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Natural selection is usually studied between mutants that differ in reproduc-
tive rate, but are subject to the same population structure. Here we explore
how natural selection acts on mutants that have the same reproductive rate,
but different population structures. In our framework, population structure
is given by a graph that specifies where offspring can disperse. The invading
mutant disperses offspring on a different graph than the resident wild-type.
We find that more densely connected dispersal graphs tend to increase the
invader’s fixation probability, but the exact relationship between structure
and fixation probability is subtle. We present three main results. First, we
prove that if both invader and resident are on complete dispersal graphs,
then removing a single edge in the invader’s dispersal graph reduces its
fixation probability. Second, we show that for certain island models higher
invader’s connectivity increases its fixation probability, but the magnitude
of the effect depends on the exact layout of the connections. Third, we
show that for lattices the effect of different connectivity is comparable to
that of different fitness: for large population size, the invader’s fixation
probability is either constant or exponentially small, depending on whether
it is more or less connected than the resident.
1. Introduction
Evolutionary dynamics is the study of how different traits arise and disappear
in a population of reproducing individuals. Each trait might confer a fitness
advantage (or disadvantage) on its bearer, thus in turn altering the probability
that the trait spreads through the population (an event called fixation) or disap-
pears (extinction). Besides the fitness advantage, another important factor in
determining the fate of a trait over time (its fixation or extinction) is the spatial
structure of the population [1–5]. For instance, the population might be sub-
divided into ‘islands’: an offspring of a reproducing individual then typically
stays in the same island, but occasionally it migrates to some nearby island.
The fixation probability of a trait then crucially depends on the dispersal
pattern, that is, the migration rates among the islands. Incorporation of
population structure into a model of selection dynamics substantially improves
the descriptive power of the model [1,5–11].

Evolutionary graph theory is a powerful framework for studying natural
selection in population structures with arbitrarily complex dispersal patterns
[12–19]. On an evolutionary graph (network), individuals occupy the nodes
(vertices), and the edges (links) specify where the offspring can migrate.
Graphs can represent spatial structures, contact networks in epidemiology,
social networks, and phenotypic or genotypic structures in biological popu-
lations [12,20–24]. The question is then: how does a graph structure affect the

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2023.0355&domain=pdf&date_stamp=2023-11-29
mailto:josef.tkadlec@iuuk.mff.cuni.cz
https://doi.org/10.6084/m9.figshare.16910170
https://doi.org/10.6084/m9.figshare.16910170
http://orcid.org/
http://orcid.org/0000-0002-1097-9684
http://creativecommons.org/licenses/by/4.0/


type A: mutant type B: resident

Figure 1. In epithelial tissues, different cell types align along different
lattice-like structures.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

20:20230355

2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

11
 D

ec
em

be
r 

20
23

 

fixation probability of a new mutant introduced into a back-
ground population of residents? Extensive research over the
past decade has produced many remarkable population
structures with various desirable properties [25–29]. As one
example, consider a mutation that increases the reproduction
rate of the affected individual. Population structures that
increase the fixation probability of such mutations, as com-
pared with the baseline case of unstructured (well-mixed)
populations, are known as amplifiers of selection. Many
amplifiers of selection are known [30–33].

In this work, we primarily consider mutations that do not
change the reproductive rate of the affected individual, but
rather its motility potential. That is, we consider mutants
which perceive the population structure through a graph
with additional edges (or with fewer edges). In nature, an
altered motility potential could arise in a variety of scenarios.
We give three examples.

First, consider a species occupying a region that is split by
a geographical barrier into two parts. If the mutation allows
the offspring to successfully cross the barrier, the mutants
will perceive the population structure as being well-mixed,
whereas the residents will continue perceiving it as being
split into two parts (islands). This can be due to differences
in migration potential between mutants and residents.

As a second example, consider structured multicellular
organisms. There, cells are arranged in symmetric lattice
structures known as epithelia. An epithelial tissue may be
described as a two-dimensional sheet defined by vertex
points representing wall junctions, one-dimensional edges
representing cell walls, and two-dimensional faces represent-
ing cells. The form of this tissue network is determined by the
extracellular matrix (ECM). The ECM is a network consisting
of extracellular macromolecules, collagen and enzymes that
provide structural and biochemical support to surrounding
cells. The composition of ECM varies between multicellular
structures [34–38]. Thus, when discussing somatic evolution
in multicellular organisms, the invading genotype might
differ in what network structure it is forming [36,39]. In
other words, each type, in the absence of the other type,
forms its own and different extracellular matrix. This leads
to different alignment of cells and thus a new population
structure (figure 1).

Carcinoma is yet another example of how the tissue
organization of the invader and resident types can differ
from each other. In this case, tumour cells normally have a
highly disorganized neighbourhood structure, due to the
variability in cell–cell adhesion and the lack of proper epi-
thelial programmes among tumour cells in the tumour
microenvironment [40,41]. Normal epithelial cells, on the
other hand, are typically organized in monolayers and form
geometric lattice-like patterns [42]. Additionally, aggressive
tumour cells, due to their high mesenchymal marker level,
can show higher motility relative to normal tissue cells [43].
These two facts, namely the lack of normal epithelial struc-
ture in tumours and higher motility in aggressive cancers,
can lead to substantial differences in invasion pattern and
potentially affect the outcome of evolutionary processes.

In order to model differences in the motility potential
within the framework of evolutionary graph theory, we rep-
resent the population structure as two graphs GA, GB

overlaid on top of each other on the same set of N nodes
[44]. The N nodes represent different sites, each occupied
by a single individual. The two graphs GA, GB represent
the dispersal patterns for the mutants and residents, respect-
ively. In other words, mutant offspring migrate along the
edges of GA, whereas resident offspring migrate along the
edges of GB.

We study the fixation probability ρ(GA, GB) of a single
neutral mutant which appears at a random node and per-
ceives the population structure as GA, as it attempts to
invade a population of residents which perceive the popu-
lation through GB. We assume that both graphs GA and GB

are connected. When the two structures GA and GB coincide,
the fixation probability of a neutral mutant is equal to 1/N,
regardless of the graph structure. By contrast, when the struc-
tures GA and GB differ, the fixation probability can be either
higher or lower than 1/N.

There is a large body of the literature on the evolution and
ecology of migration and dispersal [45–49], especially for
population structures formed by islands (also called patches,
demes or metapopulations) [50–53]. The present framework
provides a formal way to approach the motility potential as
a genotypic quality. Moreover, it enables a direct study of
both simple and arbitrarily complex population structures,
of any population size. In this way, the framework is a gener-
alization of the vast literature on migration and dispersal,
similarly to how evolutionary graph theory is a generaliz-
ation of the vast literature on evolution and ecology in
spatially structured populations [9,12].

Among the graph-theoretical approaches, other ways to
model motility and dispersal have been suggested in the lit-
erature [54–56]. They allow for the offsprings to disperse in
more complex forms and reach locations that are not directly
connected to the mother location. This introduces migration
potential as an independent quantity relative to the prolifer-
ation potential of the types [57–60]. In those cases, the
motility potential is representative of a random motion, and
it is typically decoupled from the reproduction events. For
example, Manem et al. [58] considered a model where
beside death–birth events, individual cell movements are
also included. They also considered one cell type to have
different motility potential than the other. It was observed
that the fixation probability of the mutants is reduced when
including individual cell movements. Such random motility
and motion has an anti-synergistic relationship with the
proliferation potential [55,57,58].

Here we show that, in contrast to random motility,
enhanced structured motility generally leads to an increase
in the fixation probability of the invading mutant. We do
this by considering three types of population structures.
First, we consider all 112 population structures on N = 6
nodes. By numerically calculating the relevant fixation



. . .

type A: mutant

type B: resident

Figure 2. Moran process with type-dependent dispersal patterns. In each dis-
crete time step, a random individual reproduces and the offspring proliferates
to a neighbouring node. Type A offspring (mutant, blue) migrate along the
edges of the blue graph GA, whereas type B offspring (residents, red) migrate
along the red edges of GB. The key quantity is the fixation probability ρ(G

A,
GB) that a single initial mutant successfully invades the population of
residents.
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probabilities, we show that increased motility potential is
positively correlated with increased fixation probability.
Moreover, we mathematically prove that for any population
size N the Complete graph KN is ‘locally optimal’ in a sense
described in the next section. However, we note that the
effect is subtle, and we identify specific circumstances in
which making mutants more (structurally) motile actually
decreases their fixation probability. Second, we consider
large population structures corresponding to island models,
and we show that the extent to which increased motility
helps the mutant fixate can vary considerably, depending
on the exact layout of the extra connections. Finally, we con-
sider large low-dimensional lattices, and we show that the
effect of altered structural motility is analogous to the effect
of altered reproductive rate: in the limit of large population
size, the fixation probability of a mutant is either constant
or exponentially small, depending on whether it is more or
less motile than the residents. This latter case of low-dimen-
sional lattices is relevant for the study of somatic evolution
in epithelial tissues and carcinoma.
20230355
2. Model
2.1. Standard Moran process on a graph
Within the framework of evolutionary graph theory [12], a
population structure is described as a graph (network),
where nodes (vertices) represent locations (sites) and the
graph connectivity defines the topology and the neighbour-
hood. There are N nodes and each node is occupied by a
single individual. Each individual is either of type A
(mutant) with fitness rA, or of type B (resident) with fitness
rB. The evolutionary dynamics is governed by the standard
stochastic discrete-time Moran birth–death process, adapted
to the population structure: at each time point, a single indi-
vidual is picked for reproduction, proportionally to its fitness.
This focal individual produces offspring (a copy of itself ),
and the offspring then migrates and replaces a random
neighbouring individual.

The probability of migration from node i to node j is given
by an N ×N dispersal matrix M ¼ ðmi,jÞNi,j¼1. Thus, for undir-
ected, unweighted graphs (which are the focus of this
work), the entries mi,j of the dispersal matrix M satisfy

mi;j ¼
1

degðiÞ , if nodes i and j are adjacent,

0, otherwise:

8<
:

(Here degðuÞ is the degree of node u, that is, the number of
nodes adjacent to u.)
2.2. Moran process on two graphs
It is commonly assumed that the dispersal matrix is indepen-
dent of the two types; that is, both types of individuals
perceive the population through the same population struc-
ture. Following the recent work of Melissourgos et al. [44],
here we study a more general case in which the dispersal
pattern depends on the type of the offspring that migrates.
Thus, we consider two graphs GA, GB and the corresponding

dispersal matrices MA ¼ ðmA
i,jÞNi,j¼1, MB ¼ ðmB

i,jÞNi,j¼1. That is,

any time a type A individual reproduces at a node i, the off-
spring replaces an individual at node j with probability mA

ij .
By contrast, the offspring of a type B individual reproducing
at node imigrates to node jwith probability mB

ij (figure 2). We

assume that both graphs GA and GB are connected.
The state of the population at any given time point is

described by a list n ¼ ðn1, . . ., nNÞ of N zeros and ones,
where ni = 1 denotes that node i is currently occupied by a
type A individual (mutant). The model is a Markov chain
with 2N possible states. Two of the states are absorbing,
and they correspond to homogeneous population consisting
purely of type A individuals ðstate n1 ¼ ð1, . . ., 1ÞÞ or type
B individuals ðstate n0 ¼ ð0, . . ., 0ÞÞ.
2.3. Questions and results
In this work, we study how differences in the migration and
dispersal pattern GA of mutants and GB of residents influence
the fate of a single random mutant which appears at a
random location. As a measure of the mutant success, we
use its fixation probability under neutral drift (that is, rA =
rB). We denote this quantity by ρ(GA, GB). It is known that
whenever the two types have the same dispersal pattern
(GA =GB), the fixation probability under neutral drift is
equal to 1/N, regardless of the graph structure [61]. Thus,
the regime of neutral drift provides a clean baseline and it
decouples the effect of a difference in population structure
from other effects. Specifically, we study the following
questions:

(i) Does increased motility increase or decrease the
mutant fixation probability?

(ii) Can the effect be quantified for simple, biologically
plausible structures, such as island models or low-
dimensional lattices?

To address the first question, in section Small graphs we
numerically compute the fixation probabilities ρ(GA, GB)
for all pairs GA, GB of graphs of small size. We find that,
generally speaking, increased motility potential (that is,
living on a graph with more edges) tends to increase the
fixation probability of the mutant. In particular, we prove
that the Complete graph is ‘locally optimal’ in the sense
that if residents live on a Complete graph and mutants
live on a graph that misses a single edge, then the mutant
fixation probability drops below the threshold 1/N (see
theorem A.1 in appendix A). However, we also identify
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Figure 3. Small populations N = 3. (a) There are four connected graphs G0, …, G3 on N = 3 labelled nodes. (b) The fixation probabilities ρ(GA, GB) for all 4 · 4 =
16 combinations. (c) When GA and GB are isomorphic but not identical, the fixation probability is not necessarily equal to 1/N. For instance, we have
rðS4, S04Þ ¼ 63=2088 0:303.
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special cases, in which an increase in the motility potential
decreases the fixation probability rather than increasing it.
This suggests that for arbitrary population structures the
effects of motility on the fixation probability are complex.
Given this complexity, we proceed to study pairs of specific,
biologically relevant structures.

Namely, in section Dense regular graphs we consider cer-
tain population structures that correspond to island models
with two equal islands. We show that two such structures
with the same total number of edges exhibit a substantially
different behaviour in the limit N→∞. This implies that the
effect of altered motility in dense regular graphs cannot be
easily quantified in terms of a single parameter (the total
number of edges). Then, motivated by tissue organization
in multicellular organisms, in section Lattice graphs we con-
sider one- and two-dimensional lattices. We show that in this
setting, the difference in motility can be quantified and it has
analogous effect to a difference in reproductive rate:
increased motility results in mutant fixation with constant
probability, whereas decreased motility causes the fixation
probability to be exponentially small.

2.4. Related work
The question of computing fixation probabilities for various
versions of Moran processes on graphs has been studied
extensively. In principle, for any population structure the fix-
ation probability can be computed numerically by solving a
system of linear equations [62]. However, since the size of
the system is generally exponential in the population size,
this approach is practically feasible only for very small popu-
lations, or for very specific population structures [28,63,64].
For large population sizes, there exist efficient approximation
algorithms either in the limit of weak selection [18,29,65,66]
or when the underlying graph is undirected [15,67]. The
two-graph setting was introduced recently by Melissourgos
et al. [44], who considered it primarily from the compu-
tational perspective, and extended the above algorithmic
results to a special case of mutants with substantial reproduc-
tive advantage (rA≫ rB) which perceive the population as a
Complete graph (GA =KN). They also considered certain
game-theoretical perspective in which residents and mutants
can choose their own graph structure, and they established
bounds for certain specific pairs of graphs, such as the Com-
plete graph invading the Star graph. By contrast, in this work
we consider the two-graph setting from a biological perspec-
tive, and we present structural results concerning mutants
with no reproductive advantage (rA = rB) who, similarly to
the residents, perceive the population structure either as an
island model or as a low-dimensional lattice. On top of
that, we answer a question stated in [44] related to the best-
response dynamics in the space of all graphs. Namely, we
show that while the Complete graph is locally optimal (see
theorem A.1 in appendix A), it is not always the best response
(figure 9).
3. Results
3.1. Small graphs
In this section, we consider population structures on N
labelled nodes, for small values of N. In this regime, the fix-
ation probability ρ(GA, GB) can be computed exactly, by
numerically solving a system of 2N linear equations following
standard methods [62].

For N = 2, there is only one connected graph and, by sym-
metry, the fixation probability of a single type A individual is
equal to 1/2. For N = 3, there are four undirected graphs: a
single graph G0 with three edges (equivalently a Complete
graph, or a Cycle), and three different graphs G1, G2, G3

with two edges each. The corresponding fixation probabilities
are given in figure 3b. Note that ρ(GA, GB) = 1/N when GA

and GB are identical, but in general ρ(GA, GB) could be
both more than 1/N or less than 1/N, even when GA and
GB are isomorphic (if they are not identical), see figure 3c.

For general N, there are 2N
2�N pairs of graphs on N

labelled nodes. Already for N = 6 this is more than a billion
pairs, hence in what follows we focus on the case when one
of the graphs GA, GB is a Complete graph, denoted KN. We
use a short-hand notation ρ(G) = ρ(G, KN), for the fixation
probability of a single mutant which perceives the population
structure as a graph G and invades a population of residents
which perceive the population structure as a Complete graph
KN. Analogously, we denote by rwðGÞ ¼ rðKN , GÞ the fixation
probability of a single mutant living on a Complete graph KN

and invading a population of residents which live on G.
Figure 4 shows ρ(G) and rwðGÞ for all undirected graphs on
N = 6 nodes, based on the number of edges in G.

3.2. Maximal and minimal fixation probability
Among the graphs on six nodes, fixation probability ρ(G) is
maximized when G is the Complete graph K6. Recall that
ρ(KN) = 1/N, for any integer N. In relation to this, we prove
that ρ(KN) is ‘locally maximal’: that is, we show that if one
edge is removed from the Complete graph KN, then the result-
ing graph MN satisfies ρ(MN) = (N− 2)/(N− 1)2 < 1/N = ρ(KN).
Similarly, we prove that KN is locally minimal with respect
to rwðGÞ: we show that rwðMNÞ ¼ 1=ðN � 1Þ . 1=N, see
theorem A.1 in appendix A.
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Note that, in contrast, for N = 6 the fixation probability
ρ(G) is minimized for the Star graph S6. Here a Star graph,
denoted SN, consists of a single node (called centre) connected
to all other nodes (called leaves). It is known [44] that ρ(SN)≤
1/(N− 2)! and rwðSNÞ ! 1 as N→∞.

3.3. Relation to the number of edges
In general, fixation probability ρ(G) tends to be higher for
graphs G with more edges. However, this is only a rule of
thumb. For instance, the Lollipop graph LP6 has a relatively
low fixation probability ρ(LP6), given its number of edges.
Here a Lollipop graph, denoted LPN, consists of a Complete
graph on N− 1 nodes and a single extra edge connecting
the last node. Moreover, adding edges to a graph G to pro-
duce a graph G0 sometimes does not increase the fixation
probability but rather decreases it: this is illustrated by the
Pan graph P6 and the Treetop graph TT6 for which we have
ρ(P6) > 0.071 and ρ(TT6) < 0.065. Here a Pan graph, denoted
PN, consists of a cycle on N− 1 nodes and a single extra
edge connecting the last node. In a Treetop graph, denoted
TTN, the node with degree 3 is further connected to all
other nodes. (We note that for the intermediate graph I6
obtained by adding only one edge to P6, the fixation
probability ρ(I6)≈ 0.070 is in between those two values.)

3.4. Regular graphs
Recall that a graph is regular if all its nodes have the same
degree (that is, the same number of neighbours). We make
two observations.

First, recall that when both the mutants and the residents
perceive the population structure as the same regular graph
RN, the isothermal theorem of [12] states that the mutant fix-
ation probability is equal to (1− 1/r)/(1− 1/rN), where r is
the mutant fitness advantage. That is, in terms of the fixation
probability, all regular graphs are indistinguishable from each
other. One could hope that the same holds for mutants which
live on regular graphs and invade the residents on the Com-
plete graph. That is, one could hope that for any two regular
graphs RN, R0

N we have ρ(RN, KN) = ρ(R0
N, KN). However,

figure 4 shows that this generalization does not hold: for
two different regular graphs RN and R0
N (even with the

same degree) the fixation probabilities ρ(RN, KN) and ρ(RN
0,

KN) are generally different, as witnessed by the two 3-regular
graphs with N = 6 nodes and 9 edges.

Second, figure 4 shows that, given a fixed number of
edges, the fixation probability ρ(G) is higher for regular (or
almost regular) graphs as compared with non-regular
graphs. For instance, among the connected graphs with six
edges the fixation probability is maximized by the Cycle
graph C6 which is regular. Similarly, among the graphs
with five edges it is maximized by the Line graph L6 which
is almost regular. Here a Cycle graph, denoted CN, is the con-
nected graph where each node is connected to two
neighbours, and a Line graph, denoted LN, is the Cycle
graph with one edge missing. However, we prove that the
Line graph LN generally does not maximize the fixation prob-
ability among the connected graphs with N− 1 edges (so-
called trees): in particular, direct computation for N = 8
shows that the graph G8 consisting of three paths of lengths
2, 2 and 3 meeting at a single node satisfies ρ(G8) > 0.0098 >
0.0095 > ρ(L8).
3.5. Dense regular graphs
As suggested by figure 4, regular graphs G have high fixation
probability ρ(G), compared with other graphs with the same
number of edges. Here we consider certain simple regular
graphs that contain approximately half of the total possible
number of edges. We show that for some such graphs, the fix-
ation probability is comparable to that of a Complete graph,
whereas for other graphs it is substantially smaller. Thus, the
isothermal theorem [12] does not generalize to the setting
with two different graphs.

Given a population size N (with N even), let BN =KN/2,N/2

be a (complete) Bipartite graph with equal parts N/2, N/2 and
let TN be a Two-clique graph obtained by adding N/2 match-
ing edges to a union of two disjoint Complete graphs of size
N/2 each, see figure 5a. Note that both BN and TN have pre-
cisely (1/4)N2 edges, which is roughly half of the edges of
KN. (The graph KN has (1/2)N(N− 1)≈ (1/2)N2 edges.)
Also, note that both BN and TN represent populations



K8

B8

T8

complete graph

bipartite graph

two-clique graph

mutants on (KN, BN, TN) invading KN mutants on KN invading (KN, BN, TN)(a) (b) (c)

0
0

0.2

0.4

0.6
N

 ∙ 
ρ(

G
,K

N
)

0.8

1.0

1.2

1.4

0

0.2

0.4

0.6

N
 ∙ 
ρ(

K
N

,G
)

0.8

1.0

1.2

1.4

20 40 60 80
population size, N

100 0 20 40 60 80
population size, N

100

Figure 5. Dense regular graphs. (a) In a (complete) Bipartite graph BN and a Two-clique graph TN, each node is connected to N/2 other nodes (here N is even).
(b) When the mutant lives on BN, the fixation probability satisfies ρ(BN)≈ 0.82 · 1/N. By contrast, when the mutant lives on TN, the fixation probability ρ(TN) tends
to zero faster than 1/N. (c) When the residents live on BN or TN, we have rwðBNÞ � 1:1 � 1=N and rwðTNÞ � 1:4 � 1=N.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

20:20230355

6

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

11
 D

ec
em

be
r 

20
23

 

subdivided into two large islands: in the case of BN, the off-
spring always migrates to the opposite island, whereas in
the case of TN, the offspring mostly stays in the same island
and it migrates only rarely (namely with probability of the
order of 1/N).

We prove that ρ(BN) > 0.58/N (see theorem B.1 in appen-
dix B). Since ρ(KN) = 1/N, this implies that missing roughly
half of the edges only reduces the fixation probability by a
constant factor, independent of the population size N. In
fact, numerical computation shows that N · ρ(BN)≈ 0.82,
whereas for the Two-clique graph we observe N · ρ(TN)→ 0,
see figure 5b.

The intuition for this distinction is as follows. On both
graphs, the state of the system at any given time point is com-
pletely described by the frequencies NL∈ [0, N] and NR∈ [0,
N] of mutants in the left and the right half. On BN, the two fre-
quencies remain roughly equal throughout the process (NL≈
NR): indeed, once say NL≫NR, more mutant offspring is pro-
duced on the left and they migrate to the right, thereby helping
balance the numbers again. By contrast, on TN the mutants
migrate rarely, thus the lineage produced by the initial
mutant remains trapped in one half for substantial amount
of time. Throughout that time, the mutants are ‘blocking’
each other from spreading more than they would block each
other if they were split evenly between the two halves:
indeed, with all mutants in one half, the probability that a
reproducing mutant replaces another mutant (thus not
increasing the size of the mutant subpopulation) is twice as
large, as compared with the situation where the mutants are
evenly split. For small mutant subpopulations, this effect is
non-negligible and it causes the fixation probability ρ(BN) to
decay faster than inversely proportionally to N.

Regarding rw, we observe N � rwðBNÞ � 1:11 and the data
on N � rwðTNÞ is unclear, see figure 5c. While we believe that
N � rwðTNÞ � 1:4, it is conceivable that N � rwðTNÞ tends to a
larger constant or even grows unbounded. The intuition is
that when mutants live on a Complete graph KN, the off-
spring is equally likely to migrate to any location. By
randomness, the condition NL≈NR is thus maintained
throughout most of the early stages of the process. Therefore,
as with ρ(BN), both rwðBNÞ and rwðTNÞ are inversely pro-
portional to N. To sum up, the graphs BN and TN show a
considerably different behaviour in terms of ρ but a qualitat-
ively comparable behaviour in terms of rw.

3.6. Lattice graphs
Here we study sparse regular graphs, specifically lattice
graphs. Lattices exist in any number of dimensions. We
focus on one- and two-dimensional lattices, since those are
biologically relevant and amenable to our computational
techniques. For each dimension, we study the effect of
increased or decreased connectivity (degree) of the lattice
on the fixation probability of an invading mutant.

3.6.1. One-dimensional lattices
In one dimension, we consider circulation graphs CirdN (already
studied in this context from a different point of view, see [44]).
For a fixed even integer d, a d-Circulation graph, denoted CirdN ,
consists of N nodes arranged in a cycle, where each node is
connected to d other nodes, namely the next d/2 nodes and
the previous d/2 nodes in the cyclic order, see figure 6a.

To shorten the notation, we denote by r1DN ðd1, d2Þ ¼
rðCird1N , Cird2N Þ the fixation probability of a mutant living on a
one-dimensional lattice Cird1N with degree d1 versus a
population of residents living on a one-dimensional lattice
Cird2N with degree d2. Note that when d1 = d2 = d then
r1DN ðd, dÞ ¼ 1=N.

When the degrees d1, d2 of the mutant and resident
graph differ, the fixation probability crucially depends
on which of the two degrees is larger. When the mutant
graph has a lower connectivity (d1 < d2) then r1DN ðd1, d2Þ
tends to 0 exponentially quickly as N→∞, see figure 6b. By
contrast, when the mutant graph has a higher connectivity
(d1 > d2) then r1DN ðd1, d2Þ tends to a positive constant c that
depends on d1 and d2, see figure 6c. Specifically, for large N
we observe that r1DN ð4, 2Þ � 0:16, r1DN ð6, 2Þ � 0:17 and
r1DN ð6, 4Þ � 0:09.

Those results are in agreement with bounds 0:11 �
r1DN ð4, 2Þ � 0:25 that we prove analytically by a stochastic
domination argument (see theorem C.1 in appendix C). The
intuition behind the argument is that once the mutants form
a contiguous block of a large size, the block is more likely to
expand rather than to diminish at both interfaces. Indeed,



Cir9
2

mutants on a denser circulationmutants on a sparser circulation

Cir9
4

Cir9
6

1-D lattices

ρ(CirN
4 , CirN

2)

ρ(CirN
6 ,CirN

2)

ρ(CirN
6 , CirN

4 )

ρ(Cir
N

2, Cir
N

4)

ρ(Cir
N
4, Cir

N
6)

ρ(Cir
N 2

, Cir
N 6)

1/N

1/N

(b)(a) (c)

0 5 10 15 20 25 30
population size, N

0

0.05

10–5

10–4

0.001

0.010

0.100

0.10

0.15

0.20

0.25

10 20 30 40 50
population size, N

ρ(
C

ir
N

d 1
, C

ir
N

d 2
)

Figure 6. Overlaying one-dimensional lattices with different connectivities. (a) A circulation graph CirdN is a one-dimensional lattice with periodic boundary and
connectivity (degree) d. We consider d∈ {2, 4, 6}. (b) When mutants live on a less connected graph (d1 < d2), their fixation probability decays to 0 at an expo-
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equations. The values for N≥ 14 are obtained by simulating the process 105 times and reporting the proportion of the runs that terminated with the mutant
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the probability of gaining the boundary node is the same as
losing the (other) boundary node but, on top of that, mutants
could skip the boundary node, invade the interior of the resi-
dent territory and only after that gain the skipped node. This
event has a non-negligible probability of happening, hence
there is a positive bias favouring the spread of mutants. For
a formal proof, see theorem C.1 in appendix C.
3.6.2. Two-dimensional lattices
In two dimensions, we consider graphs drawn on a square
lattice with periodic boundary condition. For instance, by
connecting each node to its four closest nodes (Von Neumann
neighbourhood), we obtain a graph Sq4N , see figure 7a.
Similarly, by connecting to eight closest nodes (Moore neigh-
bourhood) we obtain a graph Sq8N . We also consider other
graphs SqdN with different connectivities d∈ {6, 12, 20}.
We again shorten the notation by denoting r2DN ðd1, d2Þ ¼
rðSqd1N , Sqd2N Þ.
The results are analogous to the case of one-dimensional
lattices. When the mutants live on a less connected lattice,
their fixation probability tends to 0 exponentially quickly.
By contrast, when they live on a more densely connected
lattice, their fixation probability tends to a constant as the
population size N tends to infinity (figure 7).

3.6.3. Effective fitness compared with complete graphs.
The behaviour of the fixation probability for pairs of low-
dimensional lattices is reminiscent of the behaviour of the fix-
ation probability ρ(KN; r) of a single mutant with relative
reproductive rate r≠ 1 in a well-mixed population of N− 1
other residents. In that setting, we have ρ(KN; r) = (1− 1/r)/
(1− 1/rN). For any fixed r≠ 1, this formula exhibits one of
two possible behaviours in the limit N→∞. When r < 1
then ρ(KN; r) decays approximately as 1/rN. By contrast,
when r > 1 then it tends to a positive constant 1− 1/r.
(When r = 1 we have ρ(KN; r) = 1/N by symmetry.) This is a
similar dichotomy to the one we observed in the case when
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mutants and residents perceive the population structure as
two lattices with different connectivities.

In other words, enabling a neutral mutant to live on a
more densely connected lattice has a comparable effect on
its fixation probability as giving it a certain relative reproduc-
tive advantage. Formally, given a population size N and two
lattices LN, L0N we define the effective fitness, denoted r(LN,
L0N), as the unique number r such that

rðLN , L0NÞ ¼ rðKN ; rÞ:
In other words, the effective fitness is such a number r(LN,
L0N), that a neutral mutant on a lattice LN invading a lattice
L0N has the same fixation probability as a mutant with relative
reproductive advantage r(LN, L0N) in a well-mixed
population.

For pairs of low-dimensional lattices with different
connectivities d, d0, the effective fitness can be computed
from the data presented above, see figure 8. We observe
that while the effective fitness depends on the connectivities
d, d0 of the two lattices and on their dimensionality, it is
mostly independent of the population size N.
4. Discussion
In this work, we studied the effect of mutations that, rather
than altering the reproductive rate of the affected individual,
alter how the individual experiences the population structure.
To that end, we considered a powerful framework based on
the classical Moran birth–death process on graphs, in which
the two types of individuals (the novel mutant and the exist-
ing residents) perceive the population structure through
different graphs. Past evolutionary graph models have dis-
cussed inclusion of motility potential as a secondary
parameter, besides reproductive rate or fitness [54,56]. Our
approach generalizes this to the case where the whole
migration matrix is genotype dependent, and thus popu-
lation structure is determined by two graph structures, each
for one competing genotype.

As the key quantity, we studied the probability ρ(GA, GB)
that a single neutral mutant which perceives the population
structure as a graph GA successfully invades the population
of residents which perceive the population structure as a
graph GB. For small population sizes, we computed the pair-
wise fixation probabilities numerically, and we observed that
ρ(GA, GB) tends to be higher when GA is regular and when
it contains many edges (that is, the mutant is more motile).
We note that the latter aspect contrasts with other models of
motility, where an increased dispersal potential of the
mutant generally diminishes the fixation probability [55,57,58].

Next, motivated by island models, we considered two
regular graphs with the same total number of edges, and
we showed that the corresponding fixation probabilities are
asymptotically different. In particular, as the population
size N increases, the fixation probabilities decay at different
rates. Thus, the classic isothermal theorem of [12] does not
translate over to the setting in which population structures
are type-specific.

Finally, we studied the biologically relevant cases of one-
and two-dimensional lattices and we showed that the
dispersal radius has similar effect on the fixation probability
as the reproductive rate. Recall that in large unstructured
populations, a beneficial mutation fixates with constant prob-
ability, whereas the fixation probability of a deleterious
mutation is exponentially small. Likewise, neutral mutants
on lattices with larger dispersal radius have a constant
chance of successfully fixating, whereas having lower disper-
sal radius leads to fixation of the mutant only with
exponentially small probability. Thus, in terms of the fixation
probability of the mutant, perceiving the population through
a more densely connected lattice is effectively equivalent to
having an increased reproductive rate.

We view the presented model as a generalization of selec-
tion dynamics that is not only needed, but also necessary. For
example, for the multicellular structures organized in tissues,
the extracellular matrix is produced by a complex mechanism
which involves the epithelial cells themselves. To highlight
the effect of structural differences between two competing
types, we primarily considered the case that mutants might
not have different reproductive rate, but have a somewhat
altered extracellular matrix. An important example is evol-
ution of carcinoma in epithelial tissues. Malignant tumour
cells cannot form the same ligands needed for ECM in a par-
ticular tissue. Instead, the organization of tumour cells is
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Figure 9. Best-response graphs. The Complete graph is sometimes not the
best response when optimizing the fixation probability ρ. (a) The resident
population living on the Star graph S6 (red) is easier to invade by mutants
living on M6 (blue) than by mutants living on the Complete graph K6. (b) The
mutants living on a graph G6 (blue) have a harder time invading the graph
G06 than they have invading the Complete graph K6.
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often reminiscent of random aggregation of cells or an
unstructured mesh. This difference in population structure
of normal cells and tumour cells can confer significant advan-
tage, or disadvantage, for the tumour cells invading the
tissue. The tissue mechanics has been studied in physical
models in the past. Recently, selection dynamics has been
studied using biomechanical models of tissue formation [68].

In this work, we consider the birth–death dynamics where
an individual is selected for reproduction and the offspring
replaces one neighbour. Alternatively, one could consider a
death–birth version of the model, where an individual is
chosen to die first and then one neighbouring cell replaces the
void created with an offspring [12,18]. Notice that even in the
neutral limit of rA= rB, the two update rules would yield differ-
ent results [69–72]. This has to do with the fact that effective
fitness of each genotype depends not only on the reproduction
rate, but also on the number of neighbours each genotype sees
in its neighbourhood. On average, if a type A perceives more
neighbours as a given location it will have higher chance to
replace a neighbouring type B. We leave the study of death–
birth process in this context for future work.

Moving on to more complex (though perhaps less realis-
tic) population structures, many natural questions arise. We
conclude by commenting on three of them. Recall that for
any graph GN on N nodes we have ρ(GN, GN) = 1/N [61].

First, figure 4 suggests that rðGA
N , KNÞ , 1=N for all mutant

graphs GA
N = KN . While we can prove that ρ(MN, KN) < 1/N for

a graph MN that misses a single edge (see theorem A.1 in
appendix A), the general claim is left as an open problem.
Similarly, we do not know whether rðKN , GB

NÞ . 1=N holds
for all resident graphs GB

N = KN (we do know that it holds
for GB

N ¼ MN).
Second, following the game theory perspective, Melissour-

gos et al. [44] asked what is the best mutant response to a given
resident graph. That is, given a resident graph GB

N on N nodes,
which mutant graph GA

N on N nodes maximizes the fixation
probability rðGA

N , G
B
NÞ? Our results for small graphs show

that although the Complete graph KN is frequently the best
mutant response, it is not always the case, see figure 9. In par-
ticular, when the residents live on a Star graph S6, the
population is easier to invade through a graph M6 that
misses a single edge, rather than through the Complete
graph K6—direct computation gives ρ(M6, S6) > 0.643 >
0.641 > ρ(K6, S6). We note that the difference is minor—both
mutant graphs M6 and K6 provide a fixation probability well
over the neutral threshold value 1/6≈ 0.167.

For the complementary question of what is the best resi-
dent response GB

N to a given mutant graph GA
N , the situation
is analogous: while the Complete graph is generally hard to
invade, it is sometimes not the hardest one. As an example
(see figure 9b), when mutants live on a graph G6 then for the
graph G0

6 we have ρ(G6, G0
6) < 0.025 < 0.026 < ρ(G6, K6).

Third, consider the case when mutants and residents live
on different graphs GA

N = GB
N with comparable edge den-

sities. In this case, we expect that fixation probabilities
rðGA

N , G
B
NÞ and rðGB

N , G
A
NÞ typically drop below 1/N. The

intuition is that the mutant subpopulation tends to form clus-
ters in GA

N but not necessarily in GB
N . As a consequence,

mutants block each other from spawning onto residents but
they do not guard each other from being replaced by resi-
dents. However, sometimes the opposite inequality
rðGA

N , G
B
NÞ . 1=N holds and in general the strength of the

effect appears difficult to quantify. In particular, we do not
know the answer to the following question: do there exist
two regular graphs such that both ρ(GN, G0

N) > 1/N and
ρ(G0

N, GN) > 1/N? We note that if the word ‘regular’ is
dropped, the answer is ‘no’, as witnessed by the two Star
graphs depicted in figure 3.

In conclusion, we have introduced a novel model of sto-
chastic selection dynamics in structured populations, where
motility potential for each type is reflected by how that type
sees the neighbourhood. This has potential importance for
modelling dynamics of aggressive solid tumours in epithelial
tissues. The generalized theoretical framework corresponds
to a migration matrix or evolutionary graph structure specific
to each genotype. Our main observation is that, as a rule of
thumb, if a type perceives a higher number of neighbours
then it has a selection advantage. We also highlight several
counter-examples, especially in small population sizes.
Another important observation is that if the two graphs are
regular and have the same degree connectivity, the fixation
probability is not necessarily 1/N, but its value depends on
how the two graphs are structured and overlaid. This might
be somewhat surprising, from the perspective of the isother-
mal theorem. For a more applied case of large lattices, we
report the equivalent fitness advantage that a mutant type
gains by perceiving the population structure through a more
densely connected lattice. Our current model and results can
be the basis of a more biophysically inspired model of
cancer progression where differences between normal and
tumour extra-cellular matrix are included.
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Appendix A. The Complete graph is locally
optimal
Here we show that when it comes to ρ(GN) and rwðGNÞ, the
Complete graph is locally optimal. That is, we show that the
graphMN obtained fromKN by removing a single edge satisfies
ρ(MN) = ρ(MN, KN) < 1/N and rwðMNÞ ¼ rðKN , MNÞ . 1=N.
ing.org/journal/rsif
J.R.Soc.Interface

20:20230355
Theorem A.1. Fix N≥ 2 and let MN be a graph obtained from the
Complete graph KN by removing a single edge. Then

rðMN , KNÞ ¼ N � 2

ðN � 1Þ2 ,
1
N

and

rðKN , MNÞ ¼ 1
N � 1

.
1
N
:

Proof. Fix N≥ 2. First we focus on ρ(MN) = ρ(MN, KN). Denote
by w(a, b) the fixation probability starting from a configuration
with amutants among theN− 2 fully connected vertices and b
mutants among the other two vertices that miss one edge. The
values {w(a, b)| 0≤ a≤N− 2, 0≤ b≤ 2} are the unique solution
to the following system of linear equations:

— w(0, 0) = 0;
— w(N− 2, 2) = 1; and
— wða, bÞ ¼ P

ða0 ,b0Þ pða,bÞ!ða0 ,b0Þ � wða0, b0Þ, where p(a,b)→(a0 ,b0) is
the probability that, in a single step of the Moran process,
we transition to a configuration with a0 mutants among
the N− 2 fully connected vertices, and b mutants
among the other two vertices.
We claim that

wða, bÞ ¼
ðaþ bÞðn� 2Þ þ 1

2
bðb� 1Þ

ðn� 1Þ2

is a solution to this system.
Clearly, the formula satisfies w(0, 0) = 0 and w(n− 2, 2) = 1.

Since the equation in the last item in the list above can be
rewritten as

X
ða0 ,b0Þ

pða,bÞ!ða0 ,b0Þ � (wða0, b0Þ � wða, bÞ) ¼ 0,

it suffices to check that given an arbitrary configuration (that
is, any 0≤ a≤ n− 2 and 0≤ b≤ 2), the expected value of the
formula after a single transition does not change.

The transition probabilities are as follows:

(i) pbþ ; Pr½ða, bÞ ! ða, bþ 1Þ� ¼ ða=nÞ � ð2� bÞ=ðn� 1Þ,
(ii) paþ ; Pr½ða, bÞ ! ðaþ 1, bÞ� ¼ ða=nÞ � ðn� 2� aÞ=

ðn� 1Þ þ ðb=nÞ � ðn� 2� aÞ=ðn� 2Þ,
(iii) pb� ; Pr½ða, bÞ ! ða, b� 1Þ� ¼ ðn� a� bÞ=n � b=

ðn� 1Þ,
(iv) pa� ; Pr½ða, bÞ ! ða� 1, bÞ� ¼ ðn� a� bÞ=n � a=

ðn� 1Þ.

Ignoring the shared denominator (n− 1)2, the expected
change in the value produced by the formula in the respect-
ive cases is as follows:

(i) Δwb+ = +n− 2 + b,
(ii) Δwa+ = +n− 2,
(iii) Δwb− =−(n− 2 + b− 1),
(iv) Δwa+ =−(n− 2).

Denoting I = {b+, a+, b−, a−} we compute

Dw ;
X
i[I

pi � Dwi

¼ 1
nðn� 1Þ �

h
að2� bÞðn� 2þ bÞ þ aðn� 2� aÞðn� 2Þ

þ bðn� 2� aÞðn� 1Þ � ðn� a� bÞbðn� 2þ b� 1Þ

� ðn� a� bÞaðn� 2Þ
i
:

Grouping the terms with n raised to the same power,
the terms in the square brackets on the right-hand side can
be rearranged as n2 ·X + n ·Y +Z, where X = a + b− b− a = 0,
next

Y ¼ ð2a� abÞ þ ð�2a� a2 � 2aÞ þ ð�2b� ab� bÞ
� ð�ab� b2 � 2bþ b2 � bÞ � ð�2a� a2 � abÞ ¼ 0,

and finally

Z ¼ ð�ab2 þ 4ab� 4aÞ þ 2a2 þ ðabþ 2bÞ
þ ðb3 þ ab2 � 3b2 � 3abÞ � ð2a2 þ 2abÞ

¼ b3 � 3b2 þ 2b ¼ bðb� 1Þðb� 2Þ:
Since Z = 0 for any admissible integer b (recall 0≤ b≤ 2), we
are done.

Regarding rwðMNÞ, a completely analogous proof estab-
lishes a formula

wða, bÞ ¼ ðaþ bÞðn� 2Þ þ bð3� bÞ=2
ðn� 1Þ2 ,

which implies the desired

rwðMNÞ ¼
1 � ðn� 2Þ þ 1 � 2

2
ðn� 1Þ2 ¼ 1

n� 1
: B
Appendix B. Bipartite graph BN is within a
constant factor of KN
Recall that for N even we denote by BN the (complete)
Bipartite graph with parts of sizes N/2 and N/2. We prove
that for N large, both ρ(BN) and rwðBNÞ are within a constant
factor of 1/N. Recall that numerical experiments in the main
text suggest that ρ(BN)≈ 0.82/N and rwðBNÞ � 1:1=N, as
N→∞.

Theorem B.1. Fix N≥ 2 and let BN the (complete) Bipartite graph
with parts of sizes N/2 and N/2. Then

rðBNÞ . 1
e� 1

� 1
N

and rwðBNÞ , e
e� 1

� 1
N
,

where e8 2:718. . . is Euler’s number.

Proof. First we bound ρ(BN). Consider a time point at which
there are n mutants in total: k of them in one part and n− k
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in the other part. The probability p+(k, n− k) that in the next
time step we gain a mutant equals

pþðk, n� kÞ ¼ k
N

�N=2� ðn� kÞ
N=2

þ n� k
N

�N=2� k
N=2

¼ kðN � 2nþ 2kÞ þ ðn� kÞðN � 2kÞ
N2

¼ n �N � 4kðn� kÞ
N2 :

Since 4k(n− k)≤ n2 for any k ¼ 0, . . ., n (and with equality
only for k = n/2), we can bound

pþðk, n� kÞ � n �N � n2

N2 ¼ nðN � nÞ
N2 :

On the other hand, the probability p−(k, n− k) that in the next
time step we lose a mutant equals

p�ðk, n� kÞ ¼ N � n
N

� n
N � 1

and thus

p�ðk, n� kÞ
pþðk, n� kÞ �

N
N � 1

; t:

Since this expression is independent of k and n, plugging it in
the standard formula for the absorption probability of a one-
dimensional Markov chain we get

rðBNÞ � 1

1þPN�1
i¼i ti

¼ t� 1
tN � 1

:

Since t− 1 = 1/(N− 1) > 1/N and

tN ¼ N
N � 1

� �N

¼ 1þ 1
N � 1

� �N

� e,

where e8 2:718 is Euler’s number, we thus obtain

rðBNÞ . 1
e� 1

� 1
N

.
0:58
N

:

Regarding rwðBNÞ, a completely analogous proof yields

pþðk, n� kÞ ¼ n
N

�N � n
N � 1

and

p�ðk, n� kÞ ¼ n �N � 4kðn� kÞ
N2 � nðN � nÞ

N2 :

Therefore,

p�ðk, n� kÞ
pþðk, n� kÞ �

N � 1
N

; t:

Finally, since tN = (1− 1/N )N≤ 1/e, we get

rwðBNÞ � t� 1
tN � 1

� 1=N
1� 1=e

¼ e
e� 1

� 1
N
: B
Appendix C. One-dimensional lattices
Recall that for a fixed even integer d we denote by CirdN
the graph whose N vertices, labelled 1, …, N, are arranged
along a circle, and each vertex is connected with d/2 closest
vertices clockwise and d/2 closest vertices counter-clockwise.
Also, recall that given two connectivities d1, d2 we shorthand

r1DN ðd1, d2Þ ¼ rðCird1N , Cird2N Þ:
Figure 6 suggests that when d1 > d2 then the expression
r1DN ðd1, d2Þ remains bounded away from 0 as N→∞, Below
we prove this in the special case (d1, d2) = (4, 2), that is,
when the mutants can place their offspring on the next two
vertices and on the preceding two vertices, whereas the resi-
dents can place their offspring only on the next one vertex
and on the preceding one vertex.

Theorem C.1. We have

0:138 , lim
N!1

r1DN ð4, 2Þ , 0:34:

Proof. By a configuration, we mean a subset of vertices occu-
pied by mutants. We denote the possible configurations as
a sequence of numbers (corresponding to blocks of consecu-
tive mutants) and symbols ‘°’ (corresponding to individual
residents). That is, for instance the notation k ° 1 denotes a
configuration with k consecutive mutants, then one resident,
then one more mutant (and residents before and after).

Proof of the upper bound. This is straightforward. We say
that a step of the Moran process is active if it changes the con-
figuration. Given a single mutant, there are two possible
active steps leading to immediate extinction (each occurs
with probability equal to 1/N · 1/2). On the other hand,
there are four possible active steps where mutants reproduce
(each occurs with probability equal to 1/N · 1/4). Thus, in
total, with probability (2/2)/(2/2 + 4/4) = 1/2 the first
active step results in the mutant extinction, hence
r1DN ð4, 2Þ � 1=2.

Accounting for trajectories that never reach a configur-
ation with more than m mutants, we can push this upper
bound lower: for instance, taking m = 2, denote by x, y, z
the extinction probabilities from configurations 1, 2, 1 ° 1,
respectively. Suppose that N≥ 5 and we are currently at con-
figuration 1. With probability (1/N ) · 2/2, one neighbour of
the single mutant is selected for reproduction and the off-
spring replaces the mutant, resulting in mutant extinction.
With probability (1/N ) · 2/4 the mutant reproduces onto a
neighbour and we reach a configuration 2. Similarly, with
probability (1/N ) · 2/4 the mutant offspring ‘skips’ the
neighbour, resulting in configuration 1 ° 1. Otherwise, we
remain at configuration 1. Thus, conditioning on the first
active step (figure 10a) we obtain

x ¼ 2=2 � 1þ 2=4 � yþ 2=4 � z
ð2=2Þ þ ð2=4Þ þ ð2=4Þ ¼ ð1=2Þ þ ð1=4Þyþ ð1=4Þz:

Likewise, we get

y � 6=4 � 0þ 2=2 � x
ð6=4Þ þ ð2=2Þ ¼ ð2=5Þx and

z � 6=4 � 0þ 4=2 � x
ð6=4Þ þ ð4=2Þ ¼ ð4=7Þx,

hence x≥ (1/2) + 1/4 · (2/5)x + 1/4 · (4/7)x. This rewrites as
x≥ 35/53, hence r1DN ð4, 2Þ � 18=53 , 0:34 for any N≥ 5.

Proof of the lower bound. For k≥ 1 denote by ak the fixation
probability from configuration k. Similarly, for k≥ 1 denote by
bk the fixation probability from the configuration k ° 1. Then
a0 = 0 and

a1 ¼ ð2=2Þa0 þ ð2=4Þa2 þ ð2=4Þb1
ð2=2Þ þ ð2=4Þ þ ð2=4Þ ¼ ð1=4Þða2 þ b1Þ:



k ° 1

(k – 1) ° ° 1

k – 1 k k + 1 k + 2

k ° 2

(k – 1) ° 1 (k + 1) ° 1

1 ° k ° 1 k ° 1 ° 1

2/4

2/2 4/4

1/41/4

2/4

1/4

3/4

1/2

2/2

1/2

� k ° 1� k ° 1

ak

bk

xk yk zkwk

1 ° 1

0 1

2

2/2

2/2

4/2

2/4

2/4

6/4

6/4

x

y

z

............

......

......

(a) (b)

Figure 10. Proof of theorem C.1. (a) Upper bound. Boxes represent configurations. Mutants are shown as blue discs, residents as red crosses. Blue (red) transitions
correspond to mutants (residents) reproducing. A fraction a/b denotes that there exist a relevant edges, each pointing from a vertex with degree b. With a constant
probability, the random evolutionary trajectory leads to mutant extinction without ever reaching a configuration with three or more mutants. (b) Lower bound. We
consider a process M↓ where, any time a configuration below the dashed line is reached, we remove a mutant to instead reach one of the configurations above the
dashed line. We then compute the fixation probability in M↓, which is a lower bound.
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For k≥ 2 we have (figure 10b)

ak ¼ ð2=2Þak�1 þ ð2=4Þbk þ ð4=4Þakþ1

ð2=2Þ þ ð2=4Þ þ ð4=4Þ
¼ ð1=5Þð2ak�1 þ bk þ 2akþ1Þ:

For analogous expressions of bk, we would need to introduce
new variables mk, xk, yk, zk to describe fixation probabilities
from configurations listed below the dashed line. Instead of
computing the fixation probability exactly, we bound it by
considering a different processes M↓, where mutants have
lower fixation probability than in the original process M.
We define M↓ as follows: the two processes coincide, except
that when M reaches any configuration below the dashed
line, we remove several mutants so as to obtain a configur-
ation ai or bi (for some i), see figure 10b. For instance, when
the current configuration is k ° 1, the resident from the gap
is spawning an offspring, and the offspring moves one
place left resulting in a configuration (k− 1) °° 1, we addition-
ally remove the single separated mutant, reaching the
configuration k− 1, where the mutants have fixation prob-
ability ak−1. Since for any two configurations C⊆C0 we have
ρ(C)≤ ρ(C0), the fixation probability in M↓ is indeed
decreased, as compared withM. (We note that by considering
a process M↑ where we occasionally add mutants so as to
only visit configurations ai, bi, one can obtain a stronger
upper bound than the one presented above.)

In M↓ we thus obtain

bk ¼ ð2=2Þak þ ð1=2Þbk�1 þ ð1=2Þak�1 þ ð3=4Þbk þ ð2=4Þbkþ1 þ ð3=4Þakþ2

ð2=2Þ þ ð1=2Þ þ ð1=2Þ þ ð3=4Þ þ ð2=4Þ þ ð3=4Þ

¼ 1
16

ð2ak�1 þ 4ak þ 3akþ2 þ 2bk�1 þ 3bk þ 2bkþ1Þ:

It remains to compute the fixation probability in M↓, in
the limit N→∞. We do this by a standard argument. Con-
sider a ‘potential function’ w which assigns a positive real
number to each configuration, defined by w(k) = αk, w(k °
1) = c · αk, where α, c > 0 are positive real numbers (to be
defined later). By solving a system of two equations

5 ¼ 2
a
þ cþ 2a
and

16c ¼ 2
a
þ 4þ 3a2 þ 2c

a
þ 3cþ 2ca

we find values a8 0:860, c8 0:954 (the roots of certain
degree-3 polynomials) for which the (expected) potential
does not change in one step of the process (that is, the function
w is a martingale), except when at configuration 1. Now for
any initial configuration x≠ 1, run the process starting from
x until it reaches either a configuration 1 or the configuration
N, and let px be the probability that the former happens. Then

wðxÞ ¼ E½wðxÞ j when the process ends�
¼ px � wð1Þ þ ð1� pxÞ � wðNÞ,

which rewrites as

px ¼ wðxÞ � wðNÞ
wð1Þ � wðNÞ :

Since α < 1 we have lim N→∞w(N) = 0, thus for x∈ {2, 1 ° 1} we
can write

lim
N!1

p2 ¼ a2

a
¼ a and lim

N!1
p1�1 ¼ c � a

a
¼ c:

Now using the expressions

a2 ¼ p2 � a1 þ ð1� p2Þ � 1 and b2 ¼ p1�1 � a1 þ ð1� p1�1Þ � 1
and plugging them into a1 ¼ 1

4
ða2 þ b1Þ we finally obtain

a1 ¼ 1
4
�ð2� p2 � p1�1Þ þ ðp2 þ p1�1Þ � a1

�
,

hence

lim
N!1

a1 ¼ lim
N!1

2� p2 � p1�1
4� p2 � p1�1

¼ 2� a� c
4� a� c

. 0:138: B
Appendix D. Edge-weighted graphs
Throughout the main text, we consider graphs in which each
edge has unit weight. Moran process can be extended to
graphs with weighted edges. Then, during each reproduction
step, the offspring migrates along an adjacent edge chosen
not uniformly at random, but rather with probability pro-
portional to the corresponding edge weight. Since edge
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Figure 11. Small populations N = 6 with r≥ 1. The fixation probabilities ρ(G) = ρ(G, KN) (top row) and rwðGÞ ¼ rðKN , GÞ (bottom row) for all 112 graphs G
on N = 6 nodes, with r ∈ {1, 1.1, 1.5, 2} (columns). As in figure 4, each dot corresponds to a graph G and the orange dots correspond to regular graphs. The shape
of the point cloud is roughly preserved even as r increases.
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weights can be any non-negative real numbers, the space of
all edge-weighted graphs is immense. To illustrate the diffi-
culties when considering edge-weighted graphs, here we
consider a special case, where N = 3, the residents live on a
complete (unweighted) graph K3, and the mutants live on
an edge-weighted graph Gx,y,z

3 with edge weights x, y, z. By
solving the resulting system of linear equations symbolically,
one can obtain the following unwieldy formula:
rðG3, K3Þ ¼ 4
P

6 x
4y2 þ 12

P
3 x

4yzþ 52
P

3 x
3y3 þ 193

P
6 x

3y2zþ 426
P

1 x
2y2z2

42
P

6 x4y2 þ 96
P

3 x4yzþ 156
P

3 x3y3 þ 549
P

6 x3y2zþ 1098
P

1 x2y2z2
,

where each symbol
P

i denotes the sum of all i distinct
terms obtained by permuting the exponents in the variables
x, y, z.

To perform a sanity check, we consider a special case
Gx,x,1

3 , where the graph has two edges of equal weight x =
y∈ [0, 1] and one edge of unit weight. In that case, the
formula simplifies into

rðGx,x,1
3 , K3Þ ¼ 1þ 23xþ 6x2

9þ 57þ 24x2
:

When x = 1, the graph Gx,x,1
3 is itself the complete unweighted

graph, and indeed the formula reduces to rðG1,1,1
3 , K3Þ ¼

30=90 ¼ 1=3 as expected.

Appendix E. Non-neutral mutants
To illustrate the robustness of our results, in figure 11 we pre-
sent the analogue of figure 4 for the case when mutants have
a fitness advantage r∈ {1.1, 1.5, 2}. The results are qualitat-
ively similar to the neutral case r = 1.
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