatial coding benefits
and generate networks with data-like topology.

To address this question, we generated model networks of 50
place cells, as before, but limited their connection strengths to
three possible values, f�J; 0;1Jg, where J 2 ½0; 1� could be var-
ied parametrically. We now used the interaction pattern of
Figure 2H as a direct connectivity rule: we selected 6% of pairs
(as in data) to have a positive connection 1J and connected
them according to their tuning similarity as in data (Fig. 5A,
“data-like”). To assess the role of the nonlinearity, we compared
this with networks where the connection probability was linear
in tuning similarity (“linear”) or where it was constant (“ran-
dom”). In each of the three cases, a randomly chosen 3% of the
place cell pairs (as in data) were connected with a negative
strength, – J. As before, we fixed the average firing rate, and con-
sidered two levels of input quality, mimicking the familiar and
novel environments (see Materials and Methods). This setup
removed all structure (specifically, by making all connections
have the same magnitude) except for that generated by the con-
nectivity rule, allowing us to test for sufficiency.

First, we find that the data-like connectivity rule consistently
improves mutual information between the population responses
and position for increasing J, especially for novel-like input quality
(Fig. 5B). This improvement is larger for the nonlinear, data-like
connectivity than for the linear one. Extended Data Fig. 5-1C
further suggests that connectivity alone accounts for a large
fraction of mutual information gain, without the need for the
fine-tuning of the interaction strengths. The data-like connec-
tivity rule also improves the performance of a simple population
vector decoder relative to random connectivity, in stark contrast
to the linear dependence, which performs worse than the random
one (Fig. 5C).

Finally, we asked whether different connectivity rules leave a
strong signature on the network topology (Fig. 5D). To this end,
we randomly generated 1000 networks according to the three
different rules (Fig. 5A). The average clustering coefficient was
substantially higher in networks created using the data-like rule

Figure 5. Data-like interaction pattern is sufficient to generate small-world networks with improved spatial coding. A, Connectivity rules for positive connections in a simulated place cell
network with 50 units. B, Mutual information (MI) increase for data-like (solid) and linear (dashed) connectivity rule relative to the random connectivity, for familiar-like (blue) and novel-like
(orange) quality input. Shaded areas show the 95th percentile confidence interval for the mean. C, Average decoding error increase for data-like (solid) and linear (dashed) connectivity rule rel-
ative to random connectivity. Error measured as distance between real and decoded spatial bin. D, Example network topologies obtained by using different connectivity rules from A. Nearby
nodes have high tuning similarity. E, Average clustering coefficient for the three connectivity rules from A (error bars, SE; significance, one-way ANOVA test, ***p, 0.001 for or n.s. for
p. 0.05). F, Average shortest path length for the three connectivity rules from A. See Extended Data Figure 5-1 for more information.
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(Fig. 5E, similar to real data in Fig. 2I,J) compared with both the
random and linear connectivity rules, without significantly
affecting the distribution of incident edges (Extended Data Fig.
5-1A) or the average shortest path length (Fig. 5F). Additional
analysis on the clique-complexes of the connectivity graphs
revealed that the 1D Betti numbers are significantly smaller for
the synthetic networks generated using the data-like rule com-
pared with the two alternative rules, and are comparable with the
data (Extended Data Fig. 5-1B). These analyses are consistent
with the overexpression of triangles (Extended Data Fig. 2-4C)
and high clustering coefficients (Fig. 2I,J) observed in the data-
derived network. Overall, the nonlinear, data-like connectivity
rule is sufficient to generate small-world network topologies with
high spatial information.

Discussion
Statistical challenges limit our understanding of how expe-
rience shapes circuit interactions and, consequently, infor-
mation coding during animal-driven behavior. While the
use of pairwise correlations as a window into network inter-
actions is not new (O’Neill et al., 2008; Bassett and Sporns,
2017; Humphries, 2017), the statistical problem of separat-
ing network interactions from other shared factors remains
unsolved. Previous approaches based on stimulus-averaged
correlations (Mathis et al., 2013), shuffles (Tocker et al.,
2015), or joint model fits (Dunn et al., 2015; Posani et al.,
2017) each suffer from statistical limitations (weak sample
efficiency, strong model assumptions) which limit their
applicability. Hence, most analyses of hippocampal collec-
tive behavior rely on total correlations (Harris et al., 2003;
O’Neill et al., 2008; Lopes-dos Santos et al., 2013; El-Gaby
et al., 2021; Gava et al., 2021). Unfortunately, total correla-
tions potentially conflate changes in coding with changes in
nuisance variables; even if the representation is unchanged,
a shift in animal behavior (e.g., with experience) would change
collective interactions defined based on total correlations.
Furthermore, theta oscillations (Colgin, 2013), as well as the
animal’s speed (McNaughton et al., 1983; Fuhrmann et al.,
2015), increase global synchrony and introduce spurious cor-
relations. Only by factoring out all these known sources of
covariability, compactly captured by spike synchrony, the
fine structure of pairwise cell interactions can be revealed.

To reliably detect circuit interactions, we developed a novel
statistical test rooted in the maximum entropy framework (Savin
and Tka�cik, 2017) and demonstrated its robustness in a range of
simulated scenarios. Our work differs from previous maxEnt
approaches in that we do not directly fit second-order moments
(Loaiza-Ganem et al., 2017) or connectivity parameters (Bittner
et al., 2021), but rather test their significance against a null model
(Elsayed and Cunningham, 2017; Savin and Tka�cik, 2017). These
“excess correlations,” are not intended to reflect monosynaptic
interactions (Das and Fiete, 2020), but rather circuit effects, likely
mediated by lateral inhibition (Klausberger and Somogyi, 2008).
When applying our method to tetrode recordings from dorsal
CA1 of freely behaving rats, we found stark differences between
familiar and novel environments, especially in the EE subnet-
work. Furthermore, we detected increased EI interactions in
novel environments, unexplained by the higher reliability of
direct excitatory-inhibitory connections (Csicsvari et al., 1998).
Inhibition is generally weaker in a novel versus a familiar envi-
ronment (Nitz and McNaughton, 2004; Arriaga and Han, 2019;
Geiller et al., 2020), which may enhance learning by promoting

synaptic plasticity in excitatory neurons (Whitlock et al., 2006;
Arriaga and Han, 2019). This in turn is linked to the sparsifica-
tion of CA1 excitatory responses with increasing familiarity
(Karlsson and Frank, 2008), although here this effect was mini-
mized by only selecting cells active in both environments. Our
observations in the novel environment are likely to derive from
an increased dendritic excitability of pyramidal cells (Sheffield
et al., 2017), believed to be necessary for place field formation
and stabilization (Pedrosa and Clopath, 2020).

Our key statistical observation can be distilled as a mono-
tonic nonlinear dependence of interaction probability on place
field overlap for positive interactions among excitatory cells.
This effect was observed across experience, but more promi-
nently during novelty. We analyzed its coding implications in a
model where we could separately control the informativeness
of circuit inputs and the strength and structure of local inter-
actions. We found that data-like interactions offered improve-
ments in spatial information content and decoding. These
improvements are visible at the single-cell level, as a sharpen-
ing of place fields and improved single cells’ spatial informa-
tion and at the population level, by reducing the conditional
entropy of stimulus-driven responses while largely preserving
the total output entropy (Tkacik et al., 2010). Coding advan-
tages were higher during novelty, when CA1 needs to cope
with worse quality input from CA3 (Leutgeb et al., 2004) and
MEC (Hafting et al., 2005; Barry et al., 2012) and may expand
to other situations where spatial input is noisy (e.g., darkness).
We also found that data-like interactions improved stimulus
discriminability, corroborating previous findings (da Silveira
and Berry, 2014).

Efficient coding yields optimal solutions in which similarly
tuned neurons have a higher probability of interacting positively.
This is especially prominent for lower-quality inputs, where the
predicted relation between interaction probability and tuning
similarity is clearly nonlinear, as observed in the novel environ-
ment data. Simulated networks where this observed relationship
is elevated to an actual connectivity rule show that (1) the
observed relationship is sufficient to improve population spa-
tial coding, and (2) the resulting network topology is small-
world (Watts and Strogatz, 1998; Bullmore and Sporns, 2009).
Small-world networks offer advantages for distributed infor-
mation transfer and processing (Bassett and Bullmore, 2006)
while being economical, i.e., they tend to minimize wiring while
supporting high dynamical complexity (Karbowski, 2001); more-
over, this topology is altered in disease (Bassett et al., 2008;
Harrington et al., 2015). Nonetheless, while our results point
toward small-worldness as one consequence of the particular
CA1 connectivity structure, they do not provide evidence of
intrinsic coding benefits from small-worldness per se (Latora
and Marchiori, 2001; Gallos et al., 2012).

Although pairwise interactions only indirectly reflect underly-
ing synaptic connectivity (Das and Fiete, 2020), together with the
neuron tuning function they offer an accurate statistical descrip-
tion of a neural population output (Schneidman et al., 2006;
Tka�cik et al., 2014; Meshulam et al., 2017). Moreover, pairwise
interactions can be studied using well established tools from in-
formation theory, which critically rely on the differentiation
between stimulus selectivity overlap and network interactions to
assess the amount of information that a population carries about
a stimulus (Tkacik et al., 2010). We derived and tested an effi-
cient coding hypothesis for a network of interacting place cells,
by maximizing the mutual information between the animal’s
location (the stimulus) and the population response, while
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holding input tuning and overall firing rate fixed. We found that
network interactions adapt to different levels of input quality by
employing different interaction versus tuning similarity strat-
egies. In particular, for low input quality (i.e., at low signal-to-
noise ratio mimicking the novel environment), optimal network
interactions are strongly aligned with the tuning similarity of the
interacting cells. When input quality is higher (i.e., at higher sig-
nal-to-noise ratio mimicking the familiar environment), this rela-
tion weakens yet remains detectable. These predictions closely
resemble the data, suggesting that the CA1 circuit is close to an
optimal operating regime across experience. This notion of opti-
mality is different from traditional approaches which assume that
noise correlation structure can be manipulated independently
from individual tuning properties (Stefanini et al., 2020; Hazon et
al., 2022). In this latter sense, removing noise correlations does
further improve decoding performance also in our model, as pre-
viously demonstrated for CA1 responses on a linear track (Hazon
et al., 2022). While such a manipulation is possible as a data analy-
sis technique, it is hard to imagine how such a scenario could
come about mechanistically in the brain, as disabling local interac-
tions to remove noise correlations would automatically affect sin-
gle-cell tuning as well; on the other hand, keeping sharp marginal
single-cell tuning fixed while removing (optimal) local interactions
that generated it is equivalent to a trivial improvement in the
informativeness of the inputs. These considerations highlight the
importance of mechanistic constraints for considering optimality
hypotheses, and suggest that optimal interactions predominantly
improve spatial coding in the hippocampus by sharpening the
marginal tuning at the cost (and with the experimental signa-
ture) of injecting some amount of undesired, structured noise
correlation.

Theory predicts that the optimal interactions and tuning
overlap should negatively correlate at very high signal-to-noise
ratios (Tkacik et al., 2010). This causes the neural population to
decorrelate its inputs, a regime that is characteristic for coding in
the sensory periphery (Simoncelli and Olshausen, 2001). While
our numerical simulations reproduce this decorrelation regime
at very high signal-to-noise ratio inputs, our inferences and data
analyses suggest that it is not relevant for the hippocampal place
code. This is likely because the overall noise levels are higher in
the spatial navigation circuits compared with the sensory periph-
ery, and partially because of the intrinsic differences in the statis-
tics of the signal to be encoded (position vs natural images).
Further work is needed to quantitatively relate the experimen-
tally measured noise in CA1 inputs and responses to the effective
“input quality” parameter that enters our predictions.

Are there previous reports where efficient coding predictions
do not lead to decorrelation? A classic analysis in the retina cor-
rectly predicted that the receptive fields should lose their sur-
rounds and switch to spatial averaging at low light (Atick and
Redlich, 1990). A detailed study of retinal mosaics suggested that
even during day vision receptive field centers of ganglion cells
should (and do) overlap, increasingly so as the noise increases,
leading to a residual redundancy in the population code (Doi
and Lewicki, 2007; Borghuis et al., 2008), as reported (Puchalla et
al., 2005). These findings support a more nuanced view of ret-
inal coding (H. Barlow, 2001) than the initial redundancy
reduction hypothesis (H.B. Barlow et al., 1961), precisely
because they take into account the consequences of noise in
the input and circuit processing (Linsker, 1989; van Hateren,
1992; Karklin and Simoncelli, 2011). Another study in fly
vision focused on an interaction between two identified neu-
rons, to find that its magnitude increased as the visual input

became more and more noisy, as theoretically predicted by in-
formation maximization (Weber et al., 2012). Psychophysics of
texture sensitivity that arises downstream of the primary visual
cortex further suggested that the relevant neural mechanisms
operate according to the efficient coding hypothesis, yet in the
input-noise-dominated regime where decorrelation is not opti-
mal (Hermundstad et al., 2014). In light of these examples and
our results, efficient coding, understood more broadly as infor-
mation maximization (Chalk et al., 2018) rather than solely in
its noiseless decorrelating limit, should be revisited as a viable
candidate theory for representations in the central brain. More
generally, our approach enables a synergistic interplay between
statistical analysis, information theory, graph theory and tra-
ditional neural coding, and opens new ways for investigating
neural coding during complex/naturalistic behavior in other
systems.
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